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In Probabilistic Abductive Logic Programming we are given a probabilistic logic program, 
a set of abducible facts, and a set of constraints. Inference in probabilistic abductive 
logic programs aims to find a subset of the abducible facts that is compatible with the 
constraints and that maximizes the joint probability of the query and the constraints. 
In this paper, we extend the PITA reasoner with an algorithm to perform abduction on 
probabilistic abductive logic programs exploiting Binary Decision Diagrams. Tests on several 
synthetic datasets show the effectiveness of our approach.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Probabilistic Logic Programming (PLP) [1,2] has recently attracted a lot of interest thanks to its ability to represent several 
scenarios [3,4] with a simple yet powerful language. Furthermore, the possibility of integrating it with sub-symbolic systems 
makes it a relevant component of explainable probabilistic models [5].

An extension of Logic Programming that can manage incompleteness in the data is given by Abductive Logic Programming 
(ALP) [6,7]. The goal of abduction is to find, given a set of hypotheses called abducibles, a subset of these that explains an 
observed fact. With ALP, users can perform logical abduction from an expressive logic model possibly subject to constraints. 
However, a limitation is that observations are often noisy since they come from real-world data. Furthermore, there may be 
different levels of belief among rules. It is thus fundamental to extend ALP and associate probabilities to observations, to 
both handle these scenarios and test the reliability of the computed solutions.

Starting from the probabilistic logic language of LPADs, in this paper we introduce probabilistic abductive logic programs
(PALP), i.e., probabilistic logic programs including a set of abducible facts and a (possibly empty) set of (possibly probabilis-
tic) integrity constraints. Probabilities associated with integrity constraints can represent how strong the belief is that the 
constraint is true and can help in defining a more articulated probability distribution of queries. These programs define a 
probability distribution over abductive logic programs inspired by the distribution semantics in PLP [8]. Given a query, the 
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goal is to maximize the joint probability distribution of the query and the constraints by selecting the minimal subsets of abducible 
facts to be included in the abductive logic program while ensuring that constraints are not violated.

Consider the following motivating example: suppose you work in the city center and, starting from your home, you may 
choose several alternative routes to reach your office. However, streets are often congested, but you want to avoid traffic and 
reach the destination with the lowest probability of encountering a car accident. You can associate different probabilities 
(representing beliefs or noisy data that came from historical measurements) of encountering (or not encountering) a car ac-
cident in all the possible alternative streets, and impose an integrity constraint that states that only one path (combination 
of streets) can be selected (clearly, you cannot travel two routes simultaneously). Then, you look for the best combination 
of streets to maximize the probability of not encountering a car accident. A possible encoding for this situation is presented 
in Section 6 (experiments on graph datasets). Alternatively, suppose that you want to study more in depth a natural phe-
nomenon that may happen in a region. In the model, there may be some variables that describe the land morphological 
characteristics and some variables that relate the possible events that can occur, such as eruption or earthquake. Moreover, 
you want to impose that some of these cannot be observed together (or it is unlikely that they will be). The goal may con-
sist in finding the optimal combination of variables (representing possible events) that better describes a possible scenario 
and maximizes its probability. This will be the running example we use through the paper, starting from Example 1, where 
we model events possibly occurring in the island of Stromboli.

To perform inference on PALP, we extend the PITA system [9], which computes the probability of a query from an 
LPAD by means of Binary Decision Diagrams (BDD). One of the key points of this extension is that it has the version of 
PITA used to make inference on LPADs as a special case: when both the set of abducibles and the set of constraints are 
empty, the program is treated as a probabilistic logic program. This has an important implication: we do not need to write 
an ad hoc algorithm to treat the probabilistic part of the LPAD, we just need to extend the already-existing algorithm. 
Furthermore, (probabilistic) integrity constraints are implemented by means of operations on BDDs and so they can be 
directly incorporated in the representation. The extended system has been integrated into the web application “cplint on 
SWISH” [10,11], available online at https://cplint .eu/.

To test our implementation, we performed several experiments on five synthetic datasets. The results show that PALP 
with probabilistic or deterministic integrity constraints often require comparable inference time. Moreover, through a series 
of examples, we compare inference on PALP with other related tasks, such as Maximum a Posteriori (MAP), Most Probable 
Explanation (MPE), and Viterbi proof.

The paper is structured as follows: Section 2 and Section 3 present respectively an overview of Abductive and Probabilis-
tic Logic Programming. Section 4 introduces probabilistic abductive logic programs and some illustrative examples. Section 5
describes the inference algorithm we developed, which was tested on several datasets in Section 6. Section 7 provides an 
analysis of related works, and Section 8 concludes the paper.

2. Abductive logic programming and well-founded semantics

Abduction is the inference strategy that copes with incompleteness in the data by guessing information that was not 
observed. Abductive Logic Programming [6,7] extends Logic Programming [12] by considering some atoms, called abducibles, 
to be only indirectly and partially defined using a set of constraints. The reasoner may derive abductive hypotheses, i.e., sets 
of abducible atoms, as long as such hypotheses do not violate the given constraints. Let us now introduce more formally 
some definitions.

Definition 1 (Integrity Constraint). A (deterministic) integrity constraint IC is a formula of the form

:− Body

where Body = b1, . . . , bn and each bi is a logical literal (i.e., a logical atom or the negation of a logical atom). Logically, an 
IC can be understood for the logical formula

f alse ← ∃Body

where ∃ is over all variables in Body.

Definition 2 (Abductive Logic Program). An abductive logic program is a triple (P , IC, A) where P is a normal program, IC
is a set of integrity constraints and A is a set of ground atoms, the abducibles, that do not appear in the head of a rule of 
any grounding of P .

Before introducing the definition of abductive explanation, we review the basic concepts regarding the Well-founded 
semantics (WFS) [13]. Following [14], a 3-valued interpretation I for a logic program P is a pair I = 〈T , F 〉 where T and 
F contain respectively the true and false ground atoms in I , and both are subsets of the Herbrand base H P of P . The 
truth value of the atoms in H P \ (T ∪ F ) is undefined. A 3-valued interpretation is consistent if T ∩ F = ∅. If H P = T ∪ F
for a 3-valued interpretation I of P , I is called 2-valued. A consistent 3-valued interpretation M is a 3-valued model of 
42
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P if, for every clause C in P , the clause is true in M . If M is 2-valued, it is called a 2-valued model. The WFS assigns a 
meaning to logic programs through a 3-valued interpretation. We consider here the definition provided in [14] which is 
based on an iterated fixpoint. Given a program P and an interpretation I = 〈T , F 〉, we define with TI (T ) and FI (F ) the 
operators containing new true and false facts that can be derived from P knowing I . Both are monotonic [14], so they have 
a least and greatest fixpoint. Call T I the least fixpoint of TI and F I the greatest fixpoint of FI . Consider this new operator 
I(I) = I ∪ 〈T I , F I 〉 that assigns to every interpretation I of P a new interpretation I(I). I is also monotonic [14]. Its least 
fixpoint is considered the well-founded model (WFM) of P , denoted as WFM(P ). Undefined atoms are not added to I in 
none of its iterations. If the set of undefined atoms of WFM(P ) is empty, the WFM is called total or 2-valued, and the 
program is dynamic stratified.

Definition 3 (Abductive Explanation). Given an abductive logic program (P , IC, A) and a conjunction of ground atoms q, the 
query, the problem of abduction is to find a set of atoms � ⊆ A, called abductive explanation, such that P ∪ � |= q and no 
constraints are violated, i.e., P ∪ � �|= ∃Body for every integrity constraint, where |= is to be interpreted as truth in the 
well-founded model (WFM) of the program [15].1

Here, we require that P ∪ � has a 2-valued WFM for every �. Consequently, negation is defined under the WFM. This 
also means that |= is well-defined and it is either true or false for any P ∪ � and any q. By default, abducible facts not 
present in the explanation are considered false.

Consider the following example:

fire :- spark, not wet.
spark :- lighter.
spark :- flint.
wet:- grass_is_wet.

:- not wet, lighter.

where grass_is_wet, lighter, and flint are abducibles and not means negation. The query fire has the abductive 
explanation �1 = {flint}. Note that also �2 = {lighter} could be an abductive explanation, but it is forbidden by the 
IC.

3. Probabilistic logic programming

The distribution semantics [8] is becoming increasingly important in Probabilistic Logic Programming. According to this 
semantics, a probabilistic logic program defines a probability distribution over a set of normal logic programs (called worlds). 
The distribution is extended to a joint distribution over worlds and a ground query, and the probability that the query is true 
is obtained from this distribution by marginalization. The languages based on the distribution semantics differ in the way 
they define the distribution over Logic Programs. Here, we consider Logic Programs with Annotated Disjunctions (LPADs) [16], 
which are sets of disjunctive clauses in which each atom in the head is annotated with a probability (see Section 7 for a 
discussion of related proposals).

Formally, a Logic Program with Annotated Disjunctions (LPAD) consists of a finite set of annotated disjunctive clauses. 
An annotated disjunctive clause Ci is of the form

hi1 : �i1; . . . ;hini : �ini :− bi1, . . . ,bimi .

In such a clause, the semicolon stands for disjunction, hi1, . . .hini are logical atoms, bi1, . . . , bimi are logical literals, and 
�i1, . . . , �ini are real numbers in the interval ]0, 1] such that 

∑ni
k=1 �ik ≤ 1. Note that, if ni = 1 and �i1 = 1, the clause 

corresponds to a non-disjunctive clause. If 
∑ni

k=1 �ik < 1, the head of the annotated disjunctive clause implicitly contains an 
extra atom null that does not appear in the body of any clause and whose annotation is 1 − ∑ni

k=1 �ik , with the meaning 
that none of the previous hi is true. Probabilistic facts are considered as independent: this may seem restrictive but, in 
practice, does not limit the possibility to express dependence between facts [2,17]. We denote by ground(T ) the grounding 
of an LPAD T , i.e., the result of replacing variables with constants in T .

Example 1. The island of Stromboli is located at the intersection of two geological faults, one in the southwest-northeast 
direction, the other in the east-west direction, and contains one of the three volcanoes that are active in Italy. This program 
([18,19]) models the possibility that an eruption or an earthquake occurs at Stromboli.

1 We consider � a set of facts rather than a set of atoms when we add it to P .
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(C1) eruption:0.6;earthquake:0.3 :- sudden_er, fault_rupture(X).
(C2) sudden_er:0.7.
(C3) fault_rupture(southwest_northeast).
(C4) fault_rupture(east_west).

If there is a sudden energy release (sudden_er) under the island and there is a fault rupture (fault_rupture(X)), then 
there can be an eruption of the volcano on the island with probability 0.6 or an earthquake in the area with probability 0.3. 
The energy release occurs with probability 0.7 and we are sure that ruptures occur along both faults.

We now present the distribution semantics for programs without function symbols, so with a finite Herbrand base. For 
the distribution semantics with function symbols see [8,20–22].

An atomic choice is a selection of the k-th head atom for a grounding Ciθ j of a probabilistic clause Ci and is represented 
by the triple (Ci, θ j, k), where θ j is a grounding substitution (a set of couples Var/constant grounding Ci ) and k ∈ {1, . . . , ni}. 
An atomic choice represents an equation of the form Xij = k where Xij is a random variable associated with Ciθ j . A set of 
atomic choices κ is consistent if (Ci, θ j, k) ∈ κ, (Ci, θ j, m) ∈ κ implies that k = m, i.e., only one head is selected for a ground 
clause.

A composite choice κ is a consistent set of atomic choices. The probability of a composite choice κ is P (κ) =∏
(Ci ,θ j ,k)∈κ �ik . A selection σ is a total composite choice (it contains one atomic choice for every grounding of each prob-

abilistic clause). Let us call ST the set of all selections. A selection σ identifies a logic program wσ called a world. The 
probability of wσ is P (wσ ) = P (σ ) = ∏

(Ci ,θ j ,k)∈σ �ik . Since the program does not contain function symbols, the set of 
worlds W T = {w1, . . . , wm} is finite and P (w) is a distribution over worlds: 

∑
w∈W T

P (w) = 1. We consider only sound 
LPADs as defined below.

Definition 4. An LPAD T is called sound iff for each selection σ in ST , the program wσ chosen by σ is 2-valued.

The conditional probability of a query q (ground atom) given a world w can be defined as: P (q | w) = 1 if q is true in 
the WFM of w (w |= q) and 0 otherwise. We can obtain the probability of the query by marginalization:

P (q) =
∑

w

P (q, w) =
∑

w

P (q | w)P (w) =
∑
w|=q

P (w). (1)

Formula (1) can be also used to compute the probability of a query when q is composed of a conjunction of ground atoms, 
since the truth of a conjunction of ground atoms is still well defined in a world.

Example 2. For the LPAD T of Example 1, clause C1 has two groundings, C1θ1 with θ1 = {X/southwest_northeast} and C1θ2
with θ2 = {X/east_west}, while clause C2 has a single grounding C2∅. Since C1 has three head atoms and C2 two, T has 
3 × 3 × 2 = 18 worlds, shown in Table 1. The query eruption is true in 5 of them (highlighted in the table) and its 
probability is P (eruption) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7 + 0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 = 0.588.

A composite choice κ identifies a set ωκ that contains all the worlds associated with a selection that is a super-
set of κ : i.e., ωκ = {wσ | σ ∈ ST , σ ⊇ κ}. We define the set of worlds identified by a set of composite choices K as 
ωK = ⋃

κ∈K ωκ . Given a ground atom q, a composite choice κ is an explanation (not to be confused with an abduc-
tive explanation, that will be defined later) for q if q is true in every world of ωκ . For example, the composite choice 
κ1 = {(C1, {X/southwest_northeast}, 1), (C2, ∅, 1)} is an explanation for eruption in Example 1. A set of composite choices 
K is covering with respect to q if every world wσ in which q is true is such that wσ ∈ ωK . In Example 1, a covering set of 
explanations for eruption is K = {κ1, κ2} where:

κ1 = {(C1, {X/southwest_northeast},1), (C2,∅,1)} (2)

κ2 = {(C1, {X/east_west},1), (C2,∅,1)} (3)

Given a covering set of explanations for a query, we can obtain a Boolean formula in Disjunctive Normal Form (DNF) 
where: (1) we replace each atomic choice of the form (Ci, θ j, k) with the equation Xij = k, (2) we replace an explanation 
with the conjunction of the equations of its atomic choices, and (3) we represent the set of explanations with the disjunction 
of the formulas for all explanations. If we consider a world as the specification of a truth value for each equation Xij = k, the 
formula evaluates to true exactly on the worlds where the query is true [20]. In Example 1, if we associate the variable X11

with C1{X/southwest_northeast}, X12 with C1{X/east_west} and X21 with C2∅, the query is true if the following Boolean 
formula is true:

f (X) = (X21 = 1 ∧ X11 = 1) ∨ (X21 = 1 ∧ X12 = 1). (4)
44
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Table 1
Possible worlds w for the LPAD of Example 1 with the corresponding probability P (w), computed as the product of the probabilities associated with the 
head atoms taking value true, reported in each row. Highlighted rows represent the worlds in which the query eruption is true.

w eruption:0.6; earthquake:0.3:- eruption:0.6; earthquake:0.3:- sudden_er:0.7. P (w)

sudden_er, sudden_er,
fault_rupture(sw_ne). fault_rupture(east_west).

1 eruption eruption sudden_er 0.252
2 eruption earthquake sudden_er 0.126
3 eruption null sudden_er 0.042
4 eruption eruption null 0.108
5 eruption earthquake null 0.054
6 eruption null null 0.018
7 earthquake eruption sudden_er 0.126
8 earthquake earthquake sudden_er 0.063
9 earthquake null sudden_er 0.021
10 earthquake eruption null 0.054
11 earthquake earthquake null 0.027
12 earthquake null null 0.009
13 null eruption sudden_er 0.042
14 null earthquake sudden_er 0.021
15 null null sudden_er 0.007
16 null eruption null 0.018
17 null earthquake null 0.009
18 null null null 0.003

Since the disjuncts in the formula are not necessarily mutually exclusive, the probability of the query cannot be computed 
by a summation as in Formula (1). The problem of computing the probability of a Boolean formula in DNF, known as disjoint 
sum, is #P-complete [23]. One of the most effective ways of solving the problem makes use of Decision Diagrams.

3.1. Binary and multi-valued decision diagrams

We can apply knowledge compilation [24] to the Boolean formula f (X) to translate it into a “target language” that allows 
the computation of its probability in polynomial time. We can use Decision Diagrams as a target language. Since the random 
variables appearing in the Boolean formula that are associated with atomic choices can take on multiple values, we need 
to use Multi-valued Decision Diagrams (MDDs) [25]. An MDD represents a function f (X) taking Boolean values on a set of 
multi-valued variables X by means of a rooted graph that has one level for each variable. Each node n has one child for 
each possible value of the multi-valued variable associated with n. The leaves store either 0 or 1. Since MDDs split paths on 
the basis of the values of a variable, the branches are mutually exclusive so a dynamic programming algorithm [26] can be 
applied for computing the probability. Fig. 1a shows the MDD corresponding to Formula (4).

Most packages for the manipulation of decision diagrams are however restricted to work on Binary Decision Diagrams 
(BDD), i.e., decision diagrams where all the variables are Boolean. These packages offer Boolean operators among BDDs and 
apply simplification rules to the results of operations to reduce as much as possible the size of the binary decision diagram, 
obtaining a reduced BDD.

A node n in a BDD has two children: the 1-child and the 0-child. When drawing BDDs, rather than using edge labels, 
the 0-branch, the one going to the 0-child, is distinguished from the 1-branch by drawing it with a dashed line.

To work on Multi-valued Decision Diagrams with a BDD package we must represent multi-valued variables by means of 
binary variables. The following encoding used in [27] gives good performance. For a multi-valued variable Xij , corresponding 
to a ground clause Ciθ j , having ni values, we use ni − 1 Boolean variables Xij1, . . . , Xijni−1 and we represent the equation 
Xij = k for k = 1, . . .ni − 1 by means of the conjunction Xij1 ∧ . . . ∧ Xijk−1 ∧ Xijk , and the equation Xij = ni by means of the 
conjunction Xij1 ∧ . . . ∧ Xijni−1. The BDD equivalent to the MDD of Fig. 1a is shown in Fig. 1b. Binary Decision Diagrams 
obtained in this way can be used as well for computing the probability of queries by associating a parameter πik with each 
Boolean variable Xijk , representing P (Xijk = 1). The parameters are obtained from those of multi-valued variables in this 
way: πi1 = �i1, . . ., πik = �ik∏k−1

j=1(1−πi j)
, up to k = ni − 1.

To manage Binary Decision Diagrams, we exploit the CUDD2 (Colorado University Decision Diagram) library, a library 
written in C that provides functions to manipulate different types of Decision Diagrams. CUDD allows the definition of three 
types of edges: edge to a 1-child, edge to a 0-child, and complemented edge to a 0-child. The meaning of a complemented 
edge is that the function represented by the child must be complemented: if the leaf value is 1 and we visited an odd 
number of complemented edges along the path, then the value 0 must be considered. With this representation, only the 
1-leaf is needed. An example of a BDD with complemented edges can be found in Fig. 1c: it encodes the function (X0 ∧
X1) ∨ (X0 ∧ X2).

2 https://github .com /ivmai /cudd.
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(a) Multi-valued Deci-
sion Diagram correspond-
ing to Formula (4).

(b) Binary Decision Dia-
gram (after simplification 
operations) equivalent to 
the MDD shown in Fig. 1a.

(c) BDD with comple-
mented edges.

Fig. 1. Decision Diagrams.

a:- b,c.
a:- d,e.

b:0.3.
abducible c.
d:0.6.
abducible e.
0.1 :- c,e.

w b d :- c,e. P (w)

1 T T I 0.3 · 0.6 · 0.1 = 0.018
2 T F I 0.3 · 0.4 · 0.1 = 0.012
3 F T I 0.7 · 0.6 · 0.1 = 0.042
4 F F I 0.7 · 0.4 · 0.1 = 0.028
5 T T E 0.3 · 0.6 · 0.9 = 0.162
6 T F E 0.3 · 0.4 · 0.9 = 0.108
7 F T E 0.7 · 0.6 · 0.9 = 0.378
8 F F E 0.7 · 0.4 · 0.9 = 0.252

(a) Program. (b) Worlds.

Fig. 2. Example program and its worlds. I and E indicate respectively whether the IC is included (I) or not (E) in each world.

4. Probabilistic abductive logic programs

To introduce the concept of probabilistic abductive logic programs, consider again Example 1. Suppose we want to 
maximize the probability of the query eruption. However, we do not know whether there was a fault rupture in the 
southwest-northeast or east-west direction. Furthermore, suppose that the fault rupture may happen along only one of the 
two directions simultaneously. In the following, we formally introduce this problem.

Definition 5 (Probabilistic Integrity Constraint). A probabilistic integrity constraint is an integrity constraint with an associated 
probability, i.e., is a formula of the form

π :− Body

where Body = b1, . . . , bn and each bi is a logical literal (i.e., a logical atom or the negation of a logical atom), and π ∈ ]0, 1].

Definition 6 (Probabilistic Abductive Logic Program). A probabilistic abductive logic program is a triple (T , IC, A) where T is 
an LPAD, IC is a (possibly empty) set of (possibly probabilistic) integrity constraints, and A is a set of ground atoms, the 
abducibles, that do not appear in the head of a rule of any grounding of T .

According to Definition 6, in general, a probabilistic abductive logic program is composed of an LPAD, a set of integrity 
constraints (probabilistic, deterministic, or both), and a set of abducibles, which we indicate by prepending the functor 
abducible to the atoms. The set of integrity constraints may be empty.

The triple (T , IC, A) defines a distribution over abductive logic programs P in this way: we obtain a world w by 
selecting one head atom for each grounding of each probabilistic clause from the LPAD T and then by adding or not each 
grounding of each probabilistic integrity constraint from IC . The probability of the world is given by the product among the 
probabilities of the atomic choices made for the LPAD clauses, a factor π for each grounding of each probabilistic integrity 
constraint π : −Body inserted in the world, and a factor 1 − π for each constraint not included in the world. For example, 
in the program shown in Fig. 2a, the two probabilistic facts (b and d) and the IC offer two alternatives each. There are 
2 × 2 × 2 = 8 worlds, whose probabilities are computed as shown in Fig. 2b.

Given a probabilistic abductive logic program (T , IC, A) and a set of ground atoms � ⊆ A, the joint probability P (q, IC |
�) of a query q and the integrity constraints in IC to be true in (T , IC, A) given � is the sum of the probabilities of 
the worlds where � is an abductive explanation of q and all constraints are satisfied. P (q, IC | �) can be computed by 
marginalizing the joint probability of the worlds, the query, and the ICs, in this way:
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a:- b,c.
a:- d,e.

b:0.3.
abducible c.
d:0.6.
abducible e.

1

d

b

a

b

e

c

e
w b d P (w)

1 T T 0.3 · 0.6 = 0.18
2 T F 0.3 · 0.4 = 0.12
3 F T 0.7 · 0.6 = 0.42
4 F F 0.7 · 0.4 = 0.28

(a) Program. (b) BDD. (c) Worlds.

Fig. 3. Program, BDD, and worlds for Example 3 variant 1. Highlighted rows in the table represent the worlds in which the query a is true with probabilistic 
abductive explanation {c,e}, together with their probability.

P (q,IC | �) =
∑

w

P (q,IC, w | �) =
∑

w

P (q,IC | w,�) · P (w | �).

If we indicate respectively with P w the abductive logic program and with IC w the subset of integrity constraints considered 
in every world w , then

P (q,IC | w,�) =
{

1 if P w ∪ � |= q and P w ∪ � �|= IC w

0 otherwise

so

P (q,IC | �) =
∑

w:P w∪�|=q∧P w∪��|=IC w

P (w | �).

Definition 7 (Probabilistic Abductive Problem). Given a probabilistic abductive logic program (T , IC, A) and a conjunction of 
ground atoms q, the query, the probabilistic abductive problem consists in finding a set � ⊆ A, the probabilistic abductive 
explanation, such that P (q, IC | �) is maximized and the explanations in � are minimal, i.e., solve

least(arg max
�

P (q,IC | �))

where arg max returns the set of all sets of abducibles that maximizes the joint probability of the query and the ICs (there 
can be more than one set of abducibles if they all induce the same probability), and

least(I) = {� | � ∈ I,��′ ∈ I : �′ ⊂ �}.
That is, the goal is to find the minimal sets � of abducibles that maximize the joint probability of the query and the 
integrity constraints. Here, minimality is intended in terms of set inclusion. We also say that the function least computes 
the set of undominated �, where � dominates �′ if � ⊂ �′ . If IC = ∅, the task reduces to least(arg max� P (q | �)).

Let us now clarify all the previously introduced concepts through a series of examples.

Example 3. Consider the program shown in Fig. 2a. The query q = a has the probabilistic abductive explanation � = {c,e}. 
In fact, P (q, IC | �) = 0.162 +0.108 +0.378 = 0.648, corresponding to worlds #5,6,7 of Fig. 2b, where q is true given � and 
the IC is excluded (E) from the worlds. This happens because the IC does not completely exclude {c,e}, it just excludes it 
for the worlds where the constraint is present. The probability of such explanation is higher than the one associated to {e} 
and {c}, as:

• given the probabilistic abductive explanation {c}, a is true in 4 worlds (#1,2,5,6) with probability 0.018 + 0.012 +
0.162 + 0.108 = 0.3;

• given the probabilistic abductive explanation {e}, a is true in 4 worlds (#1,3,5,7) with probability 0.018 + 0.042 +
0.162 + 0.378 = 0.6.

Variant 1. If we remove the integrity constraint from the program shown in Fig. 2a, as reported in Fig. 3a, the query q = a 
with the probabilistic abductive explanation � = {c,e} is true in the first three worlds, highlighted in Fig. 3c, so it has 
probability P (q | �) = 0.18 + 0.12 + 0.42 = 0.72.
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d

a

c

b

e

1

e

w b d P (w)

1 T T 0.3 · 0.6 = 0.18
2 T F 0.3 · 0.4 = 0.12
3 F T 0.7 · 0.6 = 0.42
4 F F 0.7 · 0.4 = 0.28

(a) BDD. (b) Worlds.

Fig. 4. BDD and worlds for the query of Example 3 variant 2. Highlighted rows in the table represent the worlds in which the query a is true with 
probabilistic abductive explanation {e}, together with their probability.

Table 2
Worlds for Example 3 variant 3. Highlighted rows represent the worlds in which the query a is true with prob-
abilistic abductive explanation {e}, together with their probability. I and E stand respectively for included and 
excluded.

w b d :- c,e. P (w)

1 T T I 0.3 · 0.6 · 0.5 = 0.09
2 T F I 0.3 · 0.4 · 0.5 = 0.06
3 F T I 0.7 · 0.6 · 0.5 = 0.21
4 F F I 0.7 · 0.4 · 0.5 = 0.14
5 T T E 0.3 · 0.6 · 0.5 = 0.09
6 T F E 0.3 · 0.4 · 0.5 = 0.06
7 F T E 0.7 · 0.6 · 0.5 = 0.21
8 F F E 0.7 · 0.4 · 0.5 = 0.14

Variant 2. Consider again the program shown in Fig. 2a, but with the integrity constraint deterministic, i.e., :- c,e. There 
are four possible worlds (see Fig. 4b). The probabilistic abductive explanation that maximizes the probability of the query 
q = a and, at the same time, satisfies the constraint, is � = {e}. P (q, IC | �) = 0.18 + 0.42 = 0.6, corresponding to the 
sum of the probabilities of the worlds where q is true given �, highlighted in Fig. 4b. Note that the probabilistic abductive 
explanation {c,e} has higher probability than {e} (see above) but is forbidden by the IC.

Variant 3. If the probability of the IC is set to 0.5, i.e., 0.5 :- c,e, the query q = a has the probabilistic abductive 
explanation � = {e}, with probability P (q, IC | �) = 0.09 · 2 + 0.21 · 2 = 0.6, corresponding to worlds #1,3,5,7 (highlighted 
in Table 2). Such explanation gives higher probability than {c,e} and {c} as:

• given the probabilistic abductive explanation {c,e}, a is true in 3 worlds (#5,6,7) with probability 0.09 +0.06 +0.21 =
0.36;

• given the probabilistic abductive explanation {c}, a is true in 4 worlds (#1,2,5,6) with probability 0.09 + 0.06 + 0.09 +
0.06 = 0.3.

If we want to compute the minimum probability π of the IC π:-c,e. such that explanation {e} is chosen, we have to 
solve a system of two inequalities, imposing that the sum of the probabilities of worlds #5,6,7 (see Fig. 2b) is greater than 
the sum of the probabilities associated both with worlds #1,2,5,6 and #1,3,5,7, with π as a variable. The result is π < 0.167. 
So, when the IC has probability greater than 0.167, explanation {e} is preferred to {c,e} (and {c}), as if the constraint 
were deterministic.

Example 4. Abducibles facts can also be negated in the body of clauses. Consider a simple variation of the program shown 
in Fig. 3a, where the abducible c appears negated in the first clause for a/0:

a:- b,\+c.

Here, the query q = a has the probabilistic abductive explanation � = {e} and probability 0.72, because, when c is not 
selected, the second clause still has the body satisfied.

Example 5. A program may have multiple minimal explanations yielding maximum probability of the query and the con-
straints. Consider the following example:

a:0.4.
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b:0.4.
abducible aa.
abducible bb.
q:- a,aa.
q:- b,bb.
:- aa,bb.

Both �1 = {aa} and �2 = {bb} are minimal, each one giving a probability of 0.4.

Example 6. Consider the case of an abductive logic program (no probabilistic facts). For example, if we query a in the 
following program, where both b and c are abducibles:

a:- b,c.
a:- c.
abducible b.
abducible c.

we would obtain, without the least function, two explanations: �1 = {b,c} and �2 = {c}. However, this is in contrast 
with our definition, where the goal is to find sets that are also minimal. In this example �2 ⊂ �1, so the latter must not 
be considered as it is not minimal. Variant 1. If we add another clause a:- d,e. with d and e abducibles, the set of 

explanations for a will be � = {{c},{d,e}}, since both are minimal.

We now apply the semantics of probabilistic abductive logic programs to the “Stromboli” example.

Example 7. Given the LPAD of Example 1 (where the variable X has been replaced by _), IC = ∅, and A = {C3, C4}:

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).
sudden_er: 0.7.
abducible fault_rupture(southwest_northeast).
abducible fault_rupture(east_west).

the query q = eruption has the probabilistic abductive explanation3

� = {faultrupture(southwest_northeast),fault_rupture(east_west)}
with probability P (q | �) = 0.252 + 0.126 + 0.042 + 0.126 + 0.042 = 0.588, corresponding to worlds #1,2,3,7,13 in Table 1
where q is true given �. � yields the highest probability since

• given the probabilistic abductive explanations
�1 = {fault_rupture(southwest_northeast)} or
�2 = {fault_rupture(east_west)}, P (q | �1) = P (q | �2) = 0.42;

• given the probabilistic abductive explanation
�3 = ∅, P (q | �3) = 0.

Variant 1. Note that, given the program:

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).
sudden_er: 0.7.
abducible fault_rupture(southwest_northeast).
fault_rupture(east_west).

the query q = eruption would have the probabilistic abductive explanation
� = {fault_rupture(southwest_northeast)} with the same probability as above, corresponding to the same worlds. 
The same result would be achieved by making abducible fault_rupture(east_west) instead of
fault_rupture(southwest_northeast).

Variant 2. If we remove C3 or C4 from the program, for instance C4:

3 This example can be tested at https://cplint .eu /e /eruption _abduction .pl.
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Table 3
Possible worlds for the LPAD of Example 7 (Variant 2) with the corresponding probability, computed as the 
product of the probabilities associated with the head atoms taking value true, reported in each row. Highlighted 
rows represent the worlds in which the query eruption is true.

w eruption:0.6; earthquake:0.3:- sudden_er:0.7. P (w)

sudden_er,
fault_rupture(sw_ne).

1 eruption sudden_er 0.42
2 eruption null 0.18
3 earthquake sudden_er 0.21
4 earthquake null 0.09
5 null sudden_er 0.07
6 null null 0.03

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).
sudden_er: 0.7.
abducible fault_rupture(southwest_northeast).

we would lose the second grounding X/east_west. Now, the query q = eruption would have the probabilistic abductive 
explanation
� = {fault_rupture(southwest_northeast)} but with probability P (q | �) = 0.42 + 0.18 = 0.6, corresponding to 
worlds #1,2 of Table 3, where q is true given �.

Variant 3. If we add an IC to the program stating that a fault rupture cannot happen along both directions at the same time:

eruption:0.6; earthquake:0.3 :- sudden_er, fault_rupture(_).
sudden_er: 0.7.
abducible fault_rupture(southwest_northeast).
abducible fault_rupture(east_west).

:- fault_rupture(southwest_northeast),fault_rupture(east_west).

the probabilistic abductive explanations that maximize the probability of the query q = eruption and satisfy the constraint 
are both
�1 = {fault_rupture(southwest_northeast)}
and
�2 = {fault_rupture(east_west)}, as P (q, IC | �1) = P (q, IC | �2) = 0.252 + 0.126 + 0.042 = 0.42 in both cases.
Note that the probabilistic abductive explanation found at the beginning of this example, with a higher probability P (q |
�) = 0.588, is now forbidden by the IC.

Several related tasks, such as Maximum a Posteriori (MAP), Most Probable Explanation (MPE), and Viterbi proof, require 
the selection of an optimal subset of facts to optimize a function value. However, there are some important differences with 
abduction that will be investigated in the next subsection.

4.1. Relation to MAP/MPE and Viterbi proof problems

In PLP, the probabilistic abductive problem differs both from the Maximum A Posteriori (MAP)/Most Probable Explanation 
(MPE) task [28] and from the Viterbi proof [29–31].

In general terms, given a joint probability distribution over a set of random variables, a set of values for a subset of the 
variables (evidence), and another disjoint subset of the variables (query variables4), the MAP problem consists of finding the 
most probable values for the query variables given the evidence. The MPE problem is the MAP problem where the set of 
query variables is the complement of the set of evidence variables. More formally, given an LPAD T , a conjunction of ground 
atoms e, the evidence, and a set of random variables X (query random variables), associated with some ground rules of T , 
the MAP problem is to find an assignment x of values to X such that P (x | e) is maximized, i.e., solve

arg max
x

P (x | e).

The MPE problem is a MAP problem where X includes all the random variables associated with all ground clauses of T . 
These problems differ from ours because we want to find the set � that maximizes the probability of the query variables 
P (x | �), rather than the value of the query variables with maximum probability.

4 In this subsection, we use the word query associated with variables, with a slightly different meaning with respect to the rest of the paper.
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Example 8. Given the program T of Example 1 where the two certain facts are made probabilistic:

(C1) eruption:0.6;earthquake:0.3 :- sudden_er, fault_rupture(X).
(C2) sudden_er:0.7.
(C3) fault_rupture(southwest_northeast):0.5.
(C4) fault_rupture(east_west):0.4.

and evidence is ev:-eruption, if all the random variables associated with all ground clauses are query variables, the 
MPE task finds the most probable explanation for ev, i.e., the explanation with the highest probability, corresponding to the 
assignment x:

[rule(1,eruption,(sudden_er,fault_rupture(southwest_northeast))),
rule(1,eruption,(sudden_er,fault_rupture(east_west))),
rule(2,sudden_er,true),
rule(3,fault_rupture(southwest_northeast),true),
rule(4,null,true)]

Predicate rule/3 specifies respectively the clause number, the selected head, and the clause body with the selected 
grounding. P (x | ev) = 0.6 · 0.6 · 0.7 · 0.5 · (1 − 0.4) = 0.0756.5

Example 9. Given the program of Example 8 and the evidence ev:-eruption, if only the random variables associated 
with C3 and C4 are query, the MAP assignment x is:

[rule(3,fault_rupture(southwest_northeast),true),
rule(4,null,true)]

with probability P (x | ev) = 0.126. This probability is computed as P (x,ev)
P (ev)

where x is the composite choice κ =
{(C3, X/southwest_northeast, 1), (C4, {}, 2)}.6

Differently, the Viterbi proof is the most probable proof for a query, i.e., it is a partial assignment (a partial possible 
world) such that for all assignments extending the proof, the query is still true. In practice, the Viterbi proof corresponds to 
the most likely explanation (proof) in the set of covering explanations for a query.

Example 10. Given the program of Example 8, the covering set of explanations for the query eruption is K = {κ1, κ2} (see 
Eq. (2) and (3)).

κ1 (Eq. (2)) corresponds to the following partial assignment:

[rule(1,eruption,(sudden_er,fault_rupture(southwest_northeast))),
rule(2,sudden_er,true),
rule(3,fault_rupture(southwest_northeast),true)]

having probability 0.6 · 0.7 · 0.5 = 0.21.
κ2 (Eq. (3)) corresponds to the following partial assignment:

[rule(1,eruption,(sudden_er,fault_rupture(east_west))),
rule(2,sudden_er,true),
rule(4,fault_rupture(east_west),true)]

having probability 0.6 · 0.7 · 0.4 = 0.168. Being the Viterbi proof the most likely explanation in the set K , it corresponds to 
κ1.7

In conclusion, the MAP/MPE task distinguishes between evidence and query variables, with the goal of finding the assign-
ment of values to the query variables such that the probability of that assignment given the evidence atoms is maximized.

The probabilistic abductive problem, instead, aims at identifying the best set of ground atoms, explicitly defined in the 
program as abducibles, which maximizes the probability of a query, while possibly satisfying some (probabilistic) integrity 
constraints, which are admitted neither in the MAP/MPE task nor in the Viterbi proof task.

5 This example can be tested at https://cplint .eu /e /eruption _mpe .pl.
6 This example can be tested at https://cplint .eu /e /eruption _map .pl.
7 This example can be tested at https://cplint .eu /e /eruption _vit .pl.
51

https://cplint.eu/e/eruption_mpe.pl
https://cplint.eu/e/eruption_map.pl
https://cplint.eu/e/eruption_vit.pl


D. Azzolini, E. Bellodi, S. Ferilli et al. International Journal of Approximate Reasoning 142 (2022) 41–63
5. Algorithm

In PLP, the probability of the query is computed by building a BDD and by applying a dynamic programming algorithm 
that traverses it, such as the one presented in [26] and reported in Algorithm 1 for the sake of clarity. var(node) represents 
the variable associated with the BDD node node and comp is a flag that indicates whether a node pointer is complemented 
or not. Intermediate results are stored in a table to avoid the execution of the same computation in case the algorithm 
encounters an already visited node. Essentially, the BDD is traversed until a terminal node is found. From there, probabilities 
are computed and returned to the root.

Algorithm 1 Function Prob: computation of the probability of a BDD.
1: function Prob(node, TableProb)
2: if node is a terminal then
3: return 1
4: else
5: if TableProb(node.pointer) �= null then
6: return TableProb(node)
7: else
8: p0 ←Prob(child0(node), TableProb)
9: p1 ←Prob(child1(node), TableProb)

10: if child0(node).comp then
11: p0 ← (1 − p0)

12: end if
13: Let π be the probability of being true of var(node)
14: Res ← p1 · π + p0 · (1 − π)

15: Add node.pointer → Res to TableProb
16: return Res
17: end if
18: end if
19: end function

Algorithms 2 and 3 present the extension to the PITA system for returning the minimal set of the (probabilistic) abductive 
explanation for a query, by taking as input the root of a BDD representing its explanations.

Before analysing the algorithms, let us explain how ICs are managed. As described in the previous sections, they are rep-
resented as denials: a clause without head and a conjunction of literals in the body. Integrity constraints are implemented 
by conjoining BDDs. A BDD for the IC :− b1, . . . , bm is obtained by asking the query b1, . . . ,bm with PITA (after apply-
ing the program transformation described in Appendix A). Abducible facts are represented with nodes (and thus Boolean 
random variables) of abducible type. Furthermore, constraints can contain variables and they can also be associated with 
probabilities. In this case, an extra variable associated with the probability is added to the BDD representing the constraint. 
Two BDDs, one for the query (BDDQ) and one for the constraints (BDDC), are built. The Boolean expression representing 
the query is given by the conjunction of BDDQ with the negation of BDDC (BDDQ and not BDDC). This definition can be 
straightforwardly extended in the case of multiple ICs. Consider the program shown in Example 11 and the query q.

Example 11.

q:- a,d.
q:- b,c.
abducible a.
abducible b.
c:0.4.
d:0.5.
:- a,b.

BDDQ and BDDC represent respectively the Boolean expressions (a and d) or (b and c) (for the query q, Fig. 5a) 
and a and b (for the constraint :- a,b, Fig. 5b).

The final expression is the conjunction ((a and d) or (b and c)) and (not(a and b)). Fig. 6a shows the 
conjunction of BDDQ and BDDC while Fig. 6b shows its truth table.

In the following, we describe step by step Algorithms 2 and 3.
The function AbductiveExpl (Algorithm 2) gets as input the root of the BDD representing the explanations for a query, which 
is reordered (line 2) so that variables associated with abducibles come first in the order. This operation is crucial, since it 
allows us to directly integrate in PITA the algorithm to compute the probabilistic abductive explanation. Reordering the 
variables of a BDD may increase or decrease its size. However, having the abducible variables first allows the direct use of 
function Prob (Algorithm 1). TableAbd stores the pairs probability-set of explanations computed at each node corresponding 
to an abducible fact. Similarly, TableProb stores the values computed at probabilistic nodes and it is used by the function
Prob. Both TableAbd and T able Prob are initially empty. After that, function AbdInt (Algorithm 3) is called. This function 
52



D. Azzolini, E. Bellodi, S. Ferilli et al. International Journal of Approximate Reasoning 142 (2022) 41–63
a

d

b

c

d

q

b

1

1

a

b

q

(a) BDD for (a and d) or (b and c)
(BDDQ).

(b) BDD for a and b (BDDC).

Fig. 5. BDDs for Example 11.

a

b

q

b

c

d

1

a b c d Expr
F F F F F
F F F T F
F F T F F
F F T T F
F T F F F
F T F T F
F T T F T
F T T T T
T F F F F
T F F T T
T F T F F
T F T T T
T T F F F
T T F T F
T T T F F
T T T T F

(a) BDD resulting from the conjunction of BDDQ 
and BDDC.

(b) Truth table.

Fig. 6. BDD and truth table for Example 11. Highlighted rows represent the combinations of arguments such that the expression ((a and d) or (b 
and c)) and (not(a and b)) (compactly referred as Expr in the table) is true.

Algorithm 2 Function AbductiveExpl: computation of the minimal sets that maximize the joint probability of the query and 
the ICs, and of the corresponding probability.
1: function AbductiveExpl(root)
2: root′ ← Reorder(root) � BDD reordering
3: TableAbd ← ∅
4: TableProb ← ∅
5: (Prob, Abd) ← AbdInt(root′, TableAbd, TableProb, false)
6: Abd′ ← RemoveDominated(Abd)
7: return (Prob, Abd′)
8: end function

starts from the root: if the current node does not represent an abducible, there are no abducibles in the remaining part 
of the diagram and so the probability is computed using the function Prob (line 4) and a set � containing only an empty 
explanation is returned. This is possible only because the BDD has been reordered as previously described. The function
Prob also handles the terminal case (i.e., BDD constant node 1). If a value for the current node has already been computed, 
it is retrieved from TableAbd and returned (lines 11 and 12).

Otherwise, function AbdInt is recursively called on both the true and false child. After the recursion, a max operation 
between the probability with or without the node is performed (line 16) to choose whether the abducible represented by 
the current node should be included in the explanations or not: if the probability of the true child is greater than the 
probability of the false child, the abducible represented by the current node is selected and added to the explanations. 
Otherwise, it is not. If it is selected (line 18), the probability at the current node is given by the probability of the true child 
(p1). In this case, the set of explanations is built by adding the current abducible (represented by var(node)) to all the true 
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Algorithm 3 Function AbdInt: traversal of the BDD to compute the sets that maximize the joint probability of the query 
and the ICs and the corresponding value.

1: function AbdInt(node, TableAbd, TableProb, comp)
2: comp ← node.comp ⊕ comp
3: if var(node) is not associated with an abducible then
4: p ←Prob(node) � Call to prob

5: if comp then
6: return (1 − p, [[]])
7: else
8: return (p, [[]])
9: end if

10: else
11: if TableAbd(node.pointer) �= null then
12: return TableAbd(node.pointer)
13: else
14: (p0, Abd0) ← AbdInt(child0(node), TableAbd, TableProb, comp)
15: (p1, Abd1) ← AbdInt(child1(node).TableAbd, TableProb, comp)
16: if p1 > p0 then � Max
17: Abd ← AddNodeToExplanations(var(node), Abd1)
18: Res ← (p1, Abd)

19: else if p1 == p0 then � Same probability
20: Abd ←RemoveDominatedAndMerge(Abd0,Abd1)
21: if Abd is empty then
22: Res ← (p0, Abd0)

23: else
24: Res ← (p1, Abd)

25: end if
26: else
27: Res ← (p0, Abd0)

28: end if
29: Add node.pointer → Res to TableAbd
30: return Res
31: end if
32: end if
33: end function

child choices (represented by Abd1) using the function AddNodeToExplanations. If the probabilities computed in the two 
children are the same, the explanations of the true child that are dominated (strict superset) by an explanation of the false 
child are removed (line 20). This is needed to preserve the minimality of the result: if we do not remove the explanations 
in the true child that are a superset of one explanation in the false child, we would obtain sets which are not minimal. 
We cannot remove the explanations of the false child that are dominated by an explanation of the true child: after the 
introduction of the current node in the explanations of the true child, the explanations that dominate the ones removed in 
the false child are no more subsets. This is because they will have the current node included, that it is not present in the 
explanations of the false child, thus breaking the subset relation. If the set of explanations obtained after the removal of 
the dominated ones is empty, the explanations of the false child (Abd0), together with their probability (p0), are returned 
(because the addition of the true child in the true explanations would still lead to a dominated explanation, so there is no 
need to consider it). Otherwise, the current node is added to all the true explanations and the result is merged with the 
explanations of the false child and returned. These operations are performed by the function RemoveDominatedAndMerge.

The sets of explanations are kept ordered, to speed up the comparisons. If the node is not selected (line 27), the prob-
ability and the set of explanations computed in the false child are returned. This function will return in variable Res the 
pair P (q, IC | �) and the set � maximizing that probability. Note that, as in Algorithm 1, intermediate results (indicated 
with Res) are stored in a table to avoid the execution of the same computation in case the algorithm encounters an already 
visited node.

After the execution of function AbdInt, we remove once again the possible dominated sets from the set of expla-
nations (Algorithm 2 line 6). Finally, Algorithm 2 returns the pair (Prob, Abd′) where Prob = P (q, IC | �) and Abd′ =
least(arg max� P (q, IC | �)), i.e., the set of minimal sets � maximizing that probability.

Here, we focused on programs without function symbols (see Section 3). However, our algorithm can be extended to 
also manage programs with function symbols, and this can be an interesting direction for future work.

In the extreme case where there are no probabilistic facts, Algorithm 2 returns the abductive explanations: no prob-
abilistic fact is involved, so the function Prob is called only to manage the terminal node. By definition, a BDD encodes 
a Boolean function that can be a solution of the abduction problem. In the case of multiple solutions, both the functions
RemoveDominatedAndMerge and RemoveDominated eliminate those that are dominated, and the returned solutions are 
minimal.

Let us now focus on the complexity of the whole task. Exact inference in probabilistic logic programs is #P-complete 
(originating from the cost of the underlying graphical model) [32]. Here, we compute the probabilistic abductive explanation 
following the same pattern of exact inference in PLP (knowledge compilation and traversing the resulting structure with a 
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dynamic programming algorithm) but we have an additional step, which is the reordering of the BDD. Changing the order 
of a BDD is done by swapping adjacent variables, an operation that can be performed polynomially [33]. We adopted this 
solution, and empirically noted (see Section 6) that the time required for this task is always negligible with respect to the 
traversing of the BDD. Checking whether one set is a subset of another set can be performed in a time linear with the size 
of the smallest of the two subsets since we kept them ordered. If the sets of explanations are of sizes respectively m and n, 
m · n comparisons are needed.

5.1. Execution example

To better understand the algorithm, consider the illustrative program of Example 3 variant 1, shown, together with 
its BDD, in Fig. 3. Suppose that the probability of a together with its probabilistic abductive explanation needs to be 
computed. The algorithm starts at node a and is recursively called until a non abducible node is found. Nodes b left and 
right are reached, and the probabilities are computed using the function prob: for b left 0.3 is computed while for b 
right 0.3 + (1 − 0.3) · 0.6 = 0.72. At the left node e, a max operation between the true and false children is performed: 
max(0.3, 0.72) = 0.72 and e is added to the current explanation, which now contains only e. Similarly, at right node e, 
max(0.6, 0) = 0.6 and e is again added to the current empty explanation. At node c, max(0.72, 0.6) = 0.72 so c is added to 
the true child’s explanation {e} and the overall probability with its abducible explanation are respectively 0.72 and {c,e}.

The following theorem proves that Algorithm 2 solves the probabilistic abductive problem

Theorem 1. Algorithm 2 solves the probabilistic abductive problem.

Proof. (Sketch) The BDDs that are generated for the query and the ICs represent the Boolean formulas according to which 
the query is true and the ICs are satisfied for the correctness of the PITA algorithm. By reordering the resulting BDD, we 
have abducible nodes first in the diagram: this means that when we reach a probabilistic node there are no more abducible 
nodes below and we can compute the probability of that node as in PITA. The upper diagram is then used to select the sets 
of abducibles that provide the largest probability by simply comparing the probabilities of the partial sets coming from the 
children. Special care must be taken for the case of equal probability of the two children because in this case domination 
must be checked.

6. Experiments

We conducted some experiments to analyze the execution time of the proposed algorithm. We executed them on a 
cluster8 with Intel® Xeon® E5-2630v3 running at 2.40 GHz on five synthetic datasets9 taken from [28]: growing head (gh), 
growing negated body (gnb), blood, probabilistic graph (graph) and probabilistic complete graph (complete graph). As stated 
in Section 3 (see Definition 4), we consider only sound programs. For each one, we conducted three kinds of experiments: 
one with deterministic integrity constraints, one with probabilistic integrity constraints, and one without constraints. Since 
results with probabilistic and deterministic constraints are almost identical, only one curve is shown. We arbitrarily set 
the probability of all the integrity constraints to 0.5: this value typically indicates weak constraints. However, here we are 
interested in the execution time of our algorithm, not in the computed probability: if we set a value different from 0.5, we 
would likely obtain the same results in terms of execution time, since the BDDs must be traversed in the same manner.

We selected the previously listed set of programs with the goal of covering a broad spectrum of possible cases: with 
gh and gnb, we investigate, respectively, how a growing number of atoms in the head and negated literals in the body 
influences the execution time. Furthermore, the dataset gh with integrity constraints has multiple explanations with the 
same probability. blood represents a possible application in the biological domain, while the experiments on graphs are 
representative of the motivating example introduced in Section 1 and can be as well associated to real-world scenarios. For 
all the experiments, we computed the total execution time which is given by the time required for constructing, reordering, 
and traversing the BDDs. As we discuss in Section 7, current comparable systems do not exist to the best of our knowledge, 
so a direct comparison with other implementations is not possible.

6.1. Data

The first dataset (gh) is composed of a set of programs characterized by clauses with a growing number of atoms (from 
1 to 14) in the head. The most complex program has 28 clauses and 14 abducibles. The following is a program with two 
abducibles:

abducible aba1.
abducible aba2.

8 http://www.fe .infn .it /coka /doku .php ?id =start.
9 All datasets can be found at: https://bitbucket .org /machinelearningunife /palp _experiments.
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a0 :- a1.
a1:0.5:- aba1.
a0:0.5; a1:0.5:- a2.
a2:0.5:- aba2.

The query is a0. For the experiments with ICs, we considered an XOR constraint: only one abducible should be selected. 
For the previous example, this can be implemented with:

r:- aba1,aba2.
r:- \+aba1,\+aba2.
:- r.

In general, if there are n abducibles, an XOR constraint can be implemented with 
(n

2

) + 2 clauses. In the previous example, (2
2

)+2 = 3. The second clause represents the case where none of the abducibles is considered. The third one (denial) forbids 
a disjunction of the first two clauses:
not((aba1 and aba2) or (not aba1 and not aba2)) which is true only if one between aba1 and aba2 is 
selected.

The second dataset (gnb) is composed of a set of programs with an increasing number of negated atoms (from 1 to 14) 
in the body of clauses. Each clause has an abducible fact in the body. The most complex program has 121 clauses and 16 
abducibles. The following is a program with four abducibles:

abducible aba0.
abducible aba1.
abducible aba2.
abducible aba3.
a0:0.5:- a1, aba0.
a0:0.5:- \+a1,a2, aba0.
a0:0.5:- \+a1,\+a2,a3, aba0.
a1:0.5:- a2, aba1.
a1:0.5:- \+a2,a3, aba1.
a2:0.5:- a3, aba2.
a3:0.5:- aba3.

We are interested in the probability of a0 since it depends on an increasing number of rules. In the experiment with ICs, 
we tested the edge case where all the abducibles should be selected. This situation can be represented with:

r:- \+aba0.
r:- \+aba1.
r:- \+aba2.
:- r.

The blood dataset is a set of programs that model the inheritance of blood type. Each program has an increasing number 
of ancestors (up to five levels in the genealogical tree) identified as mother and father for each person. The most complex 
program has 67 clauses and 2 abducibles with a variable argument with 20 groundings each. For the experiments with ICs, 
mother and father should not have the same blood type: this can be implemented using a single denial with variables. Here, 
we are interested in finding an explanation that maximizes the probability that a person p has a certain blood type.

The graph dataset represents a set of probabilistic graphs following a Barabási-Albert model generated with the Python 
networkx package,10 with the number of nodes ranging in [50,100] and parameter m0 (representing the number of edges 
to attach from a new node to existing nodes) set to 2. Since the generation of the Barabási-Albert model is not determin-
istic, we created 100 different graph configurations and averaged the resulting inference times. The complete graph dataset 
represents one probabilistic complete graph where each pair of nodes is connected by an edge. In both datasets, every 
node has a probability of 0.5 of being connected to another node if the abducible representing the edge is selected. Thus, 
the number of abducibles is the same as the number of edges. The goal is to compute the minimal probabilistic abductive 
explanation that maximizes the probability of the existence of a path between nodes 1 and N , where N is the size of the 
graph (number of nodes). In the case of a complete graph, the number of edges, and thus abducibles, is (N · (N − 1))/2. For 
the experiments with ICs, we removed paths of length two up to five: if path(A,B,L) is the predicate that represents the 
path between nodes A and B with length L, this constraint can be imposed with :- path(0,49,L), L < 6.

To sum up, the datasets have the structure described in Table 4 that lists the number of probabilistic rules (#p), the 
number of atoms in the head (#h) per clause, the number of atoms in the body (#b), the number of abducibles (#a), the 

10 https://networkx .github .io/.
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Table 4
Details of the datasets.

Dataset #p #h #b #a #IC #bIC

blood 27 + n {3,4} {2,3} 2 2 2
gh 2n [1,n] 1 n 1

(n
2

) + 2
gnb n · (n − 1)/2 + 1 1 [1,n] n 1 n
graph 2(n − 50) + 96 1 1 2(n − 50) + 96 6 1
complete graph n · (n − 1)/2 1 1 n ∗ (n − 1)/2 3 1

Fig. 7. Inference time as a function of the number of abducibles for gh and gnb datasets, with and without integrity constraints.

Fig. 8. Inference time as a function of the number of abducibles for the blood dataset, with and without integrity constraints.

number of ICs (#IC), and the number of atoms in the body of ICs (#bIC) per IC for each of the five datasets, all parametric 
in n, the size of the program. We considered the datasets with ICs, since the values for the datasets without ICs are equal, 
except for the number of ICs that is obviously 0.

6.2. Discussion of experiments results

For gh, inference times are shown in Fig. 7a. In the experiment without ICs, inference on programs with up to 12 
abducibles takes less than 1 second. Starting from 13 abducibles, execution time grows exponentially. With ICs, inference 
on programs with up to 11 abducibles takes less than 1 second. As for the experiments without ICs, execution time then 
starts to grow exponentially, but with a steeper slope.

For gnb, inference times are shown in Fig. 7b. In both types of experiments, they are very similar. Until 14 abducibles, 
inference takes less than 1 second. Starting from 15 abducibles, time grows exponentially. Overall, for both gh and gnb, 
experiments with ICs show slightly worse performance with respect to the version without, even if for the latter, results are 
often comparable.

For the blood dataset, execution time for experiments with and without ICs present similar performance (Fig. 8). In detail, 
the execution time exceeds 1 hour for the dataset of size 36 for both programs with and without ICs.

For the graph dataset, Fig. 9a shows that the execution time generally increases as the number of abducibles increases, 
reaching an exponential slope. For the complete graph dataset, Fig. 9b shows that for a number of abducibles up to 6 nodes, 
inference time is constant and negligible; with 7 nodes, it increases rapidly to approximately 18 (with ICs) and 46 (without 
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Fig. 9. Inference time as a function of the number of abducibles for the graph and complete graph datasets, with and without integrity constraints.

ICs) seconds. Finally, it exceeds 8 hours (the time limit) for size N = 8. Unlike the other datasets, in this case the dashed 
curve (programs with ICs) is below the solid curve (programs without ICs).

Overall, the experiments with and without ICs take comparable time. This can be due to the implementation of the con-
straints, which may discard some of the possible solutions that can be obtained from the BDD without ICs. The experiments 
with ICs are faster only for the complete graph dataset: this happens probably because constraints allowed us to remove 
some paths.

Clearly, as in most of the applications, scalability is an issue. As the program size increases, the execution time increases, 
often exponentially. This is unavoidable given the complexity of the problem and the expressivity of the language. Solutions 
alternative to compiling to BDDs may be investigated, such as the technique of lifted inference: this will be an interesting 
direction for future work.

7. Related work

Traditionally defined as inference to the best explanation, abduction embeds the implicit assumption that many possible 
explanations exist and raises the issue about which one should be selected. Adopting a purely logical setting, one may lever-
age the candidate explanations’ complexity, preferring minimal ones. Still, different minimal but incomparable explanations 
are possible (there is no total ordering on them). Intuitively, one might want to select candidate explanations based on their 
“reliability”, so that non-minimal explanations are not discarded by default. Interpreting “reliability” as (un)certainty opens 
a connection with the domain of probabilistic reasoning.

In fact, much research has been carried out aimed at combining logical and statistical inference, from early works [34] to 
more recent approaches such as Probabilistic Logic Programming [1,2] and Statistical Relational Learning (SRL) [35]. Of course, 
this also brings about additional problems that are typical of Probabilistic Graphical Models (PGM) [36] (parameter and model 
learning, inference). From a Logic Programming perspective, examples of embedding probabilistic reasoning in logic based 
on the so-called distribution semantics [8] are Logic Programs with Annotated Disjunctions (LPADs) [16], ProbLog [26], CP-
Logic [37] and PRISM [8,38]. Both ProbLog and PRISM allow to set probabilities only on facts, but the former allows two 
alternatives (true or false) only, one of which is implicit, while the latter allows more than two alternatives. PRISM offers 
the special predicate msw(switch,value), encoding a random switch (i.e., a random variable), that can be used in the body 
of clauses to check that the random switch takes the value value. The possible values of each switch are defined by facts 
for the values/2 predicate, while the probability of each switch is set by calling the predicate set_sw/2. With respect to 
ProbLog and PRISM, LPADs and CP-Logic offer the most general syntax. They only differ in that CP-Logic deems invalid some 
programs to which a causal meaning cannot be attached. As said, we considered LPADs.

Some works explicitly addressed probabilistic abductive reasoning: the authors of [39] explicitly addressed the issue of 
ranking explanations based on their likelihood. Like us, they propose a probabilistic abductive framework, based on the 
distribution semantics for normal logic programs, that handles negation as failure and integrity constraints in the form 
of denials. As in our case, the authors realize that in a probabilistic setting, abduction should aim at computing most 
preferred (i.e., likely), not minimal, solutions. So, they compute the probability of queries. Differently from them, among 
most preferred solutions, we still look for minimal ones, since we believe that abduced information is only tentative, and 
should be kept to a minimum. Connected to non-minimality, they propose an open world interpretation of abducibles. A 
first fundamental difference, and a claimed novel aspect of their approach, is treating ICs as evidence. More specifically, they 
define evidence as a set of integrity constraints. This is more expressive than traditional definitions of evidence, because 
denials can express NAND conditions to be fulfilled and using ICs made up of just one literal they can also set the truth (or 
falsity) of single atoms. Therefore, in their setting, “a query is a conjunction of existentially quantified literals and denials”, 
and their goal is to compute P (q | IC), where q is the query and IC is the evidence. Our goal is to compute P (q, IC | �). 
Another fundamental difference is that they consider a probability distribution over the truth values of each (ground) 
abducible and treat the integrity constraints as hard constraints that can never be violated, envisaging the possibility of 
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viewing denials as a direction to pursue in future work. We addressed this issue in our work, allowing to set probabilities 
on integrity constraints.

Several proposals embed the Expectation Maximization (EM) algorithm. PRISM [40] is a system based on logic pro-
gramming with multivalued random variables. While not providing support for integrity constraints, it includes a variety 
of top-level predicates which can generate abductive explanations. Introducing a probability distribution over abducibles, it 
chooses the best explanation using a generalized Viterbi algorithm. It can learn probabilities from training data. In essence, 
it performs what we called Viterbi proof. The authors of [41] extend the SOLAR system [42] with an abductive inference 
architecture exploiting an EM algorithm working on BDDs to evaluate hypotheses obtained from the process of hypothesis 
generation. In particular, all the minimal explanations are generated. Then, the EM algorithm working on a BDD representa-
tion is used to assign probabilities to atoms in explanations. As the final step, the probability of each hypothesis is computed 
to find the most probable one. For the comparison of our approach with MAP and Viterbi proofs, see Section 4.1.

Other solutions approached abduction from a deductive reasoning perspective. For example, the one proposed in [43]
exploits Markov Logic Networks (MLN) [44]. Since MLNs provide only deductive inference, abduction is carried out by 
adding reverse implications for each rule in the knowledge base, this way increasing the size and complexity of the model, 
and its computational requirements. Like MLNs, most SRL formalisms use deduction for logical inference, and so, they 
cannot be used effectively for abductive reasoning. The authors of [45] adopt Stochastic Logic Programs [46], considering a 
number of possible worlds. Abduction is carried out by reversing the deductive flow of proof and collecting the probabilities 
associated with the involved clauses. Compared to our proposal, programs are restricted to SLP, and integrity constraints 
are not considered. However, the use of deduction without constraints may lead to wrong conclusions. Furthermore, an 
implementation is currently not available.

The solution presented in [47] describes an original approach to PALP based on Constraint Handling Rules, that allows 
interaction with external constraint solvers. As for our approach, it can return minimal explanations with their probabilities. 
Both an implementation returning all the solutions and one returning only the most probable one is provided. Differently 
from our approach, it attaches probabilities to abducibles only, and has limitations in the use of negation, that must be 
simulated by normal predicate symbols (e.g., not_p(X) for ¬p(X)). So, the expressiveness of the constraints is more limited 
than in our proposal.

In the context of Action-probabilistic logic programs (ap-programs), used for modelling behaviours of entities, in [48] the 
authors focused on the problem of maximizing the probability that an entity takes a (combination of) action(s), subject to 
some constraints (known as the Probabilistic Logic Abduction Problem, or PLAP). Specifically, they consider the Basic PLAP 
setting, where the goal is fixed (a predicate checking reachability of a desired situation from the current situation) and the 
answer is binary. Differently from our approach, in PLAP the program is ground, and variables and constraints only concern 
probabilities. Another approach that uses ap-programs for abductive query answering can be found in [49].

Some proposals approached probabilistic reasoning in abduction but did not make all the ALP components probabilistic. 
In [50], programs contain non-probabilistic definite clauses and probabilities are attached to abducible atoms. So, there are 
no structured constraints, and no integrated logic-based abductive proof procedure. cProbLog [51] extends regular ProbLog 
logic programs, where facts in the program can be associated with probabilities, to consider integrity constraints. It comes 
with a formal semantics and computational procedures, resulting in a powerful framework that encompasses the advantages 
of both PLP (ProbLog) and SRL (MLNs). Differently from our proposal, constraints are sharp, and thus all worlds that do not 
satisfy the constraints are ignored.

The discussion in [52] only considers ICs in the form of (universally quantified) denials, i.e., negations of conjunctions of 
literals. Other abductive frameworks proposed different kinds of integrity constraints: IFF [53] and its extensions, CIFF [54]
and SCIFF [55], are based on integrity constraints that are clauses (i.e., implications with conjunctive premises and dis-
junctive conclusions). The solution proposed in [56] considers an ALP program enriched with integrity constraints à la IFF, 
possibly annotated with a probability value, that makes it possible to handle uncertainty of real-world domains. This lan-
guage is also made richer by allowing for probabilistic abduction with variables, extending this way the answer capabilities 
of the proof-procedure. These probabilistic integrity constraints were defined in [57,58], where programs containing such 
constraints are called Probabilistic Constraint Logic Theories (PCLTs) and may be learned directly from data by means of the 
PASCAL (“ProbAbiliStic inductive ConstrAint Logic”) system. PCLTs however are theories only made up of constraints.

A recent proposal [59] extended traditional ALP by providing for several types of integrity constraints inspired by logic 
operators and allowing to attach probabilities to all components in the program (logic program, abducibles, and integrity 
constraints). Differently from this work, it allows ranking candidate explanations by likelihood but does not compute their 
exact probability.

While not explicitly computing with abduction, other systems may have a relationship to our work in that they merge 
logic programs, constraints, and probabilities. Specifically, Answer Set Programming (ASP) [60] may express denials and 
choice rules. There is a stream of works on probabilistic extensions of ASP that can deal with abduction through choice 
rules. Usually these works propose specific systems, implementations, or optimizations.

P-log [61] extends ASP by adding “random attributes” (that can be considered as random variables) of the form a(X)

where probabilistic information (understood as a measure of the degree of an agent’s belief) about possible values of a
is given through so-called ‘pr-atoms’. The logical part of a program represents knowledge which determines the possible 
worlds of the program, while pr-atoms determine the probabilities of these worlds. LPMLN [62] extends ASPs by allowing 
weighted rules based on the Markov Logic weight scheme. LPMLN programs can be turned into P-log programs or into 
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answer set MLN programs, to use their reasoning engines. As to the former, the translation of non-ground LPMLN programs 
yields unsafe ASPs. As to the latter, the straightforward implementation of a translation of an LPMLN program into an 
equivalent MLN results in effective computation. PrASP [63] is a probabilistic inductive logic programming (PILP) language 
and an uncertainty reasoning and statistical relational machine learning software, based on ASP. It includes limited support 
for inference with probabilistic normal logic programs under non-ASP-based semantics.

8. Conclusions

In this paper, we extended the PITA system to perform abductive reasoning on probabilistic abductive logic programs: 
given a probabilistic logic program, a set of abducible facts, and a set of (possibly probabilistic) integrity constraints, we want 
to compute minimal sets of abductive explanations (the probabilistic abductive explanation) such that the joint probability of 
the query and the constraints is maximized. The algorithm is based on Binary Decision Diagrams and was tested on several 
datasets, by including or not the constraints. Empirical results show that often the versions with and without constraints 
have comparable execution times: this may be due to the constraint implementation that discards some of the solutions. 
The code is available online and integrated in a publicly accessible web application at https://cplint .eu [11]. As future work, 
we plan to apply approximate inference [64] to speed up the computation: for example, if we consider the routing problem 
exposed in Section 1 and the graph experiments in Section 6, approximate inference will allow us to manage bigger graphs 
and handle real-world networks.
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Appendix A. The PITA system

PITA (Probabilistic Inference with Tabling and Answer subsumption) [9,21] computes the probability of a query from a 
probabilistic logic program in the form of an LPAD by first transforming the LPAD into a normal program containing calls for 
manipulating BDDs. The idea is to add an extra argument to each subgoal to store a BDD encoding the explanations for the 
answers of the subgoal. The values of the subgoals’ extra arguments are combined using a set of general library functions:

• init, end: initializes and terminates the data structures for manipulating BDDs;
• zero(-D), one(-D): D is the BDD representing the Boolean constants 0 or 1 respectively;
• and(+D1,+D2,-DO), or(+D1,+D2,-DO), not(+D1,-DO): Boolean operations among BDDs D1 and D2;
• equality(+Var,+Value,-D): D is the BDD representing Var=Value, i.e., the multi-valued random variable Var 

is assigned Value;
• ret_prob(+D,-P): returns the probability P of the BDD D.

As usual, + denotes input variables that must be instantiated when the predicate is called, while - is used for output 
variables that should not be instantiated when the predicate is called. These functions are implemented in C as an interface 
to the CUDD library for manipulating Binary Decision Diagrams. A BDD is represented in Prolog as an integer that is a 
pointer in memory to its root node. Moreover, the predicate get_var_n(+R,+S,+Probs,-Var) is implemented in 
Prolog and returns the multi-valued random variable Var associated with rule R with grounding substitution S and list of 
probabilities Probs in its head.

The PITA transformation applies to atoms, literals and clauses. The transformation for an atom h and a variable D, 
PITA(h,D), is h with the variable D added as the last argument. The transformation for a negative literal b = \+ a and 
a variable D, PITA(b,D), is the Prolog conditional

(PITA(a,DN)->
not(DN,D)

;
one(D)

).

In other words, the data structure DN is negated if a has some explanations; otherwise, the data structure for the constant 
function 1 is returned.

The disjunctive clause
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cr = h1:p1 ; ... ; hn:pn :- b1,...,bm.

where the parameters pi, i = 1, ..., n sum to 1, is transformed into the set of clauses PITA(cr):

PITA(cr,i)=PITA(hi,D):- one(DD0),
PITA(b1,D1),and(DD0,D1,DD1),....,
PITA(bm,Dm),and(DDm-1,Dm,DDm),
get_var_n(r,V,[p1,...,pn],Var),
equality(Var,i,DD),and(DDm,DD,D).

for i = 1, ..., n, where V is a list containing all the variables appearing in cr and r is a unique identifier for cr. If the 
parameters do not sum up to 1, then n − 1 rules are generated as the last head atom, null, does not influence the query 
since it does not appear in any body. In the case of empty bodies or non-disjunctive clauses (a single head with probability 
1), the transformation can be optimized.

The PITA transformation applied to Example 1 yields

PITA(c1,1) = eruption(D) :-
one(DD0),sudden_er(D1),and(DD0,D1,DD1),
fault_rupture(X,D2),and(DD1,D2,DD2),
get_var_n(1,[X],[0.6,0.3,0.1],Var),
equality(Var,1,DD),and(DD2,DD,D).

PITA(c1,2) = earthquake(D) :-
one(DD0),sudden_er(D1),and(DD0,D1,DD1),
fault_rupture(X,D2),and(DD1,D2,DD2),
get_var_n(1,[X],[0.6,0.3,0.1],Var),
equality(Var,2,DD),and(DD2,DD,D).

PITA(c2,1) = sudden_er(D) :-
one(DD0), get_var_n(2,[],[0.7,0.3],Var),
equality(Var,1,DD),and(DD0,DD,D).

PITA(c3,1) = fault_rupture(southwest_northeast,D) :- one(D).
PITA(c4,1) = fault_rupture(east_west,D) :- one(D).

Clause C1 has three alternatives in the head but the last one is the null atom so only two clauses are generated. Clauses 
C3 and C4 are definite facts so their transformation is optimized as shown above.

PITA uses tabling [65] to ensure that, when a goal is asked again, the already computed answers for it are retrieved 
rather than recomputed. That saves time because explanations for different goals are memorized. Moreover, it also avoids 
non-termination in many cases. PITA also exploits the answer subsumption feature [66] such that, when a new answer for a 
tabled subgoal is found, it combines old answers with the new one according to a partial order or lattice. See [2] for further 
details.
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