An Algebraic Approach to Stochastic ASP

Francisco Coelho * Bruno Dinis | Salvador Abreu *
fcQuevora.pt bruno.dinis@uevora.pt spa@uevora.pt

July 18, 2023

Abstract

(rewrite) A major limitation of logical representations in real world
applications is the implicit assumption that the background knowl-
edge is perfect. This assumption is problematic if data is noisy, which
is often the case. Here we aim to explore how answer set program
specifications with probabilistic facts can lead to characterizations of
probability functions (Why is this important? Is this what “others in
sota" are trying do to?) on the specification's domain.

1 Introduction and Motivation

(Define and/or give references to all necessary concepts used in the paper)
(state of the art; references)

Answer set program (ASP) is a logic programming paradigm based on
the stable model (SM) semantics of normal programs (NPs) that can be
implemented using the latest advances in SAT solving technology. Unlike
ProLog, ASP is a truly declarative language that supports language con-
structs such as disjunction in the head of a clause, choice rules, and hard and
weak constraints.

(references) The distribution semantics (DS) is a key approach to extend
logical representations with probabilistic reasoning. Probabilistic facts (PF's)
are the most basic DS stochastic primitives and take the form of logical facts,
a, labelled with probabilities, p, such as p::a; Each PF represents a boolean

*Universidade de Evora, NOVALINCS, High Performance Computing Chair
tUniversidade de Evora, CIMA, CMAFcIO
tUniversidade de Evora, NOVALINCS

random variable that is true with probability p and false with probability
P =1—p. A (consistent) combination of the PFs defines a total choice (TC)
t ={p:a,...} such that changed total choice ¢ to t everywhere.

P(T=t)=[]r]]P (1)
act a¢t
Our goal is to extend this probability, from TCs, to cover the specification
domain. We use the term " " specification' as set of rules and facts, plain and
probabilistic, to decouple it from any computational semantics, implied, at
least implicitly, by the term *program''. We can foresee at least two key
applications of this extended probability:

1. Support probabilistic reasoning/tasks on the specification domain.

2. Also, given a dataset and a divergence measure, the specification can be
scored (by the divergence w.r.t. the empiric distribution of the dataset),
and weighted or sorted amongst other specifications. These are key
ingredients in algorithms searching, for example, optimal specifications
of a dataset.

Our idea to extend probabilities starts with the stance that a specification
describes an observable system and that observed events must be related with
the SMs of that specification. From here, probabilities must be extended from
total choices to SMs and then from SMs to any event.

Extending probability from TCs to SMs faces a critical problem, illus-
trated by the example in section 2, concerning situations where multiple
SMs, ab and ac, result from a single TC, a, but there is not enough infor-
mation (in the specification) to assign a single probability to each SM. We
propose to address this issue by using algebraic variables to describe that lack
of information and then estimate the value of those variables from empirical
data.

In a related work, [8], epistemic uncertainty (or model uncertainty) is
considered as a lack of knowledge about the underlying model, that may be
mitigated via further observations. This seems to presuppose a Bayesian ap-
proach to imperfect knowledge in the sense that having further observations
allows to improve/correct the model. Indeed, the approach in that work uses
Beta distributions in order to be able to learn the full distribution. This
approach seems to be specially fitted to being able to tell when some prob-
ability lies beneath some given value. (Our approach seems to be similar
in spirit. If so, we should mention this in the introduction.) (Also remark
that our apporach remains algebraic in the way that we address the problems
concerning the extension of probabilities.)

2

(cite " "SymPy: symbolic computing in Python'' --- why here? but cite
“The joy of probabilistic answer set programming: semantics, complexity,
expressivity, inference'' and relate with our work.)

(Discuss the least informed strategy and the corolary that stable models
should be conditionally independent on the total choice.)

(Give an outline of the paper.)

2 A simple but fruitful example

(Write an introduction to the section)

Example 1. Consider the following specification

0.3::a,
bV c <+ a.

(2)

This specification has three stable models, @, ab and ac (see fig. 1). While
it is straightforward to set P(a) = 0.7, there is no further information to
assign values to P(ab) and P(ac). Assuming that the stable models (SMs)
are (probabilistically) independent, we can use a parameter 6 such that

P(ab) = 0.36,
P(ac) =0.3(1 —0).

While uncertainty is inherent to the specification it can be mitigated with
the help of a dataset: the parameter 6 can be estimated from a empirical
distribution (or we can have a distribution of 0). (point to ezamples of this
in following sections.)

In summary, if an ASP specification is intended to describe some observ-
able system then:

1. Observations can be used to estimate the value of the parameters (such
as 0 above and others entailed from further clauses).

2. (What about the case where we already know a distribution of 67)

3. With a probability set for the stable models, we want to extend it to
all the events of the specification domain.

4. This extended probability can then be related to the empirical distri-
bution, using a probability divergence, such as Kullback-Leibler (KL);
and the divergence value used as a performance measure of the speci-
fication with respect to the observations.

5. If that specification is only but one of many possible candidates then
that performance measure can be used, e.g. as fitness, by algorithms
searching (optimal) specifications of a dataset of observations.

(Expand this:) If observations are not consistent with the models
of the specification, then the specification is wrong and must be
changed.

Currently, we are addressing the problem of extending a probability func-
tion (possibly using parameters such as 6), defined on the SMs of a specifi-
cation, to all the events of that specification. Of course, this extension must
satisfy the Kolmogorov axioms of probability so that probabilistic reasoning
is consistent with the ASP specification.

The conditional independence of stable worlds asserts the least informed
strategy (references?) that we discussed in the introduction and make ex-
plicit here:

Assumption 1. Stable model are conditionally independent, given their total
choices .

The stable models ab, ac from example 1 result from the clause bV ¢ < a
and the total choice a. These formulas alone imposes no relation between
b and ¢ (given a), so none should be assumed. Dependence relations are
further discussed in section 5.1.

3 Extending Probabilities

(Somewhere, we need to shift the language from extending probabilities to
extending measures)

The diagram in fig. 1 illustrates the problem of extending probabilities
from TCs nodes to SMs and then to general events in a node-wise process.
This quickly leads to coherence problems (for example?) concerning prob-
ability, with no clear systematic approach --- Instead, weight extension can
be based in the relation an event has with the stable models.

3.1 An Equivalence Relation

Given an ASP specification, Introduce also the sets mentioned below (how?)
we consider the atoms a € A and literals, z € L, eventse € £ < e C L
and worlds w € W (consistent events), total choices t € T <= t=aV —a
and stable models s € S C W.

A no-
tation
intro-
duced in
fig. 1.

Figure 1: Events related to the stable models of example 1. The circle nodes
are total choices and shaded nodes are stable models. The empty event, with
no literals, is denoted by A. Notice that the event bc is not related with any
stable model.

Our path starts with a perspective of stable models as playing a role
similar to prime factors. The stable models of a specification are the ir-
reducible events entailed from that specification and any event must be
interpreted/considered under its relation with the stable models.

This focus on the SMs leads to the following definition:

Definition 1. A stable structure is a pair (A,S) where A is a set of
atoms (can be extracted from S.) and S is a set of consistent events over

A.

(expand this text to explain how the stable models form the basis of the
equivalence relation).

Definition 2. The stable core (SC) of the event e € £ is
[e] ={s€eS|sCeVeCs} (3)

We now define an equivalence relation, ~, so that two events are related
if either both are inconsistent or both are consistent with the same stable
core.

Definition 3. For a given specification, let u,v € £. The equivalence relation

~ 1is defined by

u~viE= w,v €WV (u,v € WA U] = [v]). (4)

abe abe 2% abe

ab ac [éc,: ac
b (o) e
A

Figure 2: Classes (of consistent events) related to the stable models of ex-
ample 1 are defined through intersections and inclusions. (write the caption)

Observe that the minimality of stable models implies that, in definition 2,
either e is a stable model or one of s C e,e C s is never true. This rela-
tion defines a partition of the events space, where each class holds a unique
relation with the stable models. In particular, we denote each class by:

€] 1L:=&\W ifeecE\W, (5)
(& =
{ueW | [u]l =[e]} ifeew,
The subsets of the stable models, together with 1, form a set of repre-
sentatives. Consider again Example 1. As previously mentioned, the stable
models are S = @, ab, ac so the quotient set of this relation is:

(€] = {L,0,[al~,[ab]~, [ac]~, [@,ab]., [@, ac]., [ab, ac]., [@,ab,ac] .} (6)

where ¢ denotes both the class of independent events e such that [e] = ()
and its core (which is the emptyset). We have:

Core, [¢] | Class, [e]. Size, #/[e]~
1 aa, . .. 37
O b, ¢, be, ba, be, be, ¢a, eb, bea 9
a @, ab, ac, ab, ac, abc, abe, abe, abe 9
ab b, ab, abc 3
ac ¢, ac, abe 3
a,ab 0 0
a,ac 1) 0
ab, ac a, abc 2
a,ab,ac | A 1
Q all events 64

 Since all events within an equivalence class are in relation with a specific
set of stable models, weights, including probability, should be constant
within classes:

Vu € [e]. (u(u) = p(e)) -

« So, instead of dealing with 64 = 2° events, we consider the 9 = 23 4+ 1
classes, well defined in terms of combinations of the stable models. In
general, we have much more stable models than literals. Nevertheless,
the equivalence classes allow us to propagate probabilities from total
choices to events, as explained in the next subsection.

3.2 From Total Choices to Events

(Check adaptation) Our path to set a probability measure on £ has two
phases:

1. Extending the probabilities, as weights, from the total choices to events.
2. Normalization of the weights.

The *“extension'' phase, traced by equations (1) and (7 --- 13), starts
with the weight (probability) of total choices, u(t) = P(T = t), expands it to
stable models, p(s), and then, within the equivalence relation from eq. (4),
to (general) events, u(e), including (consistent) worlds.

Total Choices. Using (1), this case is given by

wt) =P =t)=[r]]P (7)

act a¢t

Stable Models. Each total choice t, together with the rules and the other
facts of a specification, defines a set of stable models associated with
that choice, that MM (put this in the introduction, where
core concepts are presented).

Given a stable model s € S, a total choice t, and variables/values

5. € [0,1],
98,5 if s € %\
s, t) == ' 8
(s, t) {O otherwise (®)

such that >, 70,; = 1.

set

Classes. Each class is either the inconsistent class, 1, or is represented by
some set of stable models.

Inconsistent Class. The inconsistent class contains events that are
logically inconsistent, thus should never be observed:

u(L,t):=0. 9)

Independent Class. A world that neither contains nor is contained
in a stable model describes a case that, according to the specifi-
cation, shouldn't exist. So the respective weight is set to zero:

1(0,t) == 0. (10)

Other Classes. The extension must be constant within a class, its
value should result from the elements in the stable core, and re-
spect the assumption 1 (stable models independence):

plelet) = plsp,t), if [e] ={s1,...,sn}. (11)

and

u(lel) = 3 ulelnt) (o). (12)

teT

Events. Each (general) event e is in the class defined by its stable core, [e].
So, we set:

plest) == (13)

and

ple) == ule,t) u(t). (14)

teT

o (Remark that p(L,t) =0 is independent of the total choice.)
« Consider the event be. Since [be]. = ¢, from eq. (10) we get u(bc) = 0.

o (Remark that equation (14), together with observations, can be used to
learn about the initial probabilities of the atoms, in the specification.)

The §,, parameters in equation (8) express the specification's lack of
knowledge about the weight assignment, when a single total choice entails
more than one stable model. In that case, how to distribute the respective
weights? Our proposal to address this problem consists in assigning an un-
known weight, 6., conditional on the total choice, ¢, to each stable model
s. This approach allows the expression of an unknown quantity and future
estimation, given observed data.

Equation (11) results from conditional independence of stable models.

8

4 Developed Examples

4.1 The SBF Example

We continue with the specification from Equation (2).

Total choices. The total choices, and respective stable models, are

Total choice Stable models | u(t)
a ab, ac 0.3
a=-a a 03=07

Stable models. The 0, parameters in this example are
eab,a = eac,a = eﬁ,a =0 and 96,6 = 17 eab,a = 97 eac,a = 5
with 6 € [0,1].

Classes. Following the definitions in egs. (3) to (5) and in egs. (9) to (11)
we get the following quotient set (ignoring | and), and weights:

[e] skt =a) p(spt = a) | p(lelw) = 35, p(le)~ t) p(t)
a 1 0.7
ab 0 0.30
ac [0.360
@, ab 1,0 0,0 0.7+ 0.36
a,ac 1,0 0,6 0.7+ 0.30
ab, ac 6,6 0.3
@,ab,ac|1,0,0 0,6,0 1

Normalization. To get a weight that sums up to one, we compute the
normalization factor. Since p(-) is constant on classes,(prove that we
get a probability.)

such that

> Ple)=1.

ee&

9

For the SBF example,

[e] #lel | n(le]o) | nle) Ple)
iE 37 0 0 0
O 9 0 0 0
a 9 | % e
ab 3 # £ L
ac 3 i’—g 1% %
a,ab o @) 0 0
a, ac 0 7J{g’§ 0 0
ab, ac 2 % 2% %
a,ab, ac 1 1 1 %
7=1

(Continue this example with a set of observations to estimate 6 and try
to show some more. For example, that the resulting distribution is not very
good when t =a. Also gather a sample following the specification.)

4.2 An example involving Bayesian networks
Comentéarios:

« H& uma macro, \pr{A}, para denotar a fungao de probabilidade, P(A)
em vez de P(A). Ja agora, para a condicional também h4 um comando,
\given: P(A | B).

« E, claro, para factos+probabilidades: p::a.

o A designacao dos “pesos' nao esta consistente: pj _a e a_be. Fiz uma
macro (hehe) para sistematizar isto: pa_ bnc.

« Nos programas, alinhei pelos factos. Isto ¢, 0.3::a e a < b alinham
pelo (fim do) a.

As it turns out, our framework is suitable to deal with more sophisticated
cases, for-example/in particular cases involving Bayesian networks. In order
to illustrate this, in this section we see how the classical example of the
Burglary, Earthquake, Alarm [6] works in our setting. This example is a
commonly used example in Bayesian networks because it illustrates reasoning

10

P(E) = 0.002 P(B) = 0.001
A

P(A|BAE)

a —Qa

P(M|A) P(J]A) b [e 095 005
| m -m | —j b |—-e| 094 0.06

a | 0.9 01 a | 07 03 “b| e | 02 071
-a | 0.05 0.95 -a | 0.01 0.99 —b | =e | 0.001 0.999

Figure 3: The Earthquake, Burglary, Alarm model

under uncertainty. The gist of example is given in fig. 3. It involves a simple
network of events and conditional probabilities.

The events are: Burglary (B), Earthquake (E), Alarm (A), Mary calls
(M) and John calls (J). The initial events B and E are assumed to be inde-
pendent events that occur with probabilities P(B) and P(FE), respectively.
There is an alarm system that can be triggered by either of the initial events
B and E. The probability of the alarm going off is a conditional probability
given that B and E have occurred. One denotes these probabilities, as per
usual, by P(A|B), and P(A|E). There are two neighbours, Mary and John
who have agreed to call if they hear the alarm. The probability that they
do actually call is also a conditional probability denoted by P(M|A) and
P(J|A), respectively.

Considering the probabilities given in fig. 3 we obtain the following spe-
cification

0.001::b,
0.002::e,

For the table giving the probability P(M|A) we obtain the specification:

11

0.9::pm__a,
0.05::pm_ na,
m<4— a,pm_ a,
—m < a, "pm__a.

This latter specification can be simplified by writing 0.9 :: m < a and
0.05:m ¢ —a.
Similarly, for the probability P(J|A) we obtain

0.7::pj_a,
0.01::pj_na,
J < a,pj_a,

—J 4= a,pj_a.
Again, this can be simplified by writing 0.7::j <— a and 0.01::j < —a.
Finally, for the probability P(A|B A E) we obtain

0.95::a_ be,
0.94::a_ bne,
0.29::a_nbe,
0.001::a_nbne,
a < b,e,a_be,
—a < b,e,—a_be,
a < b,e,a_bne,
—a < b,e,—a_bne,
a <+ b,e,a_nbe,
—a < b,e,—a_nbe,
a < b,e,a_nbne,
—a < b, e, —a_nbne.

One can then proceed as in the previous subsection and analyse this
example. The details of such analysis are not given here since they are
analogous, albeit admittedly more cumbersome.

5 Discussion

« Changed from [] to > to represent " “either' instead of *“both' since
the later is not consistent with the ™" only one stable model at a time"
assumption.

12

(The ‘up and down' choice in the equivalence relation and the possibility
of describing any probability distribution.)

(Remark that no benchmark was done with other SOTA efforts.)

(The possibility to “import' bayesian theory and tools to this study.)

5.1 Dependence

Our basic assertion about dependence relations between atoms of the under-
lying system is that they can be explicitly expressed in the specification. And,
in that case, they should be.

For example, a dependence relation between b and ¢ can be expressed by
b < cAd, where d is an atomic choice that explicitly expresses the dependence
between b and c. One would get, for example, a specification such as

0.3::a,bVc<+a,02:d,b<+ cNd.

with stable models ad, ad, adb, ade, adb.

The interesting case is the subtree of the total choice ad. Notice that
no stable model s contains adc because (i) adb is a stable model and (i) if
ade C s then b € s so adb C s.

Following equations (??) and (?7?7) What are these equations? this entails

P(W =adc | C = ad) =0,
PW =adb | C =ad)=1

which concentrates all probability mass from the total choice ad in the adb
branch, including the node W = adbe. This leads to the following cases:

x P(W =z | C =ad)

ad 1

adb 1

adc 0

adbc 1

so, for C' = ad,
2
P(W =b)=-
(W=t)="
1
P(W =¢)=-
(W=c)=5
1
#P(W =b)P(W =¢)

i.e. the events W = b and W = c are dependent and that dependence results
directly from the segment 0.2::d, b <— ¢ A d in the specification.
Why does this not contradict Assumption 17

Todo
Prove the four world cases (done), support the product (done)

and sum (tbd) options, with the independence assumptions.

5.2 Future Work

(develop this section.)

o The measure of the inconsistent events doesn't need to be set to 0 and,
maybe, in some cases, it shouldn't.

e The physical system might have [atent variables, possibly also rep-
resented in the specification. These variables are never observed, so
observations should be concentrated somewhere else.

« Comment on the possibility of extending equation (14) with parameters
expressing further uncertainties, enabling a tuning of the model's total
choices, given observations.

ple) == Z u(e, c) ..

ceT

Acknowledgements

This work is supported by NOVALINCS (UIDB/04516/2020) with the fi-
nancial support of FCT.IP.

References

[1] Fabio Gagliardi Cozman and Denis Deratani Maud. * " The joy of proba-
bilistic answer set programming: semantics, complexity, expressivity,
inference''. In: International Journal of Approximate Reasoning 125
(2020), pp. 218-239.

[2] Andrew Cropper et al. **Inductive logic programming at 30'". In: Ma-
chine Learning 111.1 (2022), pp. 147-172.

[3] Martin Gebser et al. " Answer set solving in practice'. In: Synthesis

lectures on artificial intelligence and machine learning 6.3 (2012), pp. 1—-
238.

14

Aaron Meurer et al. *"SymPy: symbolic computing in Python'. In:
PeerJ Computer Science 3 (Jan. 2017), e¢103. 1SSN: 2376-5992. DOI: 10.
7717/peerj-cs.103. URL: https://doi.org/10.7717/peerj-cs.103.

Aaron Meurer et al. **SymPy: symbolic computing in Python'. In:
PeerJ Computer Science 3 (Jan. 2017), €103. 1SSN: 2376-5992. DOI: 10.
7717/peerj-cs.103. URL: https://doi.org/10.7717/peerj-cs.103.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. The Morgan Kaufmann Series in Representation and
Reasoning. Morgan Kaufmann, San Mateo, CA, 1988, pp. xx+552. ISBN:
0-934613-73-7.

Fabrizio Riguzzi. Foundations of probabilistic logic programming: Lan-
guages, semantics, inference and learning. CRC Press, 2022.

Victor Verreet et al. ™ " Inference and learning with model uncertainty in
probabilistic logic programs''. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 36. 9. 2022, pp. 10060—-10069.

15

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

	Introduction and Motivation
	A simple but fruitful example
	Extending Probabilities
	An Equivalence Relation
	From Total Choices to Events

	Developed Examples
	The SBF Example
	An example involving Bayesian networks

	Discussion
	Dependence
	Future Work

