The goal of this text is to explore how	ASP programs with
probabilistic facts can lead to characte	

distributions of the program's atoms.

Notation

- The **complement** of x is $\overline{x} = 1 x$.
- A **probabilistic atomic choice** α : a defines the disjunction $a \vee \neg a$ and assigns probabilities $P(a) = \alpha, P(\neg a) = \overline{\alpha}$.
- δa denotes the disjunction $a \vee \neg a$ associated to the probabilistic choice $\alpha : a$ and $\delta \{\alpha : a, a \in A\} = \{\delta a, a \in A\}$ for any set of atoms A.
- Start with the **closed world assumption**, where $\sim x \models \neg x$.
- Also assume that probabilistic choices and subgoals are iid.

• Let \mathcal{A} be a set of **atoms**, \mathcal{Z} the respective set of **observations**, $\mathcal{Z} = \{z = \alpha \cup \nu | \alpha \subseteq \mathcal{A} \land \nu \subseteq \{\neg a | a \in \mathcal{A}\}\}$

and
$$\mathcal{I}$$
 the set of consistent observations or **interpretations**,
$$\mathcal{I} = \{z \in \mathcal{Z} \middle| \forall a \in \mathcal{A} \mid \{a, \neg a\} \cap z \mid \leq 1\}.$$

- A **PASP program** is $P = C \wedge F \wedge R$ and the sets of atoms, observations and interpretations of program P are denoted
 - observations and interpretations of program P are denoted $\mathcal{A}_P, \mathcal{Z}_P$ and \mathcal{I}_P .

 $C = C_P = \{\alpha_i : a_i | i = 1 : n\}$ is a set of probabilistic atomic phases and SC, the set of probabilistic atomic phases and SC.
 - $C = C_P = \{\alpha_i : a_i | i = 1 : n\}$ is a set of probabilistic atomic choices and δC_P the set of associated disjunctions, $F = F_P$ is a set of (common) facts and $R = R_P$ is a set of (common) rules.
- The **stable models** of $P = C \wedge F \wedge R$ are the stable models of $\delta P = \delta C + F + R$ and denoted $S = S_P$.

• **Proposition.** Let $x \in \mathcal{I}$ be an interpretation and

 $\langle x| = \{s \in \mathcal{S} | s \subseteq x\}$ and $|x\rangle = \{s \in \mathcal{S} | x \subseteq s\}$. Exactly one of

- the following cases takes place 1. $\langle x| = \{x\} = |x\rangle$. If $a \in \langle x|$ and $b \in |x\rangle$ then $a \subseteq b$. Since
- stable models are minimal must be a = b = x and x is a stable model.
 - 2. $\langle x | \neq \emptyset \land | x \rangle = \emptyset$.
- 3. $\langle x | = \emptyset \land | x \rangle \neq \emptyset$.
- 4. $\langle x| = \emptyset = |x\rangle$.

- The probabilistic facts C define a set $\Theta = \Theta_C$ of **total choices**, with 2^n elements, each one a set $\theta = \{c_1, \ldots, c_n\}$ where c_i is either a_i or $\neg a_i$.
- For each stable model $s \in \mathcal{S}$ let θ_s be the unique **total choice** contained in s and $\mathcal{S}_{\theta} \subseteq \mathcal{S}$ the set of stable models that contains θ .
- Define

$$p(\theta) = \prod_{\mathbf{a}_i \in \theta} \alpha_i \prod_{\neg \mathbf{a}_i \in \theta} \overline{\alpha_i}. \tag{1}$$

The problem we address is how to assign probabilities

to observations given that a total choice might entail zero or many stable models i.e. How to assign probabilities to

the stable models of S_{θ} when $|S_{\theta}| \neq 1$?

As it turns out, it is quite easy to come out with a program from which result no single probability distribution. For example

$$0.3:a$$
, $b \lor c \leftarrow a$.

has three stable models

$$s_1 = \{\neg a\}$$

$$s_2 = \{a, b\}$$

$$s_3 = \{a, c\}$$

and while $p\big(\{\neg a\}\big)=0.7$ is quite natural, we have no further information to support the choice of a singular $\alpha\in[0,1]$ in the assignment

$$p({a,b}) = 0.3\alpha$$

 $p({a,c}) = 0.3\overline{\alpha}$

Next we try to formalize the possible configurations of this scenario. Consider the ASP program $P=C\wedge F\wedge R$ with total choices Θ and stable models \mathcal{S} . Let $d:\mathcal{S}\to [0,1]$ such that

 $\sum_{s\in\mathcal{S}_{\theta}}d(s)=1.$

1. For each $z \in \mathcal{Z}$ only one of the following cases takes place 1.1 z is inconsistent. Then **define**

$$w_d(x) = 0. (2)$$

(4)

(5)

1.2 z is an interpretation and $\langle z|=\{z\}=|x\rangle$. Then z=s is a stable model and **define**

$$w_d(z) = w(s) = d(s) p(\theta_s). \tag{3}$$

1.3 z is an interpretation and $\langle z| \neq \emptyset \land |x\rangle = \emptyset$. Then **define**

$$w_d(z) = \sum_{s \in \langle z|} w_d(s)$$
.

1.4 z is an interpretation and $\langle z|=\emptyset \wedge |z\rangle \neq \emptyset$. Then **define**

$$w_d(z)=\prod_{s\in |z\rangle}w_d(s)$$
 . 1.5. z is an interpretation and $\langle z|=\emptyset \land |z\rangle=\emptyset$. Then **define**

1.5
$$z$$
 is an interpretation and $\langle z|=\emptyset \wedge |z\rangle =\emptyset$. Then **define** $w_d(z)=0.$ (6)

2. The last point defines a "weight" function on the observations that depends not only on the total choices and stable models of a PASP but also on a certain function *d* that must respect

Consider the program:

$$c_1 = a \lor \neg a,$$

 $c_2 = b \lor c \leftarrow a.$

This program has two total choices,

$$\theta_1 = \{\neg a\},$$

$$\theta_2 = \{a\}.$$

and three stable models,

$$s_1 = \{ \neg a \},$$

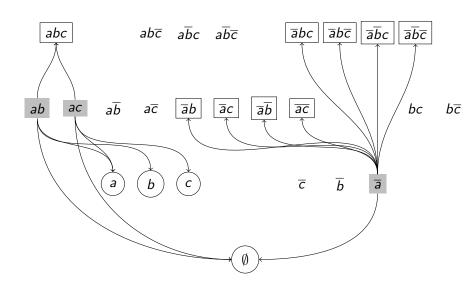
 $s_2 = \{ a, b \},$
 $s_3 = \{ a, c \}.$

Suppose that we add an annotation α : a, which entails $\overline{\alpha}$: $\neg a$.

This is enough to get $w(s_1) = \overline{\alpha}$ but, on the absence of further information, no fixed probability can be assigned to either model s_2, s_3 except that the respective sum must be α . So, expressing our lack of knowledge using a parameter $d \in [0,1]$ we get:

$$egin{cases} w(s_1) = & \overline{lpha} \ w(s_2) = & dlpha \ w(s_3) = & \overline{d}lpha. \end{cases}$$

Now consider all the interpretations for this program:



In this diagram:

• Negations are represented as e.g. \bar{a} instead of $\neg a$; Stable models are denoted by shaded nodes as [ab].

• Interpretations in $\langle x|$ are e.g. (a) and those in $|x\rangle$ are e.g.

The remaining are simply denoted by e.g. ab The edges connect stable models with related interpretations.

Up arrow indicate links to $|s\rangle$ and down arrows to $\langle s|$.

The weight propagation sets:

 $w(abc) = w(ab) w(ac) = \alpha^2 d\overline{d}$. $w(\overline{a} \cdot \cdot) = w(\neg a) = \overline{\alpha},$ $w(a) = w(ab) + w(ac) = \alpha(d + \overline{d}) = \alpha$ $w(b) = w(ab) = d\alpha$, $w(c) = w(ac) = \overline{d}\alpha$ $w(\emptyset) = w(ab) + w(ac) + w(\neg a) = d\alpha + \overline{d}\alpha + \overline{\alpha} = 1,$ $w(a\overline{b}) = 0.$

The total weight is

The following LP is non-stratified, because has a cycle with negated arcs:

$$c_1 = a \lor \lnot a,$$

$$c_2 = b \leftarrow \sim c \land \sim a,$$

 $c_3 = c \leftarrow \sim b.$

 $s_1 = \{a, c\},\$ $s_2 = \{ \neg a, b \}$, $s_3 = \{ \neg a, c \}$.

The disjunctive clause
$$a \lor \neg a$$
 defines a set of **total choices**

 $\Theta = \left\{\theta_1 = \left\{a\right\}, \theta_2 = \left\{\neg a\right\}\right\}.$

Looking into probabilistic interpretations of the program and/or its models, we define $\alpha=P(\Theta=\theta_1)\in[0,1]$ and $P(\Theta=\theta_2)=\overline{\alpha}$. Since s_1 is the only stable model that results from $\Theta=\theta_1$, it is natural to extend $P(s_1)=P(\Theta=\theta_1)=\alpha$. However, there is no clear way to assign $P(s_2)$, $P(s_3)$ since both models result from the single total choice $\Theta=\theta_2$. Clearly,

$$P(s_2 \mid \Theta) + P(s_3 \mid \Theta) = \begin{cases} 0 & \text{if } \Theta = \theta_1 \\ 1 & \text{if } \Theta = \theta_2 \end{cases}$$

but further assumptions are not supported a priori. So let's parameterize the equation above,

$$\begin{cases} P(s_2 \mid \Theta = \theta_2) = & \beta \in [0, 1] \\ P(s_3 \mid \Theta = \theta_2) = & \overline{\beta}, \end{cases}$$

in order to explicit our knowledge, or lack of, with numeric values and relations.

Now we are able to define the **joint distribution** of the boolean random variables A, B, C, :

, ,		
, ,		
$\overline{a, \neg b, c}$	α	$s_1,\Theta= heta_1$
$\neg a, b, \neg c$	$\overline{\alpha}\beta$	$s_2,\Theta= heta_2$
$\neg a, \neg b, c$	$\overline{\alpha}\overline{\beta}$	$s_3,\Theta= heta_2$
*	0	not stable models
	$a, \neg b, c$ $\neg a, b, \neg c$	A, B, C P $a, \neg b, c$ α $\neg a, b, \neg c$ $\overline{\alpha}\beta$ $\neg a, \neg b, c$ $\overline{\alpha}\overline{\beta}$ $*$ 0

where $\alpha, \beta \in [0, 1]$.

- We can use the basics of probability theory and logic programming to assign explicit *parameterized* probabilities to the (stable) models of a program.
- In the covered cases it was possible to define a
- (parameterized) family of joint distributions.How far this approach can cover all the cases on logic

programs is (still) an issue under investigation.

 However, it is non-restrictive since no unusual assumptions are made.

- An **atom** is $r(t_1, \ldots t_n)$ where r is a n-ary predicate symbol and each t_i is a constant or a variable.
- A ground atom has no variables; A literal is either an atom a or a negated atom $\neg a$.
- An ASP Program is a set of rules such as $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$. • The **head** of this rule is $h_1 \vee \cdots \vee h_m$, the **body** is $b_1 \wedge \cdots \wedge b_n$
 - and each b_i is a **subgoal**. • Each h_i is a literal, each subgoal b_i is a literal or a literal
 - preceded by \sim and m+n>0. A propositional program has no variables.
 - A non-disjunctive rule has m < 1; A normal rule has m = 1; A **constraint** has m = 0; A **fact** is a normal rule with n = 0. • The **Herbrand base** of a program is the set of ground literals that result from combining all the predicates and constants of
- the program. • An **interpretation** is a consistent subset (i.e. doesn't contain $\{a, \neg a\}$) of the Herbrand base. • Given an interpretation I, a ground literal a is **true**, $I \models a$, if
 - $a \in I$; otherwise the literal is **false**. • A ground subgoal, $\sim b$, where b is a ground literal, is **true**,