
Zugzwang
Logic and Artificial Intelligence

Why this title?

Francisco Coelho Bruno Dinis
fc@uevora.pt bruno.dinis@uevora.pt

Universidade de Évora and
NOVALINCS

Universidade de Évora

May 2, 2023

Abstract

(rewrite) A major limitation of logical representations in real world
applications is the implicit assumption that the background knowl-
edge is perfect. This assumption is problematic if data is noisy, which
is often the case. Here we aim to explore how answer set program
specifications with probabilistic facts can lead to characterizations of
probability functions Why is this important? Is this what ‘others in
sota’ are trying do to? on the specification’s domain.

1 Introduction and Motivation
(Define and/or give references to all necessary concepts used in the paper)

(state of the art; references) Answer set program (ASP) is a logic pro-
gramming paradigm based on the stable model (SM) semantics of normal
(logic) program (NP) that can be implemented using the latest advances in
SAT solving technology. Unlike ProLog, ASP is a truly declarative language
that supports language constructs such as disjunction in the head of a clause,
choice rules, and hard and weak constraints.

(references) The distribution semantics (DS) is a key approach to extend
logical representations with probabilistic reasoning. Probabilistic facts (PFs)
are the most basic stochastic DS primitive and they take the form of logical
facts, a, labelled with a probability, p, such as p :: a; Each PF represents

1



a boolean random variable that is true with probability p and false with
probability p = 1− p. A (consistent) combination of the PFs defines a total
choice (TC) c = {p :: a, . . .} such that

P(C = c) =
∏
a∈c

p
∏
a ̸∈c

p. (1)

Our goal is to extend this probability, from TCs, to cover the specification
domain. We use the term “specification” as set of rules and facts, plain and
probabilistic, to decouple it from any computational semantics, implied, at
least implicitly, by the term “program”. We can foresee at least two key
applications of this extended probability:

1. Support probabilistic reasoning/tasks on the specification domain.

2. Also, given a dataset and a divergence measure, the specification can be
scored (by the divergence w.r.t. the empiric distribution of the dataset),
and weighted or sorted amongst other specifications. These are key
ingredients in algorithms searching, for example, optimal specifications
of a dataset.

Our idea to extend probabilities starts with the stance that a specification
describes an observable system and that observed events must be related with
the SMs of that specification. From here, probabilities must be extended from
total choices to SMs and then from SMs to any event.

Extending probability from TCs to SMs faces a critical problem, illus-
trated by the example in section 2, concerning situations where multiple
SMs, ab and ac, result from a given TC, a, but there is not enough informa-
tion to assign a single probability to each SM. We propose to address this
issue by using algebraic variables to describe that lack of information and
then estimate the value of those variables from empirical data.

In a related work, [5], epistemic uncertainty (or model uncertainty) is
considered as a lack of knowledge about the underlying model. This lack of
knowledge can be mitigated via further observations. This seems to presup-
pose a Bayesian approach to imperfect knowledge in the sense that having
further observations allows to improve/correct the model. Indeed, the ap-
proach in the paper uses Beta distributions in order to be able to learn the full
distribution. This approach seems to be specially fitted to being able to tell
when some probability lies beneath some given value. (Our approach seems
to be similar in spirit. If so, we should mention this in the introduction.)

(Discuss the least informed strategy and the corolary that stable models
should be conditionally independent on the total choice.)

(Give an outline of the paper.)

2



2 A simple but fruitful example
(Write an introduction to the section)

Example 1. Consider the following specification

0.3 :: a,

b ∨ c← a.
(2)

This specification has three stable models, a, ab and ac (see Figure 1). While
it is straightforward to set P (a) = 0.7, there is no further information to
assign values to P (ab) and P (ac). Assuming that the stable model (SM) are
(probabilistically) independent, we can use a parameter λ/θ such that

P (ab) = 0.3θ,

P (ac) = 0.3(1− θ).

While uncertainty is inherent to the specification it can be mitigated with
the help of a dataset: the parameter θ can be estimated from a empirical
distribution (or we can have a distribution of θ).

In summary, if an ASP specification is intended to describe some observ-
able system then:

1. Observations can be used to estimate the value of the parameters (such
as θ above and others entailed from further clauses).

2. (What about the case where we already know a distribution of θ?)

3. With a probability set for the stable models, we want to extend it to
all the events of the specification/domain.

4. This extended probability can then be related to the empirical distri-
bution, using a probability divergence, such as Kullback-Leibler; and
the divergence value used as a performance measure of the specification
with respect to the observations.

5. If that specification is only but one of many possible candidates then
that performance measure can be used, e.g. as fitness, by algorithms
searching (optimal) specifications of a dataset of observations.

(Expand this:) If observations are not consistent with the models
of the specification, then the specification is wrong and must be
changed.

3



{}

a

ab ac

b c

abc

bc

a

ac

abc

Figure 1: Events related to the stable models of example 1. The circle nodes
are the TCs and the shaded nodes are the SMs.

Currently, we are addressing the problem of extending a probability func-
tion (possibly using parameters such as θ), defined on the SMs of a specifi-
cation, to all the events of that specification. Of course, this extension must
satisfy the Kolmogorov axioms of probability so that probabilistic reasoning
is consistent with the ASP specification.

Conditional independence of stable worlds asserts a least informed strat-
egy that we discussed in the introduction and make explicit here:

Assumption 1. Stable models are conditionally independent, given their
total choices.

The stable models ab, ac from example 1 result from the clause b∨ c← a
and the total choice a. These formulas alone impose no relation between b
and c (given a), so none should be assumed. Dependence relations are further
discussed in section 3.1.

3 Extending Probabilities
(Somewhere, we need to shift the language from extending probabilities to
extending measures)

The diagram in fig. 1 illustrates the problem of extending probabilities
from total choice nodes to stable models and then to general events in a node-
wise process. This quickly leads to coherence problems concerning probabil-
ity, with no clear systematic approach — Instead, weight extension can be
based in the relation an event has with the stable models.

4



Given an ASP specification Introduce also the sets mentioned below how?
, we consider the atoms a ∈ A and literals, z ∈ L, events e ∈ E ⇐⇒ e ⊆ L
and worlds w ∈ W (consistent events), total choices c ∈ C ⇐⇒ c = a ∨ ¬a
and stable models s ∈ S ⊂ W .

Our path starts with a perspective of stable models as playing a role
similar to prime factors. The stable models of a specification are the ir-
reducible events entailed from that specification and any event must be
interpreted/considered under its relation with the stable models.

(Introduce a structure with worlds, events, and stable models) seems irrel-
evant This focus on the SMs leads to the following definition:

Definition 1. A stable structure is a pair (A, S) where A is a set of atoms can
be extracted from S. and S is a set of consistent events over A.

(expand this text to explain how the stable models form the basis of the
equivalence relation).

Definition 2. The stable core (SC) of the event e ∈ E is

JeK := {s ∈ S | e ⊆ s ∨ s ⊆ e} (3)

We now define an equivalence relation, ∼, so that two events are related
if they are either both inconsistent or both consistent with the same stable
core.

Definition 3. For a given specification, let u, v ∈ E . The equivalence relation
∼ is defined by

u ∼ v :⇐⇒ u, v ̸∈ W ∨
(
u, v ∈ W ∧ JuK = JvK) . (4)

Observe that the minimality of stable models implies that, in eq. (3),
either e is a stable model or one of e ⊆ s, s ⊆ e is never true. This rela-
tion defines a partition of the events space, where each class holds a unique
relation with the stable models. In particular, we denote each class by:

[e]∼ =

{
⊥ := E \W if e ̸∈ E \ W ,{
u ∈ W

∣∣ JuK = JeK} if e ∈ W ,
(5)

The stable core defines a canonical representative of each class:

Theorem 1. Let e ∈ E and JeK = {s1, . . . , sn} ⊆ S. Then

[e]∼ = [s1 ∪ · · · ∪ sn]∼. (6)

We simplify the notation with [s1, . . . , sn]∼ := [s1 ∪ · · · ∪ sn]∼. (This only
works for consistent s1, . . . , sn:

{
{}
}
= [a, ab, ac]∼ ̸= [aabc]∼ = ⊥.)

5



Proof. (tbd)

The subsets of the stable models, together with ⊥, form a set of repre-
sentatives. Consider again Example 1. As previously mentioned, the stable
models are S = a, ab, ac so the quotient set of this relation is [E ]∼ :{

⊥, ∅, [a]∼, [ab]∼, [ac]∼, [a, ab]∼, [a, ac]∼, [ab, ac]∼, [a, ab, ac]∼
}

(7)

For example,

[{}]∼ = [a, ab, ac]∼, [a]∼ = [ab, ac]∼, [b]∼ = [ab]∼, [b]∼ = ∅,
[ac]∼ = ∅, [ab]∼ = ∅, [bb]∼ = ⊥, [ab]∼ = [a]∼,

[bc]∼ = ∅, [abc]∼ = [ab, ac]∼, [abc]∼ = [ac]∼, [abc]∼ = [a]∼,

• Since all events within an equivalence class are in relation with a specific
set of stable models, weights, including probability, should be constant
within classes:

∀u ∈ [e]∼
(
P(u) = P(e)

)
.

• So, instead of dealing with 64 = 26 events, we need only to handle
9 = 23 + 1 classes, well defined in terms of combinations of the stable
models.

(Check adaptation) Our path to set a probability measure on E has two
phases:

• Extending the probabilities, as weights, of the total choices to events.

• Normalization of the weights.

The “extension” phase, traced by equations (1) and (8 — 13), starts with
the weight (probability) of total choices, µ(c) = P(C = c), expands it to
stable models, µ(s), and then, within the equivalence relation from Equation
(4), to (general) events, µ(e), including (consistent) worlds.

Total Choices. Using (1), this case is given by

µ(c) = P(C = c) =
∏
a∈c

p
∏
a ̸∈c

p (8)

Stable Models. Each total choice c, together with the rules and the other
facts of a specification, defines a set of stable models associated with
that choice, that we denote by Sc.

6



Given a stable model s ∈ S, a total choice c, and variables/values
θs,c ∈ [0, 1],

µ(s, c) :=

{
θs,c if s ∈ Sc

0 otherwise
(9)

such that
∑

s∈Sc
θs,c = 1.

Classes. Each class is either the inconsistent class, ⊥, or is represented by
some set of stable models.

• Inconsistent Class. The inconsistent class contains events that
are logically inconsistent. Since these events should never be ob-
served:

µ(⊥, c) := 0. (10)

• Independent Class. A world that neither contains nor is con-
tained in a stable model describes a case that, according to the
specification, should never be observed. So the respective weight
is set to zero:

µ
(
∅, c

)
:= 0. (11)

• Other Classes. The extension must be constant within a class,
its value should result from the elements in the stable core, and
respect the assumption 1:

µ
(Js1, . . . , snK , c) := ∏

k

µ(sk, c) . (12)

Events. Each (general) event e is in the class defined by its stable core, JeK.
So, we set:

µ(e, c) := µ
(JeK , c) . (13)

Equation (9) expresses the specification’s lack of knowledge about the
weight assignment, when a single total choice entails more than one sta-
ble model. In this case, how to distribute the respective weights? Our
answer/proposal to /address this problem consists in assigning an unknown
weight, θs,c, conditional depending??? on the total choice, c, to each stable
model s. This approach allows the expression of an unknown quantity and
future estimation, given observed data.

Equation (12) results from conditional independence of stable models.

7



3.1 Dependence
Our basic assertion about dependence relations between atoms of the under-
lying system is that they can be explicitly expressed in the specification. And,
in that case, they should be.

For example, a dependence relation between b and c can be expressed by
b← c∧d, where d is an atomic choice that explicitly expresses the dependence
between b and c. One would get, for example, a specification such as

0.3 :: a, b ∨ c← a, 0.2 :: d, b← c ∧ d.

with stable models ad, ad, adb, adc, adb.
The interesting case is the subtree of the total choice ad. Notice that

no stable model s contains adc because (i) adb is a stable model and (ii) if
adc ⊂ s then b ∈ s so adb ⊂ s.

Following equations (??) and (??) What are these equations? this entails{
P(W = adc | C = ad) = 0,

P(W = adb | C = ad) = 1

which concentrates all probability mass from the total choice ad in the adb
branch, including the node W = adbc. This leads to the following cases:

x P(W = x | C = ad)
ad 1
adb 1
adc 0
adbc 1

so, for C = ad,
P(W = b) =

2

4

P(W = c) =
1

4

P(W = bc) =
1

4
̸= P(W = b) P(W = c)

i.e. the events W = b and W = c are dependent and that dependence results
directly from the segment 0.2 :: d, b← c ∧ d in the specification.

Why does this not contradict Assumption 1?
Todo

Prove the four world cases (done), support the product (done)
and sum (tbd) options, with the independence assumptions.

8



4 Developed Example
We continue with the specification from Equation (2).

Step 1: Total Choices. The total choices, and respective stable models,
are

Total Choice (c) P(C = c) Stable Models (s)
a 0.3 ab and ac.
a = ¬a 0.3 = 0.7 a.

Step 2: Stable Models. Suppose now that

Stable Models (s) Total Choice (c) P(S = c | C = c)
a 1.0 a.
ab 0.8 a.
ac 0.2 = 0.8 a.

Step 3: Worlds. Following equations ?? — ?? we get:

Occ. (o) S.M. (s) Relation T.C. (c) P(W = w)
∅ all contained a, a 1.0
a ab, ac contained a 0.8× 0.3 + 0.2× 0.3 = 0.3
b ab contained a 0.8× 0.3 = 0.24
c ac contained a 0.2× 0.3 = 0.06
a a stable model a 1.0× 0.3 = 0.3

b none independent none 0.0
c none …
ab ab stable model a 0.24
ac ac stable model a 0.06

ab none …
ac none …
ab a contains a 1.0
ac a …
ab a …
ac a …
abc ab, ac contains a 0.8× 0.2 = 0.016

5 Final Remarks
(develop this section.)

• The measure of the inconsistent events doesn’t need to be set to 0 and,
maybe, in some cases, it shouldn’t.

9



• The physical system might have latent variables, possibly also rep-
resented in the specification. These variables are never observed, so
observations should be concentrated somewhere else.

Acknowledgements
This work is supported by NOVALINCS (UIDB/04516/2020) with the fi-
nancial support of FCT.IP.

References
[1] Fabio Gagliardi Cozman and Denis Deratani Mauá. “The joy of proba-

bilistic answer set programming: semantics, complexity, expressivity, in-
ference”. In: International Journal of Approximate Reasoning 125 (2020),
pp. 218–239.

[2] Andrew Cropper et al. “Inductive logic programming at 30”. In: Machine
Learning 111.1 (2022), pp. 147–172.

[3] Martin Gebser et al. “Answer set solving in practice”. In: Synthesis lec-
tures on artificial intelligence and machine learning 6.3 (2012), pp. 1–
238.

[4] Fabrizio Riguzzi. Foundations of probabilistic logic programming: Lan-
guages, semantics, inference and learning. CRC Press, 2022.

[5] Victor Verreet et al. “Inference and learning with model uncertainty in
probabilistic logic programs”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 36. 9. 2022, pp. 10060–10069.

10


	Introduction and Motivation
	A simple but fruitful example
	Extending Probabilities
	Dependence

	Developed Example
	Final Remarks

