Probabilistic Answer Set

Programming
A Research Draft

Francisco Coelho

NOVA LINCS &
High Performance Computing Chair &
Departamento de Informatica, Universidade de Evora

May 26, 2022

In short

® Use logic programs to formalize knowledge.
® |ogic program = formula = model.
® QObservations not always agree with such models —
errors may result from sensors or from a wrong or
incomplete model.
® We can associate quantities to formulas and
sub-formulas.
® And define how observations update those quantities.
® Adequate quantities and updates might be used to

interpret or evaluate the model e.g. define a joint
distribution or measure the accuracy of a clause.

@ Development

Conclusions

Problem 1: Probabilities

The stable models of ¢; A ¢y where

Clib\/_'b
Cgihl\/hg «—b

" {=b},{b,m} and {b, hy}.

Associate quantities to clauses and update them with
observations.
Then compute:

® The probability of a stable model.
® The probability of an atom.

® The joint distribution of all atoms.

Problem 1: Probabilities

The stable models of ¢; A ¢a where

c1: bV b
CQIhl\/hQ «—b

" {=b},{b,m} and {b, he}.

Associate quantities to clauses and update them with
observations.

® How to match an observation z with a clause case h;, b?
® How do observations update the probabilities?

® [s this enough to compute the joint distribution of the
atoms?

Matching observations and sub-formulas

® An observation is a subset of the literals! from a program.
® A consistent observation has no subset {p, —p}.

® A consistent observation z is relevant for the clause
h< bif b C 2.

A disjunctive clause

haV - -V hy <= by A A by,

has n cases: {h;, by,..., by}, i=1:n.

The consistent observation z and the case {h, b;.,}
match if {h, by.,} C 2.

The above definitions apply to facts, m = 0, and
constraints, n = 0.

1The set of atoms, a, of the program and their classic negations, —a.

Counters and updates

A consistent observation relevant for a clause
hy V ---V h, < b should increase the probability of
matched cases.

Counters and updates

@ Associate counters, u, r, n, to clauses h < b.
® Associate a counter, m;, to cases h;, b.
© Initial values result from prior knowledge.
O Each consistent observation increments:
® The u counters of relevant unmatched clauses (no
matched cases).
The r counters of relevant clauses.
The n counters of not relevant clauses.

The m; counters of matched cases h;, b.
Clause counters must verify r < u+ . m;.

Counters and updates

A consistent observation relevant for a clause
hy V ---V h, < b should increase the probability of
matched cases.

Counters and updates

e Literals must be explicitly observed: —b #~b.
e Counters relate a clause structure with observations.
® So far stable models had no role.

Counters and updates: An example

Given the following clauses with annotated counters,

bV —b counters: 7,2;3,12,0
hy V hy < b counters: 4,3;2,6,5

Counters and updates: An example

Given the following clauses with annotated counters,

bV —b counters: 7,2;3,12,0
hiV hy < b counters: 4,3;2,6,5

Counters of bV —b Counters of h; V hy < b

0 observations where not relevant There where 11 =6 + 5
(because the body is T); observations, 6 relevant to this
There where 12 relevant clause;

observations; From these, 4 matched hq, 3
Of those, b was matched by 7, matched hy and 2 matched no
—b by 2 and 3 observations case.

matched neither (F=~b, ~—b).

Counters and updates: An example
Given the following clauses with annotated counters,

bV —b counters: 7,2;3,12,0
hy V hy < b counters: 4,3;2,6,5

What can be computed?

e P(=b) = 3 because b matched 2 of 12 relevant
observations.

® P(hi|b) = % because hy, b matched 4 of 6 relevant
observations.

® P(b) needs further information.

® E.g. assuming independent observations,

p(b)_i
12404645

Counters and updates: An example

Given the following clauses with annotated counters,

bV —b counters: 7,2;3,12,0
hi V hy < b counters: 4,3;2,6,5

What can be computed? — assuming independent
observations
® P(b)+ P(—b) = 32+ & ~ 0.73 < 1 because some
observations have neither b nor —b.
® P(hy,b) = P(hy|b)P(b) = 212 from above.

~ 623
® P(hy, b) = P(h|b)P(b) is analogous.
e But not e.g. P(h|—b) because no clause relates h; and
—b.

Counters and updates: An example

Given the following clauses with annotated counters,

bV —b counters: 7,2;3,12,0
hy V hy < b counters: 4,3;2,6,5

Also. ..

Counters are local to clauses and, for distinct clauses, may
result from distinct sources. E.g. the relevant counter of
hi V hy < b and the match counter of b in bV —b.

Counters and updates: An example

Given the following clauses with annotated counters,

bV —b counters: 7,2;3,12,0
hy V hy < b counters: 4,3;2,6,5

Also. ..
Some observations may have neither b nor —b so:

P(b)+ P(—b) < 1.

Counters and updates: An example

Given the following clauses with annotated counters,

bV b counters: 7,2;3,12,0
hy V hy < b counters: 4,3;2,6,5

Also. ..
Assuming independent observations, since h; and hy are not

independent,
Z P(m) > 1.

Counters and updates: An example
Given the following clauses with annotated counters,

bV —b counters: 7,2;3,12,0
hy V hy < b counters: 4,3;2,6,5

Also. ..
What's missing to define the joint distribution

P(H,, Hy, B)?

The joint distribution, according to the clauses
b

7 e

H Hy
h1 —|h1 h2 _‘h2
b e o ° o
-b o o o o
~b o o o o

Shortcomming 2: Default Negation

e How to deal with rules with ~a parts?

® Should missing elements on observations be replaced with
~@ atoms?

Development

@ Conclusions

Background Material

Machine Learning

Models are numeric functions: y ~ fy(z), 6;,z;,y € R.
® Amazing achievements.
® Noise tolerant.
e (as of today) Huge enterprise funding .
but
® (essentially) Academically solved.
® Models trained from “large” amounts of samples.
® Hard to add background knowledge.
® Models are hard to interpret.

® Single table, independent rows assumption.

Inductive Logic Programming

Models are logic program: py(z,y), 0;, %,y € A.
® Amazing achievements, at scale.
® Models trained from “small” amounts of samples.
e Compact, readable models.

® Background knowledge is easy to incorporate and edit.

® as of today, Little enterprise commitment.
® as of today, Mostly academic interest.
® Noise sensitive.

Distribution Semantics

Assigns probability to (marginally independent) facts and
derives probability of ground propositions.

Let £ be set of facts, S C F, R a set of definite clauses and p
a proposition:

Pe(S) =[] P] (21— P()

fes Iés
Pwy= S Pu(s)

SCF: W=M(SUR)

Plp)= Y, Pp(S)= > P(W)

S: SUR F p W: peW

® Amazing achievements, at scale.
® | ots of tools and research.
® The best of both “worlds"?

Answer Set Programming

A program defines stable models.
® Pure declarative language, unlike Prolog.
e Uses generate & test methods instead of proofs.
® Uses both default ~p and classical negation —p.

e Clauses can be disjunctive a V b < ¢ A d.

ASP definitions

e An atom is 7({y,...t,) where

® ris a n-ary predicate symbol.
® cach t; is a constant or a variable.

A ground atom has no variables.

A literal is either an atom a or a negated atom —a.

An ASP Program is a set of rules such as

hiV -V hy, < b AN--- A b, where
® Each h; is a literal, a or —a.
® Each b; is a literal like above or preceded by ~ .
* m+n>0.

The head of such rule is Ay V - -+ hy,.
The body of such rule is by A -+ A b,,.
Each b; is a subgoal.

ASP definitions (cont.)

¢ A non-disjunctive rule has m < 1.
¢ A normal rule has m = 1.

¢ A constraint has m = 0.

e A fact is a normal rule with n = 0.

The dependency graph of a program is a digraph
where:
® Each grounded atom is a node.
® For each grounded rule there are edges from the atoms
in the body to the atoms in the head.

® A negative edge results from an atom with ~ ;
Otherwise it is a positive edge.

An acyclic program has an acyclic dependency graph.

ASP definitions (cont.)

A normal program has only normal rules.

A definite program is a normal program that doesn’t
contains — neither ~ .

In the dependency graph of a stratified program no
cycle contains a negative edge.

® A stratified program has a single minimal model that
assigns either true or false to each atom.

® A propositional program has no variables.

ASP definitions (cont.)

® The Herbrand base of a program is the set of ground
literals that result from combining all the predicates and
constants of the program.

® An interpretation is a consistent subset (i.e. doesn't
contain {a,—a}) of the Herbrand base.

e A ground literal is true, I |= a, if a € I; otherwise the
literal is false.

e A ground subgoal, ~b, where b is a ground literal, is
true, [|=~b, if b & I, otherwise, if b € I, it is false.

e Agroundrule r=hy V-~V hy, < b A---Ab,is
satisfied by the interpretation I, i.e. [= r, iff

® [[~ b for some j or I |= h; for some 1,

e A model of a program is an interpretation that satisfies

all the rules.

Stable Semantics

® Every definite program has a unique minimal model; its
semantics.
® Programs with negation may have no unique minimal
model.
e Given a program P and an interpretation I, their reduct,
P! is the propositional program that results from
@ Removing all the rules with ~b in the body where b € I.
® Removing all the ~b subgoals from the remaining rules.
e A stable model of the program P is an interpretation [/
that is the minimal model of the reduct P!,
® The semantics (the answer sets) of a program is the
set of stable models of that program.

Stable Semantics

® A program such as a <—~a may have no stable models.

e A stable model is a closed interpretation (under the rules
of program).

Development

Conclusions

Development

Conclusions

	Motivation
	Development
	Conclusions
	Background Material
	Stable Sets
	References

