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Abstract

The idea of answer set programming is to represent a given computational problem by a logic
program whose answer sets correspond to solutions, and then use an answer set solver, such as
SMODELS or DLV, to find an answer set for this program. Applications of this method to planning
are related to the line of research on the frame problem that started with the invention of formal
nonmonotonic reasoning in 1980. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Kautz and Selman [19] proposed to approach the problem of plan generation by
reducing it to the problem of finding a satisfying interpretation for a set of propositional
formulas. This method, known assatisfiability planning, is used now in several planners.1

In this paper we discuss a related idea, due to Subrahmanian and Zaniolo [36]: reducing
a planning problem to the problem of finding an answer set (“stable model”) for a logic
program. The advantage of this “answer set programming” approach to planning is that
the representation of properties of actions is easier when logic programs are used instead
of axiomatizations in classical logic, in view of the nonmonotonic character of negation
as failure. Two best known answer set solvers (systems for computing answer sets)
available today areSMODELS2 andDLV.3 The results of computational experiments that
useSMODELSfor planning are reported in [4,30].

E-mail address: vl@cs.utexas.edu (V. Lifschitz).
1 See http://www.research.att.com/~kautz/blackbox/ for the latest system of this kind created by the inventors

of satisfiability planning.
2 http://www.tcs.hut.fi/Software/smodels/.
3 http://www.dbai.tuwien.ac.at/proj/dlv/.
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In this paper, based on earlier reports [22,23], applications of answer set programming
to planning are discussed from the perspective of the research on the frame problem and
nonmonotonic reasoning done in AI since 1980. Specifically, we relate them to the line of
work that started with the invention of default logic [33]—the nonmonotonic formalism
that turned out to be particularly closely related to logic programming [2,10,26]. After
the publication of the “Yale Shooting Scenario” [14] it was widely believed that the
solution to the frame problem outlined in [33] was inadequate. Several alternatives have
been proposed [8,15,18,20,21,29,34]. It turned out, however, that the approach of [33] is
completely satisfactory if the rest of the default theory is set up correctly [37]. It is, in fact,
very general, as discussed in Section 5.2 below. We will see that descriptions of actions in
the style of [33,37] can be used as a basis for planning using answer set solvers.

In the next section, we review the concept of an answer set as defined in [9,10,25] and
its relation to default logic. Then we describe some of the computational possibilities of
answer set solvers (Section 3) and illustrate the answer set programming method [27,30]
by applying it to a graph-theoretic search problem (Section 4). In Section 5 we turn to the
use of answer set solvers for plan generation. Section 6 describes the relation of this work
to other research on actions and planning.

2. Answer sets

2.1. Logic programs

We begin with a set of propositional symbols, calledatoms. A literal is an expression
of the formA or ¬A, whereA is an atom. (We call the symbol¬ “classical negation”,
to distinguish it from the symbolnot used for negation as failure.) Arule element is an
expression of the formL or not L, whereL is a literal. Arule is an ordered pair

Head← Body (1)

whereHead andBody are finite sets of rule elements. A rule (1) is aconstraint if Head = ∅;
it is disjunctive if the cardinality ofHead is greater than 1. If

Head = {L1, . . . ,Lk,not Lk+1, . . . ,not Ll}
and

Body= {Ll+1, . . . ,Lm,not Lm+1, . . . ,not Ln}
(n � m � l � k � 0) then we write (1) as

L1; . . . ;Lk;not Lk+1; . . . ;not Ll←Ll+1, . . . ,Lm,not Lm+1, . . . ,not Ln. (2)

We will drop← in (2) if the body of the rule is empty (n=m= l).
A program is a set of rules.
These definitions differ from the traditional description of the syntax of logic programs

in several ways. First, our rules are propositional: atoms are not assumed to be formed from
predicate symbols, constants and variables. An input file given to an answer set solver does
usually contain “schematic rules” with variables, but such a schematic rule is treated as an
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abbreviation for the set of rules obtained from it by grounding. The result of grounding is a
propositional object, just like a set of clauses that would be given as input to a satisfiability
solver.

On the other hand, in some ways (2) is more general than rules found in traditional
logic programs. EachLi may contain the classical negation symbol¬; traditional logic
programs use only one kind of negation—negation as failure. The head of (2) may contain
several rule elements, or it can be empty; traditionally, the head of a rule is a single atom.
The negation as failure symbol is allowed to occur in the head of a rule, and not only in the
body as in traditional logic programming. We will see later that the additional expressivity
given by these syntactic features is indeed useful.

2.2. Definition of an answer set

The notion of an answer set is defined first for programs that do not contain negation as
failure (l = k andn=m in every rule (2) of the program). LetΠ be such a program, and
let X be a consistent set of literals. We say thatX is closed underΠ if, for every rule (1)
in Π , Head ∩X 
= ∅ wheneverBody⊆ X. We say thatX is ananswer set for Π if X is
minimal among the sets closed underΠ (relative to set inclusion).

For instance, the program

p;q,

¬r← p
(3)

has two answer sets:

{p,¬r}, {q}. (4)

If we add the constraint

← q

to (3), we will get a program whose only answer set is the first of sets (4). On the other
hand, if we add the rule

¬q

to (3), we will get a program whose only answer set is{p,¬q,¬r}.
To extend the definition of an answer set to programs with negation as failure, take an

arbitrary programΠ , and letX be a consistent set of literals. Thereduct ΠX of Π relative
to X is the set of rules

L1; . . . ;Lk← Ll+1, . . . ,Lm

for all rules (2) inΠ such thatX contains all the literalsLk+1, . . . ,Ll but does not contain
any ofLm+1, . . . ,Ln. ThusΠX is a program without negation as failure. We say thatX is
ananswer set for Π if X is an answer set forΠX .

Consider, for instance, the program

p← not q,

q← not r,

r← not s,

(5)
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and letX be{p, r}. The reduct of (5) relative to this set consists of two rules:

p,

r.

SinceX is an answer set for this reduct, it is an answer set for (5). It is easy to check that
program (5) has no other answer sets.

This example illustrates the original motivation for the definition of an answer set—
providing a declarative semantics for negation as failure as implemented in existing Prolog
systems. Given program (5), a Prolog system will respondyes to a query if and only if that
query isp or r, that is to say, if and only if the query belongs to the answer set for (5). In
this sense, the role of answer sets is similar to the role of the concept of completion [3],
which provides an alternative explanation for the behavior of Prolog (p andr are entailed
by the program’s completion).

2.3. Comparison with default logic

Let Π be a program such that the head of every rule ofΠ is a single literal:

L0← L1, . . . ,Lm,not Lm+1, . . . ,not Ln. (6)

We can transformΠ into a (propositional) default theory in the sense of [33] by turning
each rule (6) into the default

L1∧ · · · ∧Lm : ¬Lm+1, . . . ,¬Ln

L0
.

There is a simple correspondence between the answer sets forΠ and the extensions for
this default theoryDT: if X is an answer set forΠ then the deductive closure ofX is a
consistent extension forDT; conversely, every consistent extension forDT is the deductive
closure of an answer set forΠ .

For instance, the default theory corresponding to program (5) is

: ¬q

p
,
: ¬r

q
,
: ¬s

r
.

The only extension for this default theory is the deductive closure of the program’s answer
set{p, r}.

Under this correspondence, a rule without negation as failure is represented by a default
without justifications, that is to say, by an inference rule. A fact—a rule with the empty
body—corresponds to a default that has neither prerequisites nor justifications, that is, an
axiom. The normal default

p : q
q

(7)

is the counterpart of the rule

q← p,not ¬q. (8)

Logic programs as defined above are more general than defaults in that their rules may
have several elements in the head, and these elements may include negation as failure. On
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the other hand, defaults are more general in that they may contain arbitrary propositional
formulas, not just literals or conjunctions of literals.

In this connection, it is interesting to note that one of the technical issues related to
the “Yale Shooting” controversy is whether the effects of actions should be described by
axioms, such as

loaded(s)⊃¬alive
(
result

(
shoot(s)

))
, (9)

or by inference rules, such as

loaded(s)

¬alive(result(shoot(s)))
. (10)

According to [37], formulation (10) is a better choice. In the language of logic
programs (10) would be written as

¬alive
(
result

(
shoot(s)

))← loaded(s).

Formula (9), on the other hand, does not correspond to any rule in the sense of logic
programming. Paradoxically, limitations of the language of logic programs play a positive
role in this case by eliminating some of the “bad” representational choices that are available
when properties of actions are described in default logic.

2.4. Generating and eliminating answer sets

From the perspective of answer set programming, two kinds of rules play a special role:
those that generate multiple answer sets and those that can be used to eliminate some of
the answer sets of a program.

One way to write a program with many answer sets is to use the disjunctive rules

A;¬A (11)

for several atomsA. A program that consists ofn rules of this form has 2n answer sets. For
instance, the program

p;¬p,

q;¬q

has four answer sets:

{p,q}, {p,¬q}, {¬p,q}, {¬p,¬q}.
As observed in [5], rule (11) can be equivalently replaced in any program by two

nondisjunctive rules

A← not ¬A,

¬A← not A.

In the notation of default logic, these rules can be written as

:A
A

,
: ¬A

¬A
.
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Alternatively, a program with many answer sets can be formed using rules of the form

L;not L (12)

whereL is a literal. This rule has two answer sets:{L} and∅. A program that consists of
n rules of form (12) has 2n answer sets—all subsets of the set of literals occurring in the
rules. For instance, the answer sets for the program

p;not p,

q;not q
(13)

are the four subsets of{p,q}.
The rules that can be used to eliminate “undesirable” answer sets are constraints—

rules with the empty head. We saw in Section 2.2 that appending the constraint← q to
program (3) eliminates one of its two answer sets (4). The effect of adding a constraint to
a program is always monotonic: the collection of answer sets of the extended program is a
part of the collection of answer sets of the original program.

More precisely, we say that a setX of literalsviolates a constraint

← L1, . . . ,Lm,not Lm+1, . . . ,not Ln (14)

if L1, . . . ,Lm ∈X andLm+1, . . . ,Ln /∈X. LetΠ ′ be the program obtained from a program
Π by adding constraint (14). Then a setX of literals is an answer set forΠ ′ iff

• X is an answer forΠ , and
• X does not violate constraint (14).

For instance, the second of the answer sets (4) for program (3) violates the constraint← q ,
and the first doesn’t; accordingly, adding this constraint to (3) eliminates the second of the
program’s answer sets.

To see how rules of both kinds—those that generate answer sets and those that eliminate
them—can work together, consider the following translation from propositional theories to
logic programs. LetΓ be a set of clauses, and letΠ be the program consisting of

• rules (11) for all atomsA occurring inΓ , and
• the constraints←L1, . . . ,Ln for all clausesL1∨ · · · ∨Ln in Γ .

(By L we denote the literal complementary toL.) The answer sets forΠ are in a 1–1
correspondence with the truth assignments satisfyingΓ , every truth assignment being
represented by the set of literals to which it assigns the valuetrue.

3. Answer set solvers

SystemDLV computes answer sets for finite programs without negation as failure in the
heads of rules (l = k in every rule (2) of the program). For instance, given the input file

p ; q.

-r :- p.
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it will return the answer sets for program (3). Given the input file

p :- not q.

q :- not r.

r :- not s.

it will return the answer set for program (5).
SystemSMODELS requires additionally that its input program contain no disjunctive

rules. This limitation is mitigated by two circumstances.
First, the input language ofSMODELS allows us to express any “exclusive disjunctive

rule”, that is, a disjunctive rule

L1; . . . ;Ln← Body

accompanied by the constraints

← Li,Lj ,Body (1� i < j � n).

This combination is represented as

L1| · · · |Ln :− Body.

Second,SMODELSallows us to represent the important disjunctive combination (12) in the
head of a rule by enclosingL in braces:

{L}.
A list of rules of the form

Li;not Li← Body (1 � i � n)

can be conveniently represented in anSMODELSinput file by one line

{L1, . . . ,Ln} :− Body.

For instance, rules (13) can be written simply as{p,q}.
Both DLV and SMODELS allow the user to specify large programs in a compact

fashion, using rules with schematic variables and other abbreviations. Both systems employ
sophisticated grounding algorithms that work fast and simplify the program in the process
of grounding.

4. Answer set programming

The idea of answer set programming is to represent a given computational problem by
a program whose answer sets correspond to solutions, and then use an answer set solver to
find a solution.

As an example, we will show how this method can be used to find a large clique, that
is, a subsetV of the vertices of a given graph such that

• every two vertices inV are joined by an edge, and
• the cardinality ofV is not less than a given constantj .
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Fig. 1 shows anSMODELS input file that can be used to find a large clique or to
determine that it does not exist. This file is supposed to be accompanied by a file that
describes the graph and specifies the value ofj , such as the one shown in Fig. 2.

The possible values of the variablesX, Y in Fig. 1 are restricted by the “domain
predicates”vertex andedge. In case of the graph described in Fig. 2, the predicate
vertex holds for the numerals0, . . . ,5, and the predicateedge holds for eight pairs of
vertices〈0,1〉, . . . , 〈2,5〉. Accordingly, the expression

{in(X): vertex(X)}

at the beginning of Fig. 1 (“the set of atomsin(X) for all X such thatvertex(X)”) has
the same meaning as

{in(0), in(1), in(2), in(3), in(4), in(5)}.

% GENERATE

j {in(X) : vertex(X)}.

% DEFINE

joined(X,Y) :- edge(X,Y).
joined(X,Y) :- edge(Y,X).

% TEST

:- in(X), in(Y), X!=Y, not joined(X,Y),
vertex(X), vertex(Y).

% DISPLAY

hide.
show in(X).

Fig. 1. Search for a large clique.

const j=3.

vertex(0..5).

edge(0,1). edge(1,2). edge(2,0). edge(3,4).
edge(4,5). edge(5,3). edge(4,0). edge(2,5).

Fig. 2. A test for the clique program.
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The last expression can be understood as an abbreviation for a set of rules of form (12), as
discussed in Section 3. The answer sets for this set of rules are arbitrary sets formed from
these six atoms. Symbolj at the beginning of the rule restricts the answer sets to those
whose cardinality is at leastj. This is an instance of the “cardinality” construct available
in SMODELS[31]. It allows the user to bound, from below and from above, the number of
atoms of a certain form that are included in the answer set. (A lower bound is placed to the
left of the expression in braces, as in this example; an upper bound would be placed to the
right.)

The main parts of the program in Fig. 1 are the two labeledGENERATE andTEST. The
former defines a large collection of answer sets—“potential solutions”. The latter consists
of the constraints that “weed out” the answer sets that do not correspond to solutions. As
discussed above, a potential solution is any subset of the vertices whose cardinality is at
leastj ; the constraints eliminate the subsets that are not cliques. This is similar to the use
of generating and eliminating rules in Section 2.4.

The part labeledDEFINE contains the definition of the auxiliary predicatejoined.
The part labeledDISPLAY tells SMODELS which elements of the answer set should be
included in the output: it instructs the system to “hide” all literals other than those that
encode the clique. In case of the problem shown in Fig. 2, the part of the answer set
displayed bySMODELSis

in(5) in(4) in(3).

The discussion of this example in terms of generating a set of potential solutions and
testing its elements illustrates the declarative meaning of the program, but it should not be
understood as a description of what is actually happening during the operation of an answer
set solver. SystemSMODELS does not process the program shown above by producing
answer sets for theGENERATE part and checking whether they satisfy the constraints in
theTEST part, just as a reasonable satisfiability solver does not search for a model of a
given set of clauses by generating all possible truth assignments and checking for each
of them whether the clauses are satisfied. The search procedures employed in systems
SMODELS andDLV use sophisticated search strategies somewhat similar to those used in
efficient satisfiability solvers.

Answer set programming has found applications to several practically important
computational problems [16,30,35]. One of these problems is planning.

5. Planning

5.1. Example

The code in Figs. 3–5 allows us to useSMODELS to solve planning problems in the
blocks world. We imagine that blocks are moved by a robot with several grippers, so that
a few blocks can be moved simultaneously. However, the robot is unable to move a block
onto a block that is being moved at the same time. As usual in blocks world planning, we
assume that a block can be moved only if there are no blocks on top of it.
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time(0..lasttime).

location(B) :- block(B).
location(table).

% GENERATE

{move(B,L,T) : block(B) : location(L)} grippers :-
time(T), T<lasttime.

% DEFINE

% effect of moving a block
on(B,L,T+1) :- move(B,L,T),

block(B), location(L), time(T), T<lasttime.

% inertia
on(B,L,T+1) :- on(B,L,T), not -on(B,L,T+1),

location(L), block(B), time(T), T<lasttime.

% uniqueness of location
-on(B,L1,T) :- on(B,L,T), L!=L1,

block(B), location(L), location(L1), time(T).

Fig. 3. Planning in the blocks world, Part 1.

% TEST

% two blocks cannot be on top of the same block
:- 2 {on(B1,B,T) : block(B1)},

block(B), time(T).

% a block can’t be moved unless it is clear
:- move(B,L,T), on(B1,B,T),

block(B), block(B1), location(L), time(T), T<lasttime.

% a block can’t be moved onto a block that is being moved also
:- move(B,B1,T), move(B1,L,T),

block(B), block(B1), location(L), time(T), T<lasttime.

% DISPLAY

hide.
show move(B,L,T).

Fig. 4. Planning in the blocks world, Part 2.



V. Lifschitz / Artificial Intelligence 138 (2002) 39–54 49

const grippers=2.
const lasttime=3.

block(1..6).

% Initial state: Goal:
%
% 3 6
% 1 3 5 2 5
% 2 4 6 1 4
% ------------- ---------

% DEFINE

on(1,2,0).
on(2,table,0).
on(3,4,0).
on(4,table,0).
on(5,6,0).
on(6,table,0).

% TEST

:- not on(3,2,lasttime).
:- not on(2,1,lasttime).
:- not on(1,table,lasttime).
:- not on(6,5,lasttime).
:- not on(5,4,lasttime).
:- not on(4,table,lasttime).

Fig. 5. A test for the planning program.

There are three domain predicates in this example:time, block andlocation; a
location is a block or the table. The constantlasttime is an upper bound on the lengths
of the plans to be considered. (To find the shortest plan, one can use theminimize feature
of SMODELSwhich is not discussed in this paper.)

The GENERATE section defines a potential solution to be an arbitrary set ofmove
actions executed prior tolasttime such that, for everyT, the number of actions executed
at timeT does not exceed the number of grippers.

The rules labeledDEFINE describe the sequence of states corresponding to the
execution of a given potential plan. Each sequence of states is represented by a complete
set ofon literals. TheDEFINE rules in Fig. 5 specify the positive literals describing the
initial positions of all blocks. The first twoDEFINE rules in Fig. 3 specify the positive
literals describing the positions of all blocks at timeT+1 in terms of their positions at time
T. The uniqueness of location rule specifies the negativeon literals to be included in an
answer set in terms of the positiveon literals in this answer set.
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Note that the secondDEFINE rule in Fig. 3 is theSMODELS representation of the
normal default

on(b, l, t) : on(b, l, t + 1)

on(b, l, t + 1)
(15)

—if it is consistent to assume that at timet + 1 block b is at the same location where it
was at timet then it is indeed at that location (see Section 2.3). This default is interesting
to compare with the solution to the frame problem proposed by Reiter in 1980:

R(x, s) :R(x, f (x, s))

R(x, f (x, s))

[33, Section 1.1.4]. If we take relationR to beon, and the tuple of argumentsx to beb, l,
this expression will turn into

on(b, l, s) : on(b, l, f (b, l, s))

on(b, l, f (b, l, s))
. (16)

The only difference between defaults (15) and (16) is that the first describes change in
terms of the passage of time (t becomest + 1), and the latter in terms of state transitions
(s becomesf (b, l, s)).

Consider now the three constraints labeledTEST in Fig. 4. The role of the first
constraint is to prohibit, indirectly, the actions that would create physically impossible
configurations of blocks, such as moving two blocksb1, b2 onto the same blockb. The
other two constraints express the robot’s limitations mentioned at the beginning of this
section.

Adding these constraints to the program eliminates the answer sets corresponding to
the sequences of actions that are not executable in the given initial state. When we further
extend the program by adding theTEST section of Fig. 5, we eliminate, in addition, the
sequences of actions that do not lead to the goal state. The answer sets for the program are
now in a 1–1 correspondence with solutions of the given planning problem.

TheDISPLAY section instructsSMODELS to “hide” all literals except for those that
begin withmove. The part of the answer set displayed bySMODELS is the list of actions
included in the plan:

Stable Model: move(3,table,0) move(1,table,0)
move(5,4,1) move(2,1,1) move(6,5,2) move(3,2,2)
True
Duration: 0.340

5.2. Discussion

The description of the blocks world domain in Figs. 3 and 4 is more sophisticated,
in several ways, than the shooting example [14] that seemed so difficult to formalize
in 1987. First, this version of the blocks world includes the concurrent execution of
actions.

Second, some effects of moving a block are described here indirectly. In the shooting
domain, the effects of all actions are specified explicitly: we are told how the action
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load affects the fluentloaded, and how the actionshoot affects the fluentalive. The
description of the blocks world given above is different. When block 1, located on top
of block 2, is moved onto the table, this action affects two fluents:on(1, table) becomes
true, andon(1,2) becomes false. The first of these two effects is described explicitly by
the firstDEFINE rule in Fig. 3, but the description of the second effect is indirect: the
uniqueness of location rule allows us to conclude that block 2 is not on top of block 1
anymore from the fact that block 2 is now on the table. The ramification problem—the
problem of describing indirect effects of actions—is not addressed in the classical action
representation formalisms STRIPS [7] and ADL [32].

Finally, the executability of actions is described in this example indirectly as well. As
discussed above, the impossibility of moving two blocksb1, b2 onto the same blockb is
implicit in our description of the blocks world: executing that action would have created a
configuration of blocks that is prohibited by one of the constraints in Fig. 4. In STRIPS
and ADL, the executability of an action has to be described explicitly, by listing the
action’s preconditions. The usual description of the blocks world asserts, for instance, that
moving one block on top of another is not executable if the target location is not clear. This
description is not applicable, however, when several blocks can be moved simultaneously:
in the initial state shown in Fig. 5, block 1 can be moved onto block 4 if block 3 is moved at
the same time. Fortunately, when the answer set approach to describing actions is adopted,
specifying action preconditions explicitly is unnecessary.

The usefulness of indirect descriptions of action domains for applications of AI was
demonstrated in the work on modelling the Reaction Control System (RCS) of the Space
Shuttle described in [38]. The system consists of several fuel tanks, oxidizer tanks, helium
tanks, maneuvering jets, pipes, valves, and other components. How is the behavior of the
RCS affected by flipping one of its switches? According to [38], this action has only one
direct effect, which is trivial: changing the position of a switch causes the switch to be
in the new position. But there is also a postulate asserting that, if a valve is functional,
it is not stuck closed, and the switch controlling it is in the open (or closed) position
then the valve is open (or closed). These two facts together tell us that, under certain
conditions, flipping a switch indirectly affects the corresponding valve. Furthermore, if
a helium tank has correct pressure, there is an open path to a propulsion tank, and there are
no paths to a leak, then the propulsion tank has correct pressure also. Using this postulate
we can conclude that, under certain conditions, flipping a switch affects pressure in a
propulsion tank, and so on. This multi-level approach to describing the effects of actions
leads to a well-structured and easy to understand formal description of the operation of the
RCS. The answer set programming approach handles such multi-leveled descriptions quite
easily.

6. Relation to action languages and satisfiability planning

Some of the recent work on representing properties of actions is formulated in terms of
“high-level” action languages [12], such asA [11] andC [13]. Descriptions of actions in
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these languages are more concise than logic programming representations. For example,
the counterparts of the first twoDEFINE rules from Fig. 3 in languageC are

move(b, l) causes on(b, l) and inertial on(b, l).

The design of languageC is based on the system of causal logic proposed in [28].
For a large class of action descriptions inC, an equivalent translation into logic

programming notation is defined in [24]. The possibility of such a translation further
illustrates the expressive power of the action representation method used in this paper.

As noted in the introduction, the answer set programming approach to planning is
related to satisfiability planning. There is, in fact, a formal connection between the two
methods. If a program without classical negation is “positive-order-consistent”, or “tight”,
then its answer sets can be characterized by a collection of propositional formulas [6]—the
formulas obtained by applying the completion process [3] to the program. The translations
from languageC described in [24] happen to produce tight programs. Describing a planning
problem by a program like this, then translating the program into propositional logic, and,
finally, invoking a satisfiability solver to find a plan is a form of satisfiability planning that
can be viewed also as “answer set programming without answer set solvers” [1]. This is
essentially how planning is performed by the Causal Calculator.4

7. Conclusion

In answer set programming, solutions to a combinatorial search problem are represented
by answer sets. Plan generation in the domains that involve actions with indirect effects are
a promising application area for this programming method.

SystemsSMODELSandDLV allow us to solve some nontrivial planning problems even
in the absence of domain-specific control information. For larger problems, however, such
information becomes a necessity. The possibility of encoding domain-specific control
knowledge so that it can be used by an answer set solver is crucial for progress in this
area, just as the possibility of using control knowledge by propositional solvers is crucial
for further progress in satisfiability planning [17]. This is a topic for future work.
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