

Foundations of Probabilistic
Logic Programming

Languages, Semantics,
Inference and Learning

RIVER PUBLISHERS SERIES IN SOFTWARE
ENGINEERING

Indexing: All books published in this series are submitted to the Web of
Science Book Citation Index (BkCI), to CrossRef and to Google Scholar.

The “River Publishers Series in Software Engineering” is a series of com-
prehensive academic and professional books which focus on the theory
and applications of Computer Science in general, and more specifically
Programming Languages, Software Development and Software Engineering.

Books published in the series include research monographs, edited
volumes, handbooks and textbooks. The books provide professionals,
researchers, educators, and advanced students in the field with an invaluable
insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the
following:

• Software Engineering
• Software Development
• Programming Languages
• Computer Science
• Automation Engineering
• Research Informatics
• Information Modelling
• Software Maintenance

For a list of other books in this series, visit www.riverpublishers.com

Foundations of Probabilistic
Logic Programming

Languages, Semantics,
Inference and Learning

Fabrizio Riguzzi
University of Ferrara

Italy

River Publishers

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

River Publishers
Lange Geer 44
2611 PW Delft
The Netherlands

Tel.: +45369953197
www.riverpublishers.com

ISBN: 978-87-7022-018-7 (Hardback)
978-87-7022-017-0 (Ebook)

c©2018 River Publishers

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, mechanical,
photocopying, recording or otherwise, without prior written permission of
the publishers.

Cover image Copyright by Giorgio Morara

Contents

Foreword xi

Preface xiii

Acknowledgements xv

List of Figures xvii

List of Tables xxi

List of Examples xxiii

List of Definitions xxvii

List of Theorems xxix

List of Abbreviations xxxi

1 Preliminaries 1
1.1 Orders, Lattices, Ordinals 1
1.2 Mappings and Fixpoints 3
1.3 Logic Programming . 4
1.4 Semantics for Normal Logic Programs 13

1.4.1 Program Completion 13
1.4.2 Well-Founded Semantics 15
1.4.3 Stable Model Semantics 21

1.5 Probability Theory . 23
1.6 Probabilistic Graphical Models 32

v

vi Contents

2 Probabilistic Logic Programming Languages 41
2.1 Languages with the Distribution Semantics 41

2.1.1 Logic Programs with Annotated Disjunctions . . . 42
2.1.2 ProbLog . 43
2.1.3 Probabilistic Horn Abduction 43
2.1.4 PRISM . 44

2.2 The Distribution Semantics for Programs Without Function
Symbols . 45

2.3 Examples of Programs . 50
2.4 Equivalence of Expressive Power 56
2.5 Translation to Bayesian Networks 58
2.6 Generality of the Distribution Semantics 62
2.7 Extensions of the Distribution Semantics 64
2.8 CP-Logic . 66
2.9 Semantics for Non-Sound Programs 71
2.10 KBMC Probabilistic Logic Programming Languages 76

2.10.1 Bayesian Logic Programs 76
2.10.2 CLP(BN) . 76
2.10.3 The Prolog Factor Language 79

2.11 Other Semantics for Probabilistic Logic Programming . . . 80
2.11.1 Stochastic Logic Programs 81
2.11.2 ProPPR . 82

2.12 Other Semantics for Probabilistic Logics 84
2.12.1 Nilsson’s Probabilistic Logic 84
2.12.2 Markov Logic Networks 84

2.12.2.1 Encoding Markov Logic Networks with
Probabilistic Logic Programming 85

2.12.3 Annotated Probabilistic Logic Programs 88

3 Semantics with Function Symbols 91
3.1 The Distribution Semantics for Programs with Function

Symbols . 92
3.2 Infinite Covering Set of Explanations 97
3.3 Comparison with Sato and Kameya’s Definition 110

4 Semantics for Hybrid Programs 115
4.1 Hybrid ProbLog . 115
4.2 Distributional Clauses . 118
4.3 Extended PRISM . 124

Contents vii

4.4 cplint Hybrid Programs . 126
4.5 Probabilistic Constraint Logic Programming 130

4.5.1 Dealing with Imprecise Probability Distributions . 135

5 Exact Inference 145
5.1 PRISM . 146
5.2 Knowledge Compilation 150
5.3 ProbLog1 . 151
5.4 cplint . 155
5.5 SLGAD . 157
5.6 PITA . 158
5.7 ProbLog2 . 163
5.8 TP Compilation . 176
5.9 Modeling Assumptions in PITA 178

5.9.1 PITA(OPT) . 181
5.9.2 MPE with PITA 186

5.10 Inference for Queries with an Infinite Number of
Explanations . 186

5.11 Inference for Hybrid Programs 187

6 Lifted Inference 195
6.1 Preliminaries on Lifted Inference 195

6.1.1 Variable Elimination 197
6.1.2 GC-FOVE . 201

6.2 LP2 . 202
6.2.1 Translating ProbLog into PFL 202

6.3 Lifted Inference with Aggregation Parfactors 205
6.4 Weighted First-Order Model Counting 207
6.5 Cyclic Logic Programs . 210
6.6 Comparison of the Approaches 210

7 Approximate Inference 213
7.1 ProbLog1 . 213

7.1.1 Iterative Deepening 213
7.1.2 k-best . 215
7.1.3 Monte Carlo . 216

7.2 MCINTYRE . 218
7.3 Approximate Inference for Queries with an Infinite Number

of Explanations . 221

viii Contents

7.4 Conditional Approximate Inference 222
7.5 Approximate Inference by Sampling for Hybrid Programs . 223
7.6 Approximate Inference with Bounded Error for Hybrid

Programs . 226
7.7 k-Optimal . 229
7.8 Explanation-Based Approximate Weighted Model

Counting . 231
7.9 Approximate Inference with TP -compilation 233
7.10 DISTR and EXP Tasks . 234

8 Non-Standard Inference 239
8.1 Possibilistic Logic Programming 239
8.2 Decision-Theoretic ProbLog 241
8.3 Algebraic ProbLog . 250

9 Parameter Learning 259
9.1 PRISM Parameter Learning 259
9.2 LLPAD and ALLPAD Parameter Learning 265
9.3 LeProbLog . 267
9.4 EMBLEM . 270
9.5 ProbLog2 Parameter Learning 280
9.6 Parameter Learning for Hybrid Programs 282

10 Structure Learning 283
10.1 Inductive Logic Programming 283
10.2 LLPAD and ALLPAD Structure Learning 287
10.3 ProbLog Theory Compression 289
10.4 ProbFOIL and ProbFOIL+ 290
10.5 SLIPCOVER . 296

10.5.1 The Language Bias 296
10.5.2 Description of the Algorithm 296

10.5.2.1 Function INITIALBEAMS 298
10.5.2.2 Beam Search with Clause Refinements . 300

10.5.3 Execution Example 301
10.6 Examples of Datasets . 304

11 cplint Examples 305
11.1 cplint Commands . 305
11.2 Natural Language Processing 309

11.2.1 Probabilistic Context-Free Grammars 309

Contents ix

11.2.2 Probabilistic Left Corner Grammars 310
11.2.3 Hidden Markov Models 311

11.3 Drawing Binary Decision Diagrams 313
11.4 Gaussian Processes . 314
11.5 Dirichlet Processes . 318

11.5.1 The Stick-Breaking Process 319
11.5.2 The Chinese Restaurant Process 322
11.5.3 Mixture Model 324

11.6 Bayesian Estimation . 326
11.7 Kalman Filter . 327
11.8 Stochastic Logic Programs 330
11.9 Tile Map Generation . 332
11.10 Markov Logic Networks 334
11.11 Truel . 335
11.12 Coupon Collector Problem 339
11.13 One-Dimensional Random Walk 341
11.14 Latent Dirichlet Allocation 342
11.15 The Indian GPA Problem 346
11.16 Bongard Problems . 348

12 Conclusions 351

References 353

Index 375

About the Author 387

Foreword

The computational foundations of Artificial Intelligence (AI) are supported
by two corner stones: logics and machine learning. Computational logic has
found its realization in a number of frameworks for logic-based approaches to
knowledge representation and automated reasoning, such as Logic Program-
ming, Answer Set Programming, Constraint Logic Programming, Descrip-
tion Logics, and Temporal Logics. Machine Learning, and its recent evolution
to Deep Learning, has a huge number of applications in video surveillance,
social media services, big data analysis, weather predictions, spam filtering,
online customer support, etc.

Emerging interest in the two communities for finding a bridge connecting
them is witnessed, for instance, by the prize test-of-time, 20 years assigned
by the association for logic programming in 2017 to the paper Hybrid
Probabilistic Programs. Also in 2017, Holger H. Hoos was invited to give
the talk The best of both worlds: Machine learning meets logical reasoning
at the international conference on logic programming. Here, machine learn-
ing is used to tune the search heuristics in solving combinatorial problems
(e.g., encoded using SAT or ASP techniques). A couple of months later,
in a panel organized by the Italian Association for Artificial Intelligence
(AI*IA), the machine learning researcher Marco Gori posed five questions
to the communities. Among them: How can we integrate huge knowledge
bases naturally and effectively with learning processes? How to break the
barriers of machine learning vs (inductive) logic programming communities?
How to derive a computational model capable of dealing with learning and
reasoning both in the symbolic and sub-symbolic domains? How to acquire
latent semantics? These are fundamental questions that need to be resolved
to allow AI research to make another quantum leap. Logical languages can
add structural semantics to statistical inference.

This book, based on 15 years of top-level research in the field by Fabrizio
Riguzzi and his co-authors, addresses these questions and fills most of the
gaps between the two communities. A mature, uniform retrospective of sev-
eral proposals of languages for Probabilistic Logic Programming is reported.

xi

xii Foreword

The reader can decide whether to explore all the technical details or simply
use such languages without the need of installing tools, by simply using the
web site maintained by Fabrizio’s group in Ferrara.

The book is self-contained: all the prerequisites coming from discrete
mathematics (often at the foundation of logical reasoning) and continuous
mathematics, probability, and statistics (at the foundation of machine learn-
ing) are presented in detail. Although all proposals are summarized, those
based on the distribution semantics are dealt with in a greater level of detail.
The book explains how a system can reason precisely or approximately
when the size of the program (and data) increases, even in the case on
non-standard inference (e.g., possibilistic reasoning). The book then moves
toward parameter learning and structure learning, thus reducing and possibly
removing the distance with respect to machine learning. The book closes
with a lovely chapter with several encodings in PLP. A reader with some
knowledge of logic programming can start from this chapter, having fun
testing the programs (for instance, discovering the best strategy to be applied
during a truel, namely, a duel involving three gunners shooting sequentially)
and then move to the theoretical part.

As the president of the Italian Association for Logic Programming
(GULP) I am proud that this significant effort has been made by one of our
associates and former member of our Executive Committee. I believe that it
will become a reference book for the new generations that have to deal with
the new challenges coming from the need of reasoning on Big Data.

Agostino Dovier
University of Udine

Preface

The field of Probabilistic Logic Programming (PLP) was started in the
early 1990s by seminal works such as those of [Dantsin, 1991], [Ng and
Subrahmanian, 1992], [Poole, 1993b], and [Sato, 1995].

However, the problem of combining logic and probability has been
studied since the 1950s [Carnap, 1950; Gaifman, 1964]. Then the problem
became prominent in the field of Artificial Intelligence in the late 1980s to
early 1990s when researchers tried to reconcile the probabilistic and logical
approaches to AI [Nilsson, 1986; Halpern, 1990; Fagin and Halpern, 1994;
Halpern, 2003].

The integration of logic and probability combines the capability of the
first to represent complex relations among entities with the capability of the
latter to model uncertainty over attributes and relations. Logic programming
provides a Turing complete language based on logic and thus represents an
excellent candidate for the integration.

Since its birth, the field of Probabilistic Logic Programming has seen a
steady increase of activity, with many proposals for languages and algorithms
for inference and learning. The language proposals can be grouped into two
classes: those that use a variant of the Distribution Semantics (DS) [Sato,
1995] and those that follow a Knowledge Base Model Construction (KBMC)
approach [Wellman et al., 1992; Bacchus, 1993].

Under the DS, a probabilistic logic program defines a probability distribu-
tion over normal logic programs and the probability of a ground query is then
obtained from the joint distribution of the query and the programs. Some of
the languages following the DS are: Probabilistic Logic Programs [Dantsin,
1991], Probabilistic Horn Abduction [Poole, 1993b], PRISM [Sato, 1995],
Independent Choice Logic [Poole, 1997], pD [Fuhr, 2000], Logic Programs
with Annotated Disjunctions [Vennekens et al., 2004], ProbLog [De Raedt
et al., 2007], P-log [Baral et al., 2009], and CP-logic [Vennekens et al., 2009].

Instead, in KBMC languages, a program is seen as a template for
generating a ground graphical model, be it a Bayesian network or a
Markov network. KBMC languages include Relational Bayesian Network

xiii

xiv Preface

[Jaeger, 1998], CLP(BN) [Costa et al., 2003], Bayesian Logic Programs
[Kersting and De Raedt, 2001], and the Prolog Factor Language [Gomes and
Costa, 2012]. The distinction among DS and KBMC languages is actually
non-sharp as programs in languages following the DS can also be translated
into graphical models.

This book aims at providing an overview of the field of PLP, with a
special emphasis on languages under the DS. The reason is that their approach
to logic-probability integration is particularly simple and coherent across
languages but nevertheless powerful enough to be useful in a variety of
domains. Moreover, they can be given a semantics in purely logical terms,
without necessarily resorting to a translation into graphical models.

The book doesn’t aim though at being a complete account of the topic,
even when restricted to the DS, as the field has grown large, with a dedicated
workshop series started in 2014. My objective is to present the main ideas for
semantics, inference, and learning and to highlight connections between the
methods.

The intended audience of the book are researchers in Computer Science
and AI that want to get an overview of PLP. However, it can also be used
by students, especially graduate, to get acquainted with the topic, and by
practitioners that would like to get more details on the inner workings of
methods.

Many examples of the book include a link to a page of the web application
cplint on SWISH (http://cplint.eu) [Riguzzi et al., 2016a; Alberti et al.,
2017], where the code can be run online using cplint, a system we devel-
oped at the University of Ferrara that includes many algorithms for inference
and learning in a variety of languages.

The book starts with Chapter 1 that presents preliminary notions of logic
programming and graphical models. Chapter 2 introduces the languages
under the DS, discusses the basic form of the semantics, and compares it
with alternative approaches in PLP and AI in general. Chapters 3 and 4
describe the semantics for more complex cases, the first of languages allow-
ing function symbols and the latter allowing continuous random variables.
Chapter 5 presents various algorithms for exact inference. Lifted inference is
discussed in Chatper 6 and approximate inference in Chapter 7. Non-standard
inference problems are illustrated in Chapter 8. Then Chapters 9 and 10 treat
the problem of learning parameters and structure of programs, respectively.
Chapter 11 presents some examples of use of the system cplint. Chapter 12
concludes the book discussing open problems.

Acknowledgments

I am indebted to many persons for their help and encouragement. Evelina
Lamma and Paola Mello taught me to love logical reasoning and always
supported me, especially during the bad times. My co-workers at the Uni-
versity of Ferrara Evelina Lamma, Elena Bellodi, Riccardo Zese, Giuseppe
Cota, Marco Alberti, Marco Gavanelli, and Arnaud Nguembang Fadja greatly
helped me shape my view of PLP through exiting joint work and insightful
discussions. I have been lucky enough to collaborate also with Theresa Swift,
Nicola Di Mauro, Stefano Bragaglia, Vitor Santos Costa, and Jan Wielemaker
and the joint work with them has found its way into the book.

Agostino Dovier, Evelina Lamma, Elena Bellodi, Riccardo Zese,
Giuseppe Cota, and Marco Alberti read drafts of the book and gave me very
useful comments.

I would also like to thank Michela Milano, Federico Chesani, Paolo
Torroni, Luc De Raedt, Angelika Kimmig, Wannes Meert, Joost Vennekens,
and Kristian Kersting for many enlightening exchanges of ideas.

This book evolved from a number of articles. In particular, Chapter 2
is based on [Riguzzi and Swift, 2018], Chapter 3 on [Riguzzi, 2016],
Section 5.6 on [Riguzzi and Swift, 2010, 2011, 2013], Section 5.9 on
[Riguzzi, 2014], Section 7.2 on [Riguzzi, 2013], Chapter 6 on [Riguzzi et al.,
2017a], Section 9.4 on [Bellodi and Riguzzi, 2013, 2012], Section 10.2 on
[Riguzzi, 2004, 2007b, 2008b], Section 10.5 on [Bellodi and Riguzzi, 2015],
and Chapter 11 on [Riguzzi et al., 2016a; Alberti et al., 2017; Riguzzi et al.,
2017b; Nguembang Fadja and Riguzzi, 2017].

Finally, I would like to thank my wife Cristina for putting up with a
husband with the crazy idea of writing a book without taking a sabbatical.
Without her love and support, I would not have been able to bring the idea
into reality.

xv

List of Figures

Figure 1.1 SLD tree for the query pathpa, cq from the program
of Example 1. 10

Figure 1.2 SLDNF tree for the query endspb, cq from the
program of Example 1. 11

Figure 1.3 SLDNF tree for the query c from the program of
Example 2. 16

Figure 1.4 Ordinal powers of IFPP for the program of
Example 4. 20

Figure 1.5 Gaussian densities. 28
Figure 1.6 Bivariate Gaussian density. 29
Figure 1.7 Example of a Bayesian network. 35
Figure 1.8 Markov blanket. 36
Figure 1.9 Example of a Markov newtork. 38
Figure 1.10 Bayesian network equivalent to the Markov network

of Figure 1.9. 39
Figure 1.11 Example of a factor graph. 40
Figure 2.1 Example of a BN. 56
Figure 2.2 BN βpPq equivalent to the program of Example 28. 60
Figure 2.3 Portion of γpPq relative to a clause CI 61
Figure 2.4 BN γpPq equivalent to the program of Example 28. 62
Figure 2.5 BN representing the dependency between apiq and

bpiq. 63
Figure 2.6 BN modeling the distribution over apiq, bpiq, X1,

X2, X3. 64
Figure 2.7 Probability tree for Example 2.11. 67
Figure 2.8 An incorrect probability tree for Example 30. . . . 68
Figure 2.9 A probability tree for Example 30. 68
Figure 2.10 Ground Markov network for the MLN of

Example 39. 85
Figure 4.1 Credal set specification for Examples 62 and 64. . 137

xvii

xviii List of Figures

Figure 5.1 Explanations for query hmmpra, b, bsq of
Example 65. 148

Figure 5.2 PRISM formulas for query hmmpra, b, bsq of
Example 65. 149

Figure 5.3 PRISM computations for query hmmpra, b, bsq of
Example 65. 150

Figure 5.4 BDD representing Function 5.1. 153
Figure 5.5 BDD for query epidemic of Example 66. 154
Figure 5.6 MDD for the diagnosis program of Example 19. . . 156
Figure 5.7 BDD representing the function in Equation (5.2). . 161
Figure 5.8 d-DNNF for the formula of Example 72. 168
Figure 5.9 Arithmetic circuit for the d-DNNF of Figure 5.8. . 169
Figure 5.10 BDD for the formula of Example 72. 172
Figure 5.11 SDD for the formula of Example 72. 173
Figure 5.12 vtree for which the SDD of Figure 5.11

is normalized. 173
Figure 5.13 Examples of graphs satisfying some of the

assumptions. 180
Figure 5.14 Code for the or{3 predicate of PITA(OPT). 182
Figure 5.15 Code for the and{3 predicate of PITA(OPT). . . . 183
Figure 5.16 Code for the exc{2 predicate of PITA(OPT). 184
Figure 5.17 Code for the ind{2 predicate of PITA(OPT). 185
Figure 5.18 Code for the ev{2 predicate of PITA(OPT). 185
Figure 6.1 BN representing an OR dependency between

X and Y. 198
Figure 6.2 BN representing a noisy-OR dependency between

X and Y. 199
Figure 6.3 BN of Figure 6.1 after deputation. 201
Figure 7.1 Program for Example 85. 214
Figure 7.2 Probabilistic graph of Example 85. 214
Figure 7.3 SLD tree up to depth 4 for the query pathpc, dq from

the program of Example 85. 214
Figure 7.4 HPT for Example 88 (from [Michels et al., 2016]). 227
Figure 7.5 PHPT for Example 89. 228
Figure 7.6 Distribution of sampled values in the Program of

Example 90. 237
Figure 7.7 Distribution of sampled values from the Gaussian

mixture of Example 91. 237
Figure 8.1 BDDdrypσq for Example 93. 244

List of Figures xix

Figure 8.2 BDDbroken umbrellapσq for Example 93. 244
Figure 8.3 ADDpdryq for Example 93. The dashed terminals

indicate ADDutilpdryq. 248
Figure 8.4 ADDpbroken umbrellaq for Example 93.

The dashed terminals indicate ADDutil

pbroken umbrellaq. 248
Figure 8.5 ADDutil

tot for Example 93. 248
Figure 8.6 Worlds where the query callspmaryq from

Example 97 is true. 253
Figure 9.1 BDD for query epidemic for Example 99. 272
Figure 9.2 BDD after applying the merge rule only for

Example 99. 273
Figure 9.3 Forward and backward probabilities. F indicates

the forward probability and B the backward prob-
ability of each node. 279

Figure 11.1 BDD for query pandemic in the epidemic.pl
example, drawn using the CUDD function for
exporting the BDD to the dot format of Graphviz. . 314

Figure 11.2 Functions sampled from a Gaussian process with a
squared exponential kernel in gpr.pl. 318

Figure 11.3 Functions from a Gaussian process predicting
points with X “ r0, . . . , 10s with a squared
exponential kernel in gpr.pl. 318

Figure 11.4 Distribution of indexes with concentration
parameter 10 for the stick-breaking example
dirichlet process.pl. 321

Figure 11.5 Distribution of values with concentration parameter
10 for the stick-breaking example
dirichlet process.pl. 321

Figure 11.6 Distribution of unique indexes with
concentration parameter 10 for the stick-breaking
example dirichlet process.pl. 322

Figure 11.7 Prior density in the dp mix.pl example. 325
Figure 11.8 Posterior density in the dp mix.pl example. . . . 325
Figure 11.9 Prior and posterior densities in

gauss mean est.pl. 326
Figure 11.10 Prior and posterior densities in kalman.pl. . . . 328
Figure 11.11 Example of particle filtering in kalman.pl. . . . 329
Figure 11.12 Particle filtering for a 2D Kalman filter. 330

xx List of Figures

Figure 11.13 Samples of sentences of the language defined in
slp pcfg.pl. 331

Figure 11.14 A random tile map. 333
Figure 11.15 Probability tree of the truel with opponents a and b. 336
Figure 11.16 Distribution of the number of boxes. 340
Figure 11.17 Expected number of boxes as a function of the

number of coupons. 341
Figure 11.18 Smoothed LDA. 343
Figure 11.19 Values for word in position 1 of document 1. 345
Figure 11.20 Values for couples (word,topic) in position 1 of

document 1. 345
Figure 11.21 Prior distribution of topics for word in position 1 of

document 1. 346
Figure 11.22 Posterior distribution of topics for word in

position 1 of document 1. 346
Figure 11.23 Density of the probability of topic 1 before and after

observing that words 1 and 2 of document 1
are equal. 347

Figure 11.24 Bongard pictures. 349

List of Tables

Table 2.1 Conditional probability table for a2 59
Table 2.2 Conditional probability table for ch5 59
Table 5.1 Tractability of operations. ? means “unknown”,

‘

means “tractable” and ˝ means “not tractable unless
P=NP” Operations are meant over a bounded number
of operands and BDDs operands should have the
same variable order and SDDs the same vtree. From
[Vlasselaer et al., 2014] 175

Table 8.1 Inference tasks and corresponding semirings for
aProbLog . 252

Table 11.1 Associations between variable indexes and
ground rules . 314

xxi

List of Examples

1 Example (Path – Prolog) 9
2 Example (Clark’s completion) 15
3 Example (WFS computation) 18
4 Example (Fixpoint of IFPP beyond ω) 19
5 Example (Answer set computation) 22
6 Example (Probability spaces) 24
7 Example (Discrete random variables) 25
8 Example (Continuous random variables) 27
9 Example (Joint distributions) 28
10 Example (Alarm – BN) . 35
11 Example (University – MN) 38
12 Example (Medical symptoms – LPAD) 42
13 Example (Medical symptoms – ProbLog) 43
14 Example (Medical symptoms – ICL) 44
15 Example (Coin tosses – PRISM) 45
16 Example (Medical symptoms – PRISM) 45
17 Example (Medical symptoms – worlds – ProbLog) 48
18 Example (Medical symptoms – worlds – LPAD) 50
19 Example (Detailed medical symptoms – LPAD) 51
20 Example (Coin – LPAD) 51
21 Example (Eruption – LPAD) 51
22 Example (Monty Hall puzzle – LPAD) 52
23 Example (Three-prisoner puzzle – LPAD) 53
24 Example (Russian roulette with two guns – LPAD) 54
25 Example (Mendelian rules of inheritance – LPAD) 54
26 Example (Path probability – LPAD) 55
27 Example (Alarm BN – LPAD) 55
28 Example (LPAD to BN) 59
29 Example (CP-logic program – infection [Vennekens et al.,

2009]) . 66

xxiii

xxiv List of Examples

30 Example (CP-logic program – pneumonia [Vennekens et al.,
2009]) . 67

31 Example (Invalid CP-logic program
[Vennekens et al., 2009]) 70

32 Example (Sound LPAD – invalid CP-theory Vennekens et al.
[2009]) . 71

33 Example (Insomnia [Cozman and Mauá, 2017]) 72
34 Example (Insomnia – continued –

[Cozman and Mauá, 2017]) 73
35 Example (Barber paradox – [Cozman and Mauá, 2017]) . . 74
36 Example (PFL program) 80
37 Example (Probabilistic context-free grammar – SLP) 82
38 Example (ProPPR program) 82
39 Example (Markov Logic Network) 85
40 Example (Program with infinite set of worlds) 91
41 Example (Game of dice) 92
42 Example (Covering set of explanations for Example 40) . . 96
43 Example (Covering set of explanations for Example 41) . . 96
44 Example (Pairwise incompatible covering set of explanations

for Example 40) . 97
45 Example (Pairwise incompatible covering set of explanations

for Example 41) . 97
46 Example (Probability of the query for Example 40) 101
47 Example (Probability of the query for Example 41) 102
48 Example (Gaussian mixture – Hybrid ProbLog) 115
49 Example (Query over a Gaussian mixture – Hybrid ProbLog) 117
50 Example (Gaussian mixture – DCs) 119
51 Example (Moving people – DCs [Nitti et al., 2016]) 119
52 Example (STpP q for moving people – DC

[Nitti et al., 2016]) . 122
53 Example (STpP q for moving people – DC

[Nitti et al., 2016]) . 123
54 Example (Negation in DCs [Nitti et al., 2016]) 124
55 Example (Gaussian mixture – Extended PRISM) 125
56 Example (Gaussian mixture and constraints – Extended

PRISM) . 125
57 Example (Gaussian mixture – cplint) 127
58 Example (Estimation of the mean of a Gaussian – cplint) 127
59 Example (Kalman filter – cplint) 128

List of Examples xxv

60 Example (Fire on a ship [Michels et al., 2015]) 131
61 Example (Probability of fire on a ship [Michels et al., 2015]) 133
62 Example (Credal set specification – continuous variables) . 136
63 Example (Credal set specification – discrete variables) . . . 138
64 Example (Conditional probability bounds) 139
65 Example (Hidden Markov model – PRISM [Sato and

Kameya, 2008]) . 147
66 Example (Epidemic – ProbLog) 153
67 Example (Detailed medical symptoms – MDD) 156
68 Example (Medical example – PITA) 160
69 Example (Alarm – ProbLog2 [Fierens et al., 2015]) 163
70 Example (Alarm – grounding – ProbLog2

[Fierens et al., 2015]) . 165
71 Example (Smokers – ProbLog [Fierens et al., 2015]) 165
72 Example (Alarm – Boolean formula – ProbLog2 [Fierens

et al., 2015]) . 167
73 Example (Symbolic derivation) 188
74 Example (Success functions of msw atoms) 190
75 Example (Join operation) 190
76 Example (Projection operation) 191
77 Example (Integration of a success function) 192
78 Example (Success function of a goal) 193
79 Example (Running example for lifted inference – ProbLog) 196
80 Example (Running example – PFL program) 197
81 Example (Translation of a ProbLog program into PFL) . . . 203
82 Example (ProbLog program to PFL – LP2) 204
83 Example (ProbLog program to PFL – aggregation parfactors) 206
84 Example (ProbLog program to Skolem normal form) 209
85 Example (Path – ProbLog – iterative deepening) 213
86 Example (Path – ProbLog – k-best) 215
87 Example (Epidemic – LPAD) 219
88 Example (Machine diagnosis problem

[Michels et al., 2016]) . 226
89 Example (Machine diagnosis problem – approximate

inference – [Michels et al., 2016]) 227
90 Example (Generative model) 236
91 Example (Gaussian mixture – sampling arguments –

cplint) . 238
92 Example (Possibilistic logic program) 240

xxvi List of Examples

93 Example (Remaining dry [Van den Broeck et al., 2010]) . . 242
94 Example (Continuation of Example 93) 243
95 Example (Continuation of Example 93) 246
96 Example (Viral marketing [Van den Broeck et al., 2010]) . . 249
97 Example (Alarm – aProbLog [Kimmig et al., 2011b]) 253
98 Example (Bloodtype – PRISM [Sato et al., 2017]) 259
99 Example (Epidemic – LPAD – EM) 271
100 Example (ILP problem) 284
101 Example (Examples of theta subsumption) 285
102 Example (Bottom clause example) 286

List of Definitions

1 Definition (TP operator) 11
2 Definition (OpFalsePI and OpFalsePI operators) 17
3 Definition (Iterated fixed point) 17
4 Definition (Acyclic, stratified and locally stratified programs) 20
5 Definition (Reduction) . 21
6 Definition (Stable model) 21
7 Definition (Algebra) . 23
8 Definition (σ-algebra) . 23
9 Definition (Minimal σ-algebra) 23
10 Definition (Probability measure) 24
11 Definition (Finitely additive probability measure) 24
12 Definition (Random variable) 25
13 Definition (Cumulative distribution and probability density) 26
14 Definition (Product σ-algebra and product space) 30
15 Definition (Conditional probability) 30
16 Definition (Independence and conditional indepedence) . . . 32
17 Definition (d-separation [Murphy, 2012]) 35
18 Definition (Probability tree – positive case) 66
19 Definition (Hypothetical derivation sequence) 69
20 Definition (Probability tree – general case) 69
21 Definition (Valid CP-theory) 70
22 Definition (Parameterized two-valued interpretations) 102
23 Definition (Parameterized three-valued interpretations) . . . 103
24 Definition (OpTruePP

I pTrq and OpFalsePP
I pFaq) 104

25 Definition (Iterated fixed point for probabilistic programs) . 104
26 Definition (Infinite-dimensional product σ-algebra

and space) . 112
27 Definition (Valid program [Gutmann et al., 2011c]) 120
28 Definition (STP operator [Gutmann et al., 2011c]) 122
29 Definition (STP operator [Nitti et al., 2016]) 122
30 Definition (STP operator – cplint) 129

xxvii

xxviii List of Definitions

31 Definition (Probabilistic Constraint Logic Theory [Michels
et al., 2015]) . 131

32 Definition (Credal set specification) 135
33 Definition (Conditional probability bounds) 138
34 Definition (Parameterized interpretation [Vlasselaer et al.,

2015, 2016]) . 176
35 Definition (TcP operator [Vlasselaer et al., 2015, 2016]) . . 176
36 Definition (Fixpoint of TcP [Vlasselaer et al., 2015, 2016]) 177
37 Definition (Symbolic derivation [Islam et al., 2012b]) 187
38 Definition (Derivation variables [Islam et al., 2012b]) 189
39 Definition (Join operation) 190
40 Definition (Projection of a success function) 191
41 Definition (Integration of a success function) 191
42 Definition (Marginalization of a success function) 192
43 Definition (Success function of a goal) 193
44 Definition (Semiring) . 250
45 Definition (aProbLog [Kimmig et al., 2011b]) 251
46 Definition (PRISM parameter learning problem) 259
47 Definition (LLPAD Parameter learning problem) 266
48 Definition (Mutually exclusive bodies) 266
49 Definition (LeProbLog parameter learning problem) 267
50 Definition (EMBLEM parameter learning problem) 270
51 Definition (LFI-ProbLog learning problem) 280
52 Definition (Inductive Logic Programming – learning from

entailment) . 283
53 Definition (ALLPAD Structure learning problem) 287
54 Definition (Theory compression) 289
55 Definition (ProbFOIL/ProbFoil+ learning problem [Raedt

et al., 2015]) . 290

List of Theorems

Theorem

1 Theorem (WFS for locally stratified programs [Van Gelder
et al., 1991]) . 21

2 Theorem (WFS total model vs stable models) 21
3 Theorem (WFS vs stable models) 22
4 Theorem (Existence of a pairwise incompatible set of com-

posite choices [Poole, 2000]) 93
5 Theorem (Equivalence of the probability of two equivalent

pairwise incompatible finite set of finite composite choices
[Poole, 1993a]) . 94

6 Theorem (Algebra of a program) 95
7 Theorem (Finitely additive probability space of a program) . 95
8 Theorem (Probability space of a program) 100
9 Theorem (Soundness and completeness of IFPPP) 109
10 Theorem (Well-definedness of the distribution semantics) . . 109
11 Theorem (Equivalence with Sato and Kameya’s definition) . 113
12 Theorem (Conditions for exact inference of probability

bounds [Michels et al., 2015]) 140
13 Theorem (Model and weight equivalence

[Fierens et al., 2015]) . 167
14 Theorem (Parameters as relative frequency) 266

Proposition

1 Proposition (Monotonic Mappings Have a Least and Greatest
Fixpoint) . 3

2 Proposition (Monotonicity of OpTruePP
I and OpFalsePP

I) 104
3 Proposition (Monotonicity of IFPPP) 105
4 Proposition (Valid DC Program [Gutmann et al., 2011c]) . . 121

xxix

xxx List of Theorems

5 Proposition (Conditions for exact inference [Michels et al.,
2015]) . 134

6 Proposition (Computation of probability bounds) 136
7 Proposition (Conditional probability bounds formulas

[Michels et al., 2015]) . 139

Lemma

1 Lemma (Infinite Product) 91
2 Lemma (σ-algebra of a Program) 99
3 Lemma (Existence of the limit of the measure of countable

union of countable composite choices) 100
4 Lemma (Soundness of OpTruePP

I) 105
5 Lemma (Soundness of OpFalsePP

I) 106
6 Lemma (Partial evaluation) 106
7 Lemma (Model equivalence) 107
8 Lemma (Soundness of IFPPP) 107
9 Lemma (Completeness of IFPPP) 107
10 Lemma (Elements of ΨF as Countable Unions) 112
11 Lemma (ΓF is Bijective) 113
12 Lemma (Correctness of the ProbLog Program

Transformation) . 166

List of Abbreviations

ADD Algebraic Decision Diagram
AI Artificial Intelligence
APLP Annotated Probabilistic Logic Program
ASP Answer Set Programming
BDD Binary Decision Diagram
BLP Bayesian Logic Program
BN Bayesian Network
CBDD Complete Binary Decision Diagram
CLP Constraint Logic Programming
CNF Conjunctive Normal Form
CPT Conditional Probability Table
DC Distributional Clauses
DCG Definite Clause Grammar
d-DNNF Deterministic Decomposable Negation Normal Form
DNF Disjunctive Normal Form
DP Dirichlet Process
DS Distribution Semantics
EM Expectation Maximization
ESS Expected Sufficient Statistics
FED Factored Explanation Diagram
FG Factor Graph
GP Gaussian Process
HMM Hidden Markov Model
HPT Hybrid Probability Tree
ICL Independent Choice Logic
IHPMC Iterative Hybrid Probabilistic Model Counting
IID independent and identically distributed
ILP Inductive Logic Programming
KBMC Knowledge Base Model Construction
LDA Latent Dirichlet Allocation
LL Log Likelihood

xxxi

xxxii List of Abbreviations

LPAD Logic Program with Annotated Disjunctions
MCMC Markov Chain Monte Carlo
MDD Multivalued Decision Diagram
MLN Markov Logic Network
MN Markov Network
NLP Natural Language Processing
NNF Negation Normal Form
PCFG Probabilistic Context-Free Grammar
PCLP Probabilistic Constraint Logic Programming
PFL Prolog Factor Language
PHA Probabilistic Horn Abduction
PHPT Partially evaluated Hybrid Probability Tree
PILP Probabilistic Inductive Logic Programming
PLCG Probabilistic Left Corner Grammar
PLP Probabilistic Logic Programming
POS Part-of-Speech
PPDF Product Probability Density Function
PPR Personalized PageRank
PRV Parameterized Random Variable
QSAR Quantitative Structure–Activity Relationship
SDD Sentential Decision Diagram
SLP Stochastic Logic Program
WFF Well-Formed Formula
WFM Well-Founded Model
WFOMC Weighted First-Order Model Counting
WFS Well-Founded Semantics
WMC Weighted Model Counting

Symbols

N natural numbers, i.e., non-negative integers t0, 1, 2, . . .u
N1 positive integers t1, 2, . . .u
R real numbers
PpSq powerset of set S
Ω ordinal numbers
ω first infinite ordinal
P logic program

List of Abbreviations xxxiii

lhm(P) least Herbrand model of P
U Herbrand universe
B Herbrand base
lfp(T) least fixpoint of mapping T
gfp(T) greatest fixpoint of mapping T
glb(X) greatest lower bound of partially ordered set X
lub(X) least upper bound of partially ordered set X
X,Y, . . . logical variables
X,Y , . . . vectors of logical variables
x,y, . . . logical constants
φ, ψ, . . . factors
a, b, . . . logical atoms
µ probability measure
X, Y, . . . random variables
x, y, . . . values assigned to random variables
X, Y, . . . vectors of random variables
x, y, . . . vectors of values of random variables
X,Y, . . . parameterized random variable or parfactor
X,Y, . . . vectors of parfactors
P probabilistic program
pf, θ, kq atomic choice
κ composite choice
σ selection
wσ world identified by selection σ
w world
WP set of all worlds for program P
K set of composite choice
ωκ set of worlds compatible with composite choice κ
ωK set of worlds compatible with composite choice K
ΩP event space for program P

1
Preliminaries

This chapter provides basic notions of logic programing and graphical models
that are needed for the book. After a short introduction of a few mathematical
concepts, the chapter presents logic programming and the various semantics
for negation. Then it provides a brief recall of probability theory and graphical
models.

For a more in-depth treatment of logic programming see [Lloyd,
1987; Sterling and Shapiro, 1994] and of graphical models see
[Koller and Friedman, 2009].

1.1 Orders, Lattices, Ordinals

A partial order ď is a reflexive, antisymmetric, and transitive relation.
A partially ordered set S is a set with a partial order ď. For example, the
natural numbers N (non-negative integers), the positive integers N1, and the
real numbers R with the standard less-than-or-equal relation ď are partially
ordered sets and so is the powerset PpSq (the set of all subsets) of a set S with
the inclusion relation between subsetsĎ. a P S is an upper bound of a subset
X of S if x ď a for all x P X and b P S is a lower bound of X if b ď x for
all x P X . If it also holds that a P X and b P X , then a is called the largest
element of X and b the smallest element of X .

An element a P S is the least upper bound of a subset X of X if a is
an upper bound of X and, for all upper bounds a1 of X , a ď a1. An element
b P S is the greatest lower bound of a subset X of S if b is a lower bound of
X and, for all lower bounds b1 of X , b1 ď b. The least upper bound of X may
not exist. If it does, it is unique and we denote it with lubpXq. Similarly, the
greatest lower bound ofX may not exist. If it does, it is unique and is denoted
by glbpXq. For example, for PpSq and X Ď PpSq, lubpXq “

Ť

xPX x, and
glbpXq “

Ş

xPX x.

1

2 Preliminaries

A partially ordered set L is a complete lattice if lubpXq and glbpXq exist
for every subset X of L. We denote with J the top element lubpLq and with
K the bottom element glbpLq of the complete lattice L. For example, the
powerset is a complete lattice.

A relation ă defined by a ă b iff a ă b and a ‰ b is associated with any
partial order ď on S.

A partial order ď on a set S is a total order if it is total, i.e., for any
a, b P S, either a ď b or b ď a. A set S with a total order is called a totally
ordered set. A set S is well-ordered if it has a total order ď such that every
subset of S has a smallest element. The set N is well-ordered by its usual
order, the real line R is not.

A function f : A Ñ B is one-to-one if f´1ptbuq is a set containing a
single element. f is onto B if fpAq “ B. A set A is equipotent with a set B
iff there is a one-to-one function f from A onto B. Equipotency captures the
intuitive notion of having the same number of elements.

A set S is denumerable iff S is equipotent with N. A set S is countable
iff it is finite or denumerable, S is uncountable otherwise.

Ordinal numbers are a generalization of natural numbers. The set Ω of
ordinal numbers is well-ordered. We call its elements ordinals and we denote
them by Greek smallcase letters. Since Ω is well-ordered, it has a smallest
element, that we denote with 0. If α ă β, we say that α is a predecessor of
β and β is a successor of α. α is the immediate predecessor of β if it is the
largest ordinal smaller than β and β is the immediate successor of α if it is the
largest ordinal smaller than α. Every ordinal α has an immediate successor,
denoted with α ` 1. Some ordinals have predecessors but no immediate
predecessor, which are called limit ordinals. The others are called successor
ordinals. We denote the immediate successor of the least element 0 with 1, the
immediate successor of 1 with 2, and so on. So the first elements 0, 1, 2, . . . of
Ω are the naturals. Since Ω is well-ordered, there is a smallest ordinal larger
than 0, 1, 2, . . . that we denote with ω. It is the first infinite ordinal and is
countable, We can form its successors as ω` 1, ω` 2, . . ., effectively adding
a “copy” of N to the tail of ω. The smallest ordinal larger than ω`1, ω`2, . . .
is called 2ω and we can continue in this way building 3ω, 4ω, and so on.

The smallest ordinal larger than these is ω2. We can repeat the process
countably many times obtaining ω3, ω4, and so on.

A canonical representation of the ordinals (the so-called von Neumann
ordinals) sees each ordinal as the set of its predecessors, so 0 “ H, 1 “ tHu,
2 “ tH, tHuu, 3 “ tH, tHu, tH, tHuu, . . . In this case, the order is set
membership.

1.2 Mappings and Fixpoints 3

The sequence of ordinals is also called transfinite. Mathematical induc-
tion is extended to the ordinals with the principle of transfinite induction.
Suppose P pαq is a property defined for all ordinals α P Ω. To prove that P is
true for all ordinals by transfinite induction, we need to assume the fact that
P pβq is true for all β ă α and prove that P pαq is true. Proofs by transfinite
induction usually consider three cases: that α is 0, a successor ordinal, or a
limit ordinal.

See [Srivastava, 2013] for a full formal definition of ordinal numbers and
[Willard, 1970; Hitzler and Seda, 2016] for accessible introductions.

1.2 Mappings and Fixpoints

A function T : LÑ L from a lattice L to itself is a mapping. A mapping T is
monotonic if T pxq ď T pyq, for all x and y such that x ď y. a P L is a fixpoint
of T if T paq “ a. a P L is the least fixpoint of T if a is a fixpoint and, for all
fixpoints b of T , it holds that a ď b. Similarly, we define the greatest fixpoint.

Consider a complete lattice L and a monotonic mapping T : LÑ L. We
define the increasing ordinal powers of T as:

• T Ò 0 “ K;
• T Ò α “ T pT Ò pα´ 1qq, if α is a successor ordinal;
• T Ò α “ lubptT Ò β|β ă αuq, if α is a limit ordinal;

and the decreasing ordinal powers of T as:

• T Ó 0 “ J;
• T Ó α “ T pT Ó pα´ 1qq, if α is a successor ordinal;
• T Ó α “ glbptT Ó β|β ă αuq, if α is a limit ordinal.

The Knaster–Tarski theorem [Knaster and Tarski, 1928; Tarski, 1955] states
that if L is complete lattice and T a monotonic mapping, then the set of
fixpoints of T in L is also a lattice. An important consequence of the theorem
is the following proposition.

Proposition 1 (Monotonic Mappings Have a Least and Greatest Fixpoint).
Let L be a complete lattice and T : L Ñ L be monotonic. Then T has a lest
fixpoint, lfppT q and a greatest fixpoint gfppT q.

A sequence txα|α P Ωu is increasing if xβ ď xα for all β ď α and is
decreasing if xα ď xβ for all β ď α.

The increasing and decreasing ordinal powers of a monotonic mapping
form an increasing and a decreasing sequence, respectively. Let us prove it

Francisco Coelho

4 Preliminaries

for T Ò α by transfinite induction. If α is a successor ordinal, T Ò pα ´ 2q
ď T Ò pα ´ 1q for the inductive hypothesis. By the monotonicity of T ,
T pT Ò pα ´ 2qq ď T pT Ò pα ´ 1qq, so T Ò pα ´ 1q ď T Ò α. Since
T Ò β ď T Ò pα´ 1q for all β ď α´ 1, for the transitivity of ď, the thesis is
proved. If α is a limit ordinal, T Ò α “ lubptT Ò β|β ă αuq, so the thesis is
proved. It can be proved for T Ó α similarly. Note that in general the fact that
T is a monotonic mapping does not imply that x ď T pxq for all x.

1.3 Logic Programming

This section provides some basic notions of first-order logic languages and
logic programming.

A first-order logic language is defined by an alphabet that consists of the
following sets of symbols: variables, constants, functions symbols, predicate
symbols, logical connectives, quantifiers, and punctuation symbols. The last
three are the same for all logic languages. The connectives are (negation),
^ (conjunction), _ (disjunction), Ð (implication), and Ø (equivalence);
the quantifiers are the existential quantifier D and the universal quantifier @,
and the punctuation symbols are “(”, “)”, and “,”.

Well-Formed Formulas (WFFs) of the language are the syntactically
correct clauses of the language and are inductively defined by combining
elementary formulas, called atomic formulas, by means of logical connectives
and quantifiers. On their turn, atomic formulas are obtained by applying the
predicates symbols to elementary terms.

A term is defined recursively as follows: a variable is a term, a constant
is a term, if f is a function symbol with arity n and t1, . . . , tn are terms, then
fpt1, . . . , tnq is a term. An atomic formula or atom a is the application of a
predicate symbol p with arity n to n terms: ppt1, . . . , tnq.

The following notation for the symbols will be adopted: predicates,
functions, and constants start with a lowercase letter, while variables start
with an uppercase letter (as in the Prolog programming language, see
below). So x, y, . . . are constants and X,Y, . . . are variables. Bold typeface
is used throughout the book for vectors, so X,Y , . . . are vectors of logical
variables.

An example of a term is mary, a constant, or fatherpmaryq, a complex
term, where father is a function symbol with arity 1. An example of an
atom is parentpfatherpmaryq,maryq where parent is a predicate with
arity 2. To take into account the arity, function symbols and predicates are
usually indicated as father{1 and parent{2. In this case, the symbols father

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

1.3 Logic Programming 5

and parent are called functors. Atoms are indicated with lowercase letters
a, b, . . .

A WFF is defined recursively as follows:

• every atom a is a WFF;
• if A and B are WFFs, then also A, A ^ B, A _ B, AÐB, AØB

are WFFs (possibly enclosed in balanced brackets);
• if A is WFF and X is a variable, @X A and DX A are WFF.

A variant φ1 of a formula φ is obtained by renaming all the variables in φ.
The class of formulas called clauses has important properties. A clause is

a formula of the form

@X1@X2 . . .@Xspa1 _ . . ._ an _ b1 _ . . ._ bmq

where each ai, bi are atoms and X1, X2, . . . , Xs are all the variables occur-
ring in pa1 _ . . . _ an _ b1 _ . . . _ bmq. The clause above can also be
represented as follows:

a1 ; . . . ; anÐ b1, . . . , bm

where commas stand for conjunctions and semicolons for disjunctions. The
part preceding the symbol Ð is called the head of the clause, while the part
following it is called the body. An atom or the negation of an atom is called
a literal. A positive literal is an atom, and a negative literal is the negation of
an atom. Sometimes, clauses will be represented by means of a set of literals:

ta1, . . . , an, b1, . . . , bmu

An example of a clause is

malepXq ; femalepXq Ð humanpXq.

A clause is a denial if it has no positive literal, definite if it has one positive
literal, and disjunctive if it has more than one positive literal. A Horn clause is
either a definite clause or a denial. A fact is a definite clause without negative
literals, the Ð symbol is omitted for facts. A clause C is range-restricted
if and only if the variables appearing in the head are a subset of those in the
body. A definite logic program P is a finite set of definite clauses.

Examples of a definite clause, a denial, and a fact are, respectively:
humanpXq Ð femalepXq
ÐmalepXq, femalepXq
femalepmaryq

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

6 Preliminaries

In this book, I will also present clauses in monospaced font especially when
they form programs that can be directly input into a logic programming
system (concrete syntax). In that case, the implication symbol is represented
by :- as in

human(X) :- female(X).

In logic programming, another type of negation is also taken into account,
namely, the so-called default negation„. The formula„a where a is an atom
is called a default negative literal, sometimes abbreviated as simply negative
literal if the meaning is clear from the context. A default literal is either an
atom (a positive literal) or a default negative literal. Again the word default
can be dropped if the meaning is clear from the context.

A normal clause is a clause of the form

aÐ b1, . . . , bm

where each bi is a default literal. A normal logic program is a finite set
of normal clauses. Default negation in the concrete syntax is represented
either with \+ (Prolog, see page 9) or not (Answer Set Programming, see
Section 1.4.3). In this book, we will use the Prolog convention and use \+.

A substitution θ “ tX1{t1, . . . , Xk{tku is a function mapping variables
to terms. θ “ tX{fatherpmaryq, Y {maryu is an example of a substitution.
The application θ of a substitution θ to a formula φ means replacing all the
occurrences of each variable Xj in φ by the same term tj . So parentpX,Y qθ
is, for example, parentpfatherpmaryq,maryq.

An antisubstitution θ´1 “ tt1{V1, . . . , tm{Vmu is a function mapping
terms to variables. In an antisubstitution, the terms must be such that each
of them must not be equal or a sub-term of another one; otherwise, the
substitution process is not well-defined. An antisubstitution is the inverse of
substitution θ “ tV1{t1, . . . , Vm{tmu if the terms satisfy the above constraint.
In this case, for any formula φ, φθθ´1 “ φ.

A ground clause (term) is a clause (term) without variables. A substitution
θ is grounding for a formula φ if φθ is ground.

The Herbrand universe U of a language or a program is the set of all
the ground terms that can be obtained by combining the symbols in the
language or program. The Herbrand base B of a language or a program is
the set of all possible ground atoms built with the symbols in the language or
program. Sometimes they will be indicated with UP and BP where P is the
program. The grounding groundpP q of a program P is obtained by replacing
the variables of clauses in P with terms from UP in all possible ways.

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

1.3 Logic Programming 7

If P does not contain function symbols, then UP is equal to the set of
constants and is finite; otherwise, it is infinite (e.g., if P contains constant
0 and function symbol s{1, then UP “ t0, sp0q, spsp0qq, . . .u). Therefore,
if P does not contain function symbols, groundpP q is finite and is infinite
if P contains function symbols and at least one variable. The language of
programs without function symbols is called Datalog.

The semantics of a set of formulas can be defined in terms of inter-
pretations and models. We will here consider the special case of Herbrand
interpretations and Herbrand models that are sufficient for giving a semantics
to sets of clauses. For a definition of interpretations and models in the
general case, see [Lloyd, 1987]. A Herbrand interpretation or two-valued
interpretation I is a subset of the Herbrand base, i.e., I Ď B. Given a
Herbrand interpretation, it is possible to assign a truth value to formulas
according to the following rules. A ground atom ppt1, t2, . . . , tnq is true under
the interpretation I if and only if ppt1, t2, . . . , tnq P I . A conjunction of
atomic formulas b1, . . . , bm is true in I if and only if b1, . . . , bm Ď I . A
ground clause a1 ; . . . ; an Ð b1, . . . , bm is true in an interpretation I if and
only if at least one of the atoms of the head is true in the case in which the
body is true. A clause C is true in an interpretation I if and only if all of its
ground instances with terms from U are true in I . A set of clauses Σ is true
in an interpretation I if and only if all the clauses C P Σ are true.

A two-valued interpretation I represents the set of true atoms, so a is true
in I if a P I and is false if a R I . The set Int2 of two-valued interpretations
for a program P forms a complete lattice where the partial order ď is given
by the subset relation Ď. The least upper bound and greatest lower bound are
thus lubpXq “

Ť

IPX I and glbpXq “
Ş

IPX I . The bottom and top element
are, respectively,H and BP .

An interpretation I satisfies a set of clauses Σ, notation I (Σ, if Σ is
true in I; we also say that I is a model of Σ. A set of clauses is satisfiable if it
is satisfied by some interpretation, unsatisfiable otherwise. If all models of a
set of clauses Σ are also models of a clause C, we say that Σ logically entails
C or C is a logical consequence of Σ, and we write Σ (C. We use the same
symbol for the entailment relation and for the satisfaction relation between
interpretations and formulas in order to follow the standard logic practice. In
cases where this may cause misunderstanding, the intended meaning will be
indicated in words.

Herbrand interpretations and models are sufficient for giving a semantics
to sets of clauses in the following sense: a set of clauses is unsatisfiable if
and only if it does not have a Herbrand model, a consequence of Herbrand’s

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

8 Preliminaries

theorem [Herbrand, 1930]. For sets of definite clauses, Herbrand models
are particularly important because they have the relevant property that the
intersection of a set of Herbrand models for a set of definite clauses P is
still a Herbrand model of P . The intersection of all the Herbrand models
of P is called the minimal Herbrand model of P and is represented with
lhmpP q. The least Herbrand model of P always exists and is unique. The
model-theoretic semantics of a program P is the set of all ground atoms that
are logical consequences of P . The least Herbrand model provides the model
theoretic semantics for P : P (a if and only if a P lhmpP q where a is a
ground atom.

For example, the program P below

humanpXq Ð femalepXq
femalepmaryq

has the lhmpP q “ tfemalepmaryq, humanpmaryqu.

A proof procedure is an algorithm for checking whether a formula is
provable from a theory. If formula φ is provable from the set of formulas Σ,
we write Σ $ φ. Two important properties of proof procedures are soundness
and completeness. A proof procedure is sound, with respect to the model-
theoretic semantics, if Σ (φ whenever Σ $ φ; it is complete if Σ $ φ
whenever Σ (φ.

A proof procedure for clausal logic that is particularly suitable to be
automated on a computer is resolution [Robinson, 1965]. The resolution
inference rule allows one to prove, from two clauses F1 _ l1 and F2 _ l2
where F1 and F2 are disjunctions of literals, the clause pF1 _ F2qθ, where
θ is the most general unifier of l1 and l2, i.e., the minimal substitution such
that l1θ “ l2θ. For definite clauses, this consists in matching the head of one
clause with a literal in the body of another. To prove a conjunction of literals
φ (a query or goal) from a set of clauses Σ, φ is negated obtaining Ð φ and
added to Σ: if the empty denial Ð can be obtained from ΣY tÐ φu using a
sequence of applications of the resolution inference rule, then φ is provable
from Σ, Σ $ φ. For example, if we want to prove that P $ humanpmaryq,
we need to prove that Ð can be derived from P Y tÐ humanpmaryqu.
In this case, from humanpXq _ femalepXq and femalepmaryq, we can
derive humanpmaryq by resolution.

Logic programming was originally proposed by considering Horn clauses
and adopting a particular version of resolution, SLD resolution,[Kowalski,
1974]. SLD resolution builds a sequence of formulas φ1, φ2, . . . , φn, where
φ1 “Ð φ, that is called a derivation. At each step, the new formula φi`1 is
obtained by resolving the previous formula φi with a variant of a clause from

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

1.3 Logic Programming 9

the program P . If no resolution can be performed, then φi`1 “ fail and the
derivation cannot be further extended. If φn “Ð, the derivation is successful;
if φn “ fail, the derivation is unsuccessful. The query φ is proved (succeeds)
if there exists a successful derivation for it and fails otherwise. SLD resolution
was proven to be sound and complete (under certain conditions) for Horn
clauses (the proofs can be found in [Lloyd, 1987]).

A particular Logic programming language is defined by choosing a rule
for the selection of the literal in the current formula to be reduced at each step
(selection rule) and by choosing a search strategy that can be either depth
first or breadth first. In the Prolog [Colmerauer et al., 1973] programming
language, the selection rule selects the left-most literal in the current goal
and the search strategy is depth first with chronological backtracking. Prolog
builds an SLD tree to answer queries: nodes are formulas and each path from
the root to a leaf is an SLD derivation; branching occurs when there is more
than one clause that can be resolved with the goal of a node. Prolog adopts
an extension of SLD resolution called SLDNF resolution that is able to deal
with normal clauses by negation as failure [Clark, 1978]: a negative selected
literal „a is removed from the current goal if a proof for a fails. An SLDNF
tree is an SLD tree where the literal „a in a node is handled by building a
nested tree for a: if the nested tree has no successful derivations, the literal
„a is removed from the node and derivation proceeds; otherwise; the node
has fail as the only child.

If the goal φ contains variables, a solution to φ is a substitution θ obtained
by composing the substitutions along a branch of the SLDNF tree that is
successful. The success set of φ is the set of solutions of φ. If a normal
program is range restricted, every successful SLDNF derivation for goal φ
completely grounds φ [Muggleton, 2000a].

Example 1 (Path – Prolog). The following program computes paths in a
graph:

pathpX,Xq.
pathpX,Y q Ð edgepX,Zq, pathpZ, Y q.
edgepa, bq.
edgepb, cq.
edgepa, cq.

pathpX,Y q is true if there is a path from X to Y in the graph where
the edges are represented by facts for the predicate edge{2. This pro-
gram computes the transitive closure of the relation edge. This is possi-
ble because the program contains an inductive definition, that of path{2.

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

10 Preliminaries

Computing transitive closures is an example of a problem for which first order
logic is not sufficient and a Turing-complete language is required. Inductive
definitions provide Prolog this expressive power.

The first clause states that there is a path from a node to itself. The second
states that there is a path from a node X to a node Y if there exists a node
Z such that there is an edge from X to Z and there is a path from Z to Y .
Variables appearing in the body only, such as Z above, become existentially
quantified when the universal quantifier for them is moved to have the body
as scope.

Figure 1.1 shows the SLD tree for the query pathpa, cq. The labels of the
edges indicate the most general unifiers used. The query has two successful
derivations, corresponding to the paths from the root to theÐ leaves.

Suppose we add the following clauses to the program

endspX,Y q Ð pathpX,Y q,„sourcepY q.
sourcepXq Ð edgepX,Y q.

endspX,Y q is true if there is a path from X to Y and Y is a terminal node,
i.e., it has no outgoing edges.

The SLDNF tree for the query endspb, cq is shown in Figure 1.2: to prove
„sourcepcq, an SLDNF tree is built for sourcepcq, shown in the rectangle.
Since the derivation of sourcepcq fails, then „sourcepcq succeeds and can
be removed from the goal.

Figure 1.1 SLD tree for the query pathpa, cq from the program of Example 1.

1.3 Logic Programming 11

Figure 1.2 SLDNF tree for the query endspb, cq from the program of Example 1.

A ground atom is relevant with respect to a query φ if it occurs in
some proof of an atom from atomspφq, where atomspφq returns the set of
atoms appearing in the conjunction of literals φ. A ground rule is relevant
if it contains only relevant atoms. In Example 1, pathpa, bq, pathpb, cq,
and pathpc, cq are relevant for pathpa, cq, while pathpb, aq, pathpc, aq, and
pathpc, bq aren’t. For the query endspb, cq, instead pathpb, cq, pathpc, cq, and
sourcepcq are relevant, while sourcepbq is not.

Proof procedures provide a method for answering queries in a top-down
way. We can also proceed bottom-up by computing all possible consequences
of the program using the TP or immediate consequence operator.

Definition 1 (TP operator). For a definite program P , we define the operator
TP : Int2 Ñ Int2 as

TP pIq “ ta| there is a clause bÐ l1, ..., ln in P , a grounding substitution θ
such that a “ bθ and, for every 1 ď i ď n, liθ P Iu.

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

12 Preliminaries

The TP operator is such that its least fixpoint is equal to the least Herbrand
model of the program: lfppTP q “ lhmpP q.

It can be shown that the least fixpoint of the TP operator is reached at
most at the first infinite ordinal ω [Hitzler and Seda, 2016].

In logic programming, data and code take the same form, so it is easy
to write programs that manipulate code. For example, meta-interpreters or
programs for interpreting other programs are particularly simple to write. A
meta-interpreter for pure Prolog is [Sterling and Shapiro, 1994]:

solve(true).
solve((A,B)) :-
solve(A),
solve(B).

solve(Goal) :-
clause(Goal,Body),
solve(Body).

where \= is a predicate that succeeds if the two arguments do not unify,
clause(Goal,Body) is a predicate that succeeds if Goal :- Body
is a clause of the program, and each occurrence of _ indicates a distinct
anonymous variable, i.e., a variable that is there as a placeholder and for
which we don’t care about its value.

Pure Prolog is extended to include primitives for controlling the search
process. An example is the cut which is a predicate !/0 that always succeeds
and cuts choice points. If we have the program

p(S1) :- A1.
...
p(Sk) :- B, !, C.
...
p(Sn) :- An.

when the k-th clause is evaluated, if B succeeds, then ! succeeds and the
evaluation proceeds with C. In the case of backtracking, all the alternative for
B are eliminated, as well as all the alternatives for p provided by the clauses
from the k-th to the n-th.

The cut is used in the implementation of an if-then-else construct in
Prolog that is represented as

(B->C1;C2).

Francisco Coelho

1.4 Semantics for Normal Logic Programs 13

The construct evaluates B; it if succeeds, it evaluates C1; if it fails, it
evaluates C2.

The construct is implemented as

if_then_else(B, C1, C2) :- B, !, C1.
if_then_else(B, C1, C2) :- C2.

Prolog systems usually include many built-in predicates. The predicate
is/2 (usually written in infix notation) evaluates the second argument as an
arithmetic expression and unifies the first argument with the result. So for
example, A is 3+2 is a goal that, when executed, unifies A with 5.

1.4 Semantics for Normal Logic Programs

In a normal program, the clauses can contain default negative literals in the
body, so a general rule has the form

C “ hÐ b1, . . . , bn,„c1, . . . ,„cm (1.1)

where h, b1, . . . , bn, c1, . . . , cm are atoms.
Many semantics have been proposed for normal logic programs; see [Apt

and Bol, 1994] for a survey. Of them, the one based on Clark’s completion,
the Well-Founded Semantics (WFS), and the stable model semantics are the
most widely used.

1.4.1 Program Completion

Program completion or Clark’s completion [Clark, 1978] assigns a semantics
to a normal program by building a first-order logical theory representing the
meaning of the program. The idea of the approach is to formally model the
fact that atoms not inferable from the rules in the program are to be regarded
as false.

The completion of a clause

ppt1, . . . , tnq Ð b1, . . . , bm,„c1, . . . ,„cl.

with variables Y1, . . . , Yd is the clause

ppX1, . . . , Xnq Ð DY1, . . . , DYdppX1 “ t1q ^ . . .^ pXn “ tnq ^

b1 ^ . . .^ bm ^ c1 ^ . . .^ clq

Francisco Coelho

14 Preliminaries

where “ is a new predicate symbol representing equality. If the program
contains k ě 1 clauses for predicate p, we obtain k formulas of the form

ppX1, . . . , Xnq Ð E1

...

ppX1, . . . , Xnq Ð Ek.

The competed definition of p is then

@X1, . . .@XnpppX1, . . . , Xnq Ø E1 _ . . ._ Ekq.

If a predicate appearing in the program does not appear in the head of any
clause, we add

@X1, . . .@Xn ppX1, . . . , Xnq.

The predicate “ is constrained by the following formulas that form an
equality theory:

1. c ‰ d for all pairs c, d of distinct constants,
2. @pfpX1, . . . , Xnq ‰ gpY1, . . . , Ymqq for all pairs f, g of distinct function

symbols,
3. @ptrXs ‰ Xq for each term trXs containing X and different from X ,
4. @ppX1 ‰ Y1q _ . . ._ pXn ‰ Ynq Ñ fpX1, . . . , Xnq ‰ fpY1, . . . , Ynqq

for each function symbol f ,
5. @pX “ Xq,
6. @ppX1 “ Y1q ^ . . .^ pXn “ Ynq Ñ fpX1, . . . , Xnq “ fpY1, . . . , Ynqq

for each function symbol f ,
7. @ppX1 “ Y1q ^ . . .^ pXn “ Ynq Ñ ppX1, . . . , Xnq Ñ ppY1, . . . , Ynqq

for each predicate symbol p (including “).

Given a normal program P , the completion comppP q of P is the theory
formed by the completed definition of each predicate of P and the equality
theory.

Note that the completion of a program may be inconsistent. In this case,
the theory has no models and everything is a logical consequence. This is a
situation to be avoided so restrictions are imposed on the form of the program.

The idea of the semantics based on Clark’s completion is to consider a
conjunction of ground literals

b1, . . . , bm,„c1, . . . ,„cl

true if
b1 ^ . . .^ bm ^ c1 ^ . . .^ cl

1.4 Semantics for Normal Logic Programs 15

is a logical consequence of comppP q, i.e., if

comppP q (b1 ^ . . .^ bm ^ c1 ^ . . .^ cl.

SLDNF resolution was proven sound and complete (under certain conditions)
with respect to the Clark’s completion semantics [Clark, 1978].

Example 2 (Clark’s completion).
Consider the program P1

bÐ„a.
cÐ„b.
cÐ a.

Its completion comppP1q is
bØ a.
cØ b_ a.
 a

We see that comppP1q (a, b, c so „a, b and „c can be derived with
SLDNF resolution. The SLDNF tree for query c is shown in Figure 1.3 and,
as expected, returns false.

Consider the program P2

pÐ p.
Its completion comppP2q is

pØ p.
Here comppP q * p and comppP q * p. SLDNF resolution for query p
would loop forever. This shows that SLNDF does not handle well loops, in
this case positive loops.

Consider the program P3

pÐ„p.
Its completion comppP3q is

pØ p.
which is inconsistent, so everything is a consequence. SLDNF resolution for
query pwould loop forever. SLNDF resolution does not handle well also loops
through negation or negative loops.

1.4.2 Well-Founded Semantics

The Well-Founded Semantics (WFS) [Van Gelder et al., 1991] assigns a
three-valued model to a program, i.e., it identifies a consistent three-valued
interpretation as the meaning of the program.

A three-valued interpretation I is a pair xIT , IF y where IT and IF are
subsets of BP and represent, respectively, the set of true and false atoms.

16 Preliminaries

Figure 1.3 SLDNF tree for the query c from the program of Example 2.

So a is true in I if a P IT and is false in I if a P IF , and „a is true in I
if a P IF and is false in I if a P IT . If a R IT and a R IF , then a assumes
the third truth value, undefined. We also write I (a if a P IT and I („a
if a P IF . A consistent three-valued interpretation I “ xIT , IF y is such
that IT X IF “ H. The union of two three-valued interpretations xIT , IF y
and xJT , JF y is defined as xIT , IF y Y xJT , JF y “ xIT Y JT , IF Y JF y.
The intersection of two three-valued interpretations xIT , IF y and xJT , JF y
is defined as xIT , IF y X xJT , JF y “ xIT X JT , IF X JF y. Sometimes we
represent a three-valued interpretation I “ xIT , IF y as a single set of
literals, i.e.,

I “ IT Y t„a|a P IF u.

The set Int3 of three-valued interpretations for a program P forms a com-
plete lattice where the partial order ď is defined as xIT , IF y ď xJT , JF y if
IT Ď JT and IF Ď JF . The least upper bound and greatest lower bound are
defined as lubpXq “

Ť

IPX I and glbpXq “
Ş

IPX I. The bottom and top
element are, respectively, xH,Hy and xBP ,BP y.

1.4 Semantics for Normal Logic Programs 17

Given a three-valued interpretation I “ xIT , IF y, we define the functions
truepIq “ IT , falsepIq “ IF , and undef pIq “ BP zIT zIF that return the
set of true, false and undefined atoms, respectively.

The WFS was given in [Van Gelder et al., 1991] in terms of the least
fixpoint of an operator that is composed by two sub-operators, one computing
consequences, and the other computing unfounded sets. We give here the
alternative definition of the WFS of [Przymusinski, 1989] that is based on an
iterated fixpoint.

Definition 2 (OpFalsePI and OpFalsePI operators). For a normal program
P , sets Tr and Fa of ground atoms, and a three-valued interpretation I, we
define the operators OpTruePI : Int2 Ñ Int2 and OpFalsePI : Int2 Ñ
Int2 as

OpTruePI pTrq “ ta|a is not true in I; and there is a clause bÐ l1, ..., ln in
P , a grounding substitution θ such that a “ bθ and for every 1 ď i ď n
either liθ is true in I, or liθ P Tr};

OpFalsePI pFaq “ ta|a is not false in I; and for every clause b Ð l1, ..., ln
in P and grounding substitution θ such that a “ bθ there is some i
p1 ď i ď nq such that liθ is false in I or liθ P Fau.

In words, the operator OpTruePI pTrq extends the interpretation I to add
the new true atoms that can be derived from P knowing I and true atoms
Tr , while OpFalsePI pFaq computes new false atoms in P by knowing I and
false atoms Fa .OpTruePI and OpFalsePI are both monotonic [Przymusinski,
1989], so they both have least and greatest fixpoints. An iterated fixpoint
operator builds up dynamic strata by constructing successive three-valued
interpretations as follows.

Definition 3 (Iterated fixed point). For a normal program P , let IFPP:
Int3 Ñ Int3 be defined as

IFPP pIq “ I Y xlfppOpTruePI q, gfppOpFalsePI qy.

IFPP is monotonic [Przymusinski, 1989] and thus has a least fixpoint
lfppIFPP q. The Well-Founded Model (WFM) WFM pP q of P is lfppIFPP q.
Let δ be the smallest ordinal such that WFM pP q “ IFPP Ò δ. We refer to
δ as the depth of P . The stratum of atom a is the least ordinal β such that
a P IFPP Ò β (where a may be either in the true or false component of
IFPP Ò β). Undefined atoms of the WFM do not belong to any stratum –
i.e., they are not added to IFPP Ò δ for any ordinal δ.

18 Preliminaries

If undef pWFM pP qq “ H, then the WFM is called total or two-valued
and the program dynamically stratified.

Example 3 (WFS computation). Let us consider program P1 of
Example 2:

bÐ„a.
cÐ„b.
cÐ a.

Its iterated fixpoint is
IFPP Ò 0 “ xH,Hy;
IFPP Ò 1 “ xH, tauy;
IFPP Ò 2 “ xtbu, tauy;
IFPP Ò 3 “ xtbu, ta, cuy;
IFPP Ò 4 “ IFPP Ò 3 “ WFM pP1q.

Thus, the depth of P1 is 3 and the WFM of P1 is given by
truepWFM pP1qq “ tbu
undef pWFM pP1qq “ H

falsepWFM pP1qq “ ta, cu.
So WFM pP1q is two-valued and P1 is dynamically stratified.

Let us consider program P4 from [Przymusinski, 1989]

bÐ„a.
cÐ„b.
cÐ a,„p.
pÐ„q.
q Ð„p, b.

Its iterated fixpoint is

IFPP Ò 0 “ xH,Hy;
IFPP Ò 1 “ xH, tauy;
IFPP Ò 2 “ xtbu, tauy;
IFPP Ò 3 “ xtbu, ta, cuy;
IFPP Ò 4 “ IFPP Ò 3 “ WFM pP4q.

So the depth of P4 is 3 and the WFM of P4 is given by

truepWFM pP4qq “ tbu
undef pWFM pP4qq “ tp, qu
falsepWFM pP4qq “ ta, cu.

Consider now the program P2 of Example 2:
pÐ p.

1.4 Semantics for Normal Logic Programs 19

Its iterated fixpoint is
IFPP Ò 0 “ xH,Hy;
IFPP Ò 1 “ xH, tpuy;
IFPP Ò 2 “ IFPP Ò 1 “ WFM pP2q.

P2 is dynamically stratified and assigns value false to p. So positive loops are
resolved by assigning value false to the atom.

Let us consider the program P3 of Example 2:
pÐ„p.

Its iterated fixpoint is
IFPP Ò 0 “ xH,Hy;
IFPP Ò 1 “ IFPP Ò 0 “ WFM pP3q.

P3 is not dynamically stratified and assigns value undefined to p. So negative
loops are resolved by assigning value undefined to the atom.

Let us consider the program P5:
pÐ„q.
q Ð„p.

Its iterated fixpoint is
IFPP Ò 0 “ xH,Hy;
IFPP Ò 1 “ IFPP Ò 0 “ WFM pP5q.

Thus, the depth of P5 is 0 and the WFM of P5 is given by
truepWFM pP5qq “ H

undef pWFM pP5qq “ tp, qu
falsepWFM pP5qq “ H.

So WFM pP5q is three-valued and P5 is not dynamically stratified.

Given its similarity with the TP operator, it can be shown that OpTruePI
reaches its fixpoint at most at the first infinite ordinal ω. IFPP instead doesn’t
satisfy this property, as the next example shows.

Example 4 (Fixpoint of IFPP beyond ω). Consider the following program
inspired from [Hitzler and Seda, 2016, Program 2.6.5, page 58]:

pp0, 0q.
ppY, spXqq Ð rpY q, ppY,Xq.
qpY, spXqq Ð„ppY,Xq.
rp0q.
rpspY qq Ð„qpY, spXqq.
tÐ„qpY, spXqq.

The ordinal powers of IFPP are shown in Figure 1.4, where snp0q is the term
where the functor s is applied n times to 0. We need to reach the immediate
successor of ω to compute the WFS of this program.

20 Preliminaries

Figure 1.4 Ordinal powers of IFPP for the program of Example 4.

The following properties identify important subsets of programs.

Definition 4 (Acyclic, stratified and locally stratified programs).

• A level mapping for a program P is a function | | : BP Ñ N from ground
atoms to natural numbers. For a P BP , |a| is the level of a. If l “ a
where a P BP , we define |l| “ |a|.
• A program T is called acyclic [Apt and Bezem, 1991] if there exists a

level mapping such as, for every ground instance a Ð B of a clause of
T , the level of a is greater than the level of each literal in B.
• A program T is called locally stratified if there exists a level mapping

such as, for every ground instance a Ð B of a clause of T , the level of
a is greater than the level of each negative literal in B and greater or
equal than the level of each positive literals.
• A program T is called stratified if there exists a level mapping according

to which the program is locally stratified and such that all the ground
atoms for the same predicate can be assigned the same level.

1.4 Semantics for Normal Logic Programs 21

The WFS for locally stratified programs enjoys the following property.

Theorem 1 (WFS for locally stratified programs [Van Gelder et al., 1991]).
If P is locally stratified, then it has a total WFM.

Programs P1 and P2 of Example 5 are (locally) stratified while programs P3,
P4, and P5 are not (locally) stratified. Note that stratification is stronger than
local stratification that is stronger than dynamic stratification.

SLG resolution [Chen and Warren, 1996] is a proof procedure that is
sound and complete (under certain conditions) for the WFS. SLG uses
tabling: it keeps a store of the subgoals encountered in a derivation together
with answers to these subgoals. If one of the subgoals is encountered again,
its answers are retrieved from the store rather than recomputing them. Besides
saving time, tabling ensures termination for programs without function sym-
bols. For a discussion of the termination properties of SLG in the general
case, see [Riguzzi and Swift, 2014]. SLG resolution is implemented in the
Prolog systems XSB [Swift and Warren, 2012], YAP [Santos Costa et al.,
2012], and SWI-Prolog [Wielemaker et al., 2012].

1.4.3 Stable Model Semantics

The stable model semantics [Gelfond and Lifschitz, 1988] associates zero,
one, or more two-valued models to a normal program.

Definition 5 (Reduction). Given a normal program P and a two-valued
interpretation I , the reduction P I of P relative to I is obtained from
groundpP q by deleting

1. each rule that has a negative literal „a such that a P I
2. all negative literals in the body of the remaining rules.

Thus, P I is a program without negation as failure and has a unique least
Herbrand model lhmpP Iq.

Definition 6 (Stable model). A two-valued interpretation I is a stable model
or an answer set of a program P if I “ lhmpP Iq.

The stable model semantics of a program P is the set of its stable models.
The relationship between the WFS and the stable model semantics is

given by the following two theorems [Van Gelder et al., 1991].

Theorem 2 (WFS total model vs stable models). If P has a total WFM, then
that model is the unique stable model.

22 Preliminaries

Theorem 3 (WFS vs stable models). The WFM of P is a subset of every
stable model of P seen as a three-valued interpretation.

Answer Set Programming (ASP) is a problem-solving paradigm based on the
computation of the answer sets of a program.

Example 5 (Answer set computation).
Let us consider program P1 of Example 2:
bÐ„a.
cÐ„b.
cÐ a.

Its only answer set is tbu.
Let us consider program P4 from [Przymusinski, 1989]
bÐ„a.
cÐ„b.
cÐ a,„p.
pÐ„q.
q Ð„p, b.

The program has the answer sets tb, pu and tb, qu and WFM pP4q “

xtbu, ta, cuy is a subset of both seen as the three-valued interpretations
xtb, pu, ta, c, quy and xtb, qu, ta, c, puy

Let us consider program P2 of Example 2:
pÐ p.

Its only answer set isH.
Program P3 of Example 2
pÐ„p.

has no answer sets.
Program P5:
pÐ„q.
q Ð„p.

has the answer sets tpu and tqu and WFM pP5q “ xH,Hy is a subset of
both seen as the three-valued interpretations xtpu, tquy and xtqu, tpuy.

In general, loops through an odd number of negations may cause the
program to have no answer set, while loops through an even number of
negations may cause the program to have multiple answer sets. In this
sense, the stable model semantics differs from the WFS that makes the atoms
involved in the loops undefined in both cases.

DLV [Leone et al., 2006; Alviano et al., 2017], Smodels [Syrjänen and
Niemelä, 2001], and Potassco [Gebser et al., 2011] are examples of systems
for ASP.

1.5 Probability Theory 23

1.5 Probability Theory

Probability theory provides a formal mathematical framework for dealing
with uncertainty. The notions used in the book are briefly reviewed here;
for a more complete treatment, please refer to textbooks such as [Ash and
Doléans-Dade, 2000; Chow and Teicher, 2012].

Let W be a set called the sample space, whose elements are the outcomes
of the random process we would like to model. For example, if the process
is that of throwing a coin, the sample space can be W coin “ th, tu with
h standing for heads and t for tails. If the process is that of throwing a
die, W die “ t1, 2, 3, 4, 5, 6u. If we throw two coins, the sample space is
W 2 coins “ tph, hq, ph, tq, pt, hq, pt, tqu. If we throw an infinite sequence of
coins, W coins “ tpo1, o2, . . .q|oi P th, tuu. If we measure the position of an
object along a single axis, W pos x “ R, on a plane W pos x y “ R2 and in the
spaceW pos x y z “ R3. If the object is limited to the unit interval, square, and
cube, then W unit x “ r0, 1s, W unit x y “ r0, 1s2, and W unit x y z “ r0, 1s3.

Definition 7 (Algebra). The set Ω of subsets of W is an algebra on the
set W iff

• W P Ω;
• Ω is closed under complementation, i.e., ω P Ω Ñ ωc “ pΩzωq P Ω;
• Ω is closed under finite union, i.e., ω1 P Ω, ω2 P Ω Ñ pω1 Y ω2q P Ω

Definition 8 (σ-algebra). The set Ω of subsets of W is a σ-algebra on the set
W iff it is an algebra and

• Ω is closed under countable union, i.e., if ωi P Ω for i “ 1, 2, . . . then
Ť

i ωi P Ω.

Definition 9 (Minimal σ-algebra). Let A be an arbitrary collection of
subsets of W . The intersection of all σ-algebras containing all elements ofA
is called the σ-algebra generated by A, or the minimal σ-algebra containing
A. It is denoted by σpAq.

σpAq is such that Σ Ě σpAq whenever Σ Ě A and Σ is a σ-algebra. σpAq
always exists and is unique [Chow and Teicher, 2012, page 7].

The elements of a σ-algebra Ω on W are called measurable sets or events
and pW,Ωq is called a measurable space. When W is finite, Ω is usually
the powerset of W . In general, however, not every subset of W need be
present in Ω.

When throwing a coin, the set of events may be Ωcoin “ PpW coinq and
thu is an event corresponding to the coin landing heads. When throwing

24 Preliminaries

a die, an example of the set of events is Ωdie “ PpW dieq and t1, 3, 5u is an
event, corresponding to obtaining an odd result. When throwing two coins,
pW 2 coin,Ω2 coinsq with Ω2 coins “ PpW 2 coinsq is a measurable space.

When throwing an infinite sequence of coins, tph, t, o3, . . .q|oi P th, tuu
may be an event, corresponding to obtaining head and tails in the first two
throws. When measuring the position of an object on an axis and W pos x “

R, Ωpos x may be the Borel σ-algebra B on the set of real numbers, the
one generated, for example, by closed intervals tra, bs : a, b P Ru. Then
r´1, 1smay be an event, corresponding to observing the object in the r´1, 1s
interval. If the object is constrained to the unit interval W uit x, Ωunit x may
be σptra, bs : a, b P r0, 1suq.

Definition 10 (Probability measure). Given a measurable space pW,Ωq of
subsets of W , a probability measure is a function µ : Ω Ñ R that satisfies
the following axioms:

µ-1 µpωq ě 0 for all ω P Ω;

µ-2 µpW q “ 1;

µ-3 µ is countably additive, i.e., if O “ tω1, ω2, . . .u Ď Ω is a countable
collection of pairwise disjoint sets, then µp

Ť

ωPOq “
ř

i µpωiq.

pW,Ω, µq is called a probability space.

We also consider finitely additive probability measures.

Definition 11 (Finitely additive probability measure). Given a sample space
W and an algebra Ω of subsets of W , a finitely additive probability measure
is a function µ : Ω Ñ R that satisfies axioms (µ-1) and (µ-2) of Definition 10
and axiom

m-3 µ is finitely additive, i.e., ω1Xω2 “ HÑ µpω1Yω2q “ µpω1q`µpω2q

for all ω1, ω2 P Ω.

pW,Ω, µq is called a finitely additive probability space.

Example 6 (Probability spaces). When throwing a coin, pW coin,Ωcoin, µcoinq
with µcoinpHq“0 µcoinpthuq“0.5, µcoinpttuq“0.5, and µcoinpth, tuq“1 is a
(finitely additive) probability space. When throwing a die, pW die,Ωdie, µdieq
with µcoinpωq “ |ω| ¨ 1

6 is a (finitely additive) probability space.

1.5 Probability Theory 25

When throwing two coins, pW 2 coins,Ω2 coins, µ2 coinsq with µ2 coins

pωq“|ω| ¨ 1
36 is a (finitely additive) probability space. For the position of

an object on an axis, pW uit x,Ωunit x, µunit xq with µunit xpIq“
ş

I dx is
a probability space. pW pos x,Ωpos x, µpos xq with µpos xpIq“

ş

IXr0,1s dx is
also a probability space.

Let pW,Ω, µq be a probability space and pS,Σq a measurable space. A
function X : W Ñ S is said to be measurable if the preimage of σ under
X is in Ω for every σ P Σ, i.e.,

X´1pσq “ tw PW | Xpwq P σu P Ω, @σ P Σ.

Definition 12 (Random variable). Let pW,Ω, µq be a probability space and
let pS,Σq be a measurable space. A measurable function X : W Ñ S is a
random variable. We call the elements of S the values of X. With P pX P σq
for σ P Σ, we indicate the probability that random variable X has value in σ,
defined as µpX´1pσqq.

If Σ is finite or countable, X is a discrete random variable. If Σ is
uncountable, then X is a continuous random variable.

We indicate random variables with Roman uppercase letters X,Y, . . . and the
values with Roman lowercase letters x, y,

When pW,Ωq “ pS,Σq, X is often the identity function and P pX “ ωq “
µpωq.

In the discrete case, the values of P pX P txuq for all x P S define the
probability distribution of random variable X, often abbreviated as P pX“xq
and P pxq. We indicate the probability distribution for random variable X
with P pXq.

Example 7 (Discrete random variables). An example of a discrete random
variable X for the probability space pW coin,Ωcoin, µcoinq is the identity
function and the probability distribution is P pX“hq “ 0.5, P pX “ tq “ 0.5.
When throwing a die, a discrete random variable X can be the identity and
P pX“nq“1

6 for all n P t1, 2, 3, 4, 5, 6u. Another discrete random variable E
for a die can represent whether the outcome was even or odd with pS,Σq “
pte, ou,PpSqq and E: W die Ñ S defined as E“t1 Ñ o, 2 Ñ e, 3 Ñ

o, 4 Ñ e, 5 Ñ o, 6 Ñ eu. The probability distribution is then P pE “ eq “
µdiept2, 4, 6uq “ 1

6 ˆ 3 “ 1
2 and P pE “ oq “ µdiept1, 3, 5uq “ 1

6 ˆ 3 “ 1
2 .

26 Preliminaries

For the probability space pW 2 coins,Ω2 coins, µ2 coinsq, a discrete random
variable may be the function X : W 2 coins ÑW coin defined as

Xptc1, c2uq “ c1,

i.e., the function returning the outcome of the first coin. For value h PW coin,
we have

X´1pthuq “ tph,hq, ph, tqu

and
P pX “ hq “ µ2 coinsptph, hq, ph, tquq “ 0.5.

In the continuous case, we define the cumulative distribution and the
probability density.

Definition 13 (Cumulative distribution and probability density). The cumu-
lative distribution of a random variable X : pW,Ωq Ñ pR,Bq is the function
F pxq : RÑ r0, 1s defined as

F pxq “ P pX P tt|t ď xuq.

We write P pX P tt|t ď xuq also as P pX ď xq. The probability density of
X is a function ppxq such that

P pX P Aq “

ż

A
ppxqdx

for any measurable set A P B.

It holds that:

F pxq “

ż x

´8

pptqdt

ppxq “
dF pxq

dx

P pX P ra,bsq “ F pbq ´ F paq “

ż b

a
ppxqdx

A discrete random variable is described by giving its probability distribu-
tion P pXq while a continuous random variable is described by giving its
cumulative distribution F pxq or probability density ppxq.

1.5 Probability Theory 27

Example 8 (Continuous random variables). For the probability space of
an object in the unit interval pW unit x,Ωunit x, µunit xq, the identity X is a
continuous random variable with cumulative distribution and density

F pxq “

ż x

0
dt “ x

ppxq “ 1

for x P r0, 1s. For probability space pW pos x,Ωpos x, µpos xq, the identity X
is a continuous random variable with cumulative distribution and density

F pxq “

$

&

%

0 if x ă 0
x if x P r0, 1s
1 if x ą 1

ppxq “

"

1 if x P r0, 1s
0 otherwise

This is an example of an uniform density. In general, the uniform density in
the interval ra,bs is

ppxq “

"

1
b´a if x P ra,bs
0 otherwise

Another notable density is the normal or Gaussian density, with

ppxq “
1

?
2πσ2

e´
px´µq2

2σ2

where µ and σ are parameters denoting the mean and the standard deviation
(σ2 is the variance). We use N pµ, σq to indicate a normal density. Examples
of Gaussian densities for various values of the parameters are shown in
Figure 1.5.

When the values of a random variable are numeric, we can compute its
expected value or expectation, which intuitively is the average of the val-
ues obtained by repeating infinitely often the experiment it represents.
The expectation of a discrete variable X is

EpXq “
ÿ

x

xP pxq

while the expectation of a continuous variable X with domain R is

EpXq “

ż `8

´8

xppxqdx.

28 Preliminaries

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

x

D
en

si
ty

Distributions
μ=0 σ^2=1
μ=0 σ^2=0.2
μ=0 σ^2=5.0
μ=-2 σ^2=0.5

Figure 1.5 Gaussian densities.

Multiple random variables can be defined on the same space pW,Ω, µq,
especially when pW,Ωq ‰ pS,Σq. Suppose two random variables X and
Y are defined on the probability space pW,Ω, µq and measurable spaces
pS1,Σ1q and pS2,Σ2q, respectively. We can define the joint probability
P pX P σ1, Y P σ2q as µpX´1pσ1q X Y´1pσ2qq for σ1 P Σ1 and
σ2 P Σ2. Since X and Y are random variables and Ω is a σ-algebra, then
X´1pσ1q X Y´1pσ2q P Ω and the joint probability is well defined. If X and
Y are discrete, the values of P pX “ txu,Y “ tyuq for all x P S1 and
y P S2 define the joint probability distribution of X and Y often abbreviated
as P pX “ x,Y “ yq and P px, yq. We call P pX,Yq the joint probability
distribution of X and Y. If X and Y are continuous, we can define the joint
cumulative distribution F px, yq as P pX P tt|t ď xu,Y P tt|t ď yuq and
joint probability density as the function ppx, yq such that P pX P A,Y P

Bq “
ş

A

ş

B ppx, yqdxdy.
If X is discrete and Y continuous, we can still define the joint cumulative

distribution F px, yq as P pX “ x,Y P tt|t ď yuq and the joint probability
density as the function ppx, yq such that P pX “ x,Y P Bq “

ş

B ppx, yqdy.

Example 9 (Joint distributions). When throwing two coins, we can define
two random variables X1 and X2 as X1ppc1, c2qq “ c1 and X2ppc1, c2qq “

1.5 Probability Theory 29

c2: the first indicates the outcome of the first coin and the second of the sec-
ond. The joint probability distribution is P pX1 “ x1,X2 “ x2q “

1
4 for all

x1, x2 P th, tu.
For the position of an object on a plane, we can have random variable

X for its position on the X-axis and Y on the Y-axis. An example of joint
probability density is the multivariate normal or Gaussian density

ppxq “
exp

`

´1
2px´ µq

TΣ´1px´ µq
˘

a

p2πqk det Σ
(1.2)

where x is a real two-dimensional column vector, µ is a real two-dimensional
column vector, the mean, Σ is a 2 ˆ 2 symmetric positive-definite1 matrix
called covariance matrix, and det Σ is the determinant of Σ.

A bivariate Gaussian density with parameters µ “ r0, 0sT and

Σ “

„

1 0
0 1



“ I

is shown in Figure 1.6.

x

-4

-2

0

2

4

y

-4

-2

0

2

4

D
ensity

0.00

0.05

0.10

0.15

Figure 1.6 Bivariate Gaussian density.

1All its eigenvalues are positive.

30 Preliminaries

Definition 14 (Product σ-algebra and product space). Given two measurable
spaces pW1,Ω1q and pW2,Ω2q, define the product σ-algebra Ω1 b Ω2 as

Ω1 b Ω2 “ σ ptω1 ˆ ω2|ω1 P Ω1, ω2 P Ω2uq .

Note that Ω1bΩ2 differs from the Cartesian product Ω1ˆΩ2 because it is the
minimal σ-algebra generated by all possible Cartesian products of couples
of elements from Ω1 and Ω2.

Then define the product space pW1,Ω1q ˆ pW2,Ω2q as

pW1,Ω1q ˆ pW2,Ω2q “ pW1 ˆW2,Ω1 b Ω2q.

Given two random variables X and Y that are defined on the probability space
pW,Ω, µq and measurable spaces pS1,Σ1q and pS2,Σ2q, respectively, we can
define the function XY such that XYpwq “ pXpwq,Ypwqq. Such a function
is a random variable defined on the same probability space and the product
measurable space pS1,Σ1q ˆ pS2,Σ2q [Chow and Teicher, 2012, Theorem
1, page 13]. So, for example, two discrete random variables X and Y with
values xi and yj with their joint distribution P pX,Yq can be interpreted as
a random variable XY with values pxi, yjq and distribution P ppX,Yqq. The
results in the following thus apply also by replacing a random variable with
a vector (or set) of random variables. We usually denote vectors of random
variables with boldface capital letters such as X,Y, . . . and vectors of values
with boldface lowercase letters such as x,y,

Definition 15 (Conditional probability). Given two discrete random vari-
ables X and Y and two values x and y for them, if P pxq ą 0, we can define
the conditional probability P px|yq as

P px|yq “
P px, yq

P pyq

If P pyq “ 0, then P px|yq is not defined.
P px|yq provides the probability distribution of variable X given that

random variable Y was observed having value y.

From this, we get the important product rule

P px, yq “ P px|yqP pyq

expressing a joint distribution in terms of a conditional distribution.

1.5 Probability Theory 31

Moreover, x and y can be exchanged obtaining P px, yq “ P py|xqP pxq,
so by equating the two expressions, we find Bayes’ theorem

P px|yq “
P py|xqP pxq

P pyq
.

Now consider two discrete random variables X and Y, with X having a finite
set of values tx1, . . . , xnu, and let y be a value of Y. The sets

X´1ptx1uq XY´1ptyuq, . . . ,X´1ptxnuq XY´1ptyuq

are mutually exclusive because X is a function and

Y´1pyq “ X´1ptx1uq XY´1ptyuq Y . . .YX´1ptxnuq XY´1ptyuq.

Given the fact that probability measures are additive, then

P pX P tx1, . . . , xnu, yq “ P pyq “
n
ÿ

i“1

P pxi, yq

This is the sum rule of probability theory, often expressed as

P pyq “
ÿ

x

P px, yq

The sum rule eliminates a variable from a joint distribution and we also say
that we sum out the variable and that we marginalize the joint distribution.

For continuous random variables, we can similarly define the conditional
density ppX|yq as

ppx|yq “
ppx, yq

ppyq

when ppyq ą 0, and get the following versions of the product and sum rules

ppx, yq “ ppx|yqppyq

ppyq “

ż 8

´8

ppx, yqdx

We can also define conditional expectations as

EpX|yq “
ÿ

x

xP px|yq

EpX|yq “

ż `8

´8

xppx|yqdx.

for X a discrete or continuous variable, respectively.

32 Preliminaries

For continuous random variables, we may have evidence on Y in the form
of the measurement of a value y for it. In many practical cases, such as the
Gaussian distribution, P pyq “ 0 for all values y of Y, so the conditional prob-
ability P pX P ω1, yq is not defined. This is known as the Borel–Kolmogorov
paradox [Gyenis et al., 2017].

In some cases, it can be solved by defining the conditional probability as

P pX P ω1|yq “ lim
dvÑ0

P pX P ω1,Y P ry ´ dv{2, y ` dv{2sq

P pY P ry ´ dv{2, y ` dv{2sq
.

However, the limit is not always defined.

Definition 16 (Independence and conditional indepedence). Two random
variables X and Y are independent, indicated with IpX,Y,Hq iff

P px|yq “ P pxq whenever P pyq ą 0

Two random variables X and Y are conditionally independent given Z,
indicated with IpX,Y,Zq iff

P px|y, zq “ P px|zq whenever P py, zq ą 0

1.6 Probabilistic Graphical Models

It is often convenient to describe a domain using a set of random variables.
For example, a home intrusion detection system can be described with the
random variables

• Earthquake E, which assumes value true (t) if an earthquake occurred
and false (f) otherwise;
• Burglary B, which assumes value true (t) if a burglary occurred and false

(f) otherwise;
• Alarm A, which assumes value true (t) if the alarm went off and false

(f) otherwise;
• Neighbor call N, which assumes value true (t) if the neighbor called and

false (f) otherwise.

These variables may describe the situation of the system at a particular point
in time, such as last night. We would like to answer the questions such as

1.6 Probabilistic Graphical Models 33

• What is the probability of a burglary? (compute P pB “ tq, belief
computation)
• What is the probability of a burglary given that the neighbor called?

(compute P pB “ t|N “ tq, belief updating)
• What is the probability of a burglary given that there was an earthquake

and the neighbor called? (compute P pB “ t|N “ t,E “ tq, belief
updating)
• What is the probability of a burglary and of the alarm ringing given

that there was an earthquake and the neighbor called? (compute P pA “
t,B “ t|N “ t,E “ tq, belief updating)
• What is the most likely value for burglary given that the neighbor called?

(arg maxb P pb|N “ tq, belief revision).

When assigning a causal meaning to the variables, the problems are also
called

• Diagnosis: computing P pcause|symptomq.
• Prediction: computing P psymptom|causeq.

Moreover, another inference problem is

• Classification: computing arg maxclass P pclass|dataq.

In general, we want to compute the probability P pq|eq of a query q (assign-
ment of values to a set of variables Qq given the evidence e (assignment
of values to a set of variables E). This problem is called inference. If X
denotes the set of all variables describing the domain and we know the joint
probability distribution P pXq, i.e., we know P pxq for all x, we can answer
all types of queries using the definition of conditional probability and the
sum rule:

P pq|eq “
P pq, eq

P peq
“

ř

y,Y“XzQzE P py,q, eq
ř

z,Z“XzE P pz, eq

However, if we have n binary variables (|X| “ n), knowing the joint proba-
bility distribution requires storing Op2nq different values. Even if we had the
space to store all the 2n different values, computing P pq|eq would require
Op2nq operations. Therefore, this approach is impractical for real-world
problems and a different solution must be adopted.

First note that if X “ tX1, . . . ,Xnu, a value of X is a tuple px1, . . . , xnq
also called a joint event and we can write

34 Preliminaries

P pxq “ P px1, . . . , xnq “

P pxn|xn´1, . . . , x1qP pxn´1, . . . , x1q “

. . .

P pxn|xn´1, . . . , x1q . . . P px2|x1qP px1q “ (1.3)
n
ź

i“1

P pxi|xi´1, . . . , x1q

where Equation (1.3) is obtained by repeated application of the product rule.
This formula expresses the so-called chain rule.

Now if we knew, for each variable Xi, a subset Pai of tXi´1, . . . ,X1u

such that Xi is conditionally independent of tXi´1, . . . ,X1uzPai
given Pai, i.e.,

P pxi|xi´1, . . . , x1q “ P pxi|paiq whenever P pxi´1, . . . , x1q ą 0,

then we could write

P pxq “ P px1, . . . , xnq “

P pxn|xn´1, . . . , x1q . . . P px2|x1qP px1q “

P pxn|panq . . . P px2|pa1qP px1|pa1q “
n
ź

i“1

P pxi|paiq

Therefore, in order to compute P pxq, we have to store P pxi|paiq for
all values xi and pai. The set of values P pxi|paiq is called the Condi-
tional Probability Table (CPT) of variable Xi. If Pai is much smaller than
tXi´1, . . . ,X1u, then we have huge savings. For example, if k is the maxi-
mum size of Pai, then the storage requirements areOpn2kq instead ofOp2nq.
So it is important to take into account independencies among the variables
as they enable much faster inference. One way to do this is by means of
graphical models that are graph structures that represent independencies.

An example of a graphical model is a Bayesian Network (BN) [Pearl,
1988] that represents a set of variables with a directed graph with a node per
variable and an edge from Xj to Xi only if Xj P Pai. The variables in Pai
are in fact also called the parents of Xi and Xi is called a child of every node
in Pai. Given that Pai Ď tXi´1, . . . ,X1u, the parents of Xi will always
have an index lower than i and the ordering xX1, . . . ,Xny is a topological
sort of the graph that is therefore acyclic. A BN together with the set of CPTs
P pxi|paiq defines a joint probability distribution.

1.6 Probabilistic Graphical Models 35

Figure 1.7 Example of a Bayesian network.

Example 10 (Alarm – BN). For our intrusion detection system and the
variable order xE,B,A,Ny, we can identify the following independencies

P peq “ P peq

P pb|eq “ P pbq

P pa|b, eq “ P pa|b, eq

P pn|a, b, eq “ P pn|aq

which result in the BN of Figure 1.7 that also shows the CPTs.

When a CPT contains only the values 0.0 and 1.0, the dependency of the
child from its parents is deterministic and the CPT encodes a function: given
the values of the parents, the value of the child is completely determined. For
example, if the variables are Boolean, a deterministic CPT can encode the
AND or the OR Boolean function.

The concepts of ancestors of a node and of descendants of a node are
defined as the transitive closure of the parent and child relationships: if there
is a directed path from Xi to Xj , then Xi is an ancestor of Xj and Xj

is a descendant of Xi. Let ANCpXq (DESCpXq) be the set of ancestors
(descendants) of X.

From the definition of BN, we know that, given its parents, a variable
is independent of its other ancestors. However, BNs allow reading other
independence relationship using the notion of d-separation.

Definition 17 (d-separation [Murphy, 2012]). An undirected path P in a BN
is a path connecting two nodes not considering edge directions.

An undirected path P is d-separated by a set of nodes C iff at least one of
the following conditions hold:

36 Preliminaries

• P contains a chain, S Ñ M Ñ T or S Ð M Ð T; where M P C;
• P contains a fork, S Ð M Ñ T, where M P C
• P contains a collider S Ñ M Ð T, where M R C and
@X P DESCpMq : X R C.

Two sets of random variables A and B are d-separated given a set C if and
only if each undirected path from every node A P A to every node B P B is
d-separated by C.

It is possible to prove that A is independent from B given C iff A is
d-separated from B given C, so d-separation and conditional independence
are equivalent.

The set of parents, children, and other children of the parents of a variable
d-separates it from the other variables, so forms a sufficient set of nodes
to make the variable independent from all the others. Such a set is called
a Markov blanket and is shown in Figure 1.8.

Graphical models are a way to represent a factorization of a joint prob-
ability distribution. BNs represent a factorization in terms of conditional
probabilities. In general, a factorized model takes the form

P pxq “

śm
i“1 φipxiq

Z

where each φipxiq for i “ 1, . . . ,m is a potential or factor, a function taking
non-negative values on a subset Xi of X. Factors are indicated with φ, ψ, . . .

A

Figure 1.8 Markov blanket. Figure from https://commons.wikimedia.org/wiki/File:
Diagram of a Markov blanket.svg.

1.6 Probabilistic Graphical Models 37

Since the numerator of the fraction may not lead to a probability distri-
bution (the sum of all possible values at the numerator may not be one), the
denominator Z is added that makes the expression a probability distribution
since it is defined as

Z “
ÿ

x

ź

i

φipxiq

i.e., it is exactly the sum of all possible values of the numerator. Z is thus a
normalizing constant and is also called partition function.

A potential φipxiq can be seen as a table that, for each possible combina-
tion of values of the variables in Xi, returns a non-negative number. Since
all potentials are non-negative, P pxq ě 0 for all x. Potentials influence
the distribution in this way: all other things being equal, a larger value
of a potential for a combination of values of the variables in its domain
corresponds to a larger probability value of the instantiation of X.

An example of a potential for a university domain is a function defined
over the random variables Intelligent and GoodMarks expressing the fact that
a student is intelligent and that he gets good marks, respectively. The potential
may be represented by the table

Intelligent GoodMarks φipI,Gq
false false 4.5
false true 4.5
true false 1.0
true true 4.5

where the configuration where the student is intelligent but he does not get
good marks has a lower value than the other configurations.

A BN can be seen as defined a factorized model with a potential for each
family of nodes (a node and its parents) defined as φipxi,paiq “ P pxi|paiq.
It is easy to see that in this case Z “ 1.

If all the potentials are strictly positive, we can replace each feature φipxiq
with the exponential exppwifipxiqq with wi a real number called weight and
fipxiq a function from the values of Xi to the reals (often only to t0, 1uq
called feature. If the potentials are strictly positive, this reparameterization is
always possible. In this case, the factorized model becomes:

P pxq “
expp

ř

iwifipxiqq

Z

Z “
ÿ

x

expp
ÿ

i

wifipxiqq

38 Preliminaries

This is also called a log-linear model because the logarithm of the joint is a
linear function of the features. An example of a feature corresponding to the
example potential above is

fipIntelligent,GoodMarksq “

"

1 if Intelligent_GoodMarks
0 otherwise

If wi “ 1.5, then φipi, gq “ exppwifipi, gqq for all values i, g for random
variables I,G in our university example.

A Markov Network (MN) or Markov random field [Pearl, 1988] is an
undirected graph that represents a factorized model. An MN has a node
for each variable and each couple of nodes that appear together in the
domain of a potential are connected by an edge. In other words, the nodes
in the domain of each potential form a clique, a fully-connected subset of
the nodes.

Example 11 (University – MN). An MN for a university domain is shown
in Figure 1.9. The network contains the example potential above plus
a potential involving the three variables GoodMarks, CouDifficulty, and
TeachAbility.

As BNs, MNs also allow reading off independencies from the graph. In an
MN where P pxq ą 0 for all x (a strictly positive distribution), two sets
of random variables A and B are independent given a set C if and only if
each path from every node A P A to every node B P B passes through an
element of C [Pearl, 1988]. Then the Markov blanket of a variable is the set
of its neighbors. So reading independencies from the graph is much easier
than for BNs.

MNs and BNs can each represent independencies that the other cannot
represent [Pearl, 1988], so their expressive power is not comparable. MNs
have the advantage that the potentials/features can be defined more freely,
because they do not have to respect the normalization that conditional proba-
bilities must respect. On the other hand, parameters in an MN are difficult

Figure 1.9 Example of a Markov newtork.

1.6 Probabilistic Graphical Models 39

to interpret, because their influence on the joint distribution depends on
the whole set of potentials, while in a BN, the parameters are conditional
probabilities, so they are easier to interpret and to estimate.

Given a BN, an MN representing the same joint distribution can be
obtained by moralizing the graph: adding edges between all pairs of
nodes that have a common child (marrying the parents), and then mak-
ing all edges in the graph undirected. In this way, each family tXi,Paiu
of the BN forms a clique in the MN associated with the potential
φipxi,paiq “ P pxi|paiq.

Given an MN, an equivalent BN can be obtained containing a node for
each variable plus a Boolean node Fi for each potential φi. Edges are then
added so that a potential node has all the nodes in its scope as parents. The
BN equivalent to the MN of Figure 1.9 is shown in Figure 1.10.

The CPT for node Fi is

P pFi “ 1|xiq “
φipxiq

Ci

where Ci is a constant depending on the potential that ensures that the values
are probabilities, i.e., that they are in r0, 1s. It can be chosen freely provided
that Ci ě maxxi φpxiq, for example, it can be chosen as Ci “ maxxi φpxiq
or Ci “

ř

xi
φipxiq. The CPT for each variable node assigns uniform

probability to its values, i.e., P pxjq “ 1
kj

where kj is the number of values
of Xj .

Then the joint conditional distribution P px|F “ 1q of the BN is equal to
the joint of the MN. In fact

P px,F “ 1q “
ź

i

P pFi “ 1|xiq
ź

j

P pxjq “
ź

i

φipxiq

Ci

ź

j

1

kj
“

ś

i φipxiq
ś

iCi

ź

j

1

kj

Figure 1.10 Bayesian network equivalent to the Markov network of Figure 1.9.

40 Preliminaries

Figure 1.11 Example of a factor graph.

and

P px|F “ 1q “
P px,F “ 1q

P pF “ 1q
“

P px,F “ 1q
ř

x1 P px
1,F “ 1q

“

ś

i φipxiq
ś

i Ci

ś

j
1
kj

ř

x1

ś

i φipx
1
iq

ś

i Ci

ś

j
1
kj

“

1
ś

i Ci

ś

j
1
kj

ś

i φipxiq

1
ś

i Ci

ś

j
1
kj

ř

x1
ś

i φipx
1
iq
“

ś

i φipxiq

Z

So, a query q given evidence e to the MN can be answered using the
equivalent BN by computing P pq|e,F “ 1q.

The equivalent BN encodes the same conditional independencies as the
MN provided that the set of condition nodes is extended with the set of
factor nodes, so an independence IpA,B,Cq holding in the MN will hold
in the equivalent BN in the form IpA,B,C Y Fq. For example, a couple
of nodes from the scope Xi of a factor given the factor node Fi cannot be
made independent no matter what other nodes are added to the condition set
because of d-separation, just as in the MN where they form a clique.

A third type of graphical model is the Factor Graph (FG) which can
represent general factorized models. An FG is undirected and bipartite, i.e.,
its nodes are divided into two disjoint sets, the set of variables and the set
of factors, and the edges always have an endpoint in a set and the other
in the other set. A factor corresponds to a potential in the model. An FG
contains an edge connecting each factor with all the variables in its domain.
So from an FG, one can immediately read the factorization of the model. An
FG representing the factorized model of Figure 1.9 is shown in Figure 1.11.

FGs are specially useful for expressing inference algorithms, in particular
the formulas for belief propagation are simpler to express for FGs than for
BNs and MNs.

2
Probabilistic Logic Programming

Languages

Various approaches have been proposed for combining logic programming
with probability theory. They can be broadly classified into two categories:
those based on the Distribution Semantics (DS) [Sato, 1995] and those that
follow a Knowledge Base Model Construction (KBMC) approach.

For languages in the first category, a probabilistic logic program without
function symbols defines a probability distribution over normal logic pro-
grams (termed worlds). To define the probability of a query, this distribution is
extended to a joint distribution of the query and the worlds and the probability
of the query is obtained from the joint distribution by marginalization, i.e.,
by summing out the worlds. For probabilistic logic programs with function
symbols, the definition is more complex, see Chapter 3.

The distribution over programs is defined by encoding random choices
for clauses. Each choice generates an alternative version of the clause and
the set of choices is associated with a probability distribution. The various
languages that follow the DS differ in how the choices are encoded. In all
languages, however, choices are independent from each other.

In the KBMC approach, instead, a probabilistic logic program is a com-
pact way of encoding a large graphical model, either a BN or MN. In the
KBMC approach, the semantics of a program is defined by the method for
building the graphical model from the program.

2.1 Languages with the Distribution Semantics

The languages following DS differ in how they encode choices for clauses,
and how the probabilities for these choices are stated. As will be shown in
Section 2.4, they all have the same expressive power. This fact shows that
the differences in the languages are syntactic, and also justifies speaking
of the DS.

41

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

42 Probabilistic Logic Programming Languages

2.1.1 Logic Programs with Annotated Disjunctions

In Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al.,
2004], the alternatives are expressed by means of annotated disjunctive heads
of clauses. An annotated disjunctive clause Ci has the form

hi1 : Πi1 ; . . . ; hini : Πini Ð bi1, . . . , bimi

where hi1, . . . , hini are logical atoms, bi1, . . . , bimi are logical literals, and
Πi1, . . . , Πini are real numbers in the interval r0, 1s such that

řni
k“1 Πik “ 1.

An LPAD is a finite set of annotated disjunctive clauses.
Each world is obtained by selecting one atom from the head of each

grounding of each annotated disjunctive clause.

Example 12 (Medical symptoms – LPAD). The following LPAD models the
appearance of medical symptoms as a consequence of disease. A person may
sneeze if he has the flu or if he has hay fever:

sneezingpXq : 0.7 ; null : 0.3Ð flupXq.
sneezingpXq : 0.8 ; null : 0.2Ð hay feverpXq.
flupbobq.
hay feverpbobq.

The first clause can be read as: if X has the flu, then X sneezes with prob-
ability 0.7 and nothing happens with probability 0.3. Similarly, the second
clause can be read as: ifX has hay fever, thenX sneezes with probability 0.8
and nothing happens with probability 0.2. Here, and for the other languages
based on the distribution semantics, the atom null does not appear in the
body of any clause and is used to represent an alternative in which no atom
is selected. It can also be omitted obtaining

sneezingpXq : 0.7Ð flupXq.
sneezingpXq : 0.8Ð hay feverpXq.
flupbobq.
hay feverpbobq.

As can be seen from the example, LPADs encode in a natural way programs
representing causal mechanisms: flu and hay fever are causes for sneezing,
which, however, is probabilistic, in the sense that it may or may not happen
even when the causes are present. The relationship between the DS, and
LPADs in particular, and causal reasoning is discussed in Section 2.8.

Francisco Coelho

Francisco Coelho

Francisco Coelho

2.1 Languages with the Distribution Semantics 43

2.1.2 ProbLog

The design of ProbLog [De Raedt et al., 2007] was motivated by the desire to
make the simplest probabilistic extension of Prolog. In ProbLog, alternatives
are expressed by probabilistic facts of the form

Πi :: fi

where Πi P r0, 1s and fi is an atom, meaning that each ground instantiation
fiθ of fi is true with probability Πi and false with probability 1 ´ Πi. Each
world is obtained by selecting or rejecting each grounding of all probabilistic
facts.

Example 13 (Medical symptoms – ProbLog). Example 12 can be expressed
in ProbLog as:

sneezingpXq Ð flupXq,flu sneezingpXq.
sneezingpXq Ð hay feverpXq, hay fever sneezingpXq.
flupbobq.
hay feverpbobq.
0.7 :: flu sneezingpXq.
0.8 :: hay fever sneezingpXq.

2.1.3 Probabilistic Horn Abduction

Probabilistic Horn Abduction (PHA) [Poole, 1993b] and Independent Choice
Logic (ICL) [Poole, 1997] express alternatives by facts, called disjoint
statements, having the form

disjointprai1 : Πi1, . . . , ain : Πinisq.

where each aik is a logical atom and each Πik a number in r0, 1s such that
řni
k“1 Πik “ 1. Such a statement can be interpreted in terms of its ground

instantiations: for each substitution θ grounding the atoms of the statement,
the aikθs are random alternatives and aikθ is true with probability Πik. Each
world is obtained by selecting one atom from each grounding of each disjoint
statement in the program. In practice, each ground instantiation of a disjoint
statement corresponds to a random variable with as many values as the
alternatives in the statement.

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

44 Probabilistic Logic Programming Languages

Example 14 (Medical symptoms – ICL). Example 12 can be expressed in
ICL as:

sneezingpXq Ð flupXq,flu sneezingpXq.
sneezingpXq Ð hay feverpXq, hay fever sneezingpXq.
flupbobq.
hay feverpbobq.

disjointprflu sneezingpXq : 0.7, null : 0.3sq.
disjointprhay fever sneezingpXq : 0.8, null : 0.2sq.

In ICL, LPADs, and ProbLog, each grounding of a probabilistic clause is
associated with a random variable with as many values as alternatives/head
disjuncts for ICL and LPADs and with two values for ProbLog. The random
variables corresponding to different instantiations of a probabilistic clause are
independent and identically distributed (IID).

2.1.4 PRISM

The language PRISM [Sato and Kameya, 1997] is similar to PHA/ICL but
introduces random facts via the predicate msw{3 (multi-switch):

mswpSwitchName,TrialId ,Valueq.

The first argument of this predicate is a random switch name, a term repre-
senting a set of discrete random variables; the second argument is an integer,
the trial id; and the third argument represents a value for that variable. The
set of possible values for a switch is defined by a fact of the form

valuespSwitchName, rv1, . . . , vnsq.

where SwitchName is again a term representing a switch name and each
vi is a term. Each ground pair pSwitchName,TrialIdq represents a distinct
random variable and the set of random variables associated with the same
switch are IID.

The probability distribution over the values of the random variables
associated with SwitchName is defined by a directive of the form

Ð set swpSwitchName, rΠ1, . . . ,Πnsq.

where pi is the probability that variable SwitchName takes value vi. Each
world is obtained by selecting one value for each trial id of each random
switch.

Francisco Coelho

Francisco Coelho

2.2 The Distribution Semantics for Programs Without Function Symbols 45

Example 15 (Coin tosses – PRISM). The modeling of coin tosses shows dif-
ferences in how the various PLP languages represent IID random variables.
Suppose that coin c1 is known not to be fair, but that all tosses of c1 have the
same probabilities of outcomes – in other words, each toss of c1 is taken from
a family of IID random variables. This can be represented in PRISM as

valuespc1, rhead, tailsq.
Ð set swpc1, r0.4, 0.6sq

Different tosses of c1 can then be identified using the trial id argument of
msw{3.

In PHA/ICL and many other PLP languages, each ground instantiation of
a disjoint/1 statement represents a distinct random variable, so that IID ran-
dom variables need to be represented through the statement’s instantiation
patterns: e.g.,

disjointprcoinpc1,TossNumber , headq : 0.4,
coinpc1,TossNumber , tailq : 0.6sq.

In practice, the PRISM system accepts an msw{2 predicate whose atoms
do not contain the trial id and for which each occurrence in a program is
considered as being associated with a different new variable.

Example 16 (Medical symptoms – PRISM). Example 14 can be encoded in
PRISM as:

sneezingpXq Ð flupXq,mswpflu sneezingpXq, 1q.
sneezingpXq Ð hay feverpXq,mswphay fever sneezingpXq, 1q.
flupbobq.
hay feverpbobq.

valuespflu sneezingp Xq, r1, 0sq.
valuesphay fever sneezingp Xq, r1, 0sq.
Ð set swpflu sneezingp Xq, r0.7, 0.3sq.
Ð set swphay fever sneezingp Xq, r0.8, 0.2sq.

2.2 The Distribution Semantics for Programs Without
Function Symbols

We present first the DS for the case of ProbLog as it is the language with
the simplest syntax. A ProbLog program P is composed by a set of normal

Francisco Coelho

46 Probabilistic Logic Programming Languages

rules R and a set F of probabilistic facts. Each probabilistic fact is of the
form Πi :: fi where Πi P r0, 1s and fi is an atom1, meaning that each ground
instantiation fiθ of fi is true with probability Πi and false with probability
1 ´ Πi. Each world is obtained by selecting or rejecting each grounding of
each probabilistic fact.

An atomic choice indicates whether grounding fθ of a probabilistic fact
F “ p :: f is selected or not. It is represented with the triple pf, θ, kq where
k P t0, 1u and k “ 1 means that the fact is selected, k “ 0 that it is not. A
set κ of atomic choices is consistent if it does not contain two atomic choices
pf, θ, kq and pf, θ, jq with k ‰ j (only one alternative is selected for a ground
probabilistic fact). The function consistentpκq returns true if κ is consistent.
A composite choice κ is a consistent set of atomic choices. The probability of
composite choice κ is

P pκq “
ź

pfi,θ,1qPκ

Πi

ź

pfi,θ,0qPκ

1´Πi.

A selection σ is a total composite choice, i.e., contains one atomic choice for
every grounding of every probabilistic fact. A world wσ is a logic program
that is identified by a selection σ. The world wσ is formed by including the
atom corresponding to each atomic choice pf, θ, 1q of σ.

The probability of a world wσ is P pwσq “ P pσq. Since in this section we
are assuming programs without function symbols, the set of groundings of
each probabilistic fact is finite, and so is the set of worlds WP . Accordingly,
for a ProbLog program P , WP “ tw1, . . . , wmu. Moreover, P pwq is a
distribution over worlds:

ř

wPWP
P pwq “ 1. We call sound a program

for which every world has a two-valued WFM. We consider here sound
programs, for non-sound ones, see Section 2.9.

Let q be a query in the form of a ground atom. We define the conditional
probability of q given a world w as: P pq|wq “ 1 if q is true in w and 0
otherwise. Since the program is sound, q can be only true or false in a world.
The probability of q can thus be computed by summing out the worlds from
the joint distribution of the query and the worlds:

P pqq “
ÿ

w

P pq, wq “
ÿ

w

P pq|wqP pwq “
ÿ

w(q

P pwq. (2.1)

This formula can also be used for computing the probability of a conjunction
q1, . . . , qn of ground atoms since the truth of a conjunction of ground atoms

1With an abuse of notation, sometimes we use F to indicate the set containing the atoms
fis. The meaning of F will be clear from the context.

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

Francisco Coelho

2.2 The Distribution Semantics for Programs Without Function Symbols 47

in a world is well defined. So we can compute the conditional probability
of a query q given evidence e in the form of a conjunction of ground atoms
e1, . . . , em as

P pq|eq “
P pq, eq

P peq
(2.2)

We can also assign a probability to a query q by defining a probability space.
Since WP is finite, then pWP ,PpWPqq is a measurable space. For an element
ω P PpWPq, define µpωq as

µpωq “
ÿ

wPω

P pwq

with the probability of a world P pwq defined as above. Then it’s easy to see
that pWP ,PpWPq, µq is a finitely additive probability space.

Given a ground atom q, define the function Q : WP Ñ t0, 1u as

Qpwq “

"

1 if w (q
0 otherwise

(2.3)

Since the set of events is the powerset, then Q´1pγq P PpWPq for all
γ Ď t0, 1u and Q is a random variable. The distribution of Q is defined by
P pQ “ 1q (P pQ “ 0q is given by 1´P pQ “ 1q) and we indicate P pQ “ 1q
with P pqq.

We can now compute P pqq as

P pqq “ µpQ´1pt1uqq “ µptw|w PWP , w (quq “
ÿ

w(q

P pwq

obtaining the same formula as Equation (2.1).
The distribution over worlds also induces a distribution over interpreta-

tions: given an interpretation I , we can define the conditional probability of
I given a world w as: P pI|wq “ 1 is I is the model of w (I (w) and 0
otherwise. The distribution over interpretations is then given by a formula
similar to Equation (2.1):

P pIq “
ÿ

w

P pI, wq “
ÿ

w

P pI|wqP pwq “
ÿ

I(w

P pwq (2.4)

We call the interpretations I for which P pIq ą 0 possible models because
they are models for at least one world.

Francisco Coelho

Francisco Coelho

48 Probabilistic Logic Programming Languages

Now define the function I : WP Ñ t0, 1u as

IpIq “

"

1 if I (w
0 otherwise

(2.5)

I´1pγq P PpWPq for all γ Ď t0, 1u so I is a random variable for probability
space pWP ,PpWPq, µq. The distribution of I is defined by P pI “ 1q and we
indicate P pI “ 1q with P pIq.

We can now compute P pIq as

P pIq “ µpI´1pt1uqq “ µptw|w PWP , I (wuq “
ÿ

I(w

P pwq

obtaining the same formula as Equation (2.4).
The probability of a query q can be obtained from the distribution over

interpretations by defining the conditional probability of q given an interpre-
tation I as P pq|Iq “ 1 if I (q and 0 otherwise and by marginalizing the
interpretations obtaining

P pqq “
ÿ

I

P pq, Iq “
ÿ

I

P pq|IqP pIq “
ÿ

I(q

P pIq “
ÿ

I(q,I(w

P pwq (2.6)

So the probability of a query can be obtained by summing the probability of
the possible models where the query is true.

Example 17 (Medical symptoms – worlds – ProbLog). Consider the
program of Example 13. The program has four worlds

w1 “ t w2 “ t

flu sneezingpbobq.
hay fever sneezingpbobq. hay fever sneezingpbobq.

u u

P pw1q “ 0.7ˆ 0.8 P pw2q “ 0.3ˆ 0.8
w3 “ t w4 “ t

flu sneezingpbobq.
u u

P pw3q “ 0.7ˆ 0.2 P pw4q “ 0.3ˆ 0.2

The query sneezingpbobq is true in three worlds and its probability

P psneezingpbobqq “ 0.7ˆ 0.8` 0.3ˆ 0.8` 0.7ˆ 0.2 “ 0.94.

2.2 The Distribution Semantics for Programs Without Function Symbols 49

Note that the contributions from the two clauses are combined disjunctively.
The probability of the query is thus computed using the rule giving the
probability of the disjunction of two independent Boolean random variables:

P pa_ bq “ P paq ` P pbq ´ P paqP pbq “ 1´ p1´ P paqqp1´ P pbqq.

In our case, P psneezingpbobqq “ 0.7` 0.8´ 0.7 ¨ 0.8 “ 0.94.

We now give the semantics for LPADs. A clause

Ci “ hi1 : Πi1 ; . . . ; hini : Πini Ð bi1, . . . , bimi

stands for a set of probabilistic clauses, one for each ground instantiation Ciθ
of Ci. Each ground probabilistic clause represents a choice among ni normal
clauses, each of the form

hikÐ bi1, . . . , bimi

for k “ 1 . . . , ni. Moreover, another clause

nullÐ bi1, . . . , bimi

is implicitly encoded which is associated with probability Π0 “ 1´
řni
k“1 Πk.

So for LPAD P an atomic choice is the selection of a head atom for a
grounding Ciθj of a probabilistic clause Ci, including the atom null. An
atomic choice is represented in this case by the triple pCi, θj , kq, where θj is
a grounding substitution and k P t0, 1, . . . , niu. An atomic choice represents
an equation of the form Xij “ k where Xij is a random variable associated
with Ciθj . The definition of consistent set of atomic choices, of composite
choices, and of the probability of a composite choice is the same as for
ProbLog. Again, a selection σ is a total composite choice (one atomic choice
for every grounding of each probabilistic clause). A selection σ identifies
a logic program wσ (a world) that contains the normal clauses obtained by
selecting head atom hikθ for each atomic choice pCi, θ, kq:

wσ “ t phikÐ bi1, . . . , bimiqθ|pCi, θ, kq P σ,
Ci “ hi1 : Πi1 ; . . . ; hini : Πini Ð bi1, . . . , bimi , Ci P Pu

As for ProbLog, the probability of wσ is P pwσq “ P pσq “
ś

pCi,θj ,kqPσ
Πik,

the set of worlds WP “ tw1, . . . , wmu is finite, and P pwq is a distribution
over worlds.

If q is a query, we can define P pq|wq as for ProbLog and again the
probability of q is given by Equation (2.1)

Francisco Coelho

50 Probabilistic Logic Programming Languages

Example 18 (Medical symptoms – worlds – LPAD). The LPAD of Exam-
ple 12 has four worlds:

w1 “ t

sneezingpbobq Ð flupbobq.
sneezingpbobq Ð hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw1q “ 0.7ˆ 0.8

w2 “ t

nullÐ flupbobq.
sneezingpbobq Ð hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw2q “ 0.3ˆ 0.8

w3 “ t

sneezingpbobq Ð flupbobq.
nullÐ hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw3q “ 0.7ˆ 0.2

w4 “ t

nullÐ flupbobq.
nullÐ hay feverpbobq.
flupbobq. hay feverpbobq.

u

P pw4q “ 0.3ˆ 0.2

sneezingpbobq is true in three worlds and its probability is

P psneezingpbobqq “ 0.7ˆ 0.8` 0.3ˆ 0.8` 0.7ˆ 0.2 “ 0.94

2.3 Examples of Programs

In this section, we provide some examples of programs to better illustrate the
syntax and the semantics.

2.3 Examples of Programs 51

Example 19 (Detailed medical symptoms – LPAD). The following LPAD2

models a program that describe medical symptoms in a way that is slightly
more elaborated than Example 12:

strong sneezingpXq : 0.3 ; moderate sneezingpXq : 0.5Ð
flupXq.

strong sneezingpXq : 0.2 ; moderate sneezingpXq : 0.6Ð
hay feverpXq.

flupbobq.
hay feverpbobq.

Here the clauses have three alternatives in the head of which the
one associated with atom null is left implicit. This program has nine
worlds, the query strong sneezingpbobq is true in five of them, and
P pstrong sneezingpbobqq “ 0.44.

Example 20 (Coin – LPAD). The coin example of [Vennekens et al., 2004]
is represented as3:

headspCoinq : 1{2 ; tailspCoinq : 1{2Ð
tosspCoinq,„biasedpCoinq.

headspCoinq : 0.6 ; tailspCoinq : 0.4Ð
tosspCoinq, biasedpCoinq.

fairpCoinq : 0.9 ; biasedpCoinq : 0.1.
tosspcoinq.

The first clause states that, if we toss a coin that is not biased, it has equal
probability of landing heads and tails. The second states that, if the coin is
biased, it has a slightly higher probability of landing heads. The third states
that the coin is fair with probability 0.9 and biased with probability 0.1 and
the last clause states that we toss the coin with certainty. This program has
eight worlds, the query headspcoinq is true in four of them, and its probability
is 0.51.

Example 21 (Eruption – LPAD). Consider this LPAD4 from Riguzzi and
Di Mauro [2012] that is inspired by the morphological characteristics of the
Italian island of Stromboli:

2http://cplint.eu/e/sneezing.pl
3http://cplint.eu/e/coin.pl
4http://cplint.eu/e/eruption.pl

52 Probabilistic Logic Programming Languages

C1 “ eruption : 0.6 ; earthquake : 0.3 :- sudden energy release,
fault rupturepXq.

C2 “ sudden energy release : 0.7.
C3 “ fault rupturepsouthwest northeastq.
C4 “ fault rupturepeast westq.

The island of Stromboli is located at the intersection of two geological faults,
one in the southwest–northeast direction, the other in the east–west direction,
and contains one of the three volcanoes that are active in Italy. This program
models the possibility that an eruption or an earthquake occurs at Stromboli.
If there is a sudden energy release under the island and there is a fault
rupture, then there can be an eruption of the volcano on the island with
probability 0.6 or an earthquake in the area with probability 0.3. The energy
release occurs with probability 0.7 and we are sure that ruptures occur in
both faults.

Clause C1 has two groundings, C1θ1 with

θ1 “ tX{southwest northeastu

and C1θ2 with
θ2 “ tX{east westu,

while clause C2 has a single grounding C2H. Since C1 has three head atoms
and C2 two, the program has 3 ˆ 3 ˆ 2 worlds. The query eruption is true
in five of them and its probability is P peruptionq “ 0.6 ¨ 0.6 ¨ 0.7` 0.6 ¨ 0.3 ¨
0.7` 0.6 ¨ 0.1 ¨ 0.7` 0.3 ¨ 0.6 ¨ 0.7` 0.1 ¨ 0.6 ¨ 0.7 “ 0.588.

Example 22 (Monty Hall puzzle – LPAD). The Monty Hall puzzle
[Baral et al., 2009] refers to the TV game show hosted by Monty Hall in
which a player has to choose which of three closed doors to open. Behind one
door, there is a prize, while behind the other two, there is nothing. Once the
player has selected the door, Monty Hall opens one of the remaining closed
doors which does not contain the prize, and then he asks the player if he
would like to change his door with the other closed door or not. The problem
of this game is to determine whether the player should switch. The following
program provides a solution5. The prize is behind one of the three doors with
the same probability:

prizep1q : 1{3 ; prizep2q : 1{3 ; prizep3q : 1{3.
The player has selected door 1:

selectedp1q.

5http://cplint.eu/e/monty.swinb

2.3 Examples of Programs 53

Monty opens door 2 with probability 0.5 and door 3 with probability 0.5 if the
prize is behind door 1:

open doorp2q : 0.5 ; open doorp3q : 0.5Ð prizep1q.
Monty opens door 2 if the prize is behind door 3:

open doorp2q Ð prizep3q.
Monty opens door 3 if the prize is behind door 2:

open doorp3q Ð prizep2q.
The player keeps his choice and wins if he has selected a door with the prize:

win keepÐ prizep1q.
The player switches and wins if the prize is behind the door that he has not
selected and that Monty did not open:

win switchÐ prizep2q, open doorp3q.
win switchÐ prizep3q, open doorp2q.

Querying win keep and win switch we obtain probability 1/3 and 2/3
respectively, so the player should switch. Note that if you change the proba-
bility distribution of Monty selecting a door to open when the prize is behind
the door selected by the player, then the probability of winning by switching
remains the same.

Example 23 (Three-prisoner puzzle – LPAD). The following program6 from
[Riguzzi et al., 2016a] encodes the three-prisoner puzzle. In Grünwald and
Halpern [2003], the problem is described as:

Of three prisoners a, b, and c, two are to be executed, but a does
not know which. Thus, a thinks that the probability that i will be
executed is 2/3 for i P ta, b, cu. He says to the jailer, “Since
either b or c is certainly going to be executed, you will give me
no information about my own chances if you give me the name of
one man, either b or c, who is going to be executed.” But then, no
matter what the jailer says, naive conditioning leads a to believe
that his chance of execution went down from 2/3 to 1/2.

Each prisoner is safe with probability 1/3:
safepaq : 1{3 ; safepbq : 1{3 ; safepcq : 1{3.

If a is safe, the jailer tells that one of the other prisoners will be executed
uniformly at random:

tell executedpbq : 1{2 ; tell executedpcq : 1{2Ð safepaq.
Otherwise, he tells that the only unsafe prisoner will be executed:

6http://cplint.eu/e/jail.swinb

54 Probabilistic Logic Programming Languages

tell executedpbq Ð safepcq.
tell executedpcq Ð safepbq.

The jailer speaks if he tells that somebody will be executed:
tellÐ tell executedp q.

a is safe after the jailer utterance if he is safe and the jailer speaks:
safe after tell : ´safepaq, tell.

By computing the probability of safepaq and safe after tell, we get the same
probability of 1/3, so the jailer utterance does not change the probability of a
of being safe.

We can see this also by considering conditional probabilities: the proba-
bility of safepaq given the jailer utterance tell is

P psafepaq|tellq “
P psafepaq, tellq

P ptellq
“
P psafe after tellq

P ptellq
“

1{3

1
“ 1{3

because the probability of tell is 1.

Example 24 (Russian roulette with two guns – LPAD). The following
example7 models a Russian roulette game with two guns [Baral et al., 2009].
The death of the player is caused with probability 1/6 by triggering the left
gun and similarly for the right gun:

death : 1{6Ð pull triggerpleft gunq.
death : 1{6Ð pull triggerpright gunq.
pull triggerpleft gunq.
pull triggerpright gunq.

Querying the probability of death we gent the probability of the player of
dying.

Example 25 (Mendelian rules of inheritance – LPAD). Blockeel [2004]
presents a program8 that encodes the Mendelian rules of inheritance of
the color of pea plants. The color of a pea plant is determined by a gene
that exists in two forms (alleles), purple, p, and white, w. Each plant
has two alleles for the color gene that reside on a couple of chromo-
somes. cg(X,N,A) indicates that plant X has allele A on chromosome N.
The program is:

colorpX,whiteq Ð cgpX, 1, wq, cgpX, 2, wq.
colorpX, purpleq Ð cgpX, A, pq.

7http://cplint.eu/e/trigger.pl
8http://cplint.eu/e/mendel.pl

2.3 Examples of Programs 55

cgpX, 1, Aq : 0.5 ; cgpX, 1, Bq : 0.5Ð
motherpY,Xq, cgpY, 1, Aq, cgpY, 2, Bq.

cgpX, 2, Aq : 0.5 ; cgpX, 2, Bq : 0.5Ð
fatherpY,Xq, cgpY, 1, Aq, cgpY, 2, Bq.

motherpm, cq. fatherpf, cq.
cgpm, 1, wq. cgpm, 2, wq. cgpf, 1, pq. cgpf, 2, wq.

The facts of the program express that c is the offspring of m and f and
that the alleles of m are ww and of f are pw. The disjunctive rules
encode the fact that an offspring inherits the allele on chromosome 1 from
the mother and the allele on chromosome 2 from the father. In particular,
each allele of the parent has a probability of 50% of being transmitted.
The definite clauses for color express the fact that the color of a plant is
purple if at least one of the alleles is p, i.e., that the p allele is domi-
nant. In a similar way, the rules of blood type inheritance can be written
in an LPAD9.

Example 26 (Path probability – LPAD). An interesting application of
PLP under the DS is the computation of the probability of a path
between two nodes in a graph in which the presence of each edge is
probabilistic10:

pathpX,Xq.
pathpX,Y q Ð pathpX,Zq, edgepZ, Y q.
edgepa, bq : 0.3. edgepb, cq : 0.2. edgepa, cq : 0.6.

This program, coded in ProbLog, was used in [De Raedt et al., 2007] for
computing the probability that two biological concepts are related in the
BIOMINE network [Sevon et al., 2006].

PLP under the DS can encode BNs Vennekens et al. [2004]: each value
of each random variable is encoded by a ground atom, each row of each CPT
is encoded by a rule with the value of parents in the body and the probability
distribution of values of the child in the head.

Example 27 (Alarm BN – LPAD). For example, the BN of Example 10
that we repeat in Figure 2.1 for readability can be encoded with the
program11

9http://cplint.eu/e/bloodtype.pl
10http://cplint.eu/e/path.swinb
11http://cplint.eu/e/alarm.pl

56 Probabilistic Logic Programming Languages

Figure 2.1 Example of a BN.

burgptq : 0.1 ; burgpf q : 0.9.
earthquakeptq : 0.2 ; earthquakepf q : 0.8.
alarmptq Ð burgptq, earthqptq.
alarmptq : 0.8 ; alarmpf q : 0.2Ð burgptq, earthqpf q.
alarmptq : 0.8 ; alarmpf q : 0.2Ð burgpf q, earthqptq.
alarmptq : 0.1 ; alarmpf q : 0.9Ð burgpf q, earthqpf q.
callptq : 0.9 ; callpf q : 0.1Ð alarmptq.
callptq : 0.05 ; callpf q : 0.95Ð alarmpf q.

2.4 Equivalence of Expressive Power

To show that all these languages have the same expressive power, we
discuss transformations among probabilistic constructs from the various
languages.

The mapping between PHA/ICL and PRISM translates each PHA/ICL
disjoint statement to a multi-switch declaration and vice versa in the
obvious way. The mapping from PHA/ICL and PRISM to LPADs trans-
lates each disjoint statement/multi-switch declaration to a disjunctive
LPAD fact.

The translation from an LPAD into PHA/ICL (first shown in [Vennekens
and Verbaeten, 2003]) rewrites each clause Ci with v variables X

h1 : Π1 ; . . . ; hn : ΠnÐB.

into PHA/ICL by adding n new predicates tchoicei1{v, . . . , choicein{vu and
a disjoint statement:

2.4 Equivalence of Expressive Power 57

h1 ÐB, choicei1pXq.
...
hnÐB, choiceinpXq.

disjointprchoicei1pXq : Π1, . . . , choiceinpXq : Πnsq.

For instance, the first clause of the medical symptoms LPAD of Example 19
is translated to

strong sneezingpXq Ð flupXq, choice11pXq.
moderate sneezingpXq : 0.5Ð flupXq, choice12pXq.
disjointprchoice11pXq : 0.3, choice12pXq : 0.5, choice13 : 0.2sq.

where the clause nullÐ flupXq, choice13. is omitted since null does not
appear in the body of any clause.

Finally, as shown in [De Raedt et al., 2008], to convert LPADs into
ProbLog, each clause Ci with v variables X

h1 : Π1 ; . . . ; hn : ΠnÐB.

is translated into ProbLog by adding n ´ 1 probabilistic facts for predicates
tfi1{v, . . . , fin{vu:

h1 ÐB, fi1pXq.
h2 ÐB,„fi1pXq, fi2pXq.
...
hnÐB,„fi1pXq, . . . ,„fin´1pXq.

π1 :: fi1pXq.
...
πn´1 :: fin´1pXq.

where
π1 “ Π1

π2 “
Π2

1´π1
π3 “

Π3
p1´π1qp1´π2q

. . .

In general

πi “
Πi

śi´1
j“1p1´ πjq

.

58 Probabilistic Logic Programming Languages

Note that while the translation into ProbLog introduces negation, the intro-
duced negation involves only probabilistic facts, and so the transformed
program will have a two-valued model whenever the original program does.

For instance, the first clause of the medical symptoms LPAD of
Example 19 is translated to

strong sneezingpXq Ð flupXq, f11pXq.
moderate sneezingpXq : 0.5Ð flupXq,„f11pXq, f12pXq.
0.3 :: f11pXq.
0.71428571428 :: f12pXq.

2.5 Translation to Bayesian Networks

We discuss here how an acyclic ground LPAD can be translated to a BN.
Let us first define the acyclic property for LPADs, extending Definition 4.
An LPAD is acyclic if an integer level can be assigned to each ground atom
so that the level of each atom in the head of each ground rule is the same and
is higher than the level of each atom in the body.

An acyclic ground LPAD P can be translated to a BN βpPq [Vennekens
et al., 2004]. βpPq is built by associating each atom a in BP with a binary
variable a with values true (1) and false (0). Moreover, for each rule Ci of the
following form

h1 : Π1 ; . . . ; hn : ΠnÐ b1, . . . bm,„c1. . . . ,„cl
in groundpPq, we add a new variable chi (for “choice for rule Ci”) to βpPq.
chi has b1, . . . , bm, c1, . . . , cl as parents. The values for chi are h1, . . ., hn
and null, corresponding to the head atoms. The CPT of chi is

. . . b1 “ 1, . . . , bm “ 1, c1 “ 0, . . . , cl “ 0 . . .
chi “ h1 0.0 Π1 0.0
. . .

chn “ hn 0.0 Πn 0.0
chi “ null 1.0 1´

řn
i“1 Πi 1.0

that can be expressed as

P pchi|b1, . . . , clq “

$

’

’

&

’

’

%

Πk if chi “ hk, bi “ 1, . . . , cl “ 0
1´

řn
j“1 Πj if chi “ null, bi “ 1, . . . , cl “ 0

1 if chi “ null, pbi “ 1, . . . , cl “ 0q
0 otherwise

(2.7)

Francisco Coelho

Francisco Coelho

2.5 Translation to Bayesian Networks 59

If the body is empty, the CPT for chi is

chi “ h1 Π1

. . .
chn “ hn Πn

chi “ null 1´
řn

i“1 Πi

Moreover, for each variable a corresponding to atom a P BP , the parents are
all the variables chi of rules Ci that have a in the head. The CPT for a is the
following deterministic table:

At least one parent equal to a Remaining columns
a “ 1 1.0 0.0
a “ 0 0.0 1.0

encoding the function

a “ fpchaq “

"

1 if Dchi P cha : chi “ a
0 otherwise

where cha are the parents of a. Note that in order to convert an LPAD
containing variables into a BN, its grounding must be generated.

Example 28 (LPAD to BN). Consider the following LPAD P:
C1 “ a1 : 0.4 ; a2 : 0.3.
C2 “ a2 : 0.1 ; a3 : 0.2.
C3 “ a4 : 0.6 ; a5 : 0.4Ð a1.
C4 “ a5 : 0.4Ð a2, a3.
C5 “ a6 : 0.3 ; a7 : 0.2Ð a2, a5.

Its corresponding network βpPq is shown in Figure 1.7, where the CPT for
a2 and ch5 are shown in Tables 2.1 and 2.2 respectively.

Table 2.1 Conditional probability table for a2
ch1, ch2 a1, a2 a1, a3 a2, a2 a2, a3
a2 “ 1 1.0 0.0 1.0 1.0
a2 “ 0 0.0 1.0 0.0 0.0

Table 2.2 Conditional probability table for ch5

a2, a5 1,1 1,0 0,1 0,0
ch5 “ x6 0.3 0.0 0.0 0.0
ch5 “ x7 0.2 0.0 0.0 0.0

ch5 “ null 0.5 1.0 1.0 1.0

60 Probabilistic Logic Programming Languages

Figure 2.2 BN βpPq equivalent to the program of Example 28.

An alternative translation γpPq for a ground program P is built by includ-
ing random variables a for each atom a in BP and chi for each clause Ci as
for βpPq. Moreover, γpPq includes the Boolean random variable bodyi and
the random variable Xi with values h1, . . ., hn and null for each clause Ci.

The parents of bodyi are b1, . . . , bm, and c1, . . . , cl and its CPT encodes
the deterministic AND Boolean function:

. . . b1 “ 1, . . . , bm “ 1, c1 “ 0, . . . , cl “ 0 . . .
bodyi “ 0 1.0 0.0 1.0
bodyi “ 1 0.0 1.0 0.0

If the body is empty, the CPT makes bodyi surely true

bodyi “ 0 0.0
bodyi “ 1 1.0

Xi has no parents and has the CPT

chi “ h1 Π1

. . .
chi “ hn Πn

chi “ null 1´
řn

i“1 Πi

chi has Xi and bodyi as parents with the deterministic CPT

bodyi,Xi 0, h1 . . . 0, hn 0, null 1, h1 . . . 1, hn 1, null
chi “ h1 0.0 . . . 0.0 0.0 1.0 . . . 0.0 0.0
. . .

chi “ hn 0.0 . . . 0.0 0.0 0.0 . . . 1.0 0.0
chi “ null 1.0 . . . 1.0 1.0 0.0 . . . 0.0 1.0

2.5 Translation to Bayesian Networks 61

Figure 2.3 Portion of γpPq relative to a clause CI .

encoding the function

chi “ fpbodyi,Xiq “

"

Xi if bodyi “ 1
null if bodyi “ 0

The parents of each variable a in γpPq are the variables chi of rules Ci that
have a in the head as for βpPq, with the same CPT as in βpPq.

The portion of γpPq relative to a clause Ci is shown in Figure 2.3.
If we compute P pchi|b1, . . . , bm, c1, . . . , clq by marginalizing

P pchi, bodyi,Xi|b1, . . . , bm, c1, . . . , clq

we can see that we obtain the same dependency as in βpPq:
P pchi|b1, . . . , clq “

“
ÿ

xi

ÿ

bodyi

P pchi,bodyi, xi|b1, . . . , clq

“
ÿ

xi

ÿ

bodyi

P pchi|bodyi, xiqP pxiqP pbodyi|b1, . . . , clq

“
ÿ

xi

P pxiq
ÿ

bodyi

P pchi|bodyi, xiqP pbodyi|b1, . . . , clq

“
ÿ

xi

P pxiq
ÿ

bodyi

P pchi|bodyi, xiq

$

&

%

1 if bodyi “ 1, b1 “ 1, . . . , cl “ 0
1 if bodyi “ 0, pb1 “ 1, . . . , cl “ 0q
0 otherwise

“
ÿ

xi

P pxiq
ÿ

bodyi

$

&

%

1 if chi “ xi,bodyi “ 1, b1 “ 1, . . . , cl “ 0
1 if chi “ null, bodyi “ 0, pb1 “ 1, . . . , cl “ 0q
0 otherwise

62 Probabilistic Logic Programming Languages

Figure 2.4 BN γpPq equivalent to the program of Example 28.

“
ř

xi
P pxiq

$

&

%

1 if chi “ xi, b1 “ 1, . . . , cl “ 0
1 if chi “ null, pb1 “ 1, . . . , cl “ 0q
0 otherwise

“

$

’

’

&

’

’

%

Πk if chi “ hk, bi “ 1, . . . , cl “ 0
1´

řn
j“1 Πj if chi “ null, bi “ 1, . . . , cl “ 0

1 if chi “ null, pbi “ 1, . . . , cl “ 0q
0 otherwise

which is the same as Equation (2.7).
From Figure 2.3 and using d-separation (see Definition 17), we can see

that the Xi variables are all pairwise unconditionally independent as between
every couple there is the collider Xi Ñ chi Ð bodyi.

Figure 2.4 shows γpPq for Example 28.

2.6 Generality of the Distribution Semantics

The assumption of independence of the random variables associated with
ground clauses may seem restrictive. However, any probabilistic relationship
between Boolean random variables that can be represented with a BN can be

Francisco Coelho

2.6 Generality of the Distribution Semantics 63

Figure 2.5 BN representing the dependency between apiq and bpiq.

modeled in this way. For example, suppose you want to model a general
dependency between the ground atoms apiq and bpiq regarding predicates a{1
and b{1 and constant i. This dependency can be represented with the BN of
Figure 2.5.

The joint probability distribution P papiq, bpiqq over the two Boolean
random variables apiq and bpiq is

P p0, 0q “ p1´ p1qp1´ p2q

P p0, 1q “ p1´ p1qpp2q

P p1, 0q “ p1p1´ p3q

P p1, 1q “ p1p3

This dependency can be modeled with the following LPAD P:
C1 “ apiq : p1

C2 “ bpXq : p2 Ð apXq
C3 “ bpXq : p3 Ð „apXq

We can associate Boolean random variables X1 with C1, X2, with C2tX{iu,
and X3 with C3tX{iu, where X1, X2, and X3 are mutually independent.
These three random variables generate eight worlds. apiq ^ bpiq for
example is true in the worlds

w1 “ H, w2 “ tbpiq Ð apiqu
whose probabilities are

P 1pw1q “ p1´ p1qp1´ p2qp1´ p3q

P 1pw2q “ p1´ p1qp1´ p2qp3

so

P 1p apiq, bpiqq “ p1´p1qp1´p2qp1´p3q`p1´p1qp1´p2qp3 “ P p0, 0q.

We can prove similarly that the distributions P and P 1 coincide for all joint
states of apiq and bpiq.

64 Probabilistic Logic Programming Languages

Figure 2.6 BN modeling the distribution over apiq, bpiq, X1, X2, X3.

Modeling the dependency between apiq and bpiq with the program above
is equivalent to represent the BN of Figure 2.5 with the network γpPq of
Figure 2.6.

Since γpPq defines the same distribution as P , the distributions P and
P 2, the one defined by γpPq, agree on the variables apiq and bpiq, i.e.,

P papiq, bpiqq “ P 2papiq, bpiqq

for any value of apiq and bpiq. From Figure 2.6, it is also clear that X1, X2, and
X3 are mutually unconditionally independent, thus showing that it is possible
to represent any dependency with independent random variables. So we can
model general dependencies among ground atoms with the DS.

This confirms the results of Sections 2.3 and 2.5 that graphical models can
be translated into probabilistic logic programs under the DS and vice versa.
Therefore, the two formalisms are equally expressive.

2.7 Extensions of the Distribution Semantics

Programs under the DS may contain flexible probabilities [De Raedt and
Kimmig, 2015] or probabilities that depend on values computed during
program execution. In this case, the probabilistic annotations are variables,
as in the program12 from [De Raedt and Kimmig, 2015]

12http://cplint.eu/e/flexprob.pl

Francisco Coelho

2.7 Extensions of the Distribution Semantics 65

red(Prob):Prob.

draw_red(R, G):-
Prob is R/(R + G),
red(Prob).

The query draw_red(r,g), where r and g are the number of green and
red balls in an urn, succeeds with the same probability as that of drawing a
red ball from the urn.

Flexible probabilities allow the computation of probabilities on the fly
during inference. However, flexible probabilities must be ground when their
value must be evaluated during inference. Many inference systems support
them by imposing constraints on the form of programs.

The body of rules may also contain literals for a meta-predicate such
as prob/2 that computes the probability of an atom, thus allowing nested
or meta-probability computations [De Raedt and Kimmig, 2015]. Among
the possible uses of such a feature De Raedt and Kimmig [2015] mention:
filtering proofs on the basis of the probability of subqueries, or implementing
simple forms of combining rules.

An example of the first use is13

a:0.2:-
prob(b,P),
P>0.1.

where a succeeds with probability 0.2 only if the probability of b is larger
than 0.1.

An example of the latter is14

p(P):P.

max_true(G1, G2) :-
prob(G1, P1),
prob(G2, P2),
max(P1, P2, P), p(P).

where max_true(G1,G2) succeeds with the success probability of its
more likely argument.

13http://cplint.eu/e/meta.pl
14http://cplint.eu/e/metacomb.pl

Francisco Coelho

66 Probabilistic Logic Programming Languages

2.8 CP-Logic

CP-logic [Vennekens et al., 2009] is a language for representing causal laws.
It shares many similarities with LPADs but specifically aims at modeling
probabilistic causality. Syntactically, CP-logic programs, or CP-theories, are
identical to lpads15: they are composed of annotated disjunctive clauses that
are interpreted as follows: for each grounding

h1 : Π1 ; . . . ; hm : Πn Ð B

of a clause of the program, B represents an event whose effect is to cause at
most one of the hi atoms to become true and the probability of hi of being
caused is Πi. Consider the following medical example.

Example 29 (CP-logic program – infection [Vennekens et al., 2009]). A
patient is infected by a bacterium. Infection can cause either pneumonia
or angina. In turn, angina can cause pneumonia and pneumonia can cause
angina. This can be represented by the CP-logic program:

angina : 0.2 Ð pneumonia. (2.8)

pneumonia : 0.3 Ð angina. (2.9)

pneumonia : 0.4 ; angina : 0.1 Ð infection. (2.10)

infection. (2.11)

The semantics of CP-logic programs is given in terms of probability trees
that represent the possible courses of the events encoded in the program. We
consider first the case where the program is positive, i.e., the bodies of rules
do not contain negative literals.

Definition 18 (Probability tree – positive case). A probability tree16 T for
a program P is a tree where every node n is labeled with a two-valued
interpretation Ipnq and a probability P pnq. T is constructed as follows:

• The root node r has probability P prq “ 1.0 and interpretation
Iprq “ H.
• Each inner node n is associated with a ground clause Ci such that

– no ancestor of n is associated with Ci,
– all atoms in bodypCiq are true in Ipnq,

15There are versions of CP-logic that have a more general syntax but they are not essential
for the discussion here

16We follow here the definition of [Shterionov et al., 2015] for its simplicity.

2.8 CP-Logic 67

n has one child node for each atom hk P headpCiq. The k-th child has
interpretation Ipnq Y thku and probability P pnq ¨Πk.
• No leaf can be associated with a clause following the rule above.

A probability tree defines a probability distribution P pIq over the interpreta-
tion of the program P: the probability of an interpretation I is the sum of the
probabilities of the leaf nodes n such that I “ Ipnq.

The probability tree for Example 2.11 is shown in Figure 2.7. The
probability distribution over the interpretations is

I tinf , pn, angu tinf , pnu tinf , angu tinf u
P pIq 0.11 0.32 0.07 0.5

There can be more than one probability tree for a program but Vennekens
et al. [2009] show that all the probability trees for the program define the
same probability distribution over interpretations. So we can speak of the
probability tree for P and this defines the semantics of the CP-logic program.
Moreover, each program has at least one probability tree.

Vennekens et al. [2009] also show that the probability distribution defined
by the LPADs semantics is the same as that defined by the CP-logic seman-
tics. So probability trees represent an alternative definition of the DS for
LPADs.

If the program contains negation, checking the truth of the body of a
clause must be made with care because an atom that is currently absent from
Ipnq may become true later. Therefore, we must make sure that for each
negative literal „a in bodypCiq, the positive literal a cannot be made true
starting from Ipnq.

Example 30 (CP-logic program – pneumonia [Vennekens et al., 2009]). A
patient has pneumonia. Because of pneumonia, the patient is treated. If the
patient has pneumonia and is not treated, he may get fever.

Figure 2.7 Probability tree for Example 2.11. From [Vennekens et al., 2009].

68 Probabilistic Logic Programming Languages

pneumonia. (2.12)

treatment : 0.95 Ð pneumonia. (2.13)

fever : 0.7 Ð pneumonia,„treatment. (2.14)

Two probability trees for this program are shown in Figures 2.8 and 2.9. Both
trees satisfy Definition 18 but define two different probability distributions.
In the tree of Figure 2.8, Clause 2.14 has negative literal „treatment in its
body and is applied at a stage where treatment may still become true, as
happens in the level below.

In the tree of Figure 2.9, instead Clause 2.14 is applied when the only
rule for treatment has already fired, so in the right child of the node at the
second level treatment will never become true and Clause 2.14 can safely
be applied.

In order to formally define this, we need the following definition that uses
three-valued logic. A conjunction in three-valued logic is true or undefined if
no literal in it is false.

Figure 2.8 An incorrect probability tree for Example 30. From [Vennekens et al., 2009].

Figure 2.9 A probability tree for Example 30. From [Vennekens et al., 2009].

2.8 CP-Logic 69

Definition 19 (Hypothetical derivation sequence). A hypothetical derivation
sequence in a node n is a sequence pIiq0ďiďn of three-valued interpretations
that satisfy the following properties. Initially, I0 assigns false to all atoms
not in Ipnq. For each i ą 0, Ii`1 “ xIT,i`1, IF,i`1y is obtained from Ii “
xIT,i, IF,iy by considering a rule R with bodypRq true or undefined in Ii and
an atom a in its head that is false in I. Then IT,i`1 “ IT,i`1 and IF,i`1 “

IF,i`1ztau.

Every hypothetical derivation sequence reaches the same limit. For a node n
in a probabilistic tree, we denote this unique limit as Ipnq. It represents the
set of atoms that might still become true; in other words, all the atoms in the
false part of Ipnq will never become true and so they can be considered as
false.

The definition of probability tree of a program with negation becomes the
following.

Definition 20 (Probability tree – general case). A probability tree T for a
program P is a tree

• satisfying the conditions of Definition 18, and
• for each node n and associated clause Ci, for each negative literal „a

in bodypCiq, a P IF with Ipnq “ xIT , IF y.

All the probability trees according for the program according to Definition 20
establish the same probability distribution over interpretations.

It can be shown that the set of false atoms of the limit of the hypothetical
derivation sequence is equal to the greatest fixpoint of the operator OpFalsePI
(see Definition 2) with I “ xIpnq,Hy and P a program that contains, for
each rule

h1 : Π1 ; . . . ; hm : Πn Ð B

of P , the rules

h1 Ð B.

. . .

hm Ð B.

In other words, if Ipnq “ xIT , IF y and gfppOpFalsePI q “ F , then IF “ F .
In fact, for the body of a clause to be true or undefined in Ii “ xIT,i, IF,iy,

each positive literal a must be absent from IF,i and each negative literal
„a must be such that a is absent from IT,i, which are the complementary
conditions in the definition of the operator OpFalsePI pFaq.

70 Probabilistic Logic Programming Languages

On the other hand, the generation of a child n1 of a node n using a rule
Ci that adds an atom a to Ipnq can be seen as part of an application of
OpTruePIpnq. So there is a strong connection between CP-logic and the WFS.

In the trees of Figures 2.8 and 2.9, the child n “ tpnu of the root has
IF “ H, so Clause 2.14 cannot be applied as treatment R IF and the only
tree allowed by Definition 20 is that of Figure 2.9.

The semantics of CP-logic satisfies these causality principles:

• The principle of universal causation states that all changes to the state
of the domain must be triggered by a causal law whose precondition is
satisfied.
• The principle of sufficient causation states that if the precondition to

a causal law is satisfied, then the event that it triggers must eventually
happen.

and therefore the logic is particularly suitable for representing causation.
Moreover, CP-logic satisfies the temporal precedence assumption that

states that a rule R will not fire until its precondition is in its final state. In
other words, a rule fires only when the causal process that determines whether
its precondition holds is fully finished. This is enforced by the treatment of
negation of CP-logic.

There are CP-logic programs that do not admit any probability tree, as the
following example shows.

Example 31 (Invalid CP-logic program [Vennekens et al., 2009]). In a two-
player game, white wins if black does not win and black wins if white does
not win:

winpwhiteq Ð „winpblackq. (2.15)

winpblackq Ð „winpwhiteq. (2.16)

At the root of the probability tree for this program, both Clauses 2.15 and
2.16 have their body true but they cannot fire as IF for the root is H. So
the root is a leaf where however two rules have their body true, thus violating
the condition of Definition 18 that requires that leaves cannot be associated
with rules.

This theory is problematic from a causal point of view, as it is impossible to
define a process that follows the causal laws. Therefore, we want to exclude
these cases and consider only valid CP-theories.

Definition 21 (Valid CP-theory). A CP-theory is valid if it has at least one
probability tree.

2.9 Semantics for Non-Sound Programs 71

The equivalence of the LPADs and CP-logic semantics is also carried to
the general case of programs with negation: the probability tree of a valid
CP-theory defines the same distribution as that defined by interpreting the
program as an LPAD.

However, there are sound LPADs that are not valid CP-theories. Recall
that a sound LPAD is one where each possible world has a two-valued WFM.

Example 32 (Sound LPAD – invalid CP-theory Vennekens et al. [2009]).
Consider the program

p : 0.5 ; q : 0.5 Ð r.
r Ð„p.
r Ð„q.

Such a program has no probability tree, so it is not a valid CP-theory. Its
possible worlds are

tpÐ r; r Ð„p; r Ð„qu

and
tq Ð r; r Ð„p; r Ð„qu

that both have total WFMs, tr, pu and tr, qu, respectively, so the LPAD is
sound.

In fact, it is difficult to imagine a causal process for this program.

Therefore, LPADs and CP-logic have some differences but these arise only
in corner cases, so sometimes CP-logic and LPADs are used as a synonyms.
This also shows that clauses in LPADs can be assigned in many cases a causal
interpretation.

The equivalence of the semantics implies that, for a valid CP-theory, the
leaves of the probability tree are associated with the WFMs of the possible
world obtained by considering all the clauses used in the path from the root to
the leaf with the head selected according to the choice of child. If the program
is deterministic, the only leaf is associated with the total-well founded model
of the program.

2.9 Semantics for Non-Sound Programs

In Section 2.2, we considered only sound programs, those for which every
world has a two-valued WFM. In this way, we avoid non-monotonic aspects
of the program and we deal with uncertainty only by means of probability
theory.

72 Probabilistic Logic Programming Languages

When a program is not sound in fact, assigning a semantics to probabilis-
tic logic programs is not obvious, as the next example shows.

Example 33 (Insomnia [Cozman and Mauá, 2017]). Consider the program
sleepÐ„work,„insomnia.
work Ð„sleep.
α :: insomnia.

This program has two worlds, w1 containing insomnia and w2 not contain-
ing it. The first has the single stable model and total WFM

I1 “ tinsomnia,„sleep,„worku

The latter has two stable models

I2 “ tinsomnia,„sleep, worku
I3 “ tinsomnia, sleep,„worku

and a WFM I2 where insomnia is true and the other two atoms are
undefined.

If we ask for the probability of sleep, the first world, w1, with probability
α, surely doesn’t contribute. We are not sure instead what to do with the
second, as sleep is included in only one of the two stable models and it is
undefined in the WFM.

To handle programs like the above, Hadjichristodoulou and Warren [2012]
proposed the WFS for probabilistic logic programs where a program defines
a probability distribution over WFMs rather than two-valued models. This
induces a probability distribution over random variables associated with
atoms that are, however, three-valued instead of Boolean.

An alternative approach, the credal semantics [Cozman and Mauá, 2017],
sees such programs as defining a set of probability measures over the interpre-
tations. The name derives from the fact that sets of probability distributions
are often called credal sets.

The semantics considers programs syntactically equal to ProbLog (i.e.,
non-probabilistic rules and probabilistic facts) and generates worlds as in
ProbLog. The semantics requires that each world of the program has at least
one stable models. Such programs are called consistent.

A program then defines a set of probability distributions over the set of
all possible two-valued interpretations of the program. Each distribution P in
the set is called a probability model and must satisfy two conditions:

1. every interpretation I for which P pIq ą 0 must be a stable model of the
world wσ that agrees with I on the truth value of the probabilistic facts;

2.9 Semantics for Non-Sound Programs 73

2. the sum of the probabilities of the stable models of w must be equal
to P pσq.

A set of distributions is obtained because we do not fix how the probability
mass P pσq of a world wσ is distributed over its stable models when there
is more than one. We indicate with P the set of probability models and call
it the credal semantics of the program. Given a probability model, we can
compute the probability of a query q as for the Distribution Semantics (DS),
by summing P pIq for all the interpretations I where q is true.

In this case, given a query q, we are interested in the lower and upper
probabilities of q defined as

P pqq “ inf
PPP

P pqq

P pqq “ sup
PPP

P pqq

If we are also given evidence e, Cozman and Mauá [2017] define lower and
upper conditional probabilities as

P pq|eq “ inf
PPP,P peqą0

P pqq

P pq|eq “ sup
PPP,P peqą0

P pqq

and leave them undefined when P peq “ 0 for all P P P.

Example 34 (Insomnia – continued – [Cozman and Mauá, 2017]). Consider
again the program of Example 33. A probability model that assigns the
following probabilities to the models of the program

P pI1q “ α
P pI2q “ γp1´ αq
P pI3q “ p1´ γqp1´ αq

for γ P r0, 1s, satisfies the two conditions of the semantics, and thus belongs
to P. The elements of P are obtained by varying γ.

Considering the query sleep, we can easily see thatP psleep “ trueq “ 0

and P psleep “ trueq “ 1´ α.
With the semantics of [Hadjichristodoulou and Warren, 2012] instead,

we have
P pI1q “ α
P pI2q “ 1´ α

74 Probabilistic Logic Programming Languages

so
P psleep “ trueq “ 0
P psleep “ falseq “ α
P psleep “ undefinedq “ 1´ α.

Example 35 (Barber paradox – [Cozman and Mauá, 2017]). The barber
paradox was introduced by Russell [1967]. If the village barber shaves all,
and only, those in the village who don’t shave themselves, does the barber
shave himself?

A probabilistic version of this paradox can be encoded with the program
shavespX,Y q Ð barberpXq, villagerpY q,„shavespY, Y q.
villagerpaq.
barberpbq.
0.5 :: villagerpbq.

and the query shavespb, bq.
The program has two worlds, w1 and w2, the first not containing the

fact villagerpbq and the latter containing it. The first world has a single
stable model I1 “ tvillagerpaq, barberpbq, shavespb, aqu that is also the
total WFM. In the latter world, the rule has an instance that can be simplified
to shavespb, bq Ð„shavespb, bq. Since it contains a loop through an odd
number of negations, the world has no stable model and the three-valued
WFM:

I2 “ tvillagerpaq, barberpbq, shavespb, aq,„shavespa, aq,„shavespa, bqu.

So the program is not consistent and the credal semantics is not defined for it,
while the semantics of [Hadjichristodoulou and Warren, 2012] is still defined
and would yield

P pshavespb, bq “ trueq “ 0.5
P pshavespb, bq “ undefinedq “ 0.5

The WFS for probabilistic logic programs assigns a semantics to more
programs. However, it introduces the truth value undefined that expresses
uncertainty and, since probability is used as well to deal with uncertainty,
some confusion may arise. For example, one may ask what is the value of
pq “ true|e “ undefinedq. If e “ undefined means that we don’t know
anything about e, then P pq “ true|e “ undefinedq should be equal to
P pq “ trueq but this is not true in general. The credal semantics avoids these
problems by considering only two truth values.

Cozman and Mauá [2017] show that the set P is the set of all probability
measures that dominate an infinitely monotone Choquet capacity.

2.9 Semantics for Non-Sound Programs 75

An infinitely monotone Choquet capacity is a function P from an algebra
Ω on a set W to the real interval r0, 1s such that

1. P pW q “ 1´ P pHq “ 1, and
2. for any ω1, . . . , ωn Ď Ω,

P pYiωiq ě
ÿ

JĎt1,...,nu

p´1q|J |`1P pXjPJωjq (2.17)

Infinitely monotone Choquet capacity is a generalization of finitely additive
probability measures: the latter are special cases of the first where Equation
(2.17) holds with equality. In fact, the right member of Equation (2.17) is an
application of the inclusion–exclusion principle that gives the probability of
the union of non-disjoint sets. Infinitely monotone Choquet capacities also
appear as belief functions of Dempster–Shafer theory [Shafer, 1976].

Given an infinitely monotone Choquet capacity P , we can construct the
set of measures DpP q that dominate P as

DpP q “ tP |@ω P Ω : P pωq ě P pωqu

We say that P generates the credal set DpP q and we call DpP q an infinitely
monoton credal set. It is possible to show that the lower probability of DpP q
is exactly the generating infinitely monotone Choquet capacity: P pωq “
infPPDpP q P pωq.

Infinitely monotone credal sets are closed and convex. Convexity here
means that if P1 and P2 are in the credal set, then αP1` p1´αqP2 is also in
the credal set for α P r0, 1s. Given a consistent program, its credal semantics
is thus a closed and convex set of probability measures.

Moreover, given a query q, we have

P pqq “
ÿ

wPW,ASpwqĎJq

P pσq P pqq “
ÿ

wPW,ASpwqXJq‰H

P pσq

where Jq is the set of interpretations where q is true and ASpwq is the set of
stable models of world wσ.

The lower and upper conditional probabilities of a query q are given by:

P pq|eq “
P pq, eq

P pq, eq ` P p q, eq
(2.18)

P pq|eq “
P pq, eq

P pq, eq ` P p q, eq
(2.19)

Francisco Coelho

76 Probabilistic Logic Programming Languages

2.10 KBMC Probabilistic Logic Programming Languages

In this section, we present three examples of KBMC languages: Bayesian
Logic Programs (BLPs), CLP(BN), and the Prolog Factor Language (PFL).

2.10.1 Bayesian Logic Programs

BLPs [Kersting and De Raedt, 2001] use logic programming to compactly
encode a large BN. In BLPs, each ground atom represents a (not necessarily
Boolean) random variable and the clauses define the dependencies between
ground atoms. A clause of the form

a|a1, . . . , am

indicates that, for each of its groundings pa|a1, . . . , amqθ, aθ has a1θ, . . .,
amθ as parents. The domains and CPTs for the ground atom/random variables
are defined in a separate portion of the model. In the case where a ground
atom aθ appears in the head of more than one clause, a combining rule is
used to obtain the overall CPT from those given by individual clauses.

For example, in the Mendelian genetics program of Example 25, the
dependency that gives the value of the color gene on chromosome 1 of a
plant as a function of the color genes of its mother can be expressed as

cg(X,1)|mother(Y,X),cg(Y,1),cg(Y,2).

where the domain of atoms built on predicate cg/2 is {p,w} and the domain of
mother(Y,X) is Boolean. A suitable CPT should then be defined that assigns
equal probability to the alleles of the mother to be inherited by the plant.

Various learning systems use BLPs as the representation language: RBLP
[Revoredo and Zaverucha, 2002; Paes et al., 2005], PFORTE [Paes et al.,
2006], and SCOOBY [Kersting and De Raedt, 2008].

2.10.2 CLP(BN)

In a CLP(BN) program [Costa et al., 2003], logical variables can be random.
Their domain, parents, and CPTs are defined by the program. Probabilistic
dependencies are expressed by means of constraints as in Constraint Logic
Programming (CLP):

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }

2.10 KBMC Probabilistic Logic Programming Languages 77

The first form indicates that the logical variable Var is random with domain
Values and CPT Dist but without parents; the second form defines a
random variable with parents. In both forms, Function is a term over
logical variables that is used to parameterize the random variable: a different
random variable is defined for each instantiation of the logical variables in
the term. For example, the following snippet from a school domain:

course_difficulty(CKey, Dif) :-
{ Dif = difficulty(CKey) with p([h,m,l],
[0.25, 0.50, 0.25]) }.

defines the random variable Dif with values h, m, and l representing the
difficulty of the course identified by CKey. There is a different random
variable for every instantiation of CKey, i.e., for each course. In a similar
manner, the intelligence Int of a student identified by SKey is given by

student_intelligence(SKey, Int) :-
{ Int = intelligence(SKey) with p([h, m, l],
[0.5,0.4,0.1]) }.

Using the above predicates, the following snippet predicts the grade received
by a student when taking the exam of a course.

registration_grade(Key, Grade) :-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with p([’A’,’B’,’C’,’D’],
% h/h h/m h/l m/h m/m m/l l/h l/m l/l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
% ’A’
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
% ’B’
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
% ’C’
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10],
% ’D’

[Int,Dif]) }.

Here Grade indicates a random variable parameterized by the identifier
Key of a registration of a student to a course. The code states that there

78 Probabilistic Logic Programming Languages

is a different random variable Grade for each student’s registration in a
course and each such random variable has possible values ‘‘A’’, ‘‘B’’,
‘‘C’’ and ‘‘D’’. The actual value of the random variable depends on the
intelligence of the student and on the difficulty of the course, that are thus its
parents. Together with facts for registration/3 such as

registration(r0,c16,s0). registration(r1,c10,s0).
registration(r2,c57,s0). registration(r3,c22,s1).
....

the code defines a BN with a Grade random variable for each registration.
CLP(BN) is implemented as a library of YAP Prolog. The library performs
query answering by constructing the sub-network that is relevant to the query
and then applying a BN inference algorithm.

The unconditional probability of a random variable can be computed by
simply asking a query to the YAP command line.

The answer will be a probability distribution over the values of the logical
variables of the query that represent random variables, as in

?- registration_grade(r0,G).
p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?

Conditional queries can be posed by including in the query ground atoms
representing the evidence.

For example, the probability distribution of the grades of registration r0
given that the intelligence of the student is high (h) is given by

?- registration_grade(r0,G),
student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?

In general, CLP provides a useful tool for Probabilistic Logic Programming
(PLP), as is testified by the proposals clp(pdf(Y)) [Angelopoulos, 2003, 2004]
and Probabilistic Constraint Logic Programming (PCLP) [Michels et al.,
2015], see Section 4.5.

2.10 KBMC Probabilistic Logic Programming Languages 79

2.10.3 The Prolog Factor Language

The PFL [Gomes and Costa, 2012] is an extension of Prolog for representing
first-order probabilistic models.

Most graphical models such as BNs and MNs concisely represent a joint
distribution by encoding it as a set of factors. The probability of a set of
variables X taking value x can be expressed as the product of n factors as:

P pX “ xq “

ś

i“1,...,n φipxiq

Z

where xi is a sub-vector of x on which the i-th factor depends and Z is the
normalization constant. Often, in a graphical model, the same factors appear
repeatedly in the network, and thus we can parameterize these factors in order
to simplify the representation.

A Parameterized Random Variables (PRVs) is a logical atom representing
a set of random variables, one for each of its possible ground instantiations.
We indicate PRV as X,Y, . . . and vectors of PRVs as X,Y, . . .

A parametric factor or parfactor [Kisynski and Poole, 2009b] is a triple
xC,V, F y where C is a set of inequality constraints on parameters (logical
variables), V is a set of PRVs and F is a factor that is a function from the
Cartesian product of ranges of PRVs in V to real values. A parfactor is also
represented as F pVq|C or F pVq if there are no constraints. A constrained
PRV is of the form V|C, where V “ ppX1, . . . , Xnq is a non-ground atom
and C is a set of constraints on logical variables X “ tX1, . . . , Xnu. Each
constrained PRV represents the set of random variables tP pxq|x P Cu, where
x is the tuple of constants px1, . . . , xnq. Given a (constrained) PRV V, we
use RV pVq to denote the set of random variables it represents. Each ground
atom is associated with one random variable, which can take any value in
rangepVq.

The PFL extends Prolog to support probabilistic reasoning with paramet-
ric factors. A PFL factor is a parfactor of the form

Type F ; φ ; C,

where Type refers to the type of the network over which the parfactor is
defined (bayes for directed networks or markov for undirected ones); F is a
sequence of Prolog goals each defining a PRV under the constraints in C (the
arguments of the factor). IfL is the set of all logical variables in F, then C is a
list of Prolog goals that impose bindings onL (the successful substitutions for

80 Probabilistic Logic Programming Languages

the goals in C are the valid values for the variables inL). φ is the table defining
the factor in the form of a list of real values. By default, all random variables
are Boolean but a different domain may be defined. Each parfactor represents
the set of its groundings. To ground a parfactor, all variables ofL are replaced
with the values permitted by constraints in C. The set of ground factors defines
a factorization of the joint probability distribution over all random variables.

Example 36 (PFL program). The following PFL program is inspired by the
workshop attributes problem of [Milch et al., 2008]. It models the organiza-
tion of a workshop where a number of people have been invited. series
indicates whether the workshop is successful enough to start a series of
related meetings while attends(P) indicates whether person P attends
the workshop.

This problem can be modeled by a PFL program such as

bayes series, attends(P); [0.51, 0.49, 0.49, 0.51];
[person(P)].

bayes attends(P), at(P,A); [0.7, 0.3, 0.3, 0.7];
[person(P),attribute(A)].

A workshop becomes a series because people attend. People attend the
workshop depending on the workshop’s attributes such as location, date,
fame of the organizers, etc. The probabilistic atom at(P,A) represents
whether person P attends because of attribute A.

The first PFL factor has the random variables series and
attends(P) as arguments (both Boolean), [0.51,0.49,0.49,0.51]
as table and the list [person(P)] as constraint.

Since KBMC languages are defined on the basis of a translation to graphical
models, translations can be built between PLP languages under the DS and
KBMC languages. The first have the advantage that they have a semantics
that can be understood in logical terms, without necessarily referring to an
underlying graphical model.

2.11 Other Semantics for Probabilistic Logic Programming

Here we briefly discuss a few examples of PLP frameworks that don’t follow
the distribution semantics. Our goal in this section is simply to give the
flavor of other possible approaches; a complete account of such frameworks
is beyond the scope of this book.

2.11 Other Semantics for Probabilistic Logic Programming 81

2.11.1 Stochastic Logic Programs

Stochastic Logic Programs (SLPs) [Muggleton et al., 1996; Cussens, 2001]
are logic programs with parameterized clauses which define a distribution
over refutations of goals. The distribution provides, by marginalization, a
distribution over variable bindings for the query. SLPs are a generalization
of stochastic grammars and hidden Markov models.

An SLP S is a definite logic program where some of the clauses are of
the form p : C where p P R, p ě 0, and C is a definite clause. Let npSq
be the definite logic program obtained by removing the probability labels. A
pure SLP is an SLP where all clauses have probability labels. A normalized
SLP is one where probability labels for clauses whose heads share the same
predicate symbol sum to one.

In pure SLPs, each SLD derivation for a query q is assigned a real label
by multiplying the labels of each individual derivation step. The label of a
derivation step where the selected atom unifies with the head of clause pi : Ci
is pi. The probability of a successful derivation from q is the label of the
derivation divided by the sum of the labels of all the successful derivations.
This forms a distribution over successful derivations from q.

The probability of an instantiation qθ is the sum of the probabilities of the
successful derivations that produce qθ. It can be shown that the probabilities
of all the atoms for a predicate q that succeed in npSq sum to one, i.e., S
defines a probability distribution over the success set of q in npSq.

In impure SLPs, the unparameterized clauses are seen as non-probabilistic
domain knowledge acting as constraints. Derivations are identified with the
set of the parameterized clauses they use. In this way, derivations that differ
only on the unparameterized clauses form an equivalence class.

In practice, SLPs define probability distributions over the children of
nodes of the SLD tree for a query: a derivation step u Ñ v that connects
node u with child node v is assigned a probability P pv|uq. This induces a
probability distributions over paths from the root to the leaves of the SLD
tree and in turn over answers for the query.

Given their similarity with stochastic grammars and hidden Markov mod-
els, SLPs are particularly suitable for representing these kinds of models.
They differ from the DS because they define a probability distribution over
instantiations of the query, while the DS usually defines a distribution over
the truth values of ground atoms.

82 Probabilistic Logic Programming Languages

Example 37 (Probabilistic context-free grammar – SLP). Consider the
probabilistic context free grammar:

0.2 : S Ñ aS
0.2 : S Ñ bS
0.3 : S Ñ a
0.3 : S Ñ b

The SLP
0.2 : spra|Rsq Ð spRq.
0.2 : sprb|Rsq Ð spRq.
0.3 : sprasq.
0.3 : sprbsq.

defines a distribution over the values of S in spSq that is the same as the
one defined by the probabilistic context-free grammar above. For example,
P pspra, bsqq “ 0.2 ¨ 0.3 “ 0.6 according to the program and P pabq “ 0.2 ¨
0.3 “ 0.6 according to the grammar.

Various approaches have been proposed for learning SLPs. Muggleton
[2000a,b] proposed to use an Inductive Logic Programming (ILP) system,
Progol [Muggleton, 1995], for learning the structure of the programs, and
a second phase where the parameters are tuned using a generalization of
relative frequency.

Parameters are also learned by means of optimization in failure-adjusted
maximization [Cussens, 2001; Angelopoulos, 2016] and by solving algebraic
equations [Muggleton, 2003].

2.11.2 ProPPR

ProPPR [Wang et al., 2015] is an extension of SLPs that that is related to
Personalized PageRank (PPR) [Page et al., 1999].

ProPPR extends SLPs in two ways. The first is the method for computing
the labels of the derivation steps. A derivation step u Ñ v is not simply
assigned the parameter associated with the clause used in the step. Instead,
the label of the derivation step, P pv|uq is computed using a log-linear model
P pv|uq9 exppw¨φuÑvqwhere w is a vector of real-valued weights and φuÑv
is a 0/1 vector of “features” that depend on the clause being used. The features
are user defined and the association between clauses and features is indicated
using annotations.

Example 38 (ProPPR program). The ProPPR program [Wang et al., 2015]

aboutpX,Zq Ð handLabeledpX,Zq. #base
aboutpX,Zq Ð simpX,Y q, aboutpY,Zq. #prop

2.12 Other Semantics for Probabilistic Logics 83

simpX,Y q Ð linkpX,Y q. #sim, link
simpX,Y q Ð hasWordpX,W q, hasWordpY,W q,
linkedBypX,Y,W q. #sim,word

linkedBypX,Y,W q. #bypW q

can be used to compute the topic of web pages on the basis of possible hand
labeling or similarity with other web pages. Similarity is defined as well in a
probabilistic way depending on the links and words between the two pages.

Clauses are annotated with a list of atoms (indicated after the # symbol) that
may contain variables from the head of clauses. In the example, the third
clause is annotated with the list of atoms sim, link while the last clause is
annotated by the atom bypW q. Each grounding of each atom in the list stands
for a different feature, so for example sim, link, and bypsprinterq stand for
three different features. The vector φuÑv is obtained by assigning value 1 to
the features associated with the atoms in the annotation of the clause used
for the derivation step u Ñ v and value 0 otherwise. If the atoms contain
variables, these are shared with the head of the clause and are grounded with
the values of the clause instantiation used in uÑ v.

So a ProPPR program is defined by an annotated program plus values for
the weights w. This annotation approach considerably increases the flexibility
of SLP labels: ProPPR annotations can be shared across clauses and can
yield labels that depend on the particular clause grounding that is used by
the derivation step. An SLP is a ProPPR program where each clause has a
different annotation consisting of an atom without arguments.

The second way in which ProPPR extend SLPs consists in the addition of
edges to the SLD tree: an edge is added (a) from every solution leaf to itself;
and (b) from every node to the start node.

The procedure for assigning probabilities to queries of SLP can then
be applied to the resulting graph. The self-loop links heuristically upweight
solution nodes and the restart links make SLP’s graph traversal a PPR pro-
cedure [Page et al., 1999]: a PageRank can be associated with each node,
representing the probability that a random walker starting from the root
arrives in that node.

The restart links favor the results of short proofs: if the restart probability
is α for every node u, then the probability of reaching any node at depth d is
bounded by p1´ αqd.

Parameter learning for ProPPR is performed in [Wang et al., 2015] by
stochastic gradient descent.

84 Probabilistic Logic Programming Languages

2.12 Other Semantics for Probabilistic Logics

In this section, we discuss semantics for probabilistic logic languages that are
not based on logic programming.

2.12.1 Nilsson’s Probabilistic Logic

Nilsson’s probabilistic logic [Nilsson, 1986] takes an approach for combining
logic and probability that is different from the DS: while the first considers
sets of distributions, the latter computes a single distribution over possible
worlds. In Nilsson’s logic, a probabilistic interpretation Pr defines a prob-
ability distribution over the set of interpretations Int2 . The probability of a
logical formula F according to Pr, denoted PrpF q, is the sum of all PrpIq
such that I P Int2 and I (F . A probabilistic knowledge base K is a set of
probabilistic formulas of the form F ě p. A probabilistic interpretation Pr
satisfies F ě p iff PrpF q ě p. Pr satisfies K, or Pr is a model of K, iff
Pr satisfies all F ě p P K. PrpF q ě p is a tight logical consequence of K
iff p is the infimum of PrpF q in the set of all models Pr of K. Computing
tight logical consequences from probabilistic knowledge bases can be done
by solving a linear optimization problem.

With Nilsson’s logic, the consequences that can be obtained from logical
formulas differ from those of the DS. Consider a ProbLog program (see
Section 2.1) composed of the facts 0.4 :: cpaq and 0.5 :: cpbq, and a
probabilistic knowledge base composed of cpaq ě 0.4 and cpbq ě 0.5. For
the DS, P pcpaq _ cpbqq “ 0.7, while with Nilsson’s logic, the lowest p such
that Prpcpaq _ cpbqq ě p holds is 0.5. This difference is due to the fact that,
while Nilsson’s logic makes no assumption about the independence of the
statements, in the DS, the probabilistic axioms are considered as indepen-
dent. While independencies can be encoded in Nilsson’s logic by carefully
choosing the values of the parameters, reading off the independencies from
the theories becomes more difficult.

However, the assumption of independence of probabilistic axioms does
not restrict expressiveness as shown in Section 2.6.

2.12.2 Markov Logic Networks

A Markov Logic Network (MLN) is a first-order logical theory in which each
sentence is associated with a real-valued weight. An MLN is a template for
generating MNs. Given sets of constants defining the domains of the logical
variables, an MLN defines an MN that has a Boolean node for each ground

2.12 Other Semantics for Probabilistic Logics 85

atom and edges connecting the atoms appearing together in a grounding of
a formula. MLNs follow the KBMC approach for defining a probabilistic
model [Wellman et al., 1992; Bacchus, 1993]. The probability distribution
encoded by an Markov Logic Network (MLN) is

P pxq “
1

Z
expp

ÿ

fiPM

winipxqq

where x is a joint assignment of truth value to all atoms in the Herbrand base
(finite because of no function symbols), M is the MLN, fi is the i-th formula
in M , wi is its weight, nipxq is the number of groundings of formula fi that
are satisfied in x, and Z is a normalization constant.

Example 39 (Markov Logic Network). The following MLN encodes a theory
on the intelligence of friends and on the marks people get:

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>

Intelligent(y))

The first formula gives a positive weight to the fact that if someone is
intelligent, then he gets good marks in the exams he takes. The second formula
gives a positive weight to the fact that friends have similar intelligence: in
particular, the formula states that if x and y are friends, then x is intelligent
if and only if y is intelligent, so they are either both intelligent or both not
intelligent.

If the domain contains two individuals, Anna and Bob, indicated with A
and B, we get the ground MN of Figure 2.10.

2.12.2.1 Encoding Markov Logic Networks with Probabilistic
Logic Programming

It is possible to encode MNs and MLNs with LPADs. The encoding is based
on the BN that is equivalent to the MN as discussed in Section 1.6: an MN

Figure 2.10 Ground Markov network for the MLN of Example 39.

86 Probabilistic Logic Programming Languages

factor can be represented with an extra node in the equivalent BN that is
always observed. In order to model MLN formulas with LPADs, we can add
an extra atom clauseipXq for each formula Fi “ wi Ci where wi is the
weight associated with Ci and X is the vector of variables appearing in Ci.
Then, when we ask for the probability of query q given evidence e, we have
to ask for the probability of q given e^ ce, where ce is the conjunction of the
groundings of clauseipXq for all values of i.

Clause Ci must be transformed into a Disjunctive Normal Form (DNF)
formula Ci1 _ . . ._Cini , where the disjuncts are mutually exclusive and the
LPAD should contain the clauses

clauseipXq : eα{p1` eαq Ð Cij

for all j in 1, ..., ni, where 1 ` eα ě maxxi
φpxiq “ maxt1, eαu. Similarly,

 Ci must be transformed into a DNFDi1_ . . ._Dimi and the LPAD should
contain the clauses

clauseipXq : 1{p1` eαq ÐDil

for all l in 1, ...,mi.
Moreover, for each predicate p{n, we should add the clause

ppXq : 0.5.

to the program, assigning a priori uniform probability to every ground atom.
Alternatively, if α is negative, eα will be smaller than 1 and

maxxi
φpxiq “ 1. So we can use the two probability values eα and 1 with

the clauses

clauseipXq : eαÐ Cij .

clauseipXq Ð Dil.

This solution has the advantage that some clauses are non-probabilistic,
reducing the number of random variables. If α is positive in the formula α C,
we can consider the equivalent formula ´α C.

The transformation above is illustrated by the following example. Given
the MLN

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x,y) => (Intelligent(x)<=>Intelligent(y))

2.12 Other Semantics for Probabilistic Logics 87

the first formula is translated to the clauses:

clause1(X):0.8175 :- \+intelligent(X).
clause1(X):0.1824 :- intelligent(X),

\+good_marks(X).
clause1(X):0.8175 :- intelligent(X),good_marks(X).

where 0.8175 “ e1.5{p1` e´1.5q and 0.1824 “ 1{p1` e´1.5q.
The second formula is translated to the clauses

clause2(X,Y):0.7502 :- \+friends(X,Y).
clause2(X,Y):0.7502 :- friends(X,Y),

intelligent(X),
intelligent(Y).

clause2(X,Y):0.7502 :- friends(X,Y),
\+intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
intelligent(X),
\+intelligent(Y).

clause2(X,Y):0.2497 :- friends(X,Y),
\+intelligent(X),
intelligent(Y).

where 0.7502 “ e1.1{p1` e1.1q and 0.2497 “ 1{p1` e1.1q.
A priori we have a uniform distribution over student intelligence, good

marks, and friendship:

intelligent(_):0.5.
good_marks(_):0.5.
friends(_,_):0.5.

and there are two students:

student(anna).
student(bob).

We have evidence that Anna is friend with Bob and Bob is intelligent.
The evidence must also include the truth of all groundings of the clausei
predicates:

evidence_mln :- clause1(anna),clause1(bob),
clause2(anna,anna),clause2(anna,bob),
clause2(bob,anna),clause2(bob,bob).

ev_intelligent_bob_friends_anna_bob :-
intelligent(bob),friends(anna,bob),
evidence_mln.

88 Probabilistic Logic Programming Languages

The probability that Anna gets good marks given the evidence is thus

P pgood marks(anna)|ev intelligent bob friends anna bobq

while the prior probability of Anna getting good marks is given by

P pgood marks(anna)q.

The probability resulting from the first query is higher (P “ 0.733) than the
second query (P “ 0.607), since it is conditioned to the evidence that Bob is
intelligent and Anna is his friend.

In the alternative transformation, the first MLN formula is translated to:

clause1(X) :- \+intelligent(X).
clause1(X):0.2231 :- intelligent(X),\+good_marks(X).
clause1(X) :- intelligent(X), good_marks(X).

where 0.2231 “ e´1.5.
MLN formulas can also be added to a regular probabilistic logic program.

In this case, their effect is equivalent to a soft form of evidence, where certain
worlds are weighted more than others. This is the same as soft evidence in
Figaro [Pfeffer, 2016]. MLN hard constraints, i.e., formulas with an infinite
weight, can instead be used to rule out completely certain worlds, those
violating the constraint. For example, given hard constraint C equivalent to
the disjunction Ci1 _ . . ._ Cini , the LPAD should contain the clauses

clauseipXq Ð Cij

for all j, and the evidence should contain clauseipxq for all groundings
x ofX . In this way, the worlds that violate C are ruled out.

2.12.3 Annotated Probabilistic Logic Programs

In Annotated Probabilistic Logic Programming (APLP) [Ng and Subrah-
manian, 1992], program atoms are annotated with intervals that can be
interpreted probabilistically. An example rule in this approach is:

a : r0.75, 0.85s Ð b : r1, 1s, c : r0.5, 0.75s

that states that the probability of a is between 0.75 and 0.85 if b is certainly
true and the probability of c is between 0.5 and 0.75. The probability interval
of a conjunction or disjunction of atoms is defined using a combinator to

2.12 Other Semantics for Probabilistic Logics 89

construct the tightest bounds for the formula. For instance, if d is annotated
with rld, hds and e with rle, hes, the probability of e^ d is annotated with

rmaxp0, ld ` le ´ 1q,minphd, heqs.

Using these combinators, an inference operator and fixpoint semantics is
defined for positive Datalog programs. A model theory is obtained for
such programs by considering the annotations as constraints on acceptable
probabilistic worlds: an APLP thus describes a family of probabilistic worlds.

APLPs have the advantage that deduction is of low complexity, as the
logic is truth-functional, i.e., the probability of a query can be computed
directly using combinators. The corresponding disadvantages are that APLPs
may be inconsistent if they are not carefully written, and that the use of
the above combinators may quickly lead to assigning overly slack proba-
bility intervals to certain atoms. These aspects are partially addressed by
hybrid APLPs Dekhtyar and Subrahmanian [2000], which allow different
flavors of combinators based on, e.g., independence or mutual exclusivity
of given atoms.

3
Semantics with Function Symbols

When a program contains variables, function symbols, and at least one
constant, its grounding is infinite. In this case, the number of atomic choices
in a selection that defines a world is countably infinite and there is an
uncountably infinite number of worlds. The probability of each individual
world is given by an infinite product. We recall the following result from
[Knopp, 1951, page 218].

Lemma 1 (Infinite Product). If pi P r0, bs for all i “ 1, 2, . . . with b P r0, 1s,
then the infinite product

ś8
i“1 pi converges to 0.

Each factor in the infinite product giving the probability of a world is
bounded away from one, i.e., it belongs to r0, bs for b P r0, 1q. To see this, it
is enough to pick b as the maximum of all the probabilistic parameters that
appear in the program. This is possible if the program does not have flexible
probabilities or probabilities that depend on values computed during program
execution.

So if the program does not contain flexible probabilities, the probability
of each individual world is zero and the semantics of Section 2.2 is not well-
defined [Riguzzi, 2016].

Example 40 (Program with infinite set of worlds). Consider the ProbLog
program

pp0q Ð up0q.
ppspXqq Ð ppXq, upXq.
tÐ„s.
sÐ r, q.
q Ð upXq.
F1 “ a :: upXq.
F2 “ b :: r.

The set of worlds is infinite and uncountable. In fact, each selection can
be represented as a countable sequence of atomic choices of which the first

91

92 Semantics with Function Symbols

involves fact f2, the second f1{tX{0u, the third f1{tX{sp0qu, and so on. The
set of selections can be shown uncountable by Cantor’s diagonal argument.
Suppose the set of selections is countable. Then the selections could be listed
in order, suppose from top to bottom. Suppose the atomic choices of each
selection are listed from left to right. We can pick a composite choice that
differs from the first selection in the first atomic choice (if pf2,H, kq is the
first atomic choice of the first selection, pick pf2,H, 1´ kq), from the second
selection in the second atomic choice (similar to the case of the first atomic
choice), and so on. In this way, we have obtained a selection that is not
present in the list because it differs from each selection in the list for at least
an atomic choice. So it is not possible to list the selections in order against
the hypothesis.

Example 41 (Game of dice). Consider the game of dice proposed in
[Vennekens et al., 2004]: the player repeatedly throws a six-sided die. When
the outcome is six, the game stops. A ProbLog version of this game where the
die has three sides is:

F1 “ 1{3 :: onepXq.
F2 “ 1{2 :: twopXq.
onp0, 1q Ð onep0q.
onp0, 2q Ð„onep0q, twop0q.
onp0, 3q Ð„onep0q,„twop0q.
onpspXq, 1q Ð onpX, q,„onpX, 3q, onepspXqq.
onpspXq, 2q Ð onpX, q,„onpX, 3q,„onepspXqq, twopspXqq.
onpspXq, 3q Ð onpX, q,„onpX, 3q,„onepspXqq,„twopspXqq.

If we add the clauses
at least once 1 Ð onp , 1q.
never 1 Ð„at least once 1.

we can ask for the probability that at least once the die landed on face 1 and
that the die never landed on face 1. As in Example 40, this program has an
infinite and uncountable set of worlds.

3.1 The Distribution Semantics for Programs with
Function Symbols

We now present the definition of the DS for ProbLog programs with function
symbols following [Poole, 1997]. The semantics for a probabilistic logic
program P with function symbols of [Poole, 1997] is given by defining a
finitely additive probability measure µ over an algebra ΩP on the set of
worlds WP .

3.1 The Distribution Semantics for Programs with Function Symbols 93

We first need some definitions. The set of worlds ωκ κ compatible with
a composite choice is ωκ “ twσ P WP |κ Ď σu. Thus, a composite choice
identifies a set of worlds. For programs without function symbols, P pκq “
ř

wPωκ
P pwq, where

P pκq “
ź

pfi,θ,1qPκ

Πi

ź

pfi,θ,0qPκ

1´Πi

For program with function symbols
ř

wPωκ
, P pwq may not be defined as ωκ

may uncountable and P pwq “ 0. However, P pκq is still well defined. Let us
call it µ so µpκq “ P pκq.

Given a set of composite choicesK, the set of worlds ωK compatible with
K is ωK “

Ť

κPK ωκ. Two composite choices κ1 and κ2 are incompatible
if their union is not consistent. A set K of composite choices is pairwise
incompatible if for all κ1 P K,κ2 P K, κ1 ‰ κ2 implies that κ1 and κ2 are
incompatible.

Regardless of whether a probabilistic logic program has a finite number
of worlds or not, obtaining pairwise incompatible sets of composite choices is
an important problem. This is because for program without function symbols,
the probability of a pairwise incompatible set K of composite choices can be
defined asP pKq “

ř

κPK P pκqwhich is easily computed. For programs with
function symbols, P pKq is still well defined provided that K, is countable.
Let us call it µ so µpKq “ P pKq. Two sets K1 and K2 of composite choices
are equivalent if they correspond to the same set of worlds: ωK1 “ ωK2 .

One way to assign probabilities to a set K of composite choices is to
construct an equivalent set that is pairwise incompatible; such a set can be
constructed through the technique of splitting. More specifically, if fθ is an
instantiated fact and κ is a composite choice that does not contain an atomic
choice pf, θ, kq for any k, the split of κ on fθ is the set of composite choices
Sκ,fθ “ tκ Y tpf, θ, 0qu, κ Y tpf, θ, 1quu. It is easy to see that κ and Sκ,fθ
identify the same set of possible worlds, i.e., that ωκ “ ωSκ,fθ , and that Sκ,fθ
is pairwise incompatible. The technique of splitting composite choices on
formulas is used for the following result [Poole, 2000].

Theorem 4 (Existence of a pairwise incompatible set of composite choices
[Poole, 2000]). Given a finite setK of composite choices, there exists a finite
set K 1 of pairwise incompatible composite choices such that K and K 1 are
equivalent.

Proof. Given a finite set of composite choices K, there are two possibilities
to form a new set K 1 of composite choices so that K and K 1 are equivalent:

Francisco Coelho

94 Semantics with Function Symbols

1. Removing dominated elements: if κ1, κ2 P K and κ1 Ă κ2, let K 1 “

Kztκ2u.
2. Splitting elements: if κ1, κ2 P K are compatible (and neither is a

superset of the other), there is a pf, θ, kq P κ1zκ2. We replace κ2 by
the split of κ2 on fθ. Let K 1 “ Kztκ2u Y Sκ2,fθ.

In both cases, ωK “ ωK1 . If we repeat this two operations until neither is
applicable, we obtain a splitting algorithm (see Algorithm 1) that terminates
becauseK is a finite set of composite choices. The resulting setK 1 is pairwise
incompatible and is equivalent to the original set. �

Algorithm 1 Function SPLIT: Splitting Algorithm.
1: function SPLIT(K)
2: loop
3: if Dκ1, κ2 P K such that κ1 Ă κ2 then
4: K Ð Kztκ2u

5: else
6: if Dκ1, κ2 P K compatible then
7: choose pf, θ, kq P κ1zκ2

8: K Ð Kztκ2u Y Sκ2,Fθ

9: else
10: return K
11: end if
12: end if
13: end loop
14: end function

Theorem 5 (Equivalence of the probability of two equivalent pairwise incom-
patible finite set of finite composite choices [Poole, 1993a]). If K1 and K2

are both pairwise incompatible finite sets of finite composite choices such that
they are equivalent, then P pK1q “ P pK2q.

Proof. Consider the setD of all instantiated facts fθ that appear in an atomic
choice in eitherK1 orK2. This set is finite. Each composite choice inK1 and
K2 has atomic choices for a subset of D. For both K1 and K2, we repeatedly
replace each composite choice κ of K1 and K2 with its split Sκ,fiθj on an
fiθj from D that does not appear in κ. This procedure does not change the
total probability as the probabilities of pfi, θj , 0q and pfi, θj , 1q sum to 1.

At the end of this procedure, the two sets of composite choices will
be identical. In fact, any difference can be extended into a possible world
belonging to ωK1 but not to ωK2 or vice versa. �

3.1 The Distribution Semantics for Programs with Function Symbols 95

For a ProbLog program P , we can thus define a unique finitely additive
probability measure µFP : ΩP Ñ r0, 1s where ΩP is defined as the set of sets
of worlds identified by finite sets of finite composite choices: ΩP “ tωK |K
is a finite set of finite composite choices u.

Theorem 6 (Algebra of a program). ΩP is an algebra over WP .

Proof. We need to prove that ΩP respects the three conditions of Definition 7.
WP “ ωK with K “ tHu. The complement ωcK of ωK where K is a
finite set of finite composite choice is ωK where K is a finite set of finite
composite choices. In fact, K can obtained with the function DUALSpKq of
[Poole, 2000] shown in Algorithm 2 for the case of ProbLog. Such a function
performs Reiter’s hitting set algorithm over K, generating an element κ of K
by picking an atomic choice pf, θ, kq from each element ofK and inserting in
κ the atomic choice pf, θ, 1´kq. After this process is performed in all possible
ways, inconsistent sets of atom choices are removed obtaining K. Since the
possible choices of atomic choices are finite, so is K. Finally, closure under
finite union holds since the union of ωK1 with ωK2 is equal to ωK1YK2 for
the definition of ωK . �

Algorithm 2 Function DUALS: Duals computation.
1: function DUALS(K)
2: suppose K “ tκ1, . . . , κnu
3: D0 Ð tHu

4: for iÐ 1 Ñ n do
5: Di Ð tdY tpf, θ, 1´ kqu|d P Di´1, pf, θ, kq P κiu
6: remove inconsistent elements from Di
7: remove any κ from Di if Dκ1 P Di such that κ1 Ă κ
8: end for
9: return Dn
10: end function

The corresponding measure µFP is defined by µFPpωKq “ µpK 1q where
K 1 is a pairwise incompatible set of composite choices equivalent to K.

Theorem 7 (Finitely additive probability space of a program). The triple
xWP ,ΩP , µ

F
Py with

µFPpωKq “ µpK 1q

where K 1 is a pairwise incompatible set of composite choices equivalent to
K, is a finitely additive probability space according to Definition 11.

96 Semantics with Function Symbols

Proof. µFPpωtHuq is equal to 1. Moreover, µFPpωKq ě 0 for all K and if
ωK1 XωK2 “ H and K 1

1 (K 1
2) is pairwise incompatible and equivalent to K1

(K2), then K 1
1 YK

1
2 is pairwise incompatible and

µFPpωK1 Y ωK2q “
ÿ

κPK11YK
1
2

P pκq “
ÿ

κ1PK11

P pκ1q `
ÿ

κ2PK12

P pκ2q “

µFPpωK1q ` µ
F
PpωK2q.

�

Given a query q, a composite choice κ is an explanation for q if @w P

ωκ : w (q. A set K of composite choices is covering with respect to q if
every world in which q is true belongs to ωK .

For a probabilistic logic program P and a ground atom q, we define the
function Q : WP Ñ t0, 1u as

Qpwq “

"

1 if w (q
0 otherwise

(3.1)

If q has a finite set K of finite explanations such that K is covering then
Q´1pt1uq “ tw|w P WP ^ w (qu “ ωK P ΩP so Q is measurable.
Therefore,Q is a random variable whose distribution is defined by P pQ “ 1q
(P pQ “ 0q is given by 1 ´ P pQ “ 1q). We indicate P pQ “ 1q with P pqq
and we say that P pqq is finitely well-defined for the distribution semantics. A
program P is finitely well-defined if the probability of all ground atoms in the
grounding of P is finitely well-defined.

Example 42 (Covering set of explanations for Example 40). Consider the
program of Example 40. The set K “ tκu with

κ “ tpf1, tX{0u, 1q, pf1, tX{sp0qu, 1qu

is a pairwise incompatible finite set of finite explanations that are covering for
the query ppsp0qq. Then P pppsp0qqq is finitely well-defined and P pppsp0qqq “
P pκq “ a2.

Example 43 (Covering set of explanations for Example 41). Now consider
Example 41. The set K “ tκ1, κ2u with

κ1 “ tpf1, tX{0u, 1q, pf1, tX{sp0qu, 1qu
κ2 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 1qu

3.2 Infinite Covering Set of Explanations 97

is a pairwise incompatible finite set of finite explanations that are covering
for the query onpsp0q, 1q. Then P ponpsp0q, 1qq is finitely well-and

P ponpsp0q, 1qq “ P pKq “ 1{3 ¨ 1{3` 2{3 ¨ 1{2 ¨ 1{3 “ 2{9.

3.2 Infinite Covering Set of Explanations

In this section, we go beyond [Poole, 1997] and we remove the requirement
of the finiteness of the covering set of explanations and of each explanation
for a query q [Riguzzi, 2016].

Example 44 (Pairwise incompatible covering set of explanations for
Example 40). In Example 40, the query s has the pairwise incompatible
covering set of explanations

Ks “ tκs0, κ
s
1, . . .u

with

κsi “ tpf2,H, 1q, pf1, tX{0u, 0q, . . . ,

pf1, tX{s
i´1p0qu, 0q, pf1, tX{s

ip0qu, 1qu

where sip0q is the term where the functor s is applied i times to 0. So Ks is
countable and infinite. A pairwise incompatible covering set of explanations
for t is

Kt “ ttpf2,H, 0qu, κ
tu

where κt is the infinite composite choice

κt “ tpf2,H, 1q, pf1, tX{0u, 0q, pf1, tX{sp0qu, 0q, . . .u

Example 45 (Pairwise incompatible covering set of explanations for
Example 41). In Example 41, the query at least once 1 has the pairwise
incompatible covering set of explanations

K` “ tκ`0 , κ
`
1 , . . .u

with

κ`0 “ tpf1, tX{0u, 1qu

κ`1 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 1qu

. . .

κ`i “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, . . . , pf1, tX{s
i´1p0qu, 0q,

pf2, tX{s
i´1p0qu, 1q, pf1, tX{s

ip0qu, 1qu

. . .

98 Semantics with Function Symbols

So K` is countable and infinite. The query never 1 has the pairwise
incompatible covering set of explanations

K´ “ tκ´0 , κ
´
1 , . . .u

with

κ´0 “ tpf1, tX{0u, 0q, pf2, tX{0u, 0qu

κ´1 “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, pf1, tX{sp0qu, 0q,

pf2, tX{sp0qu, 0qu

. . .

κ´i “ tpf1, tX{0u, 0q, pf2, tX{0u, 1q, . . . , pf1, tX{s
i´1p0qu, 0q,

pf2, tX{s
i´1p0qu, 1q, pf1, tX{s

ip0qu, 0q, pf2, tX{s
ip0qu, 0qu

. . .

For a probabilistic logic program P , we can define the probability measure
µP : ΩP Ñ r0, 1s where ΩP is defined as the set of sets of worlds
identified by countable sets of countable composite choices: ΩP “ tωK |K
is a countable set of countable composite choices u.

Before showing that ΩP is a σ-algebra, we need some definitions and
results regarding sequences of sets. For any sequence of sets tAn|n ě 1u,
define [Chow and Teicher, 2012, page 2]

limnÑ8An “
8
ď

n“1

8
č

k“n

Ak

limnÑ8An “
8
č

n“1

8
ď

k“n

Ak

Note that [Chow and Teicher, 2012, page 2]

limnÑ8An “ ta|a P An i.o.u

limnÑ8An “ ta|a P An for all but a finite number of indices nu

where i.o. denotes infinitely often. The two definitions differ because an
element a of limnÑ8An may be absent from An for an infinite number of
indices n, provided that there is a disjoint, infinite set of indices n for which
a P An. For each a P limnÑ8An, instead, there is a m ě 1 such that
@n ě m, a P An.

3.2 Infinite Covering Set of Explanations 99

Then limnÑ8An Ď limnÑ8An. If limnÑ8An “ limnÑ8An “ A, then
A is called the limit of the sequence and we write A “ limnÑ8An.

A sequence tAn|n ě 1u is increasing if An´1 Ď An for all n “ 2, 3,
If a sequence tAn|n ě 1u is increasing, the limit limnÑ8An exists and is
equal to

Ť8
n“1An [Chow and Teicher, 2012, page 3].

Lemma 2 (σ-algebra of a Program). ΩP is a σ-algebra over WP .

Proof. WP P ΩP is true as in the algebra case. To see that the complement
ωcK of ωK is in ΩP , let us prove that the dual K of K is a countable set of
countable composite choices and then that ωcK “ ωK . Let us consider first
the case where K is finite, i.e., let K be Kn “ tκ1, . . . , κnu. We will prove
the thesis by induction. In the base case, if K1 “ tκ1u, then we can obtain
K1 by picking each atomic choice pf, θ, kq of κ1 and inserting in K1 the
composite choice tpf, θ, 1 ´ kqu. As there is a finite or countable number of
atomic choices in κ1, K1 is a finite or countable set of composite choices
each with one atomic choice.

In the inductive case, assume thatKn´1 “ tκ1, . . . , κn´1u and thatKn´1

is a finite or countable set of composite choices. Let Kn “ Kn´1 Y tκnu
and Kn´1 “ tκ11, κ

1
2, . . .u. We can obtain Kn by picking each κ1i and each

atomic choice pf, θ, kq of κn. If pf, θ, kq P κ1i, we discard κ1i, else if pf, θ, k1q
P κ1i with k1 ‰ k, we insert κ1i in Kn. Otherwise, we generate the composite
choice κ2i where κ2i “ κ1i Y tpf, θ, 1 ´ kqu and insert it in Kn. Doing this
for all atomic choices pf, θ, kq, in κn generates a finite set of finite composite
choices if κn is finite and a countable number of finite composite choices if
κn is countable. Doing this for all κ1i, we obtain that Kn is a countable union
of countable sets which is a countable set [Cohn, 2003, page 3]. ωcK “ ωK
because all composite choices of K are incompatible with each world of ωK ,
as they are incompatible with each composite choice of K. So ωcK P ΩP .

If K is not finite, then let K “ tκ1, κ2, . . .u. Consider the subsets Kn of
the formKn “ tκ1, . . . , κnu. Using the construction above buildKn for all n
and consider the set limnÑ8Kn and limnÑ8Kn. Consider a κ1 that belongs
to limnÑ8Kn. Suppose κ1 P Kj and κ1 R Kj`1. This means that κ1 was
removed because κj`1 Ď κ1 or because it was replaced by an extension of it.
Then κ1 will never be re-added to aKn with n ą j`1 because otherwise ωKn
and ωKn

would have a non-empty intersection. So for a composite choice
κ1 to appear infinitely often, there must exist an integer m ě 1 such that
κ1 P Kn for all n ě m. In other words, κ1 belongs to limnÑ8Kn. Therefore,

100 Semantics with Function Symbols

limnÑ8Kn “ limnÑ8Kn “ limnÑ8Kn. Let us call K this limit. K can
thus be expressed as

Ť8
n“1

Ş8
k“nKn.

Ş8
k“nKn is countable as it is a countable intersection of countable sets.

SoK is countable as it is a countable union of countable sets. Moreover, each
composite choice of K is incompatible with each composite choice of K. In
fact, let κ1 be an element ofK and letm ě 1 be the smallest integer such that
κ1 P Kn for all n ě m. Then κ1 is incompatible with all composite choices
of Kn for n ě m by construction. Moreover, it was obtained by extending
a composite choice κ2 from Km´1 that was incompatible with all composite
choices from Km´1. As κ1 is an extension of κ2, it is also incompatible with
all elements of Km´1. So ωcK “ ωK and ωcK P ΩP .

Closure under countable union is true as in the algebra case. �

GivenK “ tκ1, κ2, . . .uwhere the κis may be infinite, consider the sequence
tKn|n ě 1u where Kn “ tκ1, . . . , κnu. Since Kn is an increasing sequence,
the limit limnÑ8Kn exists and is equal to K. Let us build a sequence
tK 1

n|n ě 1u as follows: K 1
1 “ tκ1u and K 1

n is obtained by the union of
K 1
n´1 with the splitting of each element of K 1

n´1 with κn. By induction, it is
possible to prove that K 1

n is pairwise incompatible and equivalent to Kn.
For each K 1

n, we can compute µpK 1
nq, noting that µpκq “ 0 for infinite

composite choices. Let us consider the limit limnÑ8 µpK
1
nq.

Lemma 3 (Existence of the limit of the measure of countable union of
countable composite choices). limnÑ8 µpK

1
nq exists.

Proof. We can see µpK 1
nq for n “ 1, . . . as the partial sums of a series. A

non-decreasing series converges if the partial sums are bounded from above
[Brannan, 2006, page 92], so, if we prove that µpK 1

nq ě µpK 1
n´1q and that

µpK 1
nq is bounded by 1, the lemma is proved. Remove from K 1

n the infinite
composite choices, as they have measure 0. Let Dn be a ProbLog program
containing a fact Πi :: fiθ for each instantiated facts fiθ that appears in
an atomic choice of K 1

n. Then Dn´1 Ď Dn. The triple pWDn ,ΩDn , µq is a
finitely additive probability space (see Section 2.2), so µpK 1

nq ď 1. Moreover,
since ωK1n´1

Ď ωK1n , then µpK 1
nq ě µpK 1

n´1q. �

We can now define the probability space of a program.

Theorem 8 (Probability space of a program). The triple xWP ,ΩP , µPy with

µPpωKq “ lim
nÑ8

µpK 1
nq

3.2 Infinite Covering Set of Explanations 101

where K “ tκ1, κ2, . . .u and K 1
n is a pairwise incompatible set of compos-

ite choices equivalent to tκ1, . . . , κnu, is a probability space according to
Definition 10.

Proof. (µ-1) and (µ-2) hold as for the finite case. For (µ-3), let

O “ tωL1 , ωL2 , . . .u

be a countable set of subsets of ΩP such that the ωLis are the set of worlds
compatible with countable sets of countable composite choices Lis and are
pairwise disjoint. Let L1i be the pairwise incompatible set equivalent to Li
and let L be

Ť8
i“1 L

1
i. Since the ωLis are pairwise disjoint, then L is pairwise

incompatible. L is countable as it is a countable union of countable sets. Let
L be tκ1, κ2, . . .u and let K 1

n be tκ1, . . . , κnu. Then

µPpOq “ lim
nÑ8

µpK 1
nq “ lim

nÑ8

ÿ

κPK1n

µpκq “
8
ÿ

i“1

µpκq “
ÿ

κPL
µpκq.

Since
ř8
i“1 µpκq is convergent and a sum of non-negative terms, it is

also absolutely convergent and its terms can be rearranged [Knopp, 1951,
Theorem 4, page 142]. We thus get

µPpOq “
ÿ

κPL
µpκq “

8
ÿ

n“1

µpL1nq “
8
ÿ

n“1

µPpωLnq.

�

For a probabilistic logic program P and a ground atom q with a countable set
K of explanations such that K is covering for q, then tw|w P WP ^ w (

qu “ ωK P ΩP . So function Q of Equation (3.1) is a random variable.
Again we indicate P pQ “ 1q with P pqq and we say that P pqq is well-

defined for the distribution semantics. A program P is well-defined if the
probability of all ground atoms in the grounding of P is well-defined.

Example 46 (Probability of the query for Example 40). Consider Example
44. The explanations in Ks are pairwise incompatible, so the probability of s
can be computed as

P psq “ ba` bap1´ aq ` bap1´ aq2 ` . . . “
ba

1´ p1´ aq
“ b.

since the sum is a geometric series. Kt is also pairwise incompatible, and
P pκtq “ 0 so P ptq “ 1´ b` 0 “ 1´ b which is what we intuitively expect.

102 Semantics with Function Symbols

Example 47 (Probability of the query for Example 41). In Example 45, the
explanations inK` are pairwise incompatible, so the probability of the query
at least once 1 is given by

P pat least once 1q “
1

3
`

2

3
¨

1

2
¨

1

3
`

ˆ

2

3
¨

1

2

˙2

¨
1

3
` . . .

“
1

3
`

1

9
`

1

27
. . .

“

1
3

1´ 1
3

“

1
3
2
3

“
1

2

since the sum is a geometric series.
For the query never 1, the explanations in K´ are pairwise

incompatible, so the probability of never 1 can be computed as

P pnever 1q “
2

3
¨

1

2
`

2

3
¨

1

2
¨

2

3
¨

1

2
`

ˆ

2

3
¨

1

2

˙2

¨
2

3
¨

1

2
` . . . “

1

3
`

1

9
`

1

27
. . . “

1

2
.

This is expected as never 1 “„at least once 1.

We now want to show that every program is well-defined, i.e., it has a
countable set of countable explanations that is covering for each query. In
the following, we consider only ground programs that, however, may be
countably infinite, and thus they can be the result of grounding a program
with function symbols.

Given two sets of composite choices K1 and K2, define the conjunction
K1 b K2 of K1 and K2 as K1 b K2 “ tκ1 Y κ2|κ1 P K1, κ2 P

K2, consistentpκ1 Y κ2qu. It is easy to see that ωK1bK2 “ ωK1 X ωK2 .
Similarly to [Vlasselaer et al., 2015, 2016], we define parameterized inter-

pretations and an IFPPP operator that are generalizations of interpretations
and the IFPP operator for normal programs. Differently from [Vlasselaer
et al., 2015, 2016], here parameterized interpretations associate each atom
with a set of composite choices rather than with a Boolean formula.

Definition 22 (Parameterized two-valued interpretations). A parameterized
positive two-valued interpretation Tr for a ground probabilistic logic pro-
gram P with Herbrand base BP is a set of pairs pa,Kaq with a P atoms

3.2 Infinite Covering Set of Explanations 103

and Ka a set of composite choices. A parameterized negative two-valued
interpretation Fa for a ground probabilistic logic program P with Herbrand
base BP is a set of pairs pa,K„aq with a P BP and K„a a set of composite
choices.

Parameterized two-valued interpretations form a complete lattice where the
partial order is defined as I ď J if @pa,Kaq P I, pa, Laq P J : ωKa Ď ωLa .
The least upper bound and greatest lower bound always exist and are

lubpXq “ tpa,
ď

IPX,pa,KaqPI

Kaq|a P BPu

and
glbpXq “ tpa,

â

IPX,pa,KaqPI

Kaq|a P BPu.

The top element J is
tpa, tHuq|a P BPu

and the bottom element K is

tpa,Hq|a P BPu.

Definition 23 (Parameterized three-valued interpretations). A parameterized
three-valued interpretation I for a ground probabilistic logic program P with
Herbrand base BP is a set of triples pa,Ka,K„aq with a P BP and Ka

and K„a sets of composite choices. A consistent parameterized three-valued
interpretation I is such that @pa,Ka,K„aq P I : ωKa X ωK„a “ H.

Parameterized three-valued interpretations form a complete lattice where the
partial order is defined as I ď J if @pa,Ka,K„aq P I, pa, La, L„aq P J :
ωKa Ď ωLa and ωK„a Ď ωL„a . The least upper bound and greatest lower
bound always exist and are

lubpXq “ tpa,
ď

IPX,pa,Ka,K„aqPI

Ka,
ď

IPX,pa,Ka,K„aqPI,

K„aq|a P BPu

and

glbpXq “ tpa,
â

IPX,pa,Ka,K„aqPI

Ka,
â

IPX,pa,Ka,K„aqPI

K„aq|a P BPu.

The top element J is

tpa, tHu, tHuq|a P BPu

104 Semantics with Function Symbols

and the bottom element K is

tpa,H,Hq|a P BPu.

Definition 24 (OpTruePP
I pTrq and OpFalsePP

I pFaq). For a ground pro-
gram P with rules R and facts F , a two-valued parameterized positive
interpretation Tr with pairs pa, Laq, a two-valued parameterized negative
interpretation Fa with pairs pa,M„aq, and a three-valued parameterized
interpretation I with triples pa,Ka,K„aq, we define OpTruePP

I pTrq “
tpa, L1aq|a P BPu where

L1a “

$

&

%

ttpa,H, 1quu if a P F
Ť

aÐb1,...,bn,„c1,...,cmPRppLb1 YKb1q b . . .

bpLbn YKbnq bK„c1 b . . .bK„cmq
if a P BPzF

and OpFalsePP
I pFaq “ tpa,M 1

aq|a P BPu where

M 1
„a “

$

&

%

ttpa,H, 0quu if a P F
Â

aÐb1,...,bn,„c1,...,cmPRppM„b1 bK„b1q Y . . .

YpM„bn bK„bnq YKc1 Y . . .YKcmq
if a P BPzF

Proposition 2 (Monotonicity of OpTruePP
I and OpFalsePP

I). OpTruePP
I

and OpFalsePP
I are monotonic.

Proof. Let us consider OpTruePP
I . We have to prove that if Tr1 ď Tr2,

then OpTruePP
I pTr1q ď OpTruePP

I pTr2q. Tr1 ď Tr2 means that

@pa, Laq P Tr1, pa,Maq P Tr2 : ωLa Ď ωMa .

Let pa, L1aq be the elements of OpTruePP
I pTr1q and pa,M 1

aq the elements of
OpTruePP

I pTr2q. We have to prove that ωL1a Ď ωM 1
a

If a P F , then L1a “ M 1
a “ ttpa, θ, 1quu. If a P BPzF , then L1a and M 1

a

have the same structure. Since @b P BP : ωLb Ď ωMb
, then ωL1a Ď ωM 1

a
.

We can prove similarly that OpFalsePP
I is monotonic. �

Since OpTruePP
I and OpFalsePP

I are monotonic, they have a least fixpoint
and a greatest fixpoint.

Definition 25 (Iterated fixed point for probabilistic programs). For a ground
program P , let IFPPP be defined as

IFPPPpIq “ tpa,Ka,K„aq|pa,Kaq P lfppOpTruePP
I q,

pa,K„aq P gfppOpFalsePP
I qu.

3.2 Infinite Covering Set of Explanations 105

Proposition 3 (Monotonicity of IFPPP). IFPPP is monotonic.

Proof. We have to prove that, if I1 ď I2, then IFPPPpI1q ď IFPPPpI2q.
I1 ď I2 means that

@pa, La, L„aq P I1, pa,Ma,M„aq P I2 : ωLa Ď ωMa , ωL„a Ď ωM„a .

Let pa, L1a, L
1
„aq be the elements of IFPPPpI1q and pa,M 1

a,M
1
„aq the ele-

ments of IFPPPpI2q. We have to prove that ωL1a Ď ωM 1
a

and ωL1„a Ď ωM 1
„a

.
This follows from the monotonicity of OpTruePP

I and OpFalsePP
I in I,

which can be proved as in Proposition 2. �

So IFPPP has a least fixpoint. Let WFMPpPq denote lfppIFPPPq, and let
δ the smallest ordinal such that IFPPP Ò δ “ WFMPpPq. We refer to δ as
the depth of P .

Let us now prove that OpTruePP
I and OpFalsePP

I are sound.

Lemma 4 (Soundness of OpTruePP
I). For a ground probabilistic logic

program P with probabilistic facts F and rules R, and a parameterized
three-valued interpretation I, let Lαa be the formula associated with atom
a in OpTruePP

I Ò α. For every atom a, total choice σ, and iteration α, we
have:

wσ P ωLαa Ñ WFM pwσ|Iq (a

where wσ|I is obtained by adding the atoms a for which pa,Ka,K„aq P I
and wσ P ωKa to wσ, and by removing all the rules with a in the head for
which pa,Ka,K„aq P I and wσ P ωK„a .

Proof. Let us prove the lemma by transfinite induction: let us assume the
thesis for all β ă α and let us prove it for α. If α is a successor ordinal, then
it is easily verified for a P F . Otherwise assume wσ P ωLαa where

Lαa “
ď

aÐb1,...,bn,„c1,...,cmPR
ppLα´1

b1
YKb1q b . . . b pL

α´1
bn

YKbnqb

K„c1 b . . .bK„cmq

This means that there is rule a Ð b1, . . . , bn,„ c1, . . . , cm P R such that
wσ P ωLα´1

bi
YKbi

for i “ 1, . . . , n and wσ P ωK„cj for j “ 1 . . . ,m. By the

inductive assumption and because of howwσ|I is built, then WFM pwσ|Iq (
bi and WFM pwσ|Iq („cj so WFM pwσ|Iq (a.

106 Semantics with Function Symbols

If α is a limit ordinal, then

Lαa “ lubptLβa |β ă αuq “
ď

βăα

Lβa

If wσ P ωLαa , then there must exist a β ă α such that wσ P ωLβa . By the
inductive assumption, the hypothesis holds. �

Lemma 5 (Soundness of OpFalsePP
I). For a ground probabilistic logic

program P with probabilistic facts F and rules R, and a parameterized
three-valued interpretation I, let Mα

„a be the set of composite choices asso-
ciated with atom a in OpFalsePP

I Ó α. For every atom a, total choice σ, and
iteration α, we have:

wσ P ωMα
„a
Ñ WFM pwσ|Iq („a

where wσ|I is built as in Lemma 4.

Proof. Similar to the proof of Lemma 4. �

To prove the soundness of IFPPP , we first need two lemmas, the first
regarding the model of a program obtained by a partial evaluation of the
semantics and the second about the equivalence of models of instances and
partial programs.

Lemma 6 (Partial evaluation). For a ground normal logic program P and a
three-valued interpretation I “ xIT , IF y such that I ď WFM pP q, let P ||I
be defined as the program obtained from P by adding all atoms a P IT and
by removing all rules for atoms a P IF . Then WFM pP q “ WFM pP ||Iq.

Proof. We first prove that WFM pP q is a fixpoint of IFPP ||I . Pick an atom
a P OpTruePWFM pP qpIT q. If a P IT , then a is a fact in P ||I, so it is in

OpTrue
P ||I
WFM pP qpIT q. Otherwise, there exists a rule a Ð b1, . . . , bn in P

such that bi is true in WFM pP q or bi P IT for i “ 1, . . . , n. Such a rule is

also in P ||I so a P OpTrue
P ||I
WFM pP qpIT q.

Now pick an atom a P OpFalsePWFM pP qpIF q. If a P IF , then there are no

rules for a t in P ||I, so it is in OpFalse
P ||I
WFM pP qpIF q. Otherwise, for all rules

aÐ b1, . . . , bn in P , there exists a bi such that it is false in WFM pP q or bi P

IF . The set of rules for a in P ||I is the same, so a P OpFalse
P ||I
WFM pP qpIF q.

3.2 Infinite Covering Set of Explanations 107

We can prove similarly that WFM pP ||Iq is a fixpoint of IFPP .
Since WFM pP q is a fixpoint of IFPP ||I , then WFM pP ||Iq ď

WFM pP q because WFM pP ||Iq is the least fixpoint of IFPP ||I . Since
WFM pP ||Iq is a fixpoint of IFPP , then WFM pP q ď WFM pP ||Iq. So
WFM pP q “ WFM pP ||Iq. �

Lemma 7 (Model equivalence). Given a ground probabilistic logic program
P , for every total choice σ, and iteration α, we have:

WFM pwσq “ WFM pwσ|IFPPP Ò αq.

Proof. Let Iα “ xIT , IF y be a three-valued interpretation defined as IT “
ta|wσ P K

α
a u and IF “ ta|wσ P Kα

„au. Then @a P IT : WFM pwσq (a
and @a P IF : WFM pwσq („a. So Iα ď WFM pwσq.

Since wσ|IFPPP Ò α “ wσ||Iα, by Lemma 6

WFM pwσq “ WFM pwσ|IFPPP Ò αq “ WFM pwσ|IFPPP Ò αq.
�

The following lemma shows that IFPPP is sound.

Lemma 8 (Soundness of IFPPP). For a ground probabilistic logic program
P with probabilistic facts F and rules R, let Kα

a and Kα
„a be the formulas

associated with atom a in IFPPP Ò α. For every atom a, total choice σ, and
iteration α, we have:

wσ P ωKα
a
Ñ WFM pwσq (a (3.2)

wσ P ωKα
„a
Ñ WFM pwσq („a (3.3)

Proof. This is a simple consequence of Lemma 7: wσ P ωKα
a

means that a
is a fact in WFM pwσ|IFPPP Ò αq, so WFM pwσ|IFPPP Ò αq (a and
WFM pwσq (a.

On the other hand, wσ P ωKα
„a

means that there are not rules for a in
WFM pwσ|IFPPP Ò αq, and therefore WFM pwσ|IFPPP Ò αq („a and
WFM pwσq („a. �

The following lemma shows that IFPPP is complete.

Lemma 9 (Completeness of IFPPP). For a ground probabilistic logic
program P with probabilistic facts F and rules R, let Kα

a and Kα
„a be the

108 Semantics with Function Symbols

formulas associated with atom a in IFPPP Ò α. For every atom a, total
choice σ, and iteration α, we have:

a P IFPwσ Ò α Ñ wσ P ωKα
a

„a P IFPwσ Ò α Ñ wσ P ωKα
„a

Proof. Let us prove it by double transfinite induction. If α is a successor
ordinal, assume that

a P IFPwσ Ò pα´ 1q Ñ wσ P ωKα´1
a

„a P IFPwσ Ò pα´ 1q Ñ wσ P ωKα´1
„a

Let us perform transfinite induction on the iterations of OpTruewσIFPwσÒpα´1q

and OpFalsewσIFPwσÒpα´1q. Let us consider a successor ordinal δ: assume that

a P OpTruewσIFPwσÒpα´1q Ò pδ ´ 1q Ñ wσ P ωLδ´1
a

„a P OpFalsewσIFPwσÒpα´1q Ó pδ ´ 1q Ñ wσ P ωMδ´1
„a

where pa,Kδ´1
a q are the elements of OpTrueP

IFPPPÒα´1
Ò pδ ´ 1q and

pa,M δ´1
„a q are the elements of OpFalseP

IFPPPÒα´1
Ó pδ ´ 1q. We prove that

a P OpTruewσIFPwσÒpα´1q Ò δ Ñ wσ P ωLδa
„a P OpFalsewσIFPwσÒpα´1q Ó δ Ñ wσ P ωMδ

„a

Consider a. If a P F , it is easily proved.
For the other atoms, a P OpTruewσIFPwσÒpα´1q Ò δ means that there is a

rule aÐ b1, . . . , bn,„c1, . . . , cm such that for all i “ 1, . . . , n

bi P OpTruewσIFPwσÒpα´1q Ò pδ ´ 1q _ bi P IFPwσ Ò pα´ 1q

and for all j “ 1, . . . ,m, „ cj P IFPwσ Ò pα ´ 1q. For the inductive
hypothesis, @i : wσ P ωLδ´1

bi

_ wσ P ωKα´1
bi

and @j : wσ P ωKα´1
„cj

so

wσ P L
δ
a. Analogously for „a.

If δ is a limit ordinal, then Lδa “
Ť

µăδ L
µ
a and M δ

„a “
Â

µăδM
µ
„a. If

a P OpTruewσIFPwσÒpα´1q Ò δ, then there exists a µ ă δ such that

a P OpTruewσIFPwσÒpα´1q Ò µ.

For the inductive hypothesis, wσ P ωLδa .

3.2 Infinite Covering Set of Explanations 109

If „a P OpFalsewσIFPwσÒpα´1q Ó δ, then, for all µ ă δ,

„a P OpFalsewσIFPwσÒpα´1q Ó µ.

For the inductive hypothesis, wσ P ωMδ
a
.

Consider a limit α. Then Kα
a “

Ť

βăαK
β
a and Kα

„a “
Ť

βăαK
β
„a. If

a P IFPwσ Ò α, then there exists a β ă α such that a P IFPwσ Ò β. For the
inductive hypothesis, wσ P ωKβ

a
so wσ P ωKα

a
. Similarly for „a. �

We can now prove that IFPPP is sound and complete.

Theorem 9 (Soundness and completeness of IFPPP). For a ground prob-
abilistic logic program P , let Kα

a and Kα
„a be the formulas associated with

atom a in IFPPP Ò α. For every atom a and total choice σ, there is an
iteration α0 such that for all α ą α0 we have:

wσ P ωKα
a
Ø WFM pwσq (a (3.4)

wσ P ωKα
„a
Ø WFM pwσq („a (3.5)

Proof. TheÑ direction of Equations (3.4) and (3.5) is Lemma 8. In the other
direction, WFM pwσq (a implies Dα0@α : α ě α0 Ñ IFPwσ Ò α (a.
For Lemma 9, wσ P ωKα

a
. WFM pwσq („a implies Dα0@α : α ě α0 Ñ

IFPwσ Ò α („a. For Lemma 9, wσ P ωKα
„a

. �

We can now prove that every query for every sound program has a countable
set of countable explanations that is covering.

Theorem 10 (Well-definedness of the distribution semantics). For a sound
ground probabilistic logic program P , µPptw|w P WP , w (auq for all
ground atoms a is well defined.

Proof. Let Kδ
a and Kδ

„a be the formulas associated with atom a in
IFPPP Ò δ where δ is the depth of the program. For the soundness and
completeness of IFPPP , then tw|w PWP , w (au “ ωKδ

a
.

Each iteration of OpTruePP
IFPPPÒβ

and OpFalsePP
IFPPPÒβ

for all
β generates countable sets of countable explanations since the set of rules is
countable. SoKδ

a is a countable set of countable explanations and µPptw|w P
WP , w (auq is well defined. �

Moreover, if the program is sound, for all atoms a, ωKδ
a
“ ωc

Kδ
„a

where
δ is the depth of the program, as otherwise there would exist a world wσ

110 Semantics with Function Symbols

such that wσ R ωKδ
a

and wσ R ωKδ
„a

. But wσ has a two-valued WFM so
WFM pwσq (a or WFM pwσq („a. In the first case, wσ P ωKδ

a
and in the

latter, wσ P ωKδ
„a

against the hypothesis.
To give a semantics to a program with function symbols in the other

languages under the DS, we can translate it into ProbLog using the techniques
from Section 2.4 and use the above semantics for ProbLog.

3.3 Comparison with Sato and Kameya’s Definition

Sato and Kameya [2001] define the distribution semantics for definite pro-
grams, i.e., programs without negative literals. They build a probability
measure on the set of Herbrand interpretations from a collection of finite
distributions. Let the set of ground probabilistic facts F be tf1, f2, . . .u and
let Xi be a random variable associated with fi whose domain Vi is t0, 1u.

They define the sample space VF as a topological space with the product
topology as the event space such that each t0, 1u is equipped with the discrete
topology.

In order to clarify this definition, let us introduce some topology termi-
nology. A topology on a set V [Willard, 1970, page 23] is a collection Ψ of
subsets of V , called the open sets, satisfying: (t-1) any union of elements of Ψ
belongs to Ψ, (t-2) any finite intersection of elements of Ψ belongs to Ψ, (t-3)
H and V belong to Ψ. We say that pV,Ψq is a topological space. The discrete
topology of a set V [Steen and Seebach, 2013, page 41] is the powerset PpV q
of V .

The infinite Cartesian product of sets ψi for i “ 1, 2, . . . is

ρ “
8
ą

i“1

ψi “ tps1, s2, . . .q|si P ψi, i “ 1, 2, . . .u

A product topology [Willard, 1970, page 53] on the infinite Cartesian product
Ś8

i“1 Vi is a set containing all possible unions of open sets of the form
Ś8

i“1 νi where (p-1) νi is open @i and (p-2) for all but finitely many i,
νi “ Vi. Sets satisfying (p-1) and (p-2) are called cylinder sets. There exists
a countable number of them.

So VF “
Ś8

i“1t0, 1u, i.e., it is an infinite Cartesian product with Vi “
t0, 1u for all i. Sato and Kameya [2001] define a probability measure ηF over

the sample space VF from a collection of finite joint distributions P pnqF pX1 “

k1, . . . ,Xn “ knq for n ě 1 such that

3.3 Comparison with Sato and Kameya’s Definition 111

$

’

&

’

%

0 ď P
pnq
F pX1 “ k1, . . . ,Xn “ knq ď 1

ř

k1,...,kn
P
pnq
F pX1 “ k1, . . . ,Xn “ knq “ 1

ř

kn`1
P
pn`1q
F pX1 “ k1, . . . ,Xn`1 “ kn`1q “ P

pnq
F pX1 “ k1, . . . ,Xn “ knq

(3.6)

The last equation is called the consistency condition or compatibility con-
dition. The Kolmogorov consistency theorem [Chow and Teicher, 2012, page
194] states that, if the distributions P pnqF pX1 “ k1, . . . ,Xn “ knq satisfy the
compatibility condition, there exists a probability space pVF ,ΨF , ηF q where
ηF is a unique probability measure on ΨF , the minimal σ-algebra containing
open sets of VF such that for any n,

ηF pX1 “ k1, . . . ,Xn “ knq “ P
pnq
F pX1 “ k1, . . . ,Xn “ knq. (3.7)

P
pnq
F pX1 “ k1, . . . ,Xn “ knq is defined by Sato and Kameya [2001] as

P
pnq
F pX1 “ k1, . . . ,Xn “ knq “ π1 . . . πn

where πi “ Πi if ki “ 1 and πi “ 1 ´ Πi if ki “ 0, with Πi the annotation
of fact fi. This definition clearly satisfies the properties in Equation (3.6).

The distribution P
pnq
F pX1 “ k1, . . . ,Xn “ knq is then extended to a

probability measure over the set of Herbrand interpretations of the whole
program. Let BP be ta1, a2, . . .u and let Yi be a random variable associated
with ai whose domain is t0, 1u. Moreover, let ak “ a if k “ 1 and ak “„a
if k “ 0. VP is the infinite Cartesian product VP “

Ś8
i“1t0, 1u.

Measure ηF is extended to ηP by introducing a series of finite joint
distributions P pnqP pY1 “ k1, . . . ,Yn “ knq for n “ 1, 2, . . . by

rak1
1 ^ . . .^ akn

n sF “ tv P VF |lhmpvq (ak1
1 ^ . . .^ akn

n u

where lhmpvq is the least Herbrand model ofRYFv, withFv “ tfi|vi “ 1u.
Then let

P
pnq
P pY1 “ k1, . . . ,Yn “ knq “ ηF pra

k1
1 ^ . . .^ akn

n sF q

Sato and Kameya state that rak1
1 ^ . . .^ a

kn
n sF is ηF -measurable and that, by

definition, P pnqP satisfy the compatibility condition
ÿ

kn`1

P
pn`1q
P pY1 “ k1, . . . ,Yn`1 “ kn`1q “ P

pnq
P pY1 “ k1, . . . ,Yn “ knq

Hence, there exists a unique probability measure ηP over ΨP which is an
extension of ηF .

112 Semantics with Function Symbols

In order to relate this definition to the one of Section 3.2, we need to
introduce some more terminology on σ-algebras.

Definition 26 (Infinite-dimensional product σ-algebra and space). For any
measurable spaces pWi,Ωiq, i “ 1, 2, . . ., define

G “
8
ď

m“1

t

8
ą

i“1

ωi|ωi P Ωi, 1 ď i ď m and ωi “Wi, i ą mu

8
â

i“1

Ωi “ σpGq

8
ą

i“1

pWi,Ωiq “ p

8
ą

i“1

Wi,
8
â

i“1

Ωiq

Then
Ś8

i“1pWi,Ωiq is the infinite-dimensional product space and
Â8

i“1 Ωi

is the infinite-dimensional product σ-algebra. This definition generalizes
Definition 14 for the case of infinite dimensions.

It is clear that if Wi “ t0, 1u and Ωi “ Ppt0, 1uq for all i, then G is the set of
all possible unions of cylinder sets, so it is the product topology on

Ś8
i“1Wi

and
8
ą

i“1

pWi,Ωiq “ pVF ,ΨF q

i.e., the infinite-dimensional product space and the space composed by VF
and the minimal σ-algebra containing open sets of VF coincide. Moreover,
according to [Chow and Teicher, 2012, Exercise 1.3.6], ΨF is the minimal
σ-algebra generated by cylinder sets.

An infinite Cartesian product ρ “
Ś8

i“1 νi is consistent if it is different
from the empty set, i.e., if νi ‰ H for all i “ 1, 2, We can establish a
bijective map γF between infinite consistent Cartesian products ρ “

Ś8
i“1 νi

and composite choices: γF p
Ś8

i“1 νiq “ tpfi,H, kiq|νi “ tkiuu.

Lemma 10 (Elements of ΨF as Countable Unions). Each element of ΨF
can be written as a countable union of consistent possibly infinite Cartesian
products:

ψ “
8
ď

j“1

ρj (3.8)

where ρj “
Ś8

i“1 νi and νi P tt0u, t1u, t0, 1uu for all i “ 1, 2,

3.3 Comparison with Sato and Kameya’s Definition 113

Proof. We will show that ΨF and Φ, the set of all elements of the form of
Equation (3.8), coincide. Given a ψ for the form of Equation (3.8), each ρj
can be written as a countable union of cylinder sets, so it belongs to ΨF . Since
ΨF is a σ-algebra and ψ is a countable union, then ψ P ΨF and Φ Ď ΨF .

We can prove that Φ is a σ-algebra using the same technique of Lemma
2, where Cartesian products replace composite choices. Φ contains cylinder
sets: even if each ρj must be consistent, inconsistent sets are empty set of
worlds, so they can be removed from the union in Equation (3.8). As ΨF is
the minimal σ-algebra containing cylinder sets, then ΨF Ď Φ. �

So each element ψ of ΨF can be written as a countable union of consistent
possibly infinite Cartesian products.

Lemma 11 (ΓF is Bijective). Consider the function ΓF : ΨF Ñ ΩP defined
by ΓF pψq “ ωK where ψ “

Ť8
j“1 ρj and K “

Ť8
j“1tγF pρjqu. Then ΓF is

bijective.

Proof. Immediate because γF is bijective. �

Theorem 11 (Equivalence with Sato and Kameya’s definition). Probability
measure µP coincides with ηP for definite programs.

Proof. Consider pX1 “ k1, . . . ,Xn “ knq and let K be

ttpf1,H, k1q, . . . , pfn,H, knquu.

Then K “ ΓF ptpk1, . . . , kn, vn`1, . . .q|vi P t0, 1u, i “ n ` 1, . . .uq and µP
assigns probability π1 . . . πn to K, where πi “ Πi if ki “ 1 and πi “ 1´Πi

otherwise.
So µP is in accordance with P pnqF . But P pnqF can be extended in only one

way to a probability measure ηF and there is a bijection between ΨF and ΩP ,
so µP is in accordance with ηF on all ΨF .

Now consider C “ ak1
1 ^ . . . ^ akn

n . Since IFPPP Ò δ is such that Kδ
a

and Kδ
„a are countable sets of countable composite choices for all atoms a,

we can compute a covering set of explanations K for C by taking a finite
conjunction of countable sets of composite choices, so K is a countable set
of countable composite choices.

Clearly, P pnqP pY1 “ k1, . . . ,Yn “ knq coincides with µPpωKq. But P pnqP
can be extended in only one way to a probability measure ηP , so µP is in
accordance with ηP on all ΨP when P is a definite program. �

4
Semantics for Hybrid Programs

The languages presented in Chapter 2 allow the definition of discrete random
variables only. However, some domains naturally include continuous random
variables. Probabilistic logic programs including continuous variables are
called hybrid.

In this chapter, we discuss some languages for hybrid programs together
with their semantics.

4.1 Hybrid ProbLog

Hybrid ProbLog [Gutmann et al., 2011a] extends ProbLog with continuous
probabilistic facts of the form

pX,φq :: f

where X is a logical variable appearing in the atom f and φ is an atom
specifying a continuous distribution, such as, for example, gaussianp0, 1q
to indicate a Gaussian distribution with mean 0 and standard deviation 1.
Variables X of this form are called continuous variables.

A Hybrid ProbLog program P is composed of definite rules R and facts
F “ Fd Y Fc where Fd are discrete probabilistic facts as in ProbLog and
Fc are continuous probabilistic facts.

Example 48 (Gaussian mixture – Hybrid ProbLog). A Gaussian mixture
model is a way to generate values of a continuous random variable: a discrete
random variable is sampled and, depending on the sampled value, a different
Gaussian distribution is selected for sampling the value of the continuous
variable.

A Gaussian mixture model with two components can be expressed in
Hybrid ProbLog as [Gutmann et al., 2011a]:

115

116 Semantics for Hybrid Programs

0.6 :: heads.
tailsÐ „heads.
pX, gaussianp0, 1qq :: gpXq.
pX, gaussianp5, 2qq :: hpXq.
mixpXq Ð heads, gpXq.
mixpXq Ð tails, hpXq.
posÐmixpXq, abovepX, 0q.

where, for example, pX, gaussianp0, 1qq :: gpXq is a continuous proba-
bilistic facts stating that X follows a Gaussian with mean 0 and standard
deviation 1. The values of X in mixpXq are distributed according to a
mixture of two Gaussians. The atom pos is true if X is positive.

A number of predicates are defined for manipulating a continuous variable
X:

• belowpX, cq succeeds if X ă c where c is a numeric constant;
• abovepX, cq succeeds if X ą c where c is a numeric constant;
• inintervalpX, c1, c2q succeeds if X P rc1, c2s where c1 and c2 are

numeric constants.

Continuous variables can’t be unified with terms or used in Prolog compar-
ison and arithmetic operators, so in the example above, it is not possible to
use expressions gp0q, pgpXq, X ą 0q, pgpXq, 3 ˚X ` 4 ą 4q in the body of
rules. The first two, however, can be expressed as gpXq, inintervalpX, 0, 0q
and gpXq, abovepX, 0q, respectively.

Hybrid ProbLog assumes a finite set of continuous probabilistic facts
and no function symbols, so the set of continuous variables is finite. Let us
indicate the set with X “ tX1, . . . ,Xnu, defined by the set of atoms for
probabilistic facts F “ tf1, . . . , fnu where each fi is ground except for
variable Xi. An assignment x “ tx1, . . . , xnu to X defines a substitution
θx “ tX1{x1, . . .Xn{xnu and, in turn, a set of ground facts Fθx.

Given a selection σ for discrete facts and an assignment x to continuous
variables, a world wσ,x is defined as

wσ,x “ RY tfθ|pf, θ, 1q P σu Y Fθx
Each continuous variable Xi is associated with a probability density pipXiq.
Since all the variables are independent, ppxq “

śn
i“1 pipxiq is a joint

probability density over X. ppXq and P pσq then define a joint probability
density over the worlds:

ppwσ,xq “ ppxq
ź

pfi,θ,1qPσ

Πi

ź

pfi,θ,0qPσ

1´Πi

4.1 Hybrid ProbLog 117

The probability of a ground atom q different from the atom of a con-
tinuous probabilistic fact is then defined as in the DS for discrete programs
as

P pqq “

ż

σPSP ,xPRn
ppq, wσ,xq “

ż

σPSP ,xPRn
P pq|wσ,xqppwσ,xq “

ż

σPSP ,xPRn:wσ,x(q
ppwσ,xq

where SP is the set of all selections over discrete probabilistic facts. If the
set tpσ,xq|σ P SP ,x P Rn : wσ,x (qu is measurable, then the probability
is well defined. Gutmann et al. [2011a] prove that, for each instance σ, the
set tx|x P Rn : wσ,x (qu is an n-dimensional interval I “ ra1, b1s ˆ
. . . ˆ ran, bns of Rn where ai and bi can be ´8 and `8, respectively, for
i “ 1, . . . , n. The probability that X P I is then given by

P pX P Iq “

ż b1

a1

. . .

ż bn

an

ppxqdx (4.1)

The proof is based on considering a discretized theory PD obtained as

PD “ RY Fd Y tbelowpX,Cq, abovepX,Cq, inintervalpX,C1, C2qu Y

tftX{fu|pX,φq :: f P Fdu

The discretized program is a regular ProbLog program, so we can consider
its worlds. In each world, we can derive the query by SLD resolution and
keep track of the instantiations of the facts for the comparison predicates
used in each proof. This yields a set of comparison facts that defines an
n-dimensional interval. So we can compute the probability of the query in
the world with Equation (4.1). By summing these values for all proofs, we
get the probability of the query in the world of the ProbLog program. The
weighted sum of the probabilities in the worlds over all worlds of PD gives
the probability of the query, where the weights are the probabilities of the
worlds according to the discrete facts.

Example 49 (Query over a Gaussian mixture – Hybrid ProbLog). For
Example 48, the discretized program is

118 Semantics for Hybrid Programs

0.6 :: heads.
tailsÐ „heads.
gpgpXqq.
hphpXqq.
mixpXq Ð heads, gpXq.
mixpXq Ð tails, hpXq.
posÐmixpXq, abovepX, 0q.
belowpX,Cq.
abovepX,Cq.
inintervalpX,C1, C2q.

which is a ProbLog program with two worlds. In the one containing heads,
the only proof for the query pos uses the fact abovepgpgpXqq, 0q, so the
probability of pos in this world is

P ppos|headsq “

ż 8

0
ppxqdx “ 1´ F p0, 0, 1q

where F px, µ, σq is the Gaussian cumulative distribution with mean µ and
standard deviation σ. Therefore, P ppos|headsq “ 0.5.

In the world not containing heads, the only proof for the query pos
uses the fact abovephphpXqq, 0q, so the probability of pos in this world is
P ppos| „headsq “ 1´ F p0, 5, 2q « 0.994. So overall

P pposq “ 0.6 ¨ 0.5` 0.4 ¨ 0.994 « 0.698

This approach for defining the semantics also defines a strategy for per-
forming inference. However, Hybrid ProbLog imposes severe restrictions on
the programs, not allowing the use of continuous variables in expressions
possibly involving other variables.

4.2 Distributional Clauses

Distributional Clauses (DCs) [Gutmann et al., 2011c] are definite clause with
an atom h „ D in the head, where h is a term,„ is a binary predicate used in
infix notation, and D is a term specifying a discrete or continuous probability
distribution. For each ground instance ph „ DÐ b1, . . . , bnqθ, where θ is a
substitution over the Herbrand universe of the logic program, a distributional
clause defines a random variable hθ with the distribution indicated by Dθ
whenever all the biθ hold. The term D can be non-ground, i.e., distribution
parameters can be related to conditions in the body, similarly to flexible
probabilities, see Section 2.7.

4.2 Distributional Clauses 119

The reserved functor »{1 is used to represent the outcome of a random
variable: »d, for example, indicates the outcome of random variable d. The
set of special predicates

dist rel “ tdist eq{2, dist lt{2, dist leq{2, dist gt{2, dist geq{2u

can be used to compare the outcome of a random variable with a constant or
the outcome of another random variable. These predicates are assumed to be
defined by ground facts, one for each true atom for one of the predicates.
Terms of the form »phq can also be used in other predicates with some
restrictions, e.g., it does not make sense to unify the outcome of a continuous
random variable with a constant or another random variable as the probability
that they are equal has measure 0. The predicate „“{2 is used to unify
discrete random variables with terms: h„“v means »phq “ v, which is true
iff the value of the random variable h unifies with v.

A DC programs P is composed by a set of definite clauses R and a set
of DCs C. A world of P is the program RY F where F is the set of ground
atoms for the predicates in dist rel that are true for each random variable hθ
defined by the program.

Let us now see two examples.

Example 50 (Gaussian mixture – DCs). The Gaussian mixture model of
Example 48 can be expressed with DCs as

coin „ r0.6 : heads, 0.4 : tailss.
g „ gaussianp0, 1q.
h „ gaussianp5, 2q.
mixpXq Ð dist eqp»coin, headsq, g„“X.
mixpXq Ð dist eqp»coin, tailsq, h„“X.
posÐmixpXq, dist gtpX, 0q.

where, for example, g follows a Gaussian with mean 0 and standard
deviation 1.

This example shows that Hybrid ProbLog programs can be expressed
in DCs.

Example 51 (Moving people – DCs [Nitti et al., 2016]). The following
program models a set of people moving on a real line:

n „ poissonp6q.
pospP q „ uniformp0,Mq Ð n„“N, betweenp1, N, P q,
M is 10 ˚N.

leftpA,Bq Ð dist ltp»pospAq,»pospBqq.

120 Semantics for Hybrid Programs

where betweenp1, N, P q is a predicate that, when P is not bound, generates
all integers between 1 and N , and is{2 is the standard Prolog predicate for
the evaluation of expressions.

The first clause defines the number of people n as a random variable that
follows a Poisson distribution with mean 6. The position of each person is
modeled with the random variable pospP q defined in the second clause as a
continuous random variable uniformly distributed from 0 to M “ 10n (that
is, 10 times the number of people), for each integer person identifier P such
that 1 ď P ď n. If the value of n is 2, for example, there will be two indepen-
dent random variables posp1q and posp2q with distribution uniformp0, 20q.
The last clause defines relation left{2 between people positions.

A DC program must satisfy some conditions to be considered valid.

Definition 27 (Valid program [Gutmann et al., 2011c]). A DC program P is
called valid if the following conditions are fulfilled:

(V1) In the relation h „ D that holds in the least fixpoint of a program, there
is a functional dependency from h to D, so there is a unique ground
distribution D for each ground random variable h.

(V2) The program is distribution-stratified, that is, there exists a function
rankp¨q that maps ground atoms to N and satisfies the following prop-
erties: (1) for each ground instance of a clause h „ DÐ b1, . . . bn, it
holds that rankph „ Dq ą rankpbiq for all i; (2) for each ground
instance of a regular program clause hÐ b1, . . . bn, it holds rankphq ě
rankpbiq for all i; and (3) for each ground atom b that contains (the
name of) a random variable h, rankpbq ě rankph „ Dq (with h „ D
being the head of the distribution clause defining h). The ranking is
extended to random variables by setting rankphq “ rankph „ Dq.

(V3) The indicator functions (see below) for all ground probabilistic facts are
Lebesgue-measurable.

(V4) Each atom in the least fixpoint can be derived from a finite number of
probabilistic facts (finite support condition [Sato, 1995]).

We now define the series of distributions P pnqF as in Sato and Kameya’s defini-
tion of the DS of Equation (3.6). We consider an enumeration tf1, f2, . . .u of
atoms for the predicates in dist rel such that i ă j ñ rankpfiq ď rankpfjq
where rankp¨q is a ranking function as in Definition 27. We also define, for
each predicate rel{2 P dist rel, an indicator function:

4.2 Distributional Clauses 121

I1
relpX1, X2q “

"

1 if relpX1, X2q is true,
0 if relpX1, X2q is false

I0
relpX1, X2q “ 1.0´ I1

relpX1, X2q

We define the probability distributions P pnqF over finite sets of ground facts
f1, . . . , fn using expectations of indicator functions. Let xi P t1, 0u for
i “ 1, . . . , n be truth values for the facts f1, . . . , fn. Let trv1,rvmu be
the set of random variables these n facts depend upon, ordered such that
if rankprviq ă rankprvjq, then i ă j, and let fi “ relipti1, ti2q. Let
θ´1 “ tprv1q{V1, . . . , prvmq{Vmu be an antisubstitution (see Section 1.3)
that replaces evaluations of the random variables with real variables for
integration. Then the probability distributions P pnqF are given by

P
pnq
F pf1 “ x1, . . . , fn “ xnq “

ErIx1rel1pt11, t12q, . . . , I
xn
reln
ptn1, tn2qs “

ż

. . .

ż

Ix1rel1pt11θ
´1, t12θ

´1q . . . Ixnrelnptn1θ
´1, tn2θ

´1q

dDrv1pV1q . . . dDrvmpVmq (4.2)

For valid DC programs, the following proposition can be proved.

Proposition 4 (Valid DC Program [Gutmann et al., 2011c]). LetP be a valid
DC program. P defines a probability measure PP over the set of fixpoints of
operator Tw were w is a world of P . Hence, for an arbitrary formula q over
atoms, P also defines the probability that q is true.

The semantics of DCs coincides with that of hybrid ProbLog on programs
that satisfy the constraints imposed by the latter.

An alternative view of the semantics can be given by means of a stochastic
TP operator, STP , extending the TP operator of Definition 1 to deal with
probabilistic facts dist relpt1, t2q. We need a function READTABLEp¨q that
evaluates probabilistic facts and stores the sampled values for random vari-
ables. READTABLE applied to probabilistic fact dist relpt1, t2q returns the
truth value of the fact evaluated on the basis of the values of the random
variables in the arguments. The values are either retrieved from the table or
sampled according to their distribution the first time they are accessed. In the
case they are sampled, they are stored for future use.

122 Semantics for Hybrid Programs

Definition 28 (STP operator [Gutmann et al., 2011c]). Let P be a valid DC
program. Starting from a set of ground facts I , the STP operator is defined as

STPpIq “ th|hÐ b1 . . . , bn P groundpPq ^ @bi : bi P I _ (4.3)

bi “ dist relpt1, t2q ^

ptj “ »hñ h „ D P I ^ READTABLEpbiq “ truequ

Computing the least fixpoint of the STP operator returns a possible model of
the program. The STP operator is stochastic, so it defines a sampling process.
The distribution over models defined by STP is the same as that defined by
Equation (4.2).

Example 52 (STP for moving people – DC [Nitti et al., 2016]). Given the
DC program P defined in Example 51, a possible sequence of application of
the STP operator is

STP Ò α Table
H H

tn „ poissonp6qu tn “ 2u
tn „ poissonp6q, posp1q „ uniformp0, 20q, tn “ 2, posp1q “ 3.1,
posp2q „ uniformp0, 20qu posp2q “ 4.5u
tn „ poissonp6q, posp1q „ uniformp0, 20q, tn “ 2, posp1q “ 3.1,
posp2q „ uniformp0, 20q, leftp1, 2qu posp2q “ 4.5u

Nitti et al. [2016] proposed a modification of DCs where the relation
symbols are replaced with their Prolog versions, the clauses can contain
negation, and the STP operator is defined slightly differently.

The new version of the STP operator does not use a separate table for stor-
ing the values sampled for random variables and does not store distribution
atoms.

Definition 29 (STP operator [Nitti et al., 2016]). Let P be a valid DC
program. Starting from a set of ground facts I , the STP operator is defined as

STPpIq “ th “ v|h „ D Ð b1, . . . , bn P groundpPq ^ @bi :

bi P I _ bi “ dist relpt1, t2q ^ t1 “ v1 P I ^ t2 “ v2 P I ^

dist relpv1, v2q ^ v is sampled from Du Y
th|hÐ b1, . . . , bn P groundpPq ^ h ‰ pr „ Dq ^ @bi :

bi P I _ bi “ dist relpt1, t2q ^ t1 “ v1 P I ^

t2 “ v2 P I ^ dist relpv1, v2qu

4.2 Distributional Clauses 123

where dist rel is one of “,ă,ď,ą,ě. In practice, for each distributional
clause h „ D Ð b1 . . . , bn, whenever the body b1 . . . , bn is true in I , a
value v for random variable h is sampled from the distribution D and h “
v is added to the interpretation. Similarly for deterministic clauses, adding
ground atoms whenever the body is true.

We can provide an alternative definition of world. A world is obtained in a
number of steps. First, we must distinguish the logical variables that can hold
continuous values from those that can hold values from the logical Herbrand
universe. We replace the discrete logical variables with terms from the Her-
brand universe in all possible ways. Then we sample, for each distributional
clause h „ D Ð b1 . . . , bn in the resulting program, a value for h from
distribution D and replace the clause with h„“v Ð b1 . . . , bn.

If we compute the least fixpoint of Tw for a world w sampled in this way,
we get a model that is the same as the one that is the least fixpoint of STP if all
random variables are sampled in the same way. So the least fixpoint of STP
is a model of at least one world. The probability measure over models defined
by STP of Definition 30 coincides with that defined by STP of Definition 28
and Equation (4.2). Nitti et al. [2016] call worlds the possible models but we
prefer to use the word world for sampled normal programs.

Example 53 (STP for moving people – DC [Nitti et al., 2016]).
Given the DC program P defined in Example 51 and the sequence

of applications of the STP operator of Definition 28, the corresponding
sequence of applications for STP of Definition 30 is

STP Ò 0 “ H
STP Ò 1 “ tn “ 2u
STP Ò 2 “ tn “ 2, posp1q “ 3.1, posp2q “ 4.5u
STP Ò 3 “ tn “ 2, posp1q “ 3.1, posp2q “ 4.5, leftp1, 2qu
STP Ò 4 “ STP Ò 3 “ lfppSTP q

so tn “ 2, posp1q “ 3.1, posp2q “ 4.5, leftp1, 2qu is a possible model or a
model of a world of the program.

Regarding negation, since programs need to be stratified to be valid, negation
poses no particular problem: the STP operator is applied at each rank from
lowest to highest, along the same lines as the perfect model semantics
[Przymusinski, 1988].

Given a DC program P and a negative literal l “„a, to determine its
truth in P , we can proceed as follows. Consider the interpretation I obtained

124 Semantics for Hybrid Programs

by applying the STP operator until the least fixpoint for rankplq is reached
(or exceeded). If a is a non-comparison atomic formula, I is true if a R I
and false otherwise. If a is a comparison atom involving a random variable
r such as l “ pr„“valq, then l is true whenever Dval1 : r “ val1 P I with
val ‰ val1 or Eval1 : r “ val1 P I , i.e., r is not defined in I . Note that I is the
least fixpoint for rankpr „ Dq (or higher), thus Eval1 : r “ val1 P I implies
that r is not defined also in the following applications of the STP operator
and so also in the possible model.

Example 54 (Negation in DCs [Nitti et al., 2016]). Consider an example
where we draw nballs balls with replacement from an urn containing an
equal number of red, blue, and black balls. nballs follows a Poisson distri-
bution and the color of each ball is a random variable uniformly distributed
over the set tred, blue, blacku:

nballs „ poissonp6q.
colorpXq „ uniformprred, blue, blacksq Ð
nballs»N, betweenp1, N,Xq.

not redÐ „colorp2q»red.
not red is true in those possible models where the value of colorp2q is not
red or in those in which colorp2q is not defined, for example, when n “ 1.

4.3 Extended PRISM

Islam et al. [2012b] proposed an extension of PRISM that includes continuous
random variables with a Gaussian or gamma distribution.

The set sw directives allow the definition of probability density func-
tions. For instance, set swpr, normpMu,Varqq specifies that the outcomes
of random processes r have Gaussian distribution with mean Mu and
variance Var .

Parameterized families of random processes may be specified, as long as
the parameters are discrete-valued. For instance,

set swpwpMq, normpMu,Varqq

specifies a family of random variables, with one for each value of M . As in
PRISM, the distribution parameters may be computed as functions of M .

Moreover, PRISM is extended with linear equality constraints over reals.
Without loss of generality, we assume that constraints are written as linear
equalities of the form Y “ a1 ¨X1` . . .` an ¨Xn` b where ai and b are all
floating point constants.

4.3 Extended PRISM 125

In the following, we use Constr to denote a set (conjunction) of linear
equality constraints. We also denote byX a vector of variables and/or values,
explicitly specifying the size only when it is not clear from the context. This
allows us to write linear equality constraints compactly (e.g., Y “ a ¨X ` b).

Example 55 (Gaussian mixture – Extended PRISM). The Gaussian mixture
model of Example 48 can be expressed with Extended PRISM as

mixpXq Ðmswpcoin, headsq,mswpg,Xq.
mixpXq Ðmswpcoin, tailsq,mswph,Xq
valuespcoin, rheads, tailssq.
valuespg, realq.
valuesph, realq,
Ð set swpcoin, r0.6, 0.4sq.
Ð set swpg, normp0, 1qq.
Ð set swph, normp5, 2qq.

Let us now show an example with constraints.

Example 56 (Gaussian mixture and constraints – Extended PRISM). Con-
sider a factory with two machines a and b. Each machine produces a widget
with a continuous feature. A widget is produced by machine a with probability
0.3 and by machine b with probability 0.7. If the widget is produced by
machine a, the feature is distributed as a Gaussian with mean 2.0 and
variance 1.0. If the widget is produced by machine b, the feature is distributed
as a Gaussian with mean 3.0 and variance 1.0. The widget then is processed
by a third machine that adds a random quantity to the feature. The quantity
is distributed as a Gaussian with mean 0.5 and variance 1.5. This is encoded
by the program:

widgetpXq Ð
mswpm,Mq,mswpstpMq, Zq,mswppt, Y q, X “ Y ` Z.

valuespm, ra, bsq.
valuespstp q, realq.
valuesppt, realq.
Ð set swpm, r0.3, 0.7sq.
Ð set swpstpaq, normp2.0, 1.0qq.
Ð set swpstpbq, normp3.0, 1.0qq.
Ð set swppt, normp0.5, 0.1qq.

The semantics extends the DS for the discrete case by defining a probability
space for themsw switches and then extending it to a probability space for the
entire program using the least model semantics of constraint logic programs
[Jaffar et al., 1998].

126 Semantics for Hybrid Programs

The probability space for the probabilistic facts is constructed from those
of discrete and continuous random variables. The probability space for N
continuous random variables is the Borel σ-algebra over RN and a Lebesgue
measure on this set is the probability measure. This is combined with the
space for discrete random variables using the Cartesian product. The prob-
ability space for facts is extended to the space of the entire program using
the least model semantics: a point in this space is an arbitrary interpretation
of the program obtained from a point in the space of the facts by means of
logical consequence. A probability measure over the space of the program is
then defined by using the measure defined for the probabilistic facts alone.
The semantics for programs without constraints is essentially equivalent to
the one of DC.

The authors propose an exact inference algorithm that extends the one
of PRISM by reasoning symbolically over the constraints on the random
variables, see Section 5.11. This is permitted by the restrictions on the types
of distributions, Gaussian and gamma, and on the form of constraints, linear
equations.

4.4 cplint Hybrid Programs

cplint handles continuous random variables with its sampling inference
module. The user can specify a probability density on an argument Var of an
atom a with rules of the form

a : DensityÐBody

whereDensity is a special atom identifying a probability density on variable
Var and Body (optional) is a regular clause body. Density atoms can be:

• uniformpVar , L, Uq: Var is uniformly distributed in rL,U s.
• gaussianpVar ,Mean,Varianceq: Gaussian distribution with parame-

ters Mean and Variance . The distribution can be multivariate if Mean
is a list and Variance a list of lists representing the mean vector and the
covariance matrix, respectively. In this case, the values of Var are lists
of real values with the same length as that of Mean.
• dirichletpVar , Parq: Var is a list of real numbers following a Dirichlet

distribution with α parameters specified by the list Par.
• gammapVar , Shape, Scaleq gamma distribution with parameters
Shape and Scale.

4.4 cplint Hybrid Programs 127

• betapVar , Alpha,Betaq beta distribution with parameters Alpha and
Beta.
• poissonpVar , Lambdaq Poisson distribution with parameter Lambda.
• binomialpVar , N, P q binomial distribution with parameters N and P .
• geometricpVar , P q geometric distribution with parameter P .

For example
gpXq : gaussianpX, 0, 1q.

states that argument X of gpXq follows a Gaussian distribution with mean 0
and variance 1, while

gpXq : gaussianpX, r0, 0s, rr1, 0s, r0, 1ssq.

states that argument X of gpXq follows a Gaussian multivariate distribution
with mean vector r0, 0s and covariance matrix

„

1 0
0 1



Example 57 (Gaussian mixture – cplint). Example 48 of a mixture of two
Gaussians can be encoded as1:

heads : 0.6 ; tails : 0.4.
gpXq : gaussianpX, 0, 1q.
hpXq : gaussianpX, 5, 2q.
mixpXq Ð heads, gpXq.
mixpXq Ð tails, hpXq.

The argument X of mixpXq follows a distribution that is a mixture of two
Gaussian, one with mean 0 and variance 1 with probability 0.6 and one with
mean 5 and variance 2 with probability 0.4.

The parameters of the distribution atoms can be taken from the probabilistic
atom.

Example 58 (Estimation of the mean of a Gaussian – cplint). The
program2

valuepI,Xq Ð meanpMq, valuepI,M,Xq.
meanpMq : gaussianpM, 1.0, 5.0q.
valuep ,M,Xq : gaussianpX,M, 2.0q.

1http://cplint.eu/e/gaussian mixture.pl
2http://cplint.eu/e/gauss mean est.pl

128 Semantics for Hybrid Programs

states that, for an index I , the continuous variable X is sampled from
a Gaussian whose variance is 2 and whose mean M is sampled from a
Gaussian with mean 1 and variance 5.

This program can be used to estimate the mean of a Gaussian by querying
meanpMq given observations for atom valuepI,Xq for different values of I .

Any operation is allowed on continuous random variables.

Example 59 (Kalman filter – cplint). A Kalman filter [Harvey, 1990] is a
dynamical system, i.e., a system that evolves with time. At every integer time
point t, the system is in a state S which is a continuous variable and emits one
value V “ S`E, where E is an error that follows a probability distribution
that does not depend on time. The system transitions to a new state NextS
at time t ` 1, with NextS “ S ` X where X is also an error that follows
a probability distribution that does not depend on time. Kalman filters have
a wide variety of applications, especially in the estimation of trajectories of
physical systems. Kalman filters differ from Hidden Markov Model (HMM)
because the state and output are continuous instead of discrete.

The program below3, adapted from [Islam et al., 2012b], encodes a
Kalman filter in cplint:

kf pN,O, T q Ð initpSq, kf partp0, N, S,O, LS, T q.
kf partpI,N, S, rV |ROs, rS|LSs, T q Ð I ă N,NextIisI ` 1,
transpS, I,NextSq, emitpNextS, I, V q,
kf partpNextI,N,NextS,RO,LS, T q.

kf partpN,N, S, rs, rs, Sq.
transpS, I,NextSq Ð
tNextS “:“ E ` Su, trans errpI, Eq.

emitpS, I, V q Ð tV “:“ S `Xu, obs errpI,Xq.
initpSq : gaussianpS, 0, 1q.
trans errp , Eq : gaussianpE, 0, 2q.
obs errp , Eq : gaussianpE, 0, 1q.

kf pN,O, T q means that the filter run for N time points produced the output
sequence O and state sequence T starting from state 0.

Continuous random variables appear in arithmetic expressions (in
clauses for trans{3 and emit{3). It is often convenient, as in this case,
to use CLP(R) constraints as in this way the expressions can be used in
multiple directions and the same clauses can be used both to sample and to
evaluate the weight of the sample on the basis of evidence (see Section 7.5).

3http://cplint.eu/e/kalman filter.pl

Francisco Coelho

4.4 cplint Hybrid Programs 129

For example, the expression tNextS “:“ E ` Su can be used to compute
the value of any variable given values for the other two.

The semantics is given in terms of a stochastic TP operator as the one of DCs.

Definition 30 (STP operator – cplint). Let P be a program and
groundpPq be the set of all instances of clauses in P with all variables in
the body replaced by constants. Starting from a set of ground facts I , the
STP operator returns

STPpIq “ th1|h : Density Ð b1, . . . , bn P groundpP q ^ @bi : bi P I _

h1 “ htV ar{vu with V ar the continuous variable of h and

v sampled from Densityu Y

th|DistÐ b1, . . . , bn P groundpP q ^ @bi : bi P I

with h sampled from discrete distribution Distu

Differently from STP of definition 30, there is no need for special treatment
for the atoms in the body, as they are all logical atoms. For each probabilistic
clause h : Density Ð b1 . . . , bn whenever the body b1 . . . , bn is true in I , a
value v for the continuous variable V ar of h is sampled from the distribution
Density and htV ar{vu is added to the interpretation. Similarly for discrete
and deterministic clauses.

cplint also allows the syntax of DC and Extended PRISM by translating
clauses in these languages to cplint clauses.

For DC, this amounts to replacing head atoms of the form
ppt1, . . . , tnq„densityppar1, . . . , parmq with ppt1, . . . , tn,Varq : density
pVar , t1, . . . , tnq and body atoms of the form ppt1, . . . , tnq„“X with
ppt1, . . . , tn, Xq. On the other hand, terms of the form »phq for h a random
variable are not allowed, and the value of a random variable can be used by
unifying it with a logical variable using h„“X .

For extended PRISM, atoms of the form mswpppt1, . . . , tnq, valq in the
body of clauses defined by a directive such as

Ð set swpppt1, . . . , tnq, densityppar1, . . . , parmqq.

are replaced by probabilistic facts of the form

ppt1, . . . , tn,Varq : densitypVar , par1, . . . , parmq.

130 Semantics for Hybrid Programs

The syntax of cplint allows a considerable freedom, allowing to express
both constraints on random variables and a wide variety of distributions.
No syntactic checks are made on the program to ensure validity. In case
for example random variables are not sufficiently instantiated to exploit
expressions for inferring the values of other variables, inference will return
an error.

4.5 Probabilistic Constraint Logic Programming

Michels et al. [2013, 2015] and Michels [2016] proposed the language of
PCLP that allows continuous random variables and complex constraints on
them. PCLP differs from hybrid ProbLog because it allows constraints that
are more general than comparing a continuous random variable with a con-
stant. In this sense, it is more similar to DCs. However, DCs allow generative
definitions, i.e., definition where a parameter of a distribution could depend on
the value of another one, while PCLP doesn’t. PCLP provides an alternative
definition for hybrid programs that is not based on a stochastic TP operator
but on an extension of Sato’s DS. Moreover, PCLP allows the specification of
imprecise probability distributions by means of credal sets: instead of spec-
ifying exactly the probability distribution from which a variable is sampled;
a set of probability distributions (a credal set) is specified that includes the
unknown correct distribution.

In PCLP, a program P is split into a set of rules R and a set of facts F .
The facts define the random variables and the rules define the truth value of
the atoms in the Herbrand base of the program given the values of the random
variables. The set of random variables is countable X “ tX1,X2, . . .u and
each has a rangeRangei that is not limited to be Boolean but can be a general
set, for example, N or R or even Rn.

The sample space WX is given by

WX “ Range1 ˆRange2 ˆ . . .

The event space ΩX is user-defined but it should be a σ-algebra. A probability
measure µX is also given such that pWX,ΩX, µXq is a probability space.

A constraint is a predicate ϕ that takes values of the random variables
as argument, i.e., it is a function from tpx1, x2, . . .q|x1 P Range1, x2 P

Range2, . . .u to t0, 1u. Given a constraint ϕ, its constraint solution space
CSSpϕq is the set of samples where the constraint holds:

4.5 Probabilistic Constraint Logic Programming 131

CSSpϕq “ tx PWX|ϕpxqu

Definition 31 (Probabilistic Constraint Logic Theory [Michels et al., 2015]).
A Probabilistic Constraint Logic Theory P is a tuple

pX,WX,ΩX, µX, Constr,Rq

where

• X is a countable set of random variables tX1,X2, . . .u each with range
Rangei;
• WX “ Range1 ˆRange2 ˆ . . . is the sample space;
• ΩX is the event space, a σ-algebra;
• µX is a probability measure such that pWX,ΩX, µXq is a probability

space;
• Constr is a set of constraints closed under conjunction, disjunction,

and negation such that the constraint solution space of each constraint
is included in ΩX:

tCSSpϕq|ϕ P Constru P ΩX;

• R is a set of logical rules with constraints:

hÐ l1, . . . , ln, xϕ1pXqy, . . . , xϕmpXqy

where ϕi P Constr and xϕipXqy is called constraint atom
for 1 ď i ď m.

Random variables are expressed similarly to DC, for example,
time comp1 „ expp1q

state that time comp1 is a random variable with an exponential distribution
with rate 1.

Example 60 (Fire on a ship [Michels et al., 2015]). From [Michels et al.,
2015]:

Suppose there is a fire in one compartment of a ship. The heat
causes the hull of that compartment to warp and if the fire is not
extinguished within 1.25 minutes the hull will breach. After 0.75
minutes the fire will spread to the compartment behind. This means
that if the fire is extinguished within 0.75 minutes the ship is saved
for sure:

savedÐ xtime comp1 ă 0.75y

132 Semantics for Hybrid Programs

In the other compartment the hull will breach 0.625 minutes after
the fire breaks out. In order to reach the second compartment the
fire in the first one has to be extinguished. So both fires have
to be extinguished within 0.75 ` 0.625 “ 1.375 minutes. Addi-
tionally, the fire in the first compartment has to be extinguished
within 1.25 minutes, because otherwise the hull breaches there. The
second compartment is however more accessible, such that four
fire-fighters can extinguish the fire at the same time, which means
they can work four times faster:

savedÐ xtime comp1 ă 1.25y,
xtime comp1 ` 0.25 ¨ time comp2 ă 1.375y

Finally, assume exponential distributions for both time durations
available to extinguish the fires:

time comp1 „ expp1q
time comp2 „ expp1q

The interesting question here is how likely it is that the ship is
saved, i.e., P psavedq is required.

This example is a probabilistic constraint logic theory where

X “ ttime comp1, time comp2u,

Range1 “ Range2 “ R, the constraint language includes linear inequal-
ities, and the probability measure makes the two variables independent and
distributed according to an exponential distribution.

A probability distribution over the logical atoms of the program (the elements
of the Herbrand base BP) is defined as in PRISM: the logical atoms form
a countable set of Boolean random variables Y “ tY1,Y2, . . .u and the
sample space is WY “ tpy1, y2, . . .q|yi P t0, 1u, i “ 1, 2, . . .u. Michels et al.
[2015] state that the event space ΩY is the powerset of WY, so everything is
measurable. However, a measure on the powerset is problematic, so a smaller
σ-algebra such as that proposed in Sections 3.2 and 3.3 is preferable.

The sample space for the entire theory is WP “WXˆWY and the event
space is the product σ-algebra (see Definition 14), the σ-algebra generated by
the products of elements of ΩX and ΩY:

ΩP “ ΩX b ΩY “ σptωX ˆ ωY|ωX P ΩX,ωY P ΩYu

We now define a probability measure µP that, together with WP and ΩP ,
forms probability space pWP ,ΩP , µPq. Given wX, the set satisfiablepwXq

4.5 Probabilistic Constraint Logic Programming 133

contains all the constraints from Constr satisfied in sample wX. Thus, wX

determines a logic theoryRYsatisfiablepwXq that must have a unique model
denoted with MPpwXq. Then probability measure µPpωPq for ωP P ΩP is
defined by considering the event of ΩX identified by ωP :

µPpωPq “ µXptwX|pwX, wYq P ωP ,MPpwXq |ù wYuq (4.4)

Michels et al. [2015] state that twX|pwX, wYq P ωP ,MPpwXq |ù wYu is
measurable, i.e., that it belongs to ΩX; however, the statement is not obvious
if ΩX is not the powerset of WX and should be proved as in Section 3.2.

The probability of a query q (a ground atom) is then given by

P pqq “ µPptwP |wP |ù quq (4.5)

If we define the solution event SEpqq as

SEpqq “ twX PWX|MPpwXq |ù qu

then P pqq “ µXpSEpqqq.

Example 61 (Probability of fire on a ship [Michels et al., 2015]). Contin-
uing Example 60, wX “ ptime comp1, time comp2q “ px1, x2q, wY “

saved “ y1 with Range1 “ Range1 “ r0,`8q, and y1 P t0, 1u. So from
Equation (4.5) we get

P psavedq “ µPptpx1, x2, y1q PWP |y1 “ 1uq

and from Equation (4.4):

P psavedq “ µXptpx1, x2q|px1, x2, y1q PWP ,MPppx1, x2qq |ù y1 “ 1uq

The solution event is

SEpsavedq “ tpx1, x2q|x1 ă 0.75_ px1 ă 1.25^ x1` 0.25 ¨ x2 ă 1.375qu

so

P psavedq “ µXptpx1, x2q|x1 ă 0.75_px1 ă 1.25^x1`0.25¨x2 ă 1.375quq

Since the two constraints ϕ1 “ x1 ă 1.25 and ϕ2 “ x1 ă 1.25 ^ x1 `

0.25 ¨ x2 ă 1.375 are not mutually exclusive, we can use the formula
µXpϕ1 _ ϕ2q “ µXpϕ1q ` µXp ϕ1 ^ ϕ2q with

 ϕ1 ^ ϕ2 “ 0.75 ă x1 ă 1.25^ x1 ` 0.25 ¨ x2 ă 1.375 “

0.75 ă x1 ă 1.25^ x2 ă 5.5´ 4x1

134 Semantics for Hybrid Programs

Knowing that X1 and X2 are distributed according to an exponential
distribution with parameter 1 (density ppxq “ e´x), we get

µXpϕ1q “

ż 8

0
ppx1qI

1
ϕ1
px1qdx1

µXp ϕ1 ^ ϕ2q “

ż 8

0

ż 8

0
ppx1qppx2qI

1
 ϕ1^ϕ2

px1, x2qdx1dx2

where I1
ϕ1
px1q and I1

 ϕ1^ϕ2
px1, x2q are indicator functions that take value 1

if the respective constraint is satisfied and 0 otherwise. So

µXpϕ1q “

ż 0.75

0
ppx1qdx1 “ 1´ e´0.75 « 0.53

µXp ϕ1 ^ ϕ2q “

ż 1.25

0.75
fpx1q

ˆ
ż 5.5´4x1

0
fpx2qdx2

˙

dx1 “

ż 1.25

0.75
e´x1p1´ e´5.5`4x1qdx1 “

ż 1.25

0.75
e´x1 ´ e´5.5`3x1dx1 “

“ ´e´1.25 ` e´0.75 ´
e´5.5`3¨1.25

3
`
e´5.5`3¨0.75

3
«

0.14

So
P psavedq « 0.53` 0.14 « 0.67

Proposition 5 (Conditions for exact inference [Michels et al., 2015]). The
probability of an arbitrary query can be computed exactly if the following
conditions hold:

1. Finite-relevant-constraints condition: There are only finitely many con-
straint atoms that are relevant for each query atom (see Section 1.3) and
finding them and checking entailment can be done in finite time.

2. Finite-dimensional-constraints condition: Each constraint puts a condi-
tion only on a finite number of variables.

3. Computable-measure condition: It is possible to compute the probability
of finite-dimensional events, i.e., finite-dimensional integrals over the
probability density of the random variables.

4.5 Probabilistic Constraint Logic Programming 135

The example
forever sunpXq Ð xWeatherX “ sunnyy, forever sunpX ` 1q

does not fulfill the finite-relevant-constraints condition as the set of relevant
constraints for forever sunp0q is xWeatherX “ sunnyy for X “ 0, 1,

4.5.1 Dealing with Imprecise Probability Distributions

In order to relax the conditions for exact inference of Proposition 5, Michels
et al. [2015] consider the problem of computing bounds on the probability of
queries.

Credal sets, see Section 2.9, are sets of probability distributions. They can
be defined by assigning probability mass to sets of values without specifying
exactly how the mass is distributed over those values. For example, for a
continuous random variable, we can assign some probability mass to the set
of all values between 1 and 3. This mass can be distributed uniformly over the
entire set or uniformly over only parts of it or distributed in a more complex
manner.

Definition 32 (Credal set specification). A credal set specification C is a
sequence of finite-dimensional credal set specifications C1, C2, Each Ck
is a finite set of probability-event pairs pp1, ω1q, pp2, ω2q, . . . , ppn, ωnq such
that for each Ck

1. The events belong to a finite-dimensional event space Ωk
X over the

sample space WX “ Range1 ˆRange2 ˆ . . .ˆRangek.
2. The sum of the probabilities is 1.0:

ř

pp,ωqPCk
p “ 1.0.

3. The events must not be the empty set @pp, ωq P Ck : ω ‰ H.

Moreover, Ck must be compatible, i.e., for all k Ck “ πkpCk`1q where
πlpCkq for l ă k is defined as

πlpCkq “

$

&

%

¨

˝

ÿ

pp,ωqPCk,πlpωq“ω1

p, ω1

˛

‚|ω1 P tπlpωq|pp, ωq P Cku

,

.

-

and πlpωq is the projection of event ω over the first l components

πlpωq “ tpx1, . . . , xlq|px1, . . . , xl, . . .q P ωu

Each Ck identifies a set of probability measures Υk
X such that, for each

measure µX P Υk
X on Ωk

X and each event ω P Ωk
X, the following holds:

ÿ

pp,ψqPCk,ψĎω

p ď µXpωq ď
ÿ

pp,ψqPCk,ψXω‰0

p

136 Semantics for Hybrid Programs

In fact, the probability mass of events completely included in event ω cer-
tainly contribute to the probability of ω, so they are in its lower bound, while
the probability of events with a non-empty intersection may fully contribute
to the probability, so they are in its upper bound.

Michels et al. [2015] show that, under mild conditions, a credal set
specification C identifies a credal set of probability measures ΥX over the
space pWX,ΩXq such that all measures µX of ΥX agree with each Ci in
C. Moreover, this credal set can be extended to credal set ΥP of probability
measures over the whole program P , which in turns originates a set P of
probability distributions over queries.

Given a credal set specification for a program P , we want to compute the
lower and upper bounds on the probability of a query q defined as:

P pqq “ min
µPPΥP

µPpqq

P pqq “ max
µPPΥP

µPpqq

These bounds can be computed as indicated by the next proposition.

Proposition 6 (Computation of probability bounds). Given a finite-
dimensional credal set specification Ck, the lower and upper probability
bounds of a query q fulfilling the finite-dimensional-constraints condition are
given by:

P pqq “
ÿ

pp,ωqPCk,ωĎSEpqq

p

P pqq “
ÿ

pp,ωqPCk,ωXSEpqq‰H

p

Example 62 (Credal set specification – continuous variables). Consider
example 60 and the following finite-dimensional credal set specification

C2 “ t p0.49, tpx1, x2q|0 ď x1 ď 1, 0 ď x2 ď 1uq,

p0.14, tpx1, x2q|1 ď x1 ď 2, 0 ď x2 ď 1uq,

p0.07, tpx1, x2q|2 ď x1 ď 3, 0 ď x2 ď 1uq,

p0.14, tpx1, x2q|0 ď x1 ď 1, 1 ď x2 ď 2uq,

p0.04, tpx1, x2q|1 ď x1 ď 2, 1 ď x2 ď 2uq,

p0.02, tpx1, x2q|2 ď x1 ď 3, 1 ď x2 ď 2uq,

p0.07, tpx1, x2q|0 ď x1 ď 1, 2 ď x2 ď 3uq,

4.5 Probabilistic Constraint Logic Programming 137

p0.02, tpx1, x2q|1 ď x1 ď 2, 2 ď x2 ď 3uq,

p0.01, tpx1, x2q|2 ď x1 ď 3, 2 ď x2 ď 3uqu

Figure 4.1 shows how the probability mass is distributed over the px1, x2q

plane. The solution event for q “ saved is

SEpsavedq “ tpx1, x2q|x1 ă 0.75_ px1 ă 1.25^ x1` 0.25 ¨ x2 ă 1.375qu

and corresponds to the area of Figure 4.1 to the left of the solid line. We can
see that the first event, 0 ď x1 ď 1 ^ 0 ď x2 ď 1, is such that CSSp0 ď
x1 ď 1 ^ 0 ď x2 ď 1q Ď SEpsavedq, so its probability is part of the lower
bound.

The next event 1 ď x1 ď 2 ^ 0 ď x2 ď 1 instead is not a subset
of SEpsavedq but has a non-empty intersection with SEpsavedq, so the
probability of the event is part of the upper bound.

Event 2 ď x1 ď 3 ^ 0 ď x2 ď 1 instead has an empty intersection with
SEpsavedq, so its probability is not part of any bound.

Of the following events, 0 ď x1 ď 1 ^ 1 ď x2 ď 2, 1 ď x1 ď 2 ^ 1 ď
x2 ď 2, and 0 ď x1 ď 1 ^ 2 ď x2 ď 3 have a non-empty intersection with
SEpsavedq while the remaining have an empty intersection, so overall

P pqq “ 0.49

P pqq “ 0.49` 0.14` 0.14` 0.04` 0.07 “ 0.88

Credal set specifications can also be used for discrete distributions when the
information we have on them is imprecise.

Figure 4.1 Credal set specification for Examples 62 and 64.

138 Semantics for Hybrid Programs

Example 63 (Credal set specification – discrete variables). Suppose you
have a model with a single random variable X1 with Range1 “ tsun, rainu
representing the weather tomorrow. A credal set specification may consist of

C1 “ tp0.2, tsun, rainuq, p0.8, tsunuqu

The probability distributions that are included in this credal set are those of
the form

P pX1 “ sunq “ 0.8` γ

P pX1 “ rainq “ 0.2´ γ

for γ P r0, 0.2s. Thus, the probability that tomorrow is sunny is greater than
0.8 but we don’t know its precise value.

In the general case of an infinite dimensional credal set specification, the
following holds:

P pqq “ lim
kÑ8

ÿ

pp,ωqPCk,ωĎSEpqq

p

P pqq “ lim
kÑ8

ÿ

pp,ωqPCk,ωXSEpqq‰H

p

A consequence of this is that

P pqq “ 1´ P p„qq

P pqq “ 1´ P p„qq

We can now consider the problem of computing bounds for conditional
probabilities. We first define them.

Definition 33 (Conditional probability bounds). The lower and upper
conditional probability bounds of a query q given evidence e are defined as:

P pq|eq “ min
PPP

P pq|eq

P pq|eq “ max
PPP

P pq|eq

Note that these formulas are different from those of Section 2.9.
Bounds for conditional probabilities can be computed using the following

proposition.

4.5 Probabilistic Constraint Logic Programming 139

Proposition 7 (Conditional probability bounds formulas [Michels et al.,
2015]). The lower and upper conditional probability bounds of a query q
are determined by:

P pq|eq “
P pq, eq

P pq, eq ` P p„q, eq

P pq|eq “
P pq, eq

P pq, eq ` P p„q, eq

Example 64 (Conditional probability bounds). Consider Example 62 and
add the rule eÐ xtime comp2 ă 1.5y.
Suppose the query is q “ saved and the evidence is e. To compute the lower
and upper bounds for P pq|eq, we need to compute lower and upper bounds
for q ^ e and „q ^ e. The solution event for SEpeq is

SEpeq “ tpx1, x2q|x2 ă 1.5u

and is shown in Figure 4.1 as the area below the dashed line. The solution
event for q ^ e is

SEpq ^ eq “ tpx1, x2q|x2 ă 1.5^

px1 ă 0.75_ px1 ă 1.25^ x1 ` 0.25 ¨ x2 ă 1.375qqu

and for „q ^ e is

SEp„q ^ eq “ tpx1, x2q|x2 ă 1.5^

 px1 ă 0.75_ px1 ă 1.25^ x1 ` 0.25 ¨ x2 ă 1.375qqu

We can see that the first event, 0 ď x1 ď 1 ^ 0 ď x2 ď 1, is such that
CSSp0 ď x1 ď 1^0 ď x2 ď 1q Ď SEpq^ eq, so its probability contributes
to P pq ^ eq but not to P p„q ^ eq.

The next event 1 ď x1 ď 2 ^ 0 ď x2 ď 1 has a non-empty intersec-
tion with SEpqq and is included in SEpeq, so the probability of the event
contributes to P pq ^ eq and P p„q ^ eq.

Event 2 ď x1 ď 3 ^ 0 ď x2 ď 1 instead has an empty intersection with
SEpqq and is included in SEpeq, so it contributes to P p„q ^ eq but not to
P pq ^ eq.

The event 0 ď x1 ď 1 ^ 1 ď x2 ď 2 has a non-empty intersection with
SEpq ^ eq and an empty one with SEp„q ^ eq, so its probability is part of
P pq ^ eq.

140 Semantics for Hybrid Programs

The event 1 ď x1 ď 2 ^ 1 ď x2 ď 2 has a non-empty intersection
with SEpq ^ eq and SEp„q ^ eq, so its probability is part of P pq ^ eq and
P p„q ^ eq.

The event 2 ď x1 ď 3 ^ 1 ď x2 ď 2 has a non-empty intersection with
SEp„q ^ eq, so it contributes to P p„q ^ eq.

The remaining events are included in SEp„eq, so they are not part of any
bound. Overall, we have

P pq ^ eq “ 0.49

P pq ^ eq “ 0.49` 0.14` 0.14` 0.04 “ 0.81

P p„q ^ eq “ 0.07

P p„q ^ eq “ 0.14` 0.07` 0.04` 0.02 “ 0.27

P pq|eq “
0.49

0.49` 0.27
« 0.64

P pq|eq “
0.81

0.81` 0.07
« 0.92

Michels et al. [2015] prove the following theorem that states the conditions
under which exact inference of probability bounds is possible.

Theorem 12 (Conditions for exact inference of probability bounds [Michels
et al., 2015]). The probability bounds of an arbitrary query can be computed
in finite time under the following conditions:

1. Finite-relevant-constraints condition: as condition 1 of Proposition 5.
2. Finite-dimensional-constraints condition: as condition 2 of

Proposition 5.
3. Disjoint-events-decidability condition: for two finite-dimensional events
ω1 and ω2 in the event space ΩX, one can decide whether they are
disjoint or not (ω1 X ω2 “ H).

Credal sets can be used to approximate continuous distributions arbitrarily
well. One has to provide a credal set specification dividing the domain of the
variable Xi in n intervals:

tpP pl1 ă Xi ă u1q, l1 ă Xi ă u1q, . . . ,

pP pln ă Xi ă unq, ln ă Xi ă unqu

with lj ď uj , lj P R Y t´8u and uj P R Y t`8u for j “ 1, . . . , n.
P plj ă Xi ă ujq must be such that P plj ă Xi ă ujq “

şuj
lj
ppxiqdxi “

F pujq ´ F pljq where ppxiq is the probability density of Xi and F pxiq

4.5 Probabilistic Constraint Logic Programming 141

is its cumulative distribution. The more intervals we provide, the better we
approximate the continuous distribution. The probability bounds of the query
provide the maximum error of the approximation.

PCLP fixes a syntax for expressing probability distributions precisely and
approximately with credal set specifications.

The precide definition of a random variable is the same as for DC. So, for
example, the random variable time comp1 can be represented with

time comp1 „ exponentialp1q.

PCLP also allows the definition of multidimensional random variables as

pX1, . . . ,XnqpA1, . . . , Amq „ Density.

where X1, . . . ,Xn are random variables represented by terms, A1, . . . , Am
are logical variables appearing in X1, . . . ,Xn, and Density is a prob-
ability density, such as exponential, normal, etc. There is a different
multidimensional random variable

pX1, . . . ,Xnqpt1, . . . , tmq

for each tuple of ground terms t1, . . . , tm replacing parameters A1, . . . , Am.
Variables X1, . . . ,Xn can also be used individually in constraints, the set of
them is

tXipt1, . . . , tmq|i “ 1, . . . , n, pt1, . . . , tmq is a tuple of termsu.

Credal set (approximate) specifications are represented as

pX1, . . . ,XnqpA1, . . . , Amq „ tp1 : ϕ1, . . . , pl : ϕlu

where pi is a probability, ϕi is a satisfiable constraint, and
řl
i“1 pi “ 1. The

pis and ϕis can include logical variables.
Examples of specifications are

temperaturepDayq „ t0.2 : temperature ă 0, 0.8 : temperature ą 0u.

temperaturepDayq „ t0.2 : temperature ă Day{1000,

0.8 : temperature ą Day{1000u.

where Day in the second specification must assume numeric values.
In case the program contains multiple definitions for the same random

variable, only the first is considered.

142 Semantics for Hybrid Programs

PCLP actually defines a family of languages depending on the constraint
language Constr : a specific language is indicated with PCLPpConstrq.
The constraint language must have some properties: infinite dimensional
probability measures can be constructed from an infinite number of finite
ones with increasing dimensionality and the satisfiability of constraints must
be decidable, which is equivalent to decidability of the disjointness of events.

An interesting instance is PCLP(R,D) where the constraints deal with real
numbers (R) and discrete domains (D), with the restriction that constraints
can include only variables of a single type, either real or discrete.

The constraint theory R is the same as that of CLP over the reals CLP(R):
variables can assume rel values and the constraints consist of linear equalities
and inequalities. The constraint theory D is similar to that of CLP over finite
domains CLP(FD): variables can assume discrete values and the constraints
consist of set membership (P and R) and equality (“ and‰). Differently from
CLP(FD), the domains can be countably infinite.

A PCLP program defines a credal set specifications C “ tC1, C2, . . .u
by combining the specification of the individual variables. We first fix the
enumeration of random variables and denote the set of the definitions for the
first n random variables as Dn. The credal set specification C of the program
is defined as:

Cn “ πn

ˆ"

pp, CSSpϕqq|pp, ϕq P
ˆź

dPDn
d

*˙

where the product of two random variable definitions d1 ˆ̂d2 is defined as:

d1 ˆ̂d2 “ tpp1 ¨ p2, ϕ1 ^ ϕ2q|ppp1, ϕ1q, pp2, ϕ2qq P d1 ˆ d2u

For example, the following random variable definitions yield the credal set
specification of Example 62:

time comp1 „ t0.7 : 0 ď time comp1 ď 1, 0.2 : 1 ď time comp1 ď 2,

0.1 : 2 ď time comp1 ď 3u

time comp2 „ t0.7 : 0 ď time comp2 ď 1, 0.2 : 1 ď time comp2 ď 2,

0.1 : 2 ď time comp2 ď 3u

The solution constraint of a query q is defined as:

SCpqq “
ł

φĎConstr ,MP pφq|ùq

ľ

ϕPφ

ϕ

4.5 Probabilistic Constraint Logic Programming 143

where MPpφq is the model of the theoryRY txϕy|ϕ P φu.
Function

check : Constr Ñ tsat, unsat, unknownu

checks satisfiability of constraints and returns

• sat: The constraint is certainly satisfiable, i.e., there is a solution.
• unsat: The constraint is certainly unsatisfiable, i.e., there is no solution.
• unknown: Satisfiability could not be decided, i.e., nothing is said about

the constraint.

If the constraint theory is decidable, unknown is never returned.
Given function check, we can compute the lower and upper probability

bounds of a query q taking into account only the first n random variables from
a PCLP program fulfilling the exact inference conditions, as

P pqq “
ÿ

pp,ϕqPCn,checkpϕ^ SCpqqq“unsat

p

P pqq “
ÿ

pp,ϕqPCn,checkpϕ^SCpqqq“sat

p

If the constraints are partially decidable, we get the following result

P pqq ě
ÿ

pp,ϕqPCn,checkpϕ^ SCpqq“unsat

p

P pqq ď
ÿ

pp,ϕqPCn,checkpϕ^SCpqq‰unsat

p

Inference from a PCLP program can take three forms if Constr is decidable:

• exact computation of a point probability, if the random variables are all
precisely defined;
• exact computation of lower and upper probabilities, if the information

about random variables is imprecise, i.e., it is given as credal sets;
• approximate inference with probability bounds, if information about

random variables is precise but credal sets are used to approximate
continuous distributions.

If Constr is partially decidable, we can perform only approximate inference
and obtain bounds in all three cases. In particular, in the second case, we
obtain a lower bound on the lower probability and an upper bound on the
upper probability.

144 Semantics for Hybrid Programs

PCLP, despite the name, is only loosely related to other probabilistic
logic formalisms based on CLP such as CLP(BN), see Section 2.10.2, or
clp(pdf(y)) [Angelopoulos, 2003] because it uses constraints to denote events
and define credal set specifications, while CLP(BN) and clp(pdf(y)) consider
probability distributions as constraints.

5
Exact Inference

Inference includes a variety of tasks. In the following, let q and e be
conjunctions of ground literals, respectively, the query and the evidence.

• The EVID task is to compute an unconditional probability P peq, the
probability of evidence. This terminology is especially used when P peq
is computed as part of a solution for the COND task. When there is no
evidence, we will speak of P pqq, the probability of the query.
• In the COND task, we want to compute the conditional probability

distribution of the query given the evidence, i.e., compute P pq|eq. A
related task is CONDATOMS where we are given a set of ground atoms
Q and we want to compute P pq|eq for each q P Q.
• The MPE task, or most probable explanation, is to find the most likely

truth value of all non-evidence atoms given the evidence, i.e., solving
the optimization problem arg maxq P pq|eq with q being the unobserved
atoms, i.e., Q “ BzE, where E is the set of atoms appearing in e and q
is an assignment of truth values to the atoms in Q.
• The MAP task, or maximum a posteriori, is to find the most likely

value of a set of non-evidence atoms given the evidence, i.e., finding
arg maxq P pq|eq where q is a set of ground atoms. MPE is a special
case of MAP where QY E “ B.
• The DISTR task involves computing the probability distribution or

density of the non-ground arguments of a conjunction of literals q, e.g.,
computing the probability density ofX in goalmixpXq of the Gaussian
mixture of Example 57. If the argument is a single one and is numeric
(integer or real), then EXP is the task of computing the expected value
of the argument (see Section 1.5).

Several approaches have been proposed for inference. Exact inference aims
at solving the tasks in an exact way, modulo errors of computer float-
ing point arithmetic. Exact inference can be performed in various ways:

145

146 Exact Inference

dedicated algorithms for special cases, knowledge compilation, conversion to
graphical models, or lifted inference. This chapter discusses exact inference
approaches except lifted inference which is presented in Chapter 6.

Exact inference is very expensive since it is #P-complete in general,
because that is the cost of inference in the underlying graphical model
[Koller and Friedman, 2009, Theorem 9.2]. Therefore, in some cases, it is
necessary to perform approximate inference, i.e., finding an approximation
of the answer that is cheaper to compute. The main approach for approximate
inference is sampling, but there are others such as iterative deepening or
bounding. Approximate inference is discussed in Chapter 7.

In Chapter 3, we saw that the semantics for programs with function
symbols is given in terms of explanations, i.e., sets of choices that ensure
that the query is true. The probability of a query is given as a function of a
covering set of explanations, i.e., a set containing all possible explanations
for a query.

This definition suggests an inference approach that consists in finding a
covering set of explanations and then computing the probability of the query
from it.

To compute the probability of the query, we need to make the explanations
pairwise incompatible: once this is done, the probability is the result of a
summation.

Early inference algorithms such as [Poole, 1993b] and PRISM [Sato,
1995] required the program to be such that it always had a pairwise incom-
patible covering set of explanations. In this case, once the set is found, the
computation of the probability amounts to performing a sum of products. For
programs to allow this kind of approach, they must satisfy the assumptions
of independence of subgoals and exclusiveness of clauses, which mean that
[Sato et al., 2017]:

1. the probability of a conjunction pA,Bq is computed as the product of
the probabilities of A and B (independent-and assumption),

2. the probability of a disjunction pA;Bq is computed as the sum of the
probabilities of A and B (exclusive-or assumption).

See also Section 5.9.

5.1 PRISM

PRISM [Sato, 1995; Sato and Kameya, 2001, 2008] performs inference on
programs respecting the assumptions of independent-and and exclusive-or

5.1 PRISM 147

by means of an algorithm for computing and encoding explanations in a
factorized way instead of explicitly generating all explanations. In fact, the
number of explanations may be exponential, even if they can be encoded
compactly.

Example 65 (Hidden Markov model – PRISM [Sato and Kameya, 2008]).
An Hidden Markov Model (HMM) [Rabiner, 1989] is a dynamical system

that, at each integer time point t, is in a state S from a finite set and
emits one symbol O according to a probability distribution P pO|Sq that is
independent of time. Moreover, it transitions to a new state NextS at time
t ` 1, with NextS chosen according to P pNextS|Sq, again independently
of time. HMMs are so called because they respect the Markov condition: the
state at time t depends only from the state at time t´ 1 and is independent of
previous states. Moreover, the states are usually hidden: the task is to obtain
information on them from the sequence of output symbols, modeling systems
that can be only observed from the outside. HMMs and Kalman filters (see
Example 59) are similar, they differ because the first uses discrete states and
output symbols and the latter continuous ones. HMMs have applications in
many fields, such as speech recognition.

The following program encodes an HMM with two states, ts1, s2u, of
which s1 is the start state, and two output symbols, a and b:

valuesptrps1q, rs1, s2sq.
valuesptrps2q, rs1, s2sq.
valuespoutp q, ra, bsq.
hmmpOsq Ð hmmps1, Osq.
hmmp S, rsq.
hmmpS, rO|Ossq Ð
mswpoutpSq, Oq,mswptrpSq, NextSq, hmmpNext,Osq.

The query P phmmpOsqq asked against this program is the probability that
the sequence of symbols Os is emitted.

Note that msw atoms have two arguments here, so each call to such
atoms is intended to refer to a different random variable. This means that
if the same msw is encountered again in a derivation, it is associated with a
different random variable, differently from the other languages under the DS
where a ground instance of a probabilistic clause is associated with only one
random variable. The latter approach is also called memoing, meaning that
the associations between atoms and random variables are stored for reuse,
while the approach of PRISM is often adopted by non-logic probabilistic
programming languages.

148 Exact Inference

Figure 5.1 Explanations for query hmmpra, b, bsq of Example 65.

Consider the query hmmpra, b, bsq and the problem of computing the
probability of output sequence ra, b, bs. Such a query has the eight expla-
nations shown in Figure 5.1 where msw is abbreviated by m, repeated
atoms correspond to different random variables, and each explanation is
a conjunction of msw atoms. In general, the number of explanations is
exponential in the length of the sequence.

If the query q has the explanations E1 . . . , En, we can build the formula

q ô E1 _ . . ._ En

expressing the truth of q as a function of the msw atoms in the explanations.
The probability of q is then given by P pqq “

řn
i“1 P pEiq and the probability

of each explanation is the product of the probability of each atom, because
explanations are mutually exclusive, as each explanation differs from the
others in the choice for at least one msw atom.

PRISM performs inference by deriving the query with tabling and storing,
for each subgoal g, the switches and atoms on which g directly depends. In
practice, for each subgoal g, PRISM builds a formula

g ô S1 _ . . ._ Sn

where each Si is a conjunction of msw atoms and subgoals. For the query
hmmpra, b, bsq from the program of Example 65, PRISM builds the formulas
shown in Figure 5.2.

Differently from explanations, the number of such formulas is linear
rather than exponential in the length of the output sequence.

PRISM assumes that the subgoals in the derivation of q can be ordered
tg1, . . . , gmu such that

gi ô Si1 _ . . ._ Sini

5.1 PRISM 149

Figure 5.2 PRISM formulas for query hmmpra, b, bsq of Example 65.

where q “ g1 and each Sij contains only msw atoms and subgoals from
tgi`1, . . . , gmu. This is called the acyclic support condition and is true if
tabling succeeds in evaluating q, i.e., if it doesn’t go into a loop.

From these formulas, the probability of each subgoal can be obtained by
means of Algorithm 3 that computes the probability of each subgoal bottom
up and reuses the computed values for subgoals higher up. This is a dynamic
programming algorithm: the problem is solved by breaking it down into
simpler sub-problems in a recursive manner.

Algorithm 3 Function PRISM-PROB: Computation of the probability of a
query.
1: function PRISM-PROB(q)
2: for all i, k do
3: P pmswpi, vkqq Ð Πik

4: end for
5: for iÐ mÑ 1 do
6: P pgiq Ð 0 Ź P pgiq is the probability of goal gi
7: for j Ð 1 Ñ ni do
8: Let Sij be h1, . . . , hijo
9: RpSijq Ð

śo
l“1 P phlq Ź RpSijq is the probability of explanation

10: Sij of goal gi
11: P pgiq Ð P pgiq `RpSijq
12: end for
13: end for
14: return P pqq
15: end function

150 Exact Inference

Figure 5.3 PRISM computations for query hmmpra, b, bsq of Example 65.

For the example above, the probabilities are computed as in Figure 5.3.
The cost of computing the probability of the query in this case is thus

linear in the length of the output sequence, rather than exponential.
In the case of HMMs, computing the probability of an output sequence

using PRISM has the same complexity OpT q as the specialized forward
algorithm [Rabiner, 1989], where T is the length of the sequence.

The MPE task can be performed by replacing summation in Algorithm 3
with max and arg max. In the case of HMM, this yields the most likely
sequence of states that originated the output sequence, also called the Viterbi
path. Such a path is computed for HMMs by the Viterbi algorithm [Rabiner,
1989] and PRISM has the same complexity OpT q.

Writing programs satisfying the assumptions of independence of subgoals
and exclusiveness of clauses is not easy and significantly limits the modeling
power of the language. Therefore, work was dedicated to lifting these lim-
itations, leading to the AILog2 system Poole [2000] that used the splitting
algorithm (Algorithm 1), and to the adoption of knowledge compilation.

5.2 Knowledge Compilation

Knowledge compilation [Darwiche and Marquis, 2002] is an approach for
solving certain hard inference tasks on a Boolean formula by compiling
it into a form on which the tasks are tractable. Clearly, the complexity is
not eliminated but moved to the compilation process. The inference tasks
of COND, MPE, and EVID can be solved using well-known techniques
from the SAT community applied to weighted Boolean formulas, such as
techniques for Weighted Model Counting (WMC) or weighted MAX-SAT.
For example, EVID reduces to WMC, i.e., computing the sum of the weights
of the worlds where the formula is true. WMC is a generalization of the

5.3 ProbLog1 151

problem of counting the number of worlds where the query is true, also known
as model counting. Model counting and WMC are #P-complete in general but
can be computed in polynomial time for Boolean formulas in certain forms.

The knowledge compilation approach to inference follows the two-step
method where first the program, the query, and the evidence are converted
into a Boolean formula encoding a covering set of explanations and then
knowledge compilation is applied to the formula.

The formula is a function of Boolean variables, each encoding a choice,
that takes value 1 exactly for assignments corresponding to worlds where
the query is true. Therefore, to compute the probability of the query,
we can compute the probability that the formula takes value 1 knowing
the probability distribution of all the variables and that they are pairwise
independent. This is done in the second step, which amounts to con-
verting the formula into a form from which computing the probability
is easy. The conversion step is called knowledge compilation [Darwiche
and Marquis, 2002] because it compiles the formula into a special form
with the property that the cost of solving the problem is polynomial. This
second step is a well-known problem also called disjoint-sum and is an
instance of WMC.

5.3 ProbLog1

The ProbLog1 system [De Raedt et al., 2007] compiles explanations for
queries from ProbLog programs to Binary Decision Diagrams (BDDs). It
uses a source to source transformation of the program [Kimmig et al., 2008]
that replaces probabilistic facts with clauses that store information about the
fact in the dynamic database of the Prolog interpreter. When a successful
derivation for the query is found, the set of facts stored in the dynamic
database is collected to form a new explanation that is stored away and
backtracking is triggered to find other possible explanations.

If K is the set of explanations found for query q, the probability of q is
given by the probability of the formula

fKpXq “
ł

κPK

ľ

pFi,θj ,1qPκ

Xij

ľ

pFi,θj ,0qPκ

 Xij

where Xij is a Boolean random variable associated with grounding Fiθj of
fact Fi and P pXij “ 1q “ Πi.

152 Exact Inference

Consider Example 13 that we repeat here for ease of reading

sneezingpXq Ð flupXq,flu sneezingpXq.
sneezingpXq Ð hay feverpXq, hay fever sneezingpXq.
flupbobq.
hay feverpbobq.

F1 “ 0.7 :: flu sneezingpXq.
F2 “ 0.8 :: hay fever sneezingpXq,

A set of covering explanations for sneezingpbobq is K “ tκ1, κ2u with

κ1 “ tpF1, tX{bobu, 1qu κ2 “ tpF2, tX{bobu, 1qu

If we associate X11 with F1tX{bobu and X21 with F2tX{bobu, the Boolean
formula is

fKpXq “ X11 _X21 (5.1)

In this simple case, the probability that fKpXq takes value 1 can be computed
by using the formula for the probability of a disjunction:

P pX11 _X21q “ P pX11q ` P pX21q ´ P pX11 ^X21q

and, since X11 and X21 are independent, we get

P pfKpXqq “ P pX11 _X21q “ P pX11q ` P pX21q ´ P pX11qP pX21q.

In the general case, however, simple formulas like this can’t be applied.
BDDs are a target language for knowledge compilation. A BDD for a

function of Boolean variables is a rooted graph that has one level for each
Boolean variable. A node n has two children: one corresponding to the 1
value of the variable associated with the level of n and one corresponding
to the 0 value of the variable. When drawing BDDs, the 0-branch is distin-
guished from the 1-branch by drawing it with a dashed line. The leaves store
either 0 or 1. For example, a BDD representing Function 5.1 is shown in
Figure 5.4.

Given values for all the variables, the computation of the value of the
function can be performed by traversing the BDD starting from the root and
returning the value associated with the leaf that is reached.

To compile a Boolean formula fpXq into a BDD, software packages
incrementally combine sub-diagram using Boolean operations.

BDDs can be built with various software packages that perform knowl-
edge compilation by providing Boolean operations between diagrams. So the

5.3 ProbLog1 153

Figure 5.4 BDD representing Function 5.1.

diagram for a formula is obtained by applying the Boolean operations in
the formula bottom-up, combining diagrams representing Xij or Xij into
progressively more complex diagrams.

After the application of an operation, isomorphic portions of the resulting
diagram are merged and redundant nodes are deleted, possibly changing the
order of variables if useful. This often allows the diagram to have a number of
nodes much smaller than exponential in the number of variables that a naive
representation of the function would require.

In the BDD of Figure 5.4, a node for variable X21 is absent from the path
from the root to the 1 leaf. The node has been deleted because both arcs from
the node would go to the 1 leaf, so the node is redundant.

Example 66 (Epidemic – ProbLog). The following ProbLog program P
encodes a very simple model of the development of an epidemic:

epidemicÐ flupXq, eppXq, cold.
flupdavidq.
f luprobertq.

F1 “ 0.7 :: cold.
F2 “ 0.6 :: eppXq.

This program models the fact that, if somebody has the flu and the climate
is cold, there is the possibility that an epidemic arises. eppXq is true if X
is an active cause of epidemic and is defined by a probabilistic fact. We are
uncertain about whether the climate is cold but we know for sure that David
and Robert have the flu. Fact F1 has one grounding, associated with variable
X11, while F2 has two groundings, associated with variables X21 and X22.
The query epidemic is true if the Boolean formula

fpXq “ X11 ^ pX21 _X22q

is true. The BDD representing this formula is shown in Figure 5.5. As you
can see, the subtree rooted at X22 can be reached by more than one path.
In this case, the BDD compilation system recognized the presence of two

154 Exact Inference

Figure 5.5 BDD for query epidemic of Example 66.

isomorphic subgraphs and merged them, besides deleting nodes for X21 from
the path from X11 to X22 and for X22 from the path from X21 to the 0 leaf.

BDDs perform a Shannon expansion of the Boolean formula: they express
the formula as

fKpXq “ X1 _ f
X1
K pXq ^ X1 _ f

 X1
K pXq

where X1 is the variable associated with the root node of the diagram, fX1
K pXq

is the Boolean formula where X1 is set to 1, and f X1
K pXq is the Boolean

formula where X1 is set to 0. The expansion can be applied recursively to the
functions fX1

K pXq and f X1
K pXq.

The formula is thus expressed as a disjunction of mutually exclusive
terms, as one contains X1 and the other X1, so the probability of the formula
can be computed with a sum

P pfKpXqq “ P pX1qP pf
X1
K pXqq ` p1´ P pX1qqP pf

 X1
K pXqq.

For the BDD of Figure 5.5, this becomes

P pfKpXqq “ 0.7 ¨ P pfX11
K pXqq ` 0.3 ¨ P pf X11

K pXqq

This means that the probability of the formula, and so of the query, can
be computed with Algorithm 4: the BDD is recursively traversed and the
probability of a node is computed as a function of the probabilities of its
children. Note that a table is updated to store the probability of nodes already
visited: in fact, BDDs can have multiple paths to a node in case two sub-
diagrams are merged and, if a node already visited is encountered again, we
can simply retrieve its probability from the table. This ensures that each node
is visited exactly once, so the cost of the algorithm is linear in the number of
nodes. This is an instance of a dynamic programming algorithm.

5.4 cplint 155

Algorithm 4 Function PROB: Computation of the probability of a BDD.
1: function PROB(node)
2: if node is a terminal then
3: return 1
4: else
5: if Tablepnodeq ‰ null then
6: return Tablepnodeq
7: else
8: p0 ÐPROB(child0pnodeq)
9: p1 ÐPROB(child1pnodeq)
10: let π be the probability of being true of varpnodeq
11: ResÐ p1 ¨ π ` p0 ¨ p1´ πq
12: add nodeÑ Res to Table
13: return Res
14: end if
15: end if
16: end function

5.4 cplint

The cplint system (CPLogic INTerpreter) [Riguzzi, 2007a] applies knowl-
edge compilation to LPADs. Differently from ProbLog1, the random vari-
ables associated with clauses can have more than two values. Moreover, with
cplint, programs may contain negation.

To handle multivalued random variables, we can use Multivalued Deci-
sion Diagrams (MDDs) [Thayse et al., 1978], an extension of BDDs. Simi-
larly to BDDs, an MDD represents a function fpXq taking Boolean values
on a set of multivalued variables X by means of a rooted graph that has one
level for each variable. Each node has one child for each possible value of the
multivalued variable associated with the level of the node. The leaves store
either 0 or 1. Given values for all the variables X, we can compute the value
of fpXq by traversing the graph starting from the root and returning the value
associated with the leaf that is reached.

In order to represent sets of explanations with MDDs, each ground clause
Ciθj appearing in the set of explanations is associated with a multivalued
variable Xij with as many values as atoms in the head of Ci. Each atomic
choice pCi, θj , kq is represented by the propositional equation Xij “ k.
Equations for a single explanation are conjoined and the conjunctions for
the different explanations are disjoined. The resulting function takes value 1
if the values taken by the multivalued variables correspond to an explanation
for the goal.

156 Exact Inference

Example 67 (Detailed medical symptoms – MDD). Consider Example 19
that we repeat here for readability:

C1 “ strong sneezingpXq : 0.3 ; moderate sneezingpXq :
0.5Ð flupXq.

C2 “ strong sneezingpXq : 0.2 ; moderate sneezingpXq :
0.6Ð hay feverpXq.

flupbobq.
hay feverpbobq.

A set of explanations for strong sneezingpbobq is K “ tκ1, κ2u with

κ1 “ tpC1, tX{bobu, 1qu κ2 “ tpC2, tX{bobu, 1qu

This set of explanations can be represented by the function

fKpXq “ pX11 “ 1q _ pX21 “ 1q (5.2)

The corresponding MDD is shown in Figure 5.6.
The probability of the goal is given by the probability of fKpXq taking

value 1.

As BDDs, MDDs represent a Boolean function fpXq by means of a
generalization of the Shannon expansion:

fpXq “ pX1 “ 1q ^ fX1“1pXq _ . . ._ pX1 “ nq ^ fX1“npXq

where X1 is the variable associated with the root node of the diagram and
fX1“kpXq is the function associated with the k-th child of the root node.
The expansion can be applied recursively to the functions fX1“kpXq. This
expansion allows the probability of fpXq to be expressed by means of the
following recursive formula

P pfpXqq “ P pX1 “ 1q ¨ P pfX1“1pXqq ` . . .`

P pX1 “ nq ¨ P pfX1“npXqq

Figure 5.6 MDD for the diagnosis program of Example 19.

5.5 SLGAD 157

because the disjuncts are mutually exclusive due to the presence of the X1 “

k equations. Thus, the probability of fpXq can be computed by means of
a dynamic programming algorithm similar to Algorithm 4 that traverses the
MDD and sums up probabilities.

Knowledge compilation libraries for MDDs combine diagrams represent-
ing equations of the form Xi “ k into progressively more complex diagrams
using Boolean operations. However, most libraries are restricted to work on
BDD, i.e., decision diagrams where all the variables are Boolean. To work
on MDDs with a BDD package, we must represent multivalued variables by
means of binary variables. Various options are possible, in cplint [Riguzzi,
2007a], the choice was to use a binary encoding. A multivalued variable X
with n values is encoded with b “ rlog2ns Boolean variables X1, . . . ,Xb: if
k “ kb . . . k1 is the binary encoding of value k, then X “ k is encoded as
X1 “ k1 ^ . . .^Xb “ kb.

The dynamic programming algorithm for computing the probability was
adjusted to ensure that Boolean variables encoding the same multivalued
variable are kept together in the BDD and to correctly retrieve the proba-
bility values Πk by detecting the value k from the configuration of Boolean
variables.

cplint finds explanations by using a meta-interpreter (see Section 1.3)
that resolves the query and keeps a list of the choices encountered during the
derivation. Negative goals of the form „a are handled by finding a covering
setK of explanations for a and then computing their complement, i.e., a set of
explanationsK that identifies all the worlds where a is false. This is done with
an algorithm similar to function DUALSpKq of Algorithm 2 [Poole, 2000]:
an explanation κ in K is generated by picking an atomic choice pCi, θj , kq
from each explanation of K and inserting in K an explanation containing
pCi, θj , k

1q with k1 ‰ k. By doing this in all possible ways, the complement
K of K is obtained.

The system PICL [Riguzzi, 2009] applies this approach to ICL and,
together with the cplint system, formed the initial core of the cplint
suite of algorithms.

5.5 SLGAD

SLGAD [Riguzzi, 2008a, 2010] was an early system for performing inference
from LPADs using a modification of SLG resolution [Chen and Warren,
1996], see Section 1.4.2. SLG resolution is the main inference procedure for

158 Exact Inference

normal programs under the WFS and uses tabling to ensure termination and
correctness for a large class of programs.

SLGAD is of interest because it performs inference without using knowl-
edge compilation, exploiting the feature of SLG resolution that answers are
added to the table, only once, the first time they are derived, while the
following calls to the same subgoal retrieve the answers from the table. So
the decision of considering an atom as true is an atomic operation. Since this
happens when the body of the grounding of a clause with that atom in the
head has been proved true, this corresponds to making a choice regarding
the clause grounding. SLGAD modifies SLG by performing backtracking on
such choices: when an answer can be added to the table, SLGAD checks
whether this is consistent with previous choices and, if so, it adds the current
choice to the set of choices of the derivation, adds the answer to the table and
leaves a choice point, so that the other choices are explored in backtracking.
SLGAD thus returns, for a ground goal, a set of explanations that are mutually
exclusive because each backtracking choice is made among incompatible
alternatives. Therefore, the probability of the goal can be computed by
summing the probability of the explanations.

SLGAD was implemented by modifying the Prolog meta-interpreter of
[Chen et al., 1995]. Its comparison with systems performing knowledge
compilation, however, showed that SLGAD was slower, probably because
it is not able to factor explanations as, for example, PRISM does.

5.6 PITA

The PITA system [Riguzzi and Swift, 2010, 2011, 2013] performs inference
for LPADs using knowledge compilation to BDDs.

PITA applies a program transformation to an LPAD to create a normal
program that contains calls for manipulating BDDs. In the implementa-
tion, these calls provide a Prolog interface to the CUDD1 [Somenzi, 2015]
C library and use the following predicates2

• init and end : for allocation and deallocation of a BDD manager, a data
structure used to keep track of the memory for storing BDD nodes;
• zerop´BDDq, onep´BDDq, andp`BDD1 ,`BDD2 ,´BDDOq,

orp`BDD1 ,`BDD2 ,´BDDOq and notp`BDDI ,´BDDOq:
Boolean operations between BDDs;

1http://vlsi.colorado.edu/„fabio/
2BDDs are represented in CUDD as pointers to their root node.

5.6 PITA 159

• add varp`N Val ,`Probs,´Varq: addition of a new multivalued
variable with N Val values and parameters Probs;
• equalityp`Var ,`Value,´BDDq: returns BDD representing Var “

Value , i.e., that the random variable Var is assigned Value in the BDD;
• ret probp`BDD ,´Pq: returns the probability of the formula encoded

by BDD .

add varp`N Val ,`Probs,´Varq adds a new random variable associated
with a new instantiation of a rule with N Val head atoms and parameters list
Probs . The auxiliary predicate get var n{4 is used to wrap add var{3 and
avoids adding a new variable when one already exists for an instantiation. As
shown below, a new fact varpR,S ,Varq is asserted each time a new random
variable is created, where R is an identifier for the LPAD clause, S is a list
of constants, one for each variables of the clause, and Var is a integer that
identifies the random variable associated with a specific grounding of clause
R. The auxiliary predicate has the following definition

get var npR,S,Probs,Varq Ð
pvarpR,S,Varq Ñ
true

;
lengthpProbs, Lq,
add varpL,Probs,Varq,
assertpvarpR,S,Varqq

q.

where Probs is a list of floats that stores the parameters in the head of rule
R. R, S , and Probs are input arguments while Var is an output argument.
assert{1 is a builtin Prolog predicate that adds its argument to the program,
allowing its dynamic extension.

The PITA transformation applies to atoms, literals, conjunction of lit-
erals, and clauses. The transformation for an atom a and a variable D,
PITApa,Dq, is a with the variable D added as the last argument. The
transformation for a negative literal b “„a, PITApb,Dq, is the expression

pPITApa,DNq Ñ notpDN,Dq; onepDqq

which is an if-then-else construct in Prolog: if PITApa,DNq evaluates to
true, then notpDN,Dq is called, otherwise onepDq is called.

A conjunction of literals b1, . . . , bm becomes:
PITApb1, . . . , bm, Dq “ onepDD0q,
P ITApb1, D1q, andpDD0, D1, DD1q, . . . ,
P ITApbm, Dmq, andpDDm´1, Dm, Dq.

160 Exact Inference

The disjunctive clause Cr “ h1 : Π1 _ . . . _ hn : Πn Ð b1, . . . , bm, where
the parameters sum to 1, is transformed into the set of clauses PITApCrq “
tPITApCr, 1q, . . . P ITApCr, nqu with:

PITApCr, iq “ PITAphi, Dq Ð PITApb1, . . . , bm, DDmq,
get var npr, S, rΠ1, . . . ,Πns, V arq, equalitypV ar, i,DDq,
andpDDm, DD,Dq.

for i “ 1, . . . , n, where S is a list containing all the variables appearing inCr.
A non-disjunctive fact Cr “ h is transformed into the clause
PITApCrq “ PITAhph,Dq Ð onepDq.

A disjunctive fact Cr “ h1 : Π1 _ . . ._ hn : Πn, where the parameters sum
to 1, is transformed into the set of clauses

PITApCrq “ tPITApCr, 1q, . . . P ITApCr, nqu
with:

PITApCr, iq “ get var npr, S, rΠ1, . . . ,Πns, V arq,
equalitypV ar, i,DDq, andpDDm, DD,Dq.

for i “ 1, . . . , n.
In the case where the parameters do not sum to one, the clause is first

transformed into null : 1´
řn

1 Πi _ h1 : Π1 _ . . ._ hn : Πn. and then into
the clauses above, where the list of parameters is r1 ´

řn
1 Πi,Π1, . . . ,Πn, s

but the 0-th clause (the one for null) is not generated.
The definite clause Cr “ h Ð b1, b2, . . . , bm. is transformed into the

clause
PITApCrq “ PITAph,Dq Ð PITApb1, . . . , bm, Dq.

Example 68 (Medical example – PITA). Clause C1 from the LPAD of
Example 67 is translated to

strong sneezingpX,BDDq Ð onepBB0q,flupX,B1q,
andpBB0, B1, BB1q,
get var np1, rXs, r0.3, 0.5, 0.2s, V arq,
equalitypV ar, 1, Bq, andpBB1, B,BDDq.

moderate sneezingpX,BDDq Ð onepBB0q,flupX,B1q,
andpBB0, B1, BB1q,
get var np1, rXs, r0.3, 0.5, 0.2s, V arq,
equalitypV ar, 2, Bq, andpBB1, B,BDDq.

while clause C3 is translated to
flupdavid,BDDq Ð onepBDDq.

In order to answer queries, the goal prob(Goal,P) is used, which is
defined by

5.6 PITA 161

probpGoal, P q Ð init, retractallpvarp , , qq,
add bdd argpGoal,BDD,GoalBDDq,
pcallpGoalBDDq Ñ ret probpBDD,P q;P “ 0.0q,
end.

Since variables may by multivalued, an encoding with Boolean variables must
be chosen. The encoding used by PITA is the same as that used to translate
LPADs into ProbLog seen in Section 2.4 that was proposed in [De Raedt
et al., 2008].

Consider a variable Xij associated with grounding θj of clause Ci having
n values. We encode it using n´ 1 Boolean variables

Xij1, . . . ,Xijn´1.

We represent the equation Xij “ k for k “ 1, . . . n ´ 1 by means of the
conjunction Xij1^. . .^Xijk´1^Xijk, and the equation Xij “ n by means of
the conjunction Xij1^ . . .^Xijn´1. The BDD representation of the function
in Equation (5.2) is given in Figure 5.7. The Boolean variables are associated
with the following parameters:

P pXij1q “ P pXij “ 1q

. . .

P pXijkq “
P pXij “ kq

śk´1
l“1 p1´ P pXijk´1qq

PITA uses tabling, see Section 1.4.2, that ensures that, when a goal is asked
again, the answers for it already computed are retrieved rather than recom-
puted. This saves time because explanations for different goals are factored
as in PRISM. Moreover, it also avoids non-termination in many cases.

PITA also exploits XSB Prolog’s answer subsumption feature [Swift
and Warren, 2012] that, when a new answer for a tabled subgoal is found,
combines old answers with the new one according to a partial order or lattice.

Figure 5.7 BDD representing the function in Equation (5.2).

162 Exact Inference

For example, if the lattice is on the second argument of a binary predicate p,
answer subsumption may be specified by means of the declaration

:-table p(_, lattice(or/3)).

where or/3 is the join operation of the lattice. Thus, if a table has an answer
p(a,d1) and a new answer p(a,d2) is derived, the answer p(a,d1) is
replaced by p(a,d3), where d3 is obtained by calling or(d1,d2,d3).

In PITA, various predicates should be declared as tabled. For a predicate
p/n, the declaration is

:-table p(_1,...,_n, lattice(or/3)).

which indicates that answer subsumption is used to form the disjunction of
BDDs in the last argument.

At a minimum, the predicate of the goal and all the predicates appearing
in negative literals should be tabled with answer subsumption.

Thanks to answer subsumption, a call to a goal PITApa,Dq where b
is ground returns in D a BDD encoding the set of all of its explanations.
Therefore, the transformation PITApb,Dq for a negative literal b “„a in the
body of a rule first calls PITApa,DNq. If the call fails, a does not have any
explanation, so the BDD for b should be the one Boolean function. Otherwise,
the BDD DN is negated with not{2. So the transformation of the body of a
clause makes sure that, to compute the BDD associated with the head atom,
the BDDs of all literals are computed and conjoined with the BDD encoding
the choice relative to the clause.

If predicates appearing in negative literals are not tabled with answer
subsumption, PITA is not correct as a call to a subgoal does not collect all
explanations. It is usually useful to table every predicate whose answers have
multiple explanations and are going to be reused often since in this way
repeated computations are avoided and explanations are factored.

PITA was originally available only for XSB because it was the only
Prolog offering answer subsumption. Recently, answer subsumption was
included in SWI-Prolog and PITA is now available also for it in the cplint
suite for SWI-Prolog. In Prologs without answer subsumption, such as YAP,
answer subsumption can be simulated using a slightly different PITA transfor-
mation with explicit findall{3 calls. findallpTemplate,Goal ,Bagq creates
the list Bag of instantiations of Template for which Goal succeeds. For
example, findallpX , ppX q,Bagq returns in Bag the list of values of X for
which P pXq succeeds.

5.7 ProbLog2 163

PITA was shown correct and terminating under mild conditions [Riguzzi
and Swift, 2013] .

5.7 ProbLog2

The ProbLog2 system [Fierens et al., 2015] is a new version of ProbLog1
(Section 5.3) that performs knowledge compilation to Deterministic Decom-
posable Negation Normal Forms (d-DNNFs) rather than to BDDs.

ProbLog2 can perform the tasks CONDATOMS, EVID, and MPE over
ProbLog programs. It also allows probabilistic intensional facts of the form

Π :: fpX1, X2, . . . , Xnq ÐBody

with Body a conjunction of calls to non-probabilistic facts that define
the domains of the variables X1, X2, . . . , Xn. Moreover, ProbLog2 allows
annotated disjunctions in LPAD style of the form

Πi1 :: hi1 ; . . . ; Πini :: hini Ð bi1, . . . , bimi

which are equivalent to an LPAD clauses of the form

hi1 : Πi1 ; . . . ; hini : Πini Ð bi1, . . . , bimi

and are handled by translating them into probabilistic facts using the tech-
nique of Section 2.4. Let us call ProbLog2 this extension of the language of
ProbLog.

Example 69 (Alarm – ProbLog2 [Fierens et al., 2015]). The following
program is similar to the alarm BN of Examples 10 and 27:

0.1 :: burglary.
0.2 :: earthquake.
0.7 :: hears alarmpXq Ð personpXq.
alarmÐ burglary.
alarmÐ earthquake.
callspXq Ð alarm, hears alarmpXq.
personpmaryq.
personpjohnq.

Differently from the alarm BN of Examples 10 and 27, two people can call in
case they hear the alarm.

ProbLog2 converts the program into a weighted Boolean formula and
then performs WMC. A weighted Boolean formula is a Boolean formula

164 Exact Inference

over a set of variables V “ tV1, . . . , Vnu associated with a weight func-
tion wp¨q that assign a real number to each literal built on V . The weight
function is extended to assign a real number to each assignment ω “ tV1 “

v1, . . . , Vn “ vnu to the variables of V :

wpωq “
ź

lPω

wplq

where each variable assignment in ω is interpreted as a literal. Given the
weighted Boolean formula φ, the weighted model count of φ, WMCV pφq,
with respect to the set of variables V , is defined as

WMCV pφq “
ÿ

ωPSAT pφq

wpωq.

where SAT pφq is the set of assignments satisfying φ.
ProbLog2 converts the program into a weighted formula in three steps:

1. GroundingP yielding a programPg, taking into account q and e in order
to consider only the part of the program that is relevant to the query given
the evidence.

2. Converting the ground rules in Pg to an equivalent Boolean
formula φr.

3. Taking into account the evidence and defining a weight function.
A Boolean formula φe representing the evidence is conjoined with
φr obtaining formula φ and a weight function is defined for all
atoms in φ.

The grounding of the program can be restricted to the relevant rules only
(see Section 1.3). SLD resolution is used to find relevant rules by prov-
ing all atoms in q, e. Tabling is used to avoid proving the same atom
twice and to avoid going into infinite loops if the rules are cyclic. As
programs are range-restricted, all the atoms in the rules used during the
SLD resolution will eventually become ground, and hence also the rules
themselves.

Moreover, inactive rules encountered during SLD resolution are omitted.
A ground rule is inactive if the body of the rule contains a literal l that is
false in the evidence (l can be an atom that is false in e, or the negation of an
atom that is true in e). Inactive rules do not contribute to the probability of
the query, so they can be safely omitted.

The relevant ground program contains all the information necessary for
solving the corresponding EVID, COND, or MPE task.

5.7 ProbLog2 165

Example 70 (Alarm – grounding – ProbLog2 [Fierens et al., 2015]). If
q “ tburglaryu and e “ callspjohnq in Example 69, the relevant ground
program is

0.1 :: burglary.
0.2 :: earthquake.
0.7 :: hears alarmpjohnq.
alarmÐ burglary.
alarmÐ earthquake.
callspjohnq Ð alarm, hears alarmpjohnq.

The relevant ground program is now converted to an equivalent Boolean
formula. The conversion is not merely syntactical as logic programming
makes the Closed World Assumption while first-order logic doesn’t.

If rules are acyclic, Clark’s completion (see Section 1.4.1) can be used
[Lloyd, 1987]. If rules are cyclic, i.e., they contain atoms that depend posi-
tively on each other, Clark’s completion is not correct [Janhunen, 2004]. Two
algorithms can then be used to perform the translation. The first [Janhunen,
2004] removes positive loops by introducing auxiliary atoms and rules and
then applies Clark’s completion. The second [Mantadelis and Janssens, 2010]
first uses tabled SLD resolution to construct the proofs of all atoms in
atomspqq Y atomspeq, then collects the proofs in a data structure (a set of
nested tries), and breaks the loops to build the Boolean formula.

Example 71 (Smokers – ProbLog [Fierens et al., 2015]). The following
program models causes for people to smoke: either they spontaneously start
because of stress or they are influenced by one of their friends:

0.2 :: stresspP q : ´personpP q.
0.3 :: influencespP1, P2q : ´friendpP1, P2q.
personpp1q.
personpp2q.
personpp3q.
friendpp1, p2q.
friendpp2, p1q.
friendpp1, p3q.
smokespXq : ´stresspXq.
smokespXq : ´smokespY q, influencespY,Xq.

With the evidence smokespp2q and the query smokespp1q, we obtain the
following ground program:

166 Exact Inference

0.2 :: stresspp1q.
0.2 :: stresspp2q.
0.3 :: influencespp2, p1q.
0.3 :: influencespp1, p2q.
smokespp1q : ´stresspp1q.
smokespp1q : ´smokespp2q, influencespp2, p1q.
smokespp2q : ´stresspp2q.
smokespp2q : ´smokespp1q, influencespp1, p2q.

Clark’s completion would generate the Boolean formula
smokespp1q Ø stresspp1q _ smokespp2q, influencespp2, p1q.
smokespp2q Ø stresspp2q _ smokespp1q, influencespp1, p2q.

which has a model

tsmokespp1q, smokespp2q, stresspp1q, stresspp2q,

influencespp1, p2q, influencespp2, p1q, . . .u

which is not a model of any world of the ground ProbLog program: for total
choice

t stresspp1q, stresspp2q, influencespp1, p2q, influencespp2, p1qu

the model assigns false to both smokespp1q and smokespp2q.
The conversion algorithm of [Mantadelis and Janssens, 2010] generates:
smokespp1q Ø aux1_ stresspp2q
smokespp2q Ø aux2_ stresspp1q
aux1 Ø smokespp2q ^ influencespp2, p1q
aux2 Ø stresspp1q ^ influencespp1, p2q

Note that the loop in the original ProbLog program between smokespp1q and
smokespp2q has been broken by using stresspp1q instead of smokespp1q in
the last formula.

Lemma 12 (Correctness of the ProbLog Program Transformation). Let Pg
be a ground ProbLog. SAT pφrq “ MODpPgq where MODpPgq is the set
of models of instances of Pg.

The final Boolean formula φ is built from the one for the rules, φr, and that
for the evidence φe obtained as

φe “
ľ

„aPe

 a^
ľ

aPe

a

Then φ “ φr^φe. We illustrate this on the Alarm example, which is acyclic.

5.7 ProbLog2 167

Example 72 (Alarm – Boolean formula – ProbLog2 [Fierens et al., 2015]).
For Example 70, the Boolean formula φ is

alarmØ burglary _ earthquake
callspjohnq Ø alarm^ hears alarmpjohnq
callspjohnq

Then the weight function wp¨q is defined as: for each probabilistic fact Π :: f ,
f is assigned weight Π and f is assigned weight 1 ´ Π. All the other
literals are assigned weight 1. The weight of a world ω is given by the
product of the weight of all literals in ω. The following theorem establishes
the relationship between the relevant ground program and the weighted
formula.

Theorem 13 (Model and weight equivalence [Fierens et al., 2015]). Let Pg
be the relevant ground program for some ProbLog program with respect to
q and e. Let MODepPgq be those models in MODpPgq that are consistent
with the evidence e. Let φ denote the formula and wp¨q the weight function of
the weighted formula derived from Pg. Then:

• (model equivalence) SAT pφq “MODepPgq,
• (weight equivalence) @ω P SAT pφq : wpωq “ PPgpωq, i.e., the weight

of ω according to wp¨q is equal to the probability of ω according to Pg.

If V is the set of the variables associated with BP , then WMCV pφq “
P peq. When V is clear from the context, it is omitted. So

P peq “
ÿ

ωPSAT pφq

ź

lPω

wplq

The inference tasks of COND, MPE, and EVID can be solved using state-of-
the-art algorithms for WMC or weighted MAX-SAT.

By knowledge compilation, ProbLog2 translates φ to a smooth d-DNNF
Boolean formula that allows WMC in polynomial time by in turn converting
the d-DNNF into an arithmetic circuit. A Negation Normal Form (NNF) for-
mula is a rooted directed acyclic graph in which each leaf node is labeled with
a literal and each internal node is labeled with a conjunction or disjunction.
Smooth d-DNNF formulas also satisfy

• Decomposability (D): for every conjunction node, no couple of children
of the node has any variable in common.
• Determinism (d): for every disjunction node, every couple of children

represents formulas that are logically inconsistent with each other.

168 Exact Inference

Figure 5.8 d-DNNF for the formula of Example 72. From [Fierens et al., 2015].

• Smoothness: for every disjunction node, all children use exactly the
same set of variables.

Compilers for d-DNNF usually start from formulas in Conjunctive Normal
Form (CNF). A CNF is a Boolean formula that takes the form of a conjunction
of disjunctions of literals, i.e., a formula of the form:

l11 _ . . ._ l1m1 ^ . . .^ ln1 _ . . ._ lnmn

where each lij is a literal. Examples of compilers from CNF to d-DNNF
are c2d Darwiche [2004] and DSHARP Muise et al. [2012]. The formula of
Example 72 is translated to the d-DNNF of Figure 5.8.

The conversion of a d-DNNF formula into an arithmetic circuit is done
in two steps [Darwiche, 2009, Chapter 12]: first conjunctions are replaced
by multiplications and disjunctions by summations, and then each leaf node
labeled with a literal l is replaced by a subtree consisting of a multiplication
node with two children, a leaf node with a Boolean indicator variable λplq
for the literal l and a leaf node with the weight of l. The circuit for the
Alarm example is shown in Figure 5.9. This transformation is equivalent to
transforming the WMC formula into

WMC pφq “
ÿ

ωPSAT pφq

ź

lPω

wplqλplq “
ÿ

ωPSAT pφq

ź

lPω

wplq
ź

lPω

λplq

Given the arithmetic circuit, the WMC can be computed by evaluating the
circuit bottom-up after having assigned the value 1 to all the indicator vari-
ables. The value computed for the root, f , is the probability of evidence and

5.7 ProbLog2 169

Figure 5.9 Arithmetic circuit for the d-DNNF of Figure 5.8. From [Fierens et al., 2015].

so solves EVID. Figure 5.9 shows the values that are computed for each node:
the value for the root, 0.196, is the probability of evidence.

With the arithmetic circuit, it is also possible to compute the probability
of any evidence, provided that it extends the initial evidence. To compute
P pe, l1 . . . lnq for any conjunction of literals l1, . . . , ln, it is enough to set the
indicator variables as λpliq “ 1, λp liq “ 0 (where a “ a) and λplq “ 1
for the other literals l, and evaluate the circuit. In fact, the value fpl1 . . . lnq
of the root node will give:

fpl1 . . . lnq “
ÿ

ωPSAT pφq

ź

lPω

wplq
ź

lPω

"

1, if tl1 . . . lnu Ď ω
0, otherwise

“

ÿ

ωPSAT pφq,tl1...lnuĎω

ź

lPω

wplq “

P pe, l1 . . . lnq

So in theory, one could build the circuit for formula φr only, since the
probability of any set of evidence can then be computed. The formula for
evidence however usually simplifies the compilation process and the resulting
circuit.

To compute CONDATOMS, we are given a set of atoms Q and evidence
e and we want to compute P pq|eq for all atoms q P Q. Given the definition
of conditional probability, P pq|eq “ P pq,eq

P peq , COND could be solved by
computing the probability of evidence q, e for all atoms in Q. However,
consider the partial derivative Bf

Bλq
for an atom q:

170 Exact Inference

Bf

Bλq
“

ÿ

ωPSAT pφq,qPω

ź

lPω

wplq
ź

lPω,l‰q

λplq “

ÿ

ωPSAT pφq,qPω

ź

lPω

wplq “

P pe, qq

So if we compute the partial derivatives of f for all indicator variables λpqq,
we get P pq, eq for all atoms q. We can solve this problem by traversing
the circuit twice, once bottom-up and once top-down; see [Darwiche, 2009,
Algorithms 34 and 35]. The algorithm computes the value vpnq of each node
n and the derivative dpnq of the value of the root node r with respect to n,
i.e., dpnq “ Bvprq

Bvpnq . vpnq is computed by traversing the circuit bottom-up and
evaluating it at each node. dpnq can be computed by observing that dprq “ 1
and, by the chain rule of calculus, for an arbitrary non-root node n with p
indicating its parents

dpnq “
ÿ

p

Bvprq

Bvppq

Bvppq

Bvpnq
“

ÿ

p

dppq
Bvppq

Bvpnq
.

If parent p is a multiplication node with n1 indicating its children

Bvppq

Bvpnq
“
Bvpnq

ś

n1‰n vpn
1q

Bvpnq
“

ź

n1‰n

vpn1q.

If parent p is an addition node with n1 indicating its children

Bvppq

Bvpnq
“
Bvpnq `

ř

n1‰n vpn
1q

Bvpnq
“ 1.

So, if we indicate with`p an addition parent of n and with ˚p a multiplication
parent of n, then

dpnq “
ÿ

`p

dp`pq `
ÿ

˚p

dp˚pq
ź

n1‰n

vpn1q.

Moreover, Bvp˚pq
Bvpnq can be computed as Bvp˚pq

Bvpnq “
vp˚pq
vpnq if vpnq ‰ 0. If all

indicator variables are set to 1, as required to compute f , and if no parameter
is 0, which can be assumed as otherwise the formula could be simplified, then
vpnq ‰ 0 for all nodes and

dpnq “
ÿ

`p

dp`pq `
ÿ

˚p

dp˚pqvp˚pq{vpnq.

5.7 ProbLog2 171

This leads to Procedure CIRCP shown in Algorithm 5 that is a simplified
version of [Darwiche, 2009, Algorithm 35] for the case vpnq ‰ 0 for all
nodes. vpnq may be 0 if f is evaluated at additional evidence (see fpl1 . . . lnq
above), in that case, [Darwiche, 2009, Algorithm 35] must be used that takes
into account this case and is slightly more complex.

Algorithm 5 Procedure CIRCP: Computation of value and derivatives of
circuit nodes.
1: procedure CIRCP(circuit)
2: assign values to leaves
3: for all non-leaf node n with children c (visit children before parents) do
4: if n is an addition node then
5: vpnq Ð

ř

c vpcq
6: else
7: vpnq Ð

ś

c vpcq
8: end if
9: end for
10: dprq Ð 1, dpnq “ 0 for all non-root nodes
11: for all non-root node n (visit parents before children) do
12: for all parents p of n do
13: if p is an addition parent then
14: dpnq “ dpnq ` dppq
15: else
16: dpnq Ð dpnq ` dppqvppq{vpnq
17: end if
18: end for
19: end for
20: end procedure

ProbLog2 also offers compilation to BDDs. In this case, EVID and
COND can be performed with Algorithm 4. In fact, Algorithm 4 performs
WMC over BDDs. This can be seen by observing that BDDs are d-DNNF
that also satisfy the properties of decision and ordering [Darwiche, 2004]. A
d-DNNF satisfies the property of decision iff the root node is a decision node,
i.e., a node labeled with 0, 1 or the subtree

a α a β

where a is a variable and α and β are decision nodes. a is called the decision
variable. A d-DNNF satisfying the property of decision also satisfies the
property of ordering if decision variables appear in the same order along any

172 Exact Inference

path from the root to any leaf. A d-DNNF satisfying decision and ordering is
a BDD. d-DNNF satisfying decision and ordering may seem different from a
BDD as we have seen it: however, if each decision node of the form above is
replaced by

a

α β

we obtain a BDD.
The d-DNNF of Figure 5.8, for example, does not satisfy decision and

ordering. The same Boolean formula, however, can be encoded with the BDD
of Figure 5.10 that can be converted to a d-DNNF using the above equiva-
lence. Algorithm 4 for computing the probability of a BDD is equivalent to
the evaluation of the arithmetic circuit that can be obtained from the BDD by
seeing it as a d-DNNF.

More recently, ProbLog2 has also included the possibility of com-
piling the Boolean function to Sentential Decision Diagrams (SDDs)

Figure 5.10 BDD for the formula of Example 72.

5.7 ProbLog2 173

Figure 5.11 SDD for the formula of Example 72.

[Vlasselaer et al., 2014; Dries et al., 2015]. An SDD for the formula of
Example 72 is shown in Figure 5.11.

An SDD [Darwiche, 2011] contains two types of nodes: decision nodes,
represented as circles, and elements, represented as paired boxes. Elements
are the children of decision nodes and each box in an element can contain a
pointer to a decision node or a terminal node, either a literal or the constants 0
or 1. In an element pp, sq, p is called a prime and s is called a sub. A decision
node with children pp1, s1q, . . . , ppn, snq represents the function pp1 ^ s1q _

. . ._ppn^ snq. Primes p1, . . . , pn must form a partition: pi ‰ 0, pi^pj “ 0
for i ‰ j, and p1 _ . . ._ pn “ 1.

A vtree is a full binary tree whose leaves are in one-to-one correspon-
dence with the formula variables. Each SDD is normalized for some vtree.
Figure 5.12 shows the vtree for which the SDD of Figure 5.11 is normalized.
Each SDD node is normalized for some vtree node. The root node of the
SDD is normalized for the root vtree node. Terminal nodes are normalized
for leaf vtree nodes. If a decision node is normalized for a vtree node v, then

Figure 5.12 vtree for which the SDD of Figure 5.11 is normalized.

174 Exact Inference

its primes are normalized for the left child of v, and its subs are normalized
for the right child of v. As a result, primes and subs of same decision node
do not share variables. The SDD of a Boolean formula is unique once a vtree
is fixed. In Figure 5.11, decision nodes are labeled with the vtree nodes they
are normalized for.

SDDs are special cases of d-DNNF: if one replaces circle-nodes with
or-nodes, and paired-boxes with and-nodes, one obtains a d-DNNF. SDDs
satisfy two additional properties with respect to d-DNNF: structured decom-
posability and strong determinism.

To define structured decomposability, consider a d-DNNF δ and assume,
without loss of generality, that all conjunctions are binary. δ respects a vtree V
if for every conjunction α^β in δ, there is a node v in V such that varspαq Ď
varspvlq and varspβq Ď varspvrq where vl and vr are the left and right
child of v and varspαq and varspvq is the set of variables appearing in the
subdiagram rooted at α and the sub-vtree rooted at v respectively. δ enjoys
structured decomposability if it satisfies some vtree.

Strong determinism requires not only that the children of or nodes are
pairwise inconsistent but that they form a strongly deterministic decomposi-
tion. An pX,Yq-decomposition of a function fpX,Yq over non-overlapping
variables X and Y is a set tpp1, s1q, . . . , ppn, snqu such that

f “ p1pXq ^ s1pYq _ . . ._ pnpXq ^ snpYq

If pi^pj “ 0 for i ‰ j, the decomposition is said to be strongly deterministic.
A d-DNNF is strongly deterministic if each or node is a strongly deterministic
decomposition.

BDDs are a special case of SDDs where decompositions are all Shannon:
formula f is decomposed into tpX, fXq, p X, f Xqu. SDDs generalize
BDDs by considering non-binary decisions based on the value of primes and
by considering vtrees instead of linear variable orders.

In ProbLog2, the user can choose whether to use d-DNNFs or SDDs. The
choice of the compilation language depends on the tradeoff between succinct-
ness and tractability. Succinctness is defined by the size of a knowledge base
once it is compiled. Tractability is determined by the set of operations that
can be performed in polynomial time. The more tractable a representation is,
the less succinct it is.

A language is at least as succinct as another if, for every sentence in
the second language, there exists an equivalent sentence in the first with a
polynomially smaller size. The succinctness order for BDD, SDD, and d-
DNNF is

d-DNNF ă SDD ď BDD

5.7 ProbLog2 175

Table 5.1 Tractability of operations. ? means “unknown”,Xmeans “tractable” and ˝means
“not tractable unless P=NP” Operations are meant over a bounded number of operands
and BDDs operands should have the same variable order and SDDs the same vtree. From
[Vlasselaer et al., 2014]

Language Negation Conjunction Disjunction Model Counting
d-DNNF ? ˝ ˝ X

SDD X X X X
BDD X X X X

meaning that d-DNNF is strictly more succinct than SDDs and that SDDs
are at least as succinct as BDDs (whether SDD ă BDD is an open prob-
lem). Since SDD ę d-DNNF, there exist formulas whose smallest SDD
representation is exponentially larger that its d-DNNF representation.

The operations for which we consider tractability are those that are useful
for probabilistic inference, namely, negation, conjunction, disjunction, and
model counting. The situation for the languages we consider is summarized
in Table 5.1.

SDDs and BDDs support tractable Boolean combination operators. This
means that they can be built bottom-up starting from the cycle-free ground
program, similarly to what is done by ProbLog1 or PITA. d-DNNF compilers
instead require the formula to be in CNF. Converting the Clark’s completion
of the rules into CNF introduces a new auxiliary variable for each rule which
has a body with more than one literal. This adds cost to the compilation
process.

Another advantage of BDDs and SDDs is that they support minimiza-
tion: their size can be reduced by modifying the variable order or vtree.
Minimization of d-DNNF is not supported, so circuits may be larger than
necessary.

The disadvantage of BDDs with respect to d-DNNF and SDDs is that they
have worse size upper bounds, while the upper bound for d-DNNF and SDD
is the same [Razgon, 2014].

Experimental comparisons confirm this and show that d-DNNF leads to
faster inference than BDDs [Fierens et al., 2015] and that SDDs lead to faster
inference than d-DNNF [Vlasselaer et al., 2014].

The ProbLog2 system can be used in three ways. It can be used online
at https://dtai.cs.kuleuven.be/problog/: the user can enter and solve ProbLog
problems with just a web browser.

It can be used from the command line as a Python program. In this case,
the user has full control over the system settings and can use all machine

176 Exact Inference

resources, in contrast with the online version that has resource limits. In this
version, ProbLog programs may use external functions written in Python,
such as those offered by the wide Python ecosystem.

ProbLog2 can also be used as a library that can be called from Python for
building and querying probabilistic ProbLog models.

5.8 TP Compilation

Previous inference algorithms work backward, by reasoning from the query
toward the probabilistic choices. TP compilation [Vlasselaer et al., 2015,
2016] is an approach for performing probabilistic inference in ProbLog
using forward reasoning. In particular, it is based on the operator TcP , a
generalization of the TP operator of logic programming that operates on
parameterized interpretations. We have encountered a form of parameterized
interpretations in Section 3.2 where each atom is associated with a set of
composite choices. The parameterized interpretations of [Vlasselaer et al.,
2016] associate ground atoms with Boolean formulas built on variables that
represent probabilistic ground facts.

Definition 34 (Parameterized interpretation [Vlasselaer et al., 2015, 2016]).
A parameterized interpretation I of a ground probabilistic logic program P
with probabilistic facts F and atoms BP is a set of tuples pa, λaq with a P BP
and λa a propositional formula over F expressing in which interpretations a
is true.

The TcP operator takes as input a parameterized interpretation and
returns another parameterized interpretation obtained by applying the rules
once.

Definition 35 (TcP operator [Vlasselaer et al., 2015, 2016]). Let P be a
ground probabilistic logic program with probabilistic facts F and atoms BP .
Let I be a parameterized interpretation with pairs pa, λaq. Then, the TcP
operator is TcP pIq “ tpa, λaq|a P BPu where

λ1a “

$

&

%

a if a P F
Ž

aÐb1,...,bn,„c1,...,„cmPR
pλb1 ^ . . .^ λbn ^ λc1 ^ . . .^ λcmq

if a P BPzF

The ordinal powers of TcP start from tpa, 0q|a P BPu. The concept of
fixpoint must be defined in a semantic rather than syntactic way.

5.8 TP Compilation 177

Definition 36 (Fixpoint of TcP [Vlasselaer et al., 2015, 2016]). A parame-
terized interpretation I is a fixpoint of the TcP operator if and only if for all
a P BP , λa ” λ1a, where λa and λ1a are the formulas for a in I and TcP pIq,
respectively.

Vlasselaer et al. [2016] show that, for definite programs, TcP has a least
fixpoint lfppTcP q “ tpa, λ

8
a q|a P BPu where the λ8a s exactly describe the

possible worlds where a is true and can be used to compute the probability
for each atom by WMC, i.e., P paq “ WMC pλ8a q.

The probability of an atomic query q given evidence e can be computed as

P pq|eq “
WMC pλq ^ λeq

WMC pλeq

where λe “
Ź

eiPe
λei .

The approach can also be applied to stratified normal logic programs by
iterating the TcP operator stratum by stratum: the fixpoint of Tcp is computed
by considering the rules for each stratum in turn.

So, to perform exact inference on a ProbLog programP , the TcP operator
should be iterated stratum by stratum until the fixpoint is reached in each stra-
tum. The parameterized interpretation that is obtained after the last stratum
can then be used to perform COND and EVID.

The algorithm of [Vlasselaer et al., 2016] represents the formulas in the
interpretations by means of SDDs. So the Boolean formulas λa in the defini-
tion of TcP are replaced by SDD structures Λa. Since negation, conjunction,
and disjunction are efficient for SDDs, then so is the application of TcP .

Moreover, the TcP operator can be applied in a granular way one atom
at a time, which is useful for selecting more effective evaluation strategies
in approximate inference, see Section 7.9. The operator TcP pa, Iq considers
only the rules with a in the head and updates only the formula λa. So an
application of TcP is modified in

1. select an atom a P BP ,
2. compute TcP pa, Iq.

Vlasselaer et al. [2016] show that if each atom is selected frequently enough
in step 1, then the same fixpoint lfppTcP q is reached as for the naive algo-
rithm, provided that the operator is still applied stratum by stratum in normal
logic programs.

TP compilation can also be used for performing inference in the case
of updates of the program, where (ground) facts and rules can be added or

178 Exact Inference

removed. For definite programs, past compilation results can be reused to
compute the new fixpoint. Moreover, TP compilation can be used for dynamic
models, where each atom has an argument that represents the time at which
it is true. In this case, rules express the dependency of an atom at a time step
from atoms at the same or previous time step. An extension of TP compilation
can then be used for filtering, i.e., computing the probability of a query at a
time t given evidence up to time t.

Experiments in [Vlasselaer et al., 2016] show that TP compilation
compares favorably with ProbLog2 with both d-DNNF and SDD.

5.9 Modeling Assumptions in PITA

Let us recall here PRISM modeling assumptions:

1. The probability of a conjunction pA,Bq is computed as the product of
the probabilities of A and B (independent-and assumption).

2. The probability of a disjunction pA;Bq is computed as the sum of the
probabilities of A and B (exclusive-or assumption).

These assumptions can be stated more formally by referring to explanations.
Given an explanation κ, let RV pκq “ tCiθj |pCi, θj , kq P κu. Given a set
of explanations K, let RV pKq “

Ť

κPK RV pκq. Two sets of explanations,
K1 and K2, are independent if RV pK1q X RV pK2q “ H and exclusive if,
@κ1 P K1, κ2 P K2, κ1 and κ2 are incompatible.

The independent-and assumption means that, when deriving a covering
set of explanations for a goal, the covering sets of explanations Ki and Kj

for two ground subgoals in the body of a clause are independent.
The exclusive-or assumption means that, when deriving a covering set

of explanations for a goal, two sets of explanations Ki and Kj obtained
for a ground subgoal h from two different ground clauses are exclusive.
This implies that the atom h is derived using clauses that have mutually
exclusive bodies, i.e., that their bodies are not true at the same time in
any world.

The systems PRISM [Sato and Kameya, 1997] and PITA(IND, EXC)
[Riguzzi and Swift, 2011] exploit these assumptions to speed up the com-
putation. In fact, these assumptions make the computation of probabilities
“truth-functional” [Gerla, 2001] (the probability of conjunction/disjunction
of two propositions depends only on the probabilities of those propositions),
while in the general case, this is false. PITA(IND, EXC) differs from PITA
in the definition of the one{1, zero{1, not{2, and{3, or{3, and equality{4

5.9 Modeling Assumptions in PITA 179

predicates that now work on probabilities P rather than on BDDs. Their
definitions are

zerop0q.
onep1q.
notpA,Bq Ð B is 1´A.
andpA,B,Cq Ð C is A ˚B.
orpA,B,Cq Ð C is A`B.
equalitypV, N, P, P q.

Instead of the exclusive-or assumption, a program may satisfy the following
assumption:

3. The probability of a disjunction pA;Bq is computed as if A and B were
independent (independent-or assumption).

This means that, when deriving a covering set of explanations for a goal, two
sets of explanations Ki and Kj obtained for a ground subgoal h from two
different ground clauses are independent. If A and B are independent, the
probability of their disjunction is

P pA_Bq “ P pAq ` P pBq ´ P pA^Bq “

P pAq ` P pBq ´ P pAqP pBq

by the laws of probability theory. PITA(IND, EXC) can be used for programs
respecting this assumption by changing the or{3 predicate in this way

orpA,B, P q Ð P is A`B ´A ˚B.
PITA(IND,IND) is the resulting system.

The exclusiveness assumption for conjunctions of literals means that the
conjunction is true in 0 worlds and thus has probability 0, so it does not make
sense to consider a PITA(EXC,) system.

The following program
pathpNode,Nodeq.
pathpSource, Targetq : 0.3 Ð edgepSource,Nodeq,
pathpNode, Targetq.

edgep0, 1q : 0.3.
. . .

satisfies the independent-and and independent-or assumptions depending on
the structure of the graph. For example, the graphs in Figures 5.13(a) and
5.13(b) respect these assumptions for the query pathp0, 1q. Similar graphs
of increasing sizes can be obtained [Bragaglia and Riguzzi, 2011]. We call
the first graph type a “lanes” graph and the second a “branches” graph. The
graphs of the type of Figure 5.13(c), called “parachutes” graphs, instead,
satisfy only the independent-and assumption for the query pathp0, 1q.

180 Exact Inference

Figure 5.13 Examples of graphs satisfying some of the assumptions. From [Bragaglia and
Riguzzi, 2011].

All three types of graphs respect the independent-and assumption
because, when deriving the goal pathp0, 1q, paths are built incrementally
starting from node 0 and adding one edge at a time with the second clause
of the definition of path{2. Since the edge that is added does not appear in
the rest of the path, the assumption is respected.

Lanes and branches graphs respect the independent-or assumption
because, when deriving the goal pathp0, 1q, ground instantiations of the
second path clause have pathpi, 1q in the head and originate atomic choices
of the form pC2, tSource{i, Target{1, Node{ju, 1q.

Explanations for pathpi, 1q also contain atomic choices pei,j ,H, 1q for
every fact edgepi, jq : 0.3. in the path. Each explanation corresponds to a
path. In the lanes graph, each node except 0 and 1 lies on a single path, so
the explanations for pathpi, 1q do not share random variables. In the branches
graphs, each explanation for pathpi, 1q depends on a disjoint set of edges. In
the parachutes graph, instead this is not true: for example, the path from 2 to
1 shares the edge from 2 to 1 with the path 3, 2, 1.

Another program satisfying the independent-and and independent-or
assumptions is the following

sametitlepA,Bq : 0.3 Ð
haswordtitlepA,word 10q,
haswordtitlepB,word 10q.

sametitlepA,Bq : 0.3 Ð
haswordtitlepA,word 1321q,
haswordtitlepB,word 1321q.

. . .
which computes the probability that the titles of two different citations are
the same on the basis of the words that are present in the titles. The dots

5.9 Modeling Assumptions in PITA 181

stand for clauses differing from the ones above only for the words considered.
The haswordtitle{2 predicate is defined by a set of certain facts. This is
part of a program to disambiguate citations in the Cora database [Singla and
Domingos, 2005]. The program satisfies the independent-and assumption for
the query

sametitleptit1, tit2q

because
haswordtitle{2

has no uncertainty. It satisfies the independent-or assumption because each
clause for sametitle{2 defines a different random variable.

5.9.1 PITA(OPT)

PITA(OPT) [Riguzzi, 2014] differs from PITA because it checks for the
truth of the assumptions before applying BDD logical operations. If the
assumptions hold, then the simplified probability computations are used.

The data structures used to store probabilistic information in PITA(OPT)
are couples pP, T q where P is a real number representing a probability and
T is a term formed with the functors zero{0, one{0, c{2, or{2, and{2, not{1,
and the integers. If T is an integer, it represents a pointer to the root node of
a BDD. If T is not an integer, it represents a Boolean expression of which the
terms of the form zero, one, cpvar, valq and the integers represent the base
case: cpvar, valq indicates the equation var “ val while an integer indicates
a BDD. In this way, we are able to represent Boolean formulas by means of
either a BDD, a Prolog term, or a combination thereof.

For example, orp0x94ba008 , andpcp1 , 1 q,notpcp2 , 3 qqq represents the
expression: B _ pX1 “ 1 ^ pX2 “ 3qq where B is the Boolean function
represented by the BDD whose root node address in memory is the integer
0x94ba008 in Prolog hexadecimal notation.

PITA(OPT) differs from PITA also in the definition of zero{1, one{1,
not{2, and{3, or{3, and equality{4 that now work on couples pP, T q rather
than on BDDs. equality{4 is defined as

equalitypV,N, P, pP, cpV,Nqqq.

The one{1 and zero{1 predicates are defined as
zeropp0, zeroqq.
onepp1, oneqq.

The or{3 and and{3 predicates first check whether one of their input argu-
ment is (an integer pointing to) a BDD. If so, they also convert the other
input argument to a BDD and test for independence using the library function

182 Exact Inference

bdd indpB1, B2, Iq. Such a function is implemented in C and uses the
CUDD function Cudd_SupportIndex that returns an array indicating
which variables appear in a BDD (the support variables). bdd indpB1, B2, Iq
checks whether there is an intersection between the set of support variables
of B1 and B2 and returns I “ 1 if the intersection is empty. If the two BDDs
are independent, then the value of the resulting probability is computed using
a formula and a compound term is returned.

If none of the input arguments of or{3 and and{3 are BDDs, then these
predicates test whether the independent-and or the exclusive-or assumptions
hold. If so, they update the value of the probability using a formula and
return a compound term. If not, they convert the terms to BDDs, apply the
corresponding operation, and return the resulting BDD together with the
probability it represents. The code for or{3 and and{3 is shown in Figures
5.14 and 5.15, respectively, where Boolean operation between BDDs are
prefixed with bdd .

Figure 5.14 Code for the or{3 predicate of PITA(OPT).

5.9 Modeling Assumptions in PITA 183

Figure 5.15 Code for the and{3 predicate of PITA(OPT).

In these predicate definitions, ev{2 evaluates a term returning a BDD. In
and{3, after the first bdd and{3 operation, a test is made to check whether
the resulting BDD represent the 0 constant. If so, the derivation fails as this
branch contributes with a 0 probability. These predicates make sure that,
once a BDD has been built, it is used in the following operations, avoiding
the manipulation of terms and exploiting the work performed as much as
possible.

The not{2 predicate is very simple: it complements the probability and
returns a new term:

notppP,Bq, pP1, notpBqqq Ð P1 is 1´ P.

The predicate exc{2 checks for the exclusiveness between two terms with a
recursion through the structure of the terms, see Figure 5.16.

184 Exact Inference

Figure 5.16 Code for the exc{2 predicate of PITA(OPT).

For example, the goal

excporpcp1, 1q, cp2, 1qq, andpcp1, 2q, cp2, 2qqq

matches the 7th clause and calls the subgoals

excpcp1, 1q, cp1, 2qq, excpcp1, 1q, cp2, 2qq, excpcp2, 1q, cp1, 2qq,
excpcp2, 1q, cp2, 2qq.

Of the first two calls, excpcp1, 1q, cp1, 2qq succeeds, thus satisfying the first
conjunct in the body. Of the latter two calls, excpcp2, 1q, cp2, 2qq succeeds,
thus satisfying the second conjunct in the body and proving the goal.

The ind{2 predicate checks for independence between two terms. It visits
the structure of the first term until it reaches an atomic choice. Then it checks
for the absence of the variable in the second term with the predicate absent{2.
The code for ind{2 and absent{2 is shown in Figure 5.17. For example,
the goal

indporpcp1, 1q, cp2, 1qq, andpcp3, 2q, cp4, 2qqq

matches the 6th clause and calls

indpcp1, 1q, andpcp3, 2q, cp4, 2qqq, indpcp2, 1q, andpcp3, 2q, cp4, 2qqq.

5.9 Modeling Assumptions in PITA 185

Figure 5.17 Code for the ind{2 predicate of PITA(OPT).

The first call matches the 5th clause and calls

absentp1, andpcp3, 2q, cp4, 2qqq

which, in turn, calls absentp1, cp3, 2qq and absentp1, cp4, 2qq. Since they
both succeed, indpcp1, 1q, andpcp3, 2q, cp4, 2qqq succeeds as well. The sec-
ond call matches the 5th clause and calls absentp2, andpcp3, 2q, cp4, 2qqq
which, in turn, calls absentp2, cp3, 2qq and absentp2, cp4, 2qq. They
both succeed so indpcp2, 1q, andpcp3, 2q, cp4, 2qqq and the original goal
is proved.

The predicates exc{2 and ind{2 define sufficient conditions for exclusion
and independence, respectively. If the arguments of exc{2 and ind{2 do
not contain integer terms representing BDDs, then the conditions are also
necessary. The code for predicate ev{2 for the evaluation of a term is shown
in Figure 5.18.

When the program satisfies the (IND,EXC) or (IND,IND) assumptions,
the PITA(OPT) algorithm answers the query without building BDDs: terms

Figure 5.18 Code for the ev{2 predicate of PITA(OPT).

186 Exact Inference

are combined in progressively larger terms that are used to check the assump-
tions, while the probabilities of the combinations are computed only from the
probabilities of the operands without considering their structure.

When the program does not satisfy neither assumption, PITA(OPT) can
still be beneficial since it delays the construction of BDDs as much as
possible and may lead to the construction of less intermediate BDDs than
PITA. While in PITA the BDD for each intermediate subgoal must be kept
in memory because it is stored in the table and has to be available for future
use, in PITA(OPT), BDDs are built only when necessary, leading to a smaller
memory footprint and a leaner memory management.

5.9.2 MPE with PITA

MPE inference can be computed by PITA(IND,EXC) by modifying it so
that the probability data structure includes the most probable explanation for
the subgoal besides the highest probability of the subgoal. In this case, the
support predicates are modified as follows:

equalitypR,S,Probs, N, eprpR,S,Nqs, P qq Ð nthpN,Probs, P q.
orpepE1, P1q, ep E2, P2q, epE1, P1qq Ð P1 ą“ P2, !.
orpep E1, P1q, epE2, P2q, epE2, P2qq.
andpepE1, P1q, epE2, P2q, epE3, P3qq Ð P3 is P1 ˚ P2,
appendpE1, E2, E3q.

zeropepnull, 0qq.
onepeprs, 1qq.
ret probpB,Bq.

In this way, we obtain PITAVIT(IND), so called because for a program
encoding an HMM it computes the Viterbi path, the sequence of states that
most likely originated the output sequence. PITAVIT(IND) is also sound if
the exclusiveness assumption does not hold.

5.10 Inference for Queries with an Infinite Number
of Explanations

When a discrete program contains function symbols, the number of expla-
nations may be infinite and the probability of the query may be the sum of
a convergent series. In this case, the inference algorithm has to recognize
the presence of an infinite number of explanations and identify the terms of
the series. Sato and Meyer [2012, 2014] extended PRISM by considering
programs under the generative exclusiveness condition: at any choice point

5.11 Inference for Hybrid Programs 187

in any execution path of the top-goal, the choice is done according to a
value sampled from a PRISM probabilistic switch. The generative exclusive-
ness condition implies the exclusive-or condition and that every disjunction
originates from a probabilistic choice made by some switch.

In this case, a cyclic explanation graph can be computed that encodes
the dependency of atoms on probabilistic switches. From this, a system of
equations can be obtained defining the probability of ground atoms. Sato
and Meyer [2012, 2014] show that first assigning all atoms probability 0
and then repeatedly applying the equations to compute updated values result
in a process that converges to a solution of the system of equations. For
some program, such as those computing the probability of prefixes of strings
from Probabilistic Context-Free Grammars (PCFGs), the system is linear, so
solving it is even simpler. In general, this provides an approach for performing
inference when the number of explanations is infinite but the generative
exclusiveness condition holds.

Gorlin et al. [2012] present the algorithm PIP (for Probabilistic Inference
Plus), which is able to perform inference even when explanations are not
necessarily mutually exclusive and the number of explanations is infinite.
They require the programs to be temporally well-formed, i.e., that one of
the arguments of predicates can be interpreted as a time that grows from
head to body. In this case, the explanations for an atom can be represented
succinctly by Definite Clause Grammars (DCGs). Such DCGs are called
explanation generators and are used to build Factored Explanation Diagrams
(FEDs) that have a structure that closely follows that of BDDs. From FEDs,
one can obtain a system of polynomial equations that is monotonic and
thus convergent as in [Sato and Meyer, 2012, 2014]. So, even when the
system is non-linear, a least solution can be computed to within an arbitrary
approximation bound by an iterative procedure.

5.11 Inference for Hybrid Programs

Islam et al. [2012b]; Islam [2012] propose an algorithm for performing the
DISTR task for Extended PRISM, see Section 4.3. Since it is impossible
to enumerate all explanations for the query because there is an uncountable
number of them, the idea is to represent derivations symbolically.

Definition 37 (Symbolic derivation [Islam et al., 2012b]). A goal g directly
derives goal g1, denoted g Ñ g1, if one of the following conditions holds

188 Exact Inference

PCR if g “ q1pX1q, g1, and there exists a clause in the program, q1pY q Ð
r1pY1q, r2pY2q, . . . , rmpYmq such that θ “ mgupq1pX1q, q1pY qq then
g1 “ pr1pY1q, r2pY2q, . . . , rmpYmq, g1qθ

MSW if g “ mswprvpXq, Y q, g1 then g1 “ g1

CONSTR if g “ Constr , g1 and Constr is satisfiable: then g1 “ g1.

where PCR stands for program clause resolution. A symbolic derivation of
g is a sequence of goals g0, g1, . . . such that g “ g0 and, for all i ě 0,
gi Ñ gi`1.

Example 73 (Symbolic derivation). Consider Example 56 that we repeat
here for ease of reading.

widgetpXq Ð
mswpm,Mq,mswpstpMq, Zq,mswppt, Y q, X “ Y ` Z.

valuespm, ra, bsq.
valuespstp q, realq.
valuesppt, realq.
Ð set swpm, r0.3, 0.7sq.
Ð set swpstpaq, normp2.0, 1.0qq.
Ð set swpstpbq, normp3.0, 1.0qq.
Ð set swppt, normp0.5, 0.1qq.

The symbolic derivation for goal widgetpXq is
g1 : widgetpXq

Ó

g2 : mswpm,Mq,mswpstpMq, Zq,mswppt, Y q, X “ Y ` Z
Ó

g3 : mswpstpMq, Zq,mswppt, Y q, X “ Y ` Z
Ó

g4 : mswppt, Y q, X “ Y ` Z
Ó

g5 : X “ Y ` Z
Ó

true

Given a goal, the aim of inference is to return a probability density
function over the variables of the goal. To do so, all successful symbolic
derivations are collected. Then a representation of the probability density
associated with the variables of each goal is built bottom-up starting from
the leaves. This representation is called a success function.

5.11 Inference for Hybrid Programs 189

First, we need to identify, for each goal gi in a symbolic derivation, the set
of its derivation variables V pgiq, the set of variables appearing as parameters
or outcomes of msws in some subsequent goal gj , j ą i. V is further
partitioned into two disjoint sets, Vc and Vd, representing continuous and
discrete variables, respectively.

Definition 38 (Derivation variables [Islam et al., 2012b]). Let g Ñ g1 such
that g1 is derived from g using

PCR Let θ be the mgu in this step. Then Vcpgq and Vdpgq are the largest set
of variables in g such that Vcpgqθ Ď Vcpg

1q and Vdpgqθ Ď Vdpg
1q

MSW Let g “ mswprvpXq, Y q, g1. Then Vcpgq and Vdpgq are the largest
set of variables in g such that Vcpgqθ Ď Vcpg

1q Y tY u and Vdpgqθ Ď
Vdpg

1qYX if Y is continuous, otherwise Vcpgqθ Ď Vcpg
1q and Vdpgqθ Ď

Vdpg
1q YX Y tY u

CONSTR Let g “ Constr , g1. Then Vcpgq and Vdpgq are the largest set of
variables in g such that Vcpgqθ Ď Vcpg

1qYvarspConstrq and Vdpgqθ Ď
Vdpg

1q

So V pgq is built from V pg1q and it can be computed for all goals in a symbolic
derivation bottom-up.

Let C denote the set of all linear equality constraints using set of variables
V and let L be the set of all linear functions over V . Let NXpµ, σ2q be
the PDF of a univariate Gaussian distribution with mean µ and variance σ2,
and δxpXq be the Dirac delta function which is zero everywhere except at
x and integration of the delta function over its entire range is 1. A Product
Probability Density Function (PPDF) φ over V is an expression of the form

φ “ k ¨
ź

l

δvpVlq
ź

i

Nfipµi, δ
2
i q

where k is a non-negative real number, Vl P V fi P L. A pair pφ,Cq where
C Ď C is called a constrained PPDF. A sum of a finite number of constrained
PPDFs is called a success function, represented as

ψ “
ÿ

i

pφi, Ciq

We use Cipψq to denote the constraints (i.e., Ci) in the i-th constrained PPDF
of success function ψ and Dipψq to denote the i-th PPDF of ψ.

190 Exact Inference

The success function of the query is built bottom-up from the set of
derivations for it. The success function of a constraint C is p1, Cq. The suc-
cess function of true is p1, trueq. The success function of mswprvpXq, Y q
is pψ, trueq where ψ is the probability density function of rv’s distribution if
rv is continuous, and its probability mass function if rv is discrete.

Example 74 (Success functions of msw atoms). The success function of
mswpm,Mq for the program in Example 73 is

ψmswpm,MqpMq “ 0.3δapMq ` 0.7δbpMq

We can represent success functions using tables, where each table row
denotes discrete random variable valuations. For example, the above success
function can be represented as

M ψmswpm,MqpMq

a 0.3
b 0.7

For a g Ñ g1 derivation step, the success function of g is computed from
the success function of g1 using the join and marginalization operations, the
first for MSW and CONSTR steps and the latter for PCR steps.

Definition 39 (Join operation). Let ψ1 “
ř

ipDi, Ciq and ψ2 “
ř

jpDj , Cjq
be two success functions, then the join ψ1 ˚ ψ2 of ψ1 and ψ2 is the success
function

ÿ

i,j

pDiDj , Ci ^ Cjq

Example 75 (Join operation). Let ψmswpm,MqpMq and ψgpX,Y, Z,Mq be
defined as follows:

M ψmswpm,MqpMq

a 0.3
b 0.7

M ψGpX,Y, Z,Mq
a pNZp2.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq
b pNZp3.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq

The join of ψmswpm,MqpMq and ψGpX,Y, Z,Mq is:

M ψmswpm,MqpMq ˚ ψGpX,Y, Z,Mq

a p0.3NZp2.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq
b p0.7NZp3.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq

5.11 Inference for Hybrid Programs 191

Since δapMqδbpMq “ 0 because M cannot be both a and b at the same
time, we simplified the result by eliminating any such inconsistent PPDF term
in ψ.

In the case of a PCR derivation step g Ñ g1, g may contain a subset
of the variables of g1. To compute the success function for g, we thus must
marginalize over the eliminated variables. If an eliminated variable is discrete,
marginalization is done by summation in the obvious way. If an eliminated
variable V is continuous, marginalization is done in two steps: projection and
integration. The goal of projection is to eliminate any linear constraint on V .
The projection operation finds a linear constraint V “ aX ` b on V and
replaces all occurrences of V in the success function by aX ` b.

Definition 40 (Projection of a success function). The projection of a success
function ψ w.r.t. a continuous variable V , denoted by ψÓV , is a success
function ψ1 such that @i:

Dipψ
1q “ DipψqrV {aX ` bs

and
Cipψ

1q “ pCipψq ´ CipqrV {aX ` bs

where Cip is a linear constraint V “ aX ` b on V in Cipψq and trx{ss
denotes the replacement of all occurrences of x in t by s.

If ψ does not contain any linear constraint on V , then the projected form
remains the same.

Example 76 (Projection operation). Let ψ1 be the success function

ψ1 “ p0.3NZp2.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq

The projection of ψ1 w.r.t. Y is

ψ1ÓY “ 0.3NZp2.0, 1.0qNX´Zp0.5, 0.1q, trueq

We can now define the integration operation.

Definition 41 (Integration of a success function). Let ψ be a success function
that does not contain any linear constraints on V . Then the integration of ψ
w.r.t. to V , denoted by

ű

V ψ, is the success function ψ1 such that

@i : Dipψ
1q “

ż

DipψqdV

192 Exact Inference

Islam et al. [2012b]; Islam [2012] prove that the integration of a PPDF
with respect to a variable V is a PPDF, i.e., that

α

ż `8

´8

m
ź

k“1

NakXk`bkpµk, σ
2
kqdV “ α1

m1
ź

l“1

Na1lX
1
l`b

1
l
pµ1l, σ

12
l q

where V PXk and V RX 1
l .

For example, the integration ofNa1V´X1pµ1, σ
2
1qNa2V´X2pµ2, σ

2
2q w.r.t.

variable V is
ş`8

´8
Na1V´X1pµ1, σ

2
1qNa2V´X2pµ2, σ

2
2qdV “

Na2X1´a1X2pa1µ1 ´ a2µ1, a
2
2σ

2
1 ` a

2
1σ

2
2q

(5.3)

where X1 and X2 are linear combinations of variables except V .

Example 77 (Integration of a success function). Let ψ2 represent the
following success function

ψ2 “ p0.3NZp2.0, 1.0qNX´Zp0.5, 0.1q, trueq

Then integration of ψ2 w.r.t. Z yields
¿

Z

ψ2 “

ˆ
ż

0.3NZp2.0, 1.0qNX´Zp0.5, 0.1q, true
˙

“

p0.3NXp2.5, 1.1q, trueq

by Equation (5.3).

The marginalization operation is the composition of the join and integra-
tion operations.

Definition 42 (Marginalization of a success function). The marginalization
of a success function ψ with respect to a variable V , denoted by Mpψ, V q, is
a success function ψ1 such that

ψ1 “

¿

V

ψÓV

The marginalization over a set of variables is defined as Mpψ, tV u YXq “
MpMpψ, V q,Xq and Mpψ,Hq “ ψ.

5.11 Inference for Hybrid Programs 193

The set of all success functions is closed under join and marginalization
operations. The success function for a derivation can now be defined as
follows.

Definition 43 (Success function of a goal). The success function of a goal g,
denoted by ψg, is computed based on the derivation g Ñ g1:

ψg “

$

&

%

ř

g1 Mpψg1 , V pg1q ´ V pgqq for all PCR g Ñ g1

ψmswprvpXq,Y q ˚ ψg1 if g “ mswprvpXq, Y q, g1

ψConstr ˚ ψg1 if g “ Constr , g1

Example 78 (Success function of a goal). Consider the symbolic derivation
of Example 73. The success function of goal g5 is ψg5pX,Y, Zq “ p1, X “

Y ` Zq. To obtain ψg4 , we must perform a join operation:

ψg4pX,Y, Zq “ ψmswppt,Y qpY q˚ψg5pX,Y, Zq “ pNY p0.5, 0.1q, X “ Y`Zq

The success function of goal g3 is ψmswpstpMq,ZqpZq ˚ ψg4pX,Y, Zq:

M ψg3pX,Y, Z,Mq
a pNZp2.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq
b pNZp3.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq

Then we join ψmswpm,MqpMq and ψg3pX,Y, Z,Mq:

M ψg2pX,Y, Z,Mq
a p0.3NZp2.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq
b p0.7NZp3.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq

The success function of g1 is ψg1pXq “Mpψg2pX,Y, Z,Mq, tM,Y,Zuq. We
marginalize ψg2pX,Y, Z,Mq first w.r.t. M :

ψ1g2 “Mpψg2 ,Mq “
¿

M

ψg2ÓM “

“ p0.3NZp2.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq `

p0.7NZp3.0, 1.0qNY p0.5, 0.1q, X “ Y ` Zq

Then we marginalize ψ1g2pX,Y, Zq w.r.t. Y :

ψ2g2 “Mpψ1g2 , Y q “
¿

Y

ψ1g2ÓY “

“ 0.3NZp2.0, 1.0qNX´Zp0.5, 0.1q `
0.7NZp3.0, 1.0qNX´Zp0.5, 0.1q

194 Exact Inference

Finally, we get ψg1pXq by marginalizing ψ2g2pX,Zq w.r.t. Z:

ψg1pXq “ Mpψ2g2 , Zq “
¿

Z

ψ2g2ÓZ “

“ 0.3NZp2.5, 1.1q ` 0.7NXp3.5, 1.1q

So the algorithm returns the probability density of the continuous random
variables in the query.

This algorithm is correct if the program satisfies PRISM’s assumptions:
independent-and and exclusive-or. The first is equivalent to requiring that an
instance of a random variable occurs at most once in any derivation. In fact,
the join operation used in a g Ñ g1 MSW step is correct only if the random
variable defined by the msw atom does not appear in g1. Moreover, the sum
over all PCR steps in Definition 43 is correct only if the terms are mutually
exclusive.

A subgoal may appear more than once in the derivation tree for a goal, so
tabling can be effectively used to avoid redundant computation.

6
Lifted Inference

Reasoning with real-world models is often very expensive due to their
complexity. However, sometimes the cost can be reduced by exploiting sym-
metries in the model. This is the task of lifted inference, that answers queries
by reasoning on populations of individuals as a whole instead of considering
each entity individually. The exploitation of the symmetries in the model can
significantly speed up inference.

Lifted inference was initially proposed by Poole [2003]. Since then, many
techniques have appeared such as lifted versions of variable elimination and
belief propagation, using approximations and dealing with models such as
parfactor graphs and MLNs [de Salvo Braz et al., 2005; Milch et al., 2008;
Van den Broeck et al., 2011].

6.1 Preliminaries on Lifted Inference

Applying lifted inference to PLP languages under the DS is problematic
because the conclusions of different rules are combined with noisy-OR that
requires aggregations at the lifted level when existential variables are present.
For example, consider the following ProbLog program from [De Raedt and
Kimmig, 2015]:

p :: famous(Y).
popular(X) :- friends(X, Y), famous(Y).

In this case, P ppopular(john)q “ 1´ p1´ pqm where m is the number
of friends of john. This is because the body contains a logical variable not
appearing in the head, which is thus existentially quantified. A grounding of
the atom in the head of this clause represents the disjunction of a number
of ground bodies. In this case, we don’t need to know the identities of these
friends, we just need to know how many there are. Hence, we don’t need to
ground the clauses.

195

196 Lifted Inference

Example 79 (Running example for lifted inference – ProbLog). We consider
a ProbLog program representing the workshop attributes problem of [Milch
et al., 2008]. It models the organization of a workshop where a number
of people have been invited. The predicate series indicates whether the
workshop is successful enough to start a series of related meetings while
attends(P) indicates whether person P will attend the workshop. We can
model this problem with the ProbLog program:

series :- self.
series :- attends(P).
attends(P) :- at(P,A).
0.1::self.
0.3::at(P,A) :- person(P), attribute(A).

Note that all rules are range-restricted, i.e., all variables in the head also
appear in a positive literal in the body. A workshop becomes a series
either because of its own merits with a 10% probability (represented by
the probabilistic fact self) or because people attend. People attend the
workshop depending on the workshop’s attributes such as location, date,
fame of the organizers, etc. (modeled by the probabilistic fact at(P,A)). The
probabilistic fact at(P,A) represents whether person P attends because
of attribute A. Note that the last statement corresponds to a set of ground
probabilistic facts, one for each person P and attribute A as in ProbLog2
(Section 5.7). For the sake of brevity, we omit the (non-probabilistic) facts
describing the person/1 and attribute/1 predicates.

Parameterized Random Variables (PRVs) and parfactors have been
defined in Section 2.10.3. We briefly recall here their definition. PRVs repre-
sent sets of random variables, one for each possible ground substitution to all
of its logical variables. Parfactors are triples

xC,V, F y

where C is a set of inequality constraints on logical variables, V is a set of
PRVs and F is a factor that is a function from the Cartesian product of ranges
of PRVs of V to real values. A parfactor is also represented as F pVq|C or
F pVq if there are no constraints. A constrained PRV V is of the form V|C,
where V “ P pX1, . . . , Xnq is a non-ground atom and C is a set of constraints
on logical variables X “ tX1, . . . , Xnu. Each constrained PRV represents
the set of random variables tP pxq|x P Cu, where x is the tuple of constants
px1, . . . , xnq. Given a (constrained) PRV V, we use RV pVq to denote the set

6.1 Preliminaries on Lifted Inference 197

of random variables it represents. Each ground atom is associated with one
random variable, which can take any value in rangepVq.

PFL [Gomes and Costa, 2012] described in Section 2.10.3 extends Prolog
to support probabilistic reasoning with parametric factors. We repeat below
Example 36 for ease of reading.

Example 80 (Running example – PFL program). A version of the workshop
attributes problem can be modeled by a PFL program such as

bayes series, attends(P); [0.51, 0.49, 0.49, 0.51];
[person(P)].

bayes attends(P), at(P,A); [0.7, 0.3, 0.3, 0.7];
[person(P),attribute(A)].

The first PFL factor has series and attends(P) as Boolean ran-
dom variable arguments, [0.51,0.49,0.49,0.51] as table and
[person(P)] as constraint.

This model is not equivalent to the one of Example 79, but it corresponds
to a ProbLog program that has only the second and the third clause of
Example 79. Models equivalent to Example 79 will be given in Examples
82 and 83.

6.1.1 Variable Elimination

Variable Elimination (VE) [Zhang and Poole, 1994, 1996] is an algorithm for
probabilistic inference on graphical models. VE takes as input a set of factors
F , an elimination order ρ, a query variable X, and a list y of observed values.
After setting the observed variables in all factors to their corresponding
observed values, VE eliminates the random variables from the factors one
by one until only the query variable X remains. This is done by selecting the
first variable Z from the elimination order ρ and then calling SUM-OUT that
eliminates Z by first multiplying all the factors that include Z into a single
factor and summing out Z from the newly constructed factor. This procedure
is repeated until ρ becomes empty. In the final step, VE multiplies together the
factors of F obtaining a new factor γ that is normalized as γpxq{

ř

x1 γpx
1q

to give the posterior probability.
In many cases, we need to represent factors where a Boolean variable X

with parents Y is true if any of the Yi is true, i.e., the case where X is
the disjunction of the variables in Y. This may, for example, represent the
situation where the Yis are causes of X, each capable of making X true

198 Lifted Inference

Figure 6.1 BN representing an OR dependency between X and Y.

independently of the values of the others. This is represented by the BN of
Figure 6.1 where the CPT for X is deterministic and is given by

At least one Yi equal to 1 Remaining columns
X “ 1 1.0 0.0
X “ 0 0.0 1.0

In practice, however, each parent Yi may have a noisy inhibitor variable Ii
that independently blocks or activates Yi, so X is true if either any of the
causes Yi holds true and is not inhibited. This can be represented with the BN
of Figure 6.2 where the Y1i are given by the Boolean formula Y1i “ Yi^ Ii,
i.e., Y1i is true if Yi is true and is not inhibited. So the CPT for the Y1i is
deterministic. The Ii variables have no parents and their CPT is P pIi “ 0q “
Πi, where Πi is the probability that Yi is not inhibited.

This represents the fact that X is not simply the disjunction of Y but
depends probabilistically from Y with a factor that encodes the probability
that the Yi variables are inhibited.

If we marginalize over the Ii variables, we obtain a BN like the one of
Figure 6.1 where, however, the CPT for X is not anymore that of a disjunction
but takes into account the probabilities that the parents are inhibited. This is
called a noisy-OR gate. Handling this kind of factor is a non-trivial problem.
Noisy-OR gates are also called causal independent models. An example of
an entry in a noisy-OR factor is

P pX “ 1|Y1 “ 1, . . . ,Yn “ 1q “ 1´
n
ź

i“1

p1´Πiq

In fact, X is true iff none of its causes is inhibited.
The factor for a noisy-OR can be expressed as a combination of factors

by using the intermediate Y1i variables that represent the effect of each cause
taking into account the inhibitor.

6.1 Preliminaries on Lifted Inference 199

Figure 6.2 BN representing a noisy-OR dependency between X and Y.

For example, suppose X has two causes Y1 and Y2 and let φpy1, y2, xq be
the noisy-OR factor. Let the variables Y11 and Y12 be defined as in Figure 6.2
and consider the factors ψ1py1, y

1
1q and ψ2py2, y

1
2q modeling the dependency

of Y1i from Yi. These factors are obtained by marginalizing the Ii variables,
so, if P pIi “ 0q “ Πi, they are given by

ψpy1, y
1
1q Yi “ 1 Yi “ 0

Y1i “ 1 Πi 0.0
Y1i “ 0 1´Πi 1.0

Then the factor φpy1, y2, xq can be expressed as

φpy1, y2, xq “
ÿ

y11_y12“x

ψ1py1, y
1
1qψ2py2, y

1
2q (6.1)

where the summation is over all values y11 and y12 of Y11 and Y12 whose
disjunction is equal to x. The X variable is called convergent as it is where
independent contributions from different sources are collected and combined.
Non-convergent variables will be called regular variables.

Representing factors such as φ with ψ1 and ψ2 is advantageous when the
number of parents grows large, as the combined size of the component factors
grows linearly, instead of exponentially.

Unfortunately, a straightforward use of VE for inference would lead to
construct Op2nq tables where n is the number of parents and the summation
in Equation (6.1) will have an exponential number of terms. A modified
algorithm, VE1 [Zhang and Poole, 1996], combines factors through a new
operator b:

200 Lifted Inference

φb ψpE1 “ α1, . . . ,Ek “ αk,A,B1,B2q “
ÿ

α11_α12“α1

. . .
ÿ

αk1_αk2“αk

φpE1 “ α11, . . . ,Ek “ αk1,A,B1qψpE1 “ α12, . . . ,Ek “ αk2,A,B2q (6.2)

Here, φ and ψ are two factors that share convergent variables E1 . . .Ek, A is
the list of regular variables that appear in both φ and ψ, while B1 and B2 are
the lists of variables appearing only in φ and ψ, respectively. By using the
b operator, factors encoding the effect of parents can be combined in pairs,
without the need to apply Equation (6.1) on all factors at once.

Factors containing convergent variables are called heterogeneous while
the remaining factors are called homogeneous. Heterogeneous factors shar-
ing convergent variables must be combined with the operator b, called
heterogeneous multiplication.

Algorithm VE1 exploits causal independence by keeping two lists of
factors: a list of homogeneous factors F1 and a list of heterogeneous factors
F2. Procedure SUM-OUT is replaced by SUM-OUT1 that takes as input F1

and F2 and a variable Z to be eliminated. First, all the factors containing
Z are removed from F1 and combined with multiplication to obtain factor
φ. Then all the factors containing Z are removed from F2 and combined
with heterogeneous multiplication obtaining ψ. If there are no such factors
ψ “ nil. In the latter case, SUM-OUT1 adds the new (homogeneous) factor
ř

z φ to F1; otherwise, it adds the new (heterogeneous) factor
ř

z φψ to F2.
Procedure VE1 is the same as VE with SUM-OUT replaced by SUM-OUT1 and
with the difference that two sets of factors are maintained instead of one.

However, VE1 is not correct for any elimination order. Correctness can
be ensured by deputizing the convergent variables: every such variable X
is replaced by a new convergent variable X1 (called a deputy variable) in
the heterogeneous factors containing it, so that X becomes a regular vari-
able. Finally, a new factor ιpX,X1q is introduced, called deputy factor, that
represents the identity function between X and X1, i.e., it is defined by

ιpX,X1q 00 01 10 11
1.0 0.0 0.0 1.0

The network on which VE1 works thus takes the form shown in
Figure 6.3. Deputizing ensures that VE1 is correct as long as the elimination
order is such that ρpX1q ă ρpXq.

6.1 Preliminaries on Lifted Inference 201

Figure 6.3 BN of Figure 6.1 after deputation.

6.1.2 GC-FOVE

Work on lifting VE started with FOVE [Poole, 2003] and led to the
definition of C-FOVE [Milch et al., 2008]. C-FOVE was refined in
GC-FOVE [Taghipour et al., 2013], which represents the state of the art.
Then, Gomes and Costa [Gomes and Costa, 2012] adapted GC-FOVE to PFL.

First-order variable elimination (FOVE) [Poole, 2003; de Salvo Braz
et al., 2005] computes the marginal probability distribution for a query
random variable by repeatedly applying operators that are lifted counterparts
of VE’s operators. Models are in the form of a set of parfactors that are
essentially the same as in PFL.

GC-FOVE tries to eliminate all (non-query) PRVs in a particular order by
applying the following operations:

1. Lifted Sum-Out that excludes a PRV from a parfactor φ if the PRVs only
occurs in φ;

2. Lifted Multiplication that multiplies two aligned parfactors. Match-
ing variables must be properly aligned and the new coefficients must
be computed taking into account the number of groundings in the
constraints C;

3. Lifted Absorption that eliminates n PRVs that have the same observed
value.

202 Lifted Inference

If these operations cannot be applied, an enabling operation must be chosen
such as splitting a parfactor so that some of its PRVs match another parfactor.
If no operation can be executed, GC-FOVE completely grounds the PRVs and
parfactors and performs inference on the ground level.

GC-FOVE also considers PRVs with counting formulas, introduced in
C-FOVE [Milch et al., 2008]. A counting formula takes advantage of symme-
tries existing in factors that are products of independent variables. It allows
the representation of a factor of the form φpP px1q, P px2q, . . . , P pxnqq,
where all PRVs have the same domain, as φp#XrP pXqsq, where #XrP pXqs
is the counting formula. The factor implements a multinomial distribution,
such that its values depend on the number of variables n and the domain size.
Counting formulas may result from summing-out, when we obtain parfactors
with a single PRV, or through Counting Conversion that searches for factors
of the form

φp
ź

i

pSpXjqP pXj , Yiqqq

and counts on the occurrences of Yi.
GC-FOVE employs a constraint-tree to represent arbitrary constraints C,

whereas PFL simply uses sets of tuples. Arbitrary constraints can capture
more symmetries in the data, which potentially offers the ability to perform
more operations at a lifted level.

6.2 LP2

LP2 [Bellodi et al., 2014] is an algorithm for performing lifted inference
in ProbLog that translates the program into PFL and uses an extended
GC-FOVE version for managing noisy-OR nodes.

6.2.1 Translating ProbLog into PFL

In order to translate ProbLog into PFL, the program must be acyclic
(Definition 4, see Section 6.5 for the case of cyclic programs). If this con-
dition if fulfilled, the ProbLog program can be converted first into a BN with
noisy-OR nodes. Here we specialize the conversion for LPADs presented in
Section 2.5 to the case of ProbLog.

For each atom A in the Herbrand base of the program, the BN contains a
Boolean random variable with the same name. Each probabilistic fact p :: a
is represented by a parentless node with the CPT:

6.2 LP2 203

a 0 1
1´ p p

For each ground rule Ri “ h Ð b1, . . . , bn,„c1, . . . ,„cm, we add to the
network a random variable called Hi that has as parents the random variables
representing the atoms B1, . . . ,Bn,C1, . . . ,Cm and the following CPT:

Hi B1 “ 1, . . . ,Bn “ 1,C1 “ 0, . . . , Cm “ 0 all other columns
0 0.0 1.0
1 1.0 0.0

In practice, Hi is the result of the conjunction of the random variables
representing the atoms in the body. Then, for each ground atom h in the
Herbrand base not appearing in a probabilistic fact, we add random variable
H to the network, with all the His of the ground rules with H in the head as
parents and with CPT:

H At least one Hi “ 1 All other columns
f 0.0 1.0
t 1.0 0.0

representing the result of the disjunction of the random variables Hi. These
families of random variables can be directly represented in PFL without the
need to first ground the program, thus staying at the lifted level.

Example 81 (Translation of a ProbLog program into PFL). The translation
of the ProbLog program of Example 79 into PFL is

bayes series1, self; [1, 0, 0, 1] ; [].
bayes series2, attends(P); [1, 0, 0, 1];

[person(P)].
bayes series, series1, series2 ; [1, 0, 0, 0, 0,

1, 1, 1]; [].
bayes attends1(P), at(P,A); [1, 0, 0, 1];

[person(P),attribute(A)].
bayes attends(P), attends1(P); [1, 0, 0, 1];

[person(P)].
bayes self; [0.9, 0.1]; [].
bayes at(P,A); [0.7, 0.3] ; [person(P),

attribute(A)].

204 Lifted Inference

Notice that series2 and attends1(P) can be seen as or-nodes, since
they are in fact convergent variables. Thus, after grounding, factors derived
from the second and the fourth parfactor should not be multiplied together
but should be combined with heterogeneous multiplication.

To do so, we need to identify heterogeneous factors and add deputy
variables and parfactors. We thus introduce two new types of parfactors to
PFL, het and deputy. As mentioned before, the type of a parfactor refers
to the type of the network over which that parfactor is defined. These two
new types are used in order to define a noisy-OR (Bayesian) network. The
first parfactor is such that its ground instantiations are heterogeneous factors.
The convergent variables are assumed to be represented by the first atom in
the parfactor list of atoms. Lifting identity is straightforward: it corresponds
to two atoms with an identity factor between their ground instantiations. Since
the factor is fixed, it is not indicated.

Example 82 (ProbLog program to PFL – LP2). The translation of the Prolog
program of Example 79, shown in Example 81, is modified with the two new
factors het and deputy as shown below:

bayes series1p, self; [1, 0, 0, 1] ; [].
het series2p, attends(P); [1, 0, 0, 1];

[person(P)].
deputy series2, series2p; [].
deputy series1, series1p; [].
bayes series, series1, series2; [1, 0, 0, 0, 0, 1,

1, 1] ; [].
het attends1p(P), at(P,A); [1, 0, 0, 1];

[person(P),attribute(A)].
deputy attends1(P), attends1p(P); [person(P)].
bayes attends(P), attends1(P); [1, 0, 0, 1];

[person(P)].
bayes self; [0.9, 0.1]; [].
bayes at(P,A); [0.7, 0.3] ; [person(P),

attribute(A)].

Here, series1p, series2p, and attends1p(P) are the new
convergent deputy random variables, and series1, series2, and
attends1(P) are their corresponding regular variables. The fifth factor
represents the OR combination of series1 and series2 to variable
series.

6.3 Lifted Inference with Aggregation Parfactors 205

GC-FOVE must be modified in order to take into account heterogeneous
parfactors and convergent PRVs. The VE algorithm must be replaced by VE1,
i.e., two lists of factors must be maintained, one with homogeneous and the
other with heterogeneous factors. When eliminating variables, homogeneous
factors have higher priority and are combined with homogeneous factors
only. Then heterogeneous factors are taken into account and combined before
starting to mix factors from both types, to produce a final factor from which
the selected random variable is eliminated.

Lifted heterogeneous multiplication considers the case in which the two
factors share convergent random variables. The SUM-OUT operator must be
modified as well to take into account the case that random variables must
be summed out from a heterogeneous factor. The formal definition of these
two operators is rather technical and we refer to [Bellodi et al., 2014] for the
details.

6.3 Lifted Inference with Aggregation Parfactors

Kisynski and Poole [Kisynski and Poole, 2009a] proposed an approach based
on aggregation parfactors instead of parfactors. Aggregation parfactors are
very expressive and can represent different kinds of causal independence
models, where noisy-OR and noisy-MAX are special cases. They are of
the form xC,P,C, FP ,b, CAy, where P and C are PRVs which share all the
parameters except one – let’s say A which is in P but not in C – and the
range of P (possibly non-Boolean) is a subset of that of C; C and CA are
sets of inequality constraints respectively not involving and involving A; FP
is a factor from the range of P to real values; and b is a commutative and
associative deterministic binary operator over the range of C.

When b is the MAX operator, of which the OR operator is a special case,
a total ordering ă on the range of C can be defined. An aggregation parfactor
can be replaced with two parfactors of the form xC Y CA, tP,C1u, FCy
and xC, tC,C1u, F∆y, where C1 is an auxiliary PRV that has the same
parameterization and range as C. Let v be an assignment of values to
random variables, then FCpvpPq,vpC1qq “ FP pvpPqq when vpPq ĺ vpC1q,
FCpvpPq,vpC

1qq “ 0 otherwise, while F∆pvpCq,vpC
1qq “ 1 if vpCq “

vpC1q, ´1 if vpCq is equal to a successor of vpC1q and 0 otherwise.
In ProbLog, we can use aggregation parfactors to model the dependency

between the head of a rule and the body, when the body contains a single
literal with an extra variable. In this case in fact, given a grounding of the
head, the contribution of all the ground clauses with that head must be

206 Lifted Inference

combined by means of an OR. Since aggregation parfactors are replaced
by regular parfactors, the technique can be used to reason with ProbLog
by converting the program into PFL with these additional parfactors. The
conversion is possible only if the ProbLog program is acyclic.

In the case of ProbLog, the range of PRVs is binary and b is OR. For
example, the clause series2:- attends(P) can be represented with
the aggregation parfactor

xH,attends(P),series2, FP ,_,Hy,

where FP p0q “ 1 and FP p1q “ 1. This is replaced by the parfactors

xH, tattends(P),series2pu, FCy

xH, tseries2,series2pu, F∆y

with FCp0, 0q “ 1, FCp0, 1q “ 1, FCp1, 0q “ 0, FCp1, 1q “ 1, F∆p0, 0q “
1, F∆p0, 1q “ 0, F∆p1, 0q “ ´1, and F∆p1, 1q “ 1.

When the body of a rule contains more than one literal and/or more than
one extra variable with respect to the head, the rule must be first split into
multiple rules (adding auxiliary predicate names) satisfying the constraint.

Example 83 (ProbLog program to PFL – aggregation parfactors). The
program of Example 79 using the above encoding for aggregation
parfactors is

bayes series1p, self; [1, 0, 0, 1] ; [].
bayes series2p, attends(P) [1, 0, 1, 1];

[person(P)].
bayes series2, series2p; [1, 0, -1, 1]; [].
bayes series1, series1p; [1, 0, -1, 1]; [].
bayes series, series1, series2; [1, 0, 0, 0, 0, 1,

1, 1] ; [].
bayes attends1p(P), at(P,A); [1, 0, 1, 1];

[person(P),attribute(A)].
bayes attends1(P), attends1p(P); [1, 0, -1, 1];

[person(P)].
bayes attends(P), attends1(P); [1, 0, 0, 1];

[person(P)].
bayes self; [0.9, 0.1]; [].
bayes at(P,A); [0.7, 0.3] ;

[person(P),attribute(A)].

6.4 Weighted First-Order Model Counting 207

Thus, by using the technique of [Kisynski and Poole, 2009a], we can
perform lifted inference in ProbLog by a simple conversion to PFL, without
the need to modify PFL algorithms.

6.4 Weighted First-Order Model Counting

A different approach to lifted inference for PLP uses Weighted First Order
Model Counting (WFOMC). WFOMC takes as input a triple p∆, w, wq,
where ∆ is a sentence in first-order logic and w and w are weight functions
which associate a real number to positive and negative literals, respectively,
depending on their predicate. Given a triple p∆, w, wq and a query φ, its
probability P pφq is given by

P pφq “
WFOMCp∆^ φ,w,wq

WFOMCp∆, w, wq

Here, WFOMCp∆, w, wq corresponds to the sum of the weights of all
Herbrand models of ∆, where the weight of a model is the product of its
literal weights. Hence

WFOMCp∆, w, wq “
ÿ

ω(∆

ź

lPω0

wppredplqq
ź

lPω1

wppredplqq

where ω0 and ω1 are, respectively, false and true literals in the interpretation
ω and pred maps literals l to their predicate. Two lifted algorithms exist for
exact WFOMC, one based on first-order knowledge compilation [Van den
Broeck et al., 2011; Van den Broeck, 2011; Van den Broeck, 2013] and the
other based on first-order DPLL search [Gogate and Domingos, 2011]. They
both require the input theory to be in first-order CNF. A first-order CNF is a
theory consisting of a conjunction of sentences of the form

@X1 . . . ,@Xn l1 _ ..._ lm.

A ProbLog program can be encoded as a first-order CNF using Clark’s
completion, see Section 1.4.1. For acyclic logic programs, Clark’s completion
is correct, in the sense that every model of the logic program is a model of
the completion, and vice versa. The result is a set of rules in which each
predicate is encoded by a single sentence. Consider ProbLog rules of the
form ppXq Ð BipX, Yiq where Yi is a variable that appears in the body Bi
but not in the head P pXq. The corresponding sentence in the completion is
@X ppXq Ø

Ž

i DYi BipX, Yiq. For cyclic programs, see Section 6.5 below.

208 Lifted Inference

Since WFOMC requires an input where existential quantifiers are absent,
Van den Broeck et al. [2014] presented a sound and modular Skolemization
procedure to translate ProbLog programs into first-order CNF. Regular
Skolemization cannot be used because it introduces function symbols, that
are problematic for model counters. Therefore, existential quantifiers in
expressions of the form DX φpX,Y q are replaced by the following formulas
[Van den Broeck et al., 2014]:

@Y @X zpY q _ φpX,Y q

@Y spY q _ zpY q

@Y @X spY q _ φpX,Y q

Here z is the Tseitin predicate (wpzq “ wpzq “ 1) and s is the Skolem
predicate (wpsq “ 1, wpsq “ ´1). This substitution can also be used for
eliminating universal quantifiers since

@X φpX,Y q

can be seen as
 DX φpXY q.

Existential quantifiers are removed until no more substitutions can be applied.
The resulting program can then be encoded as a first-order CNF with standard
transformations.

This replacement introduces a relaxation of the theory, thus the theory
admits more models besides the regular, wanted ones. However, for every
additional, unwanted model with weight W , there is exactly one additional
model with weight ´W , and thus the WFOMC does not change. The inter-
action between the three relaxed formulas and the model weights follows the
behavior:

1. When zpY q is false, then DX φpX,Y q is false while spY q is true, this
is a regular model whose weight is multiplied by 1.

2. When zpY q is true, then either:

(a) DX φpX,Y q is true and spY q is true, this is a regular model whose
weight is multiplied by 1; or

(b) DX φpX,Y q is false and spY q is true, this is an additional model
with a positive weight W , or

(c) DX φpX,Y q is true and spY q is false, this is an additional model
with weight ´W .

6.4 Weighted First-Order Model Counting 209

The last two cases cancel out.

The WFOMC encoding for a ProbLog program exploits two mapping func-
tions which associate the probability Πi and 1 ´ Πi of a probabilistic fact
with the positive and negative literals of the predicate, respectively. After the
application of Clark’s completion, the result may not be in Skolem normal
form; thus, the techniques described above must be applied before executing
WFOMC. The system WFOMC1 solves the WFOMC problem by compiling
the input theory into first-order d-DNNF diagrams [Darwiche, 2002; Chavira
and Darwiche, 2008].

Example 84 (ProbLog program to Skolem normal form). The translation
of the ProbLog program of Example 79 into the WMC input format of the
WFOMC system is

predicate series1 1 1
predicate series2 1 1
predicate self 0.1 0.9
predicate at(P,A) 0.3 0.7
predicate z1 1 1
predicate s1 1 -1
predicate z2(P) 1 1
predicate s2(P) 1 -1

series v ! z1
!series v z1
z1 v !self
z1 v !attends(P)
z1 v s1
s1 v !self
s1 v !attends(P)

attends(P) v ! z2(P)
!attends(P) v z2(P)
z2(P) v !at(P,A)
z2(P) v s2(P)
s2(P) v !at(P,A)

1https://dtai.cs.kuleuven.be/software/wfomc

210 Lifted Inference

Here, predicate is the mapping function for the probability values while
z1 and z2 are Tseitin predicates and s1 and s2 are Skolem predicates.

6.5 Cyclic Logic Programs

LP 2 and aggregation parfactors, described in Sections 6.2 and 6.3, respec-
tively, require a conversion from ProbLog to PFL for performing inference.
The first step of this translation is the transformation of a ProbLog program
into a BN with noisy-OR nodes. However, since BNs cannot have cycles,
this conversion is not correct if the program is cyclic or non-tight, i.e., if the
program contains positive cycles. A similar problem occurs with WFOMC:
Clark’s completion [Clark, 1978] is correct only for acyclic logic programs.

Fages [1994] proved that if an LP program is acyclic, then the Herbrand
models of its Clark’s completion [Clark, 1978] are minimal and coincide
with the stable models of the original LP program. The consequence of this
theoretical result is that, if the ProbLog program is acylic, we can correctly
convert it into a first-order theory by means of Clark’s completion.

To apply these techniques to cyclic programs, we need to remove positive
loops. We could first apply the conversion proposed by Janhunen [2004]
(also see Section 5.7) that converts normal logic programs to atomic normal
programs then to clauses. An atomic normal program contains only rules of
the form

aÐ„c1, . . . ,„cm.

where a and ci are atoms. Such programs are tight and, as a conse-
quence, it is possible to translate them into PFL programs and use Clark’s
completion.

However, this conversion was proposed only for the case of ground LPs.
Proposing a conversion for non-ground programs is an interesting direction
for future work, especially if function symbols are allowed.

6.6 Comparison of the Approaches

Riguzzi et al. [2017a] experimentally compared LP2, C-FOVE with aggrega-
tion parfactors (C-FOVE-AP), and WFOMC on five problems:

• workshops attributes Milch et al. [2008];
• two different versions of competing workshops Milch et al. [2008];
• two different versions of Example 7 in Poole [2008], that we call

plates.

6.6 Comparison of the Approaches 211

According to Jaeger and Van den Broeck [2012], Van den Broeck [2011],
function-free first-order logic with equality and two variables per formula
(2-FFFOL(=)) is domain-liftable, i.e., the complexity of reasoning is poly-
nomial in the domain size. All these problems fall in 2-FFFOL(=) and the
experiments confirm that systems take polynomial time. However, WFOMC
performs much better that the other systems, while LP2 and C-FOVE-AP
show approximately the same performance on all problems.

7
Approximate Inference

Approximate inference aims at computing the results of inference in an
approximate way so that the process is cheaper than the exact computation
of the results.

We can divide approaches for approximate inference into two groups:
those that modify an exact inference algorithm and those based on sampling.

7.1 ProbLog1

ProbLog1 includes three approaches for approximately solving the EVID
task. The first is based on iterative deepening and computes a lower and an
upper bound for the probability of the query. The second instead approxi-
mates the probability of the query only from below using a fixed number of
proofs. The third uses Monte Carlo sampling.

7.1.1 Iterative Deepening

In iterative deepening, the SLD tree is built only up to a certain depth [De
Raedt et al., 2007; Kimmig et al., 2008]. Then two sets of explanations are
built:Kl, encoding the successful proofs present in the tree, andKu, encoding
the successful and still open proofs present in the tree. The probability ofKl is
a lower bound on the probability of the query, as some of the open derivations
may succeed, while the probability ofKu is an upper bound on the probability
of the query, as some of the open derivations may fail.

Example 85 (Path – ProbLog – iterative deepening). Consider the program
of Figure 7.1 which is a probabilistic version of the program of Example 1
and represents connectivity in the probabilistic graph of Figure 7.2.

The query pathpc, dq has the covering set of explanations

K “ ttce, ef , fdu, tcduu

213

214 Approximate Inference

Figure 7.1 Program for Example 85.

Figure 7.2 Probabilistic graph of Example 85.

where atomic choices pf,H, 1q for facts of the form f “ Π :: edgepx, yq are
represented as xy. K can be made pairwise incompatible as

K 1 “ ttce, ef , fd , cdu, tcduu

where cd indicates choice pf,H, 0q for f “ 0.9 :: edgepc, dq. The
probability of the query is P ppathpc, dqq “ 0.8 ¨0.625 ¨0.8 ¨0.1`0.9 “ 0.94.

For a depth limit of 4, we get the tree of Figure 7.3. This tree has
one successful derivation, associated with the explanation κ1 “ tcdu,
one failed derivation, and one derivation that is still open, the one ending
with pathpf, dq, that is associated with composite choice κ1 “ tce, ef u,

Figure 7.3 SLD tree up to depth 4 for the query pathpc, dq from the program of
Example 85.

7.1 ProbLog1 215

soKl “ tκ1u andKu “ tκ1, κ2u. We have P pKlq “ 0.9 and P pKuq “ 0.95
and P pKlq ď P ppathpc, dqq ď P pKuq.

The iterative deepening algorithm of ProbLog1 takes as input an error bound
ε, a depth bound d, and a query q. It constructs an SLD tree for q up to
depth d. Then it builds sets of composite choices Kl and Ku and computes
their probabilities. If the difference P pKuq ´ P pKlq is smaller than the error
bound ε, this means that a solution with a satisfying accuracy has been found
and the interval rP pKlq, P pKuqs is returned. Otherwise, the depth bound is
increased and a new SLD tree is built up to the new depth bound. This process
is iterated until the difference P pKuq´P pKlq becomes smaller than the error
bound.

Instead of a depth bound, ProbLog1 can use a bound on the probability
of the proof: when the probability of the explanation associated with a proof
drops below a threshold, the proof is stopped. The threshold is reduced in the
following iterations by multiplying it with a constant smaller than one.

7.1.2 k-best

The second approach for approximate inference in ProbLog1 uses a fixed
number of proofs to obtain a lower bound of the probability of the query
[Kimmig et al., 2008, 2011a]. Given an integer k, the best k proofs are found,
corresponding to the set of best k explanations Kk, and the probability of Kk

is used as an estimate of the probability of the query.
Best is here intended in terms of probability: an explanation is better than

another if its probability is higher.

Example 86 (Path – ProbLog – k-best). Consider the program of Exam-
ple 85 with the query pathpa, dq. This query has four explanations that are
listed below together with their probabilities:

κ1 “ tac, cdu P pκ1q “ 0.72
κ2 “ tab, bc, cdu P pκ1q “ 0.378
κ3 “ tac, ce, ef , fdu P pκ1q “ 0.32
κ4 “ tab, bc, ce, ef , fdu P pκ1q “ 0.168

If k “ 1, ProbLog1 considers only the best proof and P pK1q “ 0.72.
For k “ 2, ProbLog1 takes into account the best two explanations,
K2 “ tκ1, κ2u. By making them pairwise incompatible, we get K 1

2 “

tκ1, tab, bc, cd, acuu and P pK 1
2q “ 0.72`0.378¨0.2 “ 0.7956. For k “ 3,

K3 “ tκ1, κ2, κ3u and P pK3q “ 0.8276. For k “ 4,K4 “ tκ1, . . . , κ4u and
P pK4q “ P ppathpa, dqq “ 0.83096, the same for k ą 4.

216 Approximate Inference

To perform k-best inference, ProbLog uses a branch-and-bound approach: the
current best k explanations are kept and, when the probability of a derivation
drops below the probability of the k-th best explanation, the derivation is
cut. When a new explanation is found, it is inserted in the list of k-best
explanations in order of probability, possibly removing the last one if the
list already contains k explanations.

The algorithm returns a lower bound on the probability of the query, the
larger the k the better the bound.

7.1.3 Monte Carlo

The Monte Carlo approach for approximate inference is based on the
following procedure, to be repeated until convergence

1. Sample a world, by sampling each ground probabilistic fact in turn.
2. Check whether the query is true in the world.
3. Compute the probability p̂ of the query as the fraction of samples where

the query is true.

Convergence is reached when the size of the confidence interval of p̂ drops
below a user-defined threshold δ. In order to compute the confidence interval
of p̂, ProbLog1 uses the central limit theorem to approximate the bino-
mial distribution with a normal distribution. Then the binomial proportion
confidence interval is calculated as

p̂˘ z1´α{2

c

p̂ p1´ p̂q

n

where n is the number of samples and z1´α{2 is the 1 ´ α{2 percentile of
a standard normal distribution with α “ 0.05 usually. If the width of the
interval is below the user-defined threshold δ, ProbLog1 stops and returns p̂.

This estimate of the confidence interval is good for a sample size larger
than 30 and if p̂ is not too close to 0 or 1. The normal approximation fails
totally when the sample proportion is exactly zero or exactly one.

The above approach for generating samples, however, is not efficient on
large programs, as proofs are often short while the generation of a world
requires sampling many probabilistic facts. So ProbLog1 generates samples
lazily by sampling probabilistic facts only when required by a proof. In fact,
it is not necessary to sample facts not needed by a proof, as any value for
them would do.

7.1 ProbLog1 217

ProbLog1 performs a so-called source-to-source transformation of
the program where probabilistic facts are transformed using the
term_expansion mechanism of Prolog. For example, facts of the form

0.8 :: edgepa, cq.
0.7 :: edgepa, bq.

are transformed into
edgepA,Bq Ð problog edgepID,A,B,LogProbq,
grounding idpedgepA,Bq, ID,GroundIDq,
add to proof pGroundID,LogProbq.

problog edgep0, a, c,´0.09691q.
problog edgep1, a, b,´0.15490q.

where problog edge is a new predicate for the internal representation of facts
for the predicate edge{2, grounding id{3 is used in the case in which the
probabilistic facts are not ground for obtaining a different identifier for each
grounding, and add to proof {2 adds the fact to the current proof, stored in
a global storage area. This approach is shared by all inference algorithms of
ProbLog1.

The computation of p̂ is usually done after taking a user defined small
number of samples n instead of after every sample, see Algorithm 6.

Algorithm 6 Function MONTECARLO: Monte Carlo algorithm of ProbLog1.
1: function MONTECARLO(P, q, n, δ)
2: Input: Program P , query q, number of batch samples n, precision δ
3: Output: P pqq
4: transform P
5: SamplesÐ 0
6: TrueSamplesÐ 0
7: repeat
8: for i “ 1 Ñ n do
9: SamplesÐ Samples` 1
10: if SAMPLE(q) succeeds then
11: TrueSamplesÐ TrueSamples` 1
12: end if
13: end for
14: p̂Ð TrueSamples

Samples

15: until 2z1´α{2

b

p̂p1´p̂q
Samples

ă δ

16: return p̂
17: end function

218 Approximate Inference

The algorithm converges because the Samples variables is always increas-

ing, and thus the condition 2z1´α{2

b

p̂p1´p̂q
Samples ă δ in line 15 of Algorithm 6

will eventually become true, unless the query has probability 0 or 1.
The function SAMPLE(q) is implemented by asking the query over the

transformed program. ProbLog1 uses an array with an element for each
ground probabilistic fact that stores one of three values: sampled true, sam-
pled false, or not yet sampled. When a literal matching a probabilistic fact
is called, ProbLog1 first checks whether the fact was already sampled by
looking at the array. If it wasn’t sampled, ProbLog1 samples it and stores
the result in the array. Probabilistic facts that are non-ground in the program
are treated differently: samples for groundings of these facts are stored in the
internal database of the Prolog interpreter (YAP in the ProbLog1 case) and
the sampled value is retrieved when they are called. If no sample has been
taken for a grounding, a sample is taken and recorded in the database. No
position in the array is reserved for them since their grounding is not known
at the start.

Approximate inference by sampling is also available in the ProbLog2
system.

7.2 MCINTYRE

MCINTYRE (Monte Carlo INference wiTh Yap REcord) [Riguzzi, 2013]
applies the Monte Carlo approach of ProbLog1 to LPADs using the YAP
internal database for storing all samples and using tabling for speeding up
inference.

MCINTYRE first transforms the program and then queries the trans-
formed program. The disjunctive clause

Ci “ hi1 : Πi1 _ . . ._ hin : Πini : ´bi1, . . . , bimi ,

where the parameters sum to 1, is transformed into the set of clauses
MCpCiq “ tMCpCi, 1q, . . . ,MCpCi, niqu:

MCpCi, 1q “ hi1 : ´bi1, . . . , bimi ,
sample headpParList, i, V C,NHq, NH “ 1.

. . .
MCpCi, niq “ hini : ´bi1, . . . , bimi ,

sample headpParList, i, V C,NHq, NH “ ni.
where V C is a list containing each variable appearing in Ci and ParList is
rΠi1, . . . ,Πinis. If the parameters do not sum up to 1, the last clause (the one

7.2 MCINTYRE 219

for null) is omitted. MCINTYRE creates a clause for each head and samples
a head index at the end of the body with sample head/4. If this index
coincides with the head index, the derivation succeeds; otherwise, it fails.
Thus, failure can occur either because one of the body literals fails or because
the current clause is not part of the sample.

Example 87 (Epidemic – LPAD). The following LPAD models the develop-
ment of an epidemic or a pandemic and is similar to the ProbLog program of
Example 66:

C1 “ epidemic : 0.6 ; pandemic : 0.3 Ð flupXq, cold.
C2 “ cold : 0.7.
C3 “ flupdavidq.
C4 “ fluprobertq.

Clause C1 has two groundings, both with three atoms in the head, while
clause C2 has a single grounding with two atoms in the head, so overall
there are 3ˆ 3ˆ 2 “ 18 worlds. The query epidemic is true in five of them
and its probability is

P pepidemicq “ 0.6 ¨ 0.6 ¨ 0.7` 0.6 ¨ 0.3 ¨ 0.7` 0.6 ¨ 0.1 ¨ 0.7`
0.3 ¨ 0.6 ¨ 0.7` 0.1 ¨ 0.6 ¨ 0.7

“ 0.588
Clause C1 is transformed as

MCpC1, 1q “ epidemic : ´flupXq, cold,
sample headpr0.6, 0.3, 0.1s, 1, rXs, NHq, NH “ 1.

MCpC1, 2q “ pandemic : ´flupXq, cold,
sample headpr0.6, 0.3, 0.1s, 1, rXs, NHq, NH “ 2.

The predicate sample head/4 samples an index from the head of a clause
and uses the built-in YAP predicates recorded/3 and recorda/3 for,
respectively, retrieving or adding an entry to the internal database.

Since sample head/4 is at the end of the body and since we assume
the program to be range restricted, all the variables of the clause have been
grounded when sample head/4 is called.

If the rule instantiation was already sampled, sample head/4 retrieves
the head index with recorded/3; otherwise, it samples a head index with
sample/2:

sample_head(_ParList,R,VC,NH):-
recorded(exp,(R,VC,NH),_),!.

sample_head(ParList,R,VC,NH):-
sample(ParList,NH),
recorda(exp,(R,VC,NH),_).

220 Approximate Inference

sample(ParList, HeadId) :-
random(Prob),
sample(ParList, 0, 0, Prob, HeadId).

sample([HeadProb|Tail], Index, Prev, Prob,
HeadId) :-

Succ is Index + 1,
Next is Prev + HeadProb,
(Prob =< Next ->

HeadId = Index
;

sample(Tail, Succ, Next, Prob, HeadId)
).

Tabling can be effectively used to avoid re-sampling the same atom. To
take a sample from the program, MCINTYRE uses the following predicate

sample(Goal):-
abolish_all_tables,
eraseall(exp),
call(Goal).

For example, if the query is epidemic, resolution matches the goal with the
head of clause MCpC1, 1q. Suppose flupXq succeeds with X{david and
cold succeeds as well. Then

sample headpr0.6, 0.3, 0.1s, 1, rdavids, NHq

is called. Since clause 1 with X replaced by david was not yet sam-
pled, a number between 1 and 3 is sampled according to the distribution
r0.6, 0.3, 0.1s and stored in NH . If NH “ 1, the derivation succeeds and the
goal is true in the sample, if NH “ 2 or NH “ 3, then the derivation fails
and backtracking is performed. This involves finding the solution X{robert
for flupXq. cold was sampled as true before, so it succeeds again. The

sample headpr0.6, 0.3, 0.1s, 1, rroberts, NHq

is called to take another sample.
Differently from ProbLog1, MCINTYRE takes into account the validity

of the binomial proportion confidence interval. The normal approximation
is good for a sample size larger than 30 and if p̂ is not too close to 0 or 1.
Empirically, it has been observed that the normal approximation works well

7.3 Approximate Inference for Queries with an Infinite Number of Explanations 221

as long as Sample ¨ p̂ ą 5 and Sample ¨ p1 ´ p̂q ą 5 [Ryan, 2007]. Thus,
MCINTYRE changes the condition in line 15 of Algorithm 6 to

2z1´α{2

d

p̂ p1´ p̂q

Samples
ă δ ^ Samples ¨ p̂ ą 5^ Samples ¨ p1´ p̂q ą 5

Recent versions of MCINTYRE for SWI-Prolog (included in the cplint
suite) use dynamic clauses for storing samples, as in SWI-Prolog these are
faster. sample head{4 is then defined as:

sample_head(R,VC,_HeadList,N):-
sampled(R,VC,N),!.

sample_head(R,VC,HeadList,N):-
sample(HeadList,N),
assertz(sampled(R,VC,N)).

Monte Carlo sampling is attractive for the simplicity of its implementation
and because the estimate can be improved as more time is available, making
it an anytime algorithm.

7.3 Approximate Inference for Queries with an Infinite
Number of Explanations

Monte Carlo inference can also be used for programs with function symbols,
in which goals may have an infinite number of possibly infinite explanations
and exact inference may loop. In fact, a sample of a query corresponds
naturally to an explanation. The probability of taking that sample is the
same as the probability of the corresponding explanation. The risk is that of
incurring in an infinite explanation. But infinite explanations have probability
zero, so the probability that the computation goes down such a path and does
not terminate is zero as well. As a consequence, Monte Carlo inference can be
used on programs with an infinite number of possibly infinite explanations.

Similarly, iterative deepening can also avoid infinite loops as the proof
tree is built only up to a certain point. If the bound is on the depth, com-
putation will eventually stop because the depth bound will be exceeded. If
the bound is on the probability, it will eventually be exceeded as well, as the
probability of an explanation goes to zero as more choices are added.

For an example of Monte Carlo inference on a program with an infinite
set of explanations, see Section 11.11.

Francisco Coelho

222 Approximate Inference

7.4 Conditional Approximate Inference

Monte Carlo inference also provides smart algorithms for computing the
probability of a query given evidence (COND task): rejection sampling or
Metropolis-Hastings Markov Chain Monte Carlo (MCMC).

In rejection sampling [Von Neumann, 1951], the evidence is first queried
and, if it is successful, the query is asked in the same sample; otherwise, the
sample is discarded. Rejection sampling is available both in cplint and in
ProbLog2.

In Metropolis-Hastings MCMC, a Markov chain is built by taking an ini-
tial sample and by generating successor samples, see [Koller and Friedman,
2009] for a description of the general algorithm.

Nampally and Ramakrishnan [2014] developed a version of MCMC
specific to PLP. In their algorithm, the initial sample is built by randomly
sampling choices so that the evidence is true. A successor sample is obtained
by deleting a fixed number (lag) of sampled probabilistic choices. Then the
evidence is queried again by sampling starting with the undeleted choices. If
the evidence succeeds, the query is then also asked by sampling. The query
sample is accepted with a probability of

min

"

1,
Ni´1

Ni

*

where Ni´1 is the number of choices sampled in the previous sample and
Ni is the number of choices sampled in the current sample. The number of
successes of the query is increased by 1 if the query succeeded in the last
accepted sample. The final probability is given by the number of successes
over the total number of samples. Nampally and Ramakrishnan [2014] prove
that this is a valid Metropolis-Hastings MCMC algorithm if lag is equal to 1.

Metropolis-Hastings MCMC is also implemented in cplint [Alberti
et al., 2017]. Since the proof of the validity of the algorithm in [Nampally
and Ramakrishnan, 2014] also holds when forgetting more than one sampled
choice, lag is user-defined in cplint.

Algorithm 7 shows the procedure. Function INITIALSAMPLE returns a
composite choice containing the choices sampled for proving the evidence.
Function SAMPLE takes a goal and a composite choice as input and sam-
ples the goal returning a couple formed by the result of sampling (true or
false) and the set of sampled choices extending the input composite choice.
Function RESAMPLEpκ, lagq deletes lag choices from κ. In [Nampally and
Ramakrishnan, 2014], lag is always 1. Function ACCEPTpκi´1, κiq decides
whether to accept sample κi.

7.5 Approximate Inference by Sampling for Hybrid Programs 223

Algorithm 7 Function MCMC: Metropolis-Hastings MCMC algorithm.
1: function MCMC(P, q, Samples, lag)
2: Input: Program P , query q, number of samples Samples, number of choices to delete

lag
3: Output: P pq|eq
4: TrueSamples Ð 0
5: κ0 Ð INITIALSAMPLEpeq
6: prq, κq ÐSAMPLE(q, κ0)
7: for i “ 1 Ñ Samples do
8: κ1 Ð RESAMPLEpκ, lagq
9: pre, κeq ÐSAMPLE(e, κ1)
10: if re=true then
11: pr1q, κqq ÐSAMPLE(q, κe)
12: if ACCEPTpκ, κqq then
13: κÐ κq
14: rq Ð r1q
15: end if
16: end if
17: if rq=true then
18: TrueSamples Ð TrueSamples ` 1
19: end if
20: end for
21: p̂Ð TrueSamples

Samples

22: return p̂
23: end function

Function INITIALSAMPLE builds the initial sample with a meta-
interpreter (see Section 1.3) that starts with the goal and randomizes the order
in which clauses are used for resolution during the search so that the initial
sample is unbiased. This is achieved by collecting all the clauses that match
a subgoal and trying them in random order. Then the goal is queried using
regular sampling.

7.5 Approximate Inference by Sampling for Hybrid
Programs

Monte Carlo inference also has the attractive feature that it can be used
almost directly for approximate inference for hybrid programs. For example,
to handle a hybrid clause of the form

Ci “ gpX,Y q : gaussianpY, 0, 1q Ð objectpXq.

224 Approximate Inference

MCINTYRE transforms it into [Riguzzi et al., 2016a; Alberti et al., 2017]:
gpX,Y q Ð objectpXq, sample gausspi, rXs, 0, 1, Y q.

Samples for continuous random variables are stored using asserts as for
discrete variables. In fact, predicate sample gauss{4 is defined by

sample_gauss(R,VC,_Mean,_Variance,S):-
sampled(R,VC,S),!.

sample_gauss(R,VC,Mean,Variance,S):-
gauss(Mean,Variance,S),
assertz(sampled(R,VC,S)).

where gausspMean,Variance, Sq returns in S a value sampled from a
Gaussian distribution with parameters Mean and Variance .

Monte Carlo inference for hybrid programs derives his correctness from
the stochastic TP operator: a clause that is ground except for the continuous
random variable defined in the head defines a sampling process that extracts
a sample of the continuous variables according to the distribution and param-
eters specified in the head. Since programs are range restricted, when the
sampling predicate is called, all variables in the clause are ground except for
the one defined by the head, so the TP operator can be applied to the clause
to sample a value for the defined variable.

Monte Carlo inference is the most common inference approach also
for imperative or functional probabilistic programming languages, where a
sample of the output of a program is taken by executing the program and
generating samples when a probabilistic primitive is called. In probabilistic
programming usually memoing is not used, so new samples are taken each
time a probabilistic primitive is encountered.

Conditional inference can be performed in a similar way by using rejec-
tion sampling or Metropolis-Hastings MCMC, unless the evidence is on
ground atoms that have continuous values as arguments. In this case, rejec-
tion sampling or Metropolis-Hastings cannot be used, as the probability of
the evidence is 0. However, the conditional probability of the query given
the evidence may still be defined, see Section 1.5. In this case, likelihood
weighting [Nitti et al., 2016] can be used.

For each sample to be taken, likelihood weighting samples the query and
then assigns a weight to the sample on the basis of evidence. The weight
is computed by deriving the evidence backward in the same sample of the
query starting with a weight of one: each time a choice should be taken or a
continuous variable sampled, if the choice/variable has already been sampled,

7.5 Approximate Inference by Sampling for Hybrid Programs 225

the current weight is multiplied by the probability of the choice/by the density
value of the continuous variable.

Then the probability of the query is computed as the sum of the weights of
the samples where the query is true divided by the total sum of the weights of
the samples. This technique is useful also for non-hybrid programs as samples
are never rejected, so sampling can be faster.

Likelihood weighting in cplint [Alberti et al., 2017; Nguembang Fadja
and Riguzzi, 2017] uses a meta-interpreter that randomizes the choice of
clauses when more than one resolves with the goal, in order to obtain an
unbiased sample. This meta-interpreter is similar to the one used to generate
the first sample in Metropolis-Hastings.

Then a different meta-interpreter is used to evaluate the weight of the
sample. This meta-interpreter starts with the evidence as the query and a
weight of 1. Each time the meta-interpreter encounters a probabilistic choice,
it first checks whether a value has already been sampled. If so, it computes
the probability/density of the sampled value and multiplies the weight by it.
If the value has not been sampled, it takes a sample and records it, leaving the
weight unchanged. In this way, each sample of the query is associated with a
weight that reflects the influence of evidence.

In some cases, likelihood weighting encounters numerical problems, as
the weights of samples may go rapidly to very small numbers that can be
rounded to 0 by floating point arithmetic. This happens, for example, for
dynamic models, where predicates depend on time and we have evidence for
many time points. In these cases, particle filtering can be used [Nitti et al.,
2016], which periodically resamples the individual samples/particles so that
their weight is reset to 1.

In particle filtering, the evidence is a list of literals. A number n of
samples of the query is taken that are weighted by the likelihood of the
first element of the evidence list. Each sample constitutes a particle and the
sampled random variables are stored away.

After weighting, n particles are resampled with replacement with a prob-
ability proportional to their weight. Specifically, the weights of the previous
n particles are normalized. Let wi be the normalized weight of particle si.
Each of the new n particles is sampled from the set of previous particles
with particle si selected with probability wi. After each sample, the sampled
particle is replaced back into the set so that the same particle can be sampled
repeatedly.

226 Approximate Inference

After resampling, the next element of the evidence is considered. A new
weight for each particle is computed on the basis of the new evidence element
and the process is repeated until the last evidence element.

7.6 Approximate Inference with Bounded Error for Hybrid
Programs

Michels et al. [2016] present the Iterative Hybrid Probabilistic Model Count-
ing (IHPMC) algorithm for computing bounds on queries to hybrid programs.
They consider both the EVID and COND tasks for the PCLP language (see
Section 4.5). IHPMC builds trees that split the variables domains and builds
them to an increasing depth in order to achieve the desired accuracy.

A Hybrid Probability Tree (HPT) is a binary tree where each node
n is associated with a propositional formula ϕn and a range denoted by
rangepn,Xq for each random variable X. For the root node r, the range of
each variable is its whole range: rangepr,Xq “ RangeX. Each non-leaf node
n splits the range of a random variable into two parts and the propositional
formula of each child is obtained from that for the node by conditioning on the
split made. Since the variables may be continuous, the range of a random vari-
able can be split several times along the same tree branch. If the children of n
are tc1, c2u, each edge n Ñ ci, i P t1, 2u is associated with a range τni for a
random variable Y such that τn1 Y τn2 “ rangepn,Yq and τn1 X τn2 “ H.
Moreover, rangepci,Yq “ τni and rangepci,Zq “ rangepn,Zq if Y ‰ Z,
with i P t1, 2u.

Then the formula ϕci associated to ci is obtained from ϕn by imposing a
restriction on the range on Y and the formula is simplified if some primitive
constraints can be replaced by J or K. Each edge n Ñ ci is associated with
a probability pni such that pni “ P pY P τni|Y P rangepn,Yqq. Leaf nodes l
are those where ϕl “ J or ϕl “ K.

Given an HPT, the probability of the event represented by the formula
associated with the root can be computed using Algorithm 4 for computing
the probability of a BDD.

Example 88 (Machine diagnosis problem [Michels et al., 2016]). Consider
a diagnosis problem where a machine fails if the temperature is above a
threshold. If cooling fails (noc “ true), then the threshold is lower. This
problem can be modeled with the PCLP program:

fail Ð t ą 30.0
fail Ð t ą 20.0, noc “ true

7.6 Approximate Inference with Bounded Error for Hybrid Programs 227

Figure 7.4 HPT for Example 88. From [Michels et al., 2016].

t „ gaussianp20.0, 50.0q
noc „ t0.01 : true.0.99 : falseu

The event that the machine fails is then represented by the formula

pnoc “ true^ t ą 20.0q _ t ą 30.0

The HPT for this formula is shown in Figure 7.4.
The probability of fails is then

P pfailsq “ 0.9772 ¨ 0.01 ¨ 0.4884` 0.0228 « 0.0276

In Example 88, we were able to compute the probability of the query
exactly. In general, this may not be possible because the query event may
not be representable using hyperrectangles over the random variables. In this
case, the propositional formulas may never simplify to K or J. However,
we can consider Partially evaluated Hybrid Probability Trees (PHPTs), HPTs
where not all leaves are K or J. From a PHPT, we can obtain a lower and an
upper bound on the probability of the query: theJ leaves in the tree contribute
to the lower bound P pqq and all the leaves of the tree except the K ones
contribute to the upper bound P pqq.

Example 89 (Machine diagnosis problem – approximate inference –
[Michels et al., 2016]). Consider the program:

fail Ð t ą l
t „ gaussianp20.0, 50.0q
l „ gaussianp30.0, 50.0q

The event that the machine fails is then represented by the formula t ą l and
the PHPT for this formula is shown in Figure 7.5.

The lower bound of the probability of fails is then

P pfailsq “ 0.9772 ¨ 0.5

228 Approximate Inference

Figure 7.5 PHPT for Example 89. From [Michels et al., 2016].

Since the only K leaf has probability 0.0228 ¨ 0.5, then

P pfailsq “ 1´ 0.0228 ¨ 0.5

Given a precision ε, IHPMC builds a PHPT such that P pqq ´ P pqq ď ε
and P pqq ´ P pqq ď ε. To do so, the tree must be built to a sufficient
depth.

To compute bounds on conditional probabilities, IHPMC needs to com-
pute bounds for q ^ e and q ^ e where q is the query and e the evidence.
IHPMC computes the bounds using two PHPTs. Arbitrary precision can still
be achieved by building the trees to a sufficient depth.

When building trees, IHPMC uses heuristics for selecting the next
node to expand, the variable to be used for splitting, and the partition-
ing of the range of the variable. IHPMC expands the leaf node with the
highest probability mass. Variables occurring more frequently in the for-
mula are preferred for splitting, unless a different choice may eliminate a
primitive constraint. For partitioning continuous variables, split points that
can lead to a simplification of the formula are selected. If there are no
such points, a partitioning is chosen that splits evenly the probability of
the node.

Weighted model integration [Belle et al., 2015b,a, 2016; Morettin et al.,
2017] is a recent approach that generalizes WMC to hybrid programs. It
can deal with general continuous distributions by approximating them with
piecewise polynomials. While approximations can get arbitrarily close to the
exact distributions, the method does not provide bounds on the error of the
result.

7.7 k-Optimal 229

7.7 k-Optimal

In k-best, the set of proofs can be highly redundant with respect to each other.
k-optimal [Renkens et al., 2012] improves on k-best for definite clauses by
trying to find the set of k explanations K “ tκ1, . . . , κku of the query q that
lead to the largest probability P pqq, in order to obtain the best possible lower
bound given the limit on the number of explanations.

k-optimal follows a greedy procedure shown in Algorithm 8. The opti-
mization in line 4 is performed with an algorithm similar to 1-best: a
branch-and-bound search is performed where, instead of evaluating the cur-
rent partial explanation κ using its probability, the value P pKYtκuq´P pKq
is used.

Algorithm 8 Function K-OPTIMAL: k-optimal algorithm.
1: function K-OPTIMAL(φr, φq,maxT ime)
2: K ÐH

3: for i “ 1 Ñ k do
4: K Ð K Y arg max

κ is an explanation P pK Y tκuq

5: end for
6: return K
7: end function

In order to efficiently compute P pK Y tκuq, k-optimal uses compilation
to BDDs. Instead of building the BDD for K Y tκu from scratch, k-optimal
uses a smarter approach. Let dnf represent the DNF formula for K and let
f1^ . . .^ fn represent the Boolean formula for κ, where the fis are Boolean
variables for ground probabilistic facts. Then

P pf1 ^ . . .^ fn _ dnf q “ P pf1 ^ . . .^ fnq `

P p f1 ^ dnf q `

P pf1 ^ f2 ^ dnf q ` . . .

P pf1 ^ . . .^ fn´1 ^ fn ^ dnf q

Since probabilistic facts are independent, P pf1 ^ . . . ^ fnq can be easily
computed as P pf1q ¨ . . . ¨ P pfnq. The other terms become

P pf1 ^ . . .^ fi´1 ^ fi ^ dnf q “ P pf1q ¨ . . . ¨ P pfi´1q ¨ p1´ P pfiqq ¨

P pdnf |f1 ^ . . .^ fi´1 ^ fiq

The factor P pdnf |f1 ^ . . . ^ fi´1 ^ fiq can be computed cheaply if the
BDD for dnf is available: we can apply function PROB of Algorithm 4 by
assuming that P pfjq “ 1 for the conditional facts j ă i and P pfiq “ 0.

230 Approximate Inference

So, at the beginning of a search iteration, K is compiled to a BDD and
P pKYtκuq is computed for each node of the SLD tree for the query q, where
κ is the composite choice corresponding to the node, representing a possibly
partial explanation. If κ has n elements, n conditional probabilities must be
computed.

However, when the probability P pf1 ^ . . . ^ fn ^ fn`1 _ dnf q for the
partial proof f1^ . . .^ fn^ fn`1 must be computed, the probability P pf1^

. . .^ fn _ dnf q was computed in the parent of the current node. Since

P pf1 ^ . . .^ fn ^ fn`1 _ dnf q “ P pf1 ^ . . .^ fn _ dnf q `

P pf1 ^ . . .^ fn ^ fn`1 ^ dnf q

then only P pf1 ^ . . .^ fn ^ fn`1 ^ dnf q must be computed.
In practice, Renkens et al. [2012] observe that computing P pK Y tκuq

for each node of the SLD tree is still too costly because partial proofs
have also to be considered and these may lead to dead ends. They found
experimentally that using the bound P pκq of k-best for pruning incomplete
proofs and computing P pK Y tκuq only when a complete proof is found
provides better performance. This works because P pκq is an upper bound on
P pK Y tκuq ´P pKq, so cutting a branch because P pκq has become smaller
than P pK Y tκ1uq ´ P pKq for the best explanation κ1 found so far does not
prune good solutions.

However, this approach performs less pruning, as it is based on an upper
bound, and the computation of P pK Y tκuq at the parent of an SLD node of
a complete proof is no longer available.

k-optimal, as k-best, still suffers from the problem that k is set beforehand
and fixed, so it may happen that, of the k proofs, many provide only very
small contributions and a lower value of k could have been used. k´θ-optimal
puts a threshold θ on the added proof probability: k-optimal is stopped before
k proofs are found if no more proof has an added probability P pK Y tκuq ´
P pKq larger than θ. This is achieved by setting the bound to θ at the beginning
of each iteration of k-optimal.

Renkens et al. [2012] prove that the k-optimal optimization problem is
NP-hard. They also show that the proposed greedy algorithm achieves an
approximation which is not worse than 1 ´ 1

e times the probability of the
optimal solution.

The experiments in [Renkens et al., 2012] performed on biological graphs
show that k-best is about an order of magnitude faster that k-optimal but that
k-optimal obtains better bounds especially when k is low compared to the
number of available proofs.

7.8 Explanation-Based Approximate Weighted Model Counting 231

7.8 Explanation-Based Approximate Weighted Model
Counting

Renkens et al. [2014] solve EVID approximately by computing lower and
upper bounds of the probability of evidence from ProbLog programs. The
approach is based on computing explanations for evidence e one by one,
where an explanation here is represented as a conjunction of Boolean
variables representing ground probabilistic facts. So an explanation

κ “ tpf1, θ, k1q, . . . , pfn,H, knqu

for ground probabilistic facts tf1, . . . , fnu is represented as

expκ “
ľ

pf,H,1qPκ

λf ^
ľ

pf,H,0qPκ

 λf

where λf is the Boolean variable associated with fact f .
An explanation exp is such that φr ^ exp (φe, where φr and φe are the

propositional formulas representing the rules and the evidence, respectively,
computed as in ProbLog2 (see Section 5.7).

Renkens et al. [2014] show that, given any set of explanations

texp1, . . . , expmu,

it holds that

WMCV pφ^ pexp1 _ . . ._ expmqq “ WMCEpexp1 _ . . ._ expmq

where φ “ φr^φe and V is the set of all variables of the programs, i.e., those
for probabilistic facts and those of the head of clauses in the grounding of the
program, whileE is the set of variables of the program for probabilistic facts
only.

Given two weighted formulas ψ and ξ over the same set of variables V ,
we have that WMCV pψq ě WMCV pψ ^ ξq as the models of ψ ^ ξ are a
subset of those of ψ. So WMCV pφ^pexp1_ . . ._ expmqq is a lower bound
for WMCV pφq and tends toward it as the number explanations increases, as
each explanation encodes a set of worlds. Since the number of explanations
is finite, when considering all explanations, the two counts will be equal.

Moreover, we can compute WMCV pφ ^ pexp1 _ . . . _ expmqq more
quickly by computing WMCEpexp1 _ . . . _ expmq because it has fewer
variables. This leads to Algorithm 9 for computing a lower bound of the evi-
dence, where function NEXTEXPL returns a new explanation. The algorithm
is anytime, we can stop it at any time still obtaining a lower bound of P peq.

232 Approximate Inference

Algorithm 9 Function AWMC: Approximate WMC for computing a lower
bound of P peq.
1: function AWMC(φr, φe,maxT ime)
2: ψ Ð 0
3: while time ă maxTime do
4: expÐNEXTEXPL(φr ^ φe)
5: ψ Ð ψ _ exp
6: end while
7: return WMCV pψqpψq
8: end function

NEXTEXPL looks for the next best explanation, i.e., the one with maximal
probability (or WMC). This is done by solving a weighted MAX-SAT prob-
lem: given a CNF formula with non-negative weights assigned to clauses,
find assignments for the variables that minimize the sum of the weights
of the violated clauses. An appropriate weighted CNF formula built over
an extended set of variables is passed to a weighted MAX-SAT solver that
returns an assignment for all the variables. An explanation is built from the
assignment. To ensure that the same explanation is not found every time,
a new clause excluding it is added to the CNF formula for every found
explanation.

An upper bound of P peq can be computed by observing that, for ProbLog,
WMC pφrq “ 1, because the variables for probabilistic facts can take any
combination of values, the weights for their literals sum to 1 (represent a
probability distribution) and the weight for derived literals (those of atoms
appearing in the head of clauses) are all 1, so they don’t influence the weight
of worlds. Therefore

WMC pφr^φeq “ WMC pφrq´WMC pφr^ φeq “ 1´WMC pφr^ φeq

As a consequence, if we compute a lower bound on WMC pφr^ φeq, we can
derive an upper bound on WMC pφr^φeq. The lower bound on WMC pφr^
 φeq is computed as for WMC pφr ^ φeq, by looking for explanations for
φr ^ φe.

This leads to Algorithm 10 that, at each iteration, updates the bound that
at the previous iteration had the largest change in value. The algorithm is
anytime: at any time point, low and up are the lower and upper bounds of
P peq, respectively.

7.9 Approximate Inference with TP -compilation 233

Algorithm 10 Function AWMC: Approximate WMC for computing lower
and upper bounds of P peq.
1: function AWMC(φr, φe,maxT ime)
2: improveTopÐ 0.5
3: improveBotÐ 0.5
4: topÐ 1
5: botÐ 0
6: upÐ 1.0
7: low Ð 0.0
8: while time ă maxTime do
9: if improveTop ą improveBot then
10: expÐNEXTEXPL(φr ^ φe)
11: nextÐWMC(top^ exp)
12: improveTopÐ up´ next
13: topÐ top^ exp
14: upÐ next
15: else
16: expÐNEXTEXPL(φr ^ φe)
17: nextÐWMC(bot_ exp)
18: improveBotÐ next´ low
19: botÐ bot_ exp
20: low Ð next
21: end if
22: end while
23: return rlow, ups
24: end function

7.9 Approximate Inference with TP -compilation

TP compilation [Vlasselaer et al., 2015, 2016] discussed in Section 5.8 can be
used to perform approximate CONDATOMS inference by computing a lower
and an upper bound of the probabilities of query atoms, similarly to iterative
deepening of Section 7.1.1.

Vlasselaer et al. [2016] show that, for each iteration i of application of
TcP , if λia is the formula associated with atom a in the result of TcP Ò i,
then WMC pλiaq is a lower bound on P paq. So TP compilation is an anytime
algorithm for approximate inference: at any time, the algorithm provides a
lower bound of the probability of each atom.

Moreover, TcP is applied using the one atom at a time approach where
the atom to evaluate is selected using a heuristic that is

234 Approximate Inference

• proportional to the increase in the probability of the atom;
• inversely proportional to the complexity increase of the SDD for the

atom;
• proportional to the importance of the atom for the query, computed as

the inverse of the minimal depth of the atom in the SLD trees for each
of the queries of interest.

An upper bound for definite programs is instead computed by selecting a
subset F 1 of the facts F of the program and by assigning them the value
true, which is achieved by conjoining each λa with λF 1 “

Ź

fPF 1 λf . If we
then compute the fixpoint, we obtain an upper bound: WMC pλ8a q ě P paq.
Moreover, conjoining with λF 1 simplifies formulas and so also compilation.

The subsetF 1 is selected by considering the minimal depth of each fact in
the SLD trees for each of the queries and by inserting into F 1 only the facts
with a minimal depth smaller than a constant d. This is done to make sure
that the query depends on at least one probabilistic fact and the upper bound
is smaller than 1.

While the lower bound is also valid for normal programs, the upper bound
can be used only for definite programs.

7.10 DISTR and EXP Tasks

Monte Carlo inference can also be used to solve DISTR and EXP tasks,
i.e., computing probability distributions or expectations over arguments of
queries. In this case, the query contains one or more variables. In the DISTR
task, we record the values of these arguments in successful samples of the
query. If the program is range restricted, queries succeed with all arguments
instantiated, so these values are guaranteed to exist. For unconditional infer-
ence or conditional inference with rejection sampling or Metropolis-Hastings,
the result is a list of terms, one for each sample. For likelihood weighting, the
results is a list of weighted terms, where the weight of each term is the sample
weight.

From these lists, approximations of probability distributions or prob-
ability densities can be built, depending on the type of values, discrete
or continuous, respectively. For an unweighted list of discrete values, the
probability of each value is the number of occurrences of that value in the list,
divided by the total number of values. For a weighted list of discrete values,
the probability of each value is the sum of the weights of each occurrence of
the value in the list, divided by the sum of all the weights.

7.10 DISTR and EXP Tasks 235

For an unweighted list of continuous values, a line plot of the probability
density function can be drawn by dividing the domain of the variable in a
number of intervals or bins. The function then has a point for each interval,
whose y value is the number of values in the list that fall in the interval,
divided by the total number of values. For a weighted list of continuous
values, the y value is the sum of the weights of each value in the list that
falls in the interval, divided by the sum of all the weights.

Note that, if likelihood weighting is used, the set of samples without the
weight can be interpreted as the density of the variable prior to the observation
of the evidence. So we can draw a plot of the density before and after
observing the evidence.

The EXP task can be solved by first solving the DISTR task, where we
collect a list of numerical values, possibly weighted. Then the required value
can be computed as a (weighted) mean. For unweighted samples, this is
given by

Epq|eq “

řn
i“1 vi
n

where rv1, . . . , vns is the list of values. For weighted samples, it is given by

Epq|eq “

řn
i“1wi ¨ vi
řn
i“1wi

where rpv1, w1q, . . . , pvn, wnqs is the list of weighted values, with wi the
weight.

cplint [Alberti et al., 2017; Nguembang Fadja and Riguzzi, 2017]
offers functions for performing both DISTR and EXP using sampling,
rejection sampling, Metropolis-Hastings, likelihood weighting, and particle
filtering, see Section 11.1.

Notice that a query may return more than one value for an output argu-
ment in a given world. The query returns a single value for each sample only
if the query predicate is determinate in each world. A predicate is determinate
if, given values for input arguments of a query over that predicate, there is a
single value for output arguments that makes the query true. The user should
be aware of this and write the program so that predicates are determinate, or
otherwise consider only the first value for a sample. Or he may be interested
in all possible values for the output argument in a sample, in which case a
call to findall{3 should be wrapped around the query and the resulting list of
sampled values will be a list of lists of values.

If the program is not determinate, the user may be interested in a sampling
process where first the world is sampled, and then the value of the output

236 Approximate Inference

argument is sampled uniformly from the set of values that make the query
true. In this case, to ensure uniformity, a meta-interpreter that randomizes
the choice of clauses for resolution should be used, such as the one used by
cplint in likelihood weighting.

Programs satisfying the exclusive-or assumption, see Chapter 5, are deter-
minate, because, in program satisfying this assumption, clauses sharing an
atom in the head are mutually exclusive, i.e., in each world, the body of at
most one clause is true. In fact, the semantics PRISM, where this assumption
is made, can also be seen as defining a probability distribution over the values
of output arguments.

Some probabilistic logic languages, such as SLPs (see Section 2.11.1),
directly define probability distributions over arguments rather than prob-
ability distributions over truth values of ground atoms. Inference in such
programs can be simulated with programs under the DS by solving the DISTR
task.

Example 90 (Generative model). The following program1 encodes the
model from [Goodman and Tenenbaum, 2018] for generating random func-
tions:

eval(X,Y) :- random_fn(X,0,F), Y is F.
op(+):0.5; op(-):0.5.
random_fn(X,L,F) :- comb(L), random_fn(X,l(L),F1),

random_fn(X,r(L),F2), op(Op), F=..[Op,F1,F2].
random_fn(X,L,F) :- \+comb(L),base_random_fn(X,L,F).
comb(_):0.3.
base_random_fn(X,L,X) :- identity(L).
base_random_fn(_,L,C) :- \+identity(L),

random_const(L,C).
identity(_):0.5.
random_const(_,C):discrete(C,[0:0.1,1:0.1,2:0.1,

3:0.1,4:0.1,5:0.1,6:0.1,7:0.1,8:0.1,9:0.1]).

A random function is either an operator (“`” or “´”) applied to two random
functions or a base random function. A base random function is either an
identity or a constant drawn uniformly from the integers 0, . . . , 9.

You may be interested in the distribution of all possible output values of
the random function with input 2 given that the function outputs 3 for input 1.

If we take 1000 samples with Metropolis-Hastings, we may get the bar
graph of the frequencies of the sampled values shown in Figure 7.6. Since
each world of the program is determinate, there is a single value of Y that

1http://cplint.eu/e/arithm.pl

7.10 DISTR and EXP Tasks 237

[3]

[4]

[6]

[2]

[5]

[1]

[0]

[7]

0 50 100 150 200 250 300 350 400 450 500

Figure 7.6 Distribution of sampled values in the Program of Example 90.

Figure 7.7 Distribution of sampled values from the Gaussian mixture of Example 91.

238 Approximate Inference

makes eval(2,Y) true in each world and the list of values in each sampled
world contains a single element.

Example 91 (Gaussian mixture – sampling arguments – cplint). Example
57 encodes of a mixture of two Gaussians with the program2 that we report
below

heads:0.6;tails:0.4.
g(X): gaussian(X,0, 1).
h(X): gaussian(X,5, 2).
mix(X) :- heads, g(X).
mix(X) :- tails, h(X).

If we take 10000 samples of argument X of mix(X), we may get the
distribution of values that are shown in Figure 7.7.

2http://cplint.eu/e/gauss mean est.pl

8
Non-Standard Inference

This chapter discusses inference problems for languages that are related to
PLP, such as Possibilistic Logic Programming, or are generalizations of PLP,
such as Algebraic ProbLog. Moreover, the chapter illustrates how decision-
theoretic problems can be solved by exploiting PLP techniques.

8.1 Possibilistic Logic Programming

Possibilistic Logic [Dubois et al., 1994] is a logic of uncertainty for reasoning
under incomplete evidence. In this logic, the degree of necessity of a formula
expresses to what extent the available evidence entails the truth of the for-
mula and the degree of possibility expresses to what extent the truth of the
formula is not incompatible with the available evidence.

Given a formula φ, we indicate with Πpφq the degree of possibility
assigned by possibility measure Π to it, and withNpφq the degree of necessity
assigned by necessity measure N to it. Possibility and necessity measures
must satisfy the constraint Npφq “ 1´Πp φq for all formulas φ.

A possibilistic clause is a first-order logic clause C associated with a
number that is a lower bound on its necessity or possibility degree. We
consider here the possibilistic logic CPL1 [Dubois et al., 1991] in which
only lower bounds on necessity are considered. Thus, pC,αq means that
NpCq ě α. A possibilistic theory is a set of possibilistic clauses.

A possibility measure satisfies a possibilistic clause pC,αq if NpCq ě α
or, equivalently, if Πp Cq ď 1 ´ α. A possibility measure satisfies a possi-
bilistic theory if it satisfies every clause in it. A possibilistic clause pC,αq is a
consequence of a possibilistic theory F if every possibility measure satisfying
F also satisfies pC,αq.

239

240 Non-Standard Inference

Inference rules of classical logic have been extended to rules in possi-
bilistic logic. Here we report two sound inference rules [Dubois and Prade,
2004]:

• pφ, αq, pψ, βq $ pRpφ, ψq,minpα, βqq where Rpφ, ψq is the resolvent
of φ and ψ (extension of resolution);
• pφ, αq, pφ, βq $ pφ,maxpα, βqq (weight fusion).

Dubois et al. [1991] proposed a Possibilistic Logic Programming language.
A program in such a language is a set of formulas of the form pC,αq where
C is a definite clause

hÐ b1, . . . , bn.

and α is a possibility or necessity degree. We consider the subset of this
language that is included in CPL1, i.e., α is a real number in (0,1] that
is a lower bound on the necessity degree of C. The problem of inference
in this language consists in computing the maximum value of α such that
Npqq ě α holds for a query q. The above inference rules are complete for this
language.

Example 92 (Possibilistic logic program). The following possibilistic pro-
gram computes the least unsure path in a graph, i.e., the path with maximal
weight, the weight of a path being the weight of its weakest edge [Dubois
et al., 1991].

ppathpX,Xq, 1q
ppathpX,Y q Ð pathpX,Zq, edgepZ, Y q, 1q
pedgepa, bq, 0.3q
. . .

We restrict our discussion here to positive programs. However,
approaches for normal Possibilistic Logic programs have been proposed in
[Nieves et al., 2007; Nicolas et al., 2006; Osorio and Nieves, 2009], and
[Bauters et al., 2010].

PITA(IND,IND), see Section 5.9, can also be used to perform inference
in Possibilistic Logic Programming where a program is composed only of
clauses of the form h : α Ð b1, . . . , bn which are interpreted as possibilistic
clauses of the form phÐ b1, . . . , bn, αq.

The PITA transformation of PITA(IND,IND) can be used unchanged
provided that the support predicates are defined as

8.2 Decision-Theoretic ProbLog 241

equalityprP, P0s, N, P q.
orpA,B,Cq Ð C is maxpA,Bq.
andpA,B,Cq Ð Cis minpA,Bq.
zerop0.0q.
onep1.0q.
ret probpP, P q.

We obtain in this way PITA(POSS). The input list of the equality{3 predicate
contains two numbers because we use the PITA transformation unchanged.
Specializing it for possibilistic logic programs would remove the need for the
equality{3 predicate.

Computing the possibility is much easier than computing the general
probability, which must solve the disjoint sum problem to obtain answers.

8.2 Decision-Theoretic ProbLog

Decision-Theoretic ProbLog [Van den Broeck et al., 2010] or DTPROBLOG
tackles decision problems: the selection of actions from a set of alternatives
so that a utility function is maximized. In other words, the problem is to
choose the actions that bring the most expected reward (or the least expected
cost) to the acting agent. DTPROBLOG supports decision problems where the
domain is described using ProbLog so that probabilistic effects of actions can
be taken into account.

DTPROBLOG extends ProbLog by adding decision facts D and utility
facts U . Decision facts model decision variables, i.e., variables on which we
can act by setting their truth value. They are represented as

? :: d.

where d is an atom, possibly non-ground.
A utility fact is of the form

uÑ r

where u is a literal and r P R is a reward or utility for achieving u. It
may be interpreted as a query that, when succeeding, gives a reward of r.
u may be non-ground; in this case, the reward is given once if any grounding
succeeds.

242 Non-Standard Inference

A strategy σ is a function D Ñ r0, 1s that assigns a decision fact to
a probability. All grounding of the same decision fact are assigned the same
probability. We call Σ the set of all possible strategies. We indicate with σpDq
the set of probabilistic facts obtained by assigning probability σpdq to each
decision fact ? :: d. ofD, i.e., σpDq “ tσpdq :: d|? :: d P Du. A deterministic
strategy is a strategy that only assigns probabilities 0 and 1 to decision facts.
Ii is thus equivalent to a Boolean assignments to the decision atoms.

Given a DTPROBLOG DT “ BK Y D program and a strategy σ, the
probability to a query q is the probability Pσpqq assigned by the ProbLog
program BK Y σpDq.

The utility of a logic program P given a set of utility facts U is defined as

UtilpP q “
ÿ

uÑrPU ,P(u
r

The expected utility of a ProbLog program P given a set of utility facts U can
thus be defined as

UtilpPq “
ÿ

wPWP

P pwq
ÿ

uÑrPU ,w(u
r.

By exchanging the sum, we get

UtilpPq “
ÿ

uÑrPU

ÿ

wPWP ,w(u

r ¨ P pwq “
ÿ

uÑrPU
rP puq

The expected utility of a DTPROBLOG program DT “ BK Y D Y U and a
strategy σ is the expected utility of BK Y σpDq given U

UtilpσpDT qq “ UtilpBK Y σpDqq.

If we call Utilpu, σpDT qq “ r ¨ P puq the expected utility due to atom u for
a strategy σ, we have

UtilpσpDT qq “
ÿ

uÑrPU
Utilpu, σpDT qq.

Example 93 (Remaining dry [Van den Broeck et al., 2010]). Consider
the problem of remaining dry even when the weather is unpredictable. The
possible actions are wearing a raincoat and carrying an umbrella:

8.2 Decision-Theoretic ProbLog 243

? :: umbrella.
? :: raincoat.
0.3 :: rainy.
0.5 :: windy.
broken umbrellaÐ umbrella, rainy, windy.
dry Ð rainy, umbrella,„broken umbrella.
dry Ð rainy, raincoat.
dry Ð„rainy.

Utility facts associate real numbers to atoms
umbrellaÑ ´2 dry Ñ 60
raincoatÑ ´20 broken umbrellaÑ ´40

The inference problem in DTPROBLOG is to compute UtilpσpDT qq for
a particular strategy σ.

The decision problem instead consists of finding the optimal strategy,
i.e., the one that provides the maximum expected utility. Formally, it means
solving

arg max
σ

UtilpσpDT qq.

Since all the decisions are independent, we can consider only deterministic
strategies. In fact, if the derivative of the total utility with respect to the
probability assigned to a decision variable is positive (negative), the best
result is obtained by assigning probability 1 (0). If the derivative is 0, it does
not matter.

The inference problem is solved in DTPROBLOG by computing P puq
with probabilistic inference for all decision facts u Ñ r in U . DTPROBLOG
uses compilation of the query to BDDs as ProbLog1.

Example 94 (Continuation of Example 93). For the utility fact dry,
ProbLog1 builds the BDD of Figure 8.1. For the strategy

σ “ tumbrellaÑ 1, raincoatÑ 0u,

the probability of dry is 0.7 ` 0.3 ¨ 0.5 “ 0.85, so Utilpdry, σpDT qq “
60 ¨ 0.85 “ 51.

For the utility fact broken umbrella, ProbLog1 builds the BDD of
Figure 8.2. For the strategy tumbrella Ñ 1, raincoat Ñ 0u,
the probability of broken umbrella is 0.3 ¨ 0.5 “ 0.15 and
Utilpbroken umbrella, σpDT qq “ ´40 ¨ 0.15 “ ´6.

244 Non-Standard Inference

Figure 8.1 BDDdrypσq for Example 93. From [Van den Broeck et al., 2010].

Figure 8.2 BDDbroken umbrellapσq for Example 93. From [Van den Broeck et al., 2010].

Overall, we get

UtilpσpDT qq “ 51` p´6q ` p´2q “ 43.

To solve decision problems, DTPROBLOG uses Algebraic Decision Dia-
grams (ADDs) [Bahar et al., 1997] that are a generalization of BDDs where

8.2 Decision-Theoretic ProbLog 245

the leaves store a value in R instead of 0 or 1. An ADD thus represents a
function from Boolean variables to the real numbers f : t0, 1un Ñ R using a
form of Shannon expansion:

fpx1, x2, . . . , xnq “ x1 ¨ fp1, x2, . . . , xnq ` p1´ x1q ¨ fp0, x2, . . . , xnq.

As BDDs, ADDs can be combined with operations. We consider here
scalar multiplication c ¨ g of an ADD g with the constant c, addition
f ‘ g of two ADDs, and if-then-else ITEpb, f, gq where b is a Boolean
variable.

In scalar multiplication, h “ c ¨ g with c P R and g : t0, 1un Ñ R, the
output h : t0, 1un Ñ R is defined as: @x : hpxq “ c ¨ gpxq.

In addition, h “ f ‘ g with f, g : t0, 1un Ñ R, the output h : t0, 1un Ñ
R is defined as @x : hpxq “ fpxq ` gpxq.

The version of if-then-else of interest here, ITEpb, f, gq with b P t0, 1u
and f, g : t0, 1un Ñ R, returns h : t0, 1un`1 Ñ R computed as

@b,x : hpb,xq “

"

fpxq if b “ 1
gpxq if b “ 0

.

The CUDD [Somenzi, 2015] package, for example, offers these operations.
DTPROBLOG stores three functions:

• Pσpuq, the probability of literal u as a function of the strategy;
• Utilpu, σpDT qq, the expected utility of literal u as a function of the

strategy;
• Utilpσq, the total expected utility as a function of the strategy.

Since we can consider only deterministic strategies, one of them can
be represented with a Boolean vector d with an entry for each deci-
sion variable di. Therefore, all these functions are Boolean functions and
can be represented with the ADDs ADDpuq, ADDutilpuq, and ADDutil

tot ,
respectively.

Given ADDutil
tot , finding the best strategy is easy: we just have to identify

the leaf with the highest value and return a path from the root to the leaf,
represented as a Boolean vector d.

To build ADDpuq, DTPROBLOG builds the BDD BDDpuq representing
the truth of the query u as a function of the probabilistic and decision facts:
given an assignment f ,d for those, BDDpuq returns either 0 or 1. BDDpuq
represents the probability P pu|f ,dq for all values of f ,d.

246 Non-Standard Inference

Function Pσpuq requires P pu|dq that can be obtained from P pu|f ,dq by
summing out the f variables, i.e., computing

P pu|dq “
ÿ

f

P pu, f |dq “
ÿ

f

P pu|f ,dqP pf |dq “

ÿ

f

P pu|f ,dqP pfq “
ÿ

f

P pu|f ,dq
ź

fPf

Πf “

ÿ

f1

Πf1

ÿ

f2

Πf2 . . .
ÿ

fn

ΠfnP pu|f1, . . . , fn,dq

We can obtain ADDpuq from BDDpuq by traversing BDDpuq from the
leaves to the root and, for each sub-BDD with root in node n, building a
corresponding sub-ADD with root nodem. If n is the 0-terminal (1-terminal),
we return a 0-terminal (1-terminal). If n is associated with a probabilistic
variable f , we have already built the ADDs ADDl and ADDh for its 0- and
1-child. They represent P pu|f “ 0,d1q and P pu|f “ 1,d1q, respectively, for
all values d1 where D1 is the set of Boolean decision variables of ADDl and
ADDh. We must sum out variable f , so

P pu|d1q “ Πf ¨ P pu|f “ 0,d1q ` p1´Πf q ¨ P pu|f “ 1,d1q

The ADD
Πf ¨ADDl ‘ p1´Πf q ¨ADDh

represents P pu|d1q and is the ADD we are looking for.
If n is associated with decision variable d with ADDs ADDl and ADDh

for its 0- and 1-child, the ADD for representing P pu|d,d1q is

ITEpd,ADDh,ADDlq.

The conversion from BDDpuq to ADDpuq is computed by function
PROBABILITYDD of Algorithm 11.

Once we have ADDpuq, ADDutilpuq is simply given by r ¨ ADDpuq
if u Ñ r P U . Finally, ADDutil

tot “
À

uÑrPU ADDutilpuq. This gives
Algorithm 11 that solves the decision problem exactly. The function EXACT-
SOLUTION initializes ADDutil

tot to the zero function and then cycles over
each utility fact in turn, building BDDpuq, ADDpuq, and ADDutilpuq. Then
ADDutil

tot is updated by summing ADDutilpuq to the current value.

Example 95 (Continuation of Example 93). For the utility fact dry,
DTPROBLOG builds ADDpdryq and ADDutilpdryq of Figure 8.3. For the
strategy

σ “ tumbrellaÑ 1, raincoatÑ 0u,

8.2 Decision-Theoretic ProbLog 247

Algorithm 11 Function EXACTSOLUTION: Solving the DTPROBLOG deci-
sion problem exactly.
1: function EXACTSOLUTION(DT)
2: ADDutil

tot Ð 0
3: for all puÑ rq P U do
4: Build BDDpuq, the BDD for u
5: ADDpuq Ð PROBABILITYDDpBDDupDT qq
6: ADDutil

puq Ð r ¨ADDupσq
7: ADDutil

tot Ð ADDutil
tot ‘ADDutil

puq
8: end for
9: let tmax be the terminal node of ADDutil

tot with the highest utility
10: let p be a path from tmax to the root of ADDutil

tot

11: return the Boolean decisions made on p
12: end function
13: function PROBABILITYDD(n)
14: if n is the 1-terminal then
15: return a 1-terminal
16: end if
17: if n is the 0-terminal then
18: return a 0-terminal
19: end if
20: let h and l be the high and low children of n
21: ADDh Ð PROBABILITYDDphq
22: ADDl Ð PROBABILITYDDphq
23: if n represents a decision d then
24: return ITEpd,ADDh,ADDlq

25: end if
26: if n represents a fact with probability p then
27: return pp ¨ADDhq ‘ pp1´ pq ¨ADDlq

28: end if
29: end function

the figure confirms that Utilpdry, σpDT qq “ 60 ¨ 0.85 “ 51.
For broken umbrella, DTPROBLOG builds ADDpbroken umbrellaq

and ADDutilpbroken umbrellaq of Figure 8.4. For the strategy σ, the figure
confirms that

Utilpbroken umbrella, σpDT qq “ ´40 ¨ 0.15 “ ´6.

Figure 8.5 shows ADDutil
tot that confirms that, for strategy σ,

UtilpσpDT qq “ 43.

Moreover, this is also the optimal strategy.

248 Non-Standard Inference

Figure 8.3 ADDpdryq for Example 93. The dashed terminals indicate ADDutil
pdryq.

From [Van den Broeck et al., 2010].

Figure 8.4 ADDpbroken umbrellaq for Example 93. The dashed terminals indicate
ADDutil

pbroken umbrellaq. From [Van den Broeck et al., 2010].

Figure 8.5 ADDutil
tot for Example 93. From [Van den Broeck et al., 2010].

Algorithm 11 can be optimized by pruning ADDutil
tot to remove the por-

tions that may never lead to an optimal strategy. Denote by max ADD and
min ADD the maximum and minimum value, respectively, that ADD assigns
to any combination of its variables, i.e., the maximum and minimum values
that appear in its leaves.

8.2 Decision-Theoretic ProbLog 249

When ADDutilpuiq is summed to ADDutil
tot , a leaf of ADDutil

tot with value
v before the sum belongs to rv ` min ADDutilpuiq, v ` max ADDutilpuiqs
after the sum. Thus, if m is max ADDutil

tot before the sum, any leaf with value
v such that v `max ADDutilpuiq ă m `min ADDutilpuiq will never lead
to an optimal strategy. All such leaves can be pruned by merging them and
assigning them the value ´8.

If we compute the impact of utility attribute ui as

Impuiq “ max ADDutilpuiq ´min ADDutilpuiq

we can prune all the leaves of ADDutil
tot that, before the sum, have a value

below
max ADDutil

tot ´ Impuiq

We then perform the summation with the simplified ADDutil
tot which is

cheaper than the summation with the original ADD.
Moreover, we can also consider the utility attributes still to be added and

prune all the leaves of ADDutil
tot that have a value below

max ADDutil
tot ´

ÿ

jěi

Impujq

Finally, we can sort the utility attributes in order of decreasing Impuiq and
add them in this order, so that the maximum pruning is achieved.

The decision problem can also be solved approximately by adopting two
techniques that can be used individually or in combination.

The first technique uses local search: a random strategy σ is initially
selected by randomly assigning values to the decision variables and then a
cycle is entered in which a single decision is flipped obtaining strategy σ1. If
Utilpσ1pDT qq is larger than UtilpσpDT qq, the modification is retained and σ1

becomes the current best strategy. UtilpσpDT qq can be computed using the
BDD BDDpuq for each utility attribute using function PROB of Algorithm 4
for computing P puq.

The second technique involves computing an approximation of the utility
by using k-best (see Section 7.1.2) for building the BDDs for utility attributes.

Example 96 (Viral marketing [Van den Broeck et al., 2010]). A firm is
interested in marketing a new product to its customers. These are connected
in a social network that is known to the firm: the network represents the trust
relationships between customers. The firm wants to choose the customers on
which to perform marketing actions. Each action has a cost, and a reward is
given for each person that buys the product.

250 Non-Standard Inference

We can model this domain with the DTPROBLOG program

? :: market(P) :- person(P).
0.4 :: viral(P,Q).
0.3 :: from_marketing(P).
market(P) -> -2 :- person(P).
buys(P) -> 5 :- person(P).
buys(P) :- market(P), from_marketing(P).
buys(P) :- trusts(P,Q), buys(Q), viral(P,Q).

Here the notation :- person(P). after decision and utility facts means
that there is a fact for each grounding of person(P), i.e., a fact for each
person. The program states that a person P buys the product if he is the target
of a marketing action and the action causes the person to buy the product
(from_marketing(P)), or if he trusts a person Q that buys the product
and there is a viral effect (viral(P,Q)). The decisions are market(P)
for each person P. A reward of 5 is assigned for each person that buys the
product and each marketing action costs 2.

Solving the decision problem for this program means deciding on
which person to perform a marketing action so that the expected utility is
maximized.

8.3 Algebraic ProbLog

Algebraic ProbLog (aProbLog) [Kimmig, 2010; Kimmig et al., 2011b] gen-
eralizes ProbLog to deal with labels of facts that are more general than
probabilities. In particular, the labels are required to belong to a semiring,
an algebraic structure.

Definition 44 (Semiring). A semiring is a tuple pA,‘,b, e‘, ebq such that

• A is a set;
• ‘ is a binary operations overA called addition that is commutative and

associative and has neutral element e‘, i.e., @a, b, c P A,

a‘ b “ b‘ a

pa‘ bq ‘ c “ a‘ pb‘ cq

a‘ e‘ “ a.

8.3 Algebraic ProbLog 251

• b is a binary operations over A called multiplication that left and right
distributes over addition and has neutral element eb, i.e., @a, b, c P A,

pa‘ bq b c “ pab cq ‘ pbb cq

ab pb‘ cqc “ pab bq ‘ pab bq

ab eb “ eb b a “ a.

• e‘ annihilates A, i.e., @a P A

ab e‘ “ e‘ b a “ e‘.

A commutative semiring is a semiring pA,‘,b, e‘, ebq such that multipli-
cation is commutative, i.e., @a, b P A,

ab b “ bb a

An example of a commutative semiring is pr0, 1s,`,ˆ, 0, 1q where
r0, 1s Ď R and ` and ˆ are addition and multiplication over the reals.
ProbLog associates each probabilistic fact with an element of r0, 1s and
computes the probability of queries by using addition and multiplication, so
it can be seen as operating on the semiring pr0, 1s,`,ˆ, 0, 1q that we call
probabilistic semiring.

Another example of a commutative semiring is pr0, 1s,max,min, 0, 1q
where max and min are maximum and minimum operations over the reals.
PITA(POSS) can be seen as operating on the semiring pr0, 1s,max,min, 0, 1q
that we call possibilistic semiring.

ProbLog can be generalized to operate on a semiring. For a set of
ground atoms A, let LpAq be the set of literals that can be built on
atoms from A, i.e., LpAq “ A Y t„ a|a P Au. For a two-valued
interpretation J over a set of ground atoms A, define the complete inter-
pretation cpJq “ J Y t„ a|a P AzJu and the set of all possible
complete interpretations IpAq “ tcpJq|J Ď Au. Consistent sets of lit-
erals built on atoms A form the set CpAq “ tH|H Ď I, I P IpAqu.

Definition 45 (aProbLog [Kimmig et al., 2011b]). An aProbLog program
consists of

• a commutative semiring pA,‘,b, e‘, ebq;
• a finite set of ground atoms F “ tf1, . . . , fnu called algebraic facts;

252 Non-Standard Inference

• a finite set of rulesR;
• a labeling function α : LpFq Ñ A.

The possible complete interpretations for F are also called worlds and
IpFq is the set of all worlds. aProbLog assigns labels to worlds and sets of
worlds as follows. The label of a world I P IpFq is the product of the labels
of its literals

ApIq “
â

lPI

αplq

The label of a set of complete interpretations S Ď IpF q is the sum of the
labels of each interpretation

ApSq “
à

IPS

â

lPI

αplq.

A query is a set of ground literals. Given a query q, we denote the set of
complete interpretations where the query is true as Ipqq defined as

Ipqq “ tI|I P IpF q ^ I YR (qu

The label of the query q is then defined as the label of Ipqq:

Apqq “ ApIpqqq “
à

IPIpqq

â

lPI

αplq.

Since both operations are commutative and associative, the label of a query
does not depends on the order of literals and of interpretations.

The inference problem in aProbLog consists of computing the labels of
queries. Depending on the choice of commutative semiring, an inference task
may correspond to a certain known problem or new problems. Table 8.1
lists some known inference tasks with their corresponding commutative
semirings.

Table 8.1 Inference tasks and corresponding semirings for aProbLog. Adapted from
[Kimmig et al., 2011b]

task A e‘ eb a ‘ b a b b αpfq αp„fq
PROB r0, 1s 0 1 a ` b a ¨ b αpfq 1 ´ αpfq
POSS r0, 1s 0 1 maxpa, bq minpa, bq αpfq 1
MPE r0, 1s 0 1 maxpa, bq a ¨ b αpfq 1 ´ αpfq
MPE
State

r0, 1sˆ
PpCpFqq p0,Hq p1, tHu Eq. 8.2 Eq. 8.1 pp, ttfuuq

p1 ´ p,
tt„fuuq

SAT t0, 1u 0 1 a _ b a ^ b 1 1
#SAT N 0 1 a ` b a ¨ b 1 1
BDD BDDpVq bddp0q bddp1q a _bdd b a ^bdd b bddpfq bddbddpfq

Sensitivity RrXs 0 1 a ` b a ¨ b
x or

in r0, 1s
1 ´ αpfq

Gradient r0, 1s ˆ R p0, 0q p1, 0q Eq. 8.3 Eq. 8.4 Eq. 8.5 Eq. 8.6

8.3 Algebraic ProbLog 253

Example 97 (Alarm – aProbLog [Kimmig et al., 2011b]). Consider the
following aProbLog program similar to the ProbLog program of Example 69:

callspXq Ð alarm, hears alarmpXq.
alarmÐ burglary.
alarmÐ earthquake.
0.7 :: hears alarmpjohnq.
0.7 :: hears alarmpmaryq.
0.05 :: burglary.
0.01 :: earthquake.

where the labels of positive literals are attached to each fact f . This pro-
gram is a variation of the alarm BN of Example 10. The program has 16
worlds and the query callspmaryq is true in six of them, those shown in
Figure 8.6. For the PROB task, we consider the probability semiring and
the label of negative literals are defined as αp„fq “ 1 ´ αpfq. Then the
label of callspmaryq is

Apcallspmaryqq “ 0.7 ¨ 0.7 ¨ 0.05 ¨ 0.01`

0.7 ¨ 0.7 ¨ 0.05 ¨ 0.99`

0.7 ¨ 0.7 ¨ 0.95 ¨ 0.01`

0.3 ¨ 0.7 ¨ 0.05 ¨ 0.01`

0.3 ¨ 0.7 ¨ 0.05 ¨ 0.99`

0.3 ¨ 0.7 ¨ 0.95 ¨ 0.01 “

0.04165

For the MPE task, the semiring is pr0, 1s,`,max, 0, 1q, the label of negative
literals are defined as αp„fq “ 1´ αpfq, and the label of callspmaryq is

Apcallspmaryqq “ 0.7 ¨ 0.7 ¨ 0.05 ¨ 0.01`

0.7 ¨ 0.7 ¨ 0.05 ¨ 0.99 “

0.001995

Figure 8.6 Worlds where the query callspmaryq from Example 97 is true.

254 Non-Standard Inference

For the SAT task, the semiring is pt0, 1u,_,^, 0, 1q, the label of literals is
always 1, and the label of callspmaryq is 1 as there are six worlds where the
query is true.

The MPE State task is an extension of the MPE task that also returns the
world with the highest label. The set A is r0, 1s ˆ PpCFq where PpCpFqq is
the powerset of CpFq, so the second element of the labels is a set of consistent
sets of literals built on algebraic facts. The aim is for the label of queries to
have as first argument the maximum of the probability of the worlds and as
second argument the set of worlds with that probability (there can be more
than one if they share the same probability). The operations are defined as

pp, Sq b pq, T q “ pp ¨ q, tI Y J |I P S, J P T u (8.1)

pp, Sq ‘ pq, T q “

$

&

%

pp, Sqif p ą q
pq, T q if p ă q
pp, S Y T q if p “ q

(8.2)

The label for the query marypcallsq of Example 97 is

Apcallspmaryqq “ p0.7 ¨ 0.7 ¨ 0.05 ¨ 0.99, Iq “ p0.001995, Iq
I “ thears alarmpjohnq, hears alarmpmaryq, burglary,

„earthquakeu

We can count the number of satisfying assignment with the #SAT task with
semiring pN,`,ˆ, 0, 1q and labels αpfiq “ αp„fiq “ 1. We can also have
labels encoding functions or data structures. For example, labels may encode
Boolean functions represented as BDDs and algebraic facts may be Boolean
variables from a set V . In this case, we can use the semiring

pBDDpVq,_bdd,^bdd, bddp0q, bddp1qq

and assign labels as αpfiq “ bddpfiq and αp„ fiq “ bddbddpfiq where
BDDpVq is the set of BDDs over variables V , _bdd,^bdd, bdd are Boolean
operations over BDDs, and bddp¨q can be applied to the values 0, 1, f P F
returning the BDD representing the 0, 1, or f Boolean functions.

aProbLog can also be used for sensitivity analysis, i.e., estimating how a
change in the probability of the facts changes the probability of the query.
In this case, the labels are polynomials over a set of variables (indicated
with RrXs) in Table 8.1. In Example 97, if we use variables x and y to
label the facts burglary and hears alarmpmaryq, respectively, the label
of callspmaryq becomes 0.99 ¨ x ¨ y ` 0.01 ¨ y that is also the probability of
callspmaryq.

8.3 Algebraic ProbLog 255

Another task is gradient computation where we want to compute the gra-
dient of the probability of the query, as, for example, is done by LeProbLog,
see Section 9.3. We consider here the case where we want to compute the
derivative with respect to the parameter pk of the k-th fact. The labels are pairs
where the first element stores the probability and the second its derivative
with respect to pk. Using the rule for the derivative of a product, it is easy to
see that the operations can be defined as

pa1, a2q ‘ pb1, b2q “ pa1 ` b1, a2 ` b2q (8.3)

pa1, a2q b pb1, b2q “ pa1 ¨ b1, a1 ¨ b2 ` a2 ¨ b1q (8.4)

and the labels of the algebraic facts as

αpfiq “

"

ppi, 1q if i “ k
ppi, 0q if i ‰ k

(8.5)

αp„fiq “

"

p1´ pi,´1q if i “ k
p1´ pi, 0q if i ‰ k

(8.6)

To perform inference, aProbLog avoids the generation of all possible worlds
and computes a covering set of explanations for the query, as defined in
Section 3.1, similarly to what ProbLog does for PROB. We represent here
an explanation E as a set of literals built on F that are sufficient for entailing
the query, i.e., R Y E (q, and a covering set of explanations Epqq as a set
such that

@I P Ipqq, DJ P Epqq : J Ď I

We define the label of an explanation E as

ApEq “ ApIpEqq “
à

IPIpEq

â

lPI

αplq

We call ApEq a neutral sum if

ApEq “
à

lPE

αplq

If @f P F : αpfq ‘ αp„fq “ eb, then ApEq is a neutral sum.
We call

À

EPEpqqApEq a disjoint sum if

à

EPEpqq
ApEq “

à

IPIpqq
ApIq

256 Non-Standard Inference

‘ is idempotent if @a P A : a ‘ a “ a. If ‘ is idempotent, then
À

EPEpqqApEq is a disjoint sum.
Given a covering set of explanations Epqq, we define the explanation sum

as
SpEpqqq “

à

EPEpqq

â

lPE

αplq

If ApEq is a neutral sum for all E P Epqq and
À

EPEpqqApEq is a disjoint
sum, then the explanation sum is equal to the label of the query, i.e.,

SpEpqqq “ Apqq.

In this case, inference can be performed by computing SpEpqqq. Otherwise,
the neutral sum and/or disjoint sum problems must be solved.

To tackle the neutral-sum problem, let freepEq denote the variables not
occurring in an explanations E:

freepEq “ tf |f P F , f R E,„f R Eu

We can thus express ApEq as

ApEq “
â

lPE

αplq b
â

lPfreepEq

pαplq ‘ αp„lqq

given the properties of commutative semirings.
The sum ApE0q ‘ ApE1q of two explanations can be computed by

exploiting the following property. Let Vi “ tf |f P Ei_ „ f P Eiu be
the variables appearing in explanation Ei, then

ApE0q‘ApE1q “ pP1pE0q‘P0pE1qqb
â

fPFzpV0YV1q
pαpfq‘αp„fqq (8.7)

with
PjpEiq “

â

lPEi

αplq b
â

fPVjzVi

pαpfq ‘ αp„fqq

So we can evaluate ApE0q‘ApE1q by taking into account the set of variables
on which the two explanations depend.

To solve the disjoint-sum problem, aProbLog builds a BDD representing
the truth of the query as a function of the algebraic facts. If sums are neutral,
aProbLog assigns a label to each node n as

labelp1q “ eb

labelp0q “ e‘

labelpnq “ pαpnq b labelphqq ‘ pαp„nq b labelplqq

8.3 Algebraic ProbLog 257

Algorithm 12 Function LABEL: aProbLog inference algorithm.
1: function LABEL(n)
2: if Tablepnq ‰ null then
3: return Tablepnq
4: else
5: if n is the 1-terminal then
6: return peb,Hq
7: end if
8: if n is the 0-terminal then
9: return pe‘,Hq
10: end if
11: let h and l be the high and low children of n
12: pH,Vhq Ð LABELphq
13: pL, Vlq Ð LABELplq
14: Plphq Ð H b

Â

xPVlzVh
pαpxq ‘ αp„xqq

15: Phplq Ð Lb
Â

xPVhzVl
pαpxq ‘ αp„xqq

16: labelpnq Ð pαpnq bPlphqq ‘ pαp„nq bPhplqq
17: Tablepnq Ð plabelpnq, tnu Y Vh Y Vlq
18: return Tablepnq
19: end if
20: end function

where h and l denote the high and low child of n. In fact, a full Boolean
decision tree expresses Epqq as an expression of the form

ł

l1

l1 ^ . . .^
ł

ln

ln ^ 1ptl1, . . . , lnu P Epqqq

where li is a literal built on variable fi and 1ptl1, . . . , lnu P Epqqq is 1 if
tl1, . . . , lnu P Epqq and 0 otherwise. By the properties of semirings,

Apqq “
à

l1

l1 b . . .b
à

ln

ln b eptl1, . . . , lnu P Epqqq (8.8)

where eptl1, . . . , lnu P Epqqq is eb if tl1, . . . , lnu P Epqq and e‘ otherwise.
So given a full Boolean decision tree, the label of the query can be computed
by traversing the tree bottom-up, as for the computation of the probability of
the query with Algorithm 4.

BDDs are obtained from full Boolean decision trees by repeatedly merg-
ing isomorphic subgraphs and deleting nodes whose children are the same
until no more operations are possible. The merging operation does not affect
Equation (8.8), as it simply identifies identical sub-expressions. The deletion

258 Non-Standard Inference

operation deletes a node nwhen its high and low children are the same node s.
In this case, the label of node n would be

labelpnq “ pαpnq b labelpsqq ‘ pαp„nq b labelpsqq

that is equal to labelpnq if sums are neutral. If not, Algorithm 12 is used
that uses Equation (8.7) to take into account deleted nodes. Function LABEL
is called after initializing Tablepnq to null for all nodes n. Tablepnq stores
intermediate results similarly to Algorithm 4 to keep the complexity linear in
the number of nodes.

9
Parameter Learning

This chapter discusses the problem of learning the parameters of probabilistic
logic programs with a given structure. We are given data, in the form of
ground atoms or interpretations, and a probabilistic logic program, and we
want to find the parameters of the program that assign maximum probability
to the examples.

9.1 PRISM Parameter Learning

The PRISM system included a parameter learning algorithm since the orig-
inal article [Sato, 1995]. The learning task considered there is given in the
following definition.

Definition 46 (PRISM parameter learning problem). Given a PRISM pro-
gram P and a set of examples E “ te1, . . . , eT u which are ground atoms,
find the parameters of msw fact so that the likelihood of the atoms L “
śT
t“1 P petq is maximized. Equivalently, find the parameters of msw fact

so that the Log Likelihood (LL) of the atoms LL “
řT
t“1 logP petq is

maximized.

Example 98 (Bloodtype – PRISM [Sato et al., 2017]). The following
program

values(gene,[a,b,o]).
bloodtype(P) :-
genotype(X,Y),
(X=Y -> P=X
; X=o -> P=Y
; Y=o -> P=X
; P=ab
).

genotype(X,Y) :- msw(gene,X),msw(gene,Y).

259

Francisco Coelho

260 Parameter Learning

encodes how a person’s blood type is determined by his genotype, formed by
a pair of two genes (a, b or o).

Learning in PRISM can be performed using predicate learn/1 that
takes a list of ground atoms (the examples) as argument, as in

?- learn([count(bloodtype(a),40),count
(bloodtype(b),20),

count(bloodtype(o),30),count
(bloodtype(ab),10)]).

where count(At,N) denotes the repetition of atom At N times. After
parameter learning, the parameters can be obtained with predicate
show_sw/0, e.g.,

?- show_sw.
Switch gene: unfixed: a (0.292329558535712)
b (0.163020241540856)
o (0.544650199923432)

These values represents the probability distribution over the values a, b, and
o of switch gene.

PRISM looks for the maximum likelihood parameters of the msw atoms.
However, these are not observed in the dataset, which contains only derived
atoms. Therefore, relative frequency cannot be used for computing the param-
eters and an algorithm for learning from incomplete data must be used. One
such algorithm is Expectation Maximization (EM) [Dempster et al., 1977].

To perform EM, we can associate a random variableXij with valuesD “
txi1, . . . , xiniu to the ground switch name iθj of mswpi, xq with domain
D, with θj being a grounding substitution for i. Let gpiq be the set of such
substitutions:

gpiq “ tj|θj is a grounding substitution for i in mswpi, xqu.

The EM algorithm alternates between the two phases:

• Expectation: computes Ercik|es for all examples e, switches mswpi, xq
and k P t1, . . . , niu, where cik is the number of times a variable
Xij takes value xik with j in gpiq. Ercik|es is given by

ř

jPgpiq

P pXij “ x|eq.
• Maximization: computes Πik for allmswpi, xq and k “ 1, . . . , ni´1 as

Πik “

ř

ePE Ercik|es
ř

ePE

řni
k“1 Ercik|es

.

9.1 PRISM Parameter Learning 261

So, for each e, Xijs, and xiks, we compute P pXij “ xik|eq, the expected
value of Xij given the example, with k P t1, . . . , niu. These expected values
are then aggregated and used to complete the dataset for computing the
parameters by relative frequency. If cik is the number of times a variable Xij

takes value xik for any j, Ercik|es is its expected value given example e. if
Erciks is its expected value given all the examples, then

Erciks “
T
ÿ

t“1

Ercik|ets

and

Πik “
Erciks

řni
k“1 Erciks

.

If the program satisfies the exclusive-or assumption, P pXij “ xik|eq can be
computed as

P pXij “ xik|eq “
P pXij “ xik, eq

P peq
“

ř

κPKe,mswpi,xikqθjPe
P pκq

P peq

where Ke is the set of explanations of e and each explanation κ is a set
of msw atoms of the form mswpi, xikq. So we sum the probability of
explanations that contain

mswpi, xikqθj

and divide by the probability of e, which is the sum of the probability of
all explanations. This leads to the naive learning function of Algorithm 13
[Sato, 1995] that iterates the expectation and maximization steps until the LL
converges.

This algorithm is naive because there can be exponential numbers of
explanations for the examples, as in the case of the HMM of Example 65.
As for inference, a more efficient dynamic programming algorithm can be
devised that does not require the computation of all the explanations in case
the program also satisfies the independent-and assumption [Sato and Kameya,
2001]. Tabling is used to find formulas of the form

gi ô Si1 _ . . ._ Sisi

where the gis are subgoals in the derivation of an example e that can be
ordered as tg1, . . . , gmu such that e “ g1 and each Sij contains only msw
atoms and subgoals from tgi`1, . . . , gmu.

262 Parameter Learning

Algorithm 13 Function PRISM-EM: Naive EM learning in PRISM.
1: function PRISM-EM-NAIVE(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: for all i, k do Ź Expectation step

6: Erciks Ð
ř

ePE

ř

κPKe,mswpi,xikqθjPe
P pκq

P peq

7: end for
8: for all i, k do ŹMaximization step
9: Πik Ð

Erciks
řni
k1“1

Ercik1 s

10: end for
11: LLÐ

ř

ePE logP peq
12: until LL´ LL0 ă ε
13: return LL,Πik for all i, k
14: end function

The dynamic programming algorithm computes, for each example, the
probability P pgiq of the subgoals tg1, . . . , gmu, also called the inside prob-
ability, and the value Qpgiq which is called the outside probability. These
names derive from the fact that the algorithm generalizes the Inside–Outside
algorithm for Probabilistic Context-Free Grammar [Baker, 1979]. It also
generalizes the forward-backward algorithm used for parameter learning in
HMMs by the Baum–Welch algorithm [Rabiner, 1989].

The inside probabilities are computed by procedure GET-INSIDE-PROBS
shown in Algorithm 14 that is the same as function PRISM-PROB of
Algorithm 3.

Outside probabilities instead are defined as

Qpgiq “
BP pqq

BP pgiq

and are computed recursively from i “ 1 to i “ m using an algorithm
similar to Procedure CIRCP of Algorithm 5 for d-DNNF. The derivation
of the recursive formulas is also similar. Suppose gi appears in the ground
program as

b1 Ð gi,W11 . . . b1 Ð gi,W1i1

. . .
bK Ð gi,WK1 . . . bK Ð gi,WKiK

9.1 PRISM Parameter Learning 263

Algorithm 14 Procedure GET-INSIDE-PROBS: Computation of inside
probabilities.
1: procedure GET-INSIDE-PROBS(q)
2: for all i, k do
3: P pmswpi, vkqq Ð Πik

4: end for
5: for iÐ mÑ 1 do
6: P pgiq Ð 0
7: for j Ð 1 Ñ si do
8: Let Sij be hij1, . . . , hijo
9: P pSijq Ð

śo
l“1 P phijlq

10: P pgiq Ð P pgiq ` P pSijq
11: end for
12: end for
13: end procedure

and suppose the subgoals gi may also be msw atoms. Then

P pb1q “ P pgi,W11q ` . . .` P pgi,W1i1q

. . .
P pbKq “ P pgi,WK1q ` . . .` P pgi,WKiK q

We have that Qpg1q “ 1 as q “ g1. For i “ 2, . . . ,m, we can derive
Qpgiq by the chain rule of the derivative knowing that P pqq is a function
of P pb1q, . . . , P pbKq

Qpgiq “
BP pqq

BP pb1q

BP pgi,W11q

BP pg1q
` . . .`

BP pqq

BP pbKq

BP pgi,WKiK q

BP pg1q
“

Qpb1qP pgi,W11q{P pgiq ` . . .` P pgi,WKiK q{P pgiq

This leads to the following recursive formula

Qpg1q “ 1

Qpgiq “ Qpb1q
i1
ÿ

s“1

P pgi,W1sq

P pgiq
` . . .`QpbKq

iK
ÿ

s“1

P pgi,WKsq

P pgiq

that can be evaluated top-down from q “ g1 down to gm. Procedure GET-
OUTSIDE-PROBS of Algorithm 15 does this: for each subgoal bk and each
of its explanations gi,Wks, it updates the outside probability Qpgiq for the
subgoal gi.

If gi “ mswpi, xkqθj , then

P pXij “ xik, eq “ QpgiqP pgiq “ QpgiqΠik.

264 Parameter Learning

Algorithm 15 Procedure GET-OUTSIDE-PROBS: Computation of outside
probabilities.
1: procedure GET-OUTSIDE-PROBS(q)
2: Qpg1q Ð 1.0
3: for iÐ 2 Ñ m do
4: Qpgiq Ð 0.0
5: for j Ð 1 Ñ si do
6: Let Sij be hij1, . . . , hijo
7: for lÐ 1 Ñ o do
8: Qphijlq Ð Qphijlq `QpgiqP pSijq{P phijlq
9: end for
10: end for
11: end for
12: end procedure

In fact, we can divide the explanations for e into two sets, Ke1, that includes
the explanations containing mswpi, xkqθj , and Ke2, that includes the other
explanations. Then P peq “ P pKe1q ` P pKe2q and P pXij “ xik, eq “
P pKe1q. Since each explanation in Ke1 contains gi “ mswpi, xkqθj , Ke1

takes the form ttgi,W1u, . . . , tgi,Wsuu and

P pKe1q “
ÿ

tgi,W uPKe1

P pgiqP pW q “ P pgiq
ÿ

tgi,W uPKe1

P pW q (9.1)

So we obtain

P pXij “ xik, eq “ P pgiq
ÿ

tgi,W uPKe1

P pW q “

BP pKeq

BP pgiq
P pgiq “ (9.2)

BP peq

BP pgiq
P pgiq “ QpgiqP pgiq

where equality (9.2) holds because BP pKe2q
BP pgiq

“ 0.
Function PRISM-EM of Algorithm 16 implements the overall EM algo-

rithm [Sato and Kameya, 2001]. It calls procedure PRISM-EXPECTATION
of Algorithm 17 that updates the expected values of the counters.

9.2 LLPAD and ALLPAD Parameter Learning 265

Algorithm 16 Function PRISM-EM.
1: function PRISM-EM(E,P, ε)
2: LL “ ´inf
3: repeat
4: LL0 “ LL
5: LL “ EXPECTATION(E)
6: for all i do
7: SumÐ

řni
k“1 Erciks

8: for k “ 1 to ni do
9: Πik “

Erciks
Sum

10: end for
11: end for
12: until LL´ LL0 ă ε
13: return LL,Πik for all i, k
14: end function

Algorithm 17 Procedure PRISM-EXPECTATION.
1: function PRISM-EXPECTATION(E)
2: LL “ 0
3: for all e P E do
4: GET-INSIDE-PROBS(e)
5: GET-OUTSIDE-PROBS(e)
6: for all i do
7: for k “ 1 to ni do
8: Erciks “ Erciks `Qpmswpi, xkqqΠik{P peq
9: end for
10: end for
11: LL “ LL` logP peq
12: end for
13: return LL
14: end function

Sato and Kameya [2001] show that the combination of tabling with
Algorithm 16 yields a procedure that has the same time complexity for
programs encoding HMMs and PCFGs as the specific parameter learning
algorithms: the Baum–Welch algorithm for HMMs [Rabiner, 1989] and the
Inside–Outside algorithm for PCFGs [Baker, 1979].

9.2 LLPAD and ALLPAD Parameter Learning

The systems LLPAD [Riguzzi, 2004] and ALLPAD [Riguzzi, 2007b, 2008b]
consider the problem of learning both the parameters and the structure of

266 Parameter Learning

LPADs from interpretations. We consider here parameter learning; we will
discuss structure learning in Section 10.2.

Definition 47 (LLPAD Parameter learning problem). Given a set

E “ tpI, pIq|I P Int2, pI P r0, 1su

such that
ř

pI,pIqPE
pI “ 1, find the value of the parameters of a ground

LPAD P , if they exist, such that

@pI, pIq P E : P pIq “ pI .

E may also be given as a multiset E1 of interpretations. From this case, we
can obtain a learning problem of the form above by computing a probability
for each distinct interpretation in E1 by relative frequency.

Notice that, if @pI, pIq P E : P pIq “ pI , then @I P Int2 : P pIq “ pI
if we define pI “ 0 for those I not appearing in E, as P pIq is a probability
distribution over Int2 and

ř

pI,pIqPE
pI “ 1.

Riguzzi [2004] presents a theorem that shows that, if all the couples of
clauses of P that share an atom in the head have mutually exclusive bodies,
then the parameters can be computed by relative frequency.

Definition 48 (Mutually exclusive bodies). Ground clauses h1 Ð B1 and
h2 Ð B2 have mutually exclusive bodies over a set of interpretations J if,
@I P J , B1 and B2 are not both true in I .

Mutual exclusivity of bodies is equivalent to the exclusive-or assumption.

Theorem 14 (Parameters as relative frequency). Consider a ground locally
stratified LPAD P and a clause C P P of the form

C “ h1 : Π1 ; h2 : Π2 ; . . . ; hm : Πm Ð B.

Suppose all the clauses ofP that share an atom in the head withC have mutu-
ally exclusive bodies with C over the set of interpretations J “ tI|P pIq ą
0u. In this case:

P phi|Bq “ Πi

9.3 LeProbLog 267

This theorem means that, under certain conditions, the probabilities in
a clause’s head can be interpreted as conditional probabilities of the head
atoms given the body. Since P phi|Bq “ P phi, Bq{P pBq, the probabilities
of the head disjuncts of a ground rule can be computed from the probability
distribution P pIq defined by the program over the interpretations: for a set of
literals S, P pSq “

ř

SĎI P pIq. Moreover, since @I P Int2 : P pIq “ pI ,
then P pSq “

ř

SĎI pI .
In fact, if the clauses have mutually exclusive bodies, there is no more

uncertainty on the values of the hidden variables: for an atom in the head of
a clause to be true, it must be selected by the only clause whose body is true.
Therefore, there is no need of an EM algorithm and relative frequency can be
used.

9.3 LeProbLog

LeProbLog [Gutmann et al., 2008] is a parameter learning system that starts
from a set of examples annotated with a probability. The aim of LeProbLog
is then to find the value of the parameters of a ProbLog program so that the
probability assigned by the program to the examples is as close as possible to
the one given.

Definition 49 (LeProbLog parameter learning problem). Given a ProbLog
program P and a set of training examples E “ tpe1, piq, . . . , peT , pT qu
where et is a ground atom and pt P r0, 1s for t “ 1, . . . , T , find the parameter
of the program so that the mean squared error

MSE “
1

T

T
ÿ

t“1

pP petq ´ ptq
2

is minimized.

To perform learning, LeProbLog uses gradient descent, i.e., it iteratively
updates the parameters in the opposite direction of the gradient. This requires
the computation of the gradient which is

BMSE

BΠj
“

2

T

T
ÿ

t“1

pP petq ´ ptq ¨
BP petq

BΠj

LeProbLog compiles queries to BDDs; therefore, P petq can be computed
with Algorithm 4. To compute BP petq

BΠj
, it uses a dynamic programming

268 Parameter Learning

algorithm that traverses the BDD bottom up. In fact

BP petq

BΠj
“
BP pfpXqq

BΠj

where fpXq is the Boolean function represented by the BDD. fpXq is

fpXq “ Xk ¨ f
XkpXq ` Xk ¨ f

 XkpXq

where Xk is the random Boolean variable associated with the root and to
ground fact Πk :: fk, so

P pfpXqq “ Πk ¨ P pf
XkpXqq ` p1´Πkq ¨ P pf

 XkpXqq

and
BP pfpXqq

BΠj
“ P pfXkpXqq ´ P pf XkpXqq

if k “ j, or

BP pfpXqq

BΠj
“ Πk ¨

BP pfXkpXqq

BΠj
` p1´Πkq ¨

P pf XkpXqq

BΠj

if k ‰ j. Moreover
BP pfpXqq

BΠj
“ 0

if Xj does not appear in X.
When performing gradient descent, we have to ensure that the parameters

remain in the r0, 1s interval. However, updating the parameters using the
gradient does not guarantee that. Therefore, a reparameterization is used
by means of the sigmoid function σpxq “ 1

1`e´x
that takes a real value

x P p´8,`8q and returns a real value in p0, 1q. So each parameter is
expressed as Πj “ σpajq and the ajs are used as the parameters to update.
Since aj P p´8,`8q, we do not risk to get values outside the domain.

Given that dσpxqdx “ σpxq ¨ p1´ σpxqq, using the chain rule of derivatives,
we get

BP petq

Baj
“ σpajq ¨ p1´ σpajqq

BP pfpXqq

BΠj

LeProbLog dynamic programming function for computing BP pfpXqq
Baj

is shown

in Algorithm 18. GRADIENTEVALpn, jq traverses the BDD n and returns two
values: a real number and a Boolean variable seen which is 1 if the variable
Xj was seen in n. We consider three cases:

9.3 LeProbLog 269

Algorithm 18 Function GRADIENT.
1: function GRADIENT(BDD, j)
2: pval, seenq ÐGRADIENTEVAL(BDD, j)
3: if seen “ 1 then
4: return val ¨ σpajq ¨ p1´ σpajqq
5: else
6: return 0
7: end if
8: end function
9: function GRADIENTEVAL(n, j)
10: if n is the 1-terminal then
11: return (1, 0)
12: end if
13: if n is the 0-terminal then
14: return (0, 0)
15: end if
16: pvalpchild1pnqq, seenpchild1pnqqq ÐGRADIENTEVAL(child1pnq, j)
17: pvalpchild0pnqq, seenpchild0pnqqq ÐGRADIENTEVAL(child0pnq, j)
18: if varindexpnq “ j then
19: return pvalpchild1pnqq ´ valpchild0pnqq, 1q
20: else if seenpchild1pnqq “ seenpchild0pnqq then
21: return pσpanq¨valpchild1pnqq`p1´σpanqq¨valpchild0pnqq, seenpchild1pnqqq
22: else if seenpchild1pnqq “ 1 then
23: return pσpanq ¨ valpchild1pnqq, 1q
24: else if seenpchild0pnqq “ 1 then
25: return pp1´ σpanqq ¨ valpchild0pnqq, 1q
26: end if
27: end function

1. If the variable of node n is below Xj in the BDD order, then GRADIEN-
TEVAL returns the probability of node n and seen “ 0.

2. If the variable of node n is Xj , then GRADIENTEVAL returns seen “ 1
and the gradient given by the difference of the values of its two children
valpchild1pnqq ´ valpchild0pnqq.

3. If the variable of node n is above Xj in the BDD order, then GRADIEN-
TEVAL returns σpanq ¨ valpchild1pnqq ` p1 ´ σpanqq ¨ valpchild0pnqq
unless Xj does not appear in one of the sub-BDD, in which case the
corresponding term is 0.

GRADIENTEVAL determines which of the cases applies by using function
varindexpnq that returns the index of the variable of node n and by consid-
ering the values seenpchild1pnqq and seenpchild0pnqq of the children: if one
of them is 1 and the other is 0, thenXj is below the variable of node n and we

270 Parameter Learning

fall in the third case above. If they are both 1, we are in the third case again.
If they are both 0, we are either in the first case or in third case but Xj does
not appear in the BDD. We deal with the latter situation by returning 0 in the
outer function GRADIENT.

The overall LeProbLog function is shown in Algorithm 19. Given a
ProbLog program P with n probabilistic ground facts, it returns the values
of their parameters. It initializes the vector of parameters a “ pa1, . . . , anq
randomly and then computes an update ∆a by computing the gradient. a is
then updated by substracting ∆a multiplied by a learning rate η.

Algorithm 19 Function LEPROBLOG: LeProbLog algorithm.
1: function LEPROBLOG(E,P, k, η)
2: initialize all aj randomly
3: while not converged do
4: ∆aÐ 0
5: for tÐ 1 Ñ T do
6: find k best proofs and generate BDDt for et
7: y Ð 2

T
pP petq ´ ptq

8: for j Ð 1 Ñ n do
9: derivj ÐGRADIENT(BDDt, j)
10: ∆aj Ð ∆aj ` y ¨ derivj
11: end for
12: end for
13: aÐ a´ η ¨∆a
14: end while
15: return tσpa1q, . . . , σpanqq
16: end function

The BDDs for examples are built by computing the k best explanations
for each example, as in the k-best inference algorithm, see Section 7.1.2. As
the set of the k best explanations may change when the parameters change,
the BDDs are recomputed at each iteration.

9.4 EMBLEM

EMBLEM [Bellodi and Riguzzi, 2013, 2012] applies the algorithm for per-
forming EM over BDDs proposed in [Thon et al., 2008; Ishihata et al.,
2008a,b; Inoue et al., 2009] to the problem of learning the parameters of an
LPAD.

Definition 50 (EMBLEM parameter learning problem). Given an LPAD
P with unknown parameters and two sets E` “ te1, . . . , eT u and E´ “

9.4 EMBLEM 271

teT`1, . . . , eQu of ground atoms (positive and negative examples), find the
value of the parameters Π of P that maximize the likelihood of the examples,
i.e., solve

arg max
Π

P pE`,„E´q “ arg max
Π

T
ź

t“1

P petq

Q
ź

t“T`1

P p„etq.

The predicates for the atoms in E` and E´ are called target because the
objective is to be able to better predict the truth value of atoms for them.

Typically, the LPAD P has two components: a set of rules, annotated with
parameters and representing general knowledge, and a set of certain ground
facts, representing background knowledge on individual cases of a specific
world, from which consequences can be drawn with the rules, including the
examples. Sometimes, it is useful to provide information on more than one
world. For each world, a background knowledge and sets of positive and
negative examples are provided. The description of one world is also called a
mega-interpretation or mega-example. In this case, it is useful to encode the
positive examples as ground facts of the mega-interpretation and the negative
examples as suitably annotated ground facts (such as negpaq for negative
example a) for one or more target predicates. The task then is maximizing
the product of the likelihood of the examples for all mega-interpretations.

EMBLEM generates a BDD for each example in E “ te1, . . . , eT ,„
eT`1, . . . ,„ eQu. The BDD for an example e encodes its explanations.
Then EMBLEM enters the EM cycle, in which the steps of expectation and
maximization are repeated until the log likelihood of the examples reaches a
local maximum.

Let us now present the formulas for the expectation and maximization
phases. EMBLEM adopts the encoding of multivalued random variable with
Boolean random variables used in PITA, see Section 5.6. Let Xijk for k “
1, . . . , ni ´ 1 and j P gpiq be the Boolean random variables associated with
grounding Ciθj of clause Ci of P where ni is the number of head atoms of
Ci and gpiq is the set of indices of grounding substitutions of Ci.

Example 99 (Epidemic – LPAD – EM). Let us recall Example 87 about the
development of an epidemic

C1 “ epidemic : 0.6 ; pandemic : 0.3 Ð flupXq, cold.
C2 “ cold : 0.7.
C3 “ flupdavidq.
C4 “ fluprobertq.

272 Parameter Learning

Figure 9.1 BDD for query epidemic for Example 99. From [Bellodi and Riguzzi, 2013].

Clause C1 has two groundings, both with three atoms in the head, the first
associated with Boolean random variablesX111 andX112 and the latter with
X121 and X122. C2 has a single grounding with two atoms in the head and
is associated with variable X211. The BDD for query epidemic is shown in
Figure 9.1.

The EM algorithm alternates between the two phases:

• Expectation: computes Ercik0|es and Ercik1|es for all examples e, rules
Ci in P and k “ 1, . . . , ni ´ 1, where cikx is the number of times a
variable Xijk takes value x for x P t0, 1u, with j in gpiq. Ercikx|es is
given by

ř

jPgpiq P pXijk “ x|eq.
• Maximization: computes πik for all rules Ci and k “ 1, . . . , ni ´ 1 as

πik “

ř

ePE Ercik1|es
ř

qPE Ercik0|es `Ercik1|es
.

P pXijk “ x|eq is given by P pXijk “ x|eq “
P pXijk“x,eq

P peq .
Now consider a BDD for an example e built by applying only the

merge rule, fusing together identical sub-diagrams but not deleting nodes.
For example, by applying only the merge rule in Example 99, the diagram in
Figure 9.2 is obtained. The resulting diagram, that we call Complete Binary
Decision Diagram (CBDD), is such that every path contains a node for every
level.

P peq is given by the sum of the probabilities of all the paths in the CBDD
from the root to a 1 leaf, where the probability of a path is defined as the
product of the probabilities of the individual choices along the path. Variable
Xijk is associated with a level l in the sense that all nodes at that level test
variable Xijk. All paths from the root to a leaf pass through a node of level l.

9.4 EMBLEM 273

Figure 9.2 BDD after applying the merge rule only for Example 99. From [Bellodi and
Riguzzi, 2013].

We can express P peq as

P peq “
ÿ

ρPRpeq

ź

dPρ

πpdq

where Rpeq is the set of paths for query e that lead to a 1 leaf, d is an edge
of path ρ, and πpdq is the probability associated with the edge: if d is the
1–branch from a node associated with a variable Xijk, then πpdq “ πik; if
d is the 0–branch from a node associated with a variable Xijk, then πpdq “
1´ πik.

We can further expand P peq as

P peq “
ÿ

nPNpXijkq,ρPRpeq

πikx
ź

dPρn,x

πpdq
ź

dPρn

πpdq

where NpXijkq is the set of nodes associated with variable Xijk, ρn is the
portion of path ρ up to node n, ρn,x is the portion of path ρ from childxpnq
to the 1 leaf, and πikx is πik if x “ 1 and 1´ πik otherwise. Then

P peq “
ÿ

nPNpXijkq,ρnPRnpqq,xPt0,1uρn,xPRnpq,xq

πikx
ź

dPρn,x

πpdq
ź

dPρn

πpdq

where Rnpqq is the set containing the paths from the root to n and Rnpq, xq
is the set of paths from childxpnq to the 1 leaf.

To compute P pXijk “ x, eq, we can observe that we need to consider
only the paths passing through the x-child of a node n associated with
variable Xijk, so

P pXijk “ x, eq “
ÿ

nPNpXijkq,ρnPRnpqq,ρnPRnpq,xq

πikx
ź

dPρn

πpdq
ź

dPρn

πpdq

274 Parameter Learning

We can rearrange the terms in the summation as

P pXijk “ x, eq “
ÿ

nPNpXijkq

ÿ

ρnPRnpqq

ÿ

ρnPRnpq,xq

πikx
ź

dPρn

πpdq
ź

dPρn

πpdq

“
ÿ

nPNpXijkq

πikx
ÿ

ρnPRnpqq

ź

dPρn

πpdq
ÿ

ρnPRnpq,xq

ź

dPρn

πpdq

“
ÿ

nPNpXijkq

πikxF pnqBpchildxpnqq

where F pnq is the forward probability [Ishihata et al., 2008b], the probability
mass of the paths from the root to n, while Bpnq is the backward probability
[Ishihata et al., 2008b], the probability mass of paths from n to the 1 leaf. If
root is the root of a tree for a query e, then Bprootq “ P peq.

The expression πikxF pnqBpchildxpnqq represents the sum of the proba-
bility of all the paths passing through the x-edge of node n. We indicate with
expnq such an expression. Thus

P pXijk “ x, eq “
ÿ

nPNpXijkq

expnq (9.3)

For the case of a BDD, i.e., a diagram obtained by also applying the deletion
rule, Equation (9.3) is no longer valid since paths where there is no node
associated with Xijk can also contribute to P pXijk “ x, eq. In fact, it is
necessary to also consider the deleted paths: suppose a node n associated with
variable Y has a level higher than variable Xijk and suppose that child0pnq
is associated with variable W that has a level lower than variable Xijk. The
nodes associated with variable Xijk have been deleted from the paths from n
to child0pnq. One can imagine that the current BDD has been obtained from
a BDD having a node m associated with variable Xijk that is a descendant
of n along the 0-branch and whose outgoing edges both point to child0pnq.
The probability mass of the two paths that were merged was e0pnqp1 ´ πikq
and e0pnqπik for the paths passing through the 0-child and 1-child of m
respectively. The first quantity contributes to P pXijk “ 0, eq and the latter to
P pXijk “ 1, eq.

Formally, let DelxpXq be the set of nodes n such that the level of X is
below that of n and is above that of childxpnq, i.e., X is deleted between n
and childxpnq. For the BDD in Figure 9.1, for example,Del1pX121q “ tn1u,

9.4 EMBLEM 275

Del0pX121q “ H, Del1pX221q “ H, and Del0pX221q “ tn3u. Then

P pXijk “ 0|eq “
ÿ

nPNpXijkq

expnq `

p1´ πikq

¨

˝

ÿ

nPDel0pXijkq

e0pnq `
ÿ

nPDel1pXijkq

e1pnq

˛

‚

P pXijk “ 1, eq “
ÿ

nPNpXijkq

expnq `

πik

¨

˝

ÿ

nPDel0pXijkq

e0pnq `
ÿ

nPDel1pXijkq

e1pnq

˛

‚

Having shown how to compute the probabilities, we now describe EMBLEM
in detail. The typical input for EMBLEM will be a set of mega-
interpretations, i.e., sets of ground facts, each describing a portion of the
domain of interest. Among the predicates for the input facts, the user has
to indicate which are target predicates: the facts for these predicates will
then form the examples, i.e., the queries for which the BDDs are built. The
predicates can be treated as closed-world or open-world. In the first case,
a closed-world assumption is made, so the body of clauses with a target
predicate in the head is resolved only with facts in the interpretation. In the
second case, the body of clauses with a target predicate in the head is resolved
both with facts in the interpretation and with clauses in the theory. If the last
option is set and the theory is cyclic, EMBLEM uses a depth bound on SLD
derivations to avoid going into infinite loops, as proposed by [Gutmann et al.,
2010].

EMBLEM, shown in Algorithm 20, consists of a cycle in which the
procedures EXPECTATION and MAXIMIZATION are repeatedly called. Pro-
cedure EXPECTATION returns the LL of the data that is used in the stopping
criterion: EMBLEM stops when the difference between the LL of the current
and previous iteration drops below a threshold ε or when this difference is
below a fraction δ of the current LL.

Procedure EXPECTATION, shown in Algorithm 21, takes as input a list
of BDDs, one for each example, and computes the expectation for each one,
i.e., P pe,Xijk “ xq for all variables Xijk in the BDD. In the procedure,
we use ηxpi, kq to indicate

ř

jPgpiq P pe,Xijk “ xq. EXPECTATION first

276 Parameter Learning

calls GETFORWARD and GETBACKWARD that compute the forward, the
backward probability of nodes and ηxpi, kq for non-deleted paths only. Then
it updates ηxpi, kq to take into account deleted paths.

Algorithm 20 Function EMBLEM.
1: function EMBLEM(E,P, ε, δ)
2: build BDDs
3: LL “ ´inf
4: repeat
5: LL0 “ LL
6: LL “ EXPECTATION(BDDs)
7: MAXIMIZATION
8: until LL´ LL0 ă ε_ LL´ LL0 ă ´LL ¨ δ
9: return LL, πik for all i, k
10: end function

Algorithm 21 Function EXPECTATION.
1: function EXPECTATION(BDDs)
2: LL “ 0
3: for all BDD P BDDs do
4: for all i do
5: for k “ 1 to ni ´ 1 do
6: η0pi, kq “ 0; η1pi, kq “ 0
7: end for
8: end for
9: for all variables X do
10: ςpXq “ 0
11: end for
12: GETFORWARD(rootpBDDq)
13: Prob=GETBACKWARD(rootpBDDq)
14: T “ 0
15: for l “ 1 to levelspBDDq do
16: Let Xijk be the variable associated with level l
17: T “ T ` ςpXijkq
18: η0pi, kq “ η0pi, kq ` T ˆ p1´ πikq
19: η1pi, kq “ η1pi, kq ` T ˆ πik
20: end for
21: for all i do
22: for k “ 1 to ni ´ 1 do
23: Ercik0s “ Ercik0s ` η

0pi, kq{Prob
24: Ercik1s “ Ercik1s ` η

1pi, kq{Prob
25: end for
26: end for
27: LL “ LL` logpProbq
28: end for
29: return LL
30: end function

9.4 EMBLEM 277

Algorithm 22 Procedure MAXIMIZATION.
1: procedure MAXIMIZATION
2: for all i do
3: for k “ 1 to ni ´ 1 do
4: πpikq “ Ercik1s

Ercik0s`Ercik1s

5: end for
6: end for
7: end procedure

Procedure MAXIMIZATION (Algorithm 22) computes the parameters
values for the next EM iteration.

Procedure GETFORWARD, shown in Algorithm 23, computes the value of
the forward probabilities. It traverses the diagram one level at a time starting
from the root level. For each level, it considers each node n and computes
its contribution to the forward probabilities of its children. Then the forward
probabilities of its children, stored in table F , are updated.

Algorithm 23 Procedure GETFORWARD: Computation of the forward
probability.
1: procedure GETFORWARD(root)
2: F prootq “ 1
3: F pnq “ 0 for all nodes
4: for l “ 1 to levels do Ź levels is the number of levels of the BDD rooted at root
5: Nodesplq “ H
6: end for
7: Nodesp1q “ trootu
8: for l “ 1 to levels do
9: for all node P Nodesplq do
10: let Xijk be vpnodeq, the variable associated with node
11: if child0pnodeq is not terminal then
12: F pchild0pnodeqq “ F pchild0pnodeqq ` F pnodeq ¨ p1´ πik)
13: add child0pnodeq to Nodesplevelpchild0pnodeqqq Ź levelpnodeq returns the

level of node
14: end if
15: if child1pnodeq is not terminal then
16: F pchild1pnodeqq “ F pchild1pnodeqq ` F pnodeq ¨ πik
17: add child1pnodeq to Nodesplevelpchild1pnodeqqq
18: end if
19: end for
20: end for
21: end procedure

Function GETBACKWARD, shown in Algorithm 24, computes the back-
ward probability of nodes by traversing recursively the tree from the root to
the leaves. When the calls of GETBACKWARD for both children of a node n

278 Parameter Learning

return, we have all the information that is needed to compute the ex values
and the value of ηxpi, kq for non-deleted paths.

Algorithm 24 Procedure GETBACKWARD: Computation of the backward
probability, updating of η and of ς .
1: function GETBACKWARD(node)
2: if node is a terminal then
3: return valuepnodeq
4: else
5: let Xijk be vpnodeq
6: Bpchild0pnodeqq “GETBACKWARD(child0pnodeq)
7: Bpchild1pnodeqq “GETBACKWARD(child1pnodeq)
8: e0pnodeq “ F pnodeq ¨Bpchild0pnodeqq ¨ p1´ πikq
9: e1pnodeq “ F pnodeq ¨Bpchild1pnodeqq ¨ πik
10: η0pi, kq “ η0t pi, kq ` e

0pnodeq
11: η1pi, kq “ η1t pi, kq ` e

1pnodeq
12: V Succ “ succpvpnodeqq Ź succpXq returns the variable following X in the order
13: ςpV Succq “ ςpV Succq ` e0pnodeq ` e1pnodeq
14: ςpvpchild0pnodeqqq “ ςpvpchild0pnodeqqq ´ e0pnodeq
15: ςpvpchild1pnodeqqq “ ςpvpchild1pnodeqqq ´ e1pnodeq
16: return Bpchild0pnodeqq ¨ p1´ πikq `Bpchild1pnodeqq ¨ πik
17: end if
18: end function

The array ς stores, for every variable Xijk, an algebraic sum of expnq:
those for nodes in upper levels that do not have a descendant in the level l
of Xijk minus those for nodes in upper levels that have a descendant in level
l. In this way, it is possible to add the contributions of the deleted paths by
starting from the root level and accumulating ςpXijkq for the various levels in
a variable T (see lines 15–20 of Algorithm 21): an expnq value that is added to
the accumulator T for the level of Xijk means that n is an ancestor for nodes
in that level. When the x-branch from n reaches a node in a level l1 ď l, expnq
is subtracted from the accumulator, as it is not relative to a deleted node on
the path anymore, see lines 14 and 15 of Algorithm 24.

Let us see an example of execution. Consider the program of Example
99 and the single example epidemic. The BDD of Figure 9.1 (also shown
in Figure 9.3) is built and passed to EXPECTATION in the form of a pointer
to its root node n1. After initializing the η counters to 0, GETFORWARD is
called with argument n1. The F table for n1 is set to 1 since this is the root.
Then F is computed for the 0-child, n2, as 0` 1 ¨ 0.4 “ 0.4 and n2 is added
to Nodesp2q, the set of nodes for the second level. Then F is computed for
the 1-child, n3, as 0 ` 1 ¨ 0.6 “ 0.6, and n3 is added to Nodesp3q. At the
next iteration of the cycle, level 2 is considered and node n2 is fetched from
Nodesp2q. The 0-child is a terminal, so it is skipped, while the 1-child is n3

9.4 EMBLEM 279

Figure 9.3 Forward and backward probabilities. F indicates the forward probability and B
the backward probability of each node. From [Bellodi and Riguzzi, 2013].

and its F value is updated as 0.6`0.4 ¨0.6 “ 0.84. In the third iteration, node
n3 is fetched but, since its children are leaves, F is not updated. The resulting
forward probabilities are shown in Figure 9.3.

Then GETBACKWARD is called on n1. The function calls GETBACK-
WARDpn2q that in turn calls GETBACKWARDp0q. This call returns 0 because
it is a terminal node. Then GETBACKWARDpn2q calls GETBACKWARDpn3q

that in turn calls GETBACKWARDp1q and GETBACKWARDp0q, returning
respectively 1 and 0. Then GETBACKWARDpn3q computes e0pn3q and e1pn3q

in the following way:
e0pn3q “ F pn3q ¨Bp0q ¨ 0.3p1´ π21q “ 0.84 ¨ 0 ¨ 0.3 “ 0
e1pn3q “ F pn3q ¨ Bp1q ¨ 0.7pπ21q “ 0.84 ¨ 1 ¨ 0.7 “ 0.588. Now the

counters for clause C2 are updated:
η0p2, 1q “ 0
η1p2, 1q “ 0.588

while we do not show the update of ς since its value for the level of the
leaves is not used afterward. GETBACKWARDpn3q now returns the backward
probability of n3 Bpn3q “ 1 ¨ 0.7` 0 ¨ 0.3 “ 0.7. GETBACKWARDpn2q can
proceed to compute

e0pn2q “ F pn2q ¨Bp0q ¨ 0.4p1´ π11q “ 0.4 ¨ 0.0 ¨ 0.4 “ 0
e1pn2q “ F pn2q ¨Bpn3q ¨ 0.6pπ11q “ 0.4 ¨ 0.7 ¨ 0.6 “ 0.168,

and η0p1, 1q “ 0, η1p1, 1q “ 0.168. The variable following X121 is X211,
so ςpX211q “ e0pn2q ` e1pn2q “ 0 ` 0.168 “ 0.168. Since X121 is also
associated with the 1-child n2, then ςpX211q “ ςpX211q ´ e1pn2q “ 0. The
0-child is a leaf so ς is not updated.

GETBACKWARDpn2q then returns Bpn2q “ 0.7 ¨ 0.6` 0 ¨ 0.4 “ 0.42 to
GETBACKWARDpn1q that computes e0pn1q and e1pn1q as

280 Parameter Learning

e0pn1q “ F pn1q ¨Bpn2q ¨ 0.4p1´ π11q “ 1 ¨ 0.42 ¨ 0.4 “ 0.168
e1pn1q “ F pn1q ¨Bpn3q ¨ 0.6pπ11q “ 1 ¨ 0.7 ¨ 0.6 “ 0.42

and updates the η counters as η0p1, 1q “ 0.168, η1p1, 1q “ 0.168 ` 0.42 “
0.588.

Finally, ς is updated:
ςpX121q “ e0pn1q ` e

1pn1q “ 0.168` 0.42 “ 0.588
ςpX121q “ ςpX121q ´ e

0pn1q “ 0.42
ςpX211q “ ςpX211q ´ e

1pn1q “ ´0.42
GETBACKWARDpn1q returns Bpn1q “ 0.7 ¨ 0.6 ` 0.42 ¨ 0.4 “ 0.588 to
EXPECTATION, that adds the contribution of deleted nodes by cycling over
the BDD levels and updating T . Initially, T is set to 0, and then, for variable
X111, T is updated to T “ ςpX111q “ 0 which implies no modification of
η0p1, 1q and η1p1, 1q. For variable X121, T is updated to T “ 0` ςpX121q “

0.42 and the η table is modified as
η0p1, 1q “ 0.168` 0.42 ¨ 0.4 “ 0.336
η1p1, 1q “ 0.588` 0.42 ¨ 0.6 “ 0.84

For variable X211, T becomes 0.42 ` ςpX211q “ 0, so η0p2, 1q and η1p2, 1q
are not updated. At this point, the expected counts for the two rules can be
computed

Erc110s “ 0` 0.336{0.588 “ 0.5714285714
Erc111s “ 0` 0.84{0.588 “ 1.4285714286
Erc210s “ 0` 0{0.588 “ 0
Erc211s “ 0` 0.588{0.588 “ 1

9.5 ProbLog2 Parameter Learning

ProbLog2 [Fierens et al., 2015] includes the algorithm LFI-ProbLog [Gut-
mann et al., 2011b] that learns the parameters of ProbLog programs from
partial interpretations.

Partial interpretations are three valued interpretations: they specify the
truth value of some but not necessarily all ground atoms. A partial interpreta-
tion I “ xIT , IF y states that the atoms in IT are true and those in IF are false.
A partial interpretation I “ xIT , IF y can be associated with a conjunction
qpIq “

Ź

aPIT
a^

Ź

aPIF
„a.

Definition 51 (LFI-ProbLog learning problem). Given a ProbLog program
P with unknown parameters and a set E “ tI1, . . . , IT u of partial interpre-
tations (the examples), find the value of the parameters Π of P that maximize
the likelihood of the examples, i.e., solve

9.5 ProbLog2 Parameter Learning 281

arg max
Π

P pEq “ arg max
Π

T
ź

t“1

P pqpItqq

If all interpretations in E are total, Theorem 14 can be applied and the
parameters can be computed by relative frequency, see Section 9.2. If some
interpretations in E are partial, instead, an EM algorithm must be used,
similar to the one used by PRISM and EMBLEM.

LFI-ProbLog generates a d-DNNF circuit for each partial interpretation
I “ xIT , IF y by using the ProbLog2 algorithm of Section 5.7 with the
evidence qpIq.

Then it associates a Boolean random variable Xij with each ground
probabilistic fact fiθj . For each example I, variableXij , and x P t0, 1u, LFI-
ProbLog computes P pXij “ x|Iq. Then it uses this to compute Ercix|Is, the
expected value given example I of the number of times variable Xij takes
value x for any j in gpiq, the set of grounding substitutions of fi. Ercixs is
the expected value given all the examples. As in PRISM and EMBLEM, these
are given by:

Ercixs “
T
ÿ

t“1

Ercix|Its

and
Ercix|Its “

ÿ

jPgpiq

P pXij “ x|Itq.

In the maximization phase, the parameter πi of probabilistic fact fi can be
computed as

πi “
Erci1s

Erci0s `Erci1s

LFI-ProbLog computes P pXij “ x|Iq by computing P pXij “ x, Iq using
Procedure CIRCP shown in Algorithm 5: the d-DNNF circuit is visited twice,
once bottom up to compute P pqpIqq and once top down to compute P pXij “

x|Iq for all the variables Xij and values x. Then P pXij “ x|Iq is given by
P pXij“x,Iq

P pIq .
Nishino et al. [2014] extended LFI-ProbLog in order to perform sparse

parameter learning, i.e., parameter learning while trying to reduce the number
of parameters different from 0 or 1, in order to obtain a simpler program. To
do so, they add a penalty term to the objective function and use gradient
descent to optimize the parameters.

282 Parameter Learning

9.6 Parameter Learning for Hybrid Programs

Gutmann [2011] proposes an approach for learning the parameters of hybrid
ProbLog programs that is based on the LeProbLog algorithm described in
Section 9.3. In particular, Gutmann [2011] shows how the gradient of the
objective function can also be computed for hybrid ProbLog programs.

Islam [2012]; Islam et al. [2012a] present a parameter learning algorithm
for Extended PRISM. The algorithm is based on PRISM’s EM procedure and
involves the computation of the Expected Sufficient Statistics (ESS) of the
random variables. The ESS for discrete random variables are represented by
a tuple of the expected counts of each values of the variable.

The ESS of a Gaussian random variable X are the triple

pESSX , ESSX
2
, ESScountq

where the components denote the expected sum, expected sum of squares,
and the expected number of uses of random variable X , respectively.

ESS can be computed by deriving examples individually. A quicker
approach consists in building a symbolic derivation, computing ESS func-
tions instead of plain ESS, and then applying them to each example. The
derivation of ESS functions is similar to the one of success functions for
Extended PRISM discussed in Section 5.11.

10
Structure Learning

The techniques presented in this chapter aim at inducing whole programs
from data, including both their structure and parameters.

We first briefly review some concepts from Inductive Logic Programming
and then discuss systems for Probabilistic Inductive Logic Programming
(PILP) [De Raedt et al., 2008; Riguzzi et al., 2014].

10.1 Inductive Logic Programming

The ILP field is concerned with learning logic programs from data. One of
the learning problems that is considered is learning from entailment.

Definition 52 (Inductive Logic Programming – learning from entailment).
Given two sets E` “ te1, . . . , eT u and E´ “ teT`1, . . . , eQu of ground
atoms (positive and negative examples), a logic program B (background
knowledge), and a space of possible programs H (language bias), find a
program P P H such that

• @e P E`, P YB (e (completeness),
• @e P E´, P YB * e (consistency),

An example e such that P Y B (e is said to be covered. We also define the
following functions

• coverspP, eq “ true if B Y P (e,
• coverspP,Eq “ te P E|coverspP, eq “ trueu.

The predicates for which we are given examples are called target predicates.
There is often a single target predicate.

283

284 Structure Learning

Example 100 (ILP problem). Suppose we have

E` “ t fatherpjohn,maryq, fatherpdavid, steveq u

E´ “ t fatherpkathy,maryq, fatherpjohn, steveq u

B “ parentpjohn,maryq,

parentpdavid, steveq,

parentpkathy,maryq,

femalepkathyq,

malepjohnq,

malepdavidq u

then a solution of the learning from entailment problem is

fatherpX,Y q Ð parentpX,Y q,malepXq.

ILP systems that solve the learning form entailment problem differ in
the way the language bias is expressed and in the strategy for searching
the program space. They are usually based on two nested loops, an external
covering loop which adds a clause to the current theory and removes the
covered positive examples, and an internal clause search loop that searches
the space of clause. Examples of ILP systems are FOIL [Quinlan, 1990],
mFOIL [Dzeroski, 1993], Aleph [Srinivasan, 2007], and Progol [Muggleton,
1995].

The space of clauses is organized in terms of a generality relation that
directs the search. A clause C is more general than D if coversptCu, Uq Ě
coversptDu, Uq where U is the set of all ground atoms built over target
predicates. IfB, tCu (D, then C is more general thanD becauseB, tDu (
e implies B, tCu (e. However, entailment is semi-decidable, so simpler
generality relations are used in practice. The one most used is θ-subsumption:
C θ-subsumes D (C ě D) if there exists a substitution θ such that Cθ Ď D
[Plotkin, 1970], where the clauses are intended as sets of literals. If C ě D,
then C (D, so C is more general than D. However, the opposite is not true
in general, i.e., C ě D œ C (D. While θ-subsumption is not equivalent
to entailment, it is decidable (even if NP-complete), so it is chosen as the
generality relation in practice.

10.1 Inductive Logic Programming 285

Example 101 (Examples of theta subsumption). Let

C1 “ fatherpX,Y q Ð parentpX,Y q

C2 “ fatherpX,Y q Ð parentpX,Y q,malepXq

C3 “ fatherpjohn, steveq Ð parentpjohn, steveq,malepjohnq

Then

• C1 ě C2 with θ “ H;
• C1 ě C3 with θ “ tX{john, Y {steveu;
• C2 ě C3 with θ “ tX{john, Y {steveu.

ILP systems differ in the direction of search in the space of clauses
ordered by generality: top-down systems search the space from more general
clauses to less general ones and bottom-up systems do the opposite. Aleph
and Progol are examples of top-down systems. In top-down systems, the
clause search loop consists of gradually specializing clauses using heuristics
to guide the search, for example, by using beam search. Clause specializa-
tions are obtained by applying a refinement operator ρ that, given a clause C,
returns a set of its specializations, i.e., ρpCq Ď tD|D P L, C ě Du where L
is the space of possible clauses. A refinement operator usually generates only
minimal specializations and typically applies two syntactic operations:

• a substitution, or
• the addition of a literal to the body.

In Progol, for example, the refinement operator adds a literal from the bottom
clause K after having replaced some of the constants with variables. K is the
most specific clause covering an example e, i.e., K “ e Ð Be, where Be is
set of ground literals that are true regarding example e that are allowed by
the language bias. In this way, we are sure that, at all times during the search,
the refinements at least cover example e, that can be selected at random
from the set of positive examples.

In turn, the language bias is expressed in Progol by means of mode
declarations. Following [Muggleton, 1995], a mode declaration m is either
a head declaration modehpr, sq or a body declaration modebpr, sq, where s,
the schema, is a ground literal and r is an integer called the recall. A schema
is a template for literals in the head or body of a clause and can contain
special placemarker terms of the form #type, `type, and ´type, which
stand, respectively, for ground terms, input variables, and output variables
of a type. An input variable in a body literal of a clause must be either an
input variable in the head or an output variable in a preceding body literal

286 Structure Learning

in the clause. If M is a set of mode declarations, LpMq is the language of
M , i.e., the set of clauses tC “ h Ð b1, . . . , bmu such that the head atom
h (resp. body literals bi) is obtained from some head (resp. body) declaration
in M by replacing all # placemarkers with ground terms and all ` (resp. ´)
placemarkers with input (resp. output) variables.

The bottom clause is built with a procedure called saturation, shown
in Algorithm 25. This method is a deductive procedure used to find atoms
related to e. Suppose modehpr, sq is a head declaration such that e is
an answer for the goal schemapsq, where schemapsq denotes the lit-
eral obtained from s by replacing all placemarkers with distinct variables
X1, . . . , Xn.

The terms in e are used to initialize a growing set of input terms InTerms:
these are the terms corresponding to ` placemarkers in s. Then each body
declaration m is considered in turn. The terms from InTerms are substituted
into the ` placemarkers of m to generate a set Q of goals. Each goal is
then executed against the database and up to r (the recall) successful ground
instances (or all if r “ ‹) are added to the body of the clause. Any term
corresponding to a ´ placemarker in m is inserted in InTerms if it is not
already present. This cycle is repeated for an user-defined number NS of
times.

The resulting ground clause K “ e Ð b1, . . . , bm is then processed to
obtain a program clause by replacing each term in a` or´ placemarker with
a variable, using the same variable for identical terms. Terms corresponding
to # placemarkers are instead kept in the clause.

Example 102 (Bottom clause example). Consider the learning problem of
Example 100 and the language bias

modehpfatherp`person,`personqq.
modebpparentp`person,´personqq.
modebpparentp#person,`personqq.
modebpmalep`personqq.
modebpfemalep#personqq.

then the bottom clause for fatherpjohn,maryq is
fatherpjohn,maryq Ð parentpjohn,maryq,malepjohnq,
parentpkathy,maryq, femalepkathyq.

After replacing constants with variables we get
fatherpX,Y q Ð parentpX,Y q,malepXq, parentpkathy, Y q,

femalepkathyq.

10.2 LLPAD and ALLPAD Structure Learning 287

Algorithm 25 Function SATURATION.
1: function SATURATION(e, r,NS)
2: InTerms “ H,
3: K “ H Ź K: bottom clause
4: for all arguments t of e do
5: if t corresponds to a `type then
6: add t to InTerms
7: end if
8: end for
9: let K’s head be e
10: repeat
11: StepsÐ 1
12: for all modeb declarations modebpr, sq do
13: for all possible subs. σ of variables corresponding to`type in schemapsq by terms from

InTerms do
14: for j “ 1 Ñ r do
15: if goal b “ schemapsq succeeds with answer substitution σ1 then
16: for all v{t P σ and σ1 do
17: if v corresponds to a ´type then
18: add t to the set InTerms if not already present
19: end if
20: end for
21: Add b to K’s body
22: end if
23: end for
24: end for
25: end for
26: StepsÐ Steps` 1
27: until Steps ą NS
28: replace constants with variables in K, using the same variable for identical terms
29: return K
30: end function

10.2 LLPAD and ALLPAD Structure Learning

LLPAD [Riguzzi, 2004] and ALLPAD [Riguzzi, 2007b, 2008b] were two
early systems for performing structure learning. They learned ground LPADs
from interpretations. We discussed parameter learning in Section 9.2; we
consider here the problem of learning the structure.

Definition 53 (ALLPAD Structure learning problem). Given a set

E “ tpI, pIq|I P Int2, pI P r0, 1su

288 Structure Learning

such that
ř

pI,pIqPE
pI “ 1, and a space of possible programs S, find an

LPAD P P S such that

Err “
ÿ

pI,pIqPE

|P pIq ´ pI |

is minimized, where P pIq is the probability assigned by P to I .

As for parameter learning, E may also be given as a multiset E1 of
interpretations.

LLPAD and ALLPAD learn ground programs satisfying the exclusive-
or assumption, so each couple of clauses that share an atom in the head
has mutually exclusive bodies, i.e., not both true in the same interpretation
from I.

The systems perform learning in three phases: they first find a set of
clause structures satisfying some constraints, then compute the annotations of
head atoms of such clauses using Theorem 14, and finally solve a constraint
optimization problem for selecting a subset of clauses to include in the
solution.

The first phase can be cast in the framework proposed by [Stolle et al.,
2005] in which the problem of descriptive ILP is seen as the problem of
finding all the clauses in the language bias that satisfy a number of constraints.
Exploiting the properties of constraints, the search in the space of clauses can
be usefully pruned.

A constraint is monotonic if it is the case that when a clause does not
satisfy it, none of its generalizations (in the θ-subsumption generalization
order) satisfy it. A constraint is anti-monotonic if it is the case that when a
clause does not satisfy it, none of its specializations satisfy it.

The first phase can be formulated in this way: find all the disjunctive
clauses that satisfy the following constraints:

C1 have their body true in at least one interpretation;
C2 are satisfied in all the interpretations;
C3 their atoms in the head are mutually exclusive over the set of interpreta-

tions where the body is true (i.e., no two head atoms are both true in an
interpretation where the body is true);

C4 they have no redundant head atom, i.e., no head atom that is false in all
the interpretations where the body is true.

The systems search the space of disjunctive clauses by first searching depth-
first and top-down for bodies true in at least one interpretation and then, for

10.3 ProbLog Theory Compression 289

each such body, searching for a head satisfying the remaining constraints.
When a body is found that is true in zero interpretations, the search along that
branch is stopped (constraint C1 is anti-monotonic).

The systems employ bottom-up search in the space of heads, exploiting
the monotonic constraint C2 that requires the clause to be true in all the
interpretations for pruning the search.

The second phase is performed using Theorem 14: given a ground clause
generated by the second phase, the probabilities of head atoms are given by
the conditional probability of the head atoms given the body according to the
distribution Pr.

In the third phase, the systems associate a Boolean decision variable
with each of the clauses found in the first phase. Thanks to the exclusive-
or assumption, the probability of each interpretation can be expressed as a
function of the decision variables, so we set Err as the objective function
of an optimization problem. The exclusive-or assumption is enforced by
imposing constraints among couples of decisions.

Both the constraints and the objective function are linear, so we can use
mixed-integer programming techniques.

The restriction to ground programs satisfying the exclusive-or assumption
limits the applicability of LLPAD and ALLPAD in practice.

10.3 ProbLog Theory Compression

De Raedt et al. [2008] consider the problem of compressing a ProbLog theory
given a set of positive and negative examples. The problem can be defined as
follows.

Definition 54 (Theory compression). Given a ProbLog program P con-
taining the set of probabilistic facts F “ tΠ1 :: f1, . . . ,Πn :: fnu,
two sets E` “ te1, . . . , eT u and E´ “ teT`1, . . . , eQu of ground atoms
(positive and negative examples), and a constant k P N, find a subset of the
probabilistic facts G Ď F of size at most k (i.e., |G| ď k) that maximizes the
likelihood of the examples, i.e., solve

arg max
GĎF ,|G|ďk

T
ź

i“1

P peiq

Q
ź

i“T`1

P p„eiq

The aim is to modify the theory by removing clauses in order to maximize
the likelihood of the examples. This is an instance of a theory revision

290 Structure Learning

process. However, in case an example has probability 0, the whole likelihood
would be 0. To be able to consider also this case, P peq is replaced by
P̂ peq “ minpε, P peqq for a small user-defined constant ε.

The ProbLog compression algorithm of [De Raedt et al., 2008] proceeds
by greedily removing one probabilistic fact at a time from the theory. The fact
is chosen as the one whose removal results in the largest likelihood increase.
The algorithm continues removing facts if there are more than k of them and
there is a fact whose removal can improve the likelihood.

The algorithm first builds the BDDs for all the examples. Then it enters
the removal cycle. Computing the effect of the removal of a probabilistic fact
fi on the probability of an example is easy: it is enough to set Πi to 0 and re-
evaluate the BDD using function PROB of Algorithm 4. The value of the root
will be the updated probability of the example. Computing the likelihood after
the removal of a probabilistic fact is thus quick, as the expensive construction
of the BDDs does not have to be redone.

10.4 ProbFOIL and ProbFOIL+

ProbFOIL [De Raedt and Thon, 2011] and ProbFOIL+ [Raedt et al., 2015]
learn rules from probabilistic examples. The learning problem they consider
is defined as follows.

Definition 55 (ProbFOIL/ProbFoil+ learning problem [Raedt et al., 2015]).
Given

1. a set of training examples E “ tpe1, p1q, . . . , peT , pT qu where each ei
is a ground fact for a target predicate;

2. a background theory B containing information about the examples in
the form of a ProbLog program;

3. a space of possible clauses L.

find a hypothesis H Ď L so that the absolute error AE “
řT
i“1 |P peiq ´ pi|

is minimized, i.e.,

arg min
HPL

T
ÿ

i“1

|P peiq ´ pi|

The difference between ProbFOIL and ProbFOIL+ is that in ProbFOIL
the clauses in H are definite, i.e., of the form h Ð B, while in ProbFOIL+

10.4 ProbFOIL and ProbFOIL+ 291

they are probabilistic, i.e., of the form x :: hÐ B, with x P r0, 1s. Such rules
are to be interpreted as the combination of

hÐ B, probpidq.
x :: probpidq.

where id is an identifier of the rule and x :: probpidq is a ground probabilistic
fact associated with the rule. Note that this is different from an LPAD rule of
the form h : xÐ B, as this stands for the union of ground rules h1 : xÐ B1.
obtained by grounding h : x Ð B. So LPAD rules generate an independent
random variable for each of their groundings, while the above ProbFOIL+
rule generates a single random variable independently on the number of
groundings.

ProbFOIL+ generalizes the mFOIL system [Dzeroski, 1993], itself a
generalization of FOIL [Quinlan, 1990]. It adopts the standard technique
for learning sets of rules consisting of a covering loop in which one rule
is added to the theory at each iteration. A nested clause search loop builds
the rule by iteratively adding literals to the body of the rule. The covering
loop ends when a condition based on a global scoring function is satisfied.
The construction of single rules is performed by means of beam search as in
mFOIL and uses a local scoring function as the heuristic. Algorithm 26 shows
the overall approach1.

The global scoring function is the accuracy over the dataset, given by

accuracyH “
TPH ` TNH

T
where T is the number of examples and TPH and TNH are, respectively,
the number of true positives and of true negatives, i.e., the number of positive
(negative) examples correctly classified as positive (negative).

The local scoring function is an m-estimate [Mitchell, 1997] of the preci-
sion, or the probability that an example is positive given that it is covered by
the rule:

m-estimateH “
TPH `m

P
P`N

TPH ` FPH `m
wherem is a parameter of the algorithm, FPH is the number of false positives
(negative examples classified as positive), and P and N indicate the number
of positive and negative examples in the dataset, respectively.

These measures are based on usual metrics for rule learning that assume
that the training set is composed of positive and negative examples and that

1The description of ProbFOIL+ is based on [Raedt et al., 2015] and the code at https:
//bitbucket.org/antondries/prob2foil

292 Structure Learning

Algorithm 26 Function PROBFOIL+.
1: function PROBFOIL+(target)
2: H ÐH

3: while true do
4: clauseÐ LEARNRULEpH, targetq
5: if GSCOREpHq ă GSCOREpH Y tclauseuq ^ SIGNIFICANTpH, clauseq then
6: H Ð H Y tclauseu
7: else
8: return H
9: end if
10: end while
11: end function
12: function LEARNRULE(H, target)
13: candidatesÐ tx :: targetÐ trueu
14: bestÐ px :: targetÐ trueq
15: while candidates ‰ H do
16: next candÐH

17: for all x :: targetÐ body P candidates do
18: for all ptargetÐ bod, refinementq P ρptargetÐ bodyq do
19: if not REJECTpH, best, px :: targetÐ body, refinementqq then
20: next candÐ next candY tpx :: targetÐ body, refinementqu
21: if LSCOREpH, px :: targetÐ body, refinementqq ą LSCOREpH, bestq then
22: bestÐ px :: targetÐ body, refinementq
23: end if
24: end if
25: end for
26: end for
27: candidatesÐ next cand
28: end while
29: return best
30: end function

classification is sharp. ProbFOIL+ generalizes this settings as each example
ei is associated with a probability pi. The deterministic setting is obtained
by having pi “ 1 for positive examples and pi “ 0 for negative examples.
In the probabilistic setting, we can see an example pei, piq as contributing a
part pi to the positive part of training set and 1 ´ pi to the negative part. So
in this case, P “

řT
i“1 pi and N “

řT
i“1p1 ´ piq. Similarly, prediction is

generalized: the hypothesis H assigns a probability pH,i to each example ei,
instead of simply saying that the example is positive (pH,i “ 1) or negative
(pH,i “ 0). The number of true positive and true negatives can be generalized
as well. The contribution tpH,i of example ei to TPH will be pH,i if pi ą pH,i
and pi otherwise, because if pi ă pH,i, the hypothesis is overestimating ei.
The contribution fpH,i of example ei to FPH will be pH,i ´ pi if pi ă pH,i
and 0 otherwise, because if pi ą pH,i the hypothesis is underestimating ei.
Then TPH “

řT
i“1 tpH,i, FPH “

řT
i“1 fpH,i, TNH “ N ´ FPH , and

10.4 ProbFOIL and ProbFOIL+ 293

FNH “ P ´ TPH as for the deterministic case, where FNH is the number
of false negatives, or positive examples classified as negatives.

The function LSCOREpH,x :: Cq computes the local scoring function for
the addition of clause Cpxq “ x :: C to H using the m-estimate. However,
the heuristic depends on the value of x P r0, 1s. Thus, the function has to find
the value of x that maximizes the score

Mpxq “
TPHYCpxq `mP {T

TPHYCpxq ` FPHYCpxq `m
.

To do so, we need to compute TPHYCpxq and FPHYCpxq as a function
of x. In turn, this requires the computation of tpHYCpxq,i and fpHYCpxq,i,
the contributions of each example.

Note that pHYCpxq,i is monotonically increasing in x, so the minimum
and maximum values are obtained for x “ 0 and x “ 1, respectively. Let
us call them li and ui, so li “ pHYCp0q,i “ pH,i and ui “ pHYCp1q,i. Since
ProbFOIL differs from ProbFOIL+ only for the use of deterministic clauses
instead of probabilistic ones, ui is the value that is used by ProbFOIL for the
computation of LSCOREpH,Cq which thus returns Mp1q.

In ProbFOIL+, we need to study the dependency of pHYCpxq,i on x. If
the clause is deterministic, it adds probability mass ui ´ li to pH,i. We can
imagine the ui as being the probability that the Boolean formula F “ XH _

 XH ^ XB takes value 1, with XH a Boolean variable that is true if H
covers the example, P pXHq “ pH,i, XB a Boolean variable that is true if
the body of clause C covers the example and P p XH ^XBq “ ui ´ li. In
fact, since the two Boolean terms are mutually exclusive, P pF q “ P pXHq`

P p XH ^ XBq “ pH,i ` ui ´ pH,i “ ui. If the clause is probabilistic,
its random variable XC is independent from all the other random variables,
so the probability of the example can be computed as the probability that
the Boolean function F 1 “ XH _ XC ^ XH ^ XB takes value 1, with
P pXCq “ x. So pHYCpxq,i “ P pF 1q “ pH,i ` xpui ´ liq and pHYCpxq,i is a
linear function of x.

We can isolate the contribution of Cpxq to tpHYCpxq,i and fpHYCpxq,i as
follows:

tpHYCpxq,i “ tpH,i ` tpCpxq,i fpHYCpxq,i “ fpH,i ` fpCpxq,i

Then the examples can be grouped into three sets:

E1 : pi ď li, the clause overestimates the example independently of the value
of x, so tpCpxq,i “ 0 and fpCpxq,i “ xpui ´ liq

294 Structure Learning

E2 : pi ě ui, the clause underestimates the example independently of the
value of x, so tpCpxq,i “ xpui ´ liq and fpCpxq,i “ 0

E3 : li ď pi ď ui, there is a value of x for which the clause predicts the
correct probability for the example. This value is obtained by solving
xpui ´ liq “ pi ´ li for x, so

xi “
pi ´ li
ui ´ li

For x ď xi, tpCpxq,i “ xpui ´ liq and fpCpxq,i “ 0. For x ą xi,
tpCpxq,i “ pi ´ li and fpCpxq,i “ xpui ´ liq ´ ppi ´ liq.

We can express TPHYCpxq and FPHYCpxq as

TPHYCpxq “ TPH ` TP1pxq ` TP2pxq ` TP3pxq

FPHYCpxq “ FPH ` FP1pxq ` FP2pxq ` FP3pxq

where TP lpxq and FP lpxq are the contribution of the set of examples El.
These can be computed as

TP1pxq “ 0

FP1pxq “ x
ÿ

iPE1

pui ´ liq “ xU1

TP2pxq “ x
ÿ

iPE2

pui ´ liq “ xU2

FP2pxq “ 0

TP3pxq “ x
ÿ

i:iPE3,xďxi

pui ´ liq `
ÿ

i:iPE3,xąxi

ppi ´ liq “ xUďxi3 ` Pąxi3

FP3pxq “ x
ÿ

i:iPE3,xąxi

pui ´ liq ´
ÿ

i:iPE3,xąxi

ppi ´ liq “ xUąxi3 ´ Pąxi3

By replacing these formulas into Mpxq, we get

Mpxq “
pU2 ` U

ďxi
3 qx` TPH ` P

ąxi
3 `mP {T

pU1 ` U2 ` U3qx` TPH ` FPH `m

where U3 “ x
ř

iPE3
pui ´ liq “ pTP3pxq ` FP3pxqq{x.

SinceUďxi3 andPąxi3 are constant in the interval between two consecutive
values of xi, Mpxq is a piecewise function where each piece is of the form

Ax`B

Cx`D

10.4 ProbFOIL and ProbFOIL+ 295

with A,B,C, and D constants. The derivative of a piece is

dMpxq

dx
“
AD ´BC

pCx`Dq2

which is either 0 or different from 0 everywhere in each interval, so the
maximum of Mpxq can occur only at the xis values that are the endpoints of
the intervals. Therefore, we can compute the value of Mpxq for each xi and
pick the maximum. This can be done efficiently by ordering the xi values and
computing Uďxi3 “

ř

i:iPE3,xďxi
pui ´ liq and Pąxi3 “

ř

i:iPE3,xąxi
ppi ´ liq

for increasing values of xi, incrementally updating Uďxi3 and Pąxi3 .
ProbFOIL+ prunes refinements (line 19 of Algorithm 26) when they

cannot lead to a local score higher than the current best, when they cannot lead
to a global score higher than the current best or when they are not significant,
i.e., when they provide only a limited contribution.

By adding a literal to a clause, the true positives and false positives can
only decrease, so we can obtain an upper bound of the local score that any
refinement can achieve by setting the false positives to 0 and computing the
m-estimate. If this value is smaller than the current best, the refinement is
discarded.

By adding a clause to a theory, the true positives and false positives can
only increase, so if the number of true positives of H Y Cpxq is not larger
than the true positives of H , the refinement Cpxq can be discarded.

ProbFOIL+ performs a significance test borrowed from mFOIL that is
based on the likelihood ratio statistics.

ProbFOIL+ computes a statistics LhRpH,Cq that takes into account the
effect of the addition of C to H on TP and FP so that a clause is discarded
if it has limited effect. LhRpH,Cq is distributed according to χ2 with one
degree of freedom, so the clause can be discarded if LhRpH,Cq is outside
the interval for the confidence chosen by the user.

Another system that solves the ProbFOIL learning problem is SkILL
[Côrte-Real et al., 2015]. Differently from ProbFOIL, it is based on the ILP
system TopLog [Muggleton et al., 2008]. In order to prune the universe
of candidate theories and speed up learning, SkILL uses estimates of the
predictions of theories [Côrte-Real et al., 2017].

296 Structure Learning

10.5 SLIPCOVER

SLIPCOVER [Bellodi and Riguzzi, 2015] learns LPADs by first identifying
good candidate clauses and then by searching for a theory guided by the
LL of the data. As EMBLEM (see Section 9.4), it takes as input a set of
mega-examples and an indication of which predicates are target, i.e., those
for which we want to optimize the predictions of the final theory. The mega-
examples must contain positive and negative examples for all predicates that
may appear in the head of clauses, either target or non-target (background
predicates).

10.5.1 The Language Bias

The language bias for clauses is expressed by means of mode declarations.
as in Progol [Muggleton, 1995], see Section 10.1. SLIPCOVER extends this
type of mode declarations with placemarker terms of the form ´# which
are treated as # when variabilizing the clause and as ´ when performing
saturation, see Section 10.5.2.1.

SLIPCOVER also allows head declarations of the form

modehpr, rs1, . . . , sns, ra1, . . . , ans, rP1{Ar1, . . . , Pk{Arksq.

These are used to generate clauses with more than two head atoms: s1, . . . , sn
are schemas, a1, . . . , an are atoms such that ai is obtained from si by replac-
ing placemarkers with variables, and Pi{Ari are the predicates admitted in
the body. a1, . . . , an are used to indicate which variables should be shared by
the atoms in the head.

Examples of mode declarations can be found in Section 10.5.3.

10.5.2 Description of the Algorithm

The main function is shown by Algorithm 27: after the search in the space of
clauses, encoded in lines 2–27, SLIPCOVER performs a greedy search in the
space of theories, described in lines 28–38.

The first phase aims at finding a set of promising ones (in terms of LL
of the data), that will be used in the following greedy search phase. By
starting from promising clauses, the greedy search is able to generate good
final theories. The search in the space of clauses is split in turn in two steps:
(1) the construction of a set of beams containing bottom clauses (function
INITIALBEAMS at line 2 of Algorithm 27) and (2) a beam search over each
of these beams to refine the bottom clauses (function CLAUSEREFINEMENTS

10.5 SLIPCOVER 297

at line 11). The overall output of this search phase is represented by two
lists of promising clauses: TC for target predicates and BC for background
predicates. The clauses found are inserted either in TC , if a target predicate
appears in their head, or in BC . These lists are sorted by decreasing LL.

Algorithm 27 Function SLIPCOVER.
1: function SLIPCOVER(NInt ,NS ,NA,NI ,NV ,NB ,NTC ,NBC , D,NEM , ε, δ)
2: IB “INITIALBEAMS(NInt ,NS ,NA) Ź Clause search
3: TC Ð rs

4: BC Ð rs

5: for all pPredSpec,Beamq P IB do
6: StepsÐ 1
7: NewBeamÐ rs

8: repeat
9: while Beam is not empty do
10: remove the first triple pCl ,Literals,LLq from Beam Ź Remove the first clause
11: Refs ÐCLAUSEREFINEMENTS(pCl ,Literalsq,NV) Ź Find all refinements Refs

of pCl ,Literalsq with at most NV variables
12: for all pCl 1,Literals 1q P Refs do
13: pLL2, tCl2uq ÐEMBLEM(tCl 1u, D,NEM , ε, δ)
14: NewBeamÐINSERT(pCl2,Literals 1,LL2q, NewBeam,NB)
15: if Cl2 is range-restricted then
16: if Cl2 has a target predicate in the head then
17: TC ÐINSERT(pCl2,LL2q,TC ,NTC)
18: else
19: BC ÐINSERT(pCl2,LL2q,BC ,NBC)
20: end if
21: end if
22: end for
23: end while
24: BeamÐ NewBeam
25: StepsÐ Steps` 1
26: until Steps ą NI
27: end for
28: ThÐH, ThLL Ð ´8 Ź Theory search
29: repeat
30: remove the first couple pCl ,LLq from TC
31: pLL1, Th1q ÐEMBLEM(ThY tClu, D,NEM , ε, δ)
32: if LL1 ą ThLL then
33: ThÐ Th1, ThLL Ð LL1

34: end if
35: until TC is empty
36: ThÐ Th

Ť

pCl,LLqPBC tClu

37: pLL, Thq ÐEMBLEM(Th,D,NEM , ε, δ)
38: return Th
39: end function

The second phase starts with an empty theory Th which is assigned the
lowest value of LL (line 28 of Algorithm 27). Then one target clause Cl at a

298 Structure Learning

time is added from the list TC . After each addition, parameter learning with
EMBLEM is run on the extended theory Th Y tClu and the LL LL1 of the
data is used as the score of the resulting theory Th1. If LL1 is better than the
current best, the clause is kept in the theory; otherwise, it is discarded (lines
31–34). This is done for each clause in TC .

Finally, SLIPCOVER adds all the (background) clauses from the list
BC to the theory composed of target clauses only (line 36) and performs
parameter learning on the resulting theory (line 37). The clauses that are
never used to derive the examples will get a value of 0 for the parameters
of the atoms in their head and will be removed in a post-processing phase.

In the following, we provide a detailed description of the two support
functions for the first phase, the search in the space of clauses.

10.5.2.1 Function INITIALBEAMS

Algorithm 28 shows how the initial set of beams IB , one for each predicate P
(with arity Ar) appearing in a modeh declaration, is generated by building a
set of bottom clauses as in Progol, see Section 10.1. The algorithm outputs the
initial clauses that will be then refined by Function CLAUSEREFINEMENTS.

In order to generate a bottom clause for a mode declaration modehpr, sq
specified in the language bias, an input mega-example I is selected and an
answer h for the goal schemapsq is selected, where schemapsq denotes the
literal obtained from s by replacing all placemarkers with distinct variables
X1, . . . , Xn (lines 5–9 of Algorithm 28). The mega-example and the atom h
are both randomly sampled with replacement, the former from the available
set of training mega-examples and the latter from the set of all answers
found for the goal schemapsq in the mega-example. Each of these answers
represents a positive example.

Then h is saturated using Algorithm 25 modified so that, when a term
in an answer substitution (line 17) corresponds to a ´#type argument, it
is added to InTerms as for ´type arguments. Moreover, when replacing
constants with variables, terms corresponding to ´# placemarkers are kept
in the clause as for # placemarker. This is useful when we want to test the
equality of the value of an argument with a constant but we also want to
retrieve other atoms related to that constant.

The initial beam Beam associated with predicate P{Ar of h contains the
clause with empty body h : 0.5 Ð true for each bottom clause of the form
h :´ b1, . . . , bm (lines 10 and 11 of Algorithm 28). This process is repeated
for a number NInt of input mega-examples and a number NA of answers,
thus obtaining NInt ¨NA bottom clauses.

10.5 SLIPCOVER 299

The generation of a bottom clause for a mode declaration
m “ modehpr, rs1, . . . , sns, ra1, . . . , ans, rP1{Ar1, . . . , Pk{Arksq

is the same except for the fact that the goal to call is composed of more than
one atom. In order to build the head, the goal a1, . . . , an is called and NA
answers that ground all ais are kept (lines 15–19). From these, the set of input
terms InTerms is built and body literals are found by Function SATURATION
(line 20 of Algorithm 28) as above. The resulting bottom clauses then have
the form

a1 ; . . . ; an Ð b1, . . . , bm

and the initial beam Beam will contain clauses with an empty body of the
form

a1 :
1

n` 1
; . . . ; an :

1

n` 1
Ð true.

Finally, the set of the beams for each predicate P is returned to Function
SLIPCOVER.

Algorithm 28 Function INITIALBEAMS.
1: function INITIALBEAMS(NInt ,NS ,NA)
2: IB ÐH

3: for all predicates P {Ar do
4: BeamÐ rs

5: for all modeh declarations modehpr, sq with P {Ar predicate of s do
6: for i “ 1 Ñ NInt do
7: select randomly a mega-example I
8: for j “ 1 Ñ NA do
9: select randomly an atom h from I matching schemapsq
10: bottom clause BC ÐSATURATION(h, r,NS), let BC be Head :´ Body
11: BeamÐ rph : 0.5 Ð true,Body,´8q|Beams
12: end for
13: end for
14: end for
15: for all modeh declarations modehpr, rs1, . . . , sns, ra1, . . . , ans, PLq with P {Ar in PL

appearing in s1, . . . , sn do
16: for i “ 1 Ñ NInt do
17: select randomly a mega-example I
18: for j “ 1 Ñ NA do
19: select randomly a set of atoms h1, . . . , hn from I matching a1, . . . , an
20: bottom clause BC ÐSATURATION(ph1, . . . , hnq, r,NS), let BC be

Head :´ Body
21: BeamÐ rpa1 : 1

n`1
; . . . ; an : 1

n`1
Ð true,Body,´8q|Beams

22: end for
23: end for
24: end for
25: IB Ð IB Y tpP {Ar,Beamqu
26: end for
27: return IB
28: end function

300 Structure Learning

10.5.2.2 Beam Search with Clause Refinements
SLIPCOVER then performs a cycle over each predicate, either target or
background (line 5 of Algorithm 27): in each iteration, it runs a beam search
in the space of clauses for the predicate (line 9).

For each clause Cl in the beam, with Literals admissible in the body,
Function CLAUSEREFINEMENTS, shown in Algorithm 29, computes refine-
ments by adding a literal from Literals to the body or by deleting an atom
from the head in the case of multiple-head clauses with a number of disjuncts
(including the null atom) greater than 2. Furthermore, the refinements must
respect the input–output modes of the bias declarations, must be connected
(i.e., each body literal must share a variable with the head or a previous body
literal), and their number of variables must not exceed a user-defined number
NV . The couple (Cl 1, Literals 1) indicates a refined clause Cl 1 together with
the new set Literals 1 of literals allowed in the body of Cl 1; the tuple (Cl 1h,
Literals) indicates a specialized clause Cl 1 where one disjunct in its head has
been removed.

At line 13 of Algorithm 27, parameter learning is performed using
EMBLEM, see Section 9.4, on a theory composed of the single refined clause.

This clause is then inserted into a list of promising clauses: either into
TC , if a target predicate appears in its head, or into BC . The insertion is in
order of decreasing LL. If the clause is not range-restricted, i.e., if some of
the variables in the head do not appear in a positive literal in the body, then
it is not inserted in TC nor in BC . These lists have a maximum size: if an
insertion increases the size over the maximum, the last element is removed. In
Algorithm 27, Function INSERT(I,Score,List , N) is used to insert in order
a clause I with score Score in a List with at most N elements. Beam search
is repeated until the beam becomes empty or a maximum number NI of
iterations is reached.

The separate search for clauses has similarity with the covering loop of
ILP systems such as Aleph and Progol. Differently from ILP, however, the
test of an example requires the computation of all its explanations, while,
in ILP, the search stops at the first successful derivation. The only interaction
among clauses in PLP happens if the clauses are recursive. If not, then adding
clauses to a theory only adds explanations for the example – increasing its
probability – so clauses can be added individually to the theory. If the clauses
are recursive, the examples for the head predicates are used to resolve literals
in the body; thus, the test of examples on individual clauses approximates the
test on a complete theory.

10.5 SLIPCOVER 301

Algorithm 29 Function CLAUSEREFINEMENTS.
1: function CLAUSEREFINEMENTS(pCl ,Literalsq,NV)
2: Refs “ H, Nvar “ 0; Ź Nvar : number of different variables in a clause
3: for all b P Literals do
4: Literals 1 Ð Literalsztbu
5: add b to Cl body obtaining Cl 1

6: Nvar Ð number of Cl 1 variables
7: if Cl 1 is connected ^ Nvar ă NV then
8: Refs Ð Refs Y tpCl 1,Literals 1qu
9: end if
10: end for
11: if Cl is a multiple-head clause then Ź It has 3 or more disjuncts including the null atom
12: remove one atom from Cl head obtaining Cl 1h Ź Not the null atom
13: adjust the probabilities on the remaining head atoms
14: Refs Ð Refs Y tpCl 1h,Literals 1qu
15: end if
16: return Refs
17: end function

10.5.3 Execution Example

We now show an example of execution on the UW-CSE dataset [Kok
and Domingos, 2005] that describes the Computer Science Department
of the University of Washington with 22 different predicates, such as
advisedby/2, yearsinprogram/2, and taughtby/3. The aim is to
predict the predicate advisedby/2, namely, the fact that a person (student)
is advised by another person (professor).

The language bias contains modeh declarations for two-head clauses
such as

modeh(*,advisedby(+person,+person)).

and modeh declarations for multi-head clauses such as

modeh(*,[advisedby(+person,+person),
tempadvisedby(+person,+person)],
[advisedby(A,B),tempadvisedby(A,B)],
[professor/1,student/1,hasposition/2,inphase/2,
publication/2,

taughtby/3,ta/3,courselevel/2,yearsinprogram/2]).

modeh(*,[student(+person),professor(+person)],
[student(P),professor(P)],
[hasposition/2,inphase/2,taughtby/3,ta/3,
courselevel/2,

yearsinprogram/2,advisedby/2,tempadvisedby/2]).

302 Structure Learning

modeh(*,[inphase(+person,pre_quals),inphase
(+person,post_quals),

inphase(+person,post_generals)],
[inphase(P,pre_quals),inphase(P,post_quals),
inphase(P,post_generals)],
[professor/1,student/1,taughtby/3,ta/3,courselevel/2,
yearsinprogram/2,advisedby/2,tempadvisedby/2,
hasposition/2]).

Moreover, the bias contains modeb declarations such as

modeb(*,courselevel(+course, -level)).
modeb(*,courselevel(+course, #level)).

An example of a two-head bottom clause that is generated from the
first modeh declaration and the example advisedby(person155,
person101) is

advisedby(A,B):0.5 :- professor(B),student(A),
hasposition(B,C),

hasposition(B,faculty),inphase(A,D),inphase
(A,pre_quals),

yearsinprogram(A,E),taughtby(F,B,G),taughtby(F,B,H),
taughtby(I,B,J), taughtby(I,B,J),taughtby(F,B,G),
taughtby(F,B,H),
ta(I,K,L),ta(F,M,H),ta(F,M,H),ta(I,K,L),ta(N,K,O),

ta(N,A,P),
ta(Q,A,P),ta(R,A,L),ta(S,A,T),ta(U,A,O),ta(U,A,O),

ta(S,A,T),
ta(R,A,L),ta(Q,A,P),ta(N,K,O),ta(N,A,P),ta(I,K,L),

ta(F,M,H).

An example of a multi-head bottom clause generated from the second modeh
declaration and the examples

student(person218).
professor(person218).

is

student(A):0.33; professor(A):0.33 :-
inphase(A,B),
inphase(A,post_generals),
yearsinprogram(A,C).

10.6 Examples of Datasets 303

When searching the space of clauses for the advisedby/2 predicate, an
example of a refinement from the first bottom clause is

advisedby(A,B):0.5 :- professor(B).

EMBLEM is then applied to the theory composed of this single clause, using
the positive and negative facts for advisedby/2 as queries for which to
build the BDDs. The single parameter is updated obtaining:

advisedby(A,B):0.108939 :- professor(B).

The clause is further refined to

advisedby(A,B):0.108939 :- professor(B),
hasposition(B,C).

An example of a refinement that is generated from the second bottom clause is

student(A):0.33; professor(A):0.33 :-
inphase(A,B).

The updated refinement after EMBLEM is

student(A):0.5869;professor(A):0.09832 :-
inphase(A,B).

When searching the space of theories for the target predicate advisedby,
SLIPCOVER generates the program:

advisedby(A,B):0.1198 :- professor(B),
inphase(A,C).

advisedby(A,B):0.1198 :- professor(B),student(A).

with an LL of -350.01. After EMBLEM, we get:

advisedby(A,B):0.05465 :- professor(B),
inphase(A,C).

advisedby(A,B):0.06893 :- professor(B),
student(A).

with an LL of -318.17. Since the LL decreased, the last clause is retained and
at the next iteration, a new clause is added:

advisedby(A,B):0.12032 :- hasposition(B,C),
inphase(A,D).

advisedby(A,B):0.05465 :- professor(B),
inphase(A,C).

advisedby(A,B):0.06893 :- professor(B),student(A).

304 Structure Learning

10.6 Examples of Datasets

PILP systems have been applied to many datasets. Some of them are:

• UW-CSE [Kok and Domingos, 2005]: see Section 10.5.3.
• Mutagenesis [Srinivasan et al., 1996]: a classic ILP benchmark dataset

for Quantitative Structure-Activity Relationship (QSAR), i.e., predicting
the biological activity of chemicals from their physicochemical prop-
erties or molecular structure. In this case, the goal is to predict the
mutagenicity (a property correlated with cancerogenicity) of compounds
from their chemical structure.
• Carcinogenesis [Srinivasan et al., 1997]: another classic ILP benchmark

dataset for QSAR where the goal is to predict the cancerogenicity of
compounds from their chemical structure.
• Mondial [Schulte and Khosravi, 2012]: a dataset containing information

regarding geographical regions of the world, including population size,
political system, and the country border relationship.
• Hepatitis [Khosravi et al., 2012]: a dataset derived from the Discovery

Challenge Workshop of ECML/PKDD 2002 containing information on
laboratory examinations of hepatitis B and C infected patients. The goal
is to predict the type of hepatitis of a patient.
• Bupa [McDermott and Forsyth, 2016]: diagnosing patients with liver

disorders.
• NBA [Schulte and Routley, 2014]: predicting the results of basketball

matches from NBA.
• Pyrimidine, Triazine [Layne and Qiu, 2005]: QSAR datasets for pre-

dicting the inhibition of dihydrofolate reductase by pyrimidines and
triazines, respectively.
• Financial [Berka, 2000]: predicting the success of loan applications by

clients of a bank.
• Sisyphus [Blockeel and Struyf, 2001]: a dataset regarding clients of an

insurance business, the aim is to classify households and persons in
relation to private life insurance.
• Yeast [Davis et al., 2005]: predicting whether a yeast gene codes for a

protein involved in metabolism.
• Event Calculus [Schwitter, 2018]: learning effect axioms for the Event

Calculus [Kowalski and Sergot, 1986].

11
cplint Examples

This chapter shows some examples of programs and how the cplint system
can be used to reason on them.

11.1 cplint Commands

cplint uses two Prolog modules for performing inference, pita for exact
inference with PITA (see Section 5.6) and mcintyre for approximate
inference with MCINTYRE (see Section 7.2). We present here the predicates
provided by these two modules.

The unconditional probability of an atom can be asked using pita with
the predicate

prob(+Query:atom,-Probability:float).

where + and - mean that the argument is input or output, respectively, and
the annotation of arguments after the colon indicates their type.

The conditional probability of a query atom given an evidence atom can
be asked with the predicate

prob(+Query:atom,+Evidence:atom,-Probability:float).

The BDD representing the explanations for the query atom can be
obtained with the predicate

bdd_dot_string(+Query:atom,-BDD:string,-Var:list).

that returns a string encoding the BDD in the dot format of Graphviz
[Koutsofios et al., 1991]. See Section 11.3 for an example of use.

With mcintyre, the unconditional probability of a goal can be com-
puted by taking a given number of samples using the predicate

mc_sample(+Query:atom,+Samples:int,-Probability:float).

305

306 cplint Examples

Moreover, the following predicate samples arguments of queries:

mc_sample_arg(+Query:atom,+Samples:int,?Arg:var,-Values:list).

where ? means that the argument must be a variable. The predicate samples
Query Samples times. Arg must be a variable in Query. The predicate
returns a list of couples L-N in Values where L is the list of all values
of Arg for which Query succeeds in a world sampled at random and N is
the number of samples returning that list of values. If L is the empty list,
it means that for that sample, the query failed. If L is a list with a single
element, it means that for that sample, the query is determinate. If, in all
couples L-N, L is a list with a single element, it means that the program
satisfies the exclusive-or assumption.

The version

mc_sample_arg_first(+Query:atom,+Samples:int,?Arg:var,
-Values:list).

also samples arguments of queries but just returns the first answer of the query
for each sampled world.

Conditional queries can be asked with rejection sampling or Metropolis-
Hastings MCMC. In the first case, the predicate is:

mc_rejection_sample(+Query:atom,+Evidence:atom,
+Samples:int,-Successes:int,-Failures:int,
-Probability:float).

In the latter case, the predicate is

mc_mh_sample(+Query:atom,+Evidence:atom,Samples:int,
+Lag:int,-Successes:int,-Failures:int,-Probability:float).

Moreover, the arguments of the queries can be sampled with rejection
sampling and Metropolis-Hastings MCMC using

mc_rejection_sample_arg(+Query:atom,+Evidence:atom,
+Samples:int,?Arg:var,-Values:list).

mc_mh_sample_arg(+Query:atom,+Evidence:atom,
+Samples:int,+Lag:int,?Arg:var,-Values:list).

Expectations can be computed with

mc_expectation(+Query:atom,+Samples:int,?Arg:var,-Exp:float).

that returns the expected value of the argument Arg in Query computed by
sampling.

11.1 cplint Commands 307

The predicate

mc_mh_expectation(+Query:atom,+Evidence:atom,+Samples:int,
+Lag:int,?Arg:var,-Exp:float).

computes conditional expectations using Metropolis-Hastings MCMC.
The cplint on SWISH web application [Riguzzi et al., 2016a; Alberti

et al., 2017] allows the user to write and run probabilistic programs online.
It is based on the SWISH [Wielemaker et al., 2015] web front-end for SWI-
Prolog. cplint on SWISH also adds graphics capabilities to cplint: the
results of sampling arguments can be rendered as bar charts. All the predicates
shown above have a form with an extra last argument +Options that accepts
a list of terms specifying options. If the option bar(-Chart:dict) is
used, the predicate returns in Chart an SWI-Prolog dictionary to be rendered
with C3.js1 as a bar chart. For example, the query

?- mc_sample_arg(reach(s0,0,S),50,S,ValList,[bar(Chart)]).

from http://cplint.eu/e/markov chain.pl returns a chart with a bar for each
possible sampled value whose size is the number of samples returning that
value.

When the program has continuous random variables, the user can build a
probability density of the sampled argument. When the evidence is on ground
atoms with continuous values as arguments, the user needs to use likelihood
weighting or particle filtering (see Section 7.4).

The predicate

mc_lw_sample_arg(+Query:atom,+Evidence:atom,+Samples:int,
?Arg:var,-ValList:list).

returns in ValList a list of couples V-W where V is a value of Arg
for which Query succeeds and W is the weight computed by likelihood
weighting according to Evidence.

In particle filtering, the evidence is a list of atoms. The predicate

mc_particle_sample_arg(+Query:atom,+Evidence+term,
+Samples:int,?Arg:var,-Values:list).

samples the argument Arg of Query using particle filtering given
Evidence. Evidence is a list of goals and Query can be either a single
goal or a list of goals.

1http://c3js.org/

308 cplint Examples

The samples obtained can be used to draw the probability density function
of the argument. The predicate
histogram(+List:list,-Chart:dict,+Options:list)

takes a list of weighted samples and draws a histogram of the samples using
C3.js in cplint on SWISH.

The predicate
density(+List:list,-Chart:dict,+Options:list)

draws a line chart of the density of the weighted samples in List.
In histogram/3 and density/3, the options can be used to specify

the bounds and the number of bins on the X-axis.
The predicate

densities(+PriorList:list,+PostList:list,-Chart:dict,+Options:
list)

draws a line chart of the density of two sets of samples, usually prior and post
observations. The same options as for histogram/3 and density/3 are
recognized.

For example, the query
?- mc_sample_arg(val(0,X),1000,X,L0,[]),histogram(L0,Chart,[]).

from http://cplint.eu/e/gauss mean est.pl takes 1000 samples of argument X
of val(0,X) and draws the density of the samples using an histogram.

For discrete arguments, the predicate
argbar(+Values:list,-Chart:dict)

returns a bar chart with a bar for each value, where Values is a list of
couples V-N with V the value and N the number of samples returning that
value.

The predicates density_r/1, densities_r/2, histogram_r/2,
and argbar_r/1 are the counterparts of those above for drawing graphs in
cplint on SWISH using the R language for statistical computing2.

EMBLEM (see Section 9.4) can be run with the predicate
induce_par(+ListOfFolds:list,-Program:list)

that induces the parameters of a program starting from the examples con-
tained in the indicated folds (groups of examples). The predicate
induce(+ListOfFolds:list,-Program:list)

instead induces a program using SLIPCOVER (see Section 10.5).

2https://www.r-project.org/

11.2 Natural Language Processing 309

The induced programs can be tested on a set of folds with

test(+Program:list,+ListOfFolds:list,-LL:float,
-AUCROC:float,-ROC:list,-AUCPR:float,-PR:list)

that returns the log likelihood of the test example (LL), the ROC and precision
recall curves (ROC and PR) for rendering with C3.js, and the areas under the
curves (AUCROC and AUCPR) that are standard metrics for the evaluation of
machine learning algorithms [Davis and Goadrich, 2006].

Predicate test_r/5 is similar to test/7 but plots the graphs using R.

11.2 Natural Language Processing

In Natural Language Processing (NLP), a common task is checking whether
a sentence respects a grammar. Another common task is tagging each word
of a sentence with a Part-of-Speech (POS) tag. For NLP, the grammars that
are used in the theory of formal languages such as context-free grammars or
left corner grammars don’t work well because the rules are too strict. Natural
language is more flexible and is characterized by many exceptions to rules.
To model natural language, probabilistic versions of the grammars above have
been developed, such as Probabilistic Context-Free Grammar or Probabilistic
Left Corner Grammar (PLCG). Similarly, for POS tagging, statistical tools
such as HMMs give good results. These models can all be encoded with PLP
[Riguzzi et al., 2017b].

11.2.1 Probabilistic Context-Free Grammars

A PCFG consists of:

1. A context-free grammar G “ pN,Σ, I, Rq where N is a finite set of
non-terminal symbols, Σ is a finite set of terminal symbols, I P N is
a distinguished start symbol, and R is a finite set of rules of the form
X Ñ Y1, . . . , Yn, where X P N and Yi P pN Y Σq.

2. A parameter θ for each rule α Ñ β P R. Therefore, we have
probabilistic rules of the form θ : αÑ β

This kind of model can be represented by PLP. For instance, consider the
PCFG

0.2 : S Ñ aS
0.2 : S Ñ bS
0.3 : S Ñ a
0.3 : S Ñ b,

where N is tSu and Σ is ta, bu.

310 cplint Examples

The program http://cplint.eu/e/pcfg.pl (adapted from [Sato and Kubota,
2015]) computes the probability of strings using top-down parsing:

pcfg(L):- pcfg([’S’],[],_Der,L,[]).
pcfg([A|R],Der0,Der,L0,L2):-

rule(A,Der0,RHS),
pcfg(RHS,[rule(A,RHS)|Der0],Der1,L0,L1),
pcfg(R,Der1,Der,L1,L2).

pcfg([A|R],Der0,Der,[A|L1],L2):-
\+ rule(A,_,_),
pcfg(R,Der0,Der,L1,L2).

pcfg([],Der,Der,L,L).
rule(’S’,Der,[a,’S’]):0.2; rule(’S’,Der,[b,’S’]):0.2;
rule(’S’,Der,[a]):0.3; rule(’S’,Der,[b]):0.3.

In this example, if we want to ask the probability of the string abaa using
exact inference, we can use the query ?- prob(pcfg([a,b,a,a]),
Prob).We obtain the value 0.0024. In this case, the grammar is not ambigu-
ous so there exists only one derivation with probability 0.2 ¨ 0.2 ¨ 0.2 ¨ 0.3 “
0.0024.

11.2.2 Probabilistic Left Corner Grammars

A PLCG is a probabilistic version of a left-corner grammar which uses the
same set of rules as a PCFG. Whereas PCFGs assume top-down parsing,
PLCGs are based on bottom-up parsing. PLCGs set probabilities to three
elementary operations in bottom-up parsing, i.e., shift, attach and project,
rather than to expansion of non-terminals. As a result, they define a class of
distributions different from that of PCFGs.

Programs for PLCGs look very different from those for PCFGs. Consider
the PLCG with the rules

S Ñ SS
S Ñ a
S Ñ b

The program http://cplint.eu/e/plcg.pl (adapted from Sato et al. [2008]) below
encodes such a grammar:

plc(Ws) :- g_call([’S’],Ws,[],[],_Der).
g_call([],L,L,Der,Der).
g_call([G|R], [G|L],L2,Der0,Der) :- % shift

terminal(G),

11.2 Natural Language Processing 311

g_call(R,L,L2,Der0,Der).
g_call([G|R], [Wd|L],L2,Der0,Der) :-

\+ terminal(G), first(G,Der0,Wd),
lc_call(G,Wd,L,L1,[first(G,Wd)|Der0],Der1),
g_call(R,L1,L2,Der1,Der).

lc_call(G,B,L,L1,Der0,Der) :- % attach
lc(G,B,Der0,rule(G, [B|RHS2])),
attach_or_project(G,Der0,attach),
g_call(RHS2,L,L1,[lc(G,B,rule(G, [B|RHS2])),

attach|Der0],Der).
lc_call(G,B,L,L2,Der0,Der) :- % project

lc(G,B,Der0,rule(A, [B|RHS2])),
attach_or_project(G,Der0,project),
g_call(RHS2,L,L1,[lc(G,B,rule(A, [B|RHS2])),

project|Der0],Der1),
lc_call(G,A,L1,L2,Der1,Der).

lc_call(G,B,L,L2,Der0,Der) :-
\+ lc(G,B,Der0,rule(G,[B|_])),
lc(G,B,Der0,rule(A, [B|RHS2])),
g_call(RHS2,L,L1,[lc(G,B,rule(A, [B|RHS2]))|Der0],

Der1),
lc_call(G,A,L1,L2,Der1,Der).

attach_or_project(A,Der,Op) :-
lc(A,A,Der,_), attach(A,Der,Op).

attach_or_project(A,Der,attach) :-
\+ lc(A,A,Der,_).

lc(’S’,’S’,_Der,rule(’S’,[’S’,’S’])).
lc(’S’,a,_Der,rule(’S’,[a])).
lc(’S’,b,_Der,rule(’S’,[b])).
first(’S’,Der,a):0.5; first(’S’,Der,b):0.5.
attach(’S’,Der,attach):0.5; attach(’S’,Der,project):0.5.
terminal(a). terminal(b).

If we want to know the probability that the string ab is generated by the
grammar, we can use the query ?- mc prob(plc([a,b]),P). and
obtain « 0.031.

11.2.3 Hidden Markov Models

HMMs (see Example 65) can be used for POS tagging: words can be con-
sidered as output symbols and a sentence as the sequence of output symbols
emitted by an HMM. In this case, the states are POS tags and the sequence

312 cplint Examples

of states that most probably originated the sequence of output symbols is the
POS tagging of the sentence. So we can perform POS tagging by solving an
MPE task.

Program http://cplint.eu/e/hmmpos.pl (adapted from [Lager, 2018; Nivre,
2000; Sato and Kameya, 2001]) encodes a simple HMM where the output
probabilities are set to 1 (for every state, there is only one possible output).
The assumption is that a POS of a word depends only on the POS of the
preceding word (or on the start state in case there is no preceding word). The
program is:

hmm(O):-hmm(_,O).
hmm(S,O):-

trans(start,Q0,[]),hmm(Q0,[],S0,O),reverse(S0,S).
hmm(Q,S0,S,[L|O]):-

trans(Q,Q1,S0),
out(L,Q,S0),
hmm(Q1,[Q|S0],S,O).

hmm(_,S,S,[]).
trans(start,det,_):0.30; trans(start,aux,_):0.20;

trans(start,v,_):0.10; trans(start,n,_):0.10;
trans(start,pron,_):0.30.

trans(det,det,_):0.20; trans(det,aux,_):0.01;
trans(det,v,_):0.01; trans(det,n,_):0.77;
trans(det,pron,_):0.01.

trans(aux,det,_):0.18; trans(aux,aux,_):0.10;
trans(aux,v,_):0.50; trans(aux,n,_):0.01;
trans(aux,pron,_):0.21.

trans(v,det,_):0.36; trans(v,aux,_):0.01;
trans(v,v,_):0.01; trans(v,n,_):0.26; trans(v,pron,_)

:0.36.
trans(n,det,_):0.01; trans(n,aux,_):0.25; trans(n,v,_)

:0.39;
trans(n,n,_):0.34; trans(n,pron,_):0.01.

trans(pron,det,_):0.01; trans(pron,aux,_):0.45;
trans(pron,v,_):0.52; trans(pron,n,_):0.01;
trans(pron,pron,_):0.01.

out(a,det,_).
out(can,aux,_).
out(can,v,_).
out(can,n,_).
out(he,pron,_).

11.3 Drawing Binary Decision Diagrams 313

For instance, we may want to know the most probable POS sequence for the
sentence “he can can a can.” By using the query

?- mc_sample_arg(hmm(S,[he,can,can,a,can]),100,S,O).

we obtain that the sequence [pron, aux, v, det, n] appears most
frequently in O.

11.3 Drawing Binary Decision Diagrams

Example 87 models the development of an epidemic or a pandemic and is
http://cplint.eu/e/epidemic.pl:

epidemic:0.6; pandemic:0.3 :- flu(_), cold.
cold : 0.7.
flu(david).
flu(robert).

In order to compute the probability that a pandemic arises, we can call the
query:

?- prob(pandemic,Prob).

The corresponding BDD can be obtained with:

?- bdd_dot_string(pandemic,BDD,Var).

The call returns the BDD in the form of a graph in the dot format of
Graphviz that the cplint on SWISH system renders and visualizes as
shown in Figure 11.1. Moreover, the call returns in Var a data structure
encoding Table 11.1 that associates multivalued variable indexes with ground
instantiations of rules.

The BDD built by CUDD differs from those introduced in Section 5.3
because edges to 0-children can be negated, i.e., the function encoded by the
0-child is negated before being used in the parent node. Negated edges to 0-
children are represented in the graph by dotted arcs, while edges to 1-children
and regular edges to 0-children with solid and dashed arcs, respectively.
Moreover, the output of the BDD can be negated as well, indicated by a dotted
arc connecting an Out node to the root of the diagram, as in Figure 11.1.
CUDD uses this form of BDDs for computational reasons, for example,
negation is very cheap, as it just requires changing the type of an edge.

Each level of the BDD is associated with a variable of the form Xi k
indicated on the left: i indicates the multivalued variable index and k the index
of the Boolean variable. The association between the multivalued variables

314 cplint Examples

Figure 11.1 BDD for query pandemic in the epidemic.pl example, drawn using the
CUDD function for exporting the BDD to the dot format of Graphviz.

Table 11.1 Associations between variable indexes and ground rules
Multivalued Variable Index Rule Index Grounding Substitution
0 1 []
1 0 [david]
2 0 [robert]

and the clause groundings is encoded in the Var argument. For example,
multivalued variable with index 1 is associated with the rule with index 0
(the first rule of the program) with grounding _/david and is encoded with
two Boolean variables, X1 0 and X1 1, since it can take three values. The
hexadecimal numbers in the nodes are part of their memory address and are
used to uniquely identify nodes.

11.4 Gaussian Processes

A Gaussian Process (GP) defines a probability distribution over functions
[Bishop, 2016, Section 6.4]. This distribution has the property that, given N
values, their image through a function sampled from the Gaussian process
follows a multivariate normal with N dimensions, mean 0, and covariance

11.4 Gaussian Processes 315

matrix K. In other words, if function fpxq is sampled from a Gaussian
process, then, for any finite selection of points X “ tx1, . . . ,xNu, the
density is

ppfpx1q, . . . , fpxN qq “ N p0,Kq,
i.e., it is a Gaussian with mean 0 and covariance matrix K. A GP is defined
by a kernel function k that determines K as Kij “ kpxi,xjq.

GPs can be used for regression: the random functions predict the y value
corresponding to a x value using the model

y “ fpxq ` ε

where ε is a random noise variable with variance s2.
Given sets (columns vectors) X“px1, . . . , xN qT and Y “ py1, . . . , yN qT

of observed values, the task is to predict the y value for a new point x. It can
be proved [Bishop, 2016, Equations (6.66) and (6.67)] that y is Gaussian
distributed with mean and variance

µ “ kTC´1Y (11.1)

σ2 “ kpx, xq ´ kTC´1k (11.2)

where k is the column vector with elements kpxi, xq and C has elements
Cij “ kpxi, xjq ` s2δij , with s2 user defined (the variance that is assumed
for the random noise in the linear regression model) and δij the Kronecker
function (δij “ 1 if i “ j and 0 otherwise). So C “ K` s2I and C “ K if
s2 “ 0.

A popular choice of kernel is the squared exponential

kpx, x1q “ σ2 exp

„

´px´ x1q2

2l2



with parameters σ and l. The user can define a prior distribution over the
parameters instead of choosing particular values. In the case, the kernel itself
is a random function and the predictions of regression will be random as well.

The program below (http://cplint.eu/e/gpr.pl) can sample kernels (and
thus functions) and compute the expected value of the predictions for
a squared exponential kernel (defined by predicate sq_exp_p/3) with
parameter l uniformly distributed in 1, 2, 3 and σ uniformly distributed in
r´2, 2s.

Goal gp(X,Kernel,Y), given a list of values X and a kernel name,
returns in Y the list of values fpxq where x belongs to X and f is a function
sampled from the Gaussian process.

316 cplint Examples

Goal compute_cov(X,Kernel,Var,C) returns in C the matrix C
defined above with Var=s2. It is called by gp/3 with Var=0 in order to
return K

gp(X,Kernel,Y) :-
compute_cov(X,Kernel,0,C),
gp(C,Y).

gp(Cov,Y):gaussian(Y,Mean,Cov):-
length(Cov,N),
list0(N,Mean).

compute_cov(X,Kernel,Var,C) :-
length(X,N),
cov(X,N,Kernel,Var,CT,CND),
transpose(CND,CNDT),
matrix_sum(CT,CNDT,C).

cov([],_,_,_,[],[]).
cov([XH|XT],N,Ker,Var,[KH|KY],[KHND|KYND]) :-

length(XT,LX),
N1 is N-LX-1,
list0(N1,KH0),
cov_row(XT,XH,Ker,KH1),
call(Ker,XH,XH,KXH0),
KXH is KXH0+Var,
append([KH0,[KXH],KH1],KH),
append([KH0,[0],KH1],KHND),
cov(XT,N,Ker,Var,KY,KYND).

cov_row([],_,_,[]).
cov_row([H|T],XH,Ker,[KH|KT]) :-

call(Ker,H,XH,KH),
cov_row(T,XH,Ker,KT).

sq_exp_p(X,XP,K) :-
sigma(Sigma),
l(L),
K is Sigmaˆ2*exp(-((X-XP)ˆ2)/2/(Lˆ2)).

l(L):uniform(L,[1,2,3]).

sigma(Sigma):uniform(Sigma,-2,2).

Here list0(N,L) is true if L is a list with N elements all 0. This program
exploits the possibility offered by cplint of defining multivariate Gaussian
distributions.

11.4 Gaussian Processes 317

gp_predict(XP,Kernel,Var,XT,YT,YP), given the points
described by the lists XT and YT, a kernel, and a list of points XP, predicts y
values of points with x values in XP and returns them in YP. The predictions
are the mean of y given by Equation (11.1), with Var being the s2 parameter:

gp_predict(XP,Kernel,Var,XT,YT,YP) :-
compute_cov(XT,Kernel,Var,C),
matrix_inversion(C,C_1),
transpose([YT],YST),
matrix_multiply(C_1,YST,C_1T),
gp_predict_single(XP,Kernel,XT,C_1T,YP).

gp_predict_single([],_,_,_,[]).
gp_predict_single([XH|XT],Kernel,X,C_1T,[YH|YT]) :-
compute_k(X,XH,Kernel,K),
matrix_multiply([K],C_1T,[[YH]]),
gp_predict_single(XT,Kernel,X,C_1T,YT).

compute_k([],_,_,[]).
compute_k([XH|XT],X,Ker,[HK|TK]) :-
call(Ker,XH,X,HK),
compute_k(XT,X,Ker,TK).

Since the kernel here is random, the predictions of gp_predict/6 will be
random as well.

By calling the query

?- numlist(0,10,X),
mc_sample_arg_first(gp(X,sq_exp_p,Y),5,Y,L).

we get five functions sampled from the Gaussian process with a squared
exponential kernel at points X “ r0, ..., 10s. An example of output is shown
in Figure 11.2.

The query

?- numlist(0,10,X),
XT=[2.5,6.5,8.5],
YT=[1,-0.8,0.6],
mc_lw_sample_arg(gp_predict(X,sq_exp_p,

0.3,XT,YT,Y),gp(XT,Kernel,YT),5,Y,L).

draws five functions with a squared exponential kernel predicting points
with X values in r0, . . . , 10s given the three couples of points XT “

r2.5, 6.5, 8.5s, Y T “ r1,´0.8, 0.6s. The graph of Figure 11.3 shows three
of the functions together with the given points.

318 cplint Examples

Figure 11.2 Functions sampled from a Gaussian process with a squared exponential kernel
in gpr.pl.

Figure 11.3 Functions from a Gaussian process predicting points with X “ r0, . . . , 10s
with a squared exponential kernel in gpr.pl.

11.5 Dirichlet Processes

A Dirichlet Process (DP) [Teh, 2011] is a probability distribution whose
range is itself a set of probability distributions. The DP is specified by a
base distribution, which represents the expected value of the process. When
sampling from a distribution in turn sampled from a DP, new samples have
a non-zero probability of being equal to already sampled values. The process
depends on a parameter α, called concentration parameter: with α Ñ 0 a
single value is sampled; with α Ñ 8, the distribution is equal to the base
distribution. A DP with base distribution H and concentration parameter α
is indicated with DPpH,αq. A sample from DPpH,αq is a distribution P .

11.5 Dirichlet Processes 319

We are interested in sampling values from P . With abuse of terminology, we
say that these values are sampled from the DP. There are several equivalent
views of the DP, we present two of them in the following.

11.5.1 The Stick-Breaking Process

Example http://cplint.eu/e/dirichlet process.pl encodes a view of DPs called
stick-breaking process.

In this view, the procedure for sampling values from DPpH,αq can be
described as follows. To sample the first value, a sample β1 is taken from the
beta distribution Betap1, αq and a coin with heads probability equal to β1 is
flipped. If the coin lands on heads, a sample x1 from the base distribution is
taken and returned. Otherwise, a sample β2 is taken again from Betap1, αq
and a coin is flipped. This procedure is repeated until heads are obtained, the
index i of βi being the index of the value xi to be returned. The following
values are sampled in a similar way, with the difference that, if for an index
i, values xi and βi were already sampled, that value is returned.

This view is called stick-breaking because we can see the process as
starting with a stick of length 1 which is progressively broken: first a piece
β1 long is broken off, then a piece β2 long is broken off from the remaining
piece, and so on. The length of the i-th piece is therefore

i´1
ź

k“1

p1´ βkqβi

and indicates the probability that the i-th sample xi from the base distribution
is returned. The smaller α is, the more probable high values of βi are and the
more often already sampled values are returned, yielding a more concentrated
distribution.

In the example below, the base distribution is a Gaussian with
mean 0 and variance 1, N p0, 1q. The distribution of values is han-
dled by predicates dp_value(NV,Alpha,V), which returns (in V) the
NV-th sample from the DP with concentration parameter Alpha, and
dp_n_values(N0,N,Alpha,L), which returns in L a list of N-N0
samples from the DP with concentration parameter Alpha.

The distribution of indexes is handled by predicate
dp_stick_index/4.

dp_value(NV,Alpha,V) :-
dp_stick_index(NV,Alpha,I),
dp_pick_value(I,V).

320 cplint Examples

dp_pick_value(_,V):gaussian(V,0,1).

dp_stick_index(NV,Alpha,I) :-
dp_stick_index(1,NV,Alpha,I).

dp_stick_index(N,NV,Alpha,V) :-
stick_proportion(N,Alpha,P),
choose_prop(N,NV,Alpha,P,V).

choose_prop(N,NV,_Alpha,P,N) :-
pick_portion(N,NV,P).

choose_prop(N,NV,Alpha,P,V) :-
neg_pick_portion(N,NV,P),
N1 is N+1,
dp_stick_index(N1,NV,Alpha,V).

stick_proportion(_,Alpha,P):beta(P,1,Alpha).

pick_portion(_,_,P):P;neg_pick_portion(_,_,P):1-P.

dp_n_values(N,N,_Alpha,[]) :- !.

dp_n_values(N0,N,Alpha,[[V]-1|Vs]) :-
N0<N,
dp_value(N0,Alpha,V),
N1 is N0+1,
dp_n_values(N1,N,Alpha,Vs).

The query

?- mc_sample_arg(dp_stick_index(1,10.0,V),2000,V,L),
histogram(L,Chart,[nbins(100)]).

draws the density of indexes with concentration parameter 10 using 2000
samples (see Figure 11.4).

The query

?- mc_sample_arg_first(dp_n_values(0,2000,10.0,V),1,V,L),
L=[Vs-_],
histogram(Vs,Chart,[nbins(100)]).

draws the density of values over 2000 samples from a DP with concentration
parameter 10 (see Figure 11.5).

The query

?- hist_repeated_indexes(1000,100,G).

called over the program:

11.5 Dirichlet Processes 321

10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

200

Figure 11.4 Distribution of indexes with concentration parameter 10 for the stick-breaking
example dirichlet process.pl.

-6 -4 -2 0 2 4 6
0

50

100

150

200

250

300

350

400

Figure 11.5 Distribution of values with concentration parameter 10 for the stick-breaking
example dirichlet process.pl.

hist_repeated_indexes(Samples,NBins,Chart) :-
repeat_sample(0,Samples,L),
histogram(L,Chart,[nbins(NBins)]).

repeat_sample(S,S,[]) :- !.
repeat_sample(S0,S,[[N]-1|LS]) :-
mc_sample_arg_first(dp_stick_index(1,1,10.0,V),10,V,L),
length(L,N),
S1 is S0+1,
repeat_sample(S1,S,LS).

shows the distribution of the number of unique indexes over 10 samples from
a DP with concentration parameter 10 (see Figure 11.6).

322 cplint Examples

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
0

50

100

150

200

250

300

350

Figure 11.6 Distribution of unique indexes with concentration parameter 10 for the stick-
breaking example dirichlet process.pl.

11.5.2 The Chinese Restaurant Process

According to the Chinese restaurant view, a DP is a discrete-time stochastic
process, analogous to seating customers at tables in a Chinese restaurant.
When a new customer arrives at the restaurant, it is seated to a random table. It
can be an existing table, chosen with a probability proportional to the number
of clients already sitting at the table, or a new table, chosen with a probability
proportional to α.

Formally, a sequence of samples x1, x2, . . . is drawn as follows. x1 is
drawn from the base distribution (corresponding to a new table as no customer
is present). For n ą 1, let Xn “ tx1, . . . , xmu be the set of distinct values
previously sampled. xn is set to a value xi P Xn with probability ni

α`n´1

where ni is the number of previous observations xj , j ă n, such that xj “ xi

(seating at an existing table), and is drawn from the base distribution with
probability α

α`n´1 (seating at a new table). Since

m
ÿ

i“1

ni
α` n´ 1

`
α

α` n´ 1
“

n´ 1

α` n´ 1
`

α

α` n´ 1
“ 1

this is a valid sampling process.
In example http://cplint.eu/e/dp chinese.pl, the base distribution is a

Gaussian with mean 0 and variance 1. Counts are kept and updated by
predicate update_counts/5.

dp_n_values(N0,N,Alpha,[[V]-1|Vs],Counts0,Counts) :-
N0<N,

11.5 Dirichlet Processes 323

dp_value(N0,Alpha,Counts0,V,Counts1),
N1 is N0+1,
dp_n_values(N1,N,Alpha,Vs,Counts1,Counts).

dp_value(NV,Alpha,Counts,V,Counts1) :-
draw_sample(Counts,NV,Alpha,I),
update_counts(0,I,Alpha,Counts,Counts1),
dp_pick_value(I,V).

update_counts(_I0,_I,Alpha,[_C],[1,Alpha]) :- !.
update_counts(I,I,_Alpha,[C|Rest],[C1|Rest]) :-
C1 is C+1.

update_counts(I0,I,Alpha,[C|Rest],[C|Rest1]) :-
I1 is I0+1,
update_counts(I1,I,Alpha,Rest,Rest1).

draw_sample(Counts,NV,Alpha,I) :-
NS is NV+Alpha,
maplist(div(NS),Counts,Probs),
length(Counts,LC),
numlist(1,LC,Values),
maplist(pair,Values,Probs,Discrete),
take_sample(NV,Discrete,I).

take_sample(_,D,V):discrete(V,D).

dp_pick_value(_,V):gaussian(V,0,1).

div(Den,V,P) :- P is V/Den.

pair(A,B,A:B).

Here maplist/3 is a library predicate encoding the maplist primitive
of functional programming: maplist(Goal,List1,List2) is true if
Goal can be successfully applied to all couples of elements in the same
position in the two lists.

The query

?- mc_sample_arg_first(dp_n_values(0,2000,10.0,V,[10.0],_),
1,V,L),
L=[Vs-_],
histogram(Vs,100,Chart).

draws the density of values over 2000 samples from a DP with concentration
parameter 10. The resulting graph is similar to Figure 11.5.

324 cplint Examples

11.5.3 Mixture Model

DPs can be used as a prior probability distribution in infinite mixture models.
The objective is to build a mixture model without specifying in advance the
number k of components. In example http://cplint.eu/e/dp mix.pl, samples
are drawn from a mixture of normal distributions whose parameters are
defined by means of a DP. For each component, the variance is sampled from
a gamma distribution and the mean is sampled from a Gaussian with mean
0 and variance 30 times the variance of the component. The program in this
case is equivalent to the one encoding the stick-breaking example, except for
the dp_pick_value/3 predicate that is shown below:

dp_pick_value(I,NV,V) :-
ivar(I,IV),
Var is 1.0/IV,
mean(I,Var,M),
value(NV,M,Var,V).

ivar(_,IV):gamma(IV,1,0.1).

mean(_,V0,M):gaussian(M,0,V) :- V is V0*30.

value(_,M,V,Val):gaussian(Val,M,V).

Given a vector of observations obs([-1,7,3]), the queries

?- prior(1000,100,G).
?- post(1000,30,G).

called over the program

prior(Samples,NBins,Chart) :-
mc_sample_arg_first(dp_n_values(0,Samples,10.0,V),1,V,L),
L=[Vs-_],
histogram(Vs,Chart,[nbins(NBins)]).

post(Samples,NBins,Chart) :-
obs(O),
maplist(to_val,O,O1),
length(O1,N),
mc_lw_sample_arg_log(dp_value(0,10.0,T),
dp_n_values(0,N,10.0,O1),Samples,T,L),

maplist(keys,L,LW),
min_list(LW,Min),
maplist(exp(Min),L,L1),
histogram(L1,Chart,[nbins(NBins),min(-8),max(15)]).

11.6 Bayesian Estimation 325

keys(_-W,W).

exp(Min,L-W,L-W1) :- W1 is exp(W-Min).

to_val(V,[V]-1).

draw the prior and the posterior densities, respectively, using 200 samples
(Figures 11.7 and 11.8). Likelihood weighting is used because the evidence
involves values for continuous random variables. mc_lw_sample_arg_
log/5 differs from mc_lw_sample_arg/5 because it returns the natural
logarithm of the weights, useful when the evidence is very unlikely.

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Figure 11.7 Prior density in the dp mix.pl example.

-8 -6 -4 -2 0 2 4 6 8 10 12 14
0

0.5e+204

1.0e+204

1.5e+204

2.0e+204

2.5e+204

3.0e+204

3.5e+204

4.0e+204

Figure 11.8 Posterior density in the dp mix.pl example.

326 cplint Examples

11.6 Bayesian Estimation

Let us consider a problem proposed for the Anglican system for probabilis-
tic programming [Wood et al., 2014]3. We are trying to estimate the true
value of a Gaussian-distributed random variable, given some observed data.
The variance is known (its value is 2) and we suppose that the mean has
itself a Gaussian distribution with mean 1 and variance 5. We take different
measurements (e.g., at different times), indexed by an integer.

The program http://cplint.eu/e/gauss mean est.pl

val(I,X) :- mean(M), val(I,M,X).
mean(M):gaussian(M,1.0,5.0).
val(_,M,X):gaussian(X,M,2.0).

models this problem.
Given that we observe 9 and 8 at indexes 1 and 2, how does the dis-

tribution of the random variable (value at index 0) change with respect
to the case of no observations? This example shows that the parame-
ters of the distribution atoms can be taken from the probabilistic atoms
(gaussian(X,M,2.0) and value(_,M,X) respectively). The query

?- mc_sample_arg(val(0,Y),1000,Y,L0),
mc_lw_sample_arg(val(0,X),(val(1,9),val(2,8)),1000,X,L),
densities(L0,L,Chart,[nbins(40)]).

-6 -4 -2 0 2 4 6 8 10

0

50

100

150

200

250

300

350

400

pre post

Figure 11.9 Prior and posterior densities in gauss mean est.pl.

3https://bitbucket.org/probprog/anglican-examples/src/master/worksheets/
gaussian-posteriors.clj

11.7 Kalman Filter 327

takes 1000 samples of argument X of val(0,X) before and after the
observation of val(1,9),val(2,8) and draws the prior and posterior
densities of the samples using a line chart. Figure 11.9 shows the resulting
graph where the posterior is clearly peaked at around 8.

11.7 Kalman Filter

Example 59 represents a Kalman filter, i.e., a hidden Markov model with
a real value as state and a real value as output. Program http://cplint.eu/e/
kalman filter.pl (adapted from [Nampally and Ramakrishnan, 2014]) encodes
the example:

kf_fin(N,O,T) :-
init(S),
kf_part(0,N,S,O,T).

kf_part(I,N,S,[V|RO],T) :-
I < N,
NextI is I+1,
trans(S,I,NextS),
emit(NextS,I,V),
kf_part(NextI,N,NextS,RO,T).

kf_part(N,N,S,[],S).

trans(S,I,NextS) :-
{NextS =:= E+S},
trans_err(I,E).

emit(NextS,I,V) :-
{V =:= NextS+X},
obs_err(I,X).

init(S):gaussian(S,0,1).

trans_err(_,E):gaussian(E,0,2).

obs_err(_,E):gaussian(E,0,1).

The next state is given by the current state plus Gaussian noise (with mean
0 and variance 2 in this example) and the output is given by the current state
plus Gaussian noise (with mean 0 and variance 1 in this example). A Kalman
filter can be considered as modeling a random walk of a single continuous
state variable with noisy observations.

328 cplint Examples

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

0

20

40

60

80

100

120

140

160

pre post

Figure 11.10 Prior and posterior densities in kalman.pl.

The goals {NextS =:= E+S} and {V =:= NextS+X} are CLP(R)
constraints.

Given that, at time 0, the value 2.5 was observed, what is the distribution
of the state at time 1 (filtering problem)? Likelihood weighting can be used
to condition the distribution on evidence on a continuous random variable
(evidence with probability 0). With CLP(R) constraints, it is possible to
sample and to weight samples with the same program: when sampling, the
constraint {V=:=NextS+X} is used to compute V from X and NextS.
When weighting, the constraint is used to compute X from V and NextS.
The above query can be expressed with

?- mc_sample_arg(kf_fin(1,_O1,Y),1000,Y,L0),
mc_lw_sample_arg(kf_fin(1,_O2,T),kf_fin(1,[2.5],_T),1000,
T,L),densities(L0,L,Chart,[nbins(40)]).

that returns the graph of Figure 11.10, showing that the posterior distribution
is peaked around 2.5.

Given a Kalman filter with four observations, the value of the state at
those time points can be sampled by running particle filtering:

?- [O1,O2,O3,O4]=[-0.133, -1.183, -3.212, -4.586],
mc_particle_sample_arg([kf_fin(1,T1),kf_fin(2,T2),
kf_fin(3,T3),kf_fin(4,T4)],[kf_o(1,O1),kf_o(2,O2),
kf_o(3,O3),kf_o(4,O4)],100,[T1,T2,T3,T4],
[F1,F2,F3,F4]).

11.8 Stochastic Logic Programs 329

where kf_o/2 is defined as
kf_o(N,ON):-
init(S),
N1 is N-1,
kf_part(0,N1,S,_O,_LS,T),
emit(T,N,ON).

The list of samples is returned in [F1,F2,F3,F4], with each element
being the samples for a time point.

Given the true states from which the observations were obtained,
Figure 11.11 shows a graph with the distributions of the state variable at time
1, 2, 3, and 4 (S1, S2, S3, S4, density on the left Y -axis) and with the points
for the observations and the states with respect to time (time on the right
Y -axis).

A two-dimensional Kalman filter can be used to track the movements of
an object over a plane. For example,4 the object may perform a noisy circular
motion. We receive noisy observations of the position and the objective is to
estimate its position at the next time point. A Kalman filter may produce a 2-
dimensional distribution of the next position of the object such as that shown
in Figure 11.12, where the true and observed trajectories are shown in the
upper part as red and green lines, respectively.

-10 -8 -6 -4 -2 0 2 4

D
en

si
ty

0

5

10

15

20

25

Ti
m

e

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

True State Obs S1 S2 S3 S4

Figure 11.11 Example of particle filtering in kalman.pl.

4Inspired by https://bitbucket.org/probprog/anglican-examples/src/master/worksheets/
kalman.clj.

330 cplint Examples

x

y

z

Figure 11.12 Particle filtering for a 2D Kalman filter.

11.8 Stochastic Logic Programs

SLPs (see Section 2.11.1) are used most commonly for defining a distribution
over the values of arguments of a query. SLPs are a direct generalization of
PCFGs and are particularly suitable for representing them. For example, the
grammar

0.2:S->aS
0.2:S->bS
0.3:S->a
0.3:S->b

can be represented with the SLP

0.2::s([a|R]):-
s(R).

0.2::s([b|R]):-
s(R).

0.3::s([a]).

0.3::s([b]).

This SLP is encoded in cplint as program http://cplint.eu/e/slp pcfg.pl:

s_as(N):0.2;s_bs(N):0.2;s_a(N):0.3;s_b(N):0.3.

11.8 Stochastic Logic Programs 331

s([a|R],N0):-
s_as(N0),
N1 is N0+1,
s(R,N1).

s([b|R],N0):-
s_bs(N0),
N1 is N0+1,
s(R,N1).

s([a],N0):-
s_a(N0).

s([b],N0):-
s_b(N0).

s(L):-
s(L,0).

where the predicate s/2 has one more argument with respect to the SLP,
which is used for passing a counter to ensure that different calls to s/2 are
associated with independent random variables.

Inference with cplint can then simulate the behavior of SLPs. For
example, the query

?- mc_sample_arg_bar(s(S),100,S,P),
argbar(P,C).

samples 100 sentences from the language and draws the bar chart of
Figure 11.13.

[[a]]

[[a,b]]

[[b,a]]

[[b,b,b]]

[[a,a,a]]

[[a,a,b]]

[[a,b,b,a]]

[[a,b,b,b,b,a]]

[[b,a,b]]

[[b,b,a,b,b,a,b]]

[[b,b,b,b,b]]

[[b]]

[[a,a]]

[[a,b,a]]

[[b,b]]

[[a,a,a,b]]

[[a,b,a,a]]

[[a,b,b,b]]

[[b,a,a]]

[[b,a,b,b]]

[[b,b,b,a]]

0 5 10 15 20 25 30

Figure 11.13 Samples of sentences of the language defined in slp pcfg.pl.

332 cplint Examples

11.9 Tile Map Generation

PLP can be used to generate random complex structures. For example, we
can write programs for randomly generating maps of video games. Suppose
that we are given a fixed set of tiles and we want to combine them to obtain
a 2D map that is random but satisfies some soft constraints on the placement
of tiles.

Suppose we want to draw a 10x10 map with a tendency to have a lake
in the center. The tiles are randomly placed such that, in the central area,
water is more probable. The problem can be modeled with the example http:
//cplint.eu/e/tile map.swinb, where map(H,W,M) instantiates M to a map of
height H and width W:

map(H,W,M):-
tiles(Tiles),
length(Rows,H),
M=..[map,Tiles|Rows],
foldl(select(H,W),Rows,1,_).

select(H,W,Row,N0,N):-
length(RowL,W),
N is N0+1,
Row=..[row|RowL],
foldl(pick_row(H,W,N0),RowL,1,_).

pick_row(H,W,N,T,M0,M):-
M is M0+1,
pick_tile(N,M0,H,W,T).

Here foldl/4 is an SWI-Prolog [Wielemaker et al., 2012] library predicate
that implements the foldl meta-primitive from functional programming: it
aggregates the results of the application of a predicate to one or more lists.
foldl/4 is defined as:

foldl(P, [X11,...,X1n], [Xm1,...,Xmn], V0, Vn) :-
P(X11, Xm1, V0, V1),
...
P(X1n, Xmn, V’, Vn).

pick_tile(Y,X,H,W,T) returns a tile for position (X,Y) of a map of
size W*H. The center tile is water:

pick_tile(HC,WC,H,W,water):-
HC is H//2,
WC is W//2,!.

11.9 Tile Map Generation 333

In the central area, water is more probable:

pick_tile(Y,X,H,W,T):
discrete(T,[grass:0.05,water:0.9,tree:0.025,rock:0.025]):-
central_area(Y,X,H,W),!

central_area(Y,X,H,W) is true if (X,Y) is adjacent to the center of
the W*H map (definition omitted for brevity). In other places, tiles are chosen
at random with distribution

[grass:0.5,water:0.3,tree:0.1,rock:0.1]:

pick_tile(_,_,_,_,T):
discrete(T,[grass:0.5,water:0.3,tree:0.1,rock:0.1]).

We can generate a map by taking a sample of the query map(10,10,M)
and collecting the value of M. For example, the map of Figure 11.14 can be
obtained5.

Figure 11.14 A random tile map.

5Tiles from https://github.com/silveira/openpixels

334 cplint Examples

11.10 Markov Logic Networks

We have seen in Section 2.12.2.1 that the MLN

1.5 Intelligent(x) => GoodMarks(x)
1.1 Friends(x, y) => (Intelligent(x) <=> Intelligent(y))

can be translated to the program below (http://cplint.eu/e/inference/mln.
swinb):

clause1(X): 0.8175744762:- \+intelligent(X).
clause1(X): 0.1824255238:- intelligent(X), \+good_marks(X).
clause1(X): 0.8175744762:- intelligent(X), good_marks(X).

clause2(X,Y): 0.7502601056:-
\+friends(X,Y).

clause2(X,Y): 0.7502601056:-
friends(X,Y), intelligent(X),intelligent(Y).

clause2(X,Y): 0.7502601056:-
friends(X,Y), \+intelligent(X),\+intelligent(Y).

clause2(X,Y): 0.2497398944:-
friends(X,Y), intelligent(X),\+intelligent(Y).

clause2(X,Y): 0.2497398944:-
friends(X,Y), \+intelligent(X),intelligent(Y).

intelligent(_):0.5.
good_marks(_):0.5.
friends(_,_):0.5.

student(anna).
student(bob).

The evidence must include the truth of all groundings of the clausei
predicates:

evidence_mln:- clause1(anna),clause1(bob),clause2(anna,anna),
clause2(anna,bob),clause2(bob,anna),clause2(bob,bob).

We have also evidence that Anna is friend with Bob and Bob is intelligent:

ev_intelligent_bob_friends_anna_bob :-
intelligent(bob),friends(anna,bob),
evidence_mln.

If we want to query the probability that Anna gets good marks given the
evidence, we can ask:

?- prob(good_marks(anna),
ev_intelligent_bob_friends_anna_bob,P).

11.11 Truel 335

while the prior probability of Anna getting good marks is given by:

?- prob(good_marks(anna),evidence_mln,P).

We obtain P = 0.733 from the first query and P = 0.607 from the second: given
that Bob is intelligent and Anna is her friend, it is more probable that Anna
gets good marks.

11.11 Truel

A truel [Kilgour and Brams, 1997] is a duel among three opponents. There are
three truelists, a, b, and c, that take turns in shooting with a gun. The firing
order is a, b, and c. Each truelist can shoot at another truelist or at the sky
(deliberate miss). The truelists have these probabilities of hitting the target (if
they are not aiming at the sky): 1/3, 2/3, and 1 for a, b, and c, respectively.
The aim for each truelist is to kill all the other truelists. The question
is: what should a do to maximize his probability of winning? Aim at b,
c or the sky?

Let us see first the strategy for the other truelists and situations, following
[Nguembang Fadja and Riguzzi, 2017]. When only two players are left, the
best strategy is to shoot at the other player.

When all three players remain, the best strategy for b is to shoot at c,
since if c shoots at him he his dead and if c shoots at a, b remains with c
which is the best shooter. Similarly, when all three players remain, the best
strategy for c is to shoot at b, since in this way, he remains with a, the worst
shooter.

For a, it is more complex. Let us first compute the probability of a to win
a duel with a single opponent. When a and c remain, a wins if it shoots c, with
probability 1/3. If he misses c, c will surely kill him. When a and b remain,
the probability p of a winning can be computed with

p “ P pa hits bq ` P pa misses bqP pb misses bqp

p “
1

3
`

2

3
ˆ

1

3
ˆ p

p “
3

7

336 cplint Examples

Figure 11.15 Probability tree of the truel with opponents a and b. From [Nguembang Fadja
and Riguzzi, 2017].

The probability can also be computed by building the probability tree of
Figure 11.15. The probability that a survives is thus

p “
1

3
`

2

3
¨

1

3
¨

1

3
`

2

3
¨

1

3
¨

2

3
¨

1

3
¨

1

3
` . . . “

“
1

3
`

2

33
`

22

35
` . . . “

1

3
`

8
ÿ

i“0

2

33

ˆ

2

9

˙i

“
1

3
`

2
33

1´ 2
9

“

“
1

3
`

2
33

7
9

“
1

3
`

2
3

7
“

1

3
`

2

21
“

9

21
“

3

7

When all three players remain, if a shoots at b, b is dead with probability
1/3 but then c will kill a. If b is not dead (probability 2/3), b shoots at c and
kills him with probability 2/3. In this case, a is left in a duel with b, with a
probability of surviving of 3/7. If b doesn’t kill c (probability 1/3), c surely
kills b and a is left in a duel with c, with a probability of surviving of 1/3. So
overall, if a shoots at b, his probability of winning is

2

3
¨

2

3
¨

3

7
`

2

3
¨

1

3
¨

1

3
“

4

21
`

2

27
“

36` 15

189
“

50

189
« 0.2645

11.11 Truel 337

When all three players remain, if a shoots at c, c is dead with probability 1/3.
b then shoots at a and a survives with probability 1/3 and a is then in a duel
with b and surviving with probability 3/7. If c survives (probability 2/3), b
shoots at c and kills him with probability 2/3, so a remains in a duel with b
and wins with probability 3/7. If c survives again, he surely kills b and a is
left in a duel with c, with a probability 1/3 of winning. So overall, if a shoots
at c, his probability of winning is

1

3
¨

1

3
¨

3

7
`

2

3
¨

2

3
¨

3

7
`

2

3
¨

1

3
¨

1

3
“

1

21
`

4

21
`

2

27
“

59

189
« 0.3122

When all three players remain, if a shoots at the sky, b shoots at c and kills
him with probability 2/3, with a remaining in a duel with b. If b doesn’t kill
c, c surely kills b and a remains in a duel with c. So overall, if a shoots at the
sky, his probability of winning is

2

3
¨

3

7
`

1

3
¨

1

3
“

2

7
`

1

9
“

25

63
« 0.3968.

So the best strategy for a at the beginning of the game is to aim at the sky,
contrary to intuition that would suggest trying to immediately eliminate one
of the adversaries.

This problem can be modeled with an LPAD [Nguembang Fadja and
Riguzzi, 2017]. However, as can be seen from Figure 11.15, the number of
explanations may be infinite, so we need to use an appropriate exact inference
algorithm, such as those discussed in Section 5.10, or a Monte Carlo inference
algorithm. We discuss below the program http://cplint.eu/e/truel.pl. that uses
MCINTYRE.

survives_action(A,L0,T,S) is true if A survives the truel per-
forming action S with L0 still alive in turn T:
survives_action(A,L0,T,S):-
shoot(A,S,L0,T,L1),
remaining(L1,A,Rest),
survives_round(Rest,L1,A,T).

shoot(H,S,L0,T,L) is true when H shoots at S in round T with L0 and
L the list of truelists still alive before and after the shot:
shoot(H,S,L0,T,L):-

(S=sky -> L=L0
; (hit(T,H) -> delete(L0,S,L)

; L=L0
)

).

338 cplint Examples

The probabilities of each truelist to hit the chosen target are
hit(_,a):1/3.
hit(_,b):2/3.
hit(_,c):1.

survives(L,A,T) is true if individual A survives the truel with truelists
L at round T:
survives([A],A,_):-!.

survives(L,A,T):-
survives_round(L,L,A,T).

survives_round(Rest,L0,A,T) is true if individual A survives the
truel at round T with Rest still to shoot and L0 still alive:
survives_round([],L,A,T):-

survives(L,A,s(T)).

survives_round([H|_Rest],L0,A,T):-
base_best_strategy(H,L0,S),
shoot(H,S,L0,T,L1),
remaining(L1,H,Rest1),
member(A,L1),
survives_round(Rest1,L1,A,T).

The following strategies are easy to find:
base_best_strategy(b,[b,c],c).
base_best_strategy(c,[b,c],b).
base_best_strategy(a,[a,c],c).
base_best_strategy(c,[a,c],a).
base_best_strategy(a,[a,b],b).
base_best_strategy(b,[a,b],a).
base_best_strategy(b,[a,b,c],c).
base_best_strategy(c,[a,b,c],b).

Auxiliary predicate remaining/3 is defined as
remaining([A|Rest],A,Rest):-!.
remaining([_|Rest0],A,Rest):-

remaining(Rest0,A,Rest).

We can decide the best strategy for a by asking the probability of the queries
?- survives_action(a,[a,b,c],0,b)
?- survives_action(a,[a,b,c],0,c)
?- survives_action(a,[a,b,c],0,sky)

By taking 1000 samples, we may get 0.256, 0.316, and 0.389, respectively,
showing that a should aim at the sky.

11.12 Coupon Collector Problem 339

11.12 Coupon Collector Problem

The coupon collector problem is described in [Kaminski et al., 2016] as

Suppose each box of cereal contains one of N different coupons
and once a consumer has collected a coupon of each type, he can
trade them for a prize. The aim of the problem is determining the
average number of cereal boxes the consumer should buy to collect
all coupon types, assuming that each coupon type occurs with the
same probability in the cereal boxes.

If there are N different coupons, how many boxes, T , do I have to buy to
get the prize? This problem is modeled by program http://cplint.eu/e/coupon.
swinb defining predicate coupons/2 such that goal coupons(N,T) is
true if we need T boxes to get N coupons. The coupons are represented
with a term for functor cp/N with the number of coupons as arity. The i-
th argument of the term is 1 if the i-th coupon has been collected and is a
variable otherwise. The term thus represents an array:
coupons(N,T):-
length(CP,N),
CPTerm=..[cp|CP],
new_coupon(N,CPTerm,0,N,T).

If 0 coupons remain to be collected, the collection ends:
new_coupon(0,_CP,T,_N,T).

If N0 coupons remain to be collected, we collect one and recurse:
new_coupon(N0,CP,T0,N,T):-
N0>0,
collect(CP,N,T0,T1),
N1 is N0-1,
new_coupon(N1,CP,T1,N,T).

collect/4 collects one new coupon and updates the number of boxes
bought:
collect(CP,N,T0,T):-
pick_a_box(T0,N,I),
T1 is T0+1,
arg(I,CP,CPI),
(var(CPI)->

CPI=1, T=T1
;

collect(CP,N,T1,T)
).

340 cplint Examples

pick_a_box/3 randomly picks a box and so a coupon type, an element
from the list r1 . . . N s:
pick_a_box(_,N,I):uniform(I,L):- numlist(1, N, L).

If there are five different coupons, we may ask:

• How many boxes do I have to buy to get the prize?
• What is the distribution of the number of boxes I have to buy to get the

prize?
• What is the expected number of boxes I have to buy to get the prize?

To answer the first query, we can take a single sample for coupons(5,T):
in the sample, the query will succeed as coupons/2 is a determinate
predicate and the result will instantiate T to a specific value. For example, we
may get T=15. Note that the maximum number of boxes to buy is unbounded
but the case where we have to buy an infinite number of boxes has probability
0, so sampling will surely finish.

To compute the distribution on the number of boxes, we can take a number
of samples, say 1000, and plot the number of times a value is obtained as a
function of the value. By doing so, we may get the graph in Figure 11.16.

To compute the expected number of boxes, we can take a number of
samples, say 100, of coupons(5,T). Each sample will instantiate T. By
summing all these values and dividing by 100, the number of samples, we
can get an estimate of the expectation. For example, we may get a value of
11.47.

We can also plot the dependency of the expected number of boxes from
the number of coupons, obtaining Figure 11.17. As observed in [Kaminski

10 15 20 25 30 35 40 45

0

50

100

150

200

250

300

350

400

450

dens

Figure 11.16 Distribution of the number of boxes.

11.13 One-Dimensional Random Walk 341

1 3 5 7 9 11

0

5

10

15

20

25

30

35

40

Expected number of boxes 1+1.2NlogN

Figure 11.17 Expected number of boxes as a function of the number of coupons.

et al., 2016], the number of boxes grows as OpN logNq where N is the
number of coupons. The graph also includes the curve 1` 1.2N logN that is
similar to the first.

The coupon collector problem is similar to the sticker collector problem,
where we have an album with a space for every different sticker, we can buy
stickers in packs and our objective is to complete the album. A program for
the coupon collector problem can be applied to solve the sticker collector
problem: if you have N different stickers and packs contain P stickers, we
can solve the coupon collector problem for N coupons and get the number of
boxes T . Then the number of packs you have to buy to complete the collection
is rT {P s. So we can write:
stickers(N,P,T):- coupons(N,T0), T is ceiling(T0/P).

If there are 50 different stickers and packs contain four stickers, by sampling
the query stickers(50,4,T), we can get T=47, i.e., we have to buy 47
packs to complete the entire album.

11.13 One-Dimensional Random Walk

Let us consider the version of a random walk described in [Kaminski et al.,
2016]: a particle starts at position x “ 10 and moves with equal probability
one unit to the left or one unit to the right in each turn. The random walk
stops if the particle reaches position x “ 0.

The walk terminates with probability 1 [Hurd, 2002] but requires, on aver-
age, an infinite time, i.e., the expected number of turns is infinite [Kaminski
et al., 2016].

342 cplint Examples

We can compute the number of turns with program http://cplint.eu/e/
random walk.swinb. The walk starts at time 0 and x “ 10:

walk(T):- walk(10,0,T).

If x is 0, the walk ends; otherwise, the particle makes a move:

walk(0,T,T).

walk(X,T0,T):-
X>0,
move(T0,Move),
T1 is T0+1,
X1 is X+Move,
walk(X1,T1,T).

The move is either one step to the left or to the right with equal probability.

move(T,1):0.5; move(T,-1):0.5.

By sampling the query walk(T), we obtain a success as walk/1 is deter-
minate. The value for T represents the number of turns. For example, we may
get T = 3692.

11.14 Latent Dirichlet Allocation

Text mining [Holzinger et al., 2014] aims at extracting knowledge from
texts. Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is a text mining
technique which assigns topics to words in documents. Topics are taken from
a finite set t1, . . . ,Ku. The model describes a generative process where doc-
uments are represented as random mixtures over latent topics and each topic
defines a distribution over words. LDA assumes the following generative
process for a corpus D consisting of M documents each of length Ni:

1. Sample θi from Dirpαq, where i P t1, . . . ,Mu and Dirpαq is the
Dirichlet distribution with parameter α.

2. Sample ϕk from Dirpβq, where k P t1, . . . ,Ku.
3. For each of the word positions i, j, where i P t1, . . . ,Mu and j P
t1, . . . , Niu:

(a) Sample a topic zi,j from Discretepθiq.
(b) Sample a word wi,j from Discretepϕzi,j q.

11.14 Latent Dirichlet Allocation 343

Figure 11.18 Smoothed LDA. From [Nguembang Fadja and Riguzzi, 2017].

This is a smoothed LDA model to be precise. Subscripts are often dropped,
as in the plate diagrams in Figure 11.18.

The Dirichlet distribution is a continuous multivariate distribution whose
parameterα is a vector pα1, . . . , αKq and a value x “ px1, . . . , xKq sampled
from Dirpαq is such that xj P p0, 1q for j “ 1, . . . ,K and

řK
j“1 xi “ 1. A

sample x from a Dirichlet distribution can thus be the parameter for a discrete
distribution Discretepxq with as many values as the components of x: the
distribution has P pvjq “ xj with vj a value. Therefore, Dirichlet distributions
are often used as priors for discrete distributions. The β vector above has V
components where V is the number of distinct words.

The aim is to compute the probability distributions of words for each
topic, of topics for each word, and the particular topic mixture of each
document. This can be done with inference: the documents in the dataset
represent the observations (evidence) and we want to compute the posterior
distribution of the above quantities.

This problem can modeled by the MCINTYRE program http://cplint.eu/
e/lda.swinb, where predicate

word(Doc,Position,Word)

indicates that document Doc in position Position (from 1 to the number
of words of the document) has word Word and predicate

topic(Doc,Position,Topic)

indicates that document Doc associates topic Topic to the word in position
Position. We also assume that the distributions for both θi and ϕk are
symmetric Dirichlet distributions with scalar concentration parameter η set
using a fact for the predicate eta/1, i.e.,α “ rη, . . . , ηs and β “ rη, . . . , ηs.
The program is then:

344 cplint Examples

theta(_,Theta):dirichlet(Theta,Alpha):-
alpha(Alpha).

topic(DocumentID,_,Topic):discrete(Topic,Dist):-
theta(DocumentID,Theta),
topic_list(Topics),
maplist(pair,Topics,Theta,Dist).

word(DocumentID,WordID,Word):discrete(Word,Dist):-
topic(DocumentID,WordID,Topic),
beta(Topic,Beta),
word_list(Words),
maplist(pair,Words,Beta,Dist).

beta(_,Beta):dirichlet(Beta,Parameters):-
n_words(N),
eta(Eta),
findall(Eta,between(1,N,_),Parameters).

alpha(Alpha):-
eta(Eta),
n_topics(N),
findall(Eta,between(1,N,_),Alpha).

eta(2).

pair(V,P,V:P).

Suppose we have two topics, indicated with integers 1 and 2, and 10 words,
indicated with integers 1, . . . , 10:

topic_list(L):-
n_topics(N),
numlist(1,N,L).

word_list(L):-
n_words(N),
numlist(1,N,L).

n_topics(2).

n_words(10).

We can, for example, use the model generatively and sample values for the
word in position 1 of document 1. The histogram of the frequency of word
values when taking 100 samples is shown in Figure 11.19.

11.14 Latent Dirichlet Allocation 345

[9]

[4]

[7]

[2]

[5]

[6]

[8]

[10]

[1]

[3]

0 2 4 6 8 10 12 14

Figure 11.19 Values for word in position 1 of document 1.

[(9,1)]

[(8,2)]

[(8,1)]

[(3,2)]

[(5,2)]

[(7,1)]

[(4,2)]

[(3,1)]

[(7,2)]

[(2,2)]

[(9,2)]

[(2,1)]

[(10,2)]

[(5,1)]

[(6,1)]

[(1,2)]

[(10,1)]

[(6,2)]

[(1,1)]

[(4,1)]

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 11.20 Values for couples (word,topic) in position 1 of document 1.

We can also sample values for couples (word, topic) in position 1 of
document 1. The histogram of the frequency of the couples when taking 100
samples is shown in Figure 11.20.

We can use the model to classify the words into topics. Here we use
conditional inference with Metropolis-Hastings. A priori both topics are
about equally probable for word 1 of document, so if we take 100 samples of
topic(1,1,T), we get the histogram in Figure 11.21. If we observe that
words 1 and 2 of document 1 are equal (word(1,1,1),word(1,2,1) as

346 cplint Examples

[2]

[1]

0 5 10 15 20 25 30 35 40 45 50 55

Figure 11.21 Prior distribution of topics for word in position 1 of document 1.

[1]

[2]

0 10 20 30 40 50 60 70 80 90 100

Figure 11.22 Posterior distribution of topics for word in position 1 of document 1.

evidence) and take again 100 samples, one of the topics gets more probable,
as the histogram of Figure 11.22 shows. You can also see this if you look
at the density of the probability of topic 1 before and after observing that
words 1 and 2 of document 1 are equal: the observation makes the distribution
less uniform, see Figure 11.23. piercebayes [Turliuc et al., 2016] is a
PLP language that allows the specification of Dirichlet priors over discrete
distribution. Writing LDA models with it is particularly simple.

11.15 The Indian GPA Problem

In the Indian GPA problem proposed by Stuart Russel [Perov et al., 2017;
Nitti et al., 2016], the question is: if you observe that a student GPA is exactly
4.0, what is the probability that the student is from India, given that the
American GPA score is from 0.0 to 4.0 and the Indian GPA score is from 0.0

11.15 The Indian GPA Problem 347

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

5

10

15

20

25

30

35

pre post

Figure 11.23 Density of the probability of topic 1 before and after observing that words 1
and 2 of document 1 are equal.

to 10.0? Stuart Russel observed that most probabilistic programming systems
are not able to deal with this query because it requires combining continuous
and discrete distributions. This problem can be modeled by building a mixture
of a continuous and a discrete distribution for each nation to account for grade
inflation (extreme values have a non-zero probability). Then the probability
of the student’s GPA is a mixture of the nation mixtures. Given this model and
the fact that the student’s GPA is exactly 4.0, the probability that the student
is American is thus 1.0.

This problem can be modeled in MCINTYRE with program http://cplint.
eu/e/indian gpa.pl. The probability distribution of GPA scores for American
students is continuous with probability 0.95 and discrete with probability
0.05:

is_density_A:0.95;is_discrete_A:0.05.

The GPA of an American student follows a beta distribution if the distribution
is continuous:

agpa(A): beta(A,8,2) :- is_density_A.

The GPA of an American student is 4.0 with probability 0.85 and 0.0 with
probability 0.15 if the distribution is discrete:

american_gpa(G) : discrete(G,[4.0:0.85,0.0:0.15]) :-
is_discrete_A.

348 cplint Examples

or is obtained by rescaling the value of returned by agpa/1 to the (0.0,4.0)
interval:

american_gpa(A):- agpa(A0), A is A0*4.0.

The probability distribution of GPA scores for Indian students is continuous
with probability 0.99 and discrete with probability 0.01.

is_density_I : 0.99; is_discrete_I:0.01.

The GPA of an Indian student follows a beta distribution if the distribution is
continuous:

igpa(I): beta(I,5,5) :- is_density_I.

The GPA of an Indian student is 10.0 with probability 0.9 and 0.0 with
probability 0.1 if the distribution is discrete:

indian_gpa(I): discrete(I,[0.0:0.1,10.0:0.9]):- is_discrete_I.

or is obtained by rescaling the value returned by igpa/1 to the (0.0,10.0)
interval:

indian_gpa(I) :- igpa(I0), I is I0*10.0.

The nation is America with probability 0.25 and India with probability 0.75.

nation(N) : discrete(N,[a:0.25,i:0.75]).

The GPA of the student is computed depending on the nation:

student_gpa(G) :- nation(a),american_gpa(G).
student_gpa(G) :- nation(i),indian_gpa(G).

If we query the probability that the nation is America given that the student
got 4.0 in his GPA, we obtain 1.0, while the prior probability that the nation
is America is 0.25.

11.16 Bongard Problems

The Bongard Problems Bongard [1970] were used in [De Raedt and Van Laer,
1995] as a testbed for ILP. Each problem consists of a number of pictures
divided into two classes, positive and negative. The goal is to discriminate
between the two classes.

The pictures contain geometric figures such as squares, triangles, and
circles, with different properties, such as small, large, and pointing down, and
different relationships between them, such as inside and above. Figure 11.24
shows some of these pictures.

11.16 Bongard Problems 349

0

1

2 3

4

5
6

7

8

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

0

1

2
3

4

5 6

7

8

9

10

11

12

13

14

Figure 11.24 Bongard pictures.

A Bongard problem is encoded by http://cplint.eu/e/bongard R.pl. Each
picture is described by a mega-interpretation, in this case, contains a single
example, either positive or negative. One such mega-interpretation can be
begin(model(2)).
pos.
triangle(o5).
config(o5,up).
square(o4).
in(o4,o5).
circle(o3).
triangle(o2).
config(o2,up).
in(o2,o3).
triangle(o1).
config(o1,up).
end(model(2)).

where begin(model(2)) and end(model(2)) denote the beginning
and end of the mega-interpretation with identifier 2. The target predicate
is pos/0 that indicates the positive class. The mega-interpretation above
includes one positive example.

Consider the input LPAD
pos:0.5 :-
circle(A),
in(B,A).

pos:0.5 :-
circle(A),
triangle(B).

and definitions for folds (sets of examples) such as
fold(train,[2,3,...]).
fold(test,[490,491,...]).

350 cplint Examples

We can learn the parameters of the input program with EMBLEM using the
query

induce_par([train],P).

The result is a program with updated values for the parameters:

pos:0.0841358 :-
circle(A),
in(B,A).

pos:0.412669 :-
circle(A),
triangle(B).

We can perform structure learning using SLIPCOVER by specifying a
language bias:

modeh(*,pos).
modeb(*,triangle(-obj)).
modeb(*,square(-obj)).
modeb(*,circle(-obj)).
modeb(*,in(+obj,-obj)).
modeb(*,in(-obj,+obj)).
modeb(*,config(+obj,-#dir)).

Then the query

induce([train],P).

performs structure learning and returns a program:

pos:0.220015 :-
triangle(A),
config(A,down).

pos:0.12513 :-
triangle(A),
in(B,A).

pos:0.315854 :-
triangle(A).

12
Conclusions

We have come to the end of our journey through probabilistic logic program-
ming. I sincerely hope that I was able to communicate my enthusiasm for
this field which combines the powerful results obtained in two previously
separated fields: uncertainty in artificial intelligence and logic programming.
PLP is growing fast but there is still much to do. An important open problem
is how to scale the systems to large data, ideally of the size of Web, in order
to exploit the data available on the Web, the Semantic Web, the so-called
“knowledge graphs,” big databases such as Wikidata, and semantically anno-
tated Web pages. Another important problem is how to deal with unstructured
data such as natural language text, images, videos, and multimedia data in
general.

For facing the scalability challenge, faster systems can be designed by
exploiting symmetries in model using, for example, lifted inference, or
restrictions can be imposed in order to obtain more tractable sublanguages.
Another approach consists in exploiting modern computing infrastructures
such as clusters and clouds and developing parallel algorithms, for example,
using MapReduce [Riguzzi et al., 2016b].

For unstructured and multimedia data, handling continuous distributions
effectively is fundamental. Inference for hybrid programs is relatively new
but is already offered by various systems. The problem of learning hybrid
programs, instead, is less explored, especially as regards structure learning.
In domains with continuous random variables, neural networks and deep
learning [Goodfellow et al., 2016] achieved impressive results. An interesting
avenue for future work is how to exploit the techniques of deep learning for
learning hybrid probabilistic logic programs.

351

352 Conclusions

Some works have already started to appear on the topic [Rocktäschel and
Riedel, 2016; Yang et al., 2017; Nguembang Fadja et al., 2017; Rocktäschel
and Riedel, 2017; Evans and Grefenstette, 2018] but an encompassing frame-
work dealing with different levels of certainty, complex relationships among
entities, mixed discrete and continuous unstructured data, and extremely large
size is still missing.

References

M. Alberti, E. Bellodi, G. Cota, F. Riguzzi, and R. Zese. cplint on SWISH:
Probabilistic logical inference with a web browser. Intelligenza Artificiale,
11(1):47–64, 2017. doi: 10.3233/IA-170105.

M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca,
P. Veltri, and J. Zangari. The ASP system DLV2. In M. Balduccini and
T. Janhunen, editors, 14th International Conference on Logic Program-
ming and Non-monotonic Reasoning (LPNMR 2017), volume 10377 of
LNCS. Springer, 2017. doi: 10.1007/978-3-319-61660-5 19.

N. Angelopoulos. clp(pdf(y)): Constraints for probabilistic reasoning in
logic programming. In F. Rossi, editor, 9th International Confer-
ence on Principles and Practice of Constraint Programming (CP
2003), volume 2833 of LNCS, pages 784–788. Springer, 2003.
doi: 10.1007/978-3-540-45193-8 53.

N. Angelopoulos. Probabilistic space partitioning in constraint logic pro-
gramming. In M. J. Maher, editor, 9th Asian Computing Science Confer-
ence (ASIAN 2004), volume 3321 of LNCS, pages 48–62. Springer, 2004.
doi: 10.1007/978-3-540-30502-6 4.

N. Angelopoulos. Notes on the implementation of FAM. In A. Hommersom
and S. A. Abdallah, editors, 3rd International Workshop on Probabilis-
tic Logic Programming (PLP 2016), volume 1661 of CEUR Workshop
Proceedings, pages 46–58. CEUR-WS.org, 2016.

K. R. Apt and M. Bezem. Acyclic programs. New Generation Computing,
9(3/4):335–364, 1991.

K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal
of Logic Programming, 19:9–71, 1994.

R. Ash and C. Doléans-Dade. Probability and Measure Theory.
Harcourt/Academic Press, 2000. ISBN 9780120652020.

F. Bacchus. Using first-order probability logic for the construction of
bayesian networks. In 9th Conference Conference on Uncertainty in
Artificial Intelligence (UAI 1993), pages 219–226, 1993.

353

354 References

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. Algebraic decision diagrams and their applications. For-
mal Methods in System Design, 10(2/3):171–206, 1997. doi: 10.1023/A:
1008699807402.

J. K. Baker. Trainable grammars for speech recognition. In D. H. Klatt and
J. J. Wolf, editors, Speech Communication Papers for the 97th Meeting of
the Acoustical Society of America, pages 547–550, 1979.

C. Baral, M. Gelfond, and N. Rushton. Probabilistic reasoning with answer
sets. Theory and Practice of Logic Programming, 9(1):57–144, 2009.
doi: 10.1017/S1471068408003645.

L. Bauters, S. Schockaert, M. De Cock, and D. Vermeir. Possibilistic
answer set programming revisited. In 26th International Conference on
Uncertainty in Artificial Intelligence (UAI 2010). AUAI Press, 2010.

V. Belle, G. V. den Broeck, and A. Passerini. Hashing-based approximate
probabilistic inference in hybrid domains. In M. Meila and T. Heskes, edi-
tors, 31st International Conference on Uncertainty in Artificial Intelligence
(UAI 2015), pages 141–150. AUAI Press, 2015a.

V. Belle, A. Passerini, and G. V. den Broeck. Probabilistic inference in hybrid
domains by weighted model integration. In Q. Yang and M. Wooldridge,
editors, 24th International Joint Conference on Artificial Intelligence
(IJCAI 2015), pages 2770–2776. AAAI Press, 2015b.

V. Belle, G. V. den Broeck, and A. Passerini. Component caching in hybrid
domains with piecewise polynomial densities. In D. Schuurmans and
M. P. Wellman, editors, 30th National Conference on Artificial Intelligence
(AAAI 2015), pages 3369–3375. AAAI Press, 2016.

E. Bellodi and F. Riguzzi. Experimentation of an expectation maximization
algorithm for probabilistic logic programs. Intelligenza Artificiale, 8(1):
3–18, 2012. doi: 10.3233/IA-2012-0027.

E. Bellodi and F. Riguzzi. Expectation maximization over binary deci-
sion diagrams for probabilistic logic programs. Intelligent Data Analysis,
17(2):343–363, 2013.

E. Bellodi and F. Riguzzi. Structure learning of probabilistic logic programs
by searching the clause space. Theory and Practice of Logic Programming,
15(2):169–212, 2015. doi: 10.1017/S1471068413000689.

E. Bellodi, E. Lamma, F. Riguzzi, V. S. Costa, and R. Zese. Lifted
variable elimination for probabilistic logic programming. Theory and
Practice of Logic Programming, 14(4-5):681–695, 2014. doi: 10.1017/
S1471068414000283.

References 355

P. Berka. Guide to the financial data set. In ECML/PKDD 2000 Discovery
Challenge, 2000.

C. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, 2016. ISBN 9781493938438.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal
of Machine Learning Research, 3:993–1022, 2003.

H. Blockeel. Probabilistic logical models for Mendel’s experiments: An
exercise. In Inductive Logic Programming (ILP 2004), Work in Progress
Track, pages 1–5, 2004.

H. Blockeel and J. Struyf. Frankenstein classifiers: Some experiments on the
Sisyphus data set. In Workshop on Integration of Data Mining, Decision
Support, and Meta-Learning (IDDM 2001), 2001.

M. M. Bongard. Pattern Recognition. Hayden Book Co., Spartan Books,
1970.

S. Bragaglia and F. Riguzzi. Approximate inference for logic programs
with annotated disjunctions. In 21st International Conference on Inductive
Logic Programming (ILP 2011), volume 6489 of LNAI, pages 30–37,
Florence, Italy, 27–30 June 2011. Springer.

D. Brannan. A First Course in Mathematical Analysis. Cambridge University
Press, 2006. ISBN 9781139458955.

R. Carnap. Logical Foundations of Probability. University of Chicago Press,
1950.

M. Chavira and A. Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772–799, 2008.

W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM, 43(1):20–74, 1996.

W. Chen, T. Swift, and D. S. Warren. Efficient top-down computation of
queries under the well-founded semantics. Journal of Logic Programming,
24(3):161–199, 1995.

Y. Chow and H. Teicher. Probability Theory: Independence, Interchangeabil-
ity, Martingales. Springer Texts in Statistics. Springer, 2012.

K. L. Clark. Negation as failure. In Logic and data bases, pages 293–322.
Springer, 1978.

P. Cohn. Basic Algebra: Groups, Rings, and Fields. Springer, 2003.
A. Colmerauer, H. Kanoui, P. Roussel, and R. Pasero. Un systeme de

communication homme-machine en franais. Technical report, Groupe de
Recherche en Intelligence Artificielle, Universit dAix-Marseille, 1973.

J. Côrte-Real, T. Mantadelis, I. de Castro Dutra, R. Rocha, and E. S. Burnside.
SkILL - A stochastic inductive logic learner. In T. Li, L. A. Kurgan,

356 References

V. Palade, R. Goebel, A. Holzinger, K. Verspoor, and M. A. Wani, editors,
14th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA 2015), pages 555–558. IEEE Press, 2015. doi: 10.1109/
ICMLA.2015.159.

J. Côrte-Real, I. de Castro Dutra, and R. Rocha. Estimation-based search
space traversal in PILP environments. In J. Cussens and A. Russo,
editors, 26th International Conference on Inductive Logic Program-
ming (ILP 2016), volume 10326 of LNCS, pages 1–13. Springer, 2017.
doi: 10.1007/978-3-319-63342-8 1.

V. S. Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint logic
programming for probabilistic knowledge. In 19th International Confer-
ence on Uncertainty in Artificial Intelligence (UAI 2003), pages 517–524.
Morgan Kaufmann Publishers, 2003.

F. G. Cozman and D. D. Mauá. On the semantics and complexity of
probabilistic logic programs. Journal of Artificial Intelligence Research,
60:221–262, 2017.

J. Cussens. Parameter estimation in stochastic logic programs. Machine
Learning, 44(3):245–271, 2001. doi: 10.1023/A:1010924021315.

E. Dantsin. Probabilistic logic programs and their semantics. In Russian
Conference on Logic Programming, volume 592 of LNCS, pages 152–164.
Springer, 1991.

A. Darwiche. A logical approach to factoring belief networks. In D. Fensel,
F. Giunchiglia, D. L. McGuinness, and M. Williams, editors, 8th Inter-
national Conference on Principles and Knowledge Representation and
Reasoning, pages 409–420. Morgan Kaufmann, 2002.

A. Darwiche. New advances in compiling CNF into decomposable negation
normal form. In R. L. de Mántaras and L. Saitta, editors, 16th European
Conference on Artificial Intelligence (ECAI 20014), pages 328–332. IOS
Press, 2004.

A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge
University Press, 2009.

A. Darwiche. SDD: A new canonical representation of propositional knowl-
edge bases. In T. Walsh, editor, 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), pages 819–826. AAAI Press/IJCAI,
2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-143.

A. Darwiche and P. Marquis. A knowledge compilation map. Journal of
Artificial Intelligence Research, 17:229–264, 2002.

J. Davis and M. Goadrich. The relationship between precision-recall and
ROC curves. In European Conference on Machine Learning (ECML 2006),
pages 233–240. ACM, 2006.

References 357

J. Davis, E. S. Burnside, I. de Castro Dutra, D. Page, and V. S. Costa. An
integrated approach to learning bayesian networks of rules. In J. Gama,
R. Camacho, P. Brazdil, A. Jorge, and L. Torgo, editors, European Con-
ference on Machine Learning (ECML 2005), volume 3720 of LNCS, pages
84–95. Springer, 2005. doi: 10.1007/11564096 13.

L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts.
Machine Learning, 100(1):5–47, 2015.

L. De Raedt and I. Thon. Probabilistic rule learning. In P. Frasconi and F. A.
Lisi, editors, 20th International Conference on Inductive Logic Program-
ming (ILP 2010), volume 6489 of LNCS, pages 47–58. Springer, 2011.
doi: 10.1007/978-3-642-21295-6 9.

L. De Raedt and W. Van Laer. Inductive constraint logic. In 6th Conference
on Algorithmic Learning Theory (ALT 1995), volume 997 of LNAI, pages
80–94. Springer, 1995.

L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog
and its application in link discovery. In M. M. Veloso, editor, 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2007), volume 7,
pages 2462–2467. AAAI Press/IJCAI, 2007.

L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens, A. Kimmig,
N. Landwehr, T. Mantadelis, W. Meert, R. Rocha, V. Santos Costa, I. Thon,
and J. Vennekens. Towards digesting the alphabet-soup of statistical rela-
tional learning. In NIPS 2008 Workshop on Probabilistic Programming,
2008.

L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors. Probabilis-
tic Inductive Logic Programming, volume 4911 of LNCS, 2008. Springer.
ISBN 978-3-540-78651-1.

L. De Raedt, K. Kersting, A. Kimmig, K. Revoredo, and H. Toivonen.
Compressing probabilistic Prolog programs. Machine Learning,
70(2-3):151–168, 2008.

R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic
inference. In L. P. Kaelbling and A. Saffiotti, editors, 19th International
Joint Conference on Artificial Intelligence (IJCAI 2005), pages 1319–1325.
Professional Book Center, 2005.

A. Dekhtyar and V. Subrahmanian. Hybrid probabilistic programs. Journal of
Logic Programming, 43(2):187–250, 2000.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (methodological), 39(1):1–38, 1977.

358 References

A. Dries, A. Kimmig, W. Meert, J. Renkens, G. Van den Broeck,
J. Vlasselaer, and L. De Raedt. ProbLog2: Probabilistic logic program-
ming. In European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECMLPKDD 2015),
volume 9286 of LNCS, pages 312–315. Springer, 2015. doi: 10.1007/
978-3-319-23461-8 37.

D. Dubois and H. Prade. Possibilistic logic: a retrospective and prospective
view. Fuzzy Sets and Systems, 144(1):3–23, 2004.

D. Dubois, J. Lang, and H. Prade. Towards possibilistic logic programming.
In 8th International Conference on Logic Programming (ICLP 1991),
pages 581–595, 1991.

D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of logic in artificial intel-
ligence and logic programming,vol. 3, pages 439–514. Oxford University
Press, 1994.

S. Dzeroski. Handling imperfect data in inductive logic programming. In
4th Scandinavian Conference on Artificial Intelligence (SCAI 1993), pages
111–125, 1993.

R. Evans and E. Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61:1–64, 2018. doi: 10.1613/
jair.5714.

F. Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1(1):51–60, 1994.

R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability.
Journal of the ACM, 41(2):340–367, 1994. doi: 10.1145/174652.174658.

D. Fierens, G. Van den Broeck, J. Renkens, D. S. Shterionov, B. Gutmann,
I. Thon, G. Janssens, and L. De Raedt. Inference and learning in probabilis-
tic logic programs using weighted Boolean formulas. Theory and Practice
of Logic Programming, 15(3):358–401, 2015.

N. Fuhr. Probabilistic datalog: Implementing logical information retrieval for
advanced applications. Journal of the American Society for Information
Science, 51:95–110, 2000.

H. Gaifman. Concerning measures in first order calculi. Israel Journal of
Mathematics, 2:1–18, 1964.

M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. T. Schneider. Potassco: The Potsdam answer set solving collection. AI
Commununications, 24(2):107–124, 2011. doi: 10.3233/AIC-2011-0491.

M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In 5th International Conference and Symposium on Logic

References 359

Programming (ICLP/SLP 1988), volume 88, pages 1070–1080. MIT
Press, 1988.

G. Gerla. Fuzzy Logic, volume 11 of Trends in Logic. Springer, 2001.
doi: 10.1007/978-94-015-9660-2 8.

V. Gogate and P. M. Domingos. Probabilistic theorem proving. In F. G.
Cozman and A. Pfeffer, editors, 27th International Conference on
Uncertainty in Artificial Intelligence (UAI 2011), pages 256–265. AUAI
Press, 2011.

T. Gomes and V. S. Costa. Evaluating inference algorithms for the prolog
factor language. In F. Riguzzi and F. Železný, editors, 21st International
Conference on Inductive Logic Programming (ILP 2012), volume 7842 of
LNCS, pages 74–85. Springer, 2012.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,
volume 1. MIT Press, 2016.

N. D. Goodman and J. B. Tenenbaum. Inducing arithmetic functions, 2018.
http://forestdb.org/models/arithmetic.html, accessed January 5, 2018.

A. Gorlin, C. R. Ramakrishnan, and S. A. Smolka. Model checking with
probabilistic tabled logic programming. Theory and Practice of Logic
Programming, 12(4-5):681–700, 2012.

P. Grünwald and J. Y. Halpern. Updating probabilities. Journal of Artificial
Intelligence Research, 19:243–278, 2003. doi: 10.1613/jair.1164.

B. Gutmann. On continuous distributions and parameter estimation in prob-
abilistic logic programs. PhD thesis, Katholieke Universiteit Leuven,
Belgium, 2011.

B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter learning in
probabilistic databases: A least squares approach. In European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECMLPKDD 2008), volume 5211 of LNCS, pages 473–488.
Springer, 2008.

B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter esti-
mation in ProbLog from annotated queries. Technical Report CW 583,
KU Leuven, 2010.

B. Gutmann, M. Jaeger, and L. De Raedt. Extending problog with con-
tinuous distributions. In P. Frasconi and F. A. Lisi, editors, 20th
International Conference on Inductive Logic Programming (ILP 2010),
volume 6489 of LNCS, pages 76–91. Springer, 2011a. doi: 10.1007/
978-3-642-21295-6 12.

B. Gutmann, I. Thon, and L. De Raedt. Learning the parameters of
probabilistic logic programs from interpretations. In D. Gunopulos,

360 References

T. Hofmann, D. Malerba, and M. Vazirgiannis, editors, European Con-
ference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECMLPKDD 2011), volume 6911 of LNCS,
pages 581–596. Springer, 2011b.

B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt. The
magic of logical inference in probabilistic programming. Theory and
Practice of Logic Programming, 11(4-5):663–680, 2011c.

Z. Gyenis, G. Hofer-Szabo, and M. Rédei. Conditioning using condi-
tional expectations: the Borel–Kolmogorov paradox. Synthese, 194(7):
2595–2630, 2017.

S. Hadjichristodoulou and D. S. Warren. Probabilistic logic programming
with well-founded negation. In D. M. Miller and V. C. Gaudet, editors,
42nd IEEE International Symposium on Multiple-Valued Logic, (ISMVL
2012), pages 232–237. IEEE Computer Society, 2012. doi: 10.1109/
ISMVL.2012.26.

J. Halpern. Reasoning About Uncertainty. MIT Press, 2003.
J. Y. Halpern. An analysis of first-order logics of probability. Artificial

Intelligence, 46(3):311–350, 1990.
A. C. Harvey. Forecasting, structural time series models and the Kalman

filter. Cambridge University Press, 1990.
J. Herbrand. Recherches sur la théorie de la démonstration. PhD thesis,

Université de Paris, 1930.
P. Hitzler and A. Seda. Mathematical Aspects of Logic Programming Seman-

tics. Chapman & Hall/CRC Studies in Informatics Series. CRC Press,
2016.

A. Holzinger, J. Schantl, M. Schroettner, C. Seifert, and K. Verspoor. Biomed-
ical text mining: State-of-the-art, open problems and future challenges.
In A. Holzinger and I. Jurisica, editors, Interactive Knowledge Discovery
and Data Mining in Biomedical Informatics, volume 8401 of LNCS, pages
271–300. Springer, 2014. doi: 10.1007/978-3-662-43968-5 16.

J. Hurd. A formal approach to probabilistic termination. In V. Carreño, C. A.
Muñoz, and S. Tahar, editors, 15th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 2002), volume 2410 of LNCS,
pages 230–245. Springer, 2002. doi: 10.1007/3-540-45685-6 16.

K. Inoue, T. Sato, M. Ishihata, Y. Kameya, and H. Nabeshima. Evaluating
abductive hypotheses using an EM algorithm on BDDs. In 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2009), pages
810–815. Morgan Kaufmann Publishers Inc., 2009.

References 361

M. Ishihata, Y. Kameya, T. Sato, and S. Minato. Propositionalizing the EM
algorithm by BDDs. In Late Breaking Papers of the 18th International
Conference on Inductive Logic Programming (ILP 2008), pages 44–49,
2008a.

M. Ishihata, Y. Kameya, T. Sato, and S. Minato. Propositionalizing the EM
algorithm by BDDs. Technical Report TR08-0004, Dep. of Computer
Science, Tokyo Institute of Technology, 2008b.

M. A. Islam. Inference and learning in probabilistic logic programs with
continuous random variables. PhD thesis, State University of New York
at Stony Brook, 2012.

M. A. Islam, C. Ramakrishnan, and I. Ramakrishnan. Parameter learn-
ing in PRISM programs with continuous random variables. CoRR,
abs/1203.4287, 2012a.

M. A. Islam, C. Ramakrishnan, and I. Ramakrishnan. Inference in probabilis-
tic logic programs with continuous random variables. Theory and Practice
of Logic Programming, 12:505–523, 2012b. ISSN 1475-3081.

M. Jaeger. Reasoning about infinite random structures with relational
bayesian networks. In A. G. Cohn, L. K. Schubert, and S. C. Shapiro,
editors, 4th International Conference on Principles of Knowledge Repre-
sentation and Reasoning, pages 570–581. Morgan Kaufmann, 1998.

M. Jaeger and G. Van den Broeck. Liftability of probabilistic inference:
Upper and lower bounds. In 2nd International Workshop on Statistical
Relational AI (StarAI 2012), pages 1–8, 2012.

J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of
constraint logic programs. Journal of Logic Programming, 37(1-3):1–46,
1998. doi: 10.1016/S0743-1066(98)10002-X.

T. Janhunen. Representing normal programs with clauses. In R. L.
de Mántaras and L. Saitta, editors, 16th European Conference on Artificial
Intelligence (ECAI 20014), pages 358–362. IOS Press, 2004.

B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. Weakest pre-
condition reasoning for expected run-times of probabilistic programs. In
P. Thiemann, editor, 25th European Symposium on Programming, on Pro-
gramming Languages and Systems (ESOP 2016), volume 9632 of LNCS,
pages 364–389. Springer, 2016. doi: 10.1007/978-3-662-49498-1 15.

K. Kersting and L. De Raedt. Towards combining inductive logic pro-
gramming with Bayesian networks. In 11th International Conference on
Inductive Logic Programming (ILP 2001), volume 2157 of LNCS, pages
118–131, 2001.

362 References

K. Kersting and L. De Raedt. Basic principles of learning Bayesian logic
programs. In Probabilistic Inductive Logic Programming, volume 4911 of
LNCS, pages 189–221. Springer, 2008.

H. Khosravi, O. Schulte, J. Hu, and T. Gao. Learning compact Markov logic
networks with decision trees. Machine Learning, 89(3):257–277, 2012.

D. M. Kilgour and S. J. Brams. The truel. Mathematics Magazine, 70(5):
315–326, 1997.

A. Kimmig. A Probabilistic Prolog and its Applications. PhD thesis,
Katholieke Universiteit Leuven, Belgium, 2010.

A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt.
On the efficient execution of ProbLog programs. In 24th International
Conference on Logic Programming (ICLP 2008), volume 5366 of LNCS,
pages 175–189. Springer, 9–13 December 2008.

A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha. On the
implementation of the probabilistic logic programming language ProbLog.
Theory and Practice of Logic Programming, 11(2-3):235–262, 2011a.

A. Kimmig, G. V. den Broeck, and L. D. Raedt. An algebraic Prolog for
reasoning about possible worlds. In W. Burgard and D. Roth, editors,
25th AAAI Conference on Artificial Intelligence (AAAI 2011). AAAI Press,
2011b.

J. Kisynski and D. Poole. Lifted aggregation in directed first-order probabilis-
tic models. In C. Boutilier, editor, 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), pages 1922–1929, 2009a.

J. Kisynski and D. Poole. Constraint processing in lifted probabilistic infer-
ence. In J. Bilmes and A. Y. Ng, editors, 25th International Conference on
Uncertainty in Artificial Intelligence (UAI 2009), pages 293–302. AUAI
Press, 2009b.

B. Knaster and A. Tarski. Un théorème sur les fonctions d’ensembles.
Annales de la Société Polonaise de Mathématique, 6:133–134, 1928.

K. Knopp. Theory and Application of Infinite Series. Dover Books on
Mathematics. Dover Publications, 1951.

S. Kok and P. Domingos. Learning the structure of Markov logic networks.
In L. De Raedt and S. Wrobel, editors, 22nd International Conference on
Machine learning, pages 441–448. ACM Press, 2005.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles
and Techniques. Adaptive computation and machine learning. MIT Press,
Cambridge, MA, 2009.

E. Koutsofios, S. North, et al. Drawing graphs with dot. Technical Report
910904-59113-08TM, AT&T Bell Laboratories, 1991.

References 363

R. A. Kowalski. Predicate logic as programming language. In IFIP Congress,
pages 569–574, 1974.

R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New
Generation Computing, 4(1):67–95, 1986. doi: 10.1007/BF03037383.

T. Lager. Spaghetti and HMMeatballs, 2018. https://web.archive.org/web/
20150619013510/http://www.ling.gu.se/„lager/Spaghetti/spaghetti.html,
accessed June 14, 2018, snapshot at the Internet Archive from June 6,
2015 of http://www.ling.gu.se/„lager/Spaghetti/spaghetti.html, no more
accessible.

L. J. Layne and S. Qiu. Prediction for compound activity in large drug
datasets using efficient machine learning approaches. In M. Khosrow-
Pour, editor, International Conference of the Information Resources
Management Association, pages 57–61. Idea Group Publishing, 2005.
doi: 10.4018/978-1-59140-822-2.ch014.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello. The DLV system for knowledge representation and reason-
ing. ACM Transactions on Computational Logic, 7(3):499–562, 2006.
doi: 10.1145/1149114.1149117.

J. W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.
ISBN 3-540-18199-7.

T. Mantadelis and G. Janssens. Dedicated tabling for a probabilistic setting.
In M. V. Hermenegildo and T. Schaub, editors, Technical Communications
of the 26th International Conference on Logic Programming (ICLP 2010),
volume 7 of LIPIcs, pages 124–133. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2010. doi: 10.4230/LIPIcs.ICLP.2010.124.

J. McDermott and R. S. Forsyth. Diagnosing a disorder in a classification
benchmark. Pattern Recognition Letters, 73:41–43, 2016. doi: 10.1016/j.
patrec.2016.01.004.

S. Michels. Hybrid Probabilistic Logics: Theoretical Aspects, Algorithms and
Experiments. PhD thesis, Radboud University Nijmegen, 2016.

S. Michels, A. Hommersom, P. J. F. Lucas, M. Velikova, and P. W. M.
Koopman. Inference for a new probabilistic constraint logic. In F. Rossi,
editor, 23nd International Joint Conference on Artificial Intelligence
(IJCAI 2013), pages 2540–2546. AAAI Press/IJCAI, 2013.

S. Michels, A. Hommersom, P. J. F. Lucas, and M. Velikova. A new
probabilistic constraint logic programming language based on a gen-
eralised distribution semantics. Artificial Intelligence, 228:1–44, 2015.
doi: 10.1016/j.artint.2015.06.008.

364 References

S. Michels, A. Hommersom, and P. J. F. Lucas. Approximate probabilistic
inference with bounded error for hybrid probabilistic logic programming.
In S. Kambhampati, editor, 25th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2016), pages 3616–3622. AAAI Press/IJCAI,
2016.

B. Milch, L. S. Zettlemoyer, K. Kersting, M. Haimes, and L. P. Kaelbling.
Lifted probabilistic inference with counting formulas. In D. Fox and C. P.
Gomes, editors, 23rd AAAI Conference on Artificial Intelligence (AAAI
2008), pages 1062–1068. AAAI Press, 2008.

T. M. Mitchell. Machine learning. McGraw Hill series in computer science.
McGraw-Hill, 1997. ISBN 978-0-07-042807-2.

P. Morettin, A. Passerini, and R. Sebastiani. Efficient weighted model inte-
gration via SMT-based predicate abstraction. In C. Sierra, editor, 26th
International Joint Conference on Artificial Intelligence (IJCAI 2017),
pages 720–728. IJCAI, 2017. doi: 10.24963/ijcai.2017/100.

S. Muggleton. Inverse entailment and Progol. New Generation Computing,
13:245–286, 1995.

S. Muggleton. Learning stochastic logic programs. Electronic Transaction on
Artificial Intelligence, 4(B):141–153, 2000a.

S. Muggleton. Learning stochastic logic programs. In L. Getoor and
D. Jensen, editors, Learning Statistical Models from Relational Data,
Papers from the 2000 AAAI Workshop, volume WS-00-06 of AAAI Work-
shops, pages 36–41. AAAI Press, 2000b.

S. Muggleton. Learning structure and parameters of stochastic logic pro-
grams. In S. Matwin and C. Sammut, editors, 12th International Confer-
ence on Inductive Logic Programming (ILP 2002), volume 2583 of LNCS,
pages 198–206. Springer, 2003. doi: 10.1007/3-540-36468-4 13.

S. Muggleton, J. C. A. Santos, and A. Tamaddoni-Nezhad. Toplog: ILP using
a logic program declarative bias. In M. G. de la Banda and E. Pontelli, edi-
tors, 24th International Conference on Logic Programming (ICLP 2008),
volume 5366 of LNCS, pages 687–692. Springer, 2008. doi: 10.1007/
978-3-540-89982-2 58.

S. Muggleton et al. Stochastic logic programs. Advances in inductive logic
programming, 32:254–264, 1996.

C. J. Muise, S. A. McIlraith, J. C. Beck, and E. I. Hsu. Dsharp: Fast
d-DNNF compilation with sharpSAT. In L. Kosseim and D. Inkpen,
editors, 25th Canadian Conference on Artificial Intelligence, Canadian
AI 2012, volume 7310 of LNCS, pages 356–361. Springer, 2012.
doi: 10.1007/978-3-642-30353-1 36.

References 365

K. P. Murphy. Machine learning: a probabilistic perspective. The MIT Press,
2012.

A. Nampally and C. Ramakrishnan. Adaptive MCMC-based inference in
probabilistic logic programs. arXiv preprint arXiv:1403.6036, 2014.

R. T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Informa-
tion and Computation, 101(2):150–201, 1992.

A. Nguembang Fadja and F. Riguzzi. Probabilistic logic programming in
action. In A. Holzinger, R. Goebel, M. Ferri, and V. Palade, editors,
Towards Integrative Machine Learning and Knowledge Extraction, volume
10344 of LNCS. Springer, 2017. doi: 10.1007/978-3-319-69775-8 5.

A. Nguembang Fadja, E. Lamma, and F. Riguzzi. Deep probabilistic logic
programming. In C. Theil Have and R. Zese, editors, 4th International
Workshop on Probabilistic Logic Programming (PLP 2017), volume 1916
of CEUR-WS, pages 3–14. Sun SITE Central Europe, 2017.

P. Nicolas, L. Garcia, I. Stéphan, and C. Lefèvre. Possibilistic uncertainty
handling for answer set programming. Annals of Mathematics and Artifi-
cial Intelligence, 47(1-2):139–181, 2006.

J. C. Nieves, M. Osorio, and U. Cortés. Semantics for possibilistic disjunctive
programs. In 9th International Conference on Logic Programming and
Non-monotonic Reasoning (LPNMR 2007), volume 4483 of LNCS, pages
315–320. Springer, 2007.

N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.
M. Nishino, A. Yamamoto, and M. Nagata. A sparse parameter learning

method for probabilistic logic programs. In Statistical Relational Artificial
Intelligence, Papers from the 2014 AAAI Workshop, volume WS-14-13 of
AAAI Workshops. AAAI Press, 2014.

D. Nitti, T. De Laet, and L. De Raedt. Probabilistic logic programming
for hybrid relational domains. Machine Learning, 103(3):407–449, 2016.
ISSN 1573-0565. doi: 10.1007/s10994-016-5558-8.

J. Nivre. Logic programming tools for probabilistic part-of-speech tagging.
Master thesis, School of Mathematics and Systems Engineering, Växjö
University, October 2000.

M. Osorio and J. C. Nieves. Possibilistic well-founded semantics. In 8th
Mexican International International Conference on Artificial Intelligence
(MICAI 2009), volume 5845 of LNCS, pages 15–26. Springer, 2009.

A. Paes, K. Revoredo, G. Zaverucha, and V. S. Costa. Probabilistic first-
order theory revision from examples. In S. Kramer and B. Pfahringer,
editors, 15th International Conference on Inductive Logic Programming
(ILP 2005), volume 3625 of LNCS, pages 295–311. Springer, 2005.
doi: 10.1007/11536314 18.

366 References

A. Paes, K. Revoredo, G. Zaverucha, and V. S. Costa. PFORTE: revising
probabilistic FOL theories. In J. S. Sichman, H. Coelho, and S. O. Rezende,
editors, 2nd International Joint Conference, 10th Ibero-American Confer-
ence on AI, 18th Brazilian AI Symposium, IBERAMIA-SBIA 2006, volume
4140 of LNCS, pages 441–450. Springer, 2006. doi: 10.1007/11874850 48.

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. Morgan Kaufmann, 1988.

Y. Perov, B. Paige, and F. Wood. The Indian GPA problem, 2017.
https://bitbucket.org/probprog/anglican-examples/src/master/worksheets/
indian-gpa.clj, accessed June 1, 2018.

A. Pfeffer. Practical Probabilistic Programming. Manning Publications,
2016. ISBN 9781617292330.

G. D. Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153–163. Edinburgh University Press, 1970.

D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64(1):81–129, 1993a.

D. Poole. Logic programming, abduction and probability - a top-down
anytime algorithm for estimating prior and posterior probabilities. New
Generation Computing, 11(3):377–400, 1993b.

D. Poole. The Independent Choice Logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94:7–56, 1997.

D. Poole. Abducing through negation as failure: Stable models within the
independent choice logic. Journal of Logic Programming, 44(1-3):5–35,
2000.

D. Poole. First-order probabilistic inference. In G. Gottlob and T. Walsh, edi-
tors, 18th International Joint Conference on Artificial Intelligence (IJCAI
2003), pages 985–991. Morgan Kaufmann Publishers, 2003.

D. Poole. The independent choice logic and beyond. In L. De Raedt,
P. Frasconi, K. Kersting, and S. Muggleton, editors, Probabilistic Inductive
Logic Programming, volume 4911 of LNCS, pages 222–243. Springer,
2008.

T. C. Przymusinski. Perfect model semantics. In R. A. Kowalski and K. A.
Bowen, editors, 5th International Conference and Symposium on Logic
Programming (ICLP/SLP 1988), pages 1081–1096. MIT Press, 1988.

References 367

T. C. Przymusinski. Every logic program has a natural stratification and an
iterated least fixed point model. In Proceedings of the 8th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-
1989), pages 11–21. ACM Press, 1989.

J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–266, 1990. doi: 10.1007/BF00117105.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

L. D. Raedt, A. Dries, I. Thon, G. V. den Broeck, and M. Verbeke. Inducing
probabilistic relational rules from probabilistic examples. In Q. Yang and
M. Wooldridge, editors, 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015), pages 1835–1843. AAAI Press, 2015.

I. Razgon. On OBDDs for CNFs of bounded treewidth. In C. Baral, G. D.
Giacomo, and T. Eiter, editors, 14th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2014). AAAI Press,
2014.

J. Renkens, G. Van den Broeck, and S. Nijssen. k-optimal: a novel approxi-
mate inference algorithm for ProbLog. Machine Learning, 89(3):215–231,
2012. doi: 10.1007/s10994-012-5304-9.

J. Renkens, A. Kimmig, G. Van den Broeck, and L. De Raedt. Explanation-
based approximate weighted model counting for probabilistic logics. In
28th National Conference on Artificial Intelligence, AAAI’14, Québec City,
Québec, Canada, pages 2490–2496. AAAI Press, 2014.

K. Revoredo and G. Zaverucha. Revision of first-order Bayesian classifiers.
In S. Matwin and C. Sammut, editors, 12th International Conference on
Inductive Logic Programming (ILP 2002), volume 2583 of LNCS, pages
223–237. Springer, 2002. doi: 10.1007/3-540-36468-4 15.

F. Riguzzi. Learning logic programs with annotated disjunctions. In A. Srini-
vasan and R. King, editors, 14th International Conference on Inductive
Logic Programming (ILP 2004), volume 3194 of LNCS, pages 270–287.
Springer, Sept. 2004. doi: 10.1007/978-3-540-30109-7 21.

F. Riguzzi. A top down interpreter for LPAD and CP-logic. In 10th Congress
of the Italian Association for Artificial Intelligence, (AI*IA 2007), vol-
ume 4733 of LNAI, pages 109–120. Springer, 2007a. doi: 10.1007/
978-3-540-74782-6 11.

F. Riguzzi. ALLPAD: Approximate learning of logic programs with
annotated disjunctions. In S. Muggleton and R. Otero, editors, 16th
International Conference on Inductive Logic Programming (ILP 2006),
volume 4455 of LNAI, pages 43–45. Springer, 2007b. doi: 10.1007/
978-3-540-73847-3 11.

368 References

F. Riguzzi. Inference with logic programs with annotated disjunctions under
the well founded semantics. In 24th International Conference on Logic
Programming (ICLP 2008), volume 5366 of LNCS, pages 667–771.
Springer, 2008a. doi: 10.1007/978-3-540-89982-2 54.

F. Riguzzi. ALLPAD: Approximate learning of logic programs with
annotated disjunctions. Machine Learning, 70(2-3):207–223, 2008b.
doi: 10.1007/s10994-007-5032-8.

F. Riguzzi. Extended semantics and inference for the independent choice
logic. Logic Journal of the IGPL, 17(6):589–629, 2009. doi: 10.1093/
jigpal/jzp025.

F. Riguzzi. SLGAD resolution for inference on logic programs with annotated
disjunctions. Fundamenta Informaticae, 102(3-4):429–466, Oct. 2010.
doi: 10.3233/FI-2010-392.

F. Riguzzi. MCINTYRE: A Monte Carlo system for probabilistic logic
programming. Fundamenta Informaticae, 124(4):521–541, 2013. doi: 10.
3233/FI-2013-847.

F. Riguzzi. Speeding up inference for probabilistic logic programs. The
Computer Journal, 57(3):347–363, 2014. doi: 10.1093/comjnl/bxt096.

F. Riguzzi. The distribution semantics for normal programs with function
symbols. International Journal of Approximate Reasoning, 77:1–19, 2016.
doi: 10.1016/j.ijar.2016.05.005.

F. Riguzzi and N. Di Mauro. Applying the information bottleneck to sta-
tistical relational learning. Machine Learning, 86(1):89–114, 2012. doi:
10.1007/s10994-011-5247-6.

F. Riguzzi and T. Swift. Tabling and answer subsumption for reasoning on
logic programs with annotated disjunctions. In Technical Communications
of the 26th International Conference on Logic Programming (ICLP 2010),
volume 7 of LIPIcs, pages 162–171. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2010. doi: 10.4230/LIPIcs.ICLP.2010.162.

F. Riguzzi and T. Swift. The PITA system: Tabling and answer subsumption
for reasoning under uncertainty. Theory and Practice of Logic Program-
ming, 11(4–5):433–449, 2011. doi: 10.1017/S147106841100010X.

F. Riguzzi and T. Swift. Well-definedness and efficient inference for proba-
bilistic logic programming under the distribution semantics. Theory and
Practice of Logic Programming, 13(2):279–302, 2013. doi: 10.1017/
S1471068411000664.

F. Riguzzi and T. Swift. Terminating evaluation of logic programs with
finite three-valued models. ACM Transactions on Computational Logic,
15(4):32:1–32:38, 2014. ISSN 1529-3785. doi: 10.1145/2629337.

References 369

F. Riguzzi and T. Swift. Probabilistic logic programming under the dis-
tribution semantics. In M. Kifer and Y. A. Liu, editors, Declarative
Logic Programming: Theory, Systems, and Applications. Association for
Computing Machinery and Morgan & Claypool, 2018.

F. Riguzzi, E. Bellodi, and R. Zese. A history of probabilistic inductive logic
programming. Frontiers in Robotics and AI, 1(6), 2014. ISSN 2296-9144.
doi: 10.3389/frobt.2014.00006.

F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, and G. Cota. Probabilis-
tic logic programming on the web. Software: Practice and Experience,
46(10):1381–1396, 10 2016a. doi: 10.1002/spe.2386.

F. Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma. Scaling struc-
ture learning of probabilistic logic programs by MapReduce. In M. Fox
and G. Kaminka, editors, 22nd European Conference on Artificial Intel-
ligence (ECAI 2016), volume 285 of Frontiers in Artificial Intelligence
and Applications, pages 1602–1603. IOS Press, 2016b. doi: 10.3233/
978-1-61499-672-9-1602.

F. Riguzzi, E. Bellodi, R. Zese, G. Cota, and E. Lamma. A survey of
lifted inference approaches for probabilistic logic programming under the
distribution semantics. International Journal of Approximate Reasoning,
80:313–333, 1 2017a. doi: 10.1016/j.ijar.2016.10.002.

F. Riguzzi, E. Lamma, M. Alberti, E. Bellodi, R. Zese, and G. Cota. Proba-
bilistic logic programming for natural language processing. In F. Chesani,
P. Mello, and M. Milano, editors, Workshop on Deep Understanding and
Reasoning, URANIA 2016, volume 1802 of CEUR Workshop Proceedings,
pages 30–37. Sun SITE Central Europe, 2017b.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965. doi: 10.1145/321250.321253.

T. Rocktäschel and S. Riedel. Learning knowledge base inference with
neural theorem provers. In J. Pujara, T. Rocktäschel, D. Chen, and
S. Singh, editors, 5th Workshop on Automated Knowledge Base Construc-
tion, AKBC@NAACL-HLT 2016, San Diego, CA, USA, June 17, 2016,
pages 45–50. The Association for Computer Linguistics, 2016.

T. Rocktäschel and S. Riedel. End-to-end differentiable proving. CoRR,
abs/1705.11040, 2017.

B. Russell. Mathematical logic as based on the theory of types. In J. van
Heikenoort, editor, From Frege to Godel, pages 150–182. Harvard Univ.
Press, 1967.

T. P. Ryan. Modern Engineering Statistics. John Wiley & Sons, 2007.
V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog system. Theory

and Practice of Logic Programming, 12(1-2):5–34, 2012.

370 References

T. Sato. A statistical learning method for logic programs with distribution
semantics. In L. Sterling, editor, 12th International Conference on Logic
Programming (ICLP 1995), pages 715–729. MIT Press, 1995.

T. Sato and Y. Kameya. PRISM: a language for symbolic-statistical modeling.
In 15th International Joint Conference on Artificial Intelligence (IJCAI
1997), volume 97, pages 1330–1339, 1997.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Research, 15:
391–454, 2001.

T. Sato and Y. Kameya. New advances in logic-based probabilistic modeling
by PRISM. In L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton,
editors, Probabilistic Inductive Logic Programming - Theory and Appli-
cations, volume 4911 of LNCS, pages 118–155. Springer, 2008. doi:
10.1007/978-3-540-78652-8 5.

T. Sato and K. Kubota. Viterbi training in PRISM. Theory and Practice of
Logic Programming, 15(02):147–168, 2015.

T. Sato and P. Meyer. Tabling for infinite probability computation. In
A. Dovier and V. S. Costa, editors, Technical Communications of the
28th International Conference on Logic Programming (ICLP 2012), vol-
ume 17 of LIPIcs, pages 348–358. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2012.

T. Sato and P. Meyer. Infinite probability computation by cyclic explanation
graphs. Theory and Practice of Logic Programming, 14:909–937, 11 2014.
ISSN 1475-3081. doi: 10.1017/S1471068413000562.

T. Sato, Y. Kameya, and K. Kurihara. Variational Bayes via propositionalized
probability computation in PRISM. Annals of Mathematics and Artificial
Intelligence, 54(1-3):135–158, 2008.

T. Sato, N.-F. Zhou, Y. Kameya, Y. Izumi, K. Kubota, and R. Kojima.
PRISM User’s Manual (Version 2.3), 2017. http://rjida.meijo-u.ac.jp/
prism/download/prism23.pdf, accessed June 8, 2018.

O. Schulte and H. Khosravi. Learning graphical models for relational data via
lattice search. Machine Learning, 88(3):331–368, 2012.

O. Schulte and K. Routley. Aggregating predictions vs. aggregating fea-
tures for relational classification. In IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM 2014), pages 121–128.
IEEE, 2014.

R. Schwitter. Learning effect axioms via probabilistic logic program-
ming. In R. Rocha, T. C. Son, C. Mears, and N. Saeedloei, edi-
tors, Technical Communications of the 33rd International Conference

References 371

on Logic Programming (ICLP 2017), volume 58 of OASICS, pages
8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi: 10.4230/OASIcs.ICLP.2017.8.

P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and H. Toivonen. Link
discovery in graphs derived from biological databases. In International
Workshop on Data Integration in the Life Sciences, volume 4075 of LNCS,
pages 35–49. Springer, 2006.

G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

D. S. Shterionov, J. Renkens, J. Vlasselaer, A. Kimmig, W. Meert, and
G. Janssens. The most probable explanation for probabilistic logic pro-
grams with annotated disjunctions. In J. Davis and J. Ramon, editors, 24th
International Conference on Inductive Logic Programming (ILP 2014),
volume 9046 of LNCS, pages 139–153. Springer, 2015. doi: 10.1007/
978-3-319-23708-4 10.

P. Singla and P. Domingos. Discriminative training of Markov logic networks.
In 20th National Conference on Artificial Intelligence (AAAI 2005), pages
868–873. AAAI Press/The MIT Press, 2005.

F. Somenzi. CUDD: CU Decision Diagram Package Release 3.0.0.
University of Colorado, 2015. URL http://vlsi.colorado.edu/„fabio/
CUDD/cudd.pdf.

A. Srinivasan. The aleph manual, 2007. http://www.cs.ox.ac.uk/activities/
machlearn/Aleph/aleph.html, accessed April 3, 2018.

A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King. Theories for
mutagenicity: A study in first-order and feature-based induction. Artificial
Intelligence, 85(1-2):277–299, 1996.

A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Sternberg. Carcino-
genesis predictions using ILP. In N. Lavrac and S. Dzeroski, editors, 7th
International Workshop on Inductive Logic Programming, volume 1297 of
LNCS, pages 273–287. Springer Berlin Heidelberg, 1997.

S. Srivastava. A Course on Borel Sets. Graduate Texts in Mathematics.
Springer, 2013.

L. Steen and J. Seebach. Counterexamples in Topology. Dover Books on
Mathematics. Dover Publications, 2013.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming
Techniques. Logic programming. MIT Press, 1994. ISBN 9780262193382.

C. Stolle, A. Karwath, and L. De Raedt. Cassic’cl: An integrated ILP system.
In A. Hoffmann, H. Motoda, and T. Scheffer, editors, 8th International
Conference on Discovery Science (DS 2005), volume 3735 of LNCS,
pages 354–362. Springer, 2005.

372 References

T. Swift and D. S. Warren. XSB: Extending prolog with tabled logic pro-
gramming. Theory and Practice of Logic Programming, 12(1-2):157–187,
2012. doi: 10.1017/S1471068411000500.

T. Syrjänen and I. Niemelä. The Smodels system. In T. Eiter, W. Faber,
and M. Truszczynski, editors, 6th International Conference on Logic Pro-
gramming and Non-Monotonic Reasoning (LPNMR 2001), volume 2173
of LNCS. Springer, 2001. doi: 10.1007/3-540-45402-0 38.

N. Taghipour, D. Fierens, J. Davis, and H. Blockeel. Lifted variable elimi-
nation: Decoupling the operators from the constraint language. Journal of
Artificial Intelligence Research, 47:393–439, 2013.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

Y. W. Teh. Dirichlet process. In Encyclopedia of machine learning, pages
280–287. Springer, 2011.

A. Thayse, M. Davio, and J. P. Deschamps. Optimization of multivalued
decision algorithms. In 8th International Symposium on Multiple-Valued
Logic, pages 171–178. IEEE Computer Society Press, 1978.

I. Thon, N. Landwehr, and L. D. Raedt. A simple model for sequences of
relational state descriptions. In European conference on Machine Learning
and Knowledge Discovery in Databases, volume 5212 of LNCS, pages
506–521. Springer, 2008. ISBN 978-3-540-87480-5.

C. Turliuc, L. Dickens, A. Russo, and K. Broda. Probabilistic abductive logic
programming using Dirichlet priors. International Journal of Approximate
Reasoning, 78:223–240, 2016. doi: 10.1016/j.ijar.2016.07.001.

G. Van den Broeck. On the completeness of first-order knowledge compi-
lation for lifted probabilistic inference. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24 (NIPS 2011), pages 1386–1394,
2011.

G. Van den Broeck. Lifted Inference and Learning in Statistical Relational
Models. PhD thesis, Ph. D. Dissertation, KU Leuven, 2013.

G. Van den Broeck, I. Thon, M. van Otterlo, and L. De Raedt. DTProbLog:
A decision-theoretic probabilistic Prolog. In M. Fox and D. Poole,
editors, 24th AAAI Conference on Artificial Intelligence (AAAI 2010),
pages 1217–1222. AAAI Press, 2010.

G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. De Raedt. Lifted
probabilistic inference by first-order knowledge compilation. In T. Walsh,
editor, 22nd International Joint Conference on Artificial Intelligence
(IJCAI 2011), pages 2178–2185. IJCAI/AAAI, 2011.

References 373

G. Van den Broeck, W. Meert, and A. Darwiche. Skolemization for weighted
first-order model counting. In C. Baral, G. D. Giacomo, and T. Eiter,
editors, 14th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2014), pages 111–120. AAAI Press, 2014.

A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

J. Vennekens and S. Verbaeten. Logic programs with annotated disjunctions.
Technical Report CW386, KU Leuven, 2003.

J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with
annotated disjunctions. In B. Demoen and V. Lifschitz, editors, 24th
International Conference on Logic Programming (ICLP 2004), vol-
ume 3131 of LNCS, pages 431–445. Springer, 2004. doi: 10.1007/
978-3-540-27775-0 30.

J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of
causal probabilistic events and its relation to logic programming. Theory
and Practice of Logic Programming, 9(3):245–308, 2009.

J. Vlasselaer, J. Renkens, G. Van den Broeck, and L. De Raedt. Compil-
ing probabilistic logic programs into sentential decision diagrams. In 1st
International Workshop on Probabilistic Logic Programming (PLP 2014),
pages 1–10, 2014.

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt.
Anytime inference in probabilistic logic programs with Tp-compilation.
In 24th International Joint Conference on Artificial Intelligence (IJCAI
2015), pages 1852–1858, 2015.

J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L. De Raedt.
Tp-compilation for inference in probabilistic logic programs. International
Journal of Approximate Reasoning, 78:15–32, 2016. doi: 10.1016/j.ijar.
2016.06.009.

J. Von Neumann. Various techniques used in connection with random digits.
Nattional Bureau of Standard (U.S.), Applied Mathematics Series, 12:
36–38, 1951.

W. Y. Wang, K. Mazaitis, N. Lao, and W. W. Cohen. Efficient inference and
learning in a large knowledge base. Machine Learning, 100(1):101–126,
Jul 2015. doi: 10.1007/s10994-015-5488-x.

M. P. Wellman, J. S. Breese, and R. P. Goldman. From knowledge bases to
decision models. The Knowledge Engineering Review, 7(1):35–53, 1992.

J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. Theory
and Practice of Logic Programming, 12(1-2):67–96, 2012. doi: 10.1017/
S1471068411000494.

374 References

J. Wielemaker, T. Lager, and F. Riguzzi. SWISH: SWI-Prolog for sharing. In
S. Ellmauthaler and C. Schulz, editors, International Workshop on User-
Oriented Logic Programming (IULP 2015), 2015.

S. Willard. General Topology. Addison-Wesley series in mathematics. Dover
Publications, 1970.

F. Wood, J. W. van de Meent, and V. Mansinghka. A new approach to
probabilistic programming inference. In 17th International conference on
Artificial Intelligence and Statistics (AISTAT 2014), pages 1024–1032,
2014.

F. Yang, Z. Yang, and W. W. Cohen. Differentiable learning of logical rules
for knowledge base reasoning. In I. Guyon, U. von Luxburg, S. Bengio,
H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30 (NIPS 2017),
pages 2316–2325, 2017.

N. L. Zhang and D. Poole. A simple approach to bayesian network compu-
tations. In 10th Canadian Conference on Artificial Intelligence, Canadian
AI 1994, pages 171–178, 1994.

N. L. Zhang and D. L. Poole. Exploiting causal independence in Bayesian
network inference. Journal of Artificial Intelligence Research, 5:301–328,
1996.

Index

σ-algebra
product 30

θ-subsumption 284
#P-complete 146, 151
#SAT 254

A
accuracy 291
acyclic graph 34
acyclicicity 207
acyclicity 20

LPAD 58
aggregation parfactor 205
Aleph 284, 300
algebra 23, 92
algebraic decision diagram 244
algebraic fact 251
ALLPAD 265

structure learning problem 287
ancestor 35
Anglican 326
annotated disjunctive clause 42
Annotated Probabilistic Logic

Programming 88
answer subsumption 161
answer set, see model, stable 21
answer set programming 22
answer subsumption 162
antisubstitution 6
anytime algorithm 221, 232, 233
approximate inference 213
aProbLog 250

argument sampling 331
arithmetic circuit 168
arity 4
atom 4, 46
atomic choice 46, 49, 91
atomic formulas 4
atomic normal program 210
attach operation 310

B
background predicate 296
backward probability 274
base distribution 318
Baum-Welch algorithm 262
Bayes’ theorem 31
Bayesian estimation 326
Bayesian Logic Programs 76
Bayesian network 34, 41, 55
beam search 285, 291, 296, 300
belief propagation 40
beta distribution 127, 319
binary decision diagram 152, 179,

181, 249, 254, 256, 269,
271, 305, 313

binomial distribution 127, 216
BIOMINE network 55
bipartite graph 40
bivariate Gaussian density 29
Borel-Kolmogorov paradox 32
bottom clause 285, 296
bottom element 2, 16, 103
bottom-up parsing 310

375

376 Index

bottom-up reasoning 11
branch-and-bound 216, 229

C
C-FOVE 201
c2d 168
Cantor’s diagonal argument 92
Cartesian product 126

infinite 110
consistent 112

causal independence 200
causal mechanism 42
causal reasoning 42
causality 66
central limit theorem 216
chain 36
chain rule 34
chi squared 295
child random variable 34
Chinese restaurant process 322
Clark’s completion 13, 165, 175, 207
classification 33
clause 5

definite 5
normal 6

clause body 5
clause head 5
clique 38, 40
closed-world assumption 275
closure under countable union 100
CLP(BN) 76
CLP(R) 128
collider 36
compatibility condition,

see consistency conditio 111
complete binary decision diagram

272
complete interpretation 251
complete lattice 2, 16, 103

completeness 8, 107
composite choice 46, 93
concentration parameter 318
conditional density 31
conditional inference 224
conditional probability 30, 46
conditional probability table 34

deterministic 35
conditionally independent random

variables 32, 38, 64
confidence interval 216

binomial proportion 216
consistency condition 111
consistent set of atomic choices 46
constraint

anti-monotonic 288
monotonic 288

context free grammar 309
convergent random variable 199
convergent series 186
Cora 181
countable set 23, 91, 113
counting formulas 202
coupon collector problem 339
covariance matrix 29, 315
covering loop 291, 300
covering set of composite choices 96
covering set of explanations 96, 146,

178
CP-logic 66

semantics 67
valid theory 70

CPL1 239
cplint 222, 305

continuous variables 126
credal semantics 72, 73
credal sets 130
CUDD 158, 245
cumulative distribution 26

Index 377

cut 12
cyclic explanation graph 187
cylinder sets 110

D
d-separation 35, 40
Datalog 7
decision facts 241
decision problem 241
decision variable 241
decreasing sequence 3
deep learning 351
default negation 6
deleted path 274
deletion rule 274
depth

program 17
depth bound 215
deputy variable 200
derivation 8, 275
derivation variable 189
descendant 35
determinant of a matrix 29
determinate predicate 235
determinate program 236
deterministic decomposable negation

normal form 167
decision 171

ordering 172
smooth 167
strongly deterministic 174
structured decomposability 174

deterministic dependency 35
diagnosis 33
Dirichlet distribution 126, 343
Dirichlet process 318, 324
discrete topology 110
discrete-time stochastic process 322
disjoint statements 43

disjoint sum 255
disjoint-sum problem 151
distribution semantics 41, 45, 64, 92
Distributional Clauses 118, 126, 129

valid program 120
DLV 22
DPLL 207
Dsharp 168
DTProbLog 241
duel 335
dynamic clauses 221
dynamic models 178
dynamic programming 149, 154,

157, 262, 268
dynamically stratification 18

E
eigenvalues 29
elimination order 200
EMBLEM 270, 296, 300

learning problem 270
equality theory 14
equivalent networks 39
equivalent sets of composite choices

93
error bound 215
event, see measurable set
Event Calculus 304
evidence 33, 334
exclusive-or assumption 146, 178,

194, 236, 306
existential quantifier 208
expectation 27, 121, 235, 341

conditional 31
expectation maximization 259, 270,

281, 282
expected cost 241
expected reward 241
expected sufficient statistics 282

378 Index

explanation 96, 146, 231, 300
infinite 221

explanation sum 256
expressive power 38, 41, 56
extended PRISM 124, 129, 282
extension of resolution 240

F
fact 5
factor 36

heterogeneous 200
factor graph 40
factorization, see factorized model
factorized model 36
family of nodes 37
feature 37
Figaro 88
finite support condition 120
finitely additive probability measure

24
finitely additive probability space 24,

95
finitely well-defined program 96
first-order logic 4
fixpoint 3, 234

greatest 3, 17
least 3, 12, 17, 105, 177

flexible probabilities 64, 91
FOIL 284, 291
fork 36
forward probability 274
forward-backward 262
FOVE 201
fully-connected 38
function symbol 186
function symbols 41, 46, 91, 221

G
gamma distribution 124, 126

Gaussian density, see Gaussian
distribution 27

Gaussian distribution 124, 126, 189,
224, 319, 322, 324, 326

Gaussian mixture model 115, 119,
125, 127, 238

Gaussian noise 327
Gaussian process 314
GC-FOVE 201
generality relation 284
generative definitions 130
generative exclusiveness

condition 187
geometric distribution 127
global scoring function 291
gradient 282
gradient computation 255
gradient descent 267
grammar 309
graphical model 34, 41, 146
greatest lower bound 16, 103
greedy search 296
grounding 6, 46

H
Herbrand base 6
Herbrand universe 6
heuristic 291
hidden Markov model 81, 147, 262,

309
hybrid ProbLog 115

parameter learning 282
hybrid program 223
hypothetical derivation sequence 69

I
idempotent 256
immediate consequence operator 11

Index 379

imprecise probability distributions
130

increasing sequence 3
increasing sequence of sets 99
independent and identically distributed

44
Independent Choice Logic 43, 56
independent random variables 32
independent-and assumption 146, 178,

194, 261
independent-or assumption 179
Indian GPA problem 346
indicator function 121
inductive definition 9, 10
inductive logic programming 288
inference 33

approximate 146
COND 145
CONDATOMS 163
DISTR 145, 234
EVID 145, 163
exact 145
EXP 234, 306
EXPEC 340
MAP 145
MPE 145, 150, 163, 186, 254
PROB 255

infinite mixture model 324
infinite product 91
infinite-dimensional measurable space

112
infinitely often 98
inhibitor 198
input variable 285
inside probability 262
Inside-Outside algorithm 262
interpretation

Herbrand 7
three-valued 15

consistent 16
two-valued 7

iterated fixpoint 17, 104
iterative deepening 213, 233

J
joint cumulative distribution 28
joint event 33
joint probability 28
joint probability density 28
joint probability distribution 28, 34,

39

K
k-best 215, 249
k-optimal 229
Kalman filter 128, 327
kernel

function 315
squared exponential 315

Knaster–Tarski theorem 3
knowledge base model construction

41, 76
knowledge compilation 146,

150, 151
knowledge graph 351
Kolmogorov consistency theorem 111

L
labeling function 252
language bias 285, 296
latent Dirichlet allocation 342
learning from entailment 283
least unsure path in a graph 240
least upper bound 16, 103
Lebesgue measure 126
Lebesgue-measurable 120
left corner grammar 309

380 Index

LeProbLog 255, 267, 282
parameter learning problem 267

level mapping 20
LFI-ProbLog 280
lifted absorption 201
lifted inference 146, 195, 351
lifted multiplication 201
lifted sum-out 201
likelihood ratio statistics 295
likelihood weighting 224, 234, 307
limit of a sequence of sets 98
literal 5

negative 6, 13
positive 6

LLPAD 265, 287
parameter learning problem 266

local scoring function 291
local search 249
log likelihood 261, 296
log-linear model 38
logic program

definite 5
normal 6, 13

Logic Program with Annotated
Disjunctions 42, 51, 66

logic programming 8
logical consequence, see logical

entailment
logical entailment 7, 14
loop

negative 15
positive 15

lower bound 213, 233
lower bound of a set 1

greatest 1
LP2 202

M
m-estimate 291, 295

mapping 3
MapReduce 351
marginalization 31, 41, 46
Markov blanket 36, 38
Markov chain 222
Markov chain Monte Carlo 222
Markov logic network 84, 334
Markov network 38, 41
Markov random field, see Markov

network
maximum likelihood 260
MCINTYRE 218, 224, 305, 337,

343, 347
mean 27
measurable function 25, 47, 48, 96
measurable set 23
measurable space 23
mega-example, see mega-interpretation
mega-interpretation 271, 296
memoing 147, 224
Mendelian rules of inheritance 54, 76
merge rule 272
meta-interpreter 12
meta-predicate 65
Metropolis-Hasting MCMC 234
Metropolis-Hastings MCMC 222,

306
mFOIL 284, 291
mixed-integer programming 289
mode declaration 285, 296
model

Herbrand 7
minimal 8, 12, 111

stable 21
well-founded 17, 46

model counting 151
monotonic mapping 3, 17, 104
Monte Carlo 213, 216, 337
Monty Hall puzzle 52

Index 381

moralizing a graph 39
most general unifier 8
multi-switch, see random switch
multiset 266
multivalued decision diagrams 155
multivariate Gaussian density, see

multivariate Gaussian dis-
tribution

multivariate Gaussian distribution
314

multivariate normal density, see
multivariate Gaussian dis-
tribution

N
natural language processing 309
necessity 239
necessity degree 239
negation as failure 9
neural network 351
neutral sum 255
neutral-sum

problem 256
Nilsson’s probabilistic logic 84
noisy-OR 195, 198
normal approximation 216
normal density, see Gaussian

distribution
normal distribution, see Gaussian

distribution
normal logic program 41
normalization 38
normalizing constant 37
NP-hard 230

O
open sets 110
open-world assumption 275
optimal strategy 243

ordinal powers 3
outcome 23
output variable 285
outside probability 262

P
pairwise incompatible set of compos-

ite
choices 93

parameter learning 259, 298
parameterized interpretation 176
parameterized negative two-valued

interpretation 103
parameterized positive two-valued

interpretation 102
parameterized random variable 79,

196
parameterized three-valued interpre-

tation 103
consistent 103

parametric factor, see parfactor
parent random variable 34
parfactor 79, 196
parfactor graph 195
parial order 1
part-of-speech tagging 309
part-of.speech tagging 311
partial derivative 169
partially ordered set 1
particle filtering 225, 235, 307
partition function 37
personalized PageRank 82
PICL 157
PIP 187
PITA 158, 179, 305

correctness 163
transformation 159

PITA(EXC,) 179
PITA(IND, EXC) 178

382 Index

PITA(IND,EXC) 186
PITA(IND,IND) 179
PITA(OPT) 181
PITA(POSS) 241
placemarker 286
Poisson distribution 120, 124, 127
positive-definite matrix 29
possibilistic clause 239
possibilistic logic 239
possibilistic logic program 240
possibilistic theory 239
possibility 239
possibility degree 239
possibility measure 239
possible models 47
Potassco 22
potential, see factor
powerset 1
precision 291
precision recall curve 309
prediction 33
principle of sufficient causation 70
principle of universal causation 70
PRISM 146, 178, 186, 236, 259, 282

language 44, 56
learning task 259

Probabilistic Constraint Logic
Programming 130

probabilistic context-free grammar
187, 262, 309, 330

probabilistic fact 43, 46
Probabilistic Horn Abduction 43, 56
probabilistic left corner grammar

309, 310
probabilistic logic program 41
probabilistic programming 224
probability density 26, 234, 308
probability distribution 25, 67
probability measure 24, 95

probability space 24, 101, 126
probability theory 41
probability tree 66
ProbFOIL 290
ProbFOIL+ 290

learning problem 290
ProbLo2 218, 222
ProbLog 195, 208, 270

language 43–45, 49, 55
system 151
theory compression 289

ProbLog1 213, 217, 243
ProbLog2 163, 280

parameter learning problem 280
product rule 30
product space 30
product topology 110
Progol 82, 284, 298
program

depth 105
temporally well-formed 187

project operation 310
Prolog 9
Prolog Factor Language 79, 197
proof procedure 8
ProPPR 82
Python 175

Q
quantitative structure-activity rela-

tionship 304
query 8, 33, 46

R
random structure 332
random function 236
random switch

name 44
random variable 25, 43, 45

Index 383

continuous 25
discrete 25

random walk 327
one-dimensional 341

range-restrictedness 5, 300
recall 285
recursive clauses 300
reduction 21
regression 315
regular random variable 199
rejection sampling 222, 234, 306
relative frequency 260, 266
relevant

ground atom 11, 134
rule 11, 164

reparameterization 37, 268
resolution 8

SLD 8, 164
tree 9, 10

SLDNF 9, 15
tree 9, 15

SLG 21
ROC curve 309

S
sample space 23
sampling 213, 216
SAT 150, 254
satisfiable set of clauses 7
saturation 286, 298
scalar multiplication 245
schema 285
selection 46, 49
selection rule 9
semantic web 351
semantics 13

Clark’s completion 15
model theoretic 8
stable models 21

well-founded 15
semiring 250

commutative 251
possibilistic 251
probabilistic 251

sensitivity analysis 254
sentential decision diagram 173, 234
set of worlds compatible with a com-

posite choice 93
set of worlds compatible with a set of

composite choices 93
Shannon expansion 154, 156, 245
shift operation 310
sigma-algebra 23, 98

minimal 23
product 112

significance test 295
Skolem normal form 209
Skolem predicate 208
Skolemization 208
SLIPCOVER 296
Smodels 22
social network 249
soft evidence 88
sound program 46, 71
soundness 8, 105
source-to-source transformation 217
splitting 93

algorithm 94, 150
standard deviation 27
stick-breaking process 319, 324
sticker collector problem 341
stochastic TP operator 121
stochastic TP operator 224

cplint 129
stochastic grammar 81
stochastic logic program 81, 236, 330
strategy 242, 335
stratification 20, 177

384 Index

dynamic 17–19
local 20

stratum 17
strictly positive distribution 38
substitution 6
success function 189

integration 191
join 190
marginalization 192
projection 191

succinctness 174
sum rule 31
summing out, see marginalization
SWI-Prolog 21, 162, 221, 332
symbolic derivation 187, 282
symmetric matrix 29

T
TP compilation 176, 233
tabling 21, 148, 158, 161, 164
target predicate 271, 296
target predicates 283
temporal precedence assumption 70
term 4
term expansion 217
text mining 342
theory compression 289
theta-subsumption 288
three-prisoner puzzle 53
tight logic program 210
tile map 332
top element 2, 16, 103
top-down parsing 310
top-down reasoning 11
topic 342
topological sort 34
topological space 110
topology 110
total composite choice, see selection

transfinite induction 105
transitive closure 9
translation

BN to LPAD 55
LPAD to BN 58
LPADs to PHA/ICL 56
LPADs to ProbLog 57
MLNs to LPADs 85
PHA/ICL/PRISM to LPADs 56

tree
SLD 213, 230, 234

trial id 44
truel 335
truth-functional 178
Tseitin predicate 208
Turing-complete language 10

U
uncertainty 23
undirected graph 38
unfounded sets 17
uniform distribution 126
upper bound 213, 232–234
upper bound of a set 1

least 1
utility 242
utility fact 241
utility function 241
UW-CSE 301

V
variable elimination 197
variance 27
video game 332
viral marketing 249
Viterbi algorithm 150
Viterbi path 150
vtree 173

Index 385

W
weight 37
weight fusion 240
weighted Boolean formula 150, 164,

231
weighted first order model counting

207
weighted MAX-SAT 150, 167, 232
weighted model counting 150, 167,

231
weighted model integration 228

well-defined program 101
well-formed formula 4, 5
world 41–43, 46, 49, 91, 252

X
XSB 21, 162

Y
YAP 21, 78, 162, 218

internal database 218

About the Author

Fabrizio Riguzzi is Associate Professor of Computer Science at the Depart-
ment of Mathematics and Computer Science of the University of Ferrara. He
was previously Assistant Professor at the same university. He got his Master
and PhD in Computer Engineering from the University of Bologna.

Fabrizio Riguzzi is vice-president of the Italian Association for Artificial
Intelligence and Editor in Chief of Intelligenza Artificiale, the official journal
of the Association.

He is the author of more than 150 peer reviewed papers in the areas of
Machine Learning, Inductive Logic Programming and Statistical Relational
Learning. His aim is to develop intelligent systems by combining in novel
ways techniques from artificial intelligence, logic and statistics.

387

	Half Title Page
	RIVER PUBLISHERS SERIES IN SOFTWAREENGINEERING
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	List of Figures
	List of Tables
	List of Examples
	List of Definitions
	List of Theorems
	List of Abbreviations
	Chapter 1 - Preliminaries
	1.1 Orders, Lattices, Ordinals
	1.2 Mappings and Fixpoints
	1.3 Logic Programming
	1.4 Semantics for Normal Logic Programs
	1.4.1 Program Completion
	1.4.2 Well-Founded Semantics
	1.4.3 Stable Model Semantics

	1.5 Probability Theory
	Probabilistic Graphical Models

	Chapter 2 - Probabilistic Logic Programming Languages
	2.1 Languages with the Distribution Semantics
	2.1.1 Logic Programs with Annotated Disjunctions
	2.1.2 ProbLog
	2.1.3 Probabilistic Horn Abduction
	2.1.4 PRISM

	2.2 The Distribution Semantics for Programs Without Function Symbols
	2.3 Examples of Programs
	2.4 Equivalence of Expressive Power
	2.5 Translation to Bayesian Networks
	2.6 Generality of the Distribution Semantics
	2.7 Extensions of the Distribution Semantics
	2.8 CP-Logic
	2.9 Semantics for Non-Sound Programs
	2.10 KBMC Probabilistic Logic Programming Languages
	2.10.1 Bayesian Logic Programs
	2.10.2 CLP(BN)
	2.10.3 The Prolog Factor Language

	2.11 Other Semantics for Probabilistic Logic Programming
	2.11.1 Stochastic Logic Programs
	2.11.2 ProPPR

	2.12 Other Semantics for Probabilistic Logics
	2.12.1 Nilsson's Probabilistic Logic
	12.2.2 Markov Logic Networks
	12.2.2.1 Encoding Markov Logic Networks with Probabilistic Logic Programming

	12.3 Annotated Probabilistic Logic Programs

	Chapter 3 - Semantics with Function Symbols
	3.1 The Distribution Semantics for Programs with Function Symbols
	3.2 Infinite Covering Set of Explanations
	3.3 Comparison with Sato and Kameya's Definition

	Chapter 4 - Semantics for Hybrid Programs
	4.1 Hybrid ProbLog
	4.2 Distributional Clauses
	4.3 Extended PRISM
	4.4 cplint Hybrid Programs
	4.5 Probabilistic Constraint Logic Programming
	4.5.1 Dealing with Imprecise Probability Distributions

	Chapter 5 - Exact Inference
	5.1 PRISM
	5.2 Knowledge Compilation
	5.3 ProbLog1
	5.4 cplint
	5.5 SLGAD
	5.6 PITA
	5.7 ProbLog2
	5.8 TP Compilation
	Modeling Assumptions in PITA
	PITA(OPT)
	MPE with PITA

	Inference for Queries with an Infinite Number of Explanations
	Inference for Hybrid Programs

	Chapter 6 - Lifted Inference
	6.1 Preliminaries on Lifted Inference
	6.1.1 Variable Elimination
	6.1.2 GC-FOVE

	6.2 LP2
	6.2.1 Translating ProbLog into PFL

	6.3 Lifted Inference with Aggregation Parfactors
	6.4 Weighted First-Order Model Counting
	6.5 Cyclic Logic Programs
	6.6 Comparison of the Approaches

	Chapter 7 - Approximate Inference
	7.1 ProbLog1
	7.1.1 Iterative Deepening
	7.1.2 k-best
	7.1.3 Monte Carlo

	7.2 MCINTYRE
	7.3 Approximate Inference for Queries with an Infinite Number of Explanations
	7.4 Conditional Approximate Inference
	7.5 Approximate Inference by Sampling for Hybrid Programs
	7.6 Approximate Inference with Bounded Error for Hybrid Programs
	7.7 k-Optimal
	7.8 Explanation-Based Approximate Weighted Model Counting
	7.9 Approximate Inference with TP-compilation
	 DISTR and EXP Tasks

	Chapter 8 - Non-Standard Inference
	8.1 Possibilistic Logic Programming
	8.2 Decision-Theoretic ProbLog
	8.3 Algebraic ProbLog

	Chapter 9 - Parameter Learning
	9.1 PRISM Parameter Learning
	9.2 LLPAD and ALLPAD Parameter Learning
	9.3 LeProbLog
	9.4 EMBLEM
	9.5 ProbLog2 Parameter Learning
	9.6 Parameter Learning for Hybrid Programs

	Chapter 10 - Structure Learning
	10.1 Inductive Logic Programming
	10.2 LLPAD and ALLPAD Structure Learning
	10.3 ProbLog Theory Compression
	10.4 ProbFOIL and ProbFOIL+
	10.5 SLIPCOVER
	10.5.1 The Language Bias
	10.5.2 Description of the Algorithm
	10.5.2.1 Function INITIALBEAMS
	10.5.2.2 Beam Search with Clause Refinements

	10.5.3 Execution Example

	Examples of Datasets

	Chapter 11 - cplint Examples
	11.1 cplint Commands
	11.2 Natural Language Processing
	11.2.1 Probabilistic Context-Free Grammars
	11.2.2 Probabilistic Left Corner Grammars
	11.2.3 Hidden Markov Models

	11.3 Drawing Binary Decision Diagrams
	11.4 Gaussian Processes
	11.5 Dirichlet Processes
	The Stick-Breaking Process
	The Chinese Restaurant Process
	Mixture Model

	11.6 Bayesian Estimation
	11.7 Kalman Filter
	11.8 Stochastic Logic Programs
	11.9 Tile Map Generation
	11.10 Markov Logic Networks
	11.11 Truel
	11.12 Coupon Collector Problem
	11.13 One-Dimensional Random Walk
	11.14 Latent Dirichlet Allocation
	11.15 The Indian GPA Problem
	Bongard Problems

	Chapter 12 - Conclusions
	References
	Index
	About the Author

