
Zugzwang
Stochastic Adventures in Inductive Logic

Francisco Coelho

Departamento de Informática, Universidade de Évora
High Performance Computing Chair

NOVA-LINCS

November 29, 2022

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples

4 Conclusions

Notation and Assumptions

• x = 1− x .
• Probabilistic Atomic Choice (PAC): x :: a defines a ∨ ¬a

and probabilities p(a) = x , p(¬a) = x .
• δa denotes a ∨ ¬a and δ{x :: a, a ∈ A} = {δa, a ∈ A} for a

set of atoms A.
• Closed World Assumption: ∼p |= ¬p.

General Setting

• Atoms A, A = {¬a, a ∈ A}, and literals L = A ∪A.
• Samples z ∈ Z ⇐⇒ z ⊆ L.
• Events or consistent samples E :

E =
{

z ∈ Z, ∀a ∈ A
∣∣{a,¬a} ∩ z

∣∣ ≤ 1
}
.

• PASP Problem or Specification: P = C ∧ F ∧ R where
• C = CP = {xi :: ai , i ∈ 1 : n ∧ ai ∈ A} pacs.
• F = FP facts.
• R = RP rules.
• AP ,ZP and EP : atoms, samples and events of P.

• Stable Models of P, S = SP , are the stable models of
δP = δC + F + R.

Distribution Semantics

• Total Choices: Θ = ΘC = ΘP elements are θ = {tc , c ∈ C}
where c = x :: a and tc is a or ¬a.
• Total Choice Probability:

p(θ) =
∏
a∈θ

x
∏
¬a∈θ

x . (1)

This is the distribution semantic as set by Sato.

Problem Statement
How to extend probability from total choices to stable models,
events and samples?

There’s a problem right at extending to stable models.

The Disjunction Case
Disjuntion Example
The specification

0.3 :: a,
b ∨ c ← a.

has three stable models,

s1 = {¬a} , s2 = {a, b} , s3 = {a, c} .

• Any stable model contains exactly one total choice. ■
• p

(
{¬a}

)
= 0.7 is straightforward.

• But, no informed choice for x ∈ [0, 1] in

p
(
{a, b}

)
= 0.3x ,

p
(
{a, c}

)
= 0.3x .

Lack of Information & Parametrization
• The specification lacks information to set x ∈ [0, 1] in

p
(
{a, b}

)
= 0.3x ,

p
(
{a, c}

)
= 0.3x .

• A random variable captures this uncertainty, assuming that
the stable models are statistically independent:

p
(
{¬a}

∣∣ X = x
)
= 0.7,

p
(
{a, b}

∣∣ X = x
)
= 0.3x ,

p
(
{a, c}

∣∣ X = x
)
= 0.3x .

• Other uncertainties may lead to further conditions:

p(s | X1 = x1, . . . ,Xn = xn) .

Reducing uncertainty, e.g. setting X = 0.21, must result from
external sources, since the specification lacks information for
further assertions.

Independence of Stable Models

Q: Why are the stable models assumed statistically independent?
A: Because dependence can be explicitly modelled.
• So, it is assumed intention of the modeller to not explicit

express such dependences.
• For example: TODO Some key examples.

A random variable captures this uncertainty:

p
(
{¬a}

∣∣ X = x
)
= 0.7,

p
(
{a, b}

∣∣ X = x
)
= 0.3x ,

p
(
{a, c}

∣∣ X = x
)
= 0.3x .

Main Research Question
Can all specification uncertainties be neatly expressed as that
example?

• Follow ASP syntax; for each case, what are the uncertainty
scenarios?
• The disjunction example illustrates one such scenario.
• Neat means a function d : S → [0, 1] such that∑

s∈Sθ

d(s) = 1

for each θ ∈ Θ.

Leap into Inductive Programming

Given a method that produces a distribution of samples, p, from a
specification, P and:
• Z , a dataset (of samples).
• e, the respective empirical distribution.
• D, some probability divergence, e.g. Kullback-Leibler.

Specification Performance & Inductive Programming

• D(P) = D(e, p) is a performance measure of P.
• Predictor performance measures, such as accuracy, are

common in Machine Learning tasks.
• For Inductive Programming this performance can be used,

e.g. as fitness, by algorithms searching for optimal
specifications of a dataset.

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples

4 Conclusions

Resolution Path

Prior to conciliation with data:
1 Hopefully, conditional parameters extend probability from

total choices to standard models.
2 How to extend it to events?

• p(x) = 0 for x excluded by the specification, including
inconsistent samples.

• p(x) depends on the s ∈ S that contain/are contained in x .
Consider probabilities conditional on the total choice!

Bounds of Events
• For x ∈ E :

• Lower Models: ⟨x | = {s ∈ S, s ⊆ x}.
• Upper Models: |x⟩ = {s ∈ S, x ⊆ s}.

• Proposition. Exactly one of the following cases takes place:
1 ⟨x | = {x} = |x⟩ and x is a stable model. Then:

p(x | C = θx) = d(x) . (2)

2 ⟨x | ̸= ∅ ∧ |x⟩ = ∅. Then:

p
(
x
∣∣ C = θs , s ∈ ⟨x |

)
=

∏
s∈⟨x |

d(s) . (3)

3 ⟨x | = ∅ ∧ |x⟩ ̸= ∅. Then:

p
(
x
∣∣ C = θs , s ∈ |x⟩

)
=

∑
s∈|x⟩

d(s) . (4)

4 ⟨x | = ∅ = |x⟩. Then:
p(x) = 0. (5)

because stable models are minimal.

Conditional on Total Choices

• A stable model is entailed by an atomic choice plus the facts
and rules of the specification.
• We express that entailment as a conditional. For example:

p
(
{a, b}

∣∣ X = x
)
= p(b | X = x ,Θ = a) p(θ = a)

• And now p(b | X = x ,Θ = a) = x , since X is a proxy for the
stable models of the total choice θ = a, we can further.

Disjunction Example | The Events Lattice

p(Θ = a) = 0.3

x = p(S = ab | Θ)

x = p(S ̸= ab | Θ)

p(E = abc | Θ) = p(S = ab, S = ac | Θ)

∅

1

a 1b

x

c

x

ab x ac x

abc

xx

abc

x

abc

x

Disjunction Example | The Events Lattice

p
(
Θ = {a}

)
= 0.3

∅

1

c

a

1

ab

1

ac

1

ab

1

ac

1

abc

1

abc

1

abc

1

abc

1

• Consider the ASP program P = C ∧ F ∧ R with total choices
Θ and stable models S.
• Let d : S → [0, 1] such that

∑
s∈Sθ

d(s) = 1 for each θ ∈ Θ.

For each z ∈ Z only one of the following cases takes place
1 z is inconsistent. Then define

wd(x) = 0. (6)

2 z is an event and ⟨z | = {z} = |z⟩. Then z is a stable model
and define

wd(z) = w(z) = d(z) p(θz) . (7)
3 z is an event and ⟨z | ̸= ∅ ∧ |x⟩ = ∅. Then define

wd(z) =
∑
s∈⟨z|

wd(s) . (8)

4 z is an event and ⟨z | = ∅ ∧ |z⟩ ̸= ∅. Then define

wd(z) =
∏

s∈|z⟩
wd(s) . (9)

5 z is an event and ⟨z | = ∅ ∧ |z⟩ = ∅. Then define

wd(z) = 0. (10)

1 The last point defines a “weight” function on the samples
that depends not only on the total choices and stable models
of a PASP but also on a certain function d that must respect
some conditions. To simplify the notation we use the
subscript in wd only when necessary.

2 At first, it may seem counter-intuitive that
w
(
∅
)
=

∑
s∈S w(s) is the largest “weight” in the lattice. But

∅, as an event, sets zero restrictions on the “compatible”
stable models. The “complement” of ⊥ = ∅ is the maximal
inconsistent sample ⊤ = A ∪ {¬a, a ∈ A}.

3 We haven’t yet defined a probability measure. To do so
we must define a set of samples Ω, a set of events F ⊆ P(Ω)
and a function P : F → [0, 1] such that:

1 p(E) ∈ [0, 1] for any E ∈ F .
2 p(Ω) = 1.
3 if E1 ∩ E2 = ∅ then p(E1 ∪ E2) = p(E1) + p(E2).

4 In the following, assume that the stable models are iid.
5 Let the sample space Ω = Z and the event space F = P(Ω).

Define Z =
∑

ζ∈Z w(ζ) and

p(z) = w(z)
Z , z ∈ Ω (11)

and
p(E) =

∑
x∈E

p(x) ,E ⊆ Ω. (12)

Now:
1 P(E) ∈ [0, 1] results directly from the definitions of P and w .
2 p(Ω) = 1 also results directly from the definitions.
3 Consider two disjunct events A,B ⊂ Ω ∧ A ∩ B = ∅. Then

p(A ∪ B) =
∑

x∈A∪B
p(x)

=
∑
x∈A

p(x) +
∑
x∈B

p(x)−
∑

x∈A∩B
p(x)

=
∑
x∈A

p(x) +
∑
x∈B

p(x) because A ∩ B = ∅

= p(A) + p(B) .

4 So
(
Ω = Z,F = P(Ω) ,P

)
is a probability space. ■

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples
Programs with disjunctive heads
Non-stratified programs

4 Conclusions

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples
Programs with disjunctive heads
Non-stratified programs

4 Conclusions

Consider the program:

c1 = a ∨ ¬a,
c2 = b ∨ c ← a.

This program has two total choices,

θ1 = {¬a} ,
θ2 = {a} .

and three stable models,

s1 = {¬a} ,
s2 = {a, b} ,
s3 = {a, c} .

Suppose that we add an annotation x :: a, which entails x :: ¬a.
This is enough to get w(s1) = x but, on the absence of further
information, no fixed probability can be assigned to either model
s2, s3 except that the respective sum must be x . So, expressing our
lack of knowledge using a parameter d ∈ [0, 1] we get:

w(s1) = x
w(s2) = dx
w(s3) = dx .

In this diagram:
• Negations are represented as e.g. a instead of ¬a; Stable

models are denoted by shaded nodes as ab .

• Events in ⟨x | are e.g. a and those in |x⟩ are e.g. ab . The

remaining are simply denoted by e.g. ab .
• The edges connect stable models with related events. Up

arrow indicate links to |s⟩ and down arrows to ⟨s|.
• The weight propagation sets:

w(abc) = w(ab)w(ac) = x2dd ,
w(a · ·) = w(¬a) = x ,

w(a) = w(ab) + w(ac) = x(d + d) = x ,
w(b) = w(ab) = dx ,
w(c) = w(ac) = dx ,
w
(
∅
)
= w(ab) + w(ac) + w(¬a) = dx + dx + x = 1,

w
(

ab
)
= 0.

• The total weight is
Z = w(abc) + 8w(ab)
+ w(ab) + w(ac) + w(a)
+ w(a) + w(b) + w(c)
+ w

(
∅
)

= −x2d2 + x2d + 2xd − 7x + 10
• Now, if x has an annotation to e.g. 0.3 we get

Z = −0.09d2 + 0.69d + 7.9
• Now some statistics are possible. For example we get

p
(
abc | x = 0.3

)
=

0.09d (d − 1)
0.09d2 − 0.69d − 7.9

.
• This expression can be plotted for d ∈ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0
d

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

P(
ex

pr
=

0.
3)

• If a data set E entails e.g. p
(
abc | E

)
= 0.0015 we can

numerically solve
p
(
abc | x = 0.3

)
= p

(
abc | E

)
⇐⇒

0.09d (d − 1)
0.09d2 − 0.69d − 7.9 = 0.0015

which has two solutions, d ≈ 0.15861 or d ≈ 0.83138.

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples
Programs with disjunctive heads
Non-stratified programs

4 Conclusions

The following LP is non-stratified, because has a cycle with
negated arcs:

c1 = a ∨ ¬a,
c2 = b ←∼c∧ ∼a,
c3 = c ←∼b.

This program has three stable models

s1 = {a, c} ,
s2 = {¬a, b} ,
s3 = {¬a, c} .

The disjunctive clause a ∨ ¬a defines a set of total choices

Θ =
{
θ1 = {a} , θ2 = {¬a}

}
.

Looking into probabilistic events of the program and/or its models,
we define x = p(Θ = θ1) ∈ [0, 1] and p(Θ = θ2) = x .
Since s1 is the only stable model that results from Θ = θ1, it is
natural to extend p(s1) = p(Θ = θ1) = x . However, there is no
clear way to assign p(s2) , p(s3) since both models result from the
single total choice Θ = θ2. Clearly,

p
(
s2 | Θ

)
+ p

(
s3 | Θ

)
=

{
0 if Θ = θ1

1 if Θ = θ2

but further assumptions are not supported a priori. So let’s
parameterize the equation above,{

p
(
s2 | Θ = θ2

)
= β ∈ [0, 1]

p
(
s3 | Θ = θ2

)
= β,

in order to explicit our knowledge, or lack of, with numeric values
and relations.

Now we are able to define the joint distribution of the boolean
random variables A,B,C :

A,B,C P Obs.
a,¬b, c x s1,Θ = θ1
¬a, b,¬c xβ s2,Θ = θ2
¬a,¬b, c xβ s3,Θ = θ2
∗ 0 not stable models

where x , β ∈ [0, 1].

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples

4 Conclusions

• We can use the basics of probability theory and logic
programming to assign explicit parameterized probabilities to
the (stable) models of a program.
• In the covered cases it was possible to define a

(parameterized) family of joint distributions.
• How far this approach can cover all the cases on logic

programs is (still) an issue under investigation.
• However, it is non-restrictive since no unusual assumptions are

made.

1 Introduction

2 Extending Probability to Samples

3 Cases & Examples

4 Conclusions

• An atom is r(t1, . . . tn) where
• r is a n-ary predicate symbol and each ti is a constant or a

variable.
• A ground atom has no variables; A literal is either an atom a

or a negated atom ¬a.
• An ASP Program is a set of rules such as

h1 ∨ · · · ∨ hm ← b1 ∧ · · · ∧ bn.
• The head of this rule is h1 ∨ · · · ∨ hm, the body is b1 ∧ · · · ∧ bn

and each bi is a subgoal.
• Each hi is a literal, each subgoal bj is a literal or a literal

preceded by ∼ and m + n > 0.
• A propositional program has no variables.
• A non-disjunctive rule has m ≤ 1; A normal rule has m = 1;

A constraint has m = 0; A fact is a normal rule with n = 0.
• The Herbrand base of a program is the set of ground literals

that result from combining all the predicates and constants of
the program.
• An event is a consistent subset (i.e. doesn’t contain {a,¬a})

of the Herbrand base.
• Given an event I, a ground literal a is true, I |= a, if a ∈ I;

otherwise the literal is false.
• A ground subgoal, ∼b, where b is a ground literal, is true,

I |=∼b, if b ̸∈ I; otherwise, if b ∈ I, it is false.
• A ground rule r = h1 ∨ · · · ∨ hm ← b1 ∧ · · · ∧ bn is satisfied by

the event I, i.e. I |= r , iff
∀j∃i I |= bj =⇒ I |= hi .

• A model of a program is an event that satisfies all its rules.
Denote MP the set of all models of P.

• The dependency graph of a program is a digraph where:
• Each grounded atom is a node.
• For each grounded rule there are edges from the atoms in the

body to the atoms in the head.
• A negative edge results from an atom with ∼ ; Otherwise it is

a positive edge.
• An acyclic program has an acyclic dependency graph; A

normal program has only normal rules; A definite program
is a normal program that doesn’t contains ¬ neither ∼ .

• In the dependency graph of a stratified program no cycle
contains a negative edge.

• A stratified program has a single minimal model that
assigns either true or false to each atom.

• Every definite program has a unique minimal model: its
semantic.
• Programs with negation may have no unique minimal model.
• Given a program P and an event I, their reduct, P I , is the

propositional program that results from
1 Removing all the rules with ∼b in the body where b ∈ I.
2 Removing all the ∼b subgoals from the remaining rules.

• A stable model (or answer set) of the program P is an
event I that is the minimal model of the reduct P I .
• Denote SP the set of all stable models of program P. The

semantics (or answer sets) of a program P is the set SP .
• Some programs, such as a←∼a, have no stable models.
• A stable model is an event closed under the rules of the

program.

	Introduction
	Extending Probability to Samples
	Cases & Examples
	Programs with disjunctive heads
	Non-stratified programs

	Conclusions
	ASP & related definitions

