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1 Language Syntax

For the sake of readability, the language specification is herein given in the traditional mathemat-
ical notation. A lexical matching table from the following notation to the actual raw input format
is provided in Section 5.

1.1 Terms.

Terms are either constants, variables, arithmetic terms or functional terms. Constants can be
either symbolic constants (strings starting with some lowercase letter), string constants (quoted
strings) or integers. Variables are denoted by strings starting with some uppercase letter. An
arithmetic term has form −(t) or (t�u) for terms t and u with � ∈ {“+”, “−”, “∗”, “/”}; parentheses
can optionally be omitted in which case standard operator precedences apply. Given a functor f
(the function name) and terms t1, . . . , tn, the expression f (t1, . . . , tn) is a functional term if n > 0,
whereas f () is a synonym for the symbolic constant f .

1.2 Atoms and Naf-Literals.

A predicate atom has form p(t1, . . . , tn), where p is a predicate name, t1, . . . , tn are terms and
n ≥ 0 is the arity of the predicate atom; a predicate atom p() of arity 0 is likewise represented
by its predicate name p without parentheses. Given a predicate atom q, q and ¬q are classical
atoms. A built-in atom has form t ≺ u for terms t and u with ≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”}.
Built-in atoms a as well as the expressions a and not a for a classical atom a are naf-literals.

1.3 Aggregate Literals.

An aggregate element has form
t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are terms and l1, . . . , ln are naf-literals for m ≥ 0 and n ≥ 0.
An aggregate atom has form

#aggr{e1; . . . ; en} ≺ u

where e1, . . . , en are aggregate elements for n ≥ 0, #aggr ∈ {“#count”, “#sum”, “#max”, “#min”}
is an aggregate function name, ≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”} is an aggregate relation and u
is a term. Given an aggregate atom a, the expressions a and not a are aggregate literals.

In the following, we write atom (resp., literal) without further qualification to refer to some
classical, built-in or aggregate atom (resp., naf- or aggregate literal).

1.4 Rules.

A rule has form
h1 | . . . | hm ← b1, . . . , bn.

where h1, . . . , hm are classical atoms and b1, . . . , bn are literals for m ≥ 0 and n ≥ 0.



1.5 Weak Constraints.

A weak constraint has form
� b1, . . . , bn. [w@l, t1, . . . , tm]

where t1, . . . , tm are terms and b1, . . . , bn are literals for m ≥ 0 and n ≥ 0; w and l are terms
standing for a weight and a level. Writing the part “@l” can optionally be omitted if l = 0; that
is, a weak constraint has level 0 unless specified otherwise.

1.6 Queries.

A query Q has form a?, where a is a classical atom.

1.7 Programs.

An ASP-Core-2 program is a set of rules and weak constraints, possibly accompanied by a (sin-
gle) query.1 A program (rule, weak constraint, query, literal, aggregate element, etc.) is ground
if it contains no variables.

2 Semantics

We herein give the full model-theoretic semantics of ASP-Core-2. As for non-ground programs,
the semantics extends the traditional notion of Herbrand interpretation, taking care of the fact
that all integers are part of the Herbrand universe. The semantics of propositional programs is
based on [8], extended to aggregates according to [4, 5]. Choice atoms [15] are treated in terms
of the reduction given in Section 3.2.

We restrict the given semantics to programs containing non-recursive aggregates (see Sec-
tion 6 for this and further restrictions to the family of admissible programs), for which the general
semantics presented herein is in substantial agreement with a variety of proposals for adding ag-
gregates to ASP [2, 3, 6, 7, 9–16].

2.1 Herbrand Interpretation.

Given a program P, the Herbrand universe of P, denoted by UP, consists of all integers and
(ground) terms constructible from constants and functors appearing in P. The Herbrand base
of P, denoted by BP, is the set of all (ground) classical atoms that can be built by combining
predicate names appearing in P with terms from UP as arguments. A (Herbrand) interpretation I
for P is a consistent subset of BP; that is, {q,¬q} * I must hold for each predicate atom q ∈ BP.

2.2 Ground Instantiation.

A substitution σ is a mapping from a set V of variables to the Herbrand universe UP of a given
program P. For some object O (term, classical atom, rule, weak constraint, query, literal, ag-
gregate element, etc.), we denote by Oσ the object obtained by replacing each occurrence of a
variable v ∈ V by σ(v) in O.

A variable is global in a rule, weak constraint or query r if it appears outside of aggregate
elements in r. A substitution from the set of global variables in r is a global substitution for r; a
substitution from the set of variables in an aggregate element e is a (local) substitution for e. A

1 Unions of conjunctive queries (and more) can be expressed by including appropriate rules in a program.



global substitution σ for r (or substitution σ for e) is well-formed if the arithmetic evaluation,
performed in the standard way, of any arithmetic subterm (−(t) or (t � u) with � ∈ {“+”, “−”,
“∗”, “/”}) appearing outside of aggregate elements in rσ (or appearing in eσ) is well-defined.

Given a collection {e1; . . . ; en} of aggregate elements, the instantiation of {e1; . . . ; en} is the
following set of aggregate elements:

inst({e1; . . . ; en}) =
⋃

1≤i≤n{eiσ | σ is a well-formed substitution for ei}

A ground instance of a term, classical atom, naf-literal, rule, weak constraint, or query r is ob-
tained in two steps: (1) a well-formed global substitution σ for r is applied to r; (2) for every ag-
gregate atom #aggr{e1; . . . ; en} ≺ u appearing in rσ, {e1; . . . ; en} is replaced by inst({e1; . . . ; en})
(where aggregate elements are syntactically separated by “;”).

The arithmetic evaluation of a ground instance r of some term, classical atom, naf-literal,
rule, weak constraint or query is obtained by replacing any maximal arithmetic subterm appear-
ing in r by its integer value, which is calculated in the standard way.2 The ground instantiation
of a program P, denoted by grnd(P), is the set of arithmetically evaluated ground instances of
rules and weak constraints in P.

2.3 Term Ordering and Satisfaction of Naf-Literals.

A ground classical atom a ∈ BP is true w.r.t. a (consistent) interpretation I ⊆ BP if a ∈ I. Let t
and u be arithmetically evaluated ground terms. To determine whether a built-in atom t ≺ u (with
≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”}) holds, we rely on a total order � on terms in UP defined as
follows:

– t � u for integers t and u if t ≤ u;
– t � u for any integer t and any symbolic constant u;
– t � u for symbolic constants t and u if t is lexicographically smaller than or equal to u;
– t � u for any symbolic constant t and any string constant u;
– t � u for string constants t and u if t is lexicographically smaller than or equal to u;
– t � u for any string constant t and any functional term u;
– t � u for functional terms t = f (t1, . . . , tm) and u = g(u1, . . . , un) if
• m < n (the arity of t is smaller than the arity of u),
• m ≤ n and g � f (the functor of t is smaller than the one of u, while arities coincide) or
• m ≤ n, f � g and, for any 1 ≤ j ≤ m such that t j � u j, there is some 1 ≤ i < j such that

ui � ti (the tuple of arguments of t is smaller than or equal to the arguments of u).

Then, t ≺ u is true w.r.t. I if t � u for ≺ = “≤”; u � t for ≺ = “≥”; t � u and u � t for ≺ = “<”;
u � t and t � u for ≺ = “>”; t � u and u � t for ≺ = “=”; t � u or u � t for ≺ = “,”. A positive
ground naf-literal a is true w.r.t. I if a is a classical or built-in atom that is true w.r.t. I; otherwise,
a is false w.r.t. I. A negative ground naf-literal not a is true (or false) w.r.t. I if a is false (or true)
w.r.t. I.

2.4 Satisfaction of Aggregate Literals.

An aggregate function is a mapping from sets of tuples of terms to terms. The aggregate functions
associated with aggregate function names introduced in Section 1.3 map a set T of tuples of
ground terms to a ground term as follows:

2 Note that the outcomes of arithmetic evaluation are well-defined relative to well-formed substitutions.



– #count(T ) = |T |;
– #sum(T ) =

∑
(t1, . . . , tm) ∈ T , t1 is an integer t1;

– #max(T ) = max{t1 | (t1, . . . , tm) ∈ T };
– #min(T ) = min{t1 | (t1, . . . , tm) ∈ T }.

The terms selected by #max(T ) and #min(T ) are determined relative to the total order � on terms
in UP (see Section 2.3); in the special case of an empty set, i.e. T = ∅, we adopt the convention
that #max(∅) � u and u � #min(∅) for every term u ∈ UP. An expression #aggr(T ) ≺ u
is true (or false) for #aggr ∈ {“#count”, “#sum”, “#max”, “#min”}, an aggregate relation ≺ ∈
{“<”, “≤”, “=”, “,”, “>”, “≥”} and a ground term u if #aggr(T ) ≺ u is true (or false) according to
the corresponding definition for built-in atoms given in Section 2.3.

An interpretation I ⊆ BP maps a collection E of aggregate elements to the following set of
tuples of ground terms:

eval(E, I) = {(t1, . . . , tm) | t1, . . . , tm : l1, . . . , ln occurs in E and l1, . . . , ln are true w.r.t. I}

A positive aggregate literal a = #aggr{e1; . . . ; en} ≺ u is true (or false) w.r.t. I if #aggr(eval({e1;
. . . ; en}, I)) ≺ u is true (or false) w.r.t. I; not a is true (or false) w.r.t. I if a is false (or true)
w.r.t. I.3

2.5 Answer Sets.

Given a program P and a (consistent) interpretation I ⊆ BP, a rule h1 | . . . | hm ← b1, . . . , bn.
in grnd(P) is satisfied w.r.t. I if some h ∈ {h1, . . . , hm} is true w.r.t. I when b1, . . . , bn are true
w.r.t. I; I is a model of P if every rule in grnd(P) is satisfied w.r.t. I. The reduct of P w.r.t. I,
denoted by PI , consists of the rules h1 | . . . | hm ← b1, . . . , bn. in grnd(P) such that b1, . . . , bn are
true w.r.t. I; I is an answer set of P if I is a ⊆-minimal model of PI . In other words, an answer
set I of P is a model of P such that no proper subset of I is a model of PI .

The semantics of P is given by the collection of its answer sets, denoted by AS(P).

2.6 Optimal Answer Sets.

To select optimal members of AS(P), we map an interpretation I for P to a set of tuples as follows:

weak(P, I) = {(w@l, t1, . . . , tm) |
� b1, . . . , bn. [w@l, t1, . . . , tm] occurs in grnd(P) and b1, . . . , bn are true w.r.t. I}

For any integer l, let
PI

l =
∑

(w@l, t1, . . . , tm) ∈ weak(P, I), w is an integerw

denote the sum of integers w over tuples with w@l in weak(P, I). Then, an answer set I ∈ AS(P) is
dominated by I′ ∈ AS(P) if there is some integer l such that PI′

l < PI
l and PI′

l′ = PI
l′ for all integers

l′ > l. An answer set I ∈ AS(P) is optimal if there is no I′ ∈ AS(P) such that I is dominated by I′.
Note that P has some (and possibly more than one) optimal answer set if AS(P) , ∅.

3 In view of the aforementioned extension of � to #max(∅) and #min(∅), the truth values of #min(∅) ≺ u
and #max(∅) ≺ u are well-defined (solely relying on ≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”}). For instance,
#min(eval({0 : p,not p}, I)) > 0 and #min(eval({0 : p,not p}, I)) , 0 evaluate to true for any in-
terpretation I; this still applies when arbitrary other terms are used in place of 0. On the other hand,
#max(eval({0 : p,not p}, I)) > 0 and #max(eval({0 : p,not p}, I)) = 0 are false w.r.t. any interpreta-
tion I.



2.7 Queries.

Given a program P along with a (single) query a?, let Ans(a, P) denote the set of arithmetically
evaluated ground instances a′ of a such that a′ ∈ I for all I ∈ AS(P). The set Ans(a, P), which
includes all arithmetically evaluated ground instances of a if AS(P) = ∅, constitutes the answers
to a?. That is, query answering corresponds to cautious (or skeptical) reasoning as defined in [1].

3 Syntactic Shortcuts

This section specifies additional constructs by reduction to the language introduced in Section 1.

3.1 Anonymous Variables.

An anonymous variable in a rule, weak constraint or query is denoted by “ ” (character under-
score). Each occurrence of “ ” stands for a fresh variable in the respective context (i.e., different
occurrences of anonymous variables represent distinct variables).

3.2 Choice Rules.

A choice element has form
a : l1, . . . , lk

where a is a classical atom and l1, . . . , lk are naf-literals for k ≥ 0.
A choice atom has form

{e1; . . . ; em} ≺ u

where e1, . . . , em are choice elements for m ≥ 0, ≺ is an aggregate relation (see Section 1.3) and
u is a term. The part “≺ u” can optionally be omitted if ≺ stands for “≥” and u = 0.

A choice rule has form
{e1; . . . ; em} ≺ u← b1, . . . , bn.

where {e1; . . . ; em} ≺ u is a choice atom and b1, . . . , bn are literals for n ≥ 0.
Intuitively, a choice rule means that, if the body of the rule is true, an arbitrary subset of

{e1, . . . , em} can be chosen as true in order to comply with the provided aggregate relation to u.
In the following, this intuition is captured by means of a proper mapping of choice rules to rules
without choice atoms (in the head).

For any predicate atom q = p(t1, . . . , tn), let q̂ = p̂(1, t1, . . . , tn) and ¬̂q = p̂(0, t1, . . . , tn),
where p̂ , p is an (arbitrary) predicate and function name that is uniquely associated with p, and
the first argument (which can be 1 or 0) indicates the “polarity” q or ¬q, respectively.4

Then, a choice rule stands for the rules

ai | âi ← b1, . . . , bn, l1i , . . . , lki .

for each 1 ≤ i ≤ m along with the single constraint

← b1, . . . , bn,not #count{ â1 : a1, l11 , . . . , lk1 ; . . . ; âm : am, l1m , . . . , lkm } ≺ u.

The first group of rules expresses that the classical atom ai in a choice element ai : l1i , . . . , lki for
1 ≤ i ≤ m can be chosen as true (or false) if b1, . . . , bn and l1i , . . . , lki are true. This “generates” all

4 It is assumed that fresh predicate and function names are outside of possible program signatures and
cannot be referred to within user input.



subsets of the atoms in choice elements. On the other hand, the second rule, which is an integrity
constraint, requires the condition {e1; . . . ; em} ≺ u to hold if b1, . . . , bn are true.5

For illustration, consider the choice rule

{p(a) : q(2);¬p(a) : q(3)} ≤ 1← q(1).

Using the fresh predicate and function name p̂, the choice rule is mapped to three rules as follows:

p(a) | p̂(1, a)← q(1), q(2).
¬p(a) | p̂(0, a)← q(1), q(3).

← q(1),not #count{ p̂(1, a) : p(a), q(2); p̂(0, a) : ¬p(a), q(3)} ≤ 1.

Note that the three rules are satisfied w.r.t. an interpretation I such that {q(1), q(2), q(3), p̂(1, a),
p̂(0, a)} ⊆ I and {p(a),¬p(a)} ∩ I = ∅. In fact, when q(1), q(2), and q(3) are true, the choice of
none or one of the atoms p(a) and ¬p(a) complies with the aggregate relation “≤” to 1.

3.3 Aggregate Relations.

An aggregate or choice atom

#aggr{e1; . . . ; em} ≺ u or {e1; . . . ; em} ≺ u

may be written as
u ≺−1 #aggr{e1; . . . ; em} or u ≺−1 {e1; . . . ; em}

where “<”−1 = “>”; “≤”−1 = “≥”; “=”−1 = “=”; “,”−1 = “,”; “>”−1 = “<”; “≥”−1 = “≤”.
The left and right notation of aggregate relations may be combined in expressions as follows:

u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2 or u1 ≺1 {e1; . . . ; em} ≺2 u2

Such expressions are mapped to available constructs according to the following transformations:

� u1 ≺1 {e1; . . . ; em} ≺2 u2 ← b1, . . . , bn. stands for

u1 ≺1 {e1; . . . ; em} ← b1, . . . , bn.

{e1; . . . ; em} ≺2 u2 ← b1, . . . , bn.

� h1 | . . . | hk ← b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. stands for

h1 | . . . | hk ← b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em}, #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn.

� h1 | . . . | hk ← b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. stands for

h1 | . . . | hk ← b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em}, bi+1, . . . , bn.

h1 | . . . | hk ← b1, . . . , bi−1,not #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn.

� � b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk] stands for

� b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em}, #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk]

� � b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk] stands for

� b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em}, bi+1, . . . , bn. [w@l, t1, . . . , tk]
� b1, . . . , bi−1,not #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk]

5 In disjunctive heads of rules of the first form, an occurrence of âi denotes an (auxiliary) atom that is
linked to the original atom ai. Given the relationship between ai and âi, the latter is reused as a term in
the body of a rule of the second form. That is, we overload the notation âi by letting it stand both for an
atom (in disjunctive heads) and a term (in #count aggregates).



3.4 Optimize Statements.

An optimize statement has form

#opt{w1@l1, t11 , . . . , tm1 : b11 , . . . , bn1 ; . . . ; wk@lk, t1k , . . . , tmk : b1k , . . . , bnk }.

where #opt ∈ {“#minimize”, “#maximize”}, wi, li, t1i , . . . , tmi are terms and b1i , . . . , bni are naf-
literals for k ≥ 0, 1 ≤ i ≤ k, mi ≥ 0 and ni ≥ 0. Similar to weak constraints (cf. Section 1.5), wi

and li stand for a weight and a level, and writing “@li” can optionally be omitted if li = 0.
An optimize statement stands for the weak constraints

� b11 , . . . , bn1 . [w
′
1@l1, t11 , . . . , tm1 ] . . . � b1k , . . . , bnk . [w

′
k@lk, t1k , . . . , tmk ]

where w′i = wi (or w′i = −wi) for 1 ≤ i ≤ k if #opt = “#minimize” (or #opt = “#maximize”).

4 EBNF Grammar

<program> ::= [<statements>] [<query>]

<statements> ::= [<statements>] <statement>

<query> ::= <classical_literal> QUERY_MARK

<statement> ::= CONS [<body>] DOT

| <head> [CONS [<body>]] DOT

| WCONS [<body>] DOT

SQUARE_OPEN <weight_at_level> SQUARE_CLOSE

| <optimize> DOT

<head> ::= <disjunction> | <choice>

<body> ::= [<body> COMMA]

(<naf_literal> | [NAF] <aggregate>)

<disjunction> ::= [<disjunction> OR] <classical_literal>

<choice> ::= [<term> <binop>]

CURLY_OPEN [<choice_elements>]

CURLY_CLOSE [<binop> <term>]

<choice_elements> ::= [<choice_elements> SEMICOLON]

<choice_element>

<choice_element> ::= <classical_literal> [COLON [<naf_literals>]]

<aggregate> ::= [<term> <binop>] <aggregate function>

CURLY_OPEN [<aggregate_elements>]

CURLY_CLOSE [<binop> <term>]

<aggregate_elements> ::= [<aggregate_elements> SEMICOLON]

<aggregate_element>

<aggregate_element> ::= [<terms>] [COLON [<naf_literals>]]

<aggregate_function> ::= AGGREGATE_COUNT



| AGGREGATE_MAX

| AGGREGATE_MIN

| AGGREGATE_SUM

<optimize> ::= <optimize_function>

CURLY_OPEN [<optimize_elements>]

CURLY_CLOSE

<optimize_elements> ::= [<optimize_elements> SEMICOLON]

<optimize_element>

<optimize_element> ::= <weight_at_level> [COLON [<naf_literals>]]

<optimize_function> ::= MAXIMIZE | MINIMIZE

<weight_at_level> ::= <term> [AT <term>] [COMMA <terms>]

<naf_literals> ::= [<naf_literals> COMMA] <naf_literal>

<naf_literal> ::= [NAF] <classical_literal> | <builtin_atom>

<classical_literal> ::= [MINUS] ID [PAREN_OPEN [<terms>] PAREN_CLOSE]

<builtin_atom> ::= <term> <binop> <term>

<binop> ::= EQUAL

| UNEQUAL

| LESS

| GREATER

| LESS_OR_EQ

| GREATER_OR_EQ

<terms> ::= [<terms> COMMA] <term>

<term> ::= ID [PAREN_OPEN [<terms>] PAREN_CLOSE]

| NUMBER

| STRING

| VARIABLE

| ANONYMOUS_VARIABLE

| PAREN_OPEN <term> PAREN_CLOSE

| MINUS <term>

| <term> <arithop> term>

<arithop> ::= PLUS

| MINUS

| TIMES

| DIV



5 Lexical Matching Table

Token Name Mathematical Notation Lexical Format
used within this document (exemplified) (Flex Notation)

ID a, b, anna, . . . [a-z][A-Za-z0-9_]*

VARIABLE X,Y,Name, . . . [A-Z][A-Za-z0-9_]*

STRING “http://bit.ly/cw6lDS”, “Peter”, . . . \"([ˆ\"]|\\\")*\"

NUMBER 1, 0, 100000, . . . "0"|[1-9][0-9]*

ANONYMOUS_VARIABLE "_"

DOT . "."

COMMA , ","

QUERY_MARK ? "?"

COLON : ":"

SEMICOLON ; ";"

OR | "|"

NAF not "not"

CONS ← ":-"

WCONS � ":˜"

PLUS + "+"

MINUS − or ¬ "-"

TIMES ∗ "*"

DIV / "/"

AT @ "@"

PAREN_OPEN ( "("

PAREN_CLOSE ) ")"

SQUARE_OPEN [ "["

SQUARE_CLOSE ] "]"

CURLY_OPEN { "{"

CURLY_CLOSE } "}"

EQUAL = "="

UNEQUAL , "<>"|"!="

LESS < "<"

GREATER > ">"

LESS_OR_EQ ≤ "<="

GREATER_OR_EQ ≥ ">="

AGGREGATE_COUNT #count "#count"

AGGREGATE_MAX #max "#max"

AGGREGATE_MIN #min "#min"

AGGREGATE_SUM #sum "#sum"

MINIMIZE #minimize "#minimi"[zs]"e"

MAXIMIZE #maximize "#maximi"[zs]"e"

COMMENT % this is a comment "%"([ˆ*\n][ˆ\n]*)?\n

MULTI_LINE_COMMENT %* this is a comment *% "%*"([ˆ*]|\*[ˆ%])*"*%"

BLANK [ \t\n]+

Lexical values are given in Flex6 syntax. The COMMENT, MULTI_LINE_COMMENT and BLANK
tokens can be freely interspersed amidst other tokens and have no syntactic or semantic meaning.

6 http://flex.sourceforge.net/

http://flex.sourceforge.net/


6 Using ASP-Core-2 in Practice – Restrictions

To promote declarative programming as well as practical system implementation, ASP-Core-2
programs are supposed to comply with the restrictions listed in the following. This particularly
applies to input programs in the System Track of the 4th Answer Set Programming Competition.

6.1 Safety.

For enabling a retrieval of values for variables from atoms within the variables’ scope, any rule,
weak constraint or query is required to be safe. To this end, for a set V of variables and literals
b1, . . . , bn, we inductively (starting from an empty set of bound variables) define v ∈ V as bound
by b1, . . . , bn if v occurs outside of arithmetic terms in some bi for 1 ≤ i ≤ n such that bi is

– a classical atom,
– a built-in atom t = u or u = t and any member of V occurring in t is bound by b1, . . . , bn or
– an aggregate atom #aggr E = u and any member of V occurring in E is bound by b1, . . . , bn.

The entire set V of variables is bound by b1, . . . , bn if each v ∈ V is bound by b1, . . . , bn.
A rule, weak constraint or query r is safe if the set V of global variables in r is bound

by b1, . . . , bn (taking a query r to be of form b1?) and, for each aggregate element t1, . . . , tk :
l1, . . . , lm in r with occurring variable set W, the set W \V of local variables is bound by l1, . . . , lm.
For instance, the rule p(X,Y) ← q(X), #sum{S , X : r(T, X), S = (2 ∗ T ) − X} = Y. is safe, while
p(X,Y)← q(X), #sum{S , X : r(T, X), S + X = 2 ∗ T } = Y. is not safe.

6.2 Finiteness.

Input programs in the System Track of the 4th Answer Set Programming Competition must not
have infinite or infinitely many answer sets. For example, a program including p(X + 1)← p(X).
or p( f (X)) ← p(X). along with a fact like p(0). is not an admissible input in the System Track.
Finiteness must be witnessed via a known maximum integer and maximum function nesting level
per problem instance, which correctly limit the absolute values of integers as well as the depths
of functional terms occurring as arguments in the atoms of answer sets.

6.3 Aggregates.

For the sake of an uncontroversial semantics, we require aggregates to be non-recursive. To make
this precise, for any predicate atom q = p(t1, . . . , tn), let qv = p/n and ¬qv = ¬p/n. We further
define the directed predicate dependency graph DP = (V, E) for a program P by

– the set V of vertices av for all classical atoms a appearing in P and
– the set E of edges (hv

i , h
v
1), . . . , (hv

i , h
v
m) and (hv

1, a
v), . . . , (hv

m, a
v) for all rules h1 | . . . | hm ←

b1, . . . , bn. in P, 1 ≤ i ≤ m and classical atoms a appearing in b1, . . . , bn.

The aggregates in P are non-recursive if, for any classical atom a appearing within aggregate
elements in a rule h1 | . . . | hm ← b1, . . . , bn. in P, there is no path from av to hv

i in DP for
1 ≤ i ≤ m.

6.4 Predicate Arities.

The arity of atoms sharing some predicate name is not assumed to be fixed. However, system
implementers are encouraged to issue proper warning messages if an input program includes
classical atoms with the same predicate name but different arities.



6.5 Undefined Arithmetics.

While substitutions that lead to undefined arithmetic subterms (and are thus not well-formed)
are “automatically” excluded by ground instantiation as specified in Section 2.2, rooting the
semantics of a program on such clearance would make grounding cumbersome in practice. For
instance, the (single) answer set of the one-rule program p← not q(0/0).must be empty, and any
a priori simplification relying on the absence of a definition for predicate q is probably mistaken.

In order to avoid grounding complications, however, a program P shall be invariant under
undefined arithmetics; that is, grnd(P) is supposed to be equivalent to any ground program P′

obtainable from P by freely replacing arithmetic subterms with undefined outcomes by arbitrary
terms from UP instead of dropping an underlying (non-well-formed) substitution. As a matter
of fact, the one-rule program considered above does not satisfy this condition (e.g., it is not
equivalent to p ← not q(0).), while the semantics of the alternative program p ← r,not q(0/0).
is invariant under undefined arithmetics.
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