
A Statistical Learning Method for

Logic Programs with Distribution

Semantics

Taisuke SATO

Tokyo Institute of Technology

2-12-2 Ookayam Muguro-ku Tokyo Japan 305

email: sato@cs.titech.ac.jp

Abstract When a joint distribution P

F

is given to a set F of facts in a

logic program DB = F [R where R is a set of rules, we can further extend

it to a joint distribution P

DB

over the set of possible least models of DB.

We then de�ne the semantics of DB with the associated distribution P

F

as

P

DB

, and call it distribution semantics.

While the distribution semantics is a straightforward generalization of

the traditional least model semantics, it can capture semantics of diverse

information processing systems ranging from Bayesian networks to Hidden

Markov models to Boltzmann machines in a single framework with math-

ematical rigor. Thus symbolic computation and statistical modeling are

integrated at semantic level.

With this new semantics, we propose a statistical learning schema based

on the EM algorithm known in statistics. It enables logic programs to learn

from examples, and to adapt to the surrounding environment. We imple-

ment the schema for a subclass of logic programs called BS-programs.

1 Introduction

Symbolic computation combined with a probabilistic framework provides a

powerful mechanism for a symbolic information system to handle uncertainty

and makes the system more
exible and robust. Hidden Markov Models [14]

in speech recognition and Bayesian networks [12] in knowledge engineering

are classic examples. A similar approach has been proposed in natural lan-

guage processing as well [4, 5].

Those are systems in application �elds that have to deal with raw data

from the real world, so the need for coping with uncertainty arises naturally.

The same need arises in logical reasoning, for example, when we consider

abduction and induction. In abduction, we generate a hypothesis that entails

observations, but there are usually multiple hypotheses even for a single

observation. Likewise in induction, we are required to discover a \law" by

generalizing observations, but there can be many ways of generalization.

Whichever case we may take, it is hardly possible to tell, by purely symbolic

1

reasoning, what the best candidate is. It seems that we draw on, more

or less inevitably, probability as a means for measuring plausibility of the

candidate. In logic programming, we can see a considerable body of research

works that make use of probabilities [7, 8, 9, 13].

The objective of this paper is to provide basic components for a uni�ed

symbolic-statistical information processing system in the framework of logic

programming. The �rst one is a semantic basis for probabilistic computation.

The second one is a general learning schema for logic programs. The latter is

derived by applying a well-known statistical inference method to the former.

Our semantics is called distribution semantics, which is de�ned, roughly,

as a distribution over least models. As such it is a generalization of the

traditional least model semantics and hence, it is expressive enough to de-

scribe Turing machines. In addition, since, for example, it can describe

Markov chains [2] precisely, as one least �xed point corresponds to one sam-

ple process, any information processing model based on Markov chains is

describable. Hidden Markov Model [14] in speech recognition is a typical

example. Also connectionist learning models such as Boltzmann machines

[1] are describable. Due to space limitations however, issues on operational

semantics (how to execute programs with distribution semantics) will not be

discussed.

Distribution semantics adds a new dimension to programming; the learn-

ing of (parameters of) a distribution. To exploit it, we apply the EM algo-

rithm, which is an iterative method in statistics for computing maximum

likelihood estimates with incomplete data[15], to logic programs with distri-

bution semantics to obtain a general learning schema. We then speci�cally

single out a subclass of logic programs (BS-programs) that are simple but

powerful enough to cover the well-known existing probabilistic models such

as Bayesian networks and Hidden Markov Models, and specialize the learn-

ing schema to this class. The obtained learning algorithm iteratively adjusts

the parameters of an initial distribution so that the behavior of a program

matches given examples. Distribution semantics thus bridges a gap between

programming and learning.

In section 2, we formally introduce distribution semantics and its prop-

erties are described. However, for readability, most proofs are omitted.

In section 3, the EM algorithm is combined with the distribution seman-

tics. In section 4, the class of BS-programs is introduced and a learning

algorithm for this class is presented. Section 5 describes an experimental re-

sult with the learning algorithm. Section 6 is conclusion referring to related

work.

2

2 Distribution semantics

2.1 Preliminaries

The relationship between logic and probability is quite an old subject and

its investigation is inherently of interdisciplinary nature ([3, 6, 7, 9, 11, 13]).

One of our purposes here is to show how to assign probabilities to all �rst

order formulae containing 8 and 9 over an in�nite Herbrand universe in such

a way that the assignment satis�es Kolmogoro�'s axioms for probability

and causes no inconsistency. This seems required because, for example,

Probabilistic Logic [9, 11], a prevalent formulation in AI for the assignment

of probabilities to logical formulae, was not very keen on the problem of

consistent assignment of probabilities to all logical formulae over an in�nite

domain. We follow the Gaifman's approach [3] (with a necessary twist for

our purpose).

Let DB = F [R be a de�nite clause program in a �rst order language

with denumerably many variables, function symbols and predicate symbols,

where F denotes a set of unit clauses (hereafter referred to as facts) and R a

set of non-unit clauses (hereafter referred to as rules), respectively. We say

that DB satis�es the disjoint condition if no atom in F uni�es with the head

of a rule in R. For simplicity, we make following assumptions throughout

this paper.

� DB is ground

1

.

� DB is denumerably in�nite.

� DB satis�es the disjoint condition.

A ground atom A is treated as a random variable taking 1 (when A is true)

or 0 (when A is false). Let A

1

; A

2

; . . . be an arbitrary enumeration of ground

atoms in F and �x the enumeration. An interpretation ! for F , i.e., an

assignment of truth values to atoms in F , is identi�ed as an in�nite vector

! = hx

1

; x

2

; . . .i with the understanding that x

i

(i = 1; 2; . . .) denotes the

truth value of the atom A

i

.

Write the set of all possible interpretations for F as

F

def

=

1

Y

i=1

f0; 1g

i

Let P

F

be a completely additive probability measure on the � algebra A

F

2

of sets in

F

. We call P

F

a basic distribution for F .

1

In case of a non-groundDB, we reduce it to the set of all possible ground instantiations

of clauses in DB.

2

F

is a Cartesian products of f0; 1gs with discrete topology. So it has the product

topology and there exists the smallest � algebra A

F

including all open sets. By the way,

the existence of P

F

is not self-evident. We will show how to construct P

F

later.

3

! = hx

1

; x

2

i F

1

!

M

DB

1

(!)

h0; 0i fg fg

h1; 0i fA

1

g fA

1

; B

1

g

h0; 1i fA

2

g fA

2

; B

1

; B

2

g

h1; 1i fA

1

; A

2

g fA

1

; A

2

; B

1

; B

2

g

Table 1: M

DB

1

In view of the fact that P

F

de�nes for each n an n-place distribution

function P

(n)

F

(A

1

= x

1

; . . . ; A

n

= x

n

) and P

F

is uniquely recoverable from

those P

(n)

F

s (as we will see next), we deliberately confuse, for notational

convenience, P

F

with the corresponding distribution functions. We hence-

forth write P

F

(A

1

= x

1

; A

2

= x

2

; . . .) to mean P

F

as a probability measure

and the corresponding distribution function interchangeably. Also we won't

mention the underlying � algebra A

F

when obvious.

Now each sample ! = hx

1

; x

2

; . . .i 2

F

determines a set F

!

� F of true

ground atoms. So we can speak of a logic program F

!

[R and its least

model M

DB

(!). The crux of distribution semantics lies in the observation

that M

DB

(!) decides all truth values of atoms in DB. M

DB

(!) is called the

least model derived from !. We show M

DB

(!) for a �nite program DB

1

.

DB

1

= F

1

[R

1

F

1

= fA

1

; A

2

g

R

1

= fB

1

 A

1

; B

1

 A

2

; B

2

 A

2

g

We have

F

1

= f0; 1g

1

� f0; 1g

2

and ! = hx

1

; x

2

i 2

F

1

means A

i

takes

x

i

(i = 1; 2) as its truth value (see Table 1).

2.2 The existence of P

F

Let DB = F [R be a de�nite program, F facts, R rules, and

F

the sample

space of all possible interpretations for F , respectively, as previously de�ned.

We �rst show how to construct a basic distribution P

F

for F from the

collection of �nite distributions. Let A

1

; A

2

; . . . be the enumeration of atoms

in F previously introduced. Suppose we have a series of �nite distributions

P

(n)

F

(A

1

= x

1

; . . . ; A

n

= x

n

) (n = 1; 2; . . . ; x

i

2 f0; 1g; 1 � i � n) such that

0 � P

(n)

F

(A

1

= x

1

; . . . ; A

n

= x

n

) � 1

P

x

1

;...;x

n

P

(n)

F

(A

1

= x

1

; . . . ; A

n

= x

n

) = 1

P

x

n+1

P

(n+1)

F

(A

1

= x

1

; . . . ; A

n+1

= x

n+1

) = P

(n)

F

(A

1

= x

1

; . . . ; A

n

= x

n

)

. . . compatibility condition

It follows from the compatibility condition that there exists a completely

additive probability measure P

F

over

F

[10] (compactness of

F

is used)

4

satisfying for any n

P

F

(A

1

= x

1

; . . . ; A

n

= x

n

) = P

(n)

F

(A

1

= x

1

; . . . ; A

n

= x

n

):

F

is isomorphic to the set of in�nite strings consisting of 0s and 1s, and

hence it has the cardinality of real numbers. The shape of P

F

depends

on how we estimate the likelihood of interpretations. If we assume every

interpretation for F is likely to appear equally, P

F

will be a uniform distri-

bution. In that case, each ! 2

F

receives probability 0. If, on the other

hand, we stipulate no interpretation except !

0

is possible for F , P

F

will give

probability 1 to !

0

and 0 to others.

2.3 From P

F

to P

DB

Let A

1

; A

2

; . . . be again an enumeration, but of all atoms appearing in DB

this time

3

. Form

DB

as the Cartesian product of denumerably many

f0; 1gs. Similarly to

F

,

DB

represents the set of all possible interpre-

tations for ground atoms appearing in DB and ! 2

DB

determines the

truth value of every ground atom. We here introduce a notation A

x

for an

atom A by

A

x

= A if x = 1

A

x

= :A if x = 0

Recall that M

DB

(!) denotes the least model derived from an interpretation

! 2

F

for F . We now extend P

F

to a completely additive probability

measure P

DB

over

DB

as follows. De�ne a series of �nite distributions

P

(n)

DB

(A

1

= x

1

; . . . ; A

n

= x

n

) for n = 1; 2; . . . by

[A

x

1

1

^ . . . ^A

x

n

n

]

F

def

= f! 2

F

jM

DB

(!) j= A

x

1

1

^ . . . ^A

x

n

n

g

P

(n)

DB

(A

1

= x

1

; . . . ; A

n

= x

n

)

def

= P

F

([A

x

1

1

^ . . . ^ A

x

n

n

]

F

)

[�]

F

is P

F

-measurable. By de�nition P

(m)

DB

satis�es the compatibility condi-

tion:

X

x

n+1

P

(n+1)

DB

(A

1

= x

1

; . . . ; A

n+1

= x

n+1

) = P

(n)

DB

(A

1

= x

1

; . . . ; A

n

= x

n

):

It follows that there exists a completely additive measure P

DB

over

DB

,

and P

DB

becomes an extension of P

F

. We de�ne the denotation of a logic

program DB = F [R with the associated distribution P

F

as P

DB

. Put dif-

ferently, a program denotes a distribution in our semantics.

We are now in a position to assign probabilities to arbitrary formulae.

Let G be an arbitrary sentence

4

whose predicates are among DB. Introduce

[G] �

DB

by

[G]

def

= f! 2

DB

j ! j= Gg

3

Note that this enumeration enumerates atoms in F as well.

4

A sentence is a formula without free variables.

5

Then the probability of G is de�ned as P

DB

([G]). Intuitively, P

DB

([G]) rep-

resents the probability mass assigned to the set of interpretations (possible

worlds) satisfying G.

Thanks to the complete additivity, we enjoy kind of continuity about

quanti�cation without special assumptions:

lim

n!1

P

DB

([G(t

1

) ^ . . . ^G(t

n

)]) = P

DB

([8xG(x)])

lim

n!1

P

DB

([G(t

1

) _ . . . _G(t

n

)]) = P

DB

([9xG(x)])

where t

1

; t

2

; . . . is an enumeration of ground terms. We can also verify that

comp(R), the i� form of rule set, satis�es P

DB

(comp(R)) = 1 regardless of

the distribution P

F

.

2.4 Properties of P

DB

Write a program DB as

DB = F [R

F = fA

1

; A

2

; . . .g

R = fB

1

 W

1

; B

2

 W

2

; . . .g

head(R) = fB

1

; B

2

; . . .g

A support set for an atom B 2 head(R) is a �nite subset S of F such that

S [R ` B. A minimal support set for B

i

is a support set minimal w.r.t. set

inclusion ordering. When there are only a �nite number of minimal support

sets for every B 2 head(R), we say that DB satis�es the �nite support

condition. The violation of this condition means there will be an atom

B 2 head(R) for which we cannot be sure, within �nite amount of time, if

there exists a hypothesis set S � F such that S [R ` B. Fortunately, usual

programs seem to satisfy the �nite support condition. Put

fix(DB)

def

= fM

DB

(!) j ! 2

F

g

fix(DB) �

DB

denotes the collection of least models derived from

possible interpretation for F . For ! = hx

1

; x

2

; . . .i 2

DB

, we use !j

F

to

stand for a sub-vector of ! whose components correspond to the truth values

of atoms in F . By construction !j

F

belongs in

F

, and M

DB

(!j

F

) belongs

in

DB

. We however do not know beforehand if M

DB

(!j

F

) coincides with

the original !.

Lemma 2.1 Suppose DB satis�es the �nite support condition. For ! =

hx

1

; x

2

. . .i,

! =M

DB

(!j

F

), 8n[A

x

1

1

^ . . . ^A

x

n

n

]

F

6= ;

Proof: Since) is rather obvious, we prove (. Suppose ! 6= M

DB

(!j

F

).

Then M

DB

(!j

F

) j= :A

x

k

k

holds for some k.

6

There is a �nite set fA

1

; . . . ; A

n

g which contains all minimal support

sets for A

k

. We may assume without losing generality n � k. It follows

from [A

x

1

1

^ . . . ^ A

x

n

n

]

F

6= ; that there is !

0

2

F

such that M

DB

(!

0

) j=

A

x

1

1

^ . . . ^A

x

n

n

. In particular, we have M

DB

(!

0

) j= A

x

k

k

.

On the other hand, from M

DB

(!

0

) j= A

x

1

1

^ . . .^A

x

n

n

and since no atom

in F appears at the head of a rule, ! and !

0

must agree on the truth value of

any atom in fA

1

; . . . ; A

n

g\F . However this contradictsM

DB

(!j

F

) j= :A

x

k

k

and M

DB

(!

0

) j= A

x

k

k

. Therefore we must have ! =M

DB

(!j

F

). Q.E.D.

De�ne a set E

y

1

;...;y

n

�

DB

for a �nite vector hy

1

; . . . ; y

n

i (y

i

2 f0; 1g; 1 �

i � n) by

E

y

1

;...;y

n

def

= fhy

1

; . . . ; y

n

; �; �; . . .i 2

DB

j [A

y

1

1

^ . . . ^A

y

n

n

]

F

= ;g

where � is a don't care symbol. Either E

y

1

;...;y

n

= ; or P

DB

(E

y

1

;...;y

n

) = 0

holds.

Theorem 2.1 If DB satis�es the �nite support condition, fix(DB) is P

DB

-

measurable. Also P

DB

(fix(DB)) = 1.

Proof: From Lemma 2.1, we see, for ! = hx

1

; x

2

; . . .i 2

DB

,

! 6=M

DB

(!j

F

) , 9n[A

x

1

1

^ . . . ^A

x

n

n

]

F

= ;

, ! 2

S

1

n=1

S

y

1

;...;y

n

E

y

1

;...;y

n

So f! 2

DB

j ! 6= M

DB

(!j

F

)g is a null set (note P

DB

(E

y

1

;...;y

m

) = 0).

Since we can prove

fix(DB) = f! 2

DB

j ! =M

DB

(!j

F

)g

we conclude fix(DB) is P

DB

-measurable and P

DB

(fix(DB)) = 1. Q.E.D.

Theorem 2.1 says that under a certain condition (which we believe most

programs satisfy), probability mass is distributed only over the least models

of the form M

DB

(!)(! 2

F

).

Theorem 2.2 If P

F

gives probability 1 to f!

0

g �

F

, P

DB

gives probability

1 to fM

DB

(!

0

)g �

DB

.

Proof: easy and omitted.

Theorem 2.2 allows us to regard distribution semantics as a generalization

of the least model semantics because we may think of a usual de�nite clause

program DB = F [R as one in which F always appears with probability 1.

Distribution semantics is highly expressive. Although we do not prove

here, it can describe from Turing machines (recursive functions) to Bayesian

7

networks to Markov chains.

We show Proposition 2.1 which is convenient for the calculation of P

DB

(proof is easy and omitted). fA

1

; . . . ; A

n

g � F is said to �nitely determine B

if fA

1

; . . . ; A

n

g includes all minimal support sets for B. When fA

1

; . . . ; A

n

g

�nitely determines every atom in fB

1

; . . . ; B

k

g, it is said to �nitely determine

fB

1

; . . . ; B

k

g. The �nite support condition is restated as any B 2 head(R)

is �nitely determined.

Lemma 2.2 If fA

1

; . . . ; A

n

g � F �nitely determines fB

1

; . . . ; B

k

g,

8x

1

; . . . ; x

n

9! y

1

; . . . ; y

k

8! 2

F

(! j= A

x

1

1

^ . . . ^A

x

n

n

!M

DB

(!) j= B

y

1

1

^ . . . ^ B

y

k

k

)

Consequently, if fA

1

; . . . ; A

n

g �nitely determines fB

1

; . . . ; B

k

g, the truth

values of fB

1

; . . . ; B

k

g are uniquely determined by those of fA

1

; . . . ; A

n

g. We

introduce a function '

DB

(x

1

; . . . ; x

n

) to designate this functional relation-

ship.

'

DB

(x

1

; . . . ; x

n

) = hy

1

; . . . ; y

k

i i�

8! 2

F

(! j= A

x

1

1

^ . . . ^A

x

n

n

!M

DB

(!) j= B

y

1

1

^ . . . ^B

y

k

k

)

Proposition 2.1 Suppose fA

1

; . . . ; A

n

g � F �nitely determines fB

1

; . . . ; B

k

g.

Then

P

DB

(A

1

= x

1

; . . . ; A

n

= x

n

; B

1

= y

1

; . . . ; B

k

= y

k

)

=

(

P

F

(A

1

= x

1

; . . . ; A

n

= x

n

) if '

DB

(x

1

; . . . ; x

n

) = hy

1

; . . . ; y

k

i

0 o.w.

P

DB

(B

1

= y

1

; . . . ; B

k

= y

k

)

=

P

'

DB

(x

1

;...;x

n

)=hy

1

;...;y

k

i

P

F

(A

1

= x

1

; . . . ; A

n

= x

n

)

2.5 Program examples

To get a feel for distribution semantics, we show two program examples.

First we take up the �nite program DB

1

again and give a distribution P

F

1

for F

1

= fA

1

; A

2

g which is shown in Table 2 where x

i

(i = 1; 2) denotes

the truth value of A

i

. P

DB

1

is calculated from P

F

1

using Proposition 2.1.

! = hx

1

; x

2

; y

1

; y

2

i 2

DB

1

indicates that x

i

(i = 1; 2) is the value of A

i

and

y

j

(j = 1; 2) is the value of B

j

, respectively.

Next example DB

2

describes a Markov chain with in�nite states

5

. The

5

Prolog notation used for conjunction.

8

! = hx

1

; x

2

i P

F

1

(x

1

; x

2

)

h0; 0i 0:2

h1; 0i 0:3

h0; 1i 0:4

h1; 1i 0:1

others 0:0

! = hx

1

; x

2

; y

1

; y

2

i P

DB

1

(x

1

; x

2

; y

1

; y

2

)

h1; 0; 0; 0i 0:2

h1; 0; 1; 0i 0:3

h0; 1; 1; 1i 0:4

h1; 1; 1; 1i 0:1

others 0:0

Table 2: P

F

1

& P

DB

1

for DB

1

...0 1 2

p0

q0 q1

p1

q2

p2

Figure 1: A renewal sequence

chain is a renewal sequence (see Figure 1).

DB

2

= F

2

[R

2

R

2

=

8

>

<

>

:

s(0; 0)

s(0; T + 1) s(K;T); tr(K;T; 1)

s(K + 1; T + 1) s(K;T); tr(K;T; 0)

F

2

=

8

>

<

>

:

tr(0; T; 1) tr(0; T; 0)

tr(1; T; 1) tr(1; T; 0)

. . .

disjoint([tr(0; T; 1) : p

0

; tr(0; T; 0) : q

0

])

disjoint([tr(1; T; 1) : p

1

; tr(1; T; 0) : q

1

])

. . .

s(K;T) describes the life of a machine M discretely. It says that M is in

state K at time T . M's life starts from state 0 at time 0. M breaks down

from time T to time T + 1 with probability p

K

and must be replaced with

a new one. Otherwise, M survives (with probability q

K

= 1� p

K

) and will

be in state K + 1 at time T + 1.

Here disjoint([tr(k; T; 1) : p

k

; tr(k; T; 0) : q

k

]) means, for any instanti-

ation of T , either one of tr(k; T; 1) or tr(k; T; 0) is true (the probability of

tr(k; T; 1) being true is p

k

) but they never become true at the same time.

This disjoint notation is borrowed from [13]. We assume that tr(k; �; �) and

9

tr(k

0

; �; �) are independent if k 6= k

0

. We also assume that tr(k; t; x) and

tr(k; t

0

; x) are independent and identically distributed if t 6= t

0

.

Then the distribution P

F

2

for F

2

is de�ned in an obvious way. We assume

that for any k, neither p

k

nor q

k

's takes values 0 or 1, which means M can

go from any state to any state.

Apparently there is one-to-one correspondence between the least �xed

model of F

2

0

[R

2

where F

2

0

= ftr(0; 0; x

0

); tr(k

1

; 1; x

1

); tr(k

2

; 2; x

2

); . . .g is

a sample drawn from P

F

2

and a sample sequence that starts from state 0 at

time t and traces states 0! k

1

! k

2

. . .

Since DB

2

satis�es the �nite support condition, the probability measure

P

DB

2

is de�ned over the set of all sample sequences. We know by calculation

P

DB

2

(s(k; t)) = prob. of M being in state k at time t

P

DB

2

(9tS(k; t)) = prob. of M passing state k sometime =1

lim

t!1

P

DB

2

(s(k; t)) = prob. of M being in sate k after 1 time

=

(

�

0

=

1

EX

�

k

=

q

0

q

1

���q

k

EX

(k > 0)

where EX is mean recurrence time.

3 EM learning

3.1 Learning a basic distribution

We have seen in the previous section that when a basic distribution P

F

is

given to facts F of a program DB = F [R where R = fB

1

 W

1

; B

2

W

2

; . . .g, a distribution P

DB

(B

1

= y

1

; B

2

= y

2

; . . .) is induced for head(R) =

fB

1

; B

2

; . . .g. We look at this distribution dependency upside down.

Suppose we have observed truth values of some atoms B

1

; . . . ; B

k

repet-

itively and obtained an empirical distribution P

obs

(B

1

= y

1

; . . . ; B

k

= y

k

).

To infer a mechanism working behind this distribution, we write a logic pro-

gram DB = F [R such that fB

1

; . . . ; B

k

g � head(R). We then set an initial

basic distribution P

F

to F and try to make P

DB

(B

1

= y

1

; . . . ; B

k

= y

k

) as

similar to P

obs

(B

1

= y

1

; . . . ; B

k

= y

k

) as possible by adjusting P

F

.

Or if we adopt MLE (Maximum Likelihood Estimation), we adjust, given

the observations hB

1

= y

1

; . . . ; B

k

= y

k

i where y

i

= 0; 1(1 � i � k), the

parameter � of a parameterized distribution P

F

(�)

6

so that P

DB

(B

1

=

y

1

; . . . ; B

k

= y

k

j �) attains the optimum.

This is an act of learning, and when the learning succeeds, we would

obtain a logical-statistical model of (part of) the real world described by

DB with the distribution P

F

. Since MLE is easier to implement, we focus

on learning using MLE.

6

Parameters means numbers that specify a distribution such as mean � and variance

�

2

in a normal distribution (2��

2

)

�1=2

exp[�

1

2

(

x��

�

)

2

]

10

There is however a fundamental stumbling block. That is, we cannot

simply apply MLE to P

DB

because � does not govern P

DB

directly. In

our framework, the truth values of B

1

; . . . ; B

k

are only indirectly related to

P

F

(�) through complicated logical interaction among rules. Nonetheless we

can circumvent the obstacle by appealing to the EM algorithm.

3.2 A Learning schema

The EM algorithm is an iterative method used in statistics to compute max-

imum likelihood estimates with incomplete data [15]. We brie
y explain it

for the sake of self-containedness. Suppose f(x; y j �) is a distribution func-

tion parameterized with �. Also suppose we could not observe a \complete

data" hx; yi but only observed y, part of the complete data, and x is missing

for some reason. The EM algorithm is used to perform MLE in this kind of

\missing data" situation. It estimates both missing data x and parameter �

by going back and forth between them through iteration [15].

Returning to our case, we notice that there is a close analogy. We have

\incomplete observations" hB

1

= y

1

; . . . ; B

k

= y

k

i which should be supple-

mented by \missing observations" hA

1

= x

1

; A

2

= x

2

; . . .i, and we have to

estimate parameters �

1

; �

2

; . . . (there may be in�nitely many statistical pa-

rameters) of P

F

(�

1

; �

2

; . . .) lurking in the distribution P

DB

(A

1

= x

1

; A

2

=

x

2

; . . . ; B

1

= y

1

; . . . ; B

k

= y

k

). So the EM algorithm applies, if we can some-

how keep the number of the A

i

's and �

j

's �nite. We therefore assume, in

light of Proposition 2.1, that DB satis�es the �nite support condition.

Then, there is a �nite set hA

1

; . . . ; A

n

i whose value hx

1

; . . . ; x

n

i deter-

mines the truth value hy

1

; . . . ; y

k

i of hB

1

; . . . ; B

k

i (as already used here,

we use vectors and sets interchangeably when no confusion arises). Hence,

we have only to estimate those parameters that govern the distribution of

hA

1

; . . . ; A

n

i.

Put

~

A = hA

1

; . . . ; A

n

i, ~x = hx

1

; . . . ; x

n

i,

~

B = hB

1

; . . . ; B

k

i and ~y =

hy

1

; . . . ; y

k

i, and let

~

A = ~x stand for hA

1

= x

1

; . . . ; A

n

= x

n

i, and

~

B = ~y for

hB

1

= y

1

; . . . ; B

k

= y

k

i, respectively.

Suppose

~

A � F �nitely determines

~

B � head(R) in DB = F [R. Also

suppose the distribution of

~

A is parameterized by some

~

� = h�

1

; . . . ; �

h

i

and write P

F

as P

F

(

~

A = ~x j

~

�). Under this setting, we can derive an

EM learning schema for the observation

~

B = ~y from DB by applying the

EM algorithm to P

DB

(

~

A = ~x;

~

B = ~y j

~

�). For a shorter description, we

abbreviate P

DB

(

~

A = ~x;

~

B = ~y j

~

�) to P

DB

(~x; ~y j

~

�) e.t.c.

Introduce a function Q(

~

�

0

;

~

�) by

Q(

~

�

0

;

~

�)

def

=

X

~x:P

DB

(~xj~y;

~

�

0

)>0

P

DB

(~x j ~y;

~

�

0

) lnP

F

(~x j

~

�)

In the EM learning schema illustrated in Figure 2, every time

~

� is re-

newed, the likelihood P

DB

(~y j

~

�) increases (� 1) [15]. Although the EM

11

Step 1. Start from

~

�

0

such that P

DB

(~y j

~

�

0

) > 0

Step 2. Suppose

~

�

0

has been computed.

Find

~

� such that Q(

~

�

0

;

~

�) > Q(

~

�

0

;

~

�

0

)

Step 3. Repeat Step 2 until Q(

~

�

0

;

~

�

0

) saturates.

Figure 2: An EM learning schema for

~

B = ~y

algorithm only guarantees to �nd a stationary point of P

DB

(~y j

~

�) (does not

necessarily �nd the global optimum), it is easy to implement and has been

used extensibly in speech recognition based on Hidden Markov Models [14].

4 A learning algorithm for BS-programs

Since our EM learning schema is still relative to a distribution P

F

(P

F

de-

termines P

DB

), we need to instantiate it to arrive at a concrete learning

algorithm. First we introduce BS-programs that have distributions of the

simplest type.

4.1 BS-programs

We say DB = F [R is a BS-program if F and the associated basic distri-

bution P

F

satisfy the following conditions.

� An atom in F takes the form bs(i; n; 1) or bs(i; n; 0). They are random

variables. We call bs(i; �; �) a bs-atom, i a group identi�er.

� disjoint([bs(i; n; 1) : �

i

; bs(i; n; 0) : 1� �

i

])

(this is already explained in Section 2, or see [13]) �

i

is called a bs-

parameter for bs(i; �; �).

� If n 6= n

0

, bs(i; n; x) and bs(i; n

0

; x) (x = 0; 1) are independent and

identically distributed.

� If i 6= i

0

, bs(i; �; �) and bs(i

0

; �; �) are independent.

A BS-program contains (in�nitely many) bs-atoms. Each bs(i; n; x) be-

haves as if x were a random variable taking 1 (resp. 0) with probability �

i

(resp. 1� �

i

). Or more intuitively, bs(i; n; x) is considered as a probabilistic

switch that has binary states f0; 1g. Every time we ask it, it shows either

on (x = 1) or o� (x = 0) with probability � for x = 1.

We have already seen a BS-program. DB

2

in Section 2 is a BS-program.

It is practically important that we can write BS-programs in Prolog which

are \operationally correct" in terms of distribution semantics. Figure 3 is

12

bernoulli(N,[R|Y]):-

N>0,

bs(coin,N,X),

(X=1, R=head ; X=0, R=tail),

N1 is N-1,

bernoulli(N1,Y).

bernoulli(0,[]]):-true.

Figure 3: Bernoulli program

an example of BS-program written in Prolog that describes Bernoulli trials.

bs(coin,N,X) is a probabilistic predicate that represents coin tossing. It

says that the outcome of N-th tossing is X. Given N, bernoulli(N,Y) returns

a list Y with length N consisting of {head,tail}.

Now we return to the problem of specifying P

F

. Since it holds that

bs(i; n; 0)$:bs(i; n; 1), it su�ces to de�ne a �nite joint distribution P

F

(A

1

=

x

1

; . . . ; A

i

= x

i

) for i = 1; 2; . . . where A

i

is a bs-atom of the form bs(i; �; 1).

For an equation

~

A = ~x abbreviating A

1

= x

1

; . . . ; A

n

= x

n

, j

~

A

i

= ~xj

1

denotes the number of equations in

~

A = ~x that take the form bs(i; �; 1) = 1,

and j

~

A

i

= ~xj

0

denotes the number of equations in

~

A = ~x that take the form

bs(i; �; 1) = 0, respectively. Also G

id

(

~

A) is used to denote the set of group

identi�ers appearing in

~

A. In the case of the Bernoulli program, for an

equation

~

A = hbs(coin; 1; 1); bs(coin; 2; 1); bs(coin; 3; 1)i = h1; 1; 0i

we have G

id

(

~

A) = fcoing, j

~

A

coin

= ~xj

1

= 2 and j

~

A

coin

= ~xj

0

= 1.

Let

~

A be a vector of bs-atoms of the form bs(i; �; 1) and �

i

the probabil-

ity of bs(i; �; 1) being true. Put G

id

(

~

A) = fi

1

; . . . ; i

l

g and

~

� = h�

i

1

; . . . ; �

i

l

i.

P

F

is then given by

P

F

(

~

A = ~x j

~

�) =

Y

i2G

id

(

~

A)

�

i

j

~

A

i

=~xj

1

� (1� �

i

)

j

~

A

i

=~xj

0

4.2 A learning algorithm for BS-programs

Suppose a program DB = F [R is a BS-program and a basic distribution

P

F

for F is given as above. We assume DB satis�es the �nite support

condition. Since DB satis�es the �nite support condition, �

DB

(

~

B)(

~

B �

head(R)) de�ned by

�

DB

(

~

B)

def

=

fA 2 F j A belongs in a minimal support set for some B

j

(1 � j � k)g

13

becomes a �nite set. Write �

DB

(

~

B) as a vector and put �

DB

(

~

B) =

~

A. Since

~

A �nitely determines

~

B, we may introduce '

DB

(~x) = ~y in Section 2 where

~x and ~y are the values of

~

A and

~

B respectively. Proposition 2.1 is then

rewritten as

P

DB

(~y j

~

�) =

X

'

DB

(~x)=~y

P

F

(~x j

~

�)

Here

~

� denotes the set of bs-parameters for

~

A.

Now let h

~

B

1

= ~y

1

; . . . ;

~

B

M

= ~y

M

i be the result of M independent obser-

vations. Each

~

B

m

� head(R) (1 � m � M) represents a set of atoms

appearing in the heads of rules which we observed at m-th time. We can

derive a learning algorithm to perform MLE with h

~

B

1

= ~y

1

; . . . ;

~

B

M

= ~y

M

i

by specializing the EM learning schema in Section 3 to BS-programs. Put

~

A

m

def

= �

DB

(

~

B

m

) (1 � m �M)

fi

1

; . . . ; i

l

g

def

= G

id

(

~

A

1

) [. . . [G

id

(

~

A

M

)

~

�

def

= f�

i

1

; . . . ; �

i

l

g

~

� is the set of bs-parameters concerning h

~

B

1

= ~y

1

; . . . ;

~

B

M

= ~y

M

i. The

derived algorithm is described in Figure 4 where P

F

(

~

A

m

= ~x

m

j

~

�) and

P

DB

(

~

B

m

= ~y

m

j

~

�) are abbreviated respectively to P

F

(~x

m

j

~

�) and to

P

DB

(~y

m

j

~

�). It is used to estimate bs-parameters

~

� by performing MLE

with the results of M independent observations h

~

B

1

= ~y

1

; . . . ;

~

B

M

= ~y

M

i.

5 A learning experiment

To con�rm that our EM learning algorithm for BS-programs actually

works, we have built, using Prolog, a small experiment system and have

conducted experiments with a program DB

3

7

expressing a Hidden Markov

Model depicted in Figure 6.

The Hidden Markov Model in Figure 6 starts from state S1 and on each

transition between the states, it outputs an alphabet a or b according to the

speci�ed probability. For example, it goes from S1 to S2 with probability

0:7 (= that of bs(0; T; 0)) and outputs a or b with probability 0:5. The

�nial state is S3. In the corresponding program DB

3

, predicate S1(L; T)

for example means the system has output list L until time T .

7

Prolog notation is used for list, conjunction and disjunction.

14

Step 1.

Choose any

~

�

(0)

such that

P

DB

(~y

m

j

~

�

(0)

) > 0 for 8m(1 � m �M)

Step 2.

Until

Q

m=M

m=1

P

DB

(~y

m

j

~

�) saturates

Repeat

Renew

~

�

(n)

to

~

�

(n+1)

by

For i 2 fi

1

; . . . ; i

l

g, renew �

(n)

i

to �

(n+1)

i

where

�

(n+1)

i

=

ON

i

(

~

�

(n)

)

ON

i

(

~

�

(n)

)+OFF

i

(

~

�

(n)

)

ON

i

(

~

�)

def

=

P

m=M

m=1

P

'

DB

(~x

m

)=~y

m

P

F

(~x

m

j

~

�)j

~

A

m

i

=~x

m

j

1

P

DB

(~y

m

j

~

�)

OFF

i

(

~

�)

def

=

P

m=M

m=1

P

'

DB

(~x

m

)=~y

m

P

F

(~x

m

j

~

�)j

~

A

m

i

=~x

m

j

0

P

DB

(~y

m

j

~

�)

Figure 4: A learning algorithm for BS-programs

S1 S2 S3

a: 1.0
b: 0.0

a: 0.0
b: 1.0

0.3 0.2

0.7 0.8

a: 0.5
b: 0.5

a: 0.0
b: 1.0

bs(2,_1)=0.5 bs(5,_,1)=0.0

bs(1,_,1)=1.0

bs(0,_,1)=0.3 bs(3,_,1)=0.2

bs(4,_,1)=0.0

Figure 5: A transition diagram

15

bs-atom original value estimated value

bs(0; T; 1) 0:3 0:348045

bs(1; T; 1) 1:0 1:0

bs(2; T; 1) 0:5 0:496143

bs(3; T; 1) 0:2 0:15693

bs(4; T; 1) 0:0 4:5499e-06

bs(5; T; 1) 0:0 0:0

Table 3: The result of an experiment

DB

3

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

s1([]; 0)

s1([W jX]; T + 1)

s1(X; T); (bs(1; T; 1);W = a; bs(1; T; 0);W = b); bs(0; T; 1)

s2([W jX]; T + 1)

s1(X; T); (bs(2; T; 1);W = a; bs(2; T; 0);W = b); bs(0; T; 0)

s2([W jX]; T + 1)

s2(X; T); (bs(4; T; 1);W = a; bs(4; T; 0);W = b); bs(3; T; 1)

s3([W jX]; T + 1)

s2(X; T); (bs(5; T; 1);W = a; bs(5; T; 0);W = b); bs(3; T; 0)

In the experiment, we �rst set the probabilities of bs atoms according to

Table 3 (original value) and got 100 samples from the program. Then using

this data set, the probabilities of bs atoms were estimated by the EM learning

algorithm. We repeated this experiment several times and a typical result is

shown in Table 3

8

. Estimated values seem rather close to the original values

though we have not done any statistical testing.

6 Conclusion

We have proposed distribution semantics for probabilistic logic programs

and have presented an associated learning schema based on the EM algo-

rithm. They o�er a way to the integration of so far unrelated areas such as

symbol processing and statistical modeling, or programming and learning,

at semantic level in a uni�ed framework.

Distribution semantics does not deal with a single least model. It instead

considers a distribution over the set of all possible least models for a program

DB = F [R which are generated from the rule set R and a sampling F

0

drawn form a distribution P

F

given to the facts F . It includes the usual

least model semantics as a special case.

8

This case took 13 iterations to converge.

16

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

12

Estimation

Ite
ra

tio
n

 �$
B

$3
$l

$O
N

}=
,$

G
$9

�(
B

bs
w

 0

bs
w

 1

bs
w

 2

bs
w

 3

bs
w

 4

bs
w

 5

Figure 6: Convergens of parameters

Combining distribution semantics with the EM algorithm, we have de-

rived a distribution learning schema and specialized it to the class of BS-

programs, which still can express Markov chains as well as Bayesian net-

works. An experimental result was shown for a Hidden Markov Model learn-

ing program.

There remains much to be done. We need more experiments with BS-

programs. If they turn out to be too simple to describe real data, more

powerful distributions should be considered. Especially, Boltzmann distri-

butions and Boltzmann machine learning are promising candidates.

We have assigned a distribution to facts but not to rules. This treatment

might appear too restrictive, but not really so, because, if we have a meta-

interpreter, rules are representable as unit clauses. Learning a distribution

over rules through meta-programming should be pursued.

We state related work. While our approach equally concerns each of

logic, probability and learning, we have not seen many papers of similar

character. For example, there are a lot of research works on abduction but

very few combine them with probability, let alone learning.

Poole, however, recently proposed a general framework for Probabilistic

Horn abduction and has shown Bayesian networks are representable in his

framework[13]. Although his formulation is elegant and powerful, it leaves

something to be desired. The �rst is that his semantics excludes usual logic

17

programs and it can not be a generalization of the least model semantics

9

.

The second is that probabilities are considered only for �nite cases and

there is no \joint distribution of denumearbly many random variables." As a

result, neither can we have the complete additivity of a probability measure,

nor we can express by his semantics stochastic processes such as Markov

chains. Both problems do not exist in our semantics.

Also in the framework of Logic Programming, Ng and Subrahmanian

proposed Probabilistic Logic Programming [9]. They �rst assign \proba-

bility ranges" to atoms in the program (the notion of a distribution seems

secondary to their approach) and then check, using linear programming tech-

nique, if probabilities satisfying those ranges actually exist or not. Due to

the usage of linear programming, their domain of discourse is con�ned to

�nite cases as in Poole's approach.

Natural language processing contains logical and probabilistic aspects.

Hashida [4, 5] proposed a rather general framework for natural language

processing by probabilistic constraint logic programming. Although formal

semantics has not been provided, he assigned probabilities not to literals but

to \between literals," and let them denote the degree of the possibility of

invocation. He has shown constraints are e�ciently solvable by making use

of these probabilities. He also related his approach to the notion of utility.

We have tightly connected programming with learning in terms of dis-

tribution semantics. We hope that our semantics and a learning mechanism

will shed light on the interaction between symbol processing and statistical

data.

References

[1] Ackley,D.H., Hinton,G.E. and Sejnowski,T.J., A learning algorithm for

Boltzmann machines, Cognitive Sci. 9, pp147-169, 1985.

[2] Feller,W., An Introduction to Probability Theory and Its Applications

(2nd. ed), Wiley, 1971.

[3] Gaifman,H. and Snir,M., Probabilities over Rich Languages, Testing

and Randomness, J. of Symbolic Logic 47, pp495-548, 1982.

[4] Hashida,K., Dynamics of Symbol Systems, New Generation Computing,

12, pp285-310, 1994.

[5] Hashida,K., et al. Probabilistic Constraint Programming (in J),

SWoPP'94, 1994.

[6] Hintikka,J., Aspects of Inductive Logic Studies in Logic and the Foun-

dation of Mathematics, North-Holland, 1966.

9

This is mainly due to the acyclicity assumption made in [13]. It excludes any tau-

tological clause such as a a and any clause containing local variables such as Y in

a(X) b(X;Y) when the domain is in�nite.

18

[7] Lakshmanan,L.V.S. and Sadri,F., Probabilistic Dedutive Databases,

Proc. of ILPS'94 pp254-268, 1994.

[8] Muggleton,S., Inductive Logic Programming, New Generation Comput-

ing 8, pp295-318, 1991.

[9] Ng,R. and Subrahmanian,V.S., Probabilistic Logic Programming, In-

formation and Computation 101, pp150-201, 1992.

[10] Nishio,M., Probability theory (in J), Jikkyo Syuppan, 1978.

[11] Nilsson,N.J., Probabilistic Logic, Arti�cial Intelligence 28, pp71-87,

1986.

[12] Pearl,J., Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-

mann, 1988.

[13] Poole,D., Probabilistic Horn abduction and Bayesian networks, Arti�-

cial Intelligence 64, pp81-129, 1993.

[14] Rabiner,L.R., A Tutorial on Hidden Markov Models and Selected Ap-

plications in Speech Recognition, Proc. of the IEEE, Vol. 77, No. 2,

pp257-286, 1989.

[15] Tanner,M., Tools for Statistical Inference (2nd ed.), Springer-Verlag,

1986.

19

