Zugzwang

Stochastic Adventures in Inductive Logic

Francisco Coelho

Departamento de Informática, Universidade de Évora High Performance Computing Chair NOVA-LINCS

November 29, 2022

1 Introduction

- 2 Extending Probability to Samples
- **3** Cases & Examples
- **4** Conclusions

Notation and Assumptions

• $\overline{x} = 1 - x$.

- Probabilistic Atomic Choice (PAC): x :: a defines a ∨ ¬a and probabilities p(a) = x, p(¬a) = x̄.
- δa denotes a ∨ ¬a and δ{x :: a, a ∈ A} = {δa, a ∈ A} for a set of atoms A.
- Closed World Assumption: $\sim p \models \neg p$.

General Setting

- Atoms \mathcal{A} , $\overline{\mathcal{A}} = \{\neg a, a \in \mathcal{A}\}$, and literals $\mathcal{L} = \mathcal{A} \cup \overline{\mathcal{A}}$.
- Samples $z \in \mathcal{Z} \iff z \subseteq \mathcal{L}$.
- Events or consistent samples \mathcal{E} :

$$\mathcal{E} = \left\{ z \in \mathcal{Z}, \ \forall a \in \mathcal{A} \ \left| \{a, \neg a\} \cap z \right| \leq 1 \right\}.$$

- *PASP Problem* or **Specification**: $P = C \land F \land R$ where
 - $C = C_P = \{x_i :: a_i, i \in 1 : n \land a_i \in A\}$ pacs.
 - $F = F_P$ facts.
 - $R = R_P$ rules.
 - $\mathcal{A}_P, \mathcal{Z}_P$ and \mathcal{E}_P : *atoms, samples* and *events* of *P*.
- Stable Models of *P*, $S = S_P$, are the stable models of $\delta P = \delta C + F + R$.

Distribution Semantics

- Total Choices: $\Theta = \Theta_C = \Theta_P$ elements are $\theta = \{t_c, c \in C\}$ where c = x :: a and t_c is a or $\neg a$.
- Total Choice Probability:

$$p(\theta) = \prod_{a \in \theta} x \prod_{\neg a \in \theta} \overline{x}.$$
 (1)

This is the *distribution semantic* as set by Sato.

Problem Statement

How to *extend* probability from total choices to stable models, events and samples?

There's a problem right at extending to stable models.

The Disjunction Case

Disjuntion Example

The specification

$$0.3 :: a,$$

 $b \lor c \leftarrow a.$

has three stable models,

$$s_1 = \{\neg a\}, s_2 = \{a, b\}, s_3 = \{a, c\}.$$

- Any stable model contains exactly one total choice.
- $p(\{\neg a\}) = 0.7$ is straightforward.
- But, no *informed* choice for $x \in [0, 1]$ in

$$p(\{a, b\}) = 0.3x,$$
$$p(\{a, c\}) = 0.3\overline{x}.$$

Lack of Information & Parametrization

• The specification *lacks information* to set $x \in [0, 1]$ in

$$p(\{a, b\}) = 0.3x,$$
$$p(\{a, c\}) = 0.3\overline{x}.$$

• A *random variable* captures this uncertainty, assuming that the stable models are statistically independent:

$$p(\{\neg a\} | X = x) = 0.7, p(\{a, b\} | X = x) = 0.3x, p(\{a, c\} | X = x) = 0.3\overline{x}.$$

• Other uncertainties may lead to further conditions:

$$p(s \mid X_1 = x_1, \ldots, X_n = x_n).$$

Reducing **uncertainty**, *e.g.* setting X = 0.21, must result from **external** sources, since the specification lacks information for further assertions.

Independence of Stable Models

- Q: Why are the stable models assumed statistically independent?
- A: Because dependence can be *explicitly* modelled.
 - So, it is assumed *intention* of the *modeller* to not explicit express such dependences.
 - For example: TODO Some key examples.

A random variable captures this uncertainty:

$$\begin{array}{l} p(\{\neg a\} \mid X = x) = 0.7, \\ p(\{a, b\} \mid X = x) = 0.3x, \\ p(\{a, c\} \mid X = x) = 0.3\overline{x}. \end{array}$$

Main Research Question

Can *all* specification uncertainties be neatly expressed as that example?

- Follow ASP syntax; for each case, what are the uncertainty scenarios?
- The disjunction example illustrates one such scenario.
- Neat means a function $d:\mathcal{S}
 ightarrow [0,1]$ such that

$$\sum_{s\in\mathcal{S}_ heta} d(s) = 1$$

for each $\theta \in \Theta$.

Leap into Inductive Programming

Given a method that produces a distribution of samples, p, from a specification, P and:

- Z, a dataset (of samples).
- e, the respective empirical distribution.
- *D*, some probability divergence, *e.g.* Kullback-Leibler.

Specification Performance & Inductive Programming

- D(P) = D(e, p) is a **performance** measure of *P*.
- Predictor performance measures, such as accuracy, are common in *Machine Learning* tasks.
- For *Inductive Programming* this performance can be used, *e.g.* as fitness, by algorithms searching for **optimal specifications of a dataset**.

2 Extending Probability to Samples

3 Cases & Examples

4 Conclusions

Prior to conciliation with data:

- Hopefully, *conditional parameters* extend probability from total choices to *standard models*.
- **2** How to extend it to events?
 - p(x) = 0 for x excluded by the specification, including *inconsistent* samples.
 - p(x) depends on the $s \in S$ that contain/are contained in x.

Consider probabilities conditional on the total choice!

Bounds of Events

- For $x \in \mathcal{E}$:
 - Lower Models: $\langle x | = \{ s \in S, s \subseteq x \}.$
 - Upper Models: $|x\rangle = \{s \in S, x \subseteq s\}.$
- Proposition. Exactly one of the following cases takes place:
 - 1 $\langle x| = \{x\} = |x\rangle$ and x is a stable model. Then:

$$p(x \mid C = \theta_x) = d(x).$$
 (2)

2 $\langle x | \neq \emptyset \land | x \rangle = \emptyset$. Then:

$$p(x \mid C = \theta_s, s \in \langle x |) = \prod_{s \in \langle x |} d(s).$$
(3)

3 $\langle x | = \emptyset \land | x \rangle \neq \emptyset$. Then:

$$p(x \mid C = \theta_s, s \in |x\rangle) = \sum_{s \in |x\rangle} d(s).$$
(4)

4 $\langle x | = \emptyset = |x \rangle$. Then: p(x) = 0. (5)

because stable models are *minimal*.

Conditional on Total Choices

- A stable model is entailed by an atomic choice plus the facts and rules of the specification.
- We express that entailment as a *conditional*. For example:

$$p(\{a,b\} | X = x) = p(b | X = x, \Theta = a) p(\theta = a)$$

And now p(b | X = x, Θ = a) = x, since X is a proxy for the stable models of the total choice θ = a, we can further.

Disjunction Example | The Events Lattice

Disjunction Example | The Events Lattice

• Consider the ASP program $P = C \land F \land R$ with total choices Θ and stable models S.

• Let $d : S \to [0,1]$ such that $\sum_{s \in S_{\theta}} d(s) = 1$ for each $\theta \in \Theta$.

For each $z \in \mathcal{Z}$ only one of the following cases takes place 1 z is inconsistent. Then **define**

$$w_d(x) = 0. (6)$$

2 *z* is an event and $\langle z| = \{z\} = |z\rangle$. Then *z* is a stable model and **define**

$$w_d(z) = w(z) = d(z) p(\theta_z).$$
(7)

3 *z* is an event and $\langle z | \neq \emptyset \land | x \rangle = \emptyset$. Then **define**

$$w_d(z) = \sum_{s \in \langle z |} w_d(s) \,. \tag{8}$$

4 *z* is an event and $\langle z | = \emptyset \land | z \rangle \neq \emptyset$. Then **define**

$$w_d(z) = \prod_{s \in |z\rangle} w_d(s) \,. \tag{9}$$

5 *z* is an event and $\langle z | = \emptyset \land | z \rangle = \emptyset$. Then **define**

$$w_d(z)=0. \tag{10}$$

The last point defines a "weight" function on the samples that depends not only on the total choices and stable models of a PASP but also on a certain function d that must respect some conditions. To simplify the notation we use the subscript in w_d only when necessary.

At first, it may seem counter-intuitive that w(Ø) = ∑_{s∈S} w(s) is the largest "weight" in the lattice. But Ø, as an event, sets zero restrictions on the "compatible" stable models. The "complement" of ⊥ = Ø is the maximal inconsistent sample ⊤ = A ∪ {¬a, a ∈ A}.

- We haven't yet defined a probability measure. To do so we must define a set of samples Ω, a set of events F ⊆ P(Ω) and a function P : F → [0, 1] such that:
 - **1** $p(E) \in [0, 1]$ for any $E \in F$.

2
$$p(\Omega) = 1.$$

3 if
$$E_1 \cap E_2 = \emptyset$$
 then $p(E_1 \cup E_2) = p(E_1) + p(E_2)$.

- **4** In the following, assume that the stable models are iid.
- **5** Let the sample space $\Omega = Z$ and the event space $F = \mathbb{P}(\Omega)$. Define $Z = \sum_{\zeta \in Z} w(\zeta)$ and

$$\mathbf{p}(z) = \frac{w(z)}{z \in \Omega} \quad z \in \Omega \tag{11}$$

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples

Programs with disjunctive heads Non-stratified programs

4 Conclusions

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples Programs with disjunctive heads Non-stratified programs

4 Conclusions

Consider the program:

$$c_1 = a \lor \neg a,$$

 $c_2 = b \lor c \leftarrow a.$

This program has two total choices,

$$\theta_1 = \{\neg a\},\\ \theta_2 = \{a\}.$$

and three stable models,

$$s_1 = \{\neg a\},$$

 $s_2 = \{a, b\},$
 $s_3 = \{a, c\}.$

Suppose that we add an annotation x :: a, which entails $\overline{x} :: \neg a$. This is enough to get $w(s_1) = \overline{x}$ but, on the absence of further information, no fixed probability can be assigned to either model s_2, s_3 except that the respective sum must be x. So, expressing our lack of knowledge using a parameter $d \in [0, 1]$ we get:

$$\begin{cases} w(s_1) = \overline{x} \\ w(s_2) = dx \\ w(s_3) = \overline{d}x \end{cases}$$

In this diagram:

- Negations are represented as *e.g.* ā instead of ¬a; Stable models are denoted by shaded nodes as ab.
- Events in $\langle x |$ are *e.g.* a and those in $|x\rangle$ are *e.g.* $[\overline{ab}]$. The remaining are simply denoted by *e.g.* $a\overline{b}$.
- The edges connect stable models with related events. Up arrow indicate links to $|s\rangle$ and down arrows to $\langle s|$.
- The weight propagation sets:

$$w(abc) = w(ab) w(ac) = x^2 d\overline{d},$$

$$w(\overline{a} \cdot \cdot) = w(\neg a) = \overline{x},$$

$$w(a) = w(ab) + w(ac) = x(d + \overline{d}) = x,$$

$$w(b) = w(ab) = dx,$$

$$w(c) = w(ac) = \overline{d}x,$$

$$w(\emptyset) = w(ab) + w(ac) + w(\neg a) = dx + \overline{d}x + \overline{x} = 1,$$

$$w(a\overline{b}) = 0.$$

The total weight is

1 Introduction

- 2 Extending Probability to Samples
- Cases & Examples Programs with disjunctive heads Non-stratified programs
- 4 Conclusions

The following LP is non-stratified, because has a cycle with negated arcs:

$$c_1 = a \lor \neg a,$$

$$c_2 = b \leftarrow \sim c \land \sim a,$$

$$c_3 = c \leftarrow \sim b.$$

This program has three stable models

$$s_1 = \{a, c\},$$

 $s_2 = \{\neg a, b\},$
 $s_3 = \{\neg a, c\}.$

The disjunctive clause $a \vee \neg a$ defines a set of **total choices**

$$\Theta = \left\{ \theta_1 = \left\{ a \right\}, \theta_2 = \left\{ \neg a \right\} \right\}.$$

Looking into probabilistic events of the program and/or its models, we define $x = p(\Theta = \theta_1) \in [0, 1]$ and $p(\Theta = \theta_2) = \overline{x}$. Since s_1 is the only stable model that results from $\Theta = \theta_1$, it is natural to extend $p(s_1) = p(\Theta = \theta_1) = x$. However, there is no clear way to assign $p(s_2), p(s_3)$ since both models result from the single total choice $\Theta = \theta_2$. Clearly,

$$p(s_2 \mid \Theta) + p(s_3 \mid \Theta) = \begin{cases} 0 & \text{if } \Theta = \theta_1 \\ 1 & \text{if } \Theta = \theta_2 \end{cases}$$

but further assumptions are not supported *a priori*. So let's **parameterize** the equation above,

$$\begin{cases} p(s_2 \mid \Theta = \theta_2) = & \beta \in [0, 1] \\ p(s_3 \mid \Theta = \theta_2) = & \overline{\beta}, \end{cases}$$

in order to explicit our knowledge, or lack of, with numeric values and relations.

Now we are able to define the **joint distribution** of the boolean random variables A, B, C:

$$A, B, C$$
 P Obs. $a, \neg b, c$ x $s_1, \Theta = \theta_1$ $\neg a, b, \neg c$ $\overline{x}\beta$ $s_2, \Theta = \theta_2$ $\neg a, \neg b, c$ $\overline{x}\overline{\beta}$ $s_3, \Theta = \theta_2$ $*$ 0not stable models

where $x, \beta \in [0, 1]$.

1 Introduction

- 2 Extending Probability to Samples
- **3** Cases & Examples

4 Conclusions

- We can use the basics of probability theory and logic programming to assign explicit *parameterized* probabilities to the (stable) models of a program.
- In the covered cases it was possible to define a (parameterized) *family of joint distributions*.
- How far this approach can cover all the cases on logic programs is (still) an issue *under investigation*.
- However, it is non-restrictive since *no unusual assumptions are made*.

1 Introduction

- 2 Extending Probability to Samples
- **3** Cases & Examples
- **4** Conclusions

- An **atom** is $r(t_1, \ldots, t_n)$ where
 - *r* is a *n*-ary predicate symbol and each *t_i* is a constant or a variable.
 - A ground atom has no variables; A literal is either an atom *a* or a negated atom ¬*a*.
- An ASP Program is a set of rules such as

 $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n.$

- The head of this rule is $h_1 \vee \cdots \vee h_m$, the body is $b_1 \wedge \cdots \wedge b_n$ and each b_i is a subgoal.
- Each h_i is a literal, each subgoal b_j is a literal or a literal preceded by ∼ and m + n > 0.
- A propositional program has no variables.
- A non-disjunctive rule has m ≤ 1; A normal rule has m = 1; A constraint has m = 0; A fact is a normal rule with n = 0.
- The **Herbrand base** of a program is the set of ground literals that result from combining all the predicates and constants of the program.
 - An event is a consistent subset (*i.e.* doesn't contain {a, ¬a}) of the Herbrand base.
 - Given an event *I*, a ground literal *a* is true, *I* ⊨ *a*, if *a* ∈ *I*; otherwise the literal is false.
 - A ground subgoal, $\sim b$, where b is a ground literal, is **true**,