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Preface

This book explains limitations of current methods in interpretable machine
learning. The methods include partial dependence plots (PDP), Accumulated
Local Effects (ALE), permutation feature importance, leave-one-covariate out
(LOCO) and local interpretable model-agnostic explanations (LIME). All of
those methods can be used to explain the behavior and predictions of trained
machine learning models. But the interpretation methods might not work well
in the following cases:

• if a model models interactions (e.g. when a random forest is used)
• if features strongly correlate with each other
• if the model does not correctly model causal relationships
• if parameters of the interpretation method are not set correctly

This book is the outcome of the seminar “Limitations of Interpretable Machine
Learning” which took place in summer 2019 at the Department of Statistics,
LMU Munich.
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Foreword

Author: Christoph Molnar

This book is the result of an experiment in university teaching. Each semester,
students of the Statistics Master can choose from a selection of seminar topics.
Usually, every student in the seminar chooses a scientific paper, gives a talk
about the paper and summarizes it in the form of a seminar paper. The
supervisors help the students, they listen to the talks, read the seminar papers,
grade the work and then … hide the seminar papers away in (digital) drawers.
This seemed wasteful to us, given the huge amount of effort the students
usually invest in seminars. An idea was born: Why not create a book with
a website as the outcome of the seminar? Something that will last at least
a few years after the end of the semester. In the summer term 2019, some
Statistics Master students signed up for our seminar entitled “Limitations of
Interpretable Machine Learning”. When they came to the kick-off meeting,
they had no idea that they would write a book by the end of the semester.

We were bound by the examination rules for conducting the seminar, but
otherwise we could deviate from the traditional format. We deviated in several
ways:

1. Each student project is part of a book, and not an isolated seminar
paper.

2. We gave challenges to the students, instead of papers. The chal-
lenge was to investigate a specific limitation of interpretable ma-
chine learning methods.

3. We designed the work to live beyond the seminar.
4. We emphasized collaboration. Students wrote some chapters in

teams and reviewed each others texts.

Looking back, the seminar was a lot of fun and – from our perspective – suc-
cessful. Especially considering that it was an experiment. Everyone was highly
motivated and we got great feedback from the students that they liked the
format. For the students it was a more work than a traditional seminar. But
in the end, our hope is that their effort will pay off for them as well, not only
because of their increased visibility. It was also more work for us supervisors.
But the extra effort was worth it, since limitations of interpretability are rele-
vant for our research. For me the seminar was an inspiration. The students had
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2 0 Foreword

new ideas and new perspectives to approach the limitations of interpretable
machine learning.

Technical Setup

The book chapters are written in the Markdown language. The simulations,
data examples and visualizations were created with R (R Core Team, 2018). To
combine R-code and Markdown, we used rmarkdown. The book was compiled
with the bookdown package. We collaborated using git and github. For details,
head over to the book’s repository3.

3https://github.com/compstat-lmu/iml_methods_limitations

https://github.com/compstat-lmu/iml_methods_limitations


1
Introduction

Author: Emanuel Renkl

Supervisor: Christoph Molnar

1.1 Statistical Modeling: The Two Approaches

In statistics, there are two approaches to reach conclusions from data (see
Breiman (2001b)). First, the data modeling approach, where one assumes that
the data are generated by a given stochastic data model. More specifically, a
proposed model associates the input variables, random noise and parameters
with the response variables. For instance, linear and logistic regression are typ-
ical models. These models allow us to predict what the responses are going
to be to future input variables and give information on how the response vari-
ables and input variables are associated. (i.e. They are interpretable.) Second,
the models used in algorithmic modeling treat the underlying data mechanism
as unknown. More precisely, the goal is to find an algorithm, such as random
forests or neural networks, that operates on the input variables to predict the
response variables. These algorithms allow us to predict what the responses
are going to be to future input variables, but do not give information on how
the response variables and input variables are associated. Put differently, these
algorithms produce black box models because they do not provide any direct
explanation for their predictions. (i.e. They are not interpretable.)

Within the statistics community, the data modeling approach was dominant
for a long time (Breiman (2001b)). However, especially in the last decade, the
increasing availability of enormous amounts of complex and unstructured data,
as well as the increase in processing power of computers, served as a breeding
ground for a strong shift to the algorithmic modeling approach, primarily for
two reasons. First, the data modeling approach is not applicable to exciting
problems like text, speech, and image recognition (Breiman (2001b)). Second,
for complex prediction problems new algorithms, such as random forests and
neural nets, outperform classical models in prediction accuracy as they can
model complex relationships in the data (Breiman (2001b)). For these reasons,
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4 1 Introduction

more and more researchers switched from the data modeling approach to the
algorithmic modeling approach that is much more common under the name
machine learning.

But what about interpretability? As we learned in the first paragraph, ma-
chine learning algorithms are black-box models that do not provide any direct
explanation for their predictions. Hence, do we even need to know why an
algorithm makes a certain prediction? To get a better feeling for this question,
it’s helpful to understand how algorithms learn to make predictions and which
tasks are suited to machine learning.

1.2 Importance of Interpretability

Algorithms learn to make predictions from training data. Thus, algorithms
also pick up the biases of the training data and hence may not be robust
under certain circumstances. e.g. They perform well on a test set, but not in
the real world. Such behavior can lead to undesired outcomes.

For instance, consider a simple husky versus wolf classifier that misclassifies
some huskies as wolves (see Ribeiro et al. (2016b)). Since the machine learning
model does not give any information on how the response and input variables
are associated, we do not know why it classified a husky as a wolf. However,
interpretability might be useful to debug the algorithm and see if this problem
is persistent or not. Using methods that make machine learning algorithms
interpretable (which we will discuss later in the book), we find that the mis-
classification was due to the snow in the image. The algorithm learned to use
snow as a feature for classifying images as wolves. This might make sense in
the training dataset, but not in the real world. Thus, in this example inter-
pretability helps us to understand how the algorithm gets to the result, and
hence, we know in which cases the robustness of the algorithm is not given. In
this section, we want to derive the importance of interpretability by focusing
on academic and industrial settings.

Broadly speaking, machine learning in academia is used to draw conclusions
from data. However, off-the-shelf machine learning algorithms only give pre-
dictions without explanations. Thus, they answer only the “what,” but not
the “why” of a certain question and therefore do not allow for actual scien-
tific findings. Especially in areas such as life and social sciences, which aim
to identify causal relationships between input and response variables, inter-
pretability is key to scientific discoveries. For example, researchers applying
machine learning in a medical study found that patients with pneumonia who
have a history of asthma have a lower risk of dying from pneumonia than the
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general population (Caruana et al. (2015)). This is, of course, counterintuitive.
However, it was a true pattern in the training data: pneumonia patients with
a history of asthma were usually admitted not only to the hospital but also
directly to the Intensive Care Unit. The aggressive care received by asthmatic
pneumonia patients was so effective that it lowered their risk of dying from
pneumonia compared to the general population. However, since the prognosis
for these patients was above average, models trained on this data erroneously
found that asthma reduces the risk, while asthmatics actually have a much
higher risk if they are not hospitalized. In this example blind trust in the ma-
chine learning algorithm would yield misleading results. Thus, interpretability
is necessary in research to help identify causal relationships and increase the
reliability and robustness of machine learning algorithms. Especially in areas
outside of statistics, the adoption of machine learning would be facilitated by
making these models interpretable and adding explanations to their predic-
tions.

From Amazon’s Alexa or Netflix’s movie recommendation system to the
Google’s search algorithm and Facebook’s social media feed, machine learning
is a standard component of almost any digital product offered by the industry’s
big tech companies. These companies use machine learning to improve their
products and business models. However, their machine learning algorithms
are also built on training data collected from their users. Thus, in the age
af data leaks à la Cambridge Analytica, people want to understand for what
purposes their data is collected and how the algorithms work that keep people
on streaming platforms or urge them to buy additional products and spend
more time on social media. In the digital world, interpretability of machine
learning models would yield to a broader understanding of machine learning
in society and make the technology more trustworthy and fair. Switching to
the analog world, we see a far slower adoption of machine learning systems at
scale. This is because decisions made by machine learning systems in the real
world can have far more severe consequences than in the digital world. For
instance, if the wrong movie is suggested to us, it really doesn’t matter, but
if a machine learning system that is deployed to a self-driving car does not
recognize a cyclist, it might make the wrong decision with real lives at stake
(see Molnar (2019)). We need to be sure that the machine learning system
is flawless. For example, an explanation might show that the most important
feature is to recognize the two wheels of a bicycle, and this explanation helps
you to think about certain edge cases, such as bicycles with side pockets that
partially cover the wheels. Self-driving cars are just one example in which ma-
chines are taking over decisions in the real world that were previously taken
by humans and can involve severe and sometimes irreversible consequences.
Interpretability helps to ensure the reliability and robustness of these systems
and thus makes them safer.

To conclude, adding interpretability to machine learning algorithms is nec-
essary in both academic and industrial applications. While we distinguished
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between academia and industry settings, the general points of causality, ro-
bustness, reliability, trust, and fairness are valid in both worlds. However, for
academia, interpretability is especially key to identify causal relationships and
increase the reliability and robustness of scientific discoveries made with the
help of machine learning algorithms.
In industrial settings establishing the trust in and fairness of machine learning
systems matters most in low-risk environments, whereas robustness and relia-
bility is key to high-risk environments in which machines take over decisions
that have far-reaching consequences.

Now that we established the importance of interpretability, how do we put
this into practice? A restriction to machine learning models that are consid-
ered interpretable due to their simple structure, such as short decision trees
or sparse linear models, has the drawback that better-performing models are
excluded before model selection. Hence, should we trade of prediction versus
information and go back to more simple models? - No! We seperate the ex-
planations from the machine learning model and apply interpretable methods
that analyze the model after training.

1.3 Interpretable Machine Learning

As discussed in the previous chapter, most machine learning algorithms pro-
duce black-box models because they do not provide any direct explanation for
their predictions. However, we do not want to restrict ourselves to models that
are considered interpretable because of their simple structure and thus trade
prediction accuracy for interpretability. Instead, we make machine learning
models interpretable by applying methods that analyze the model after the
model is trained. i.e. We establish post-hoc interpretability. Moreover, we sep-
arate the explanations from the machine learning model, i.e focus on so called
model-agnostic interpretation methods. Post-hoc, model-agnostic explanation
systems have several advantages (Ribeiro et al. (2016a)). First, since we seper-
ate the underlying machine learning model and its interpretation, developers
can work with any model as the interpretation method is independent of the
model. Thus, we establish model flexibility. Second, since the interpretation
is independent of the underlying machine learning model, the form of the in-
terpretation also becomes independent. For instance, in some cases it might
be useful to have a linear formula, while in other cases a graphic with feature
importances is more appropriate. Thus, we establish explanation flexibility.

So what do these explanation systems do? As discussed before, interpretation
methods for machine learning algorithms ensure causal relationships, robust-
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ness, reliability and establish trust and fairness. More specifically, they do so
by shedding light on the following issues (see Molnar (2019)):

• Algorithm transparency - How does the algorithm create the model?
• Global, holistic model interpretability - How does the trained model make

predictions?
• Global model interpretability on a modular level - How do parts of the model

affect predictions?
• Local interpretability for a single prediction - Why did the model make a

certain prediction for an instance?
• Local interpretability for a group of predictions - Why did the model make

specific predictions for a group of instances?

Now that we learned that post-hoc and model-agnostic methods ensure model
and explanantion flexibility and in which ways explanation systems ensure
causal relationships, robustness, reliability and establish trust and fairness, we
can move on to the outline of the booklet and discuss specific interpretation
methods and their limitations.

1.4 Outline of the booklet

This booklet introduces and investigates the limitations of current post-hoc
and model agnostic approaches in interpretable machine learning, such as Par-
tial Dependence Plots (PDP), Accumulated Local Effects (ALE), Permutation
Feature Importance (PMI), Leave-One-Covariate Out (LOCO) and Local In-
terpretable Model-Agnostic Explanations (LIME). All of these methods can
be used to explain the behavior and predictions of trained machine learning
models. However, their reliability and compactness deteriorate when models
use a high number of features, have strong feature interactions and complex
feature main effects among others. In this section, the methods mentioned are
introduced and the outline of the booklet is given.

To start with, PDP and ALE are methods that enable a better understanding
of the relationship between the outcome and feature variables of a machine
learning model. Common to both methods is that they reduce the predic-
tion function to a function that depends on only one or two features (Molnar
(2019)). Both methods reduce the function by averaging the effects of the
other features, but they differ in how the averages are calculated. PDP, for
example, visualizes whether the relationship between the outcome and a fea-
ture variable is, for instance, linear, monotonic or nonlinear and hence allows
for a straightforward interpretation of the marginal effect of a certain feature
on the predicted outcome of a model (Friedman (2001)). However, this holds
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only true as long as the feature in question is not correlated with any other fea-
tures of the model. ALE plots are basically a faster and unbiased alternative
to PDP, because they can interpret models containing correlated variables
correctly (Molnar (2019)). Chapter 2 of the booklet gives a short introduction
to PDP. Next, PDP and its limitations when features are correlated are inves-
tigated in Chapter 3, respectively. Chapter 4 discusses if PDP allow for causal
interpretations. Chapter 5 gives then a short introduction to ALE. ALE and
PDP are compared in detail in Chapter 6. The choice of intervals, problems
with pice-wise constant models and categorial features in the context of ALE
are investigated in Chapter 7.

Yet, PDP and ALE do not provide any insights to what extent a feature
contributes to the predictive power of a model - in the following defined as
feature importance. PFI and LOCO are two methods that allow us to compute
and visualize the importance of a certain feature for a machine learning model.
PFI by Breiman (2001a) measures the importance of a feature by calculating
the increase in the model’s prediction error after permuting the feature. Leave-
One-Covariate-Out (LOCO) by Lei et al. (2018), requires to refit the model
as the approach is based on leaving features out instead of permuting them
(Casalicchio et al. (2018)). Chapter 8 gives a short introduction to PFI and
LOCO and gives rise to its limitations. Chapter 9 discusses both methods in
the case of correlated features. Then partial and individual PFI are discussed
in Chapter 10 and the issue whether feature importance should be computed
on training or test data is discussed in Chapter 11.

Finally, LIME is a method that explains individual predictions of a black box
machine learning model by locally approximating the prediction using a less
complex and interpretable model (Molnar (2019)). These simplifying models
are referred to as surrogate models. Consider for instance a neural network
that is used for a classification task. The neural network itself is of course not
interpretable, but certain decision boundaries could, for example, be explained
reasonably well by a logistic regression which in fact yields interpretable co-
efficients. To refer to the first paragraph of the introduction, we use the data
modeling approach to explain the algorithmic modeling approach in this ex-
ample. Chapter 12 gives a short introduction to LIME. Chapter 13 sheds light
on the effect of the neighbourhood on LIME’s explanantion for tabular data.
Chapter 14 deals with the sampling step in LIME and the resulting side effects
in terms of feature weight stability of the surrogate model.

Now that we have introduced the different methods, we can move on to the
respective chapters of the booklet, which discuss the methods and their limi-
tations in more detail and provide practical examples.



2
Introduction to Partial Dependence Plots
(PDP) and Individual Conditional
Expectation (ICE)

Authors: Thommy Dassen, Naiwen Hou, Veronika Kronseder

Supervisor: Gunnar König

2.1 Partial Dependence Plots (PDP)

The Partial Dependence Plot (PDP) is a rather intuitive and easy-to-
understand visualization of the features’ impact on the predicted outcome.
If the assumptions for the PDP are met, it can show the way a feature im-
pacts an outcome variable. More precisely, mapping the marginal effect of the
selected variable(s) uncovers the linear, monotonic or nonlinear relationship
between the predicted response and the individual feature variable(s) (Molnar,
2019).

The underlying function can be described as follows:

Let xS be the set of features of interest for the PDP and xC the complement set
which contains all other features. While the general model function f(x) =
f(xS , xC) depends on all input variables, the partial dependence function
marginalizes over the feature distribution in set C (Hastie et al., 2013):

fxS
(xS) = ExC

[f(xS , xC)]

The partial dependence function can be estimated by averaging predictions
with actual feature values of xC in the training data at given values of xS or,
in other words, it computes the marginal effect of xS on the prediction. In
order to obtain realistic results, a major assumption of the PDP is that the
features in xS and xC are independent and thus uncorrelated.(Hastie et al.,
2013)

9
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f̂xS
(xS) = 1

n

n∑
i=1

f(xS , x
(i)
C )

An example of a PDP based on the ‘Titanic’ data set, which contains infor-
mation on the fate of 2224 passengers and crew members during the Titanic’s
maiden voyage, is given in figure 2.1.

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80

Age

P
re

di
ct

ed
 S

ur
vi

va
l P

ro
ba

bi
lit

y

FIGURE 2.1: PDP for predicted survival probability and numeric feature
variable ’Age’. The probability to survive sharply drops at a young age and
more moderately afterwards. The rug on the x-axis illustrates the distribution
of observed training data.

When a feature is categorical, rather than continuous, the partial dependence
function is modeled separately for all of the K different classes of said feature.
It maps the predictions for each respective class at given feature values of xS

(Hastie et al., 2013).

For such categorical features, the partial dependence function and the result-
ing plot are produced by replacing all observed xS-values with the respective
category and averaging the predictions. This procedure is repeated for each of
the features’ categories (Molnar, 2019). As an example, figure 2.2 shows the
partial dependence for the survival probability prediction for passengers on
the Titanic and the categorical feature ‘passenger class’.
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FIGURE 2.2: The PDP for survival probability and categorical feature ’
passenger class’ reveals that passengers in lower classes had a lower probability
to survive than those in a higher class.

2.1.1 Advantages and Limitations of Partial Dependence Plots

Partial Dependence Plots are easy to compute and a popular way to explain
insights from black box Machine Learning models. With their intuitive charac-
ter, PDPs are perfect for communicating to a non-technical audience. However,
due to limited visualization techniques and the restriction of human perception
to a maximum of three dimensions, only one or two features can reasonably be
displayed in one PDP (Molnar, 2019). 2.3 shows that the combination of one
numerical (Age) and one categorical (Sex) feature still allows rather precise
interpretation. The combination of two numerical features (Age & Fare) still
works, but already degrades the interpretability with its colour intensity scale
as shown in figure 2.4.

Drawing a PDP with one or two feature variables allows a straight-forward
interpretation of the marginal effects. This holds true as long as the features
are not correlated. Should this independence assumption be violated, the par-
tial dependence function will produce unrealistic data points. For instance, a
correlation between height and weight leading to a data point for someone
taller than 2 meters weighing less than 50 kilos. Furthermore, opposite ef-
fects of heterogeneous subgroups might remain hidden through averaging the
marginal effects, which could lead to wrong conclusions (Molnar, 2019).
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FIGURE 2.3: Two-dimensional PDP for predicted survival probability and
numerical feature ’Age’, together with the categorical feature ’Sex’. The PDP
shows that while the survival probability for both genders declines as age
increases, there is a difference between genders. It is clear that the decrease
is much steeper for males.

0

200

400

0 20 40 60 80

Age

Fa
re

0.2

0.3

0.4

0.5

0.6

Predicted Survival Probability

FIGURE 2.4: Two-dimensional PDP for predicted survival probability and
numerical features ’Age’ and ’Fare’. The PDP illustrates that the survival
probability of younger passengers is fairly uniform for varying fares, while
adults travelling at a lower fare also had a much lower probability to survive
compared to those that paid a high fare.
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2.2 Individual Conditional Expectation Curves

While partial dependence plots provide the average effect of a feature, Individ-
ual Conditional Expectation (ICE) plots are a method to disaggregate these
averages. ICE plots visualize the functional relationship between the predicted
response and the feature separately for each instance. In other words, a PDP
averages the individual lines of an ICE plot (Molnar, 2019).

More formally, ICE plots can be derived by considering the estimated response
function f̂ and the observations (x(i)

S , x
(i)
C )

N

i=1. The curve f̂
(i)
S is plotted against

the observed values of x
(i)
S for each of the observed instances while x

(i)
C remains

fixed at each point on the x-axis (Molnar, 2019; Goldstein et al., 2013)

As shown in figure 2.5, each line represents one instance and visualizes the
effect of varying the feature value x

(i)
S (Age) of a particular instance on the

model’s prediction, given all other features remain constant (c.p.). An ICE plot
can highlight the variation in the fitted values across the range of a feature.
This suggests where and to what extent heterogeneities might exist.
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FIGURE 2.5: ICE plot of survival probability by Age. The yellow line rep-
resents the average of the individual lines and is thus equivalent to the respec-
tive PDP. The individual conditional relationships indicate that there might
be underlying heterogeneity in the complement set.
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2.2.1 Centered ICE Plot

If the curves of an ICE plot are stacked or have a wide range of intercepts it
can be difficult to observe heterogeneity in the model. The so-called centered
ICE plot (c-ICE plot) is a simple solution to this problem. The curves are
centered at a certain point in the feature and display only the difference in
the prediction to this point (Molnar, 2019). After anchoring a location xa

in the range of xs and connecting all prediction lines at that point, the new
curves are defined as:

f̂
(i)
cent = ˆf (i) − 1f̂(xa, x

(i)
C )

Experience has shown that the most interpretable plots occur when the anchor
point xa is chosen as minimum or maximum of the observed values. Figure
2.6 shows the effect of centering the ICE curves of survival probability by Age
at the minimum of observed ages in the ‘Titanic’ data set.
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FIGURE 2.6: Centered ICE plot of survival probability by Age. All lines are
fixed to 0 at the minimum observed age of 0.42. The y-axis shows the survival
probability difference to age 0.42. Centrered ICE plot shows that compared
to age 0.42, the predictions for most passengers decrease as age increases.
However, there are quite a few passengers with opposite predictions.
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2.2.2 Derivative ICE Plot

Another way to explore the heterogeneity is to show plots of the partial deriva-
tive of f̂ with respect to xs. Assume that xs does not interact with the other
predictors in the fitted model, the prediction function can be written as:

f̂(x) = f̂(xs, xC) = g(xs) + h(xC),

so that
∂f̂(x)
∂xs

= g′(xs)

When no interactions are present in the fitted model, all curves in the d-
ICE plot are equivalent and the plot shows a single line. When interactions
do exist, the derivative lines will be heterogeneous. As it can be difficult to
visually assess derivatives from ICE plots, it is useful to plot an estimate of
the partial derivative directly (Goldstein et al., 2013).

2.2.3 Advantages and Limitations of ICE Plots

The major advantage of ICE plots is that they are even more intuitive than
PDPs which enables data scientists to drill much deeper to explore individ-
ual differences. This may help to identify subgroups and interactions between
model inputs. However, there are also some disadvantages of ICE plots. Firstly,
only one feature can be plotted in an ICE plot meaningfully. Otherwise, there
would be a problem of overplotting and it would be hard to distinguish any-
thing in the plot. Secondly, just like PDPs, ICE plots for correlated features
may produce invalid data points. Finally, without additionally plotting the
PDP it might be difficult to see the average in ICE plots (Molnar, 2019).





3
PDP and Correlated Features

Author: Veronika Kronseder

Supervisor: Giuseppe Casalicchio

3.1 Problem Description

As outlined in chapter 2, PDPs and ICE plots are meaningful graphical tools
to visualize the impact of individual feature variables. This is particularly
true for black box algorithms, where the mechanism of each feature and its
influence on the generated predictions may be difficult to retrace (Goldstein
et al., 2013).

The reliability of the produced curves, however, strongly builds on the inde-
pendence assumption of the features. Furthermore, results can be misleading
in areas with no or little observations, where the curve is drawn as a result
of extrapolation. In this chapter, we want to illustrate and discuss the issue
of dependencies between different types of variables, missing values and the
associated implications on PDPs.

3.1.1 What is the issue with dependent features?

When looking at PDPs, one should bear in mind that by definition the partial
dependence function does not reflect the isolated effect of xS while the fea-
tures in xC are ignored. This approach would correspond to the conditional
expectation f̃S(xS) = ExC

[f(xS , xC)|xS ], which is only congruent to the par-
tial dependence function fxS

(xS) = ExC
[f(xS , xC)] in case of xS and xC being

independent (Hastie et al., 2013).

Although unlikely in many practical applications, the independence of feature
variables is one of the major assumptions to produce meaningful PDPs. Its
violation would mean that, by calculating averages of the features in xC , the

17
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estimated partial dependence function f̂xS
(xS) takes unrealistic data points

into consideration (Molnar, 2019).

Figure 3.1 illustrates the problem by contrasting simulated data with indepen-
dent features x1 and x2 on the left with an example where the two features
have a strong linear dependency, and thus are highly correlated, on the right.

FIGURE 3.1: Simulated data for independent (left) and strongly correlated
(right) features x1 and x2. The marginal distribution of x2 is displayed on the
right side of each plot.

When computing the PDP for feature x1, we take x2 into account by calcu-
lating the mean predictions at observed x2 values in the training data, while
the values of x1 are given. This makes sense in the independent case, where
observations are randomly scattered. However, when looking at the correlated
features in the right part of figure 3.1, the average is not a realistic value in
combination with certain values of x1, e.g. in the very left and the very right
part of the feature distribution.

3.1.2 What is the issue with extrapolation?

Generally speaking, extrapolation means leaving the distribution of observed
data. On the one hand, this can affect the predictions, namely in the event
of the prediction function doing ‘weird stuff’ in unobserved areas. In chapter
3.4 we will see an example where this instant leads to a failure of the PDP
(Molnar, 2019).

On the other hand, PDPs are also directly exposed to extrapolation problems
due to the fact that the estimated partial dependence function f̂xS

is evaluated
at each observed x

(i)
S , giving a set of N ordered pairs: {(x(i)

S , f̂
x

(i)
S

)}N
i=1. The



3.2 Problem Description 19

resulting coordinates are plotted against each other and joined by lines. Not
only outside the margins of observed values, but also in areas with a larger
distance between neighboured xS values, the indicated relationship with the
target variable might be inappropriate and volatile in case of outliers (Gold-
stein et al., 2013).

In figure 3.2, a part of the previously simulated observations has been deleted
from both the independent and the correlated example to visualize a data
situation which might have an impact on the PDP in terms of extrapolation.
An example is given in chapter 3.4.1. The shift in observed areas can also be
noticed from the marginal distribution of x2.

FIGURE 3.2: Manipulated simulated data for independent (left) and
strongly correlated (right) features x1 and x2. Observations where both the
value of x1 and x2 lies between 0 and 1.5 have been deleted to artificially
produce an extrapolation problem. The marginal distribution of x2, which
is displayed on the right side of each plot, is obviously more affected in the
correlated case.

The extrapolation problem in PDPs is strongly linked to the aforementioned
independence assumption. Independent features are a prerequisite for the com-
putation of meaningful extrapolation results, therefore one could say that both
problems go hand in hand. In the following chapters, the failure of PDPs in
case of a violation of the independence assumption shall be discussed by means
of real data examples (chapter 3.2) and based on simulated cases (chapter 3.3).
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3.2 Dependent Features: Bike Sharing Dataset

In order to investigate the impact of dependent features, we are now looking at
the Bike-Sharing dataset from the rental company ‘Capital-Bikeshare’, which
is available for download via the UCI Machine Learning Repository. Besides
the daily count of rental bikes between the year 2011 and 2012 in Washington
D.C., the dataset contains the corresponding weather and seasonal information
(Fanaee-T and Gama, 2013).

For our purposes, the dataset was restricted to the following variables:

• y: cnt (count of total rental bikes including both casual and registered)
• x1: season: Season (1:springer, 2:summer, 3:fall, 4:winter)
• x2: yr: Year (0: 2011, 1:2012)
• x3: mnth: Month (1 to 12)
• x4: holiday: weather day is holiday or not
• x5: workingday: If day is neither weekend nor holiday is 1, otherwise is 0.
• x6: weathersit:

– 1: Clear, Few clouds, Partly cloudy, Partly cloudy
– 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
– 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light

Rain + Scattered clouds
– 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

• x7: temp: Normalized temperature in Celsius.
• x8: atemp: Normalized feeling temperature in Celsius.
• x9: hum: Normalized humidity.
• x10: windspeed: Normalized wind speed.

For all machine learning models based on the Bike-Sharing dataset, ‘cnt’ is
used as a target variable, while the remaining information serves as feature
variables. Six out of these ten features are categorical (x1 to x6), the rest is
measured on a numerical scale (x7 to x10). Since the appearance of a PDP
depends on the class of the feature(s) of interest, we are looking at three
different scenarios of dependency:

1. Dependency between numerical features
2. Dependency between categorical features
3. Dependency between numerical and categorical features

At the same time, for each of those scenarios, three different learning algo-
rithms shall be compared:

• Linear Model (LM)
• Random Forest (RF)
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• Support Vector Machines (SVM)

3.2.1 Dependency between Numerical Features

The linear dependency between two numerical features can be measured by
the Pearson correlation coefficient (Fahrmeir et al., 2016). Figure 3.3 shows the
correlation matrix of all numerical features used in our analysis. It is striking,
but certainly not surprising, that ‘temp’ and ‘atemp’ are strongly correlated,
not to say almost perfectly collinear.

FIGURE 3.3: Matrix of Pearson correlation coefficients between all numer-
ical variables extracted from the bike-sharing dataset.

Due to their strong correlation, ‘temp’ (x7) and ‘atemp’ (x8) perfectly qual-
ify for our analysis of the impact of dependent features on PDPs. In order
to compare the partial dependence curve with and without the influence of
dependent features, we compute PDPs based on the following models:

y ∼ x1 + x2 + x4 + x5 + x6 + x7 + x9 + x10 (3.1)
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y ∼ x1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 (3.2)

y ∼ x1 + x2 + x4 + x5 + x6+x7 + x8 + x9 + x10 (3.3)

Please note that the representation of the different models with the feature
variables connected via ‘+’ shall, in this context, not be read as a (linear)
regression model where all coefficients are equal to 1, but rather as a combi-
nation of applicable feature variables to explain y. The (non-)linear effect of
each variable is modelled individually, depending on the observed values and
the learner.

While model (3.1) and (3.2) only take one of the two substituting variables
into account, (3.3) considers both ‘temp’ and ‘atemp’ in one and the same
model. Figures 3.4, 3.5 and 3.6 compare the associated PDPs for the different
learning algorithms. Note that ‘season’ (x1) and ‘mnth’ (x3) are not taken
into account in combination with x7 and/or x8, since there are meaningful
associations between those variables, too, as we will show in chapter 3.2.3. At
this stage we want to illustrate the isolated effect of the dependence between
the two numerical variables.

In all cases, we can see that the features’ effect on the prediction is basically
the same for x7 and x8, if only one of the dependent variables is used for mod-
elling (see PDPs in top left and top right corners). If both ‘temp’ and ‘atemp’
are relevant for the prediction of y, each feature’s impact is smoothened and
neither the PDP for x7 nor the one for x8 seems to properly reflect the true
effect of the temperature on the count of bike rentals.

3.2.2 Dependency between Categorical Features

In order to measure the association between two categorical features, we cal-
culate the corrected contingency coefficient, which is based on the χ2-statistic.
Other than the Pearson correlation coefficient, the corrected contingency coef-
ficient is a measure of association ∈ [0, 1] which can only indicate the strength
but not the direction of the variables’ relationship (Fahrmeir et al., 2016). For
the categorical features in the Bike-Sharing dataset, we observe the values
stated in figure 3.7.

The only combination of categorical features with an exceptionally high cor-
rected contingency coefficient, is ‘season’ (x1) and ‘mnth’ (x3). Also from a
content-related point of view, this finding is no surprise, since both variables
measure the time of the year. For the computation of the respective PDPs, we
use the following models:

y ∼ x1 + x2 + x4 + x5 + x6 + x9 + x10 (3.4)
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FIGURE 3.4: PDPs based on Linear Regression learner for ’temp’ in model
3.1 (top left), ’atemp’ in model 3.2 (top right), ’temp’ in model in model 3.3
(bottom left) and ’atemp’ in model 3.3 (bottom right).

y ∼ x2 + x3 + x4 + x5 + x6 + x9 + x10 (3.5)

y ∼ x1 + x2 + x3 + x4 + x5 + x6 + x9 + x10 (3.6)

The approach is equivalent to the numeric case, with model (3.4) containing
only ‘season’ and (3.5) only ‘mnth’, while both dependent features are part
of model (3.6). The impact on the PDPs for categorical features are shown in
figures 3.8, 3.9 and 3.10.

Again, in all PDPs based on the different learning algorithms, the results
between models with and without dependent features are diverging. The pre-
dicted number of bike rentals between the seasons/months shows a stronger
variation when modelled without feature dependencies.
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FIGURE 3.5: PDPs based on Support Vector Machines learner for ’temp’
in model 3.1 (top left), ’atemp’ in model 3.2 (top right), ’temp’ in model in
model 3.3 (bottom left) and ’atemp’ in model 3.3 (bottom right).

3.2.3 Dependency between Numerical and Categorical Fea-
tures

Our third dependency scenario seeks to provide an example for a strong cor-
relation between a numerical and a categorical feature. For this constellation,
neither the Pearson correlation nor the contingency coefficient are applicable
as such, since both methods are limited to their respective classes of variables.

We can, however, fit a linear model to explain the numeric variable through the
categorical feature. By doing so, we produce another numerical variable, the
fitted values. In a next step, we can calculate the Pearson correlation coefficient
between the observed and the fitted values of the numerical feature. The
resulting measure of association lies within the interval [0, 1] and is equivalent
to the square root of the linear model’s variance explained (R2) (Fahrmeir
et al., 2013). For this reason, we refer to the measure as ‘variance-explained
measure’.

When applying this procedure to the categorical feature ‘season’ (x1) and the
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FIGURE 3.6: PDPs based on Random Forest learner for ’temp’ in model
3.1 (top left), ’atemp’ in model 3.2 (top right), ’temp’ in model in model 3.3
(bottom left) and ’atemp’ in model 3.3 (bottom right).

numerical feature ‘temp’ (x7), we find that with a variance-explained value
of 0.83, there seems to be a reasonable association between the two features.
The PDPs are derived through the following models:

y ∼ x1 + x2 + x4 + x5 + x6 + x9 + x10 (3.7)

y ∼ x1 + x2 + x4 + x5 + x6 + x7 + x9 + x10 (3.8)

y ∼ x1 + x2 + x4 + x5 + x6 + x7 + x9 + x10 (3.9)

Figure 3.11, 3.12 and 3.13 present the partial dependence plots for the three
underlying machine learning algorithms (LM, SVM and RF) defined for the
purpose of our analysis.

Compared to the first two scenarios, we observe a more moderate difference
between the PDPs when comparing model (3.7) and (3.8) containing just
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FIGURE 3.7: Matrix of corrected contingency coefficients between all cate-
gorical variables extracted from the bike-sharing dataset.

one of the dependent features to the full model (3.9). The weaker associa-
tion between the two variables, in contrast to scenario 1 and 2, could be an
explanation for this observation. It is, however, evident that the dependency
structure between two feature variables, irrespective of their class, does impact
the partial dependence plot.

3.3 Dependent Features: Simulated Data

A major disadvantage of the analysis of PDPs on the basis of real data exam-
ples is, that we cannot exclude other factors to play a role. As an example,
underlying interactions could have an impact on the PDP and hide the true
effect of a feature on the predicted target variable (Molnar, 2019). In order to
illustrate the isolated impact of dependent variables in the feature space, we
have simulated data in different settings, which we will discuss in this chapter.
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FIGURE 3.8: PDPs based on Linear Regression learner for ’season’ in model
3.4 (top left), ’mnth’ in model 3.5 (top right), ’season’ in model in model 3.6
(bottom left) and ’mnth’ in model 3.6 (bottom right).

3.3.1 Simulation Settings: Numerical Features

For a start, the different settings of simulations used for our investigation shall
be introduced. Just like in chapter 2, we are separately looking at different
classes of variables and different machine learning algorithms (LM, RF and
SVM). PDPs for independent, correlated and dependent numerical features
are computed for each of the following data generating processes (DGP), which
describe the true impact of the features on y:

• Setting 1: Linear Dependence:

y = x1 + x2 + x3 + ε (3.10)

• Setting 2: Nonlinear Dependence in x1:

y = sin ( 3 ∗ x1) + x2 + x3 + ε (3.11)
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FIGURE 3.9: PDPs based on Support Vector Machines learner for ’season’
in model 3.4 (top left), ’mnth’ in model 3.5 (top right), ’season’ in model in
model 3.6 (bottom left) and ’mnth’ in model 3.6 (bottom right).

• Setting 3: Missing informative feature x3

y = x1 + x2 + x3 + ε (3.12)

with x3 relevant for the DGP but unconsidered in the machine learning
model.

In the independent case, the feature variables x1, x2 and x3 have been drawn
from a gaussian distribution with µ = 0, σ2 = 1 and a correlation coefficient
of ρij = 0 ∀ i ̸= j, i, j ∈ {1, 2, 3}.
The correlated case is based on the same parameters for µ and σ2, but a corre-
lation coefficient of ρ12 = ρ21 = 0.90, i.e. a relatively strong linear association
between x1 and x2, and ρij = 0 otherwise.
The dependent case describes the event of perfect multicollinearity, where x2
is a duplicate of x1, based on the data generated in the independent case.
The target variable y results from the respective DGP with an error term
ε ∼ N(0, σ2

ε) and σ2
ε depending on the feature values.
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FIGURE 3.10: PDPs based on Random Forest learner for ’season’ in model
3.4 (top left), ’mnth’ in model 3.5 (top right), ’season’ in model in model 3.6
(bottom left) and ’mnth’ in model 3.6 (bottom right).

One source of variation in the PDPs is the simulation of the data itself. For
this reason, the process has been repeated 20 times for each analysis and
the resulting PDP curves are shown as gray lines in the plots below. The
thicker, black line represents the average partial dependence curve over these
20 simulations and the error bars indicate their variation. Additionally, a red
line represents the true effect of the feature for which the PDP is computed.
In all cases, the simulations are based on a number of 500 observations and
grid size 50.

Since in the dependent case, x2 is simply a duplicate of x1, the DGP could
also be written as y = 2 ∗ x1 + x3 + ε in setting (3.10) and (3.12) and y =
sin ( 3 ∗ x1) + x1 + x3 + ε in setting (3.11). For the purpose of this analysis,
we are looking at each of the three features’ PDP separately. However, in
order to illustrate the aforementioned, the common effect of x1 and x2 on the
prediction is added to the plots as dashed blue line.
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FIGURE 3.11: PDPs based on Linear Regression learner for ’season’ in
model 3.4 (top left), ’temp’ in model 3.5 (top right), ’season’ in model in
model 3.6 (bottom left) and ’temp’ in model 3.6 (bottom right).

3.3.2 Simulation of Setting 1: Linear Dependence

3.3.2.1 PDPs based on Linear Model

The results of our simulations in setting 1 based on the Linear Model are
shown in figure 3.14:

Across all simulations, there is hardly any variation between the PDPs based
on the Linear Model. In the independent case, the PDPs for each feature
adequately reflect the linear dependency structure. The effect is equivalent in
each PDP, since all features have the same impact and are independent from
each other. From the PDPs in the second row of figure 3.14 we see that even
with a relatively strong correlation of features x1 and x2, the PDPs adequately
reflect the linear dependency structure when predictions are computed from
the Linear Model. In the event of perfect multicollinearity, the PDP for one
of the dependent features (x2) fails, while the corresponding PDP for the
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FIGURE 3.12: PDPs based on Support Vector Machines learner for ’season’
in model 3.4 (top left), ’temp’ in model 3.5 (top right), ’season’ in model in
model 3.6 (bottom left) and ’temp’ in model 3.6 (bottom right).

other feature (x1) reflects the common effect of both. The PDP for feature x3
adequately reveals its linear effect on y.

3.3.2.2 PDPs based on Random Forest

The results of our simulations in setting 1 based on Random Forest are shown
in figure 3.15:

Compared to the LM, there is a little more variance between the individual
PDP curves produced from RF as learner. Furthermore, the partial depen-
dence plots cannot adequately reflect the linear dependency structure, partic-
ularly at the margins of the feature’s distribution. Again, there is no visual
differentiation between the different features in the first row of figure 3.15 due
to their independence. Besides, the computation of PDPs based on Random
Forest does not produce significantly worse results when two features are cor-
related and the relationship between all variables and y is linear.
When comparing the PDPs subject to perfect multicollinearity to those in the



32 3 PDP and Correlated Features

FIGURE 3.13: PDPs based on Random Forest learner for ’season’ in model
3.4 (top left), ’temp’ in model 3.5 (top right), ’season’ in model in model 3.6
(bottom left) and ’temp’ in model 3.6 (bottom right).

correlated case, a slightly increased variation in the individual PDP curves is
observed. Other than in the Linear Model, the learner is not able to reveal
the true common effect of x1 and x2.

3.3.2.3 PDPs based on Support Vector Machines

The results of our simulations in setting 1 based on Support Vector Machines
are shown in figure 3.16:

Support Vector Machines as learning algorithms are able to reproduce the
respective feature’s linear effect on the prediction fairly adequate in case of
independence. The accuracy decreases in the margins of the feature’s distribu-
tion. With two correlated features, the interval of predicted values of both cor-
related features becomes smaller, while the learner produces the same ‘shape’
of its effect, both for x1 and x2. The same observation is made in the event
of two identical features (dependent case), but even more evident with PDP
curves increasingly deviating from the true effect. Other than in the LM, none
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FIGURE 3.14: PDPs for features x1, x2 and x3 (left to right) in Setting 1,
based on multiple simulations with Linear Model as learning algorithm. Top
row shows independent case, second row the correlated case and bottom row
the dependent case. The red line represents the true effect of the respective
feature on y, the blue dashed line is the true commmon effect of x1 and x2.
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FIGURE 3.15: PDPs for features x1, x2 and x3 (left to right) in Setting 1,
based on multiple simulations with Random Forest as learning algorithm. Top
row shows independent case, second row the correlated case and bottom row
the dependent case. The red line represents the true effect of the respective
feature on y, the blue dashed line is the true commmon effect of x1 and x2.
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FIGURE 3.16: PDPs for features x1, x2 and x3 (left to right) in Setting
1, based on multiple simulations with Support Vector Machines as learning
algorithm. Top row shows independent case, second row the correlated case
and bottom row the dependent case. The red line represents the true effect of
the respective feature on y, the blue dashed line is the true commmon effect
of x1 and x2.
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of the PDPs for the dependent features reveals the true common effect of x1
and x2.

3.3.3 Simulation of Setting 2: Nonlinear Dependence

In simulation setting 2 we are looking at a DGP with a nonlinear relationship
of x1 and y and a linear impact of x2 and x3. Due to the nonlinearity in one
of the features, it is clear that the LM would not deliver accurate results. For
this reason, in this chapter we will restrict our analysis to RF and SVM.

3.3.3.1 PDPs based on Random Forest

The results of our simulations in setting 2 based on Random Forest are shown
in figure 3.17:

From the PDP of feature x1 in the first row of figure 3.17 it is evident that
Random Forest as a learner can retrace the nonlinear effect of the variable
quite well, except for the margin areas of the feature distribution. The PDPs
for feature x2 and x3 are equivalent to those in simulation setting (3.10).
With a simulated correlation between features x1 and x2 and a nonlinear
relationship of x1 and y, the ability of the respective PDPs to illustrate the
feature’s effect degrades with RF as learner. Both the nonlinear effect of x1
and the linear effect of x2 are distorted in the PDPs.
In the event of perfect multicollinearity, the PDPs for the involved feature
variables fail even more. In contrast to the correlated case, we can observe
that both curves take on a similar shape, which very roughly approximates
the common effect.

3.3.3.2 PDPs based on Support Vector Machines

The results of our simulations in setting 2 based on SVM are shown in figure
3.18:

The findings derived from PDPs based on Random Forest are equivalently
applicable to Support Vector Machines as machine learning algorithm. In the
event of independent features, the PDPs can fairly well reveal the true feature
effects, despite in the margins of the feature distrubutions. With strongly
correlated or even dependent features, this ability vanishes and the PDPs of
the affected features transform towards the variables’ common effect.
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FIGURE 3.17: PDPs for features x1, x2 and x3 (left to right) in Setting 2,
based on multiple simulations with Random Forest as learning algorithm. Top
row shows independent case, second row the correlated case and bottom row
the dependent case. The red line represents the true effect of the respective
feature on y, the blue dashed line is the true commmon effect of x1 and x2.
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FIGURE 3.18: PDPs for features x1, x2 and x3 (left to right) in Setting
2, based on multiple simulations with SVM as learning algorithm. Top row
shows independent case, second row the correlated case and bottom row the
dependent case. The red line represents the true effect of the respective feature
on y, the blue dashed line is the true commmon effect of x1 and x2.
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3.3.4 Simulation of Setting 3: Missing informative feature x3

In simulation setting 3, we assume that there are three variables with an
impact on the data generating process of y. In the training process of the
machine learning model, only two of those are considered. Consequently, when
looking at the PDPs, we only compare the independent, the correlated and
the dependent case for x1 and x2 respectively.

3.3.4.1 PDPs based on Linear Model

The results of our simulations in setting 3 based on the Linear Model are
shown in figure 3.19:

Compared to the PDPs of independent features the Linear Model produced in
setting (3.10), the variation in individual PDPs is slightly higher with missing
information from x3. Overall, the learner can adequately reflect the linear
feature effects of x1 and x2.
The increase in variablility between the individual PDPs is even more evident
in the correlated case. On average, we still obtain the true linear effect of the
correlated features, but there are some individual curves which do indicate a
steeper or more moderate slope.
The PDPs drawn on basis of the Linear Model and dependent features indicate
that for both individual features, the PDP consistently provides false effects on
the predicted outcome. While both effects are actually linear with a slope of 1,
the PDP for x1 shows a steeper increase and x2 fails completely. Nonetheless,
the PDP for x1 does reflect the common effect of both variables together.

3.3.4.2 PDPs based on Random Forest

The results of our simulations in setting 3 based on Random Forest are shown
in figure 3.20:

Compared to setting (3.10), where all relevant feature variables were taken
into account for the training of the model, the variation in PDP curves in
setting (3.12) is larger. Between features x1 and x2, which are independent,
there is no systematic difference traceable from the PDPs.
Other than an increased variability between the individual PDP curves and
a slightly tighter prediction interval, with correlated features and Random
Forest as learner, there is no apparent deviation to the PDPs of independent
features.
In accordance with the observations made in setting (3.10), the interval of
predicted values for dependent features become even smaller while the PDP
curves further deviate from the true effect. Neither the individual effect of
each feature, nor their common effect are illustrated adequately.
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FIGURE 3.19: PDPs for features x1 (left) and x2 (right) in Setting 3, based
on multiple simulations with LM as learning algorithm. Top row shows inde-
pendent case, second row the correlated case and bottom row the dependent
case. The red line represents the true effect of the respective feature on y, the
blue dashed line is the true commmon effect of x1 and x2.
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FIGURE 3.20: PDPs for features x1 (left) and x2 (right) in Setting 3, based
on multiple simulations with RF as learning algorithm. Top row shows inde-
pendent case, second row the correlated case and bottom row the dependent
case. The red line represents the true effect of the respective feature on y, the
blue dashed line is the true commmon effect of x1 and x2.
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3.3.4.3 PDPs based on Support Vector Machines

The results of our simulations in setting 3 based on Support Vector Machines
are shown in figure 3.21:

FIGURE 3.21: PDPs for features x1 (left) and x2 (right) in Setting 3, based
on multiple simulations with SVM as learning algorithm. Top row shows inde-
pendent case, second row the correlated case and bottom row the dependent
case. The red line represents the true effect of the respective feature on y, the
blue dashed line is the true commmon effect of x1 and x2.

Similar to learning based on Random Forest, the SVM learner with missing
feature variable x3 produces a higher variability between the simulated PDP
curves. The margin areas, where the PDPs cannot adequately reflect the linear
dependence, are broader than in setting (3.10).



3.3 Dependent Features: Simulated Data 43

In the event of the two remaining features x1 and x2 being strongly correlated,
the issue of larger variability between the individual simulations aggravates
and the ability to reveal the linear effect ceases.
With a perfect multicollinearity of x1 and x2, the variablity of the individual
PDP curves becomes smaller, but at the same time the models’ ability to
uncover the true linear effect vanishes. The interval of predicted values is
remarkably smaller than in the independent case.

3.3.5 Simulation Settings: Categorical Features

In this chapter we want to investigate the impact of dependencies between
two categorical and between a categorical and a numerical feature. For this
purpose, we simulate data with a number of 1000 randomly drawn observations
and three feature variables, where:

• x1 categorical variable ∈ {0, 1},
• x2 categorical variable ∈ {A, B, C},
• x3 numerical variable with x3 ∼ N(µ, σ2).

All features are characterized by their linear relationship with the target vari-
able: y = x1 + x2 + x3 + ε.

Again, in order to isolate the individual effects of two dependent features on
their respective PDPs, we define three different simulation settings:

1. Independent Case: In this setting, the feature variables are drawn inde-
pendently from each other, i.e. the observations are randomly sampled with
the following parameters:

• x1 : P (x1 = 1) = P (x1 = 0) = 0.5
• x2 : P (x2 = A) = 0.475, P (x2 = B) = 0.175, P (x2 = C) = 0.35
• x3 : P (x3 ∼ N(1, 1)) = 0.5, P (x3 ∼ N(20, 2)) = 0.5

The association between x1 and x2 can be measured by the corrected contin-
gency coefficient, which is rather low with a value of 0.10. In accordance with
the approach in chapter 3.2.3, we calculate the association between x1 and x3
by means of the variance-explained measure. With a value of 0.01 we take the
independence assumption as confirmed.

2. Dependency between two categorical features: In this setting, x1
and x2 are depending on each each other, i.e. the observations are randomly
sampled with the following parameters:

• x1 : P (x1 = 1) = P (x1 = 0) = 0.5

• x2 :

{
P (x2 = A) = 0.90, P (x2 = B) = 0.10, P (x2 = C) = 0), if x1 = 0,

P (x2 = A) = 0.05, P (x2 = B) = 0.25, P (x2 = C) = 0.70), if x1 = 1
• x3 : P (x3 ∼ N(1, 1)) = 0.5, P (x3 ∼ N(20, 2)) = 0.5
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The corrected contingency coefficient of 0.94 comfirms a strong association
between features x1 and x2.

3. Dependency between categorical and numerical features: In this
setting, x1 and x3 are depending on each each other, i.e. the observations are
randomly sampled with the following parameters:

• x1 : P (x1 = 1) = P (x1 = 0) = 0.5
• x2 : P (x2 = A) = 0.475, P (x2 = B) = 0.175, P (x2 = C) = 0.35

• x3 :

{
x3 ∼ N(1, 1), if x1 = 0
x3 ∼ N(20, 2), if x1 = 1

With a value of 0.986, the variance-explained measure indicates a substantial
degree of dependency between x1 and x3.

3.3.5.1 PDPs based on Linear Model

Figure 3.22 shows the PDPs for all feature variables and all simulation settings
based on the Linear Model.

Apparently, the Linear Model is robust against our simulated dependencies,
since the PDPs of the correlated and dependent features do not differ signifi-
cantly from those of independent features.

3.3.5.2 PDPs based on Random Forest

Figure 3.23 shows the PDPs for all feature variables and all simulation settings
based on Random Forest.

Based on Random Forest, the partial dependence function seems to be im-
pacted much stronger by our simulated dependencies, since the PDPs for
dependent variables indicate feature effects which differ from those in the in-
dependent case. This is particularly true for a strong association between a
categorical an a numerical variable (bottom row of figure 3.23).

3.3.5.3 PDPs based on Support Vector Machines

Figure 3.24 shows the PDPs for all feature variables and all simulation settings
based on Support Vector Machines.

In accordancy with our findings based on the Linear Model, the predicted
effects based on SVM seem to be robust against our simulated dependencies,
since the PDPs for the individual settings do not differ significantly from the
independent case.
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FIGURE 3.22: PDPs for categorical features x1, x2 and numerical feature
x3 (left to right), based on simulated data and LM as learning algorithm. Top
row shows independent case, second row the case of two dependent categorical
features and the bottom row the case of a numerical feature depending on a
categorical feature.
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FIGURE 3.23: PDPs for categorical features x1, x2 and numerical feature
x3 (left to right), based on simulated data and RF as learning algorithm. Top
row shows independent case, second row the case of two dependent categorical
features and the bottom row the case of a numerical feature depending on a
categorical feature.
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FIGURE 3.24: PDPs for categorical features x1, x2 and numerical feature
x3 (left to right), based on simulated data and RF as learning algorithm. Top
row shows independent case, second row the case of two dependent categorical
features and the bottom row the case of a numerical feature depending on a
categorical feature.



48 3 PDP and Correlated Features

3.4 Extrapolation Problem: Simulation

3.4.1 Simulation based on established learners

In the problem description of this chapter we announced that, in addition to
the issue with dependent features, we want to investigate the extrapolation
problem and its implications for the computation of partial dependence plots.
For this purpose, we use the dataset introduced in chapter 3.1, which was
simulated once with x1 and x2 independent, and once with both features
strongly correlated. Remember that in a next step, the observed data was
manipulated by cutting out all observations with x1 ∈ [0, 1.5] ∧ x2 ∈ [0, 1.5],
and thus artificially producing an area with no observations (see figure 3.2).

Now we are looking at the PDPs resulting from these modifications. Figure
3.25 compares the PDP curves derived for both features based on the complete,
uncorrelated dataset to its manipulated version with missing values.

The first row of PDPs in figure 3.25, computed on basis of the complete
dataset of uncorrelated features, adequately reflects the true effects of x1 and
x2 (red curves). In the presence of an extrapolation problem, the adequacy of
the predicted effects decreases. Especially with the more complex, nonlinear
effect of x1, extrapolation causes a clearly visible deviation between the partial
dependence curves and the true feature effect, irrespective of the learner.

In figure 3.26 we do the same comparison, but this time based on the dataset
with strongly correlated features.

From the first row of PDPs in figure 3.26, we again discover the difficulty to
obtain reliable PDPs when features are dependent. The results in the bottom
row of figure 3.26 are even more striking: with a combination of dependent
features and extrapolation, the PDPs come up with estimated effects which
are far from the true effects on the prediction. Those deviations seem to occur
irrespective of the learning algorithm.

3.4.2 Simulation based on own prediction function

So far, all our analyses were based on the established learning algorithms
LM, RF and SVM. We have seen that the choice of the learner does have
an impact on the suitability of PDP curves. Obviously there is a countless
number of other possibilities to come up with prediction functions other than
the ones we have seen. PDPs are prone to fail when this prediction function is
doing ‘weird’ stuff in areas outside the feature distribution. This can happen
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FIGURE 3.25: PDPs for uncorrelated features x1 (left) and x2 (right) based
on complete simulated dataset (top row) and based on manipulated dataset
with missing observations (bottom row). The red curve represents the true
effect of the feature for which the PDP is drawn, while the PDPs derived
from the machine learning models are represented by curves drawn in black
(Random Forest) and blue (SVM).

due to the fact that the learner minimizes the loss based on training data
while there is no penalization for extrapolation (Molnar, 2019).

Let’s illustrate the issue with an example. Assume we want to predict the size
of a potato (ŷ) by means of the share of maximum amount of soil (x1) and
the share of maximum amount of water (x2) available during the process of
growing the plant. The feature variables are dependent in the sense that when
using a larger amount of soil, the farmer would also use a larger amount of
water, i.e. x1 and x2 are positively correlated. Typically, the more ressources
the farmer invests, the larger the crops. The corresponding model is basically
a simple linear regression which adds up the two components.
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FIGURE 3.26: PDPs for correlated features x1 (left) and x2 (right) based
on complete simulated dataset (top row) and based on manipulated dataset
with missing observations (bottom row). The red curve represents the true
effect of the feature for which the PDP is drawn, while the PDPs derived
from the machine learning models are represented by curves drawn in black
(Random Forest) and blue (SVM).

In the event of improper planting, meaning the usage of a too large amount of
water in proportion to the soil (and vice versa), the plant would die and the
result would be a potato of size 0. This is exactly what our self-constructed
prediction function predicts. Luckily, all farmers in our dataset know how to
grow potatoes, therefore there are no such zero cases in the underlying obser-
vations. Figure 3.27 illustrates our observations as points and the prediction
function as shaded background colour.

In view of the observed data, one would expect to uncover a linear effect of
both feature variables when looking at the corresponding PDPs. As we can
see in figure 3.28, this is not necessarily the case. While the two-dimensional
PDP perfectly depicts the prediction function, the individual PDPs for feature
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FIGURE 3.27: Visualization of the observed data points (n=100) and the
self-contructed prediction function. Dark blue background colour indicates a
predicted potato size of zero which increases with the brightness of the yellow
shaded background colour.

x1 and x2 fail in the areas where the prediction function does ‘weird’ stuff
compared to what has been observed.

FIGURE 3.28: The first plot shows the two-dimensional PDP for features
x1 and x2. The darker the background colour, the smaller the predicted values.
The other plots are the PDPs derived for feature x1 and x2 respectively. Up to
a value of approximately 0.5 both partial dependence curves are mostly linear
and bend at larger x1- / x2-values.
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3.5 Summary

Our analysis of partial dependence plots in the context of dependent features
and missing values has revealed that both a violation of the underlying inde-
pendence assumption and the presence of areas with no observations can have
a significant impact on the marginalized feature effects. As a consequence,
there is a risk of misinterpretation of the effect of features in xS . Hooker and
Mentch (2019) propose to make use of local explanation methods in order to
avoid extrapolation. ICE plots, as an example, can be restricted to values in
line with the distribution of observed data. However, the authors also point
out that this approach cannot serve as a global representation of the learned
model (Hooker and Mentch, 2019).

In our simulations, we have also seen cases where the PDP (or the underlying
machine learning algorithm) proved to be relatively robust against the depen-
dency of features. Further to the independence assumtion, there are also other
parameters playing a role for the accuracy of PDPs, like the grid size, the num-
ber of observations, the learning algorithm, variance in the data, complexity
of the data generating process, etc.

In practical applications it is recommended to analyse the variables used in
the model, both by means of correlation and/or association measures and
content-wise in liason with experts having domain knowledge. Furthermore,
data scientists can apply methods based on the conditional expectation, such
as M-plots or ALE plots. The concept and limitations of the latter will be
discussed in chapters 6-8 of this book.
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4.1 Introduction

Machine learning methods excel at learning associations between features and
the target. The supervised machine learning model estimates Y using the infor-
mation provided in the feature set X. Partial dependence plots (PDPs) allow
us to inspect the learned model. We can analyze how the model prediction
changes given changes in the features.

The unexperienced user may be tempted to transfer this insight about the
model into an insight in the real world. If our model’s prediction changes
given a change on some feature Xj , can we change the target variable Y in
the real world by performing an intervention on Xj?

Of course, this is not generally true. Without further assumptions we can-
not interpret PDPs causally (like we cannot interpret coefficients of linear
models causally). Curiously, certain assumption sets still allow for a causal
interpretation.

In this Chapter we will elaborate on specific assumptions sets that allow causal
interpretation and will empirically evaluate the resulting plots. We therefore
assume certain data generating mechanisms, also referred to as structural equa-
tion models (SEMs), and use Judea Pearl’s do-calculas framework to compute
the true distributions under an intervention, allowing to e.g. compute the av-
erage causal effect. Graphs are used to visualize the underlying dependence
structure. We will see scenarios in which the PDP gives the same result as an
intervention and scenarios in which the limitations of the PDP as a tool for
causal interpretation become clear.

To interpret causally means to interpret one state (the effect) to be the result
of another (the cause), with the cause being (partly) responsible for the effect,
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and the effect being partially dependent on the cause. (Zhao and Hastie, 2018)
formulated three elements that are needed to ensure that the PDP coincides
with the intervention effect:
1. A good predictive model which closely approximates the real relationship.
2. Domain knowledge to ensure the causal structure makes sense and the
backdoor criterion, explained below, is met.
3. A visualization tool like a PDP (or an Individual Conditional Expectation
plot)

The first condition is an important one, because there is a big difference be-
tween being able to causally interpret an effect for the model and using it as a
causal interpretation for the real world. The second condition will make clear
when PDPs are the same, and when they are different from interventions on
the data. In this chapter we will systematically analyze a number of scenarios
in order to see under which conditions PDPs can be causally interpreted or
not.

4.2 Motivation

Before we have a look at various scenarios and settings involving interventions,
let’s look at an exemplary problem. Let’s say we have a dataset containing
data on the amount of ice-cream consumption per capita and the temperature
outside. The temperature is causal for the ice-cream consupmtion: People eat
more ice-cream when temperatures are high than when temperatures are low.
Therefore, both quantities are dependent as well. A statistical model learns to
use the information in one of the variables to predict the other, as is evident
in the plots below.

While the dependence is learned correctly, it would be wrong to interpret the
second plot causally. When more ice cream is consumed, it is likely that the
temperature is higher. However, consuming more ice cream will not change
the amount of ice cream that is being eaten.

This example illustrates the gap between predictive models and causal models.
Without further assumptions we cannot interpret effects of changes in features
on the model prediction as effects that would be present in the real world. In
this simple scenario it is quite clear in which cases a causal interpretation is
clear. However, in more complicated scenarios a more elaborate formalization
of assumptions under which a causal interpretation is possible are helpful. We
will analyze this theoretically in the next section and will empirically evaluate
the theoretical findings.

It may be noted that other problems can occur when using PDPs for model
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FIGURE 4.1: The PDP on the left shows temperature causing ice-cream
consumption. The PDP on the right shows ice-cream consumption causing
temperatures. Which one is correct?

interpretation. E.g. as shown by (Scholbeck, 2018), assume we have data that
is distributed as follows:

Y ← X2
1 − 15X1X2 + ϵ

X1 ∼ U(−1, 1), X2 ∼ U(−1, 1), ϵ ∼ N (0, 0.1), N ← 1000

Training a Random Fordest on this data leads to Figure 4.2 below. Looking
at the PDP, one would assume that X1 has virtually no impact on Y . The
ICE curves, however, show that the averaging effect of the PDP completely
obfuscates the true effect, which is highly positive for some observations while
being highly negative for others. In this example too it would be misguided
to simply interpret the PDP causally and state that X1 does not have any
impact on Y whatsoever. This may capture the average effect correctly, but
evidently not true on the individual level.
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FIGURE 4.2: The average effect of the PDP (yellow line) hides the hetero-
geneity of the individual effects

4.3 Causal Interpretability: Interventions and Directed
Acyclical Graphs

For the rest of the Chapter we will assume we know the structure of the
mechanisms are underlying our dataset to derive assumptions under which a
causal interpretation is possible. With the help of Pearl’s do-calculus (Pearl,
1993) we can compute the true causal effect of interventions. Pearls do-calculus
relies on an underlying Structural Equation Model, the structure of which
can be visualized with causal graphs. In the structural equation model this is
equivalent to removing all incoming dependencies for the intervened variable
and fixing a specified value. As an effect, the distributions of variables that are
caused by the intervened variable may change as well. For more details refer
to (Pearl, 1993). It is important to recognize that an intervention is different
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from conditioning on a variable. Therefore the difference between a variable
X taking a value x naturally and having a fixed value X = x is reflected in
the notation. The latter is denoted by do(X = x). As such, P (Y = y|X = x)
is the probability that Y = y conditional on X = x. P (Y = y|do(X = x)) is
then the population distribution of Y if the value of X was fixed at x for the
entire population.

In order to avoid complex scenarios (dynamical models, equilibrium compu-
tation) we restrict ourselves to causal structures that can be visualized with
Direct Acyclical Graphs. A DAG is a representation of relationships between
variables in graphical form. Each variable is represented as a node and the
lines between these nodes, or edges, show the direction of the causal relation-
ship through arrowheads. In addition to being directed, these graphs are per
definition acyclical. This means that a relationship X → Y → Z → X can
not be represented as a DAG. Several examples of DAGs follow in the rest of
the chapter, as each scenario starts with one. With regards to interventions,
in a graphical sense this simply means removing edges from direct parents to
the variable.

In order to know when a causal interpretation makes sense, more is needed
than only a representation of a DAG and knowledge of how to do an inter-
vention. An important formula introduced by (Pearl, 1993) adresses exactly
this problem: The back-door adjustment formula. This formula stipulates that
the causal effect of XS on Y can be identified if the causal relationship be-
tween the variables can be visualized in a graph and XC , the complementary
set to XS , adheres to what he called the back-door criterion. The back-door
adjustment formula is:

P (Y |do(XS = xS)) =
∫

P (Y |XS = xS , XC = xC)dP (xC)

As (Zhao and Hastie, 2018) pointed out, this formula is basically the same as
the formula for the partial dependence of g on a subset of variables XS given
output g(x):

gS(xS) = ExC
[g(xS , XC)] =

∫
g(xS , xC)dP (xC)

If we take the expectation of Pearl’s adjustment formula we get:
E[Y |do(XS = xS)] =

∫
E[Y |XS = xS , XC = xC ]dP (xC)

These last two formulas are the same, if C is the complement of S.

(Pearl, 1993) defined a back-door criterion that needs to be fulfilled in order
for the adjustment formula to be valid. It states that:

1. No node in XC can be a descendant of XS in the DAG G.
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2. Every “back-door” path between XS and Y has to be blocked by
XC .

4.4 Scenarios

After these two introductory problems of PDPs, the rest of this chapter will
look at PDPs through the causal framework of (Pearl, 1993). This means we
will look at various causal scenarios visualized through DAGs and compare
the PDPs created under this structure with the actual effect of interventions.

In each scenario nine settings will be simulated for PDP creation, consisting
of three standard deviations for the error term (0.1, 0.3 and 0.5) and three
magnitudes of observations (100, 1000, 10000). Furthermore, each setting for
the PDP was simulated across twenty runs. Each of the nine plots will therefore
show twenty PDPs in order to give a solid view of the relationship the PDPs
capture for each setting. In addition to the plots of the PDPs, which will be
the first three columns in each figure, the actual effect under intervention will
be shown in a fourth column as a single yellow line. The true intervention
effects (column 4) were all simulated with a thousand observations. Initial
tests resulted in a large increase in computation time with a higher number of
observations, but with results that hardly differed from those obtained with
one thousand observations. For reasons of computational efficiency, we only
use out of the box random forest models. In future work, other model classes
and hyperparameter settings should be considered, e.g. by using approaches
from automatic machine learning.

The process for obtaining the intervention curve was as follows: Let X be
the predictor variable of interest with possible values x1, x2, xn and Y the
response variable of interest. for each unique i ∈ {1, 2, . . . , n} do
(1) make a copy of the data set
(2) replace the original values of X with the value X(i) of X under intervention
(3) recompute all variables dependent on X using the replacement values as
input. This includes Y , but potentially also other features that rely on X for
their value. Note that only X is replaced with Xi in the existing equations.
Both the equations and error terms remain the same as before.
(4) Compute the average Yi in dataset i given Xi.
(5) (Xi, Yi) are a single point on the intervention curve.

Scenario 1:

In the first scenario, we have a chain DAG, seen in Figure 4.3. Our variable X is
impacted by Z and has a direct effect on Y . Z, however, does not. XC consists
of Z, which is not a descendant of X. There is also no backdoor path between
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FIGURE 4.3: Chain DAG where X has a direct impact on Y, but is depen-
dent on Z

X and Y . The backdoor criterion is met. In this scenario the expectation
is thus that the PDPs should be overall equal to the true intervention. The
initial simulation settings for this scenario are as follows:

Y ← X + ϵY

ϵX , ϵY ∼ N (0, 0.1), ϵZ ∼ U(−1, 1), Z ← ϵZ , X ← Z+ϵX , N ← 100

As will be done in all scenarios, both standard deviation for ϵ and N were
varied across 3 levels leading to 9 settings.

Overall the PDPs match the intervention curves fairly well. Outside of the
extreme regions of X, where some curvature is present, the linear quality of
the intervention curve is evident in the PDPs. Furthermore, the scale of Ŷ is
comparable to the scale of Yintervention in most settings.

Scenario 2: Chain DAG

In this scenario the DAG again looks like a chain. X has an effect on Y through
Z, but no direct relationship between X and Y exists. Note that since Z is
a descendant of X, the PDP and intervention curve should not coincide. The
initial simulation settings for this scenario are as follows:

Y ← Z + ϵY

ϵY , ϵZ ∼ N (0, 0.1), ϵX ∼ U(−1, 1), X ← ϵX , Z ← X+ϵZ , N ← 100
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FIGURE 4.4: Comparison for scenario 1 of PDPs under various settings
with the (yellow) intervention curve on the right

As can be seen from Figure 4.6, the PDP plots do not match the intervention
plots well in several cases. The effect strength is a lot smaller and in fact, four
out of nine settings show a negative slope for the relationship between X and
Y in comparison to the overall positive slope for the true intervention. The
first row performs best, as expected due to the relatively small error that is
used. Interesting is also that in the second and third row, where the error
has been increased, the PDP slope goes from positive to negative between
the first and second column. PDP accuracy thus suffers in situations where
the observation count is low. In theory, we would expect the slope to be zero.
It remains to be investigated why we still see a trend, and why this trend is
negative in some cases.
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FIGURE 4.5: Chain DAG where X has no a direct impact on Y, but only
indirectly through Z

Scenario 3

After two chains, we now have a scenario where X has an influence on both
Z and Y directly, as well as Z having an impact on Y , as seen in Figure 4.7.
X confounds Z → Y here. An example of a confounding variable in real life
might be for instance the relationship between the level of physical activity
and weight gain, which is confounded by age. Age affects both weight gain and
the level of physical activity (on average), making it similar to the X in our
scenario here. This scenario is similar to the previous one with only an edge
between X and Y having been added. As can be seen from the DAG in 4.7,
Z is still a descendant of X. As the backdoor criterion is not met, we cannot
expect a causal interpretation to be valid.

The similarity to the previous scenario can also be noted in the simulation
settings, where the only difference is the addition of X to the equation for Y .

Y ← Z + X + ϵY

ϵY , ϵZ ∼ N (0, 0.1), ϵX ∼ U(−1, 1), X ← ϵX , Z ← X+ϵZ , N ← 100

The expectation was that the PDP would not show the same results as the
true intervention. On first glance in Figure 4.8, the PDPs do not seem to be
as inaccurate as they were in scenario 2. An overall upward trend seen in the
true intervention on the right is also captured by the PDPs in all settings.
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FIGURE 4.6: Comparison for scenario 2 of PDPs under various settings
with the (yellow) intervention curve on the right

However, big differences do exist. First of all, the scale of Ŷ is off in every
setting. This issue gets worse both when the standard deviation of the error
increases and when the number of observations is increased. The worst setting
is the bottom right, where N = 10.000 and the standard deviation of the error
is 0.5. The range of Ŷ is very small compared to the true intervention next
to it and the slope is not steep enough. In fact, the correct slope can only be
seen in a very few points: In the top row plot 2 and 3 around X = 0 and on
the second row plot 3, also around X = 0. Overall the result is not as poor as
in scenario 2, but a causal interpretation of these plots would lead to a severe
underestimation of the impact X has on Y .

Scenario 4



4.4 Scenarios 63

X

Z

Y

2.4

2.7

3.0

3.3

0.75 1.00 1.25 1.50

x

y

FIGURE 4.7: X is a confounding variable impacting both Z and Y

Scenario 4 consists of a direct effect of X on Y . Z meanwhile is unrelated to
both X and Y . It is however included in the simulation and included in the
model that is run to create the PDPs. In a non-simulated setting, Z can be
seen as a variable that we assume might be related to Y and therefore include,
but in actuality has nothing to do with the causal process and should not be
included. We will see now how the PDP deals with this kind of variable in the
mix.

For the simulation the initial settings look as follows, again increasing both
the standard deviation of the error and the magnitude of observations from
this starting point.

Y ← X + ϵY

ϵY ∼ N (0, 0.1), ϵX , ϵZ ∼ U(−1, 1), X ← ϵX , Z ← ϵZ , N ← 100

The PDPs in Figure 4.10 are able to capture the intervention curve well. Only
in the cases where N = 100 is there slight curvature at the extreme ends of X.
With this low number of observations the model is less accurate. In all other
settings a consistent slope is present from X = −1 to X = 1, with the scale
of Ŷ matching that of Yintervention.

Scenario 5

In this scenario Z is a confounding variable. This is similar to scenario 3
where X was the confounder. Thinking back to the example of age being a
confounding variable for level of physical activity and weight gain, in the pre-
vious example our X was comparable to the confounder age. In this scenario,
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FIGURE 4.8: Comparison for scenario 3 of PDPs under various settings
with the (yellow) intervention curve on the right

we can keep the same example, but say our variable X is now comparable to
the variable level of physical activity that is being confounded. Since X has
no descendants and there is no backdoor path, the expectation here is that
the PDPs will be similar to the intervention curve.

The following simulation settings were used:

Y ← Z + X + ϵY

ϵY , ϵX ∼ N (0, 0.1), ϵZ ∼ U(−1, 1), Z ← ϵZ , X ← Z+ϵX , N ← 100

We can see in Figure 4.12 that aside from the extreme regions of X where the
slope is flatter, the PDPs are fairly similar to the Intervention Curves on the
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FIGURE 4.9: X directly impacts Y. Z is included in our model, but has no
relationship to X or Y

right. We can see that as the standard deviations of the errors increase, so
does the range of Yintervention from (-1, 1) to (-2,2). This same trend can
be observed in the PDPs. As could be expected, the PDPs with the highest
number of observations are are most accurate and have the lowest standard
deviation of errors.

4.5 Conclusion

Causal interpretability of a PDP is dependent on several things: (1) The back-
door criterion being met. We have seen that if the backdoor criterion is met,
meaning no variable in the complement set C is a descendant of our variable
of interest, the PDP should be the same as the intervention curve. We say
should, because in practice it will also depend on: (2) The model fit. Even
when the backdoor criterion is met, the PDP might not fully capture the ex-
act same relationship as the intervention curve. Especially in extreme regions,
where data is potentially sparse, the PDP can be deceptive. Same in scenarios
with a higher(er) error and low number of observations.

Point (2) can be estimated with the standard goodness of fit measures that
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FIGURE 4.10: Comparison for scenario 4 of PDPs under various settings
with the (yellow) intervention curve on the right

are pervasive in the statistics literature. It may be noted that models may
show a good fit, but do not learn the patterns that we would expect them to
learn from a theoretical point of view. Point (1) is even more difficult to verify,
especially based on only the data. Here a certain amount of domain knowledge
is needed to ensure the assumption is met. Still, it is a hard assumption to
verify which could limit the confidence people have in a causal interpretation
of a PDP. In the two variables case we may already have difficulty finding a
causal interpretation. As we saw with the ice-cream example, the direction of
the dependency already makes a large difference. In many cases, the necessary
domain knowledge may be hard to attain.
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FIGURE 4.11: Z is a confounding variable impacting both X and Y
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FIGURE 4.12: Comparison for scenario 5 of PDPs under various settings
with the (yellow) intervention curve on the right
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5.1 Motivation

As seen in section 2 PDPs don’t work well as soon as two or more features are
correlated. This gives rise to the definition of ALEs. Although their definition
makes sense for high dimensional feature spaces including categorical features,
within this section we only treat a space with two continuous features.

5.2 The Theoretical Formula

The uncentered ALE with respect to a starting point z0,j is defined by (Apley,
2016) as

ÃLEf̂ , j(x) = f̂xj ,ALE(x) =
∫ x

z0, j

EXc|Xj
[f̂ j(Xj , Xc) | Xj = zj ] dzj ,

where f̂ is an arbitrary prediction function, as well as f̂ j(∗, ∗) its j-th partial
derivative. In this context Xj is the feature of interest while Xc represents the
other features.

5.2.1 Centering

The ALE (centered ALE) is defined as
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ALEf̂ , j(x) = ÃLEf̂ , j(x)− EXj
[ÃLEf̂ , j(Xj)]

The centering makes sense as it helps to interpret the ALE in a reasonable
way. This will be explained in section 5.4.

5.3 Estimation Formula

Since this theoretical formula is of no use for a black box model with unknown
or even non-existing gradients, an approximative approach will be used. The
uncentered ALE can be approximated by the formula

̂̃
ALEf̂ , j(x) =

∫ x

z0, j
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1Ik
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nj(k)
∑
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In a first step the relevant dimension of the feature space is divided into
K intervals beginning with the starting point z0,j . As it is not clear how
to exactly divide the feature space, section 7 deals with that question. The
upper boundary of the k-th interval is denoted by zk, j as well as the lower
boundary by zk−1, j . The half-open interval ]zk−1, j , zk, j ] is defined as Ik.
Nj(k) denotes the k-th interval, i.e. ]zk−1, j , zk, j ] and nj(k) the total number
of observations having the j-value within this interval. x

(i)
j is the j-value of the

i-th observation and correspondingly x
(i)
\j the values of the other features. The

term on the right approximates the expected partial derivative within each
interval. Therefore each instance within an interval is shifted to the upper and
lower limit of the interval and the total difference of the prediction is calculated.
Divided by the length of the interval this is a reasonable approximation for the
“local” effect on the prediction, if the feature of interest changes (cet. par.). By
averaging these approximations over all observations within the k-th interval,
we receive a rough estimator for the term EXc|Xj

[f̂ j(Xj , Xc) | Xj ∈ Nj(k)],
which we take as constant effect for the k-th interval. By integrating over this
step function, which represents the locally estimated derivatives, the (local)
changes are accumulated. That’s why the name Accumulated Local Effects
is quite reasonable. The approximative formula for the centered ALE follows
directly as

ÂLEf̂ , j(x) = ̂̃
ALEf̂ , j(x)− 1

n

n∑
i=1

̂̃
ALEf̂ , j(x(i)

j ) .



5.4 Intuition and Interpretation 71

5.3.1 Implementation Formula

As both the centered and the uncentered ALE estimations are piecewise linear
functions (integration over a step function), one can first calculate the ALE
at the interval boundaries and interpolate in a second step. Therefore the
following formula proposed by (Apley, 2016, page 11) with slightly changed
notation will be useful. The definitions of its components are as above. Ad-
ditionally kj(x) is defined as the number of the interval that contains x, i.e.
x ∈ ]zkj(x)−1, j , zkj(x), j ].
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This formula returns a step function. The values in each interval are the
accumulated values of the averaged total differences in each interval. To
transfer this formula into the correct estimator of the uncentered ALE one
has to linearely interpolate the points (zk−1, j ,

̂̃
ALEsteps, f̂ , j(zk−1, j)) with

(zk, j ,
̂̃
ALEsteps, f̂ , j(zk, j)) for k ∈ {1, ..., K} and ̂̃

ALEsteps,f̂ ,j(z0, j) = 0.

Since in this formula there is no integral, it is easier to implement.

5.4 Intuition and Interpretation

As the former sections introduced the theoretical basics for the ALE, this
section shall provide an intuition as well for the calculation method as for
the interpretation. As described above, the local behavior of the model with
respect to the variable of interest is estimated by moving the existing data
points to the boundaries of their interval and evaluating the total difference of
the prediction for the “new” data points. Figure 5.1 first offered by (Molnar,
2019) gives a good intuition for this procedure.

First one splits the total range of the variable of interest (in this case x1) to
intervals of suitable size.
For each interval the contained data points are moved to the interval bound-
aries. One gets twice as much “simulated” new data points as originally con-
tained in each interval. The prediction function is now evaluated at these
simulated points and the total difference of the prediction (for the given in-
terval) is estimated as the mean change. Divided by the length of the interval
one gets an estimation for the partial derivative within this interval. Theoret-
ically one receives the uncentered ALE by integration over this step function.
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FIGURE 5.1: The data points within the 4-th interval are shifted to the
interval boundaries z3, 1 and z4, 1.

Technically in a first step the total change per interval is accumulated. In a sec-
ond step linear interpolation at the interval boundaries simulates a constant
change within each interval. Both variants lead to the same result.

As the evaluation is ideally done on relatively small intervals, on the one hand
the local behavior of the model is estimated. On the other hand the covari-
ance structure of the features is taken into account, as only “realistic” data
points are simulated. This is in accordance with sampling from the conditional
distribution.

In a last step the uncentered ALE is centered, i.e. shifted by a constant such
that the expectation of the centered ALE is zero.

Figure 5.2 shows an example ALE which could match the data situation of
Figure 5.1.

To understand the interpretation of the ALE it can be useful to first have a
look at the intuition behind the uncentered ALE. If the value of the uncen-
tered ALE at x1 = 2 equals 1, this means that if one samples a data point
from the joint distribution of both features but only knows that x1 = 2, one
would expect the prediction to be 1 higher than the average prediction for re-
alistic data points at x1 = z0,1 (i.e. data points sampled from the conditional
distribution at x1 = z0,1). This expectation strongly depends on the reference
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FIGURE 5.2: ALE on basis of 5 intervals

point z0,1, which per definition is smaller than the smallest x1-value of the
data. By subtracting the expectation of the uncentered ALE - which is the
mean difference of the prediction of a data point from the joint distribution to
the prediction of a realistic data point(i.e. from the conditional distribution)
at x1 = z0,1 - the interpretation becomes a lot easier. If the value of the (cen-
tered) ALE at x1 = 2 equals for example 2, this means that, if one samples
a data point from the joint distribution of both features and x1 equals 2, one
would expect the 1st order effect of feature x1 to be 2 higher than the average
1st order effect of this feature.

So far only the case of 2-dimensional feature spaces with one feature of interest
was taken into account. In the following chapters methods and interpretation
for ALE with two numeric features (second order effects) or one categorical
feature will be in the focus. Furthermore we will have a look on the size of the
intervals the data is evaluated on, which can be crucial for the expressiveness
of the ALE.
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This subchapter of ALE will focus on the comparison of ALE and PDP, es-
pecially on the influence of correlation in the underlying datasets. At first,
the interpretation for the regular one dimensional (or 1D) ALE to the 1D
PDP will be discussed. Thereafter two-dimensional ALEs will be introduced
and their difference to 2D PDPs will be explained. Additionally, a runtime
comparison will be shown and to conclude this chapter a real-world example
will be analyzed with ALE, PDP and ICE plots.

6.1 Comparison one feature

So far in this book, one could already see a few examples of the PDP for one
feature and its limitations. The ALE is kind of the solution for the biggest
issue with the PDP. The ALE can interpret models predicting on correlated
variables correctly, while the PDP may fail in this case. Before the two methods
will be compared, here comes a short reminder regarding the interpretation.

Given a value for the feature of interest …

…the 1D PDP measures the expected prediction for this value by averaging
over the prediction of all observations pretending the feature of interest is that
value.

… the 1D ALE shows the expected and centered first order effect of this feature.

With these interpretations in mind, the first example with artificial data will
be discussed.

75
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6.1.1 Example 1: Multiplicative prediction function

The following Problem is constructed: There is a data set consisting of 150 ob-
servations with three features (x1, x2, x3) and the target variable y = x1x2x3.
The features of each observation are sampled from the following disrtibutions:
X1 ∼ U(0, 0.5), X2 ∼ N (2, 2) and X3 | X2, X1 ∼ N (X2, X1).

So features one and two are independent of each other, while x3 is strongly
correlated with x2. It is also not independent from x1, although there is no
influence of x1 on the expected value of x3.

In this example (and in all other examples with artificial data in this chap-
ter) the prediction function is not fitted but sets as the target variable, here
f(x1, x2, x3) = y = x1x2x3. By setting the prediction function instead of fit-
ting a learner on the data it is ensured that one can imagine how the ‘real’
influence of each feature would look like. This way one can see clearly if ALE
or PDP are making mistakes in the interpretation. If one would fit a random
forest one could never be sure if the ALE and PDP plots are making a mistake
in explaining the fitted model or if the mistake is made by the learner and the
explanation of the learner itself would be fine. This will become clear at the
end of the chapter when the real-world example will be discussed.

FIGURE 6.1: PDPs for prediction function f(x1, x2, x3) = x1x2x3.

Plot 6.1 shows the 1D PDP for each of the three features. One can see that
the PDP detects a linear influence on the prediction for all 3 of the features.

On the other hand, the ALE (figure 6.2) attests the linear influence to the
feature x1 only. This plot exposes a weakness of the ALE compared to the
PDP straight away. The ALE depends much more on the sampled data than
the PDP does. The result is that the ALE can look a bit shaky. In this special
case, it is that seriously one almost can’t see the linear influence. If there
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FIGURE 6.2: ALEs for prediction function f(x1, x2, x3) = x1x2x3.

would be more data or fewer intervals for the estimation, the plot would look
more like the PDP for feature x1. The two other features seem to rather have
a quadratic influence on the prediction. And this is the case indeed since it is
the ‘true’ link between prediction and the correlated features. Feature x3 has
(in expectation) the same value as x2. Especially if feature x1 has small values
the variance of feature x2 around x3 becomes small as well. As consequence
the last part of the prediction function ‘x2x3’ can be approximated by ‘x2

2’ or
‘x2

3’. This explains the quadratic influence. By changing the prediction formula
to f(x1, x2, x3) = y = x1x2

2 the figures 6.3 and 6.4 for PDP and ALE plots
are estimated.

FIGURE 6.3: PDPs for prediction function f(x1, x2, x3) = x1x2
2.
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FIGURE 6.4: ALEs for prediction function f(x1, x2, x3) = x1x2
2.

Plots 6.3 and 6.4 clearly show the linear influence of x1 again. Additionally
this time both (ALE and PDP) attest a quadratic influence to feature x2 on
the prediction. Since x3 does not have any influence on the prediction function,
it is correct, that there is no influence detected. The reason for this behavior
lies in the calculation method for the PDP. With the new prediction formula
only depending on uncorrelated features x1 and x2, the PDP works well. Since
now the approach of PDP to calculate the mean effect is correct.

6.1.2 Example 2: Additive prediction function

In this example, PDP and ALE will be applied to an additive prediction
function.

A data set consisting of three features (x1, x2, x3) is constructed. In this case
the target variable is y = x1 + x2 − x3. Once again the prediction function
is not learned but set to exactly the target variable, meaning f(x1, x2, x3) =
x1 + x2 − x3. The distributions are similar to the ones from example 1 and
again 150 observations are sampled. X1 ∼ U(0, 2), X2 ∼ N (2, 0.5) and
X3 | X2 ∼ N (X2, 0.5)

For this example one can see that the ALEs (6.6) and PDPs (6.5) are basically
the same. Ignoring the centering both attest the same linear influence for all
three features. And since it is an additive model this is actually correct. But
neither the ALE nor the PDP recognize the strong correlation between the
features x2 and x3. The real influence of features x2 and x3 is in expectation
zero, since it is x2 − x3 and E[X3 | X2] = X2. So E[X2 −X3 | X2] = 0.

This shows a few points one has to be aware of when working with these plots.
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FIGURE 6.5: PDPs for prediction function f(x1, x2, x3) = x1 + x2 − x3.

FIGURE 6.6: ALEs for prediction function f(x1, x2, x3) = x1 + x2 − x3.

In this example, if one uses the interpretation of the PDP for feature x2 and
states ‘If the value of feature x2 is 2.5, then I expect the prediction to be 1.5’
it would be wrong. The problem here is the extrapolation in the estimation of
the PDP. So it does not take into account any connection between the features
but still works as good as the ALE in this example.

The general advantage of the ALE is the small chance of extrapolation in
the estimation. But this does not mean it would recognize any correlation
between the features in each scenario. And it is in general not possible to
state something about the prediction with only one 1D ALE. The ALE is
just showing the expected and centered main effect of the feature. In this
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example an interpretation like ‘If feature x2 has value 2.5 then in expectation
the prediction will be 0.5 higher than the average prediction’ is wrong. If one
needs a statement like that the other strongly correlated features have to be
taken into account as well. One has to be aware of the higher order effects of
the ALE, too.

To conclude the analysis of this example 2D ALEs are necessary. So it will be
continued later this chapter.

6.2 Comparison two features

Before the 2D ALE and PDP will be applied to the same predictors, the 2D
ALE has to be introduced. In the first place, the theoretical formula will be
defined. Thereafter the estimation will be derived and then the comparison to
the 2D PDP will be made.

6.2.1 The 2D ALE

6.2.1.1 Theoretical Formula 2D ALE

Similar to one variable of interest there is a theoretical formula for a 2-
dimensional ALE. This ALE aims to visualize the 2nd order effect. Meaning
one will just see the additional effect of interaction between those two features.
The main effects of the features will not be shown in the 2D ALE.

To explain the formula it will be assumed that xj and xl are the two features
of interest. The rest of the features is represented by xc. So in the following
variable xc can be of higher dimension than 1. As for the 1D ALE, there is
again a theoretical derivative for the fitted function f̂ . But this time it is the
derivative in the direction of both features of interest. So in the following, this
notation will hold:

f̂ (j, l)(xj , xl, xc) = δf̂(xj , xl, xc)
δxj δxl

The whole formula would be very long, so it is split into 3 parts (compare
(Apley, 2016, page 8)):

1. The 2nd order effect (6.1)

2. 2nd order effect corrected for both main effects (6.2)
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3. The 2D ALE; the corrected 2D ALE centered for its mean overall
effect (6.3)

Equation (6.1) is the 2nd order effect with no correction for main effects of xj

and xl. So this is not yet the pure 2nd order effect the 2D ALE is aiming for.

˜̃
ALEf̂ , j, l(xj , xl) =

∫ xj

z0,j

∫ xl

z0,l

E[f̂ (j, l)(Xj , Xl, Xc) | Xj = zj , Xl = zl] dzl dzj (6.1)

Now from the uncorrected 2nd order effect, the two main effects of both fea-
tures on the uncorrected 2D ALE are subtracted (see equation (6.2)). In this
way the main effects of xj and xl on the final ALEf̂ , j, l(xj , xl) are both zero
(Apley, 2016, page 9). But be careful, this is not centering by a constant as in
the one-dimensional ALE. This is a correction for the also accumulated main
effects which of course vary in the directions of the features.

ÃLEf̂ , j, l(xj , xl) =˜̃
ALEf̂ , j, l(xj , xl)

−
∫ xj

z0, j

E[
δ
˜̃
ALEf̂ , j, l(Xj , Xl)

δXj
| Xj = zj ] dzj

−
∫ xl

z0, l

E[
δ
˜̃
ALEf̂ , j, l(Xj , Xl)

δXl
| Xl = zl] dzl (6.2)

Equation (6.3) shows the final (centered) 2D ALE. The subtraction in the
formula is now the real centering to shift the 2nd order effect (corrected for
the main effects) to zero with respect to the marginal distribution of (Xj , Xl).

ALEf̂ , j, l(xj , xl) = ÃLEf̂ , j, l(xj , xl) − E[ÃLEf̂ , j, l(Xj , Xl)] (6.3)

In the appendix 6.5.1 one can find the calculation of the theoretical ALE for
Example 1.

6.2.1.2 Estimation 2D ALE

Analogously to the 1D ALE in most cases, it is not possible to calculate the 2D
ALE. It has to be estimated. These estimation formulas are pretty long and
might be confusing, especially the indices. But there will be an explanation
including a visualization as well to clarify the estimation method.

First, all variables have to be defined. The two features of interest are xj
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and xl. The prediction function is f̂(xj , xl, x\{j, l}), while x\{j, l} represents
all the rest of the features, so it can be of higher dimension than 1. The ar-
eas including data for feature xj and xl are divided into the same number
of intervals, namely K. The intervals in xj direction are separated by zk,j

for k ∈ {0, ..., K}. kj(xj) returns the interval number in which xj lies. This
holds for zm,l and kl(xl) respectively in direction of xl. N{j, l}(k, m) is the
crossproduct of the k-th and m-th interval (in xj and xl direction), so it is
defined as (zk−1,j , zk,j ] × (zm−1,j , zm,j ]. n{j, l}(k, m) is the number of obser-
vations lying in this N{j, l}(k, m) cell. The parameter i represents the i-th
observation (Apley, 2016). With these variables in mind, the definition of the
2D ALE estimation can begin.

The estimation equvalent to Formula (6.1) is:

̂̃
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kj(xj)∑
k=1
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1
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(x(i)

\{j, l}), (6.4)

while the ∆ function is:

∆{j, l}, k, m

f̂
(x(i)

\{j, l}) =

[f̂(zk, j , zm, l, x
(i)
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(i)
\{j, l})] (6.5)

Now the correction for the main effects (equation (6.6) corresponding to the-
oretical formula (6.2)) is estimated:
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−
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−
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1
nl(k)

K∑
m=1

n{j, l}(k, m)[
̂̃
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−
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Equation (6.6) is the uncentered 2D ALE since it is just corrected for its main
effects. And this is not a real centering in the sense of subtracting a constant
value. Now it will be centered for its estimation E[̂̃ALEf̂ , j, l(Xj , Xl)] and
this is a constant, so there will be no effect on the general shape of the ALE
plot. Again this expected value has to be estimated, to complete the 2D ALE
as is calculated in theoretical formula (6.3).

ÂLEf̂ , j, l(xj , xl) =

̂̃
ALEf̂ , j, l(xj , xl)−

K∑
k=1

K∑
m=1

n{j, l}(k, m) ̂̃
ALEf̂ , j, l(zk, j , zm, l) (6.7)

In contrast to the ALE for one feature of interest, the 2D ALE ((6.7) is a
two-dimensional step function, so there is no smoothing or something similar
to make it a continuous function.

These formulas are pretty long, so to get an intuition of the estimation figure
6.7 will be helpful.

FIGURE 6.7: Visualization of the absolut differences for the 2nd order effect
(Apley, 2016, page 13) and (Molnar, 2019).

To calculate the delta (6.5) for the uncorrected and uncentered ALE esti-
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mation in each cell the predictions for the data points in that cell will be
calculated pretending the xl and xj values are the corner values of the cell
they are in. In the case of figure 6.7, these 2-dimensional corner values would
be a, b, c, d. The delta for point x in this example would be calculated like
this:

∆{j, l}, 4, 3
f̂

(x\{j, l}) =[f̂(b, x\{j, l})− f̂(a, x\{j, l})]

− [f̂(d, x\{j, l})− f̂(c, x\{j, l})]

The same would be done for point y. Thereafter the deltas would be averaged
to get the mean delta for cell N{j, l}(4, 3). This would then be accumulated
over all cells left or beneath this cell to get the uncorrected and uncentered
ALE for the values in N{j, l}(4, 3).

The correction for the main effects extracts the pure 2nd order effect for the
two features of interest by subtracting the main effect of the single features
on the ALE (equation (6.6)). To stick with this example the correction for the
main effect of feature xj for values in Nj(4) takes into account all cells in the
first 4 columns and aggregates the first order effect. In cell N{j, l}(4, 3) this
would look like this:

̂̃
ÃLEf̂ , j, l(b)−

̂̃
ÃLEf̂ , j, l(a)

The correction for xl looks pretty much the same just from the other direction.
It takes into account the first 3 rows. So in cell N{j, l}(4, 3) the first order effect
in direction of xl would be

̂̃
ÃLEf̂ , j, l(b)−

̂̃
ÃLEf̂ , j, l(d).

Thereafter the corrected ALE is centered for its mean (equation (6.7)), pretty
much the same way as is done for one dimension. But this time the aggregation
is not just over a line but over a grid.

There are a few questions that might arise.

First, how is the grid for the estimation defined? In the iml package, the cells
are the cross products of the intervals used for the 1D estimation. It would
be very hard to make a grid of rectangles which all include roughly the same
amount of data points.

Another question is: How does the estimation treat empty cells, which include
no data points? There are two options, they can either be ignored and greyed
out or they receive the value of their nearest neighbor rectangle, which is
determined using the center of the cells. The last method is implemented in the
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iml package. This happens right after averaging over the ∆{j, l}, k, m

f̂
(x\{j, l})s

before the correction for the 1st order effects is done.

6.2.1.3 Example 1 continued - Theoretical and estimated 2D ALE

Before ALE and PDP will be compared for two features of interest, the analysis
of example 1 will be continued in two dimensions, to get a first glance at the
2D ALE.

The data set is basically the same, just for sake of clearness in the 2D
ALE example the distributions are a bit different. A data set consisting of
150 observations with three features (x1, x2, x3) and the prediction func-
tion f(x1, x2, x3) = x1x2x3 is considered. But this time the three features
are sampled from these disrtibutions: X1 ∼ U(0, 0.5), X2 ∼ N (5, 1) and
X3 | X2, X1 ∼ N (X2, X1). So feature x2 is expected to be 5 and has a lower
variance than it has in example 1. The rest stays the same.

With the formulas in the appendix 6.5.1 it is possible to calculate the theoret-
ical 2D ALE.

FIGURE 6.8: Theoretical 2D ALE (left) and estimated ALE (right).

Figure 6.8 shows the theoretical ALE compared to the estimated one. In this
example, it looks pretty similar. The interpretation is a bit hard. Since one
can only see the 2nd order effects, isolated from the 1st order effects, it is
hardly possible to state something reasonable about the prediction with just
this plot. But this problem will be discussed in the coming up chapter.
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6.2.2 2D ALE vs 2D PDP

In this Chapter, only 2D plots for artificially constructed examples will be
analyzed. To show the statement, that there are no main effects in the 2D
ALE example 2 will be discussed again.

6.2.2.1 Example 2 - 2D comparison

Just a short reminder of example 2: the prediction function here is
f(x1, x2, x3) = x1 + x2 − x3 and x2 and x3 are strongly positive correlated
(they even share the same expected value).

FIGURE 6.9: 2D PDP (left) vs. 2D ALE (right) for prediction function
f(x1, x2, x3) = x1 + x2 − x3.

Figure 6.9 shows the direct comparison of 2D PDP and 2D ALE. The ALE is
almost completely zero as expected. In this additive example, there are main
effects only and since the 2D ALE is corrected for the main effects of the
features, there is no pure 2nd order effect. The PDP in comparison shows the
mean prediction. So, of course, there are the main effects estimated within
the 2D PDP as well. Obviously, it is hard to compare those two interpretation
algorithms just like this.

To get a better comparison the main effects (1D ALEs) of the two features of
interest can be added to the 2D ALE.

Plot 6.10 shows the ALE added up with the corresponding 1st order effects of
the features. And now it seems pretty much the same as the PDP in figure 6.9.
On the right side, the same plot can be seen. This one additionally includes
the underlying data points regarding features x2 and x3. Furthermore these
two features are independent of feature x1, so the PDP and ALE yield the
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FIGURE 6.10: 2D ALE added up with 1st order effects of features x2 and
x3 for prediction function f(x1, x2, x3) = x1 + x2 − x3. In the right plot the
underlying 2 dimensional data points are included.

same correct interpretation, namely for realistic data points the influence of
these two features is close to zero because of their strong positive correlation
and their opposing first order effects (figures 6.6 and 6.5).

With this in mind, example 1 deserves another look regarding the 2nd order
effect in comparison to the PDP.

6.2.2.2 Example 1 - 2D comparison

To be able to compare the 2D ALE from the last chapter for prediction func-
tion f(x1, x2, x3) = x1x2x3 with the 2D PDP one also should add up the 1st
order effects to the 2D ALE.

This plot 6.11 shows exactly what happens in this case, when the 1st order
effects of the ALE are added up to the 2nd order effects. One can see that
although the connection between x2 and x3 has been detected by the 1st
order ALEs (figure 6.2) and has not been by the 1D PDPs (figure 6.1), the
comparable 2D plots look pretty much the same.

In these two examples, it seems like the 2D ALE is not much better than
the 2D PDP. But making just a small change to the prediction function for
unrealistic values (regarding the underlying data) exposes the sensitivity of
the PDP estimation for extrapolation.
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FIGURE 6.11: 2D PDP vs 2D ALE with added up 1st order effects of
features x1 and x2 for prediction function f(x1, x2, x3) = x1x2x3.

6.2.2.3 Example 1 modified - 2D comparison

The setting of the problem stays basically the same. Just a small - for the real
prediction actually irrelavant - change is made for the prediction function. It
is not anymore f(x1, x2, x3) = x1x2x3 but

f(x1, x2, x3) =

{
x3

3, if x3 ≥ 6 , x2 ≤ 4
x1x2x3, else

This seems a bit unrealistic but especially tree-based predictors tend to do
‘strange’ things in areas without data.

The result of the 2D PDP compared to the ALE (figure 6.12) shows the
problem. In the area where x2 < 4 the values of the PDP are huge, since the
big values for x3

3 if x3 > 6 increase the average drastically. These values are
very unlikely for the underlying distribution but the PDP pretends them to
be possible. This is the problem of the extrapolation in the PDP estimation.
This is not a problem for the ALE. Here one can not recognise any difference
to figure 6.11, where the prediction function is just f(x1, x2, x3) = x1x2x3.

One big advantage of the ALE in general over the PDP is, that it hardly
extrapolates in the estimation, which is usually the case for the PDP with
correlated features. And one can take a look at separated 1st and 2nd order
effects, which can be very helpful, especially for real black box models with
complicated links. Furthermore, in the next chapter, the runtime will turn out
to be a strong advocate for the ALE, especially for bigger datasets.
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FIGURE 6.12: 2D PDP vs 2D ALE with added up 1st order effects of
features x1 and x2 for stepwise prediction function.

6.3 Runtime comparison

In this chapter, the runtime of ALE and PDP will be compared. Therefore
three general sizes of data sets have been sampled. One small with 100, a
bigger one with 1,000 and the biggest with 10,000 observations. The number
of features varies between 5 and 40, while there are always 2 categorial features
and the others are numeric, as is the target variable. The predictor applied to
these datasets is a regular SVM. It is way faster than the random forest, where
the PDP estimation can easily take half a minute for just 1,000 observations.

To compare the runtime, the package ‘microbenchmark’ has been used. So
the discussed results will all have the same structure, which will be explained
with the first example. The comparison will cover the runtime for…

1. …one numerical feature of interest
2. …two numerical features of interest
3. …one categorial feature of interest.

Each of these three will be compared for the different numbers of observations
of course but also for different grid sizes (number of intervals the ALE and
PDP are estimated on) and varying feature numbers.
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FIGURE 6.13: Runtime comparison ALE vs. PDP for one numeric feature.
Differences for the number of features and grid size.

6.3.1 One numerical feature of interest

Figure 6.13 shows the runtimes for different configurations in milliseconds. The
microbenchmark output shows the compared expressions (here the calculation
of ALE and PDP) in the first column. The other columns are the measured
runtime for 10 different runs. From left to right it is the minimum runtime,
the lower quantile of the runtimes, the mean, the median, the upper quantile,
and the maximal runtime. The main attention usually lies in the mean. In the
expression, there are also configurations for the sampled dataset integrated.
For example ‘ale_one_numeric(svm.regr_100_5, grid.size = 20)’ represents
the following estimation: An ALE for one numeric feature of interest has been
estimated. The prediction function was an SVM, fitted and evaluated on a
sample of 100 observations with 5 features. The grid size, in this case, was 20,
so the plots are estimated on 20 intervals.

Plot 6.13 shows the comparison for a change in grid size and number of features
for one numeric feature of interest. It seems like the number of features does
barely influence the runtime. Additionally for the ALE the grid size is not
significantly changing the runtime.

That is completely different for the PDP. Here a factor 5 for the number
of intervals increases the runtime by the same factor. This can be derived
from the estimation. The ALE does the same number of predictions for any
number of intervals, namely #observaions × 2. It just averages more often
for more intervals. But that happens without the prediction function and is
just a simple mean calculation, so it barely needs time. The PDP, on the
other hand, estimates the mean prediction for each interval border. So here
(#intervals + 1) × #observations predictions have to be calculated. So the
runtime grows linearly with the grid size and factor #observations. This is also
the explanation for the next comparison (figure 6.14). Here again, one can see
a way faster increase of runtime for PDPs than for ALEs when increasing the
number of observations



6.3 Runtime comparison 91

FIGURE 6.14: Runtime comparison ALE vs. PDP for one numeric feature.
Differences for the number of observations.

FIGURE 6.15: Runtime comparison ALE vs. PDP for two numeric features.
Differences for number of features and grid size.

6.3.2 Two numerical features of interest

In figure 6.15 the runtimes for different 2D ALE and PDP configurations can
be seen. Again the number of features is not a great deal for both algorithms.
The ALE has no huge increase in runtime when the grid size is higher but
the PDP has. The issue here is that the estimation for 2D PDP requires
(grid.size + 1)2 × #observations predictions, while the ALE just needs 4 ×
#observations predictions calculated for the estimation. This especially can
be seen when increasing the number of observations.

FIGURE 6.16: Runtime comparison ALE vs. PDP for two numeric features.
Differences for the number of observations.

Figure 6.16 shows such an increase in observations. One can see that factor
100 in observations becomes almost factor 1,000 for the runtime of PDP while
it is just a bit more than 10 for ALE.

6.3.3 One categorial feature of interest

Lastly, a look at the estimation for 1D categorial PDP and ALE will be taken.

Figure 6.17 shows the runtimes of PDP and ALE for a categorial feature of
interest. Analyzing categorial features does not require a grid size since the
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FIGURE 6.17: Runtime comparison ALE vs. PDP for one categorial feature.
Differences for number of features only, since there is no grid size for categorial
features.

number of categories already defines the number of different evaluations. This
time one recognizes that it is the other way around. The calculation time stays
the same for the PDP with a growing number of features, while ALE shows
a significant growth. This is clearly caused by the reordering of the features
for their category (will be explained in the next chapter). The reordering is
based on the kind of nearest neighbors (depends on implementation). The
calculation of these neighbors takes longer the more features have to be taken
into account.

FIGURE 6.18: Runtime comparison ALE vs. PDP for one categorical fea-
ture. Differences for the number of observations.

Figure 6.18 shows a similar picture as can be seen in figure 6.13. Just this time
compared to the estimation for one numeric feature the ALE is way slower for
the categorial feature, while the PDP is twice as fast as for the numeric feature.
That might come from the fact that the grid size here (6.13) was 20 and in
this case, there are just 10 classes for the feature of interest. Meaning that
half as many calculations for the estimation are required. So it might be the
same speed for the PDP from numeric to categorial (at least with comparable
parameters). The ALE will always be slower for categorical features since the
reordering of the categories is necessary.

In general, one can state that ALE is by far faster. For an SVM that might
not be that much of a problem. But with ensemble predictors like a random
forest it can be very slow to calculate a PDP for a high grid size and 10,000+
observations.
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6.4 Comparison for unevenly distributed data - Example
4: Munich rents

To conclude this chapter a real-world problem with a fitted learner will be
analyzed with ICE, PDP, and ALE, to see them in action.

This is an example with data for rents in Munich from 2003. The target
variable ‘nm’ is the rent per month per flat. To predict the rent a random
forest has been fitted. The features in this example are ‘wfl’ (size in square
meters) and ‘rooms’ (number of rooms) of the flat. These two variables are
clearly positively correlated since there will not be an apartment with 15
square meters and 5 rooms. The other features are not that strongly correlated
as one can see in figure 6.19. To fit the random forest only ‘wfl’ and ‘rooms’
were used.

FIGURE 6.19: Correlation matrix for rents in Munich.

Figure 6.20 shows a more or less expected influence of space on the rent. The
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FIGURE 6.20: PDP and ALE plots for the influence of space on rents in
Munich.

bigger the apartment the more expensive it is. In the area with a lot of data
between 0 and 100, the PDP looks more smooth than the ALE which is a bit
shaky. In the area with not that many observations, it is the other way around.
The PDP suddenly breaks down what seems quite unrealistic, while the ALE
has a pretty straight trend. Since the ALE shows a more expected behavior
for the prediction of rents one could tend to state that the ALE outperforms
the PDP. One could think that some unrealistic feature combinations in the
estimation of the PDP caused this strange drop. But a look at the ICE plot
reveals something else.

FIGURE 6.21: ICE, ALE and PDP plots for influence of space on rents in
Munich.

Figure 6.21 additionally shows the ICE curves for this example. Since the only
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other feature used for the fit was ‘rooms’ and in the data set are just flats
with 6 or fewer rooms, there are just 6 graphs. Now one could argue, maybe
the apartments with less than 4 rooms (which are way more in this data set
than those with 4 or more rooms) somehow cause the strange drop for the
PDP. But figure 6.22 shows that almost all rooms have this drop, especially
the apartments with 4 and 5 rooms.

FIGURE 6.22: ICE for rents in Munich zoomed in for the critical area.

The issue here is that rooms don’t have a strong influence on the prediction at
all. In return, the PDP does not get problems with the correlation between the
two features. And the PDP in the iml implementation generates an equidistant
grid on the area with observations for feature ‘wfl’. On the other hand, the ALE
divides this area aiming for equally many observations in each interval. This
results in very small intervals for apartments with less than 109 square meters
of space. But the flats with 109 or more square meters are evaluated in one
interval only. This simply yields to this ALE plot, where it just ignores/skips
this drop. And as one can see this can be dangerous when interpreting the
prediction function. In this special situation, the ALE might get better the
true link between the rent and the size of the apartments but that is not what
one is interested in. The goal is always to interpret the predictor and not the
data.
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This example demonstrated a crucial weakness of the ALE regarding the size
of the intervals, which will be discussed in the next chapter. It also shows that
ICE and PDP might still be worth a look despite their issues with correlated
features and runtime. In general, if one needs to get a deep understanding
of the prediction function it might be clever to use as many interpretation
algorithms as possible. By being aware of their strengths and weaknesses and
combining the results of those algorithms one can get a detailed look at the
influence of each variable which should also be reliable.

6.5 Appendix

6.5.1 Calculation of theoretical 2D ALE example

Features x1, x2, x3 and the prediction function f̂(x1, x2, x3) = x1x2x3 are
given. The features are sampled from the these disrtibutions: X1 ∼ U(a, b),
X2 ∼ N (µ, σ) and X3 | X2, X1 ∼ N (X2, X1).

The theoretical 2D ALE for features x1 and x2 will be calculated.

First is the calculation of uncorrected and uncentered 2nd order effect:

˜̃
ALEf̂ , 1, 2(x1, x2) =

=
∫ x1

z0,1

∫ x2

z0,2

E[f̂ (1, 2)(X1, X2, X3) | X1 = z1, X2 = z2] dz2 dz1

=
∫ x1

z0,1

∫ x2

z0,2

E[X3 | X1 = z1, X2 = z2] dz2 dz1

=
∫ x1

z0,1

∫ x2

z0,2

z2 dz2 dz1

=
∫ x1

z0,1

1
2

(x2
2 − z0, 2) dz1

= 1
2

(x2
2 − z0, 2) (x1 − z0, 1) (6.8)

Next is the calculation of the corrected pure 2nd order effect:



6.5 Appendix 97

ÃLEf̂ , 1, 2(x1, x2) = ˜̃
ALEf̂ , 1, 2(x1, x2)

−
∫ x1

z0, 1

E[
δ
˜̃
ALEf̂ , 1, 2(X1, X2)

δX1
| X1 = z1] dz1

−
∫ x2

z0, 2

E[
δ
˜̃
ALEf̂ , 1, 2(X1, X2)

δX2
| X2 = z2] dz2 (6.9)

The two terms which are correcting for the main effect of the two features will
be calculated seperately:

∫ x1

z0, 1

E[
δ
˜̃
ALEf̂ , 1, 2(X1, X2)

δX1
| X1 = z1] dz1 =

=
∫ x1

z0, 1

E[ 1
2

(X2
2 − z2

0, 2) | X1 = z1] dz1

=
∫ x1

z0, 1

1
2

(µ2 + σ2 − z2
0, 2) dz1

= 1
2

(µ2 + σ2 − z2
0, 2) (x1 − z0, 1) (6.10)

∫ x2

z0, 2

E[
δ
˜̃
ALEf̂ , 1, 2(X1, X2)

δX2
| X2 = z2] dz2 =

=
∫ x2

z0, 2

E[X2(X1 − z0, 1) | X2 = z2] dz2

=
∫ x2

z0, 2

z2(a + b

2
− z0, 1) dz2

= 1
2

(a + b

2
− z0, 1)(x2

2 − z2
0, 2) (6.11)

Combining (6.10) and (6.11) with (6.9) yields:

ÃLEf̂ , 1, 2(x1, x2) = ˜̃
ALEf̂ , 1, 2(x1, x2)− 1

2
(µ2 + σ2 − z2

0, 2) (x1 − z0, 1)

− 1
2

(a + b

2
− z0, 1)(x2

2 − z2
0, 2)

= x2
2 x1 + (x1 − z0,1)(µ2 + σ2)− a + b

2
(x2

2 − z2
0, 2)

(6.12)

The last part is the centering for the mean:
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ALEf̂ , 1, 2(x1, x2) = ÃLEf̂ , 1, 2(x1, x2) − E[ÃLEf̂ , 1, 2(X1, X2)]

= 1
2

(x2
2 x1 + (x1 − z0,1)(µ2 + σ2)− a + b

2
(x2

2 − z2
0, 2)

− E[X2
2 x1 + (X1 − z0,1)(µ2 + σ2)− a + b

2
(X2

2 − z2
0, 2)])

= 1
2

[x2
2 x1 − (x1 − z0,1)(µ2 + σ2)− a + b

2
(x2

2 − z2
0, 2)

− (z0,1(µ2 + σ2) + z2
0, 2

a + b

2
− (µ2 + σ2)a + b

2
)]

= 1
2

[x2
2 x1 − x1(µ2 + σ2)− x2

2
a + b

2
+ (µ2 + σ2)a + b

2
]

(6.13)

This formula was used to calculate the theoretical plot in figure 6.8.
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As mentioned in the former section the choice of intervals and starting value
z0,j have both a certain influence on the estimated ALE - curve. While the
main influence of z0,j is canceled out by centering the ALE, the choice of
intervals stays crucial. Therefore the next section is dedicated to this topic.

7.1 How to choose the number and/or length of the in-
tervals

Before investigating the choice of intervals one should be clear about how far
they influence the estimation. On the one hand for a given interval the ALE
estimation will be linear due to the expected constant effect within this inter-
val. Remember that within each interval the local effect within this interval
was calculated by the mean total difference of the prediction when shifting the
variable of interest from the lower interval boundary to the upper one. This
leads by definition to a constant effect within this interval that results in a
linear function when integrating over the interval.
It seems obvious that the ALE estimation (within a grid interval) can only be
as good as a linear approximation for the “real” and usually unknown predic-
tion function can be. Therefore it is crucial for a good estimation to have small
enough intervals especially in regions where the prediction function is shaky
or far from linear (i.e high second derivatives) with respect to the feature of
interest. On the other hand, to get stable estimations for a grid interval it is
important to have a sufficiently high number of data points within the interval.
This means that the intervals shouldn’t become too small so that they would
contain only a few data points. Note that this is only true if the other features
have an influence on the local effect of the prediction function. If they don’t,
any data point within the grid interval would lead to the same predictions

99
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at the interval boundaries. That’s why there is a natural trade-off between a
small interval width and the number of the contained data points.

7.1.1 State of the art

So the question is how to optimally choose the grid intervals. Should they all
be of the same width containing a different number of data points? Should
they all contain the same or at least a similar number of data points, accepting
different interval sizes. Or could there even be a better solution in between
the two concepts?
Within the iml-package which is one of two implementations of ALE - plots
the chosen method is the second one. The quantiles of the distribution of
the feature are used as the grid that defines the intervals. That means the
length of the intervals depends on the chosen grid size and the given feature
distribution.

In the following section, some examples with artificial data sets are provided,
that should help to get a better feeling for the different deterministic factors
that influence the goodness of the ALE estimation. Within the whole chapter,
the ALE estimation is conducted via the iml-package implementation.

7.1.2 ALE Approximations

In the following section, we only consider two-dimensional data sets, of con-
tinuous features x1 and x2 with a certain correlation. Furthermore, we use
some exemplary prediction functions which are differentiable such that we
can calculate the theoretical ALE (see section 5.2) and use it to evaluate the
goodness of the estimated ALE - curve. As we want to isolate some of the
above mentioned influential factors, we start with some easy examples adding
step by step more complexity to the problem.

7.1.3 Example 1: additive feature effects

In the first example we assume a uniform distribution for the feature x1 on
the interval [0, 10], i.e. X1 ∼ U(0, 10). Furthermore we assume the conditional
distribution of the feature x2 given x1 to be also uniform on the interval
[x1 − 3, x1 + 3], i.e. X2|X1 = x1 ∼ U(x1 − 3, x1 + 3). Sampling 100 data
points from this distribution yields the first dataset (see Figure 7.1) .

Why we only made assumptions about the conditional distributon of X2 and
not on the joint distribution of (X1, X2) gets clearer once we take a look on
the calculation of the theoratical ALE. Therefore we first asume the prediction
function f̂1(x1, x2) = (x1−4)(x1−5)(x1−6)+x3

2. Due to the special structure
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FIGURE 7.1: The correlation is clearly recognizable.

of f1 the partial derivative with respect to x1 is a polynomial of degree 2 which
doesn’t depend on x2, concretley f̂1(x1, x2) = 3x2

1−30x1 +74 (Remember the
unusual notation for the j-th partial derivative as f j). Now we can calculate
the theoretical (uncentered) ALE:

(1) ÃLEf̂ ,1(x) =
∫ x

z0,1

EX2|X1=Z1 [f̂1(x1, x2)] dz =

(2)
∫ x

z0,1

∫
pX2|X1=z(x2)f̂1(z, x2) dx2 dz =

(3)
∫ x

z0,1

f̂1(z, x2)
∫

pX2|X1=z(x2) dx2 dz =

(4)
∫ x

z0,1

f̂1(z, x2) dz =

(5)
∫ x

z0,1

3z2 − 30z + 74 dz =

(6) [z3 − 15z2 + 74z + c]xz0,1
=

(7) x3 − 15x2 + 74x− z3
0,1 + 15z2

0,1 − 74z0,1

Here pX2|X1=z(x2) notates the conditional density of X2|X1 for x1 = z.
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Step (3) makes use of the fact that f̂1(x1, x2) doesn’t depend on x2 and in
step (4) the integral over the density gives 1. To get the centered ALE we
have to calculate:

(8) ALEf̂ ,1(x) = ÃLEf̂ ,1(x)− E[ÃLEf̂ ,1(X1)] =

(9) x3 − 15x2 + 74x− z3
0,1 + 15z2

0,1 − 74z0,1 −

E[X3
1 − 15X2

1 + 74X1 − z3
0,1 + 15z2

0,1 − 74z0,1] =

(10) x3 − 15x2 + 74x− E[X3
1 − 15X2

1 + 74X1] =

(11) x3 − 15x2 + 74x− E[X3
1 ] + 15E[X2

1 ]− 74E[X1] =

(12) x3 − 15x2 + 74x− 250 + 15100
3

)− 74 ∗ 5 =

(13) x3 − 15x2 + 74x− 120 .

In Step (12) the formula for the kth - moment of the uniform distribution
which is given by mk = 1

k+1
∑k

i=0 aibk−i was used. Knowing the theoretical
ALE-curve we can have a look at the behavior of the estimated ALE for
different grid sizes. Figure 7.2 shows the theoretical ALE and the estimations
for grid sizes 2, 3, 5, and 10.

While the estimated ALE with grid size 2 only shows a linear effect over
the whole data range, the estimated ALE with grid size 3 already gives a
good approximation to the theoretical ALE in the second interval, where the
theoretical ALE has a low curvature. With grid size 5 only the outer intervals
show clearly recognizable deviations to the theoretical ALE and with grid size
10 the approximation looks quite reasonable. As the partial derivative of the
prediction function was independent of x2, there was no risk of getting bad
estimations due to too few data points within an interval. That’s why we take
a look at a second example.

7.1.4 Example 2: multiplicative feature effects

Now we asume the prediction function f̂2(x1, x2) = (x1−4)(x1−5)(x1−6)x3
2.

In this case the partial derivative with respect to x1 is a polynomial of degree
2 which clearly depends on x2, concretley f̂1(x1, x2) = (3x2

1 − 30x1 + 74)x3
2.

The new structure of the partial derivative yields a new calculation for the
theoretical uncentered ALE:
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FIGURE 7.2: Theoretical vs estimated ALE

(1) ÃLEf̂ ,1(x) =
∫ x

z0,1

EX2|X1=Z1 [f̂1(x1, x2)] dz =

(2)
∫ x

z0,1

∫
pX2|X1=z(x2)f̂1(z, x2) dx2 dz =

(3)
∫ x

z0,1

∫
pX2|X1=z(x2)(3z2 − 30z + 74)x3

2 dx2 dz =

(4)
∫ x

z0,1

(3z2 − 30z + 74)
∫

pX2|X1=z(x2)x3
2 dx2 dz =

(5)
∫ x

z0,1

(3z2 − 30z + 74) EX2|X1=z[X3
2 ] dz =

(6)
∫ x

z0,1

(3z2 − 30z + 74)(1
4

k=3∑
i=0

(z − 3)i(z + 3)k−i) dz =

(7)
∫ x

z0,1

(3z2 − 30z + 74)(z3 + 9z) dz =

(8)
∫ x

z0,1

3z5 − 30z4 + 101z3 − 270z2 + 666z dz =

(9) [3
6

z6 − 30
5

z5 + 101
4

z4 − 90z3 + 333z2]xz0,1

Centering yields

(10) ALEf̂ ,1(x) = 3
6

x6 − 30
5

x5 + 101
4

x4 − 90x3 + 333x2−
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E[ 3
6

X6
1 −

30
5

X5
1 + 101

4
X4

1 − 90X3
1 + 333X2

1 ]

Again using the formula for the moments of a uniform distribution we finally
obtain

(11) ALEf̂ ,1(x) = 3
6

x6 − 30
5

x5 + 101
4

x4 − 90x3 + 333x2−

(3
6

106

7
− 30

5
105

6
+ 101

4
104

5
− 90103

4
+ 333102

3
) =

(12) ALEf̂ ,1(x) = 3
6

x6 − 30
5

x5 + 101
4

x4 − 90x3 + 333x2 − 10528.57 .

Figure 7.3 shows the behavior of the ALE with different grid sizes in this
setting.

FIGURE 7.3: Theoretical vs estimated ALE for different grid sizes

While for grid size 5 and bigger the approximations for the region 0 to 7.5
seem quite reasonable it looks like for the region 7.5 to 10 the approximation
is best for grid size 10 and gets worse with higher grid sizes. Zooming in for
grid sizes 10 and 25 reveals this effect more clearly (Figure 7.4).
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FIGURE 7.4: ALE-plots for grid sizes 10 and 25 (zoomed in)

Where does this come from? The structure of the prediction function leads to
an increasing effect of x2 on the total differences calculated for the series of
intervals. Due to insufficient many datapoints within the intervals, there is a
high probability of under or overestimating this effect. With grid size 25 only
4 data points are used for the estimation. Obviously, it’s quite probable that
the x2 values of those data points are clearly above average in some intervals.
If that happens for high x1 - which implies due to the correlation structure
high x2 - the total difference will be clearly overestimated as the delta in x1
is multiplied by the average x3

2. As the effect on the intervals is accumulated,
the error persists for the whole ALE-curve from that point on.

To get a deeper insight into this dynamic, for the given context ALE - curves
for 50 sampled datasets were estimated with grid sizes 10, 25, and 50. For each
grid size at each value of x1 the minimal and the maximal ALE estimation
was taken as the boundary of the range of estimations. Figure 7.5 shows this
range exemplarily for gride size 10.

The vertical lines indicate the absolute delta of the maximal and minimal ALE
estimation at x. Plotting these deltas for the gride sizes 10, 25, and 50 yields
Figure 7.6.
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FIGURE 7.5: Maximum range of estimation

It is clearly recognizable that on the one hand for higher x the variance in the
ALE estimation increases for all grid sizes. The expected higher variance of the
estimations with higher grid sizes is in particular revealed in the region from
x1 = 7 to x1 = 10, because the estimation is quite sensible to the absolute
value of x2, which also increases with x1.

As the theoretical ALE in this example was quite smooth, grid size 10 gave
reasonable estimations. The following example shows problems that occur
once the prediction function is quite shaky especially in regions with only a
few observations.

7.1.5 Example 3: Unbalanced datasets and shaky prediction
functions

In the 3rd example we assume X1 ∼ N(10, 3) as well as
X2|X1 = x1 ∼ U(x1 − 3, x1 + 3).

For this example the sample size was 1000 (see figure 7.7). As expected the
correlation is clearly recognizable. This time only a few data points lay in the
outer regions, i.e. between 0 and 2.5 and 17.5 and 20, while there is a high
concentration of data around the mean at 10.
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FIGURE 7.6: Delta of maximal and minimal estimated ALE for different
grid sizes

Furthermore we look at the prediction function f̂3(x1, x2) = sin(10x1) x2.
The calculation of the theoretical uncentered ALE (as before) yields

ÃLEf̂ ,1(x) = x sin(x) + 1
10 cos(10x). For centering the expectation of

the uncentered ALE, i.e. E[ÃLEf̂ ,1(X1)], was estimated by Monte-Carlo inte-
gration to be almost zero. As well as the prediction function, the theoretical
ALE has lots of extreme points. This leads to some troubles, especially for low
grid sizes. Figure 7.8 shows the estimated and the theoretical ALE for three
different grid sizes.

For grid size 20 the local behavior of the theoretical ALE is absolutely not
recognizable. Only one peak left of the mean was estimated reasonable, which
is due to the high data intensity in this region. For the rest of the plot, the
grid intervals contain two or more peaks. Within each of them, the ALE is
estimated linear and therefore the true effect smoothed out.
Increasing the grid size to 100 one nicely sees how the approximation becomes
quite reasonable in the inner region, i.e. between 6 and 14, while in the outer
region, where the intervals still are too long the ALE continues to be estimated
wrong. The more one increases the grid size the wider the inner region of good
estimation becomes. Anyway still at grid size 1000 which implies only one data
point per interval, the estimations near the boundaries stay bad, as there are
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FIGURE 7.7: A mixture of normal and uniform distributed features

simply not sufficient observations to show the fine structure of the prediction
function. As this was a constructed example, the latter shouldn’t be overrated,
as in real data situations it is quite improbable that a learner results in a that
granular prediction function within regions with such few data points. While
in figure 7.8 apparently both grid sizes (100 and 1000) result in equally good
ALE estimations in the inner region, zooming in reveals that this isn’t the
case.

Figure 7.9 shows a very small part around the mean. As expected the estima-
tions for grid size 100 are a little closer to the theoretical ALE as again the
true effect of the second feature, which still affects the prediction, is better
estimated within each interval (10 observations vs 1 observation).

At the end of this section, we have seen a good example of the natural trade-off
between small intervals on the one hand and sufficient data to get a good and
stable estimation on the other hand. The optimal choice of the number /size
of intervals thereby highly depends on the given prediction function and the
data. This can be taken as the main message of the section. The next section
shall provide the reader with an understanding of how far additional problems
can occur in the context of piece-wise constant models.
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FIGURE 7.8: Theoretical vs. estimated ALE

7.2 Problems with piece-wise constant models

Piece-wise constant models such as for example decision trees and random
forests don’t have continuous prediction functions, which implies they are not
differentiable. Thus the concept of theoretical ALE doesn’t make any sense
in this context as the partial derivative doesn’t exist. Still, it is possible to
estimate the ALE as the “jump” will result in a more or less steep linear part,
depending on the interval size of the interval containing the step. It is intuitive
that the goodness of the estimation highly depends on if one manages to place
the intervals quite narrow around the steps. As the following examples will
show, problems can occur due to “wrong” interval sizes or unluckily distributed
data in the region of the steps.
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FIGURE 7.9: Zooming in reveals the bias for grid size 1000

7.2.1 Example 4: Simple step function

Throughout this section we assume X1 to be uniformily distributed on the
interval [0, 10], i.e. X1 ∼ U(0, 10) as well as X2 given X1 uniformily on the
interval [max(x1 − 3, 0), min(x1 + 3, 10]],
i.e. X2|X1 = x1 ∼ U(max(x1 − 3, 0), min(x1 + 3, 10)). That means all the
data is distributed within the 10 times 10 square. In the first example, we
take a look at a simple prediction function to get a good understanding of
the basic problem with piece-wise constant models. We assume a prediction
function that independently of x2 predicts 0, except if x1 falls into a certain
small interval around 5. In this case, it predicts 10. Concretely f(x1, x2) =
1[4.9, 5.1](x1) ∗ 10.

Figure 7.10 shows a sampled data set of 100 data points and a sketch of the
prediction function.

As mentioned above a good estimation of the ALE would result in quite steep
linear parts, one around 4.9 and a second inverse one around 5.1. The problem
now is that the ALE estimation won’t catch those jumps as long as both
jumps lay within the same interval. The reason is that all the points within
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FIGURE 7.10: Prediction Function 1

this interval would be moved to the interval boundaries which lay outside the
area, where the prediction function predicts 10. This leads to an estimation
of the local effect as zero. Figure 7.11 shows the estimates for different grid
sizes 20, 30, 50 and 100.

As expected the ALE estimations with grid size 20 and 30 are not sensitive to
the effect. Increasing the grid size ensures that some interval boundaries fall
into the interval [4.9, 5.1] which exposes the step of the prediction function.
Having a second look at the data situation in this example, one notes that
only 2 data points fall to the interval [4.9, 5.1]. Grid size 50 implies for 100
datapoints 2 data points per interval. That means that we even got lucky in
this example that the 2 data points didn’t fall into the same grid interval.
Otherwise, the effect would have remained hidden even at grid size 50. The
following example shows how unluckily distributed data points can lead to
bad ALE estimations.
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FIGURE 7.11: The behavior of ALE estimation with increasing grid size

7.2.2 Example 5: Two-dimensional step functions and unluck-
ily distributed data

We assume the same data distribution as in the former example. Further-
more well take a look on two prediciton functions, one independent of x2
defined as f(x1, x2) = 1 + 1[0, 10

3 ](x1) + 1[ 10
3 , 20

3 ](x1). The second also de-
pends on x2 and is defined as f(x1, x2) = 3 (1[ 10

3 , 20
3 ](x1) ∗ 1[ 10

3 , 20
3 ](x2)) +

2 (1[0, 10
3 ](x1) ∗ (1[0, 10

3 ](x2) + 1[ 20
3 , 10](x2)) + (1[ 20

3 , 10](x1) ∗ (1[0, 10
3 ](x2) +

1[ 20
3 , 10](x2)) . Both on the first sight a little unhandy become quite easy to

understand looking at the sketches below (see figures 7.12 and 7.13).

In the following, the ALE was estimated for increasing grid sizes. In figure
7.14 starting with grid size 5 on the left side we see the behavior of the first
prediction function on the right side for the second one.

For grid size 5 both estimations recognize the step but estimate it relatively
flat, which is not very surprising as the interval length should be around 2.
For the first prediction function, we see a total increase within the second
grid interval of 1 and a total decrease in the fourth one of 2. This reflects
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FIGURE 7.12: Prediction function 2

FIGURE 7.13: Prediction function 3
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FIGURE 7.14: Behaviour of ALE estimations for prediction function 2 (left-
side) and 3 (rightside)

the behavior of the prediction function, so the only problem is the low grid
size. For the second prediction functions, the total changes are estimated to
be much lower. This is due to the areas of 0 prediction which clearly influence
the mean change in prediction, as some data points change from 0 to 3, but
others from 2 to 0 within the second grid interval, as well as from 3 to 0 and
from 0 to 1 within the fourth grid interval. So the absolute effect of x1 is
relativized by the influence of x2, which is intended by the concept of ALE.
At grid size 10 the estimations for both prediction functions look quite similar.
The steps become steeper as the grid intervals shrink to half their length. The
estimated change in prediction for the second prediction function now is even
bigger than for the first one. Due to the correlation, now more (relatively
more) datapoints are shifted from prediction 0 to 3 and 3 to 0 respectively,
which leads to the slightly higher estimation of the effect.

Increasing the grid size first to 20 and then to 50 reveals the whole danger of
this situation. While prediction function 2 seems to be estimated quite stable
(the absolute changes stay to be 1 and -2, while the steps become steeper and
steeper), the estimation for prediction function 3 changes its behavior. At grid
size 20 the left step grows to be 3, at grid size 50 the second step to be -3.
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FIGURE 7.15: Behaviour of ALE estimations for prediction function 2 (left-
side) and 3 (rightside)

Centering leads to quite radical upwards and downwards shifts of the whole
plot. To understand this we’ll have a look at the data points that are used to
estimate the steps.

For grid size 20, 5 data points are used to estimate the total change in predic-
tion. As figure 7.16 shows, coincidentally 5 data points with x2-values between
10
3 and 20

3 fall into the step interval. This is why the mean difference of the
prediction is estimated to be 3.

Analogously for grid size 50, only two data points are used. As again both fall
into the same x2 - range, the estimation of the mean change of prediction in
this grid interval is -3 now. Looking at figure 7.17 it becomes clear that only a
little higher x2 value of the upper data point would have lead to an estimation
of -1 instead. This shows how sensitive the ALE estimation in the context of
piece-wise constant models is. While there could be arguments for the height
of the steps in the first 3 estimations, the last estimation clearly displays a
false image. Here the interpretation would be that there is no main effect of
feature 1 changing from less than 10

3 to higher than 20
3 , which is obviously

wrong.
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FIGURE 7.16: Points that are used to estimate the step at grid size 20

FIGURE 7.17: Points that are used to estimate the step at grid size 50
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7.2.3 Outlook

We have seen that ALE estimations in the context of piece-wise constant
models are even more critical due to sharp changes in the prediction at the
steps. On the one hand, one needs the intervals to be within the steps to
recognize them and at the same time quite narrow around them to catch the
steepness of the step. Notice that in real-world examples one cannot know if
there is a step or if the flat linear approximation is true. On the other hand,
the data distribution around the steps has a strong influence on the ALE
which leads to highly unstable estimations. In this context different methods
of interval selection, maybe even adaptive, data-driven methods should be
investigated.

7.3 Categorical Features

So far we were only interested in ALE-estimations for a numerical feature of
interest. In real data situations, categorical features often play an important
role. That’s why it would be nice to expand the concept of ALE so that it
can also be applied to categorical features. In the original paper by (Apley,
2016) this concept was not described but still, the first method implemented.
(Molnar, 2019) adapted the method for the iml-package. The following section
briefly describes the implemented method as well as the interpretation of ALE-
plots for categorical features. It also shows some specific problems.

7.3.1 Ordering the features

One of the biggest and crucial differences of categorical and numerical features
in the context of ALE is that categorical features usually don’t have a natural
order. As the concept of ALE is based on accumulating the local effects in
a certain direction, an order of the feature is indispensable. Sometimes the
categorical feature is an ordinal feature that comes with a natural order. In
this case, the natural order should be used. If there is no natural order, the
first essential step to calculate the ALE is to order the feature. Therefore
different methods are conceivable. The iml-package implementation tries to
order the feature with respect to the similarity of the other features. As we’ll
see in the next subsection for the estimation of the ALE the data points of a
category will be shifted to the neighbor categories (neighbor categories only
exist if the feature is ordered). To stay with the original idea of ALE and try
to avoid extrapolation, ordering the feature with respect to the similarity of
the other features seems reasonable. Within the iml-package, in a first step,
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the distance of each pair of categories (of the feature of interest) is calculated
with respect to every other feature. This results in c (c−1) (f−1)

2 distances,
where f is the total number of features while c is the number of categories of
the feature of interest. To calculate these distances for numerical features the
Kolmogorov-Smirnov distance is used. It is defined as the maximal absolute
difference of two distribution functions, which are estimated from the data
within the two compared categories. For categorical features, one simply sums
up the absolute differences of the relative frequencies of the categories. Finally,
the distance between the two categories is calculated as the sum of their
distances with respect to all features. Once the distance between all categories
is calculated, multidimensional scaling is used to reduce the distance matrix
to a one-dimensional distance measure (Molnar, 2019).

7.3.2 Estimation of the ALE

Once the features are ordered (no matter if as proposed by (Apley, 2016) and
(Molnar, 2019) or in a different order) it’s still not clear how to estimate the
ALE. The partitioning of the axis into intervals doesn’t make sense anymore
as the categories themselves kind of partition the range of the feature in a
natural manner. But there are no “values” in-between them and at the same
time, the data points fall exactly on them. A continuous ALE wouldn’t make
sense at all, as there are no possibilities of changing the feature value if not
from one category to another category. That’s why the idea is to estimate
exactly these expected changes in prediction if one category is changed to its
neighbor category. Therefore for each pair of neighbor categories, the expected
change is estimated by shifting the data from the lower to the upper category
and vice verse and calculating the mean difference of the prediction. This mean
difference is taken to be the expected effect between these two categories. How
these changes are accumulated and how the ALE-plot looks, becomes clearer
once looking at an example.

7.3.3 Example of ALE with categorical feature

For the following example the Munich rent dataset, which consists of a sample
of 2053 apartments from the data collected for the preparation of the Munich
rent index 2003, was used. For our purposes we restricted the data to the
variables rentm (Net rent per square meter in EUR (numeric)), size (Floor
area in square meters (numeric)), rooms (Number of rooms (numeric)), year
(Year of construction (numeric)) and area (Urban district where the apartment
is located (Factor with 25 levels)). In the first step, a model (Support Vector
Machine for Regression) was fitted to predict the variable rentm. Now the
ALE for the feature area, which is a categorical variable, was estimated with
the iml-package. Figure 7.18 shows the result.
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FIGURE 7.18: ALE for the variable area (categorical)

As described previously in a first step the categories (each number stands for
one district) were ordered on basis of their similarity w.r.t. the other features.
Notice that the first bar at category one only reflects the centering. The un-
centered ALE wouldn’t show an effect on this category as it is kind of the
starting point. Now the mean difference of prediction between category 1 and
8 was calculated. Therefore datapoints from category 1 were shifted to cate-
gory 8, letting the rest of the features untouched and vice versa. The total
effect was estimated as the mean difference in prediction for these data points.
It is shown as the delta of the category 1 bar and the category 8 bar. Without
centering it would be seen at the category 8 bar. Now the same difference
is estimated for the change from category 8 to category 2 and is shown as
the delta of their bars. This procedure continues until finally the change from
category 23 to category 22 results in the last delta between their bars.

7.3.4 Interpretation

The interpretation of the ALE-plot for categorical features is unfortunately
quite difficult. The deltas between two adjacent bars surely can be interpreted
as the change between the corresponding categories. Once looking at deltas of
two categories with one or more other categories in between, this changes. The
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delta is not any longer the change of prediction between the two categories
but the estimated change of prediction for shifting through all the categories
in between in exactly the given order. The reason is that the estimated delta
is not path independent. For example, the delta between categories 1 and 2 in
the example above was calculated using data points of category 1, 8, and 2. If
they were direct neighbors, the data points of category 8 wouldn’t be involved
in the estimation at all. This problem clearly grows the further two categories
are ordered. Having this in mind the absolute values of the bars shouldn’t
be interpreted at all. Furthermore, this is another argument for ordering the
categories in a reasonable manner, while it stays arguable what “reasonable”
in this context means.

7.3.5 Changes of the ALE due to different orders

The last two graphics show how much the ALE for categorical features depends
on the underlying order of the features. For the first one, the same learner was
fitted on a restricted feature space containing only the variables year and area.

FIGURE 7.19: ALE-plot of the full model vs ALE-plot of the restricted
model

As the comparison of the ALE-plots of figure 7.19 shows, the similarity-based
order changes as it is only calculated on basis of the variable year (instead of
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size, room, year). As the underlying model is now a different one, changes in
the ALE are not surprising. Still, the comparison is quite difficult due to the
new order.

The second ALE-plot of figure 7.20 is again based on the full model. This time
the area was taken as an ordered factor, such that the similarity-based order
wasn’t calculated. The resulting ALE takes the district enumeration as order
and proceeds accordingly.

FIGURE 7.20: Two ALE-plots for different orders of the category area

Although the underlying model is the same, the ALE changes completely. Not
only the order of the features changed but also the delta between some not
adjacent categories. For example, we see a decrease from category 1 to 12
instead of an increase, as in the ALE-plot with similarity-based order. This
underlines how careful one should be when interpreting ALE-plots for cate-
gorical features.

7.3.6 Conclusion

We have seen how sensitive the ALE (for categorical features) is for different or-
ders of the category. Due to the lack of theoretical foundations concerning the
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implemented order method, further investigations are highly recommended.
The interpretation of the ALE should be done quite carefully.
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As in previous chapters already discussed, there exist a variety of methods
that enable a better understanding of the relationship between features and
the outcome variables, especially for complex machine learning models. For
instance, Partial Dependence (PD) plots visualize the feature effects on a
global, aggregated level, whereas Individual Conditional Expectation (ICE)
plots unravel the average feature effect by analyzing individual observations.
The latter allows to detect, if existing, any heterogeneous relationship. Yet,
these methods do not provide any insights to what extent a feature contributes
to the predictive power of a model - in the following defined as Feature Im-
portance. This perspective becomes interesting when recalling that black box
machine learning models aim for predictive accuracy rather than for inference.
Hence, it is persuasive to also establish agnostic-methods that focus on the
performance dimension. In the following, the two most common approaches,
Permutation Feature Importance (PFI) by Breiman (2001a) and Leave-One-
Covariate-Out (LOCO) by Lei et al. (2018), for calculating and visualizing
a Feature Importance metric, are introduced. At this point, it is worth to
clarify that the concepts of feature effects and Feature Importance can by no
means be ranked. Instead, they should be considered as mutual complements
that enable interpretability from different angles. After introducing the con-
cepts of PFI and LOCO, a brief discussion of their interpretability but also
its non-negligible limitations will follow.

8.1 Permutation Feature Importance (PFI)

The concept of Permutation Feature Importance was first introduced by
Breiman (2001a) and applied on a random forest model. The main princi-
ple is rather straightforward and easily implemented. The idea is as follows:
When permuting the values of feature j, its explanatory power mitigates, as
it breaks the association to the outcome variable y. Therefore, if the model

123
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relied on the feature j, the prediction error e = L(y, f(X)) of the model f
should increase when predicting with the “permuted feature” dataset Xperm

instead of with the “initial feature” dataset X. The importance of feature j is
then evaluated by the increase of the prediction error which can be either de-
termined by taking the difference eperm−eorig or taking the ratio eperm/eorig.
Note, taking the ratio can be favorable when comparing the result across dif-
ferent models. A feature is considered less important, if the increase in the
prediction error was comparably small and the opposite if the increase was
large. Thereby, it is important to note that when calculating the prediction
error based on the permuted features there is no need to retrain the model
f . This property constitutes computational advantages, especially in case of
complex models and large feature spaces. Below, a respective PFI algorithm
based on Fisher et al. (2018) is outlined. Note however, that their original al-
gorithm has a slightly different specification and was adjusted here for general
purposes.

The Permutation Feature Importance algorithm based on Fisher,
Rudin, and Dominici (2018):

Input: Trained model f , feature matrix X, target vector y, error measure
L(y, f(X))

1. Estimate the original model error eorig = L(y, f(X)) (e.g. mean
squared error)

2. For each feature j = 1, ..., p do:
•Generate feature matrix Xperm by permuting feature j in the

data X
•Estimate error eperm = L(y, f(Xperm)) based on the predic-

tions of the permuted data
•Calculate permutation feature importance PFIj =

eperm/eorig. Alternatively, the difference can be used:
PFIj = eperm − eorig

3. Sort features by descending FI.

In Figure 8.1 it is illustrated, by a fictional example, how the permutation
algorithm alters the original dataset. For each of the p features, the respec-
tively permuted dataset is then used to first predict the outcomes and then
calculate the prediction error.

To show, how the PFI for all features of a model can be visualized and thereby
more conveniently compared, the PFI algorithm with a random forest model
is applied on the dataset “Boston” (see Figure 8.2), which is available in R
via the MASS package. To predict the house price, seven variables are included,
whereby as the results show, the PFI varies substantially across the variables.
In this case, the features Status of Population and Rooms should be inter-
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FIGURE 8.1: Example for Permutation Feature Importance. The tables il-
lustrate the second step of the algorithm of PFI, in particular the permutation
of the features x1 and xp. As shown, the respective columns in dark grey are
the ones which were shuffled. This breaks the association between the feature
of interest and the target value. Based on the formula underneath the tables,
the PFI is calculated.

preted as the most important ones for the model, whereas Blacks is considered
as less important.

8.2 Leave-One-Covariate-Out (LOCO)

The concept of Leave-One-Covariate-Out (LOCO) follows the same objective
as PFI, to gain insights on the importance of a specific feature for the pre-
diction performance of a model. Although applications of LOCO exist, where
comparable to PFI, the initial values of feature j are replaced by its mean,
median or zero (see Hall et al., 2017), and hence, circumvent the disadvantage
of re-training the model f , the common approach follows the idea to simply
leave the respective feature out. The overall prediction error of the re-trained
model f−j is then compared to the prediction error resulted from the baseline
model. However, re-training the model results in higher computational costs,
which becomes more severe with an increasing feature space. Typically, one
is interested in assessing the Feature Importance within a fixed model f . Ap-
plying LOCO might raise plausible concerns, as it compares the performance
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FIGURE 8.2: Visualization of Permutation Feature Importance with a ran-
dom forest applied on Boston dataset. The depicted points correspond to the
median PFI over all shuffling iterations of one feature and the boundaries of
the bands illustrate the 0.05- and 0.95-quantiles, respectively (see iml pack-
age).

of a fixed model with the performance of a model f−j which is merely fitted
with a subset of the data (see Molnar, 2019). The pseudo-code shown below,
illustrates the algorithm for the common case where the feature is left out (see
Lei et al., 2018).

The Leave-One-Covariate-Out algorithm based on Lei et al. (2018):

Input: Trained model f , feature matrix X, target vector y, error measure
L(y, f(X))

1. Estimate the original model error eorig = L(y, f(X)) (e.g. mean
squared error)

2. For each feature j = 1, ..., p do:
•Generate feature matrix X−j by removing feature j in the data

X
•Refit model f−j with data X−j

•Estimate error e−j = L(y, f−j(X−j)) based on the predictions
of the reduced data

•Calculate LOCO Feature Importance FIj = e−j/eorig. Alter-
natively, the difference can be used: FIj = e−j − eorig

3. Sort features by descending FI.

In Figure 8.3 it is shown, how the LOCO algorithm alters the original dataset,
whereby it always differs, depending on the respective feature that is left out.
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Note, that the qualitative and quantitative interpretations correspond to the
ones from the PFI method. So do the visualization tools and therefore at this
point it is refrained from providing the reader with an additional real data
example.

FIGURE 8.3: Example for Leave-One-Covariate-Out Feature Importance.
The tables illustrate the second step of the algorithm of LOCO in particular
the drop of x1 and xp. The dark grey columns of the original dataset mark the
variables that will be dropped and therefore ignored when refitting the model.
This breaks the relationship between the feature of interest and the target
value. Based on the formula underneath the tables, the Feature Importance
of LOCO is calculated.

8.3 Interpretability of Feature Importance and its Limi-
tations

After both methods are presented, it will be now questioned to what extent
these agnostic-methods can contribute to a more comprehensive interpretabil-
ity of machine learning models. Reflecting upon these limitations will consti-
tute the main focus in the following chapters. Conveniently, both methods
are highly adaptable on whether using classification or regression models, as
they are non-rigid towards the prediction error metric (e.g. Accuracy, Preci-
sion, Recall, AUC, Average Log Loss, Mean Absolute Error, Mean Squared
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Error etc.). This allows to assess Feature Importance based on different perfor-
mance measures. Besides, the interpretation can be conducted on a high-level,
as both concepts do consider neither the shape of the relationship between the
feature and outcome variable nor the direction of the feature effect. However,
as illustrated in Figure 8.2, PFI and LOCO only return for each feature a
single number and thereby neglect possible variations between subgroups in
the data. Chapter 10 will focus on how this limitation can be, at least for
PFI, circumvented and introduces the concepts of Partial Importance (PI)
and Individual Conditional Importance (ICI) which both avail themselves on
the conceptual ideas of PD and ICE (see Casalicchio et al., 2018). Besides,
two general limitations appear when some features in the feature space are
correlated. First, correlation makes an isolated analysis of the explanatory
power of a feature complicated which results in an erroneous ranking in Fea-
ture Importance and hence, in incorrect conclusions. Second, if correlation
exists and only in case of applying the PFI method, permuting a feature can
result in unrealistic data instances so that the model performance is evaluated
based on data which is never observed in reality. This makes comparisons of
prediction errors complicated and therefore it should always be checked for
this problem, if applying the PFI method. Chapter 9 will focus on this limi-
tations by comparing the performance of PFI and LOCO for different models
and different levels of correlation in the data. Beyond these limitations, it is
evident to also question whether these agnostic-methods should be computed
on training or test data. As answering that depends highly on the research
question and data, it is refrained from going into more detail at this point but
will be examined and further discussed in chapter 11.
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The method of Feature Importance is a powerful tool in gaining insights into
black box models under the assumption that there is no correlation between
features of the given data set. However, this fundamental assumption can often
be rejected in reality. As mentioned in chapter 3, PDPs may suffer in their
interpretability, if this assumption is violated. Not only the interpretability of
PDPs can be affected, but also the interpretability of Feature Importance can
strongly depend on the correlations between the input features. In the case
of correlated features in the data, which are very likely to occur in reality,
the results of the Feature Importance method do not reflect the individual
true Feature Importance anymore. This can lead to a misleading importance
ranking of the features and hence to incorrect interpretations of a feature’s
relevance in a model.

There are two main issues when it comes to correlated features, which will
be illustrated in the following two examples. The first and most crucial issue
is the misleading ranking of correlated features. Adding a correlated feature
to the data set can lead to a decrease in Feature Importance. Imagine you
want to predict the risk of a heart attack by looking at the weight of a per-
son had yesterday as well as other uncorrelated features. For instance, you
choose a random forest model and calculate the corresponding PFI. It is well
known that overweight can have a significant influence on the likelihood of
heart attacks. Thus, the PFI indicates that weight is the most important fea-
ture. What happens if you also add the weight of the person of today which
is highly correlated to yesterday’s weight of a person? Usually, one big ad-
vantage of a random forest model is the application and predictive accuracy
of high dimensional data sets (Strobl et al., 2008). This also holds for cases
of correlated features or interaction effects. Hence, adding a new component
should cause no issues. Yet, some effects of the Feature Importance can make
an interpretation more difficult. This is due to the fact that the PFI can now
split between both features. During the training of the random forest some
of the decision trees will choose the weight today, the weight yesterday, both
or none of these as a split point. Eventually, both features will be selected
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equally, because they are equally beneficial for the performance of the model.
(Molnar, 2019)

The second issue arises only when the PFI is conducted. During the shuffling
step of a feature not only the association to the target variable gets broken,
but also the association with the correlated features. So in case the features
are correlated, unrealistic data points may occur. These new data points range
from unlikely all the way up to completely impossible. The central question
then becomes: Can we still trust the informative value of the PFI, if it is calcu-
lated with data instances that are not observed in reality and therefore biased
(Molnar, 2019)? Figure 9.1 illustrates an example with a possible outcome of
unrealistic data instances.

FIGURE 9.1: The two tables showing a subset of the bike sharing data
set we already know from previous chapters. The one on top shows the first
six rows of the original data set. The table below shows the first six rows of
the data set where the feature ‘weekday‘ is shuffled. As you can see, some of
the new data points appear to make no sense. For example, in observation 1
Wednesday is claimed to be a no working day.

In this chapter, we want to shed light on some issues of correlated features with
respect to Feature Importance and present possible reasons for the outcomes.
Our purpose is not to list all possible effects, as this would go beyond the
scope of this chapter. Rather than that we would like to increase the reader’s
awareness of the problem itself, such that mistakes can be avoided in the
future.
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9.1 Effect on Feature Importance by Adding Correlated
Features

A major part of this chapter will pay attention to the problem of interpreting
Feature Importance when adding or observing correlated features in a given
data set. Our focus lies on the behavior of Permutation Feature Importance
by Breiman (2001a) as well as of the LOCO Feature Importance by Lei et al.
(2018), which have been previously introduced. There will be a comparison of
these measures applied on different learners namely the random forest, support
vector machine (SVM) and linear model. Each of them will be trained on data
sets with different correlation intensities between the features. The random
forest and the SVM in this context are black box models (hard to interpret),
whereas the linear model is a white box model (easy to interpret). These
algorithms should show different behaviors. First, we have a look at simulated
data sets and later on there is an application to a real data set Boston.

9.1.1 Simulation

A good way to visualize the effects of correlated features on the Feature Im-
portance measures is to simulate some data with the desired dependencies of
the features. This allows us to show the effects on the PFI and LOCO Feature
Importance more precisely than looking on a real data set where additional
dependencies between each feature exist and may falsify the results. To filter
out the real effect, it is necessary to hold the influence of other features as
small as possible to prevent misinterpretations. For the complete R Code of
these simulations please refer to the R file attached to this chapter. Our simu-
lation design resembles the one from Strobl et al. (2008) or Archer and Kimes
(2008).

In total, there will be three different scenario settings to investigate the influ-
ence of correlated features on the PFI and LOCO. The following setup is used
as a general baseline for the scenarios:

yi = xi1 + xi2 + xi3 + xi4 + ϵi

The scenarios differ in the way they represent different dependencies of the
features on the target variable. We investigate here a linear dependence as
well as a non-linear one. To create a simple fictive data set with these depen-
dencies, four features xi1, ..., xi4 were randomly drawn a thousand times out of
a multivariate Gaussian distribution with a mean of 0: X ∼MV N(0, Σ). The
covariance Σ depends on the variance of all features, which were set equally to
σj,j = 1, and the covariances σj,l. The covariance for feature X1 and X2 σ1,2
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were set to either ρ = 0; 0.25; 0.5; 0.75 or 0.99 depending on our correlation
intensity of interest whereas the covariances of the other features were set to
σj,l = 0 which means they are independent. Note: Here the correlation and
the covariance are the same, because we set the variance to 1 such that the
Pearson correlation coefficient ρ = Cov(Xj ,Xl)√

V ar(Xj)
√

V ar(Xl)
= Cov(Xj , Xl) . The

reason behind setting ρ = 0.99 and not to ρ = 1 is to avoid issues when
calculating with matrices. If ρ would be equal to 1, we would have perfect
multicollinearity. Thus, the rank of the covariance matrix would not be full.
Hence, setting ρ to 0.99 instead simplifies subsequent calculations, especially
in terms of applying the linear model. The choice of the noise ϵi and its vari-
ance should be hold small in order to clarify the behavior we observe and
avoid misinterpretation. In this case, we assume that the mean is zero and
the standard deviation is only ten percent of the absolute value of the mean
of yi = xi1 + xi2 + xi3 + xi4.

Furthermore, we will also include an uninformative feature ”Uninf” randomly
drawn out of a uniform distribution to the data set. This is our benchmark
indicating us whether the importances of the features are higher than this ran-
dom effect. As a consequence, we are eventually generating five data sets, each
with five numerical features. Now we are able to run the learning algorithms
on the data sets. For the random forest, we use the randomForest package
(Breiman et al., 2018) and for SVM the ksvm() function out of the kernlab
package (Karatzoglou et al., 2004). For both functions the default settings for
all the parameters were used.

How to compare PFI and LOCO?

As mentioned in the introduction to this chapter, for PFI as introduced by
Breiman (2001a), one does not need to refit the model whereas for LOCO
it is necessary to refit. In the iml package (Molnar et al., 2018), which we
use throughout the entire book, the implementation uses Hold-out for perfor-
mance evaluation. Typically, Hold-out is not ideal to evaluate the performance
of a model unless the data set is sufficiently large. The variance of the perfor-
mance value can get quite high which means that it can fluctuate a lot. To
lower the variance of PFI, the values are calculated by repeatedly shuffling
the features in the permutation step. However, Hold-out is definitely not suit-
able for LOCO, because reshuffling is not possible due to the fact that the
interested feature is completely left out of consideration. Thus, the danger of
high variance increases tremendously. In contrast to Hold-out, we can make
use of Resampling methods which use the data more efficiently by repeatedly
dividing the data into train and test data and finally aggregating the results.
Therefore, in order to improve the comparability of two approaches, we de-
cided to use Subsampling (repeated Hold-out) for measuring the performance
for PFI. This also means that we use PFI on test data (see also chapter 12),
so it is necessary to refit our model. In our case a Subsampling with a 20-80%
split and 10 iterations were used. In principle we want to compare two models
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in each iteration step, once without the permuted feature and once with the
permuted feature. Therefore we should use the same train-test splits in each
iteration. The following visualizations show the Feature Importance values as
well as the importance ranks, which are both aggregated by the average over
the 10 iterations of Subsampling. Furthermore, we calculate the Feature Im-
portance by taking the ratio eperm/eorig for PFI or the the ratio e−j/eorig for
LOCO (see chapter 9).

1) Linear Dependence:

In the first scenario setting the dependence of the features on the target value
y is a linear one:

yi = xi1 + xi2 + xi3 + xi4 + ϵi

In order to get meaningful results, one has to first check, whether the underly-
ing model was proved to be accurate. In case your model does not generalize
accurately, the Feature Importance can vary greatly when rerunning the al-
gorithms. Therefore, the resulting effects cannot be seen as significant (Parr
et al., 2018). Figure 9.2 shows the benchmark result for the learning algo-
rithms used on the simulated data sets with independence, medium and high
correlation. As performance measures we decided showing two. On the one
hand, the mean squared error (MSE), since it is also used as a loss measure
for evaluating the Feature Importance. On the other hand R2, because it is
a common measure for linear models and we have a linear dependence of the
features on the target value. R2 = 1 implies that all residuals are zero, so
a perfect prediction. Whereas R2 = 0 means that we predict as badly as a
constant. As you can see, all learning algorithms have very good up to per-
fect results, or in other words are accurate for our further investigations. The
random forest is considered as the worst of the models at hand. That is not
surprising as the random forest learns multiple step function trying to fit a
linear prediction function. The linear model is by far the best model to predict
this linear dependence on the target value.

Figure 9.3 shows the result of applying the PFI on the random forest model.
The plot on the left-hand side shows the average importance values (in the
graph shown as a dot). Moreover, it presents the 0.05- and 0.95-quantiles over
the 10 subsampling iterations, respectively. In addition, the plot on the right-
hand side shows the average importance rank based on the ten subsampling
iterations. It is important to mention that typically the Feature Importance is
interpreted in a rank order. One can see that, in case of independence, the PFI
of all features are approximately the same except for the uninformative one.
Since the uninformative indicated a complete random effect, one can suggest
that all features have an influence on the performance of the model. Overall,
the PFI of the correlated features X1 and X2 tend to increase more in com-
parison to the uncorrelated features as ρ increases. Moreover, the span of the
quantile bands increases with higher ρ. This effect can also be seen in the
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FIGURE 9.2: Benchmark results of scenario 1 for data sets with p = 0, p
= 0.5 and p = 0.99 (from left to right). On top the performance measure is
the MSE, at the bottom R2. The color represents the learning algorithm. Red:
Random Forest, green: SVM and blue: Linear Model.

right plot. For independence, all points are near the average rank of 2.5. The
small fluctuations or deviations can be explained by the underlying stochastic.
However, for a correlation higher than 0.5 we see a gap between the correlated
features in red color and the uncorrelated in green color. The correlated fea-
tures settle down at an average rank of about 1.5 and the uncorrelated ones at
about 3.5. Although all features have the same influence on the target value,
one can see that PFI can be misleading as it shows a higher PFI rank the
higher the correlation between two features.

One possible explanation for this effect is given by Hooker and Mentch (2019).
They state that the main reason behind this effect is caused by extrapolation
which we already mentioned in the context of problems with PDPs. A small
recap, extrapolation is the process of estimating beyond the distribution of
our original data set. Figure 9.4 shows on the left the random forest applied
on the simulated data set with independent features X1 and X2. On the right
it is applied on the data set where both are highly correlated. At first sight
you cannot see a structure in the data distribution for the independent case.
Furthermore, the data points fill out much more space in comparison to the
correlated case. Here one can see a clear positive correlation between X1 and
X2. For instance, if you permute one observation of X1 represented by the
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FIGURE 9.3: Scenario 1: PFI on the random forest models with different
correlations of features X1 and X2. The left plot shows the PFI values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
is used as an indicator of how far away certain features are from the true
theoretical importance rank.
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FIGURE 9.4: Extrapolation visualization. On the left, the prediction of
the random forest on the simulated independent data set. On the right, the
prediction of the random forest on the simulated high correlated data set. The
arrow is indicating a permutation of one observation for feature X1.
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white arrow, the permuted observation point is still near the data distribution
in the independent case. However, in the correlated case there are absolute
no other data points nearby. The data distribution of the training data lies
on the diagonal (bisector). The region outside of the point cloud was not
learned well enough by the random forest which becomes evident through the
less rectangle lines in this area. As a consequence of permuting, the random
forest also evaluates points which are far away from training data. Thus, the
prediction can be far away from the true value which leads to a large drop in
performance. Although the feature is equally important in comparison to the
others, it gets indicated as more important. The larger span of the quantile
bands can be explained by the random permuting of the data points. If the
observation is still close to the data distribution after permuting it, the error
made is less severe as in the example shown in the plot. For example, the point
is still in the blue shaded area. Hence, the change in error strongly depends on
how far away the permuted data is from the real underlying data distribution.
To sum up, the extrapolation problem of the random forest is associated with
the correlation intensity.
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FIGURE 9.5: Scenario 1: PFI on the SVM models with different correla-
tions of features X1 and X2. The left plot shows the PFI values for different
correlation intensities. The right plot represents the average rank of the fea-
tures at a certain correlation intensity. The red lines mark the two correlated
features and the green lines the independent ones. The dashed line is used
as an indicator of how far away certain features are from the true theoretical
importance rank.

The next Figure 9.5 demonstrates the application of the support vector ma-
chines on the simulated data sets. Again, we have the same results for the
independence case, because the importance values and quantile bands are
similar to each other. This is underpinned by the average rank plot, which as
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you can see fluctuates around the overall average rank. It seems like the im-
portance values drop quite heavily when we are going from ρ = 0 to ρ = 0.25.
It then rises again slightly the higher the correlation becomes. For the fea-
tures X1 and X2 it seems like they are growing more in comparison to the
independent ones. The average rank plot indicates the same, since for ρ > 0.5
there is a clear change in pattern towards that the highly correlated features
being indicated as more important. Furthermore, the quantile bands for the
highly correlated features X1 and X2 are getting larger in comparison to the
independent ones. Thus, we recognize kind of similar effects like for random
forest, where correlated features are indicated as more important. With the
small deviation, that we do not exceed the initial importance value in case of
independence and that the effect is less strong.
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FIGURE 9.6: Scenario 1: PFI on the linear models with different correla-
tions of features X1 and X2. The left plot shows the PFI values for different
correlation intensities. The right plot represents the average rank of the fea-
tures at a certain correlation intensity. The red lines mark the two correlated
features and the green lines the independent ones. The dashed line is used
as an indicator of how far away certain features are from the true theoretical
importance rank.

When applying the linear model and calculating the PFI, the ranking of the
features varies a lot. The underlying reason is that the importance values for
each correlation intensity are very close to each other. The ranking seems to
be very random and thus can be explained by stochastic. One interesting effect
is that, the higher the correlation, the lower the Feature Importance values
get. Figure 9.6 shows that the values of PFI are quite large. As mentioned
before (see Figure 9.2), the MSE values of the linear model are close to zero.
The linear model performs unsurprisingly very well. For the calculation of
PFI we take the ratio eperm/eorig. Here the numerator’s value is very small,
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and the value of denominator is even smaller (close to zero) which results in
a very large value for PFI. Increasing the error term ϵi would lower the PFI
value, since the MSE would be higher. All in all, it looks like the PFI of a
linear model is quite robust against changes in the correlation intensity. By
assigning all features almost the same importance value, it reflects the true
theoretical rank quite well.
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FIGURE 9.7: Scenario 1: LOCO on the random forest models with different
correlations of features X1 and X2. The left plot shows the LOCO values
for different correlation intensities. The right plot represents the average rank
of the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
is used as an indicator of how far away certain features are from the true
theoretical importance rank.

In contrast to the PFI, there is a drop in LOCO Feature Importance of the
two features X1 and X2 the higher the correlation. In particular for almost
perfect multicollinearity, the outcome differs a lot from the theoretical true
importance with the value dropping to almost 1. In terms of ratio comparison
of the errors, this indicates that there is no influence on the performance
prediction of the two features. Here we can see the downside of correlation
in regards to LOCO. Both features should generally be considered as equally
influential as X3 and X4. However, in case of almost perfect multicollinearity,
if you leave one of the features X1 or X2 out of consideration to calculate
the LOCO Feature Importance, the other feature can kind of “pick up” the
effect on the target variable. As a consequence, there is no change in accuracy
which means that there is only a small, up to no, increase in the error (Parr
et al., 2018). Another noteworthy result is a kind of a compensation effect.
The importance values for X3 and X4 increase as the correlation of X1 and
X2 rises. According to the right-hand side plot of Figure 9.7, the average rank
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till ρ = 0.5 fluctuates a lot. For larger ρ values you can recognize a tendency
towards higher average rank for uncorrelated features and a lower average
rank for correlated features shown by the crossing over of the green and red
lines. Basically, this is exactly the opposite to what we observe for PFI on the
random forest model.
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FIGURE 9.8: Scenario 1: LOCO on the SVM models with different correla-
tions of features X1 and X2. The left plot shows the LOCO values for different
correlation intensities. The right plot represents the average rank of the fea-
tures at a certain correlation intensity. The red lines mark the two correlated
features and the green lines the independent ones. The dashed line is used
as an indicator of how far away certain features are from the true theoretical
importance rank.

Figure 9.8 presents the LOCO Feature Importance on the simulated data sets
within the SVM model. Once again, we can observe a drop in the importance
of X1 and X2 the higher the correlation. In comparison to the random forest,
you cannot recognize a compensation effect of the uncorrelated features. The
plot on the left reveals that under independence the quantile bands for X1 and
X2 are very large whereas under high correlation they are getting smaller and
even hardly discernible. In addition to that, for ρ = 0.99 you can recognize that
the average importance rank for the uninformative feature increases, because
X1 and X2 are also considered as unimportant.

Apparently, the value of the average importance for LOCO is also very high if
applying the linear model on the simulated data sets (Figure 9.9). The same
phenomenon occurs for PFI on the linear model. Overall, one of the main
similarities we can derive for the all three learning algorithms is that when
perfectly multicolinearity is given the LOCO Feature Importance values are
dropping to either 1 or 0 depending on whether you take the ratio or the
difference of the estimated errors.
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FIGURE 9.9: Scenario 1: LOCO on the linear models with different cor-
relations of features X1 and X2. The left plot shows the LOCO values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
is used as an indicator of how far away certain features are from the true
theoretical importance rank.

2) Linear Dependence with a larger coefficient for X4:

In the second scenario the dependence of the features on the target value y is
also a linear one, yet with a small change in the coefficient of X4 from 1 to
1.2. As a result, there is now a larger influence of this feature on the target y:

yi = xi1 + xi2 + xi3 + 1.2xi4 + ϵi

Figure 9.10 underlines the common problem of PFI and random forest in
case of high correlation. As noted, X4 has a higher impact on the target
value i.e. a higher theoretical true importance in comparison to the other
features. Nevertheless, one should notice the possibility that the PFI of X1 and
X2 are considered as more important than X4. Consequently, there occurs a
misleading importance ranking which can result in misinterpretations. This is
also confirmed by the right-hand side plot. The average rank of X4 represented
by the light green line decreases and finally stays below the average rank of
X1 and X2 pictured by the two red curves.

Figure 9.11 and Figure 9.12 depict that there are no misleading PFI ranking
for the SVM as well as for the linear model with respect to X4. As expected,
X4 has a higher overall importance rank; the other features are more or less
equally important. There is a clearly defined pattern in the average rank plots
where the graph shows a plateau for feature X4 at the average rank level
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FIGURE 9.10: Scenario 2: PFI on the random forest models with different
correlations of features X1 and X2. The left plot shows the PFI values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X1, X2 and X3.
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FIGURE 9.11: Scenario 2: PFI on the SVM models with different correla-
tions of features X1 and X2. The left plot shows the PFI values for different
correlation intensities. The right plot represents the average rank of the fea-
tures at a certain correlation intensity. The red lines mark the two correlated
features and the green lines the independent ones. The dashed line illustrates
the true theoretical importance rank of X1, X2 and X3.
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of 1. This can be taken as indication that PFI considers the true theoretical
importance rank for feature X4. The main difference between SVM and LM
is their typical appearance for PFI as described in scenario 1 before.
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FIGURE 9.12: Scenario 2: PFI on the linear models with different correla-
tions of features X1 and X2. The left plot shows the PFI values for different
correlation intensities. The right plot represents the average rank of the fea-
tures at a certain correlation intensity. The red lines mark the two correlated
features and the green lines the independent ones. The dashed line illustrates
the true theoretical importance rank of X1, X2 and X3.

As you can see in Figure 9.13 the LOCO Feature Importance remains un-
changed throughout an increase of the X4 coefficient. The PFI and LOCO
again have opposite effects with regard to the random forest. Generally speak-
ing, the plots show the same main issues of LOCO as we already seen before.
A small exception is the higher importance rank for X4. This is depicted again
by the plateau of the average importance rank for X4 represented by the light
green line. Furthermore, in case of high correlation the compensation effect
also remains valid for X4.

The impact of LOCO on the SVM and the linear model are visualized in
Figure 9.14 and 9.15. Both suggest that X4 is more important compared to
X1−X3. Other than that, we can observe once more the typical behavior of
LOCO in case of high correlation. At a correlation intensity of around ρ = 0.5
the two correlated features are incorrectly identified as less important than
X3.

3) Nonlinear Dependence:

In the third scenario there is no pure linear relationship between the target
value y and the features. The two feature X1 and X3 are plugged into the
sine function:
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FIGURE 9.13: Scenario 2: LOCO on the random forest models with different
correlations of features X1 and X2. The left plot shows the LOCO values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X1, X2 and X3.
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FIGURE 9.14: Scenario 2: LOCO on the SVM models with different cor-
relations of features X1 and X2. The left plot shows the LOCO values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X1, X2 and X3.
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FIGURE 9.15: Scenario 2: LOCO on the linear models with different cor-
relations of features X1 and X2. The left plot shows the LOCO values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X1, X2 and X3.

yi = sin(xi1) + xi2 + sin(xi3) + xi4 + ϵi

In Figure 9.16 the benchmark result of the third scenario is illustrated. Here we
can observe that the linear connection to the target value is broken. Since, one
consequence of this break is that the linear model is no longer identified as the
best model. The benchmark results present the SVM as the best performing
model instead. Still the random forest is performing worst in comparison to
the others. All in all, we have accurate models at hand again. Hence, we can
investigate this scenario with regards to correlation effects on the Feature
Importance as well.

Figure 9.17 displays the effects of PFI for the application of the random forest
on the simulated data sets of scenario 3. On first sight, comparing X3 with
X4, you can see that the features inside the sine function are ranked as less
important than the linear ones. However, in case of high correlation feature
X1 gains drastically in importance. This even goes as far as X1 having the
same importance rank as those features with a linear dependence. This leads
to the perception that the importance value of X1 adapts to the value of X2.
Once again the PFI assesses the importance rank incorrectly.

According to Figure 9.18, PFI shows its typical behavior on the SVM model.
As in case of the random forest the features within the sine function are
classified as less important than the linear ones. Similarly, it is interesting to
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FIGURE 9.16: Benchmark results of scenario 3 for data sets with p = 0,
p = 0.5 and p = 0.99 (from left to right). On top the performance measure
is the MSE, at the bottom R2. The color representing the learning algorithm.
Red: Random Forest, green: SVM and blue: Linear Model.

see the adaption effect of feature X1. Yet, X1 does not exceed the rank of X2.
The PFI on the linear model, illustrated in Figure 9.19, has a very parallel
looking appearance. Thus, one can conclude that it is kind of robust against
correlation and shows the theoretical true importance rank.

The impacts of LOCO on the different models are visualized in Figure 9.20,
9.21 and 9.22 respectively. All of them suggest that the linear features are
more important. The higher the correlation, the lower the feature importance
for feature X2 drops. Again, we can observe the typical behavior of LOCO in
case of high correlation. At a certain correlation intensity in the range between
ρ = 0.75 and ρ = 0.99 LOCO specifies X3 as more important than X2. Other
than that LOCO shows the same results for the various models as mentioned
before.

9.1.2 Real Data

In order to illustrate the problems arising from correlated features on Feature
Importance using a real data set, we will take a look at the “Boston” data
set which is available in R via the MASS package. The data set was originally
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FIGURE 9.17: Scenario 3: PFI on the random forest models with different
correlations of features X1 and X2. The left plot shows the PFI values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X2 and X4, the dotted line
of X1 and X3.

Uninf

X1

X2

X3

X4

0 25 50 75 100

PFI (Loss: MSE)

Correlation: 0 0.25 0.5 0.75 0.99

1

2

3

4

5

0 0.25 0.5 0.75 0.99

Correlation

A
ve

ra
ge

 R
an

k

Uninf X1 X2 X3 X4

FIGURE 9.18: Scenario 3: PFI on the SVM models with different correla-
tions of features X1 and X2. The left plot shows the PFI values for different
correlation intensities. The right plot represents the average rank of the fea-
tures at a certain correlation intensity. The red lines mark the two correlated
features and the green lines the independent ones. The dashed line illustrates
the true theoretical importance rank of X2 and X4, the dotted line of X1 and
X3.
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FIGURE 9.19: Scenario 3: PFI on the linear models with different correla-
tions of features X1 and X2. The left plot shows the PFI values for different
correlation intensities. The right plot represents the average rank of the fea-
tures at a certain correlation intensity. The red lines mark the two correlated
features and the green lines the independent ones. The dashed line illustrates
the true theoretical importance rank of X2 and X4, the dotted line of X1 and
X3.
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FIGURE 9.20: Scenario 3: LOCO on the random forest models with different
correlations of features X1 and X2. The left plot shows the LOCO values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X2 and X4, the dotted line
of X1 and X3
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FIGURE 9.21: Scenario 3: LOCO on the SVM models with different cor-
relations of features X1 and X2. The left plot shows the LOCO values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X2 and X4, the dotted line
of X1 and X3.
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FIGURE 9.22: Scenario 3: LOCO on the SVM models with different cor-
relations of features X1 and X2. The left plot shows the LOCO values for
different correlation intensities. The right plot represents the average rank of
the features at a certain correlation intensity. The red lines mark the two
correlated features and the green lines the independent ones. The dashed line
illustrates the true theoretical importance rank of X2 and X4, the dotted line
of X1 and X3.
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published by Harrison and Rubinfeld (1978). To make the results a little bit
more feasible and clear, we only look at a subset of the data. Out of the
original 13 features we picked out 6. The objective is to predict the house
prices with respect to the given features.

The following variables are considered part of the subset:

DIS - weighted distances to five Boston employment centres
AGE - proportion of owner-occupied units built prior to 1940
NOX - nitric oxides concentration (parts per 10 million)
CRIM - per capita crime rate by town
RM - average number of rooms per dwelling
LSTAT - % lower status of the population

MEDV - target: Median value of owner-occupied homes in $1000's

First of all, we want to have a look at the benchmark results illustrated in
Figure 9.23 on the left-hand side. Here, the best result can be observed with
respect to the MSE for the random forest. Since Features Importance was
introduced to interpret black box models like the random forest, but has shown
multiple complications in our simulations, our focus here is on the random
forest model.

The following experiments are inspired by Parr et al. (2018). An easy way to
create a feature with perfect multicollinearity in a data set is by duplicating
one feature and adding it to the data set. As a result the correlation coefficient
equals 1. To make the two features less correlated, we also present a case where
instead of simply duplicating one, a noise constant is added to the duplicate.
This should lower correlation to a certain amount. The noise constant was
calculated so it fits the value range of the feature. In order to show meaningful
results, the constant‘s standard deviation was set to 30 percent times the mean
of the feature itself.

Evaluating the PFI on our given data set indicates the feature lower status of
the population lstat as the most important feature with a value around 4.3
(see Figure 9.24). By duplicating the feature “lstat” and adding it to the data
set as well as repeating PFI, one can see that dup_lstat and lstat are equally
important. As a rule of thumb the PFI of both are kind of sharing the Feature
Importance from the case before. Since now, the PFI values of lstat and
dup_lstat dropping down to ca. 2.4. This makes sense as equally important
features should be considered as a split with the same probability during the
prediction process of random forest. As a consequence in this situation we
have a 50-50 choice between lstat and dup_lstat. More importantly, the
feature lstat is no longer ranked as the most important feature, instead the
average number of rooms per dwelling rm moves to the leader board. Again,
we show how correlation between features can lead to wrong interpretations.

When adding a noise variable to dup_lstat (n_lstat), the correlation should
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FIGURE 9.23: On the left-hand side the benchmark result for the random
forest (red), the SVM (green) and the linear model (blue) on the basis of the
Boston data set. The underlying performance measure is the MSE. On the
right-hand side a Pearson correlation plot with the features of the Boston
data set.
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FIGURE 9.24: PFI on the original data set (left), on the data set including
a duplicate of lstat (middle) and on data set with a noise added to the
duplicate (right).

decrease. In fact, Figure 9.23 shows in the right-hand side plot, that this yields
to a Pearson correlation coefficient of around 0.88. Now the intial importance
value of around 4.3 is shared between lstat = 3.3 and n_lstat = 1.2 at a ratio
of 3 to 1. In contrast to the case of multicollinearity, the importance values are
moving away from each other. Now lstat is ranked most important, yet only
by a very marginal amount and still being below the actual value of 4.3 as in
the initial case. It seems that two correlated features are pulling each other
down, with the extent and fraction depending on the correlation strength.

As a contrast to PFI, the LOCO Feature Importance specifies rm = 1,8 as the
most important feature, closely followed by lstat = 1.75 (see Figure 9.25).
Furthermore, there is a large overlap of the quantile bands of both features. In
order to make this case easier to compare with PFI, we have another look at
lstat. Adding the duplicate of lstat to the data and rerunning LOCO, one
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FIGURE 9.25: LOCO on the original data set (left), on the data set includ-
ing a duplicate of lstat (middle) and on data set with a noise added to the
duplicate (right).

can see that lstat disappears from the top ranking. This leads to the same
effect as in previous simulations. Both highly correlated features dup_lstat
and lstat are erroneously indicated as unimportant. Understanding the fact
that LOCO Feature Importance measures the drop in performance of a model,
one can easily come up with a reason for this. If you leave out one feature
that is perfectly correlated to the other, the performance will be the same as
before. Since the feature which is still in the data set contains exactly the same
information as the one left out there is no alteration in performance. Adding
a little bit of noise to the duplicate dup_lstat leads to an increase of LOCO
Feature Importance for lstat. This trend increases with higher variance of
the noise or, in other words, the lower the correlation of the two features.

From the examples given as well as by looking at the correlation in the data
set (see Figure 9.23), one can conclude that there should be correlation effects
even without intervening in the data set. For instance, lstat is correlated in
multiple ways with other features. The extent of correlation with the other
features never drops below the 0.5 mark. If you look at the correlation of
the lower status of population and the average number of rooms per dwelling,
this indicates a ρ of -0.61. This makes sense, because one can assume that a
larger amount of rooms can only be financed by wealthy people. A possible
conclusion could be that in case of PFI both features are overestimated and
hence at the top of the ranking board. Moreover, both features show quite
large quantile bands in comparison to others. These outcomes look kind of
similar to the ones shown in the simulation section (compare with Figure 9.3).
Obviously, correlation exists before adding any new feature to the data set. In
these kinds of set-ups you cannot verify the true theoretical importance. The
only option are assumptions about the underlying effects and guessing the
true importance based on simulations as the ones presented here. This shows
how unpleasant correlation can be in connection with Feature Importance.
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9.2 Alternative Measures Dealing with Correlated Fea-
tures

To sum up, we want to highlight that feature importance measures like LOCO
or PFI can be strongly misleading when features of a given data set are cor-
related. Thus, a check for correlation between features before usage of these
two methods is recommended or even necessary in order to have a credible
interpretation. In the literature there are some suggestions on how to deal
with collinearity with respect to Feature Importance. One suggestion which
is related to the PFI seems kind of obvious. The PFI is usually calculated by
permuting one specific feature. In case of strong correlation of, for example,
two features, it is sensible to permute these together, meaning the building of
a group such that the correlation is still present in the calculation of PFI (Parr
et al., 2018). For illustration, let’s look at the example of the bikesharing data
set mentioned in the introduction (Figure 9.1). Since weekday and working
day are highly correlated, they should be only permuted together. If this is
done, a strange combination of data like Wednesday and no working day is
not possible. This should also solve the severe problems with extrapolation,
because we are not leaving the real data distribution.

Other alternative measures are focusing on the idea of permuting new values of
a feature by taking the distribution conditional on the remaining features into
consideration like the Conditional Feature Importance by Strobl et al. (2008).
Despite the fact that the Conditional Feature Importance cannot completely
solve the problem of overestimating correlated features as more important,
it proves to be better at identifying the true important features of a model.
Another approach is a mixture of a relearning PFI (Mentch and Hooker, 2016)
and the Conditional Feature Importance. (Hooker and Mentch, 2019)

To conclude, some of these approaches are quite easy to implement, others
prove to be a bit more complicated. What most of them have in common
are high computational costs. These either emerge from refitting the model
or simulating from the conditional distribution (Hooker and Mentch, 2019).
This makes an application in case of large data sets and feature spaces less
favourable. Another possible idea is an indicator variable for the given data
set that shows how much trust we can have in the outcome on the basis of
feature correlation. In order to derive a suitable interpretation of the machine
learning algorithm, we recommend to have a look at other model-agnostic
tools like PDP, ICE, ALE or LIME as well.
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9.3 Summary

Calculating Feature Importance for simple linear models is not strongly af-
fected by correlation. However, the calculation of Feature Importance of black
box models, like random forest, is susceptible to correlation effects. Overall,
we cannot clearly define whether PFI or LOCO is the preferable Feature Im-
portance measure. Both measures showed their pros and cons.

In the simulation section we demonstrated some interesting results regarding
issues caused by correlation. For LOCO Feature Importance, the most remark-
able problem was the huge drop in importance value or ranking number for
highly correlated features. This even goes so far as features being erroneously
identified as completely unimportant. This issue was observable throughout
all models. In contrast to LOCO, the effect of PFI mostly depends on the
learning algorithm. In case of the random forest, there was a clear trend to-
wards highly correlated features i.e. they were declared as more important
than the other features. The SVM showed similar results as for the random
forest, but the effects were less strong. In contrast, the linear model was more
or less robust against correlations. In the literature the random forest calcu-
lated by the out-of-bag observations or other learning algorithms, like neural
networks, showed similar results (Hooker and Mentch, 2019). Furthermore,
the real data application supported the theses, we saw in the simulation sec-
tion. The results make us even more aware that the correlation intensity is
critical for the importance ranking of the features.

Aside of the present simulations, further options are possible. For instance,
we limited ourselves to numerical features and regression tasks. However, in
reality you often have correlated categorical features and classification tasks
as well. Even an adjustment of the hyperparameters of the models used here
is an option. This goes to show that, despite all of the used methods in this
chapter, there are even more interesting effects to discover when it comes to
Feature Importance and correlation. Yet, this goes beyond the scope of this
chapter and deviates from our aim to raise the reader’s awareness of afore-
mentioned issues with regards to correlation in order to avoid mistakes in the
future.

All in all, PFI and LOCO can have misleading effects in case of correlated
features. This holds especially true as evaluating the Feature Importance rank
can be expensive and most of the time you are only looking at e.g. the top
three important features (Molnar, 2019). In those cases a wrong importance
rank can cause a lot of damage to the unobservant user. This leads to the
conclusion that next time we use Feature Importance we should be aware of
correlation effects as a limitation to methods’ accuracy.
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9.4 Note to the reader

For our analysis, we used R (R Core Team, 2020). For all the models and
Feature Importance measures, we used the mlr package (Bischl et al., 2020)
as well as the iml package (Molnar et al., 2018). All plots have been created
using ggplot2 (Wickham et al., 2020).
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The introductory chapter discussed the relevance of PFI and LOCO for the
interpretability of machine learning models. It was argued that for interpre-
tation purposes, the concept of Feature Importance is an indispensable com-
plement to analyzing Feature Effects. The Feature Importance quantifies the
contribution of a specific feature to the prediction power of a model. Yet, it
was also remarked that an aggregated, global measure of Feature Importance
might be insufficient. It might be the case that within a feature, some single
values or subgroups are more important for predictions than others. This het-
erogeneity, however, could not be captured by a single metric. Besides, it is
trivial to understand that with increasing heterogeneity, the global PFI be-
comes less revealing. By implication, a complementary method that captures
such heterogeneity becomes more decisive.

To identify whether such heterogeneity exists, an algorithm is required that
calculates the Feature Importance for each value of the respective feature.
Briefly, a measure that indicates the contribution of an individual value to
the global Feature Importance. However, as the range of values can be rather
large, a tabular description seems to be cluttered. Therefore, a visualization
tool that allows gaining meaningful and concise insights on how the Feature
Importance varies, should be derived. One would then plot the respective
values of the feature against its local Feature Importance measures. In the
case of heterogeneity, the plotted curve should then deviate from a constant
shape.

Following the objective of visualization, one can make use of the concepts of
Partial Dependence and Individual Conditional Expectation, as these methods
allow us to detect heterogeneity in the context of Feature Effects. Casalicchio
et al. (2018) avail themselves from these concepts and transfer them to the
concept of Feature Importance, by introducing the metrics Partial Importance
(PI) and Individual Conditional Importance (ICI) (see Goldstein et al. (2013)).
They show that these methods enable to detect subgroups with differing levels
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of Feature Importance and are, therefore when striving for a complete picture,
non-negligible complements to the global PFI metric.

However, it might be of interest to not only reliably detect heterogeneity but to
also better understand its drivers. In general, it can be distinguished between
three different sources for heterogeneity. First, if the relationship between a
feature and the response is non-linear. Secondly, if features are correlated and
third if interaction effects between features are existent. In what follows, it
will be focused on the latter as the first represents no actual concern and the
second was already discussed in the previous chapter.

As will be seen, uncovering interaction effects is not as straightforward, as
the structural relationship between covariates and the outcome variables is
unknown. Hence, from first glance, it is unclear whether there is just a non-
linear relationship or whether indeed interactions between covariates exist.
But if the PI or ICI method does not enable us to distinguish between these
sources, the applicant does not gain a better understanding. If heterogeneity
is not understood, one can hardly interpret the results and if so, the methods
failed to a certain extent.

Hence, the motivation is clear. If interaction effects between covariates are ex-
istent, it should be, for the sake of the interpretability of a machine learning
model, of major interest to detect them. Detecting them is an indispensable
objective to be enabled to then explain them. And only if they can be ex-
plained, the heterogeneity in Feature Importance can be understood and the
results can be interpreted accordingly.

To answer the questions, formulated above, the remaining subchapters are
structured as follows: In chapter 10.1, the concepts of Partial Importance
(PI) and Individual Conditional Importance (ICI) are theoretically introduced.
This shall provide the reader with an in-depth understanding of how the Fea-
ture Importance can be visualized, both on an aggregated, global and dis-
entangled, local level. With these preliminaries, the reader is equipped with
sufficient knowledge to understand the following simulations (see chapter 10.2)
which are meant to cover two broader topics.

In the subchapter 10.2.1, it will be focussed on to what extent the PI and ICI
plots can uncover interaction effects between features. To give this a new angle
of perspective, a new method, called “derivative-ICI” (see chapter 10.2.1.2)
will be introduced.

The subchapter 10.2.2 will then discuss the issue of actually explaining the
detected interaction effects. Pursuing this objective, an additional method will
be introduced which will predict the global Feature Importance of the feature
of interest based on the remaining features in the model (see chapter 10.2.2.1).
A significant relationship between the PFI and at least one feature would then
not only confirm the conjecture of interaction effects but also explain between
which features these interactions took place.
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The simulation chapter will then be closed by bringing the results together.
With that, one can then calculate the respective conditional Feature Impor-
tance (see chapter 10.2.2.2). Plotting this provides the user with an exhaustive
understanding of why the local Feature Importance differs between subgroups.
Further, it even allows quantifying the difference in Feature Importance. Yet,
the focus here will lay on the visualization and not on the direct quantification.
The latter was already discussed by Casalicchio et al. (2018).

The whole simulation chapter serves as a “cookbook” on how to still reach
meaningful and interpretable results when heterogeneity is driven by unob-
served interaction effects. After this is completed, the methods will be verified
on real data (see chapter 10.3). Pursuing this, a brief analysis is conducted on
the Boston Housing Data.

The chapter is then closed by a summary and discussion of the methods (see
chapter 10.4). This will include a final evaluation of the PI and ICI plots and
thereby answer the question of whether the methods are useful or not.
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10.1 Preliminaries on Partial and Individual Conditional
Importance

Once the concept of the global PFI is clear, it will be shown that deriving
the Partial Importance as well as the Individual Conditional Importance is
straightforward. To be able to comprehend that, one should briefly recall that
the global PFI of a feature S is defined as

PFIS = E(L(f(XS , XC), Y ))− E(L(f(X), Y )) (1)

where the first term corresponds to the theoretical generalization error of the
model, including the permuted feature xS and the second term depicts the
generalization error resulting from the original model. The difference then
gives the global PFI of feature S. However, in the application, the joint dis-
tribution of X and Y is unknown so that the generalization error needs to be
approximated by the empirical error. The first term of equation (1) is derived
by the formula

ĜEC(f̂ , D) = 1
n

n∑
i=1

1
n

n∑
k=1

L(f̂(X(k)
S , X

(i)
C ), y(i)) (2)

which states that the empirical losses for all observations i ∈ {i, ..., n} are
calculated respectively for each permutation k ∈ {i, ..., n} of XS and averaged
over n. Here, ĜEC(f̂ , D) is subscripted with C as it shall indicate the gen-
eralization error when only predicting with the remaining feature subset XC .
Equivalently, the second term of equation (1) can be approximated by the
formula

ĜE(f, D) = 1
n

n∑
i=1

L(f(x(i), y(i)) (3)

In equations (2) and (3), f̂ corresponds respectively to the fitted supervised
machine learning model and D is defined as the underlying test data, sampled
from a i.i.d distribution P . Taking the difference of both approximations from
equations (2) and (3) yields the formula for the global PFIS which is defined
as

P̂F IS = 1
n2

n∑
i=1

n∑
k=1

(L(f̂(X(k)
S , X

(i)
C ), y(i))− L(f(x(i), y(i)) (4)

whereby calculating the global PFI becomes computationally expensive when
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n is large as the iteration scales with O(n2). This issues becomes more apparent
when considering the full set of possible permutations (τ1, ..., τn!), resulting in
an equation equivalent to formula (5) where the algorithm iterates over all n!
permutations

ĜEC,perm(f̂ , D) = 1
n

n∑
i=1

1
n!

n!∑
k=1

L(f(xτ
(i)
k

S , x
(i)
C ), y(i)) (5)

To circumvent the computational disadvantage, it is advisable to rather ap-
proximate GEC(f, D) by GEC,approx(f, D) which only entails a randomly se-
lected set of m permutations, defined as

ĜEC,approx(f̂ , D) = 1
n

n∑
i=1

1
m

m∑
k=1

L(f(xτ
(i)
k

S , x
(i)
C ), y(i)) (6)

This results in an approximated global PFI defined as

PFIS,approx = 1
n ·m

n∑
i=1

m∑
k=1

(L(f(xτ
(i)
k

S , x
(i)
C ), y(i))− L(f(x(i), yi)) (7)

From there, Individual Conditional Importance can be computed. One can
calculate the change in performance for each i-th observation by taking the
summands from equation (7) which is defined as

∆L(i)(xS) = L(f̂(xS , x
(i)
C ), y(i))− L(f̂(x(i)), y(i)) (8)

and repeat that for all permutations m, resulting in m components ∆L(i)(x(k)
S )

for each observation i. Taking the average overall permutations yields the
global PFI for observation i which can be interpreted as the individual con-
tribution of the i-th observation to the global PFI metric.

In order to visualize the ICI, one can plot the pairs
{

(x(k)
S , ∆Li(x(k)

S ))
}n

k=1
.

In the same manner, the partial importance (PI) which corresponds to the ex-
pected change in performance at a certain value of xS . The estimated PI can
be derived by taking the pointwise average over all ICI curves at the respec-
tive fixed points of xS . This is equivalent to P̂ IS(xS) = 1

n

∑n
i=1 ∆L(i)(xS).

Equivalent to above, the PI curve can visualized by plotting the pairs{
(x(k)

S , P̂ IS(x(k)
S ))

}n

k=1
.

The visualization of both, the ICI curves and the PI curves is illustrated in
figure 10.1. The illustration corresponds to an artificial dataset with only three
observations. The dashed lines correspond to the respective ICI curves and the
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solid line illustrates the PI curve. The plot can be interpreted as follows. If
the ICI curve takes the value 0, the original value of xS was replaced by
its original value and therefore, no change in performance occurred. Besides,
it is also expected that if the distance between the original value and the
replacing value increases, the difference in performance also increases. This is
also confirmed by the shape of the ICI curves.

FIGURE 10.1: Visualization of PI and ICI plots based on an illustrative
example. The visualization corresponds to three observations and a total of
three permuted datasets. The dashed lines correspond to the ICI curves. The
solid line corresponds to the PI curve.

As already theoretical described, averaging the ICI curves, yields the PI curve
and taking the integral of the PI curve yields the global PFI of feature xS . In
figure 10.1, the red line corresponds to the global PFI.

Note, that the exchangeability between PFI, PI and ICI depicts a convenient
property for further analyses. The PI allows detecting regions with a higher
or lower Feature Importance, whereby the ICI allows us to analyze individual
observations and its contribution to the global PFI.
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10.2 Simulations: A cookbook for using with PI and ICI

Simulations are a convenient choice to check statistical models for their cor-
rectness and validity. The following simulations are meant to guide the reader
through a proposed step-by-step procedure which first, shall detect, then ex-
plain and lastly visualize interaction effects and their impact on a feature’s het-
erogeneity in importance. Even though each step is motivated by a limitation
from its preceding method, they should be considered as mutual complements
that aim to derive a complete picture.

10.2.1 Detect Interactions

In general, two kinds of relationships between two covariates exist. First, the
most common one, they are correlated. Second, the covariates do interact.
Detecting correlation can be obtained by calculating the correlation matrix
between the features. If two features are independent, the correlation is 0.
The reverse, however, is not necessarily true as correlation measures only linear
dependence. In such cases, a concept of information theory could be used. The
metric “mutual information” describes the amount of information about one
feature that is obtained when observing the other feature. Briefly, it quantifies
the amount of shared information between features and therefore, measures
implicitly the dependence between them. If the mutual information is 0, the
features are indeed independent. This allows to even quantify interactions
between features.

Hence, methods exist which can detect and even quantify the dependence
between variables, apart from correlation. Now, it is to be clarified whether
PI or ICI plots do have a similar power.

10.2.1.1 Partial Importance and Individual Conditional Impor-
tance plots

Again, the goal is to assess whether visualizations can detect interaction effects.
To gain a first visual understanding of PI and ICI plots, consider the following
data-generating model.

y = 5x1 + 5x2 + x3 + ϵ

x1
i.i.d∼ N (0, 1), x2

i.i.d∼ N (0, 1) and x3
i.i.d∼ B(1, 0.5), ϵ

i.i.d∼ N (0, 1)

The model is simulated with 1000 observations which are split into 80% train-
ing and 20% test data. On the training data, a Random Forest model is
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fitted and based on the estimates, the Partial Importance and the Individual
Conditional Importance are calculated on the test data. The latter is done as
outlined in the preliminaries. In figure 10.2, the plots are visualized for feature
w2.

FIGURE 10.2: Simulated data (simulation 1): PI Plot and ICI Plot for
feature x2. Introductory example with no interaction effect. Still, heterogeneity
is observed.

The PI plot indicates already a heterogeneous relationship, where the Partial
Importance becomes large for large absolute values. The minimum is reached
at around x2 = 0. The respective ICI plot provides even more insights. It
shows that some observations have a low local Feature Importance for large
negative values and a large local Feature Importance for large positive values
and vice-versa. As the shape of the curves are in both directions similar and
the minimum is around x2 = 0, it can be concluded that the feature x2 is
equally distributed around its mean.

But how does this coincide with the fact that none of the above-discussed
sources for heterogeneity are apparent in this simulation? As expected, no
heterogeneity should be observed and yet the heterogeneity is considerable.
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The observed heterogeneity is because inherently extreme input values are
considered on average as more important. Extreme values are replaced by
values that are on average further away from the original input value which
in turn results in higher loss differences. This problem is getting worse when
choosing loss functions that penalize large errors more extreme. Briefly, the
heterogeneity should be higher with a L2-loss compared to a more robust
L1-loss.

Hence, the plots might be misleading as it should not be concluded that large
positive or large negative values are more important. Therefore, if features
are normally distributed, the shape of the curves should be considered as a
baseline plot whereby only deviations from there can be considered as a “true”,
interpretable or meaningful heterogeneity. Yet, keeping that in mind, the PI
and ICI plots do explain the heterogeneity to the full extent.

With these baseline insights, one can now evaluate to what extent PI and
ICI plots can detect heterogeneity which evolved through interaction effects.
Following this objective, the following data-generating model is considered:

y = x1 + 5x2 + 5x21x2>2,x3=0 + ϵ

x1
i.i.d∼ N (0, 1), x2

i.i.d∼ N (0, 4) and x3
i.i.d∼ B(1, 0.5), ϵ

i.i.d∼ N (0, 1)

Besides the comparable linear relationship between the covariates and the out-
come variable, the model contains additionally an interaction effect between
x2 and x3. The model suggest that the feature x2 should become more impor-
tant for values x2 > 2 and x3 = 0. Hence, the plots should reveal large values
in this area.

The respective PI and ICI plots (see figure 10.3) are at first glance quite
similar to the plots, resulting from simulation 1. Yet, the above-mentioned
differences can be observed. First, the PI plot reveals that the Feature Impor-
tance increases with a higher magnitude for large positive values, indicating
that these observations are relatively more important. Looking at the ICI plot
and highlighting the observations with the highest, the lowest and the median
FI, yields some clearer insights. The blue curve corresponds to the observa-
tion with the largest contribution to the global PFI. Its initial value for x2 is
beyond the threshold of 10 and the corresponding x3 takes the value 0. Hence,
the interaction effect triggered and the feature became more important. The
blue curve ascends decisively in the area around x2 = 2. Once the threshold is
reached, the fitted model does not trigger the interaction effect anymore and
therefore, the predictions diverge increasingly. This observed property already
indicates that an interaction effect is a major driver for heterogeneity.

Yet, the quite similar plots from simulation 1 and simulation 2 might cause
problems to identify this interaction at first glance. Therefore, in what follows,
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an additional method will be introduced which aims for less ambiguous results.
Besides, it is important to note that these plots still do not explain which
features drive the heterogeneity in Feature Importance.

FIGURE 10.3: Simulated data (simulation 2): PI Plot and ICI Plot for fea-
ture x2. Visualizations correspond to data-generative model with interaction
effect between x2 and x3.

10.2.1.2 d-ICI (derivative Individual Conditional Importance)

To supplement the results, yielded from the PI and ICI plots, a method will
be proposed that was introduced by Goldstein et al. (2013) with the purpose
to detect interaction effects in the context of analyzing Feature Effects.

By calculating the numerical derivative for each ICE curve, they show that the
respective derivative plots enable to detect interaction effects. They argue that
the derivatives should be constant over the range of values if no interaction
effects exist. In the case of interaction effects, the derivatives should show a
larger positive or negative magnitude at the point where the interaction effect
takes place.
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Taking this, we can transfer the theoretical concept from Feature Effects to
Feature Importance by calculating the derivatives of each ICI curve respec-
tively. It was already observed that an interaction triggers an initially higher
level of Feature Importance which was represented in a sudden increase or
decrease of the ICI curves that were affected by the interaction. This should
be perfectly captured by the derivatives.

Even though the conceptual transfer seems straightforward, the interpretation
of the derivative plots should be adjusted slightly. First, one should not expect
that the plots are constant in the case when no interaction is existent. Figure
10.4 shows for the model with no interaction effect that, there is also some
altitude in the derivatives. However, this is approximately equally distributed
over the feature’s range of values and therefore, it is reasonable to assume that
there is no interaction effect.

Secondly, by contrast to the derivative of the ICE curves, it is to be expected
that the derivatives of the ICI curves are both, negative (descending curves)
and positive (ascending curves). The respective d-ICI plot (see figure 10.5) for
simulation 2 depicts a distinguished picture. Over the whole range of values,
the derivatives are comparably low in magnitude, except for the derivatives
at x2 = 2.

Without going into further detail at this point, one can conclude that d-ICI
plot seems to be a valid method to obtain a more robust indicator for inter-
action effects. Besides, the plots directly reveal where the interaction effect
triggers which constitutes an important property when aiming for better in-
terpretability.

However, even if the d-ICI plots are sometimes convenient choices to detect
interaction effects, they are still only applicable if some properties hold. First,
and that is the most crucial one, the interaction effects shall not be existent
over the entire range of values of the considered feature. If so, one cannot
identify a single spot within the range where the feature becomes initially
more important. Hence, the d-ICI plot is expected to take a similar shape as
if no interaction was existent.

Secondly, the d-ICI plot is only assumed to yield unambiguous results, if
the interaction effect is strong enough. However, this must not necessarily
be interpreted as a limitation. It merely shows that the second-order effect
(interactions between two features) should not be decisively smaller than the
first-order effect (main effect of the feature). If the second-order effect is too
small, then it is open for discussion whether detecting this interaction effect
is even decisive for interpreting the machine learning model.
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FIGURE 10.4: Simulated data (simulation 1): d-ICI plot for feature x2. The
d-ICI plot shows a less clear structure of the derivatives. This corresponds to
a the case where the respective feature does not interact

FIGURE 10.5: Simulated data (simulation 2): d-ICI plot for feature x2. The
d-ICI plots shows a distinguished amplitude at x2 = 2. This finding is in line
with the interaction effect between x2 and x3.
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10.2.2 Explain Interactions

So far it is understood that PI and ICI plots do probably not provide the
clearest insights on whether interaction effects exist or not. Yet, calculating
the Individual Conditional Importance allows implementing d-ICI plots which
provide better insights.

Still, it is not clarified between which features the interaction takes place.
Enabling this would have a major impact on the interpretability of machine
learning models. The following will introduce a reliable method that resolves
the issue of a lack of explanatory power for interaction effects. These results
will then be complemented by the insights from the previous simulations to
obtain a full picture of the heterogeneity in Feature Importance.

10.2.2.1 Drivers for Heterogeneity in Feature Importance

Chapter 10.1 highlighted the fact the taking the integral of the Individual
Conditional Importance yields the aggregated Feature Importance for each
observation. This property can be used to predict the global Feature Impor-
tance for each observation concerning the remaining covariates. If interaction
exists, for instance a d-ICI plot suggests, then a significant relationship with
at least one other feature should be yielded.

Here, it is still not clarified which learner is the most suited. Ideally, one
would like to yield sparse results where noise is not fitted. This would prevent
that other independent features are included in the model. This property
would hold for any regularized regression model. Yet, it would be additionally
convenient if the learner would additionally output the threshold were the
interaction takes place.

Both desired properties hold best when inducing a decision-tree with a tree-
depth of 1. This configuration is quite robust against noise and the returned
split point indicates the threshold for which the conditional Feature Impor-
tance should be calculated.

In conjunction with the results from the d-ICI plots, one obtains a complete
understanding of the nature of the interaction effect. These insights can then
be used to later calculate and visualize the conditional Feature Importance.

Figure 10.6 visualizes the fitted decision tree. The results show that the Fea-
ture Importance of x2 is distinctly larger for values x3 < 0.5. As x3 is a binary
variable, either taking the value 0 or 1, the results show that if and only
if x3 = 0, interaction takes place. In the case of only one interaction effect
between two covariates, the decision tree should yield stable results.

However, there might be several interaction effects taking place so that a
decision-tree with tree-depth = 1 is insufficient. Still, this poses no actual
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FIGURE 10.6: Simulated data (simulation 2): The decision stump reveals
the interaction between x2 and x3. The split node gives information about
where the interaction takes place.

problem as this method is in general not restricted to a specific learner. How-
ever, it would be still advantageous to preserve the Importance dimension.
Hence, fitting a random forest model would be a suitable method. As the
main idea should be clear, it will be refrained from going more into detail at
this point.

10.2.2.2 Conditional Importance plots

With results from above, one can now calculate the Conditional Individual
Importance of the feature x2. Therefore, one just simply subdivides the Indi-
vidual Conditional Importance into the respective groups. Meaning, calculate
the PI for x2 for all observations where x3 = 0 and for all observations where
x3 = 1. As the plot below shows, the PI for the observations where the inter-
action triggered is above average and hence, the observations with x3 = 1 are
below average over the entire range.
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FIGURE 10.7: Simulated data (simulation 2): The conditional Feature Im-
portance plot visualizes the impact of the interaction effect on the heterogene-
ity in Feature Importance.

Finally plotting the conditional Feature Importance (see figure 10.7) indeed
confirms the interaction effect and its impact on the Feature Importance. Be-
sides, to get there, some additional interesting insights were obtained. Now,
it is known between which features and where in the feature’s range of values
the interaction effect takes place. With the conditional Feature Importance,
one can even quantify the difference and therefore measure the impact of
the interaction effect. Concluding, that the initially observed heterogeneity is
understood to its full extent.

Applying this on a real data application would then allow a more meaningful,
contextual interpretation.
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10.2.3 Stress Methods in a Non-Linear Relationship Setting

When trying to detect interaction effects, it was already seen that the inherent
heterogeneity diffuses a clear and unambiguous pícture. However, with some
background knowledge and the d-ICI plot, it was still possible to reliably
detect the interaction effect.

Still, it seems reasonable to further validate the robustness of these methods
within a data-generative model with a non-linear relationship. By doing so,
it can be assessed whether the methods still detect interaction effects even
though additional inherent heterogeneity is introduced. For this purpose, con-
sider the following data-generative model:

y = x1 − 5 ∗ sin(x2) + x3 + 5x21x2>2,x3=0 + ϵ

x1
i.i.d∼ N (0, 1), x2

i.i.d∼ N (1, 4) and x3
i.i.d∼ B(1, 0.5), ϵ

i.i.d∼ N (0, 1)

Inducing further heterogeneity by including the sinus function seems appro-
priate as heterogeneity is “uniformly” distributed over the feature’s range of
values. The function values are bounded by -1 and 1, so that the heterogeneity
is controlled and does not exceed extreme values.

The plotted PI curve (see figure 10.8) indicates that the Feature Importance
for x2 > 5 is above the average. Therefore, one might conclude that interaction
which makes the feature more important takes place in this area. Disentangling
the PI curve into its components yields a slightly different picture. It shows
a steep descent of some curves at x2 = 2 and descending but also ascending
curves at x2 = 5. Compared to the PI curves, the ICI curves allow a more
detailed analysis of the heterogeneity. But, still it is not clarified whether
interaction takes place at x2 = 2 or x2 = 5.

Hence, again the derivatives can be calculated and plotted as shown below
(see figure 10.9).

Despite the additional heterogeneity, the d-ICI plots still disentangles the
diffused picture and uniquely identifies the interaction effects. It can be seen
that the largest descent of the ICI curves takes place at x2 = 2. It further can
be excluded that an interaction effect takes place at x2 = 5.

Of course, as it is known that the feature is sinusoidally distributed, the steep
ascent of the ICI curves at x2 = 5 could have been explained. Having a closer
look at the ICI plot it also reveals that the ascent is gradually increasing
which does not hold for the ascent at x2 = 2. But still, it can be concluded
that within this setting, the PI and ICI plots are not very telling.
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FIGURE 10.8: Simualated data (simulation 3): PI Plot and ICI Plot corre-
sponding to the variable x2.

10.3 Real Data Application: Boston Housing

Before this chapter will be closed by a brief discussion and an outlook for
further research, the introduced methods will be now applied to real data.
Doing so is important for final validation. Only if it can be shown that these
methods apply to real data, they can be assessed as useful.

Pursuing this objective, we will calculate the PFI, PI, and ICI for the predic-
tors of the Boston Housing dataset. In this setting, it is of interest to predict
and explain the “median value of owner-occupied homes in USD1,000$. In a
pre-analysis, the predictor variable lstat was chosen to conduct further anal-
yses. Briefly, lstat measures the percentage share of lower status people in
the population and from an economic perspective, it is assumed that there is
a significant relationship between the predictor and the outcome variable.
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FIGURE 10.9: Simulated data (simulation 3): d-ICI plot for variable x2.
Calculating and plotting the derivatives of the ICI curves, reveals the spot
where interaction takes place.

As in the simulation analysis, the model is fitted equivalently by a random
forest model and the calculation of the Importance metrics follows the same
principle. The PI and ICI plots below, allow a first interpretation of the Fea-
ture Importance.

The PI plot reveals that on average the explanatory power of lstat becomes
decisively larger for values below 10. Briefly, if the percentage of people with
lower status is below 10%, the variable becomes a more important constitute
of the predictive model. The ICI plot confirms this result and shows some ad-
ditional heterogeneity in this area which, however, is hard to interpret within
this visualization setting. Therefore, again, the derivatives of the ICI curves
can be calculated to detect the heterogeneity more comprehensively.

The d-ICI plot for the feature lstat additionally confirms the heterogeneity,
visible in the ICI plot. Especially at lstat = 10 a significant amplitude can
be identified. This indicates that an interaction between lstat and another
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FIGURE 10.10: Boston Housing Data: PI and ICI plot for feature ‘lstat‘. A
clear and not uniformly distributed heterogeneity can be observed.

covariate takes place in the area around lstat <= 10. Given this insight, it is
now to be determined with which covariate the feature “lstat” interacts. There-
fore, we again predict the integral of each observation’s Feature Importance
concerning the remaining covariates.

At this point, one has gained a rather complete picture of why there is hetero-
geneity in the Feature Importance of the feature “lstat”. Therefore, one can
now calculate the Conditional Feature Importance of lstat on the variable
dis. Plotting the conditional curves (see figure 10.13), confirms the analysis
of the previous results. Even though the results are not as distinguished as in
the simulation settings, the interaction taking place is still clearly visible.

With the insights from the Real Data Application, one can conclude that the
presented methods also work beyond the simulation setting and is, therefore,
applicable for explaining heterogeneity in Feature Importance within a ma-
chine learning model. Yet, the heterogeneity problem was merely discussed
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FIGURE 10.11: Boston Housing Data: d-ICI plot for feature ‘lstat‘. The
plot provides further insights on the initially observed heterogeneity.

in the context of interaction effects. It could be further discussed whether it
might be even possible to identify the structural relationship between a fea-
ture and the response. Besides, it would be also interesting to investigate the
PI and ICI plots in the context of correlated features.
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FIGURE 10.12: Boston Housing Data: Explain Interaction Effects for fea-
ture ‘lstat‘. The decision stump identifies the interaction between feature ‘lstat‘
and feature ‘dis‘. Again the split point indicates where the interaction effect
takes place.

FIGURE 10.13: Boston Housing Data: Conditional Importance Plot. Im-
portance of ‘lstat‘ conditional on values of ‘dist‘
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10.4 Discussion

So far, it was stressed to what extent the PI and ICI plots are suitable tools
to obtain a better interpretation of Feature Importance. To give this a final
evaluation, the critical assessment is subdivided into two parts. The first part
will summarize the capabilities of the visualization tools. The second part will
explore the possibilities that have arisen through the data obtained.

The simulation chapter revealed that the ICI and PI plots are indeed able
to visualize heterogeneity but both had its limitations when trying to detect
interaction effects. First, even though no heterogeneity was expected, the PI
and ICI plot still visualized heterogeneity. Even though it can be explained
by the distributional properties of the feature, it can lead to confusion. One
could circumvent the problem by weighting the local Feature Importance of
each observation with its respective probability mass. This would “squash”
the curves to a linear shape and merely only deviations from that could be
interpreted as a proper heterogeneity. Second, when a non-linear relationship
between response and the feature was induced, both methods did not yield
robust and reliable results.

Further, it was argued that explaining interactions is as important as detecting
interaction effects. Even if the ICI plots were able to detect interaction effects,
it was not possible to explain them. Briefly, between which features and where
did the interaction take place.

Concluding, the visualization of PI and ICI does indeed disentangle the global
PFI metric but has its non-negligible limitations when interpreting the results
properly.
Even though the PI and ICI plots themselves are very limited in its explana-
tory power, it was still possible with the underlying data to create a cookbook
that enabled a full picture. The d-ICI plots represent a robust method for de-
tecting interactions, even in a “messy” non-linear relationship. It turned out
that calculating the approximated Feature Importance was easy to implement
and therefore posed no major challenge. Further, as the Partial Importance
was already calculated it was not difficult to implement a method which ex-
plains between which features interaction takes place. Solving that, one can
calculate the conditional Feature Importance and therefore, finally visualize
the actual effect of the interaction on Feature Importance.

Concluding, even though the PI and ICI plots have its limitations, the under-
lying data represents an exhaustive foundation for yielding a complete picture
of the heterogeneity. Therefore, it can be stated that disentangling the global
PFI into its components is a valid and insightful approach to better under-
stand what exactly drives the predictions of a machine learning model.
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In this chapter we will deal with the question whether we should use test or
training data to calculate permutation feature importance. First of all we’ll
give a short overview of the interesting components.

Permutation Feature Importance (PFI)

In order to calculate the impact of a single feature on the loss function
(e.g. MSE), we shuffle the values for one feature to break the relationship
between the feature and the outcome. Chapter 8 contains an introduction to
permutation feature importance.

Dataset

In this chapter, we consider two partitions of a dataset D:

• Dtrain: Training data, used to set up the model. Overfitting and underfitting
is possible

• Dtest: Test data used to check if the trained model works well on unseen
data.

In this chapter, we focus on answering the following three questions:

1. When should I use test or training data to compute feature impor-
tance?

2. How is the permutation feature importance of test or training data
affected by over- and underfitting?

3. Does correlation influence the decision what kind of data to use?

177
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11.1 Introduction to Test vs. Training Data

In addition to the question of how permutation feature importance should be
used and interpreted, there is another question that has not yet been discussed
in depth: Should the feature importance be calculated based on the test or
the trainig data? This question is more of a philosophical one. To answer it
you have to ask what feature importance really is (again a philosophical topic)
and what goal you want to achieve with feature importance.

So what is the difference of calculating the permutation feature importance
based on training or test data? To illustrate this question we will employ an
example.

Imagine you have a data set with independent variables - so there is no cor-
relation between the explanatory and the target variables. Therefore, the per-
mutation feature importance for every variable should be around 1 (if we use
ratios between losses). Differences from 1 stem only from random deviations.
By shuffling the variable, no information is lost, since there is no information
in the variable that helps to predict the target variable.

Let us look again at the permutation feature importance algorithm based on
Fisher, Rudin, and Dominici (2018):

Input: Trained model f , feature matrix X, target vector y, error measure
L(y, f(X))

1. Estimate the original model error eorig = L(y, f(X)) (e.g mean
squared error)

2. For each feature j = 1, ..., p do:
•Generate feature matrix xperm by permuting feature j in the

data X
•Estimate error eperm = L(y, f(Xperm)) based on the predic-

tions of the permuted data,
•Calculate permutation feature importance PFIj =

eperm/eorig. Alternatively, the difference can be used:
PFIj = eperm − eorig

3. Sort features by descending FI.

The original model error calculated in step 1 is based on a variable that is
totally random and independent of the target variable. Therefore, we would
not expect a change in the model error calculated in step 2: eorig = E(eperm).

This results in a calculated permutation feature importance of 1 or 0 - depend-
ing on which calculation method from step 2 is used.
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If we now have a model that overfits - so it “learns” any relationship, then we
will observe an increase in the model error. The model has learned something
based on overfitting - and this learned connection will now be destroyed by the
shuffling. This will result in an increase of the permutation feature importance.
So we would expect a higher PFI for training data than for test data.

After this brief review of the fundamentals of permutation feature importance,
we now want to look in detail at what we expect when feature importance is
calculated on training or test data. To do this, we distinguish different models
and data situations, discuss them theoretically first and then look at the real
application - both on a real data set as well as on self-created “laboratory”
data.

11.2 Theoretical Discussion for Test and Training Data

When to use test or training data?

At the beginning, we will discuss the case for test data and for training data
based on Molnar (2019).

Test data: First, we will focus on the more intuitive case for test data. One of
the first things you learn about machine learning is, that one should not use
the same data set on which the model was fitted for the evaluation of model
quality. The reason is, that results are positively biased, which means that
the model seems to work much better than it does in reality. Since the permu-
tation feature importance is based on the model error we should evaluate the
model based on the unseen test data. If the permutation feature importance
is calculated on the training data instead, the impression is erroneously given
that features are important for prediction. The model has only overfitted and
the feature is actually unimportant.

Training data: After the quite common case for test data we now want to focus
on the case for training data. If we calculate the permutation feature impor-
tance based on the training data, we get an impression of what features the
model has learned to use. So, in the example mentioned above, a permutation
feature importance higher than the expected 1 indicates that the model has
learned to use this feature, even though there is no “real” connection between
the explanatory variable and the target variable. Finally, based on the training
data, the PFI tells us which variables the model uses to make predictions.

As you can see there are arguments for the calculation based on tests as well
as training data - the decision which kind of data you want to use depends
on the question you are interested in: How much does the model rely on the
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respective variable to make predictions? This question leads to a calculation
based on the training data. The second possible question is as follows: How
much does the feature contribute to model performance on unknown data? In
this case, the test data would be used.

11.3 Reaction to model behavior

What happens to the PFI when the model over/underfits?

In this section we want to deal with the PFIs behavior regarding over- and
underfitting. The basic idea is that the PFI will change depending on the fit
of the model.

In order to examine this thesis we have decided to proceed as follows:

1. Choose a model that is able to overfit and underfit

2. Perform a parameter tuning to get the desired fit

3. Run the model

4. Check for PFI on test and training data based on the aforemen-
tioned algorithm by Fisher, Rudin, and Dominici (2018)

We have chosen the gradient boosting machine as it is very easy to implement
overfitting and underfitting.

In the following sub-chapter we will give a short overview of the gradient
boosting machine.

11.3.1 Gradient Boosting Machines

Gradient boosting is a machine learning technique for regression and classifica-
tion problems, which produces a prediction model in the form of an ensemble
of weak prediction models, typically decision trees. It builds the model in a
stage-wise fashion like other boosting methods do, and it generalizes them by
allowing optimization of an arbitrary differentiable loss function.

How does a gradient boosting machine work?

Gradient boosting involves three elements:

1. A loss function to be optimized
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• The loss function used depends on the type of problem being solved
• Must be differentiable

2. A weak learner to make predictions

• Decision trees are used as the weak learner
• Constrain the weak learners in specific ways (maximum number of layers,

nodes, splits or leaf nodes)

3. An additive model to add weak learners to minimize the loss func-
tion

• Trees are added one at a time, and existing trees in the model are not
changed

• A gradient descent procedure is used to minimize the loss when adding trees

To get an impression what a Gradient Boosting Machine does, we want to
give a short (and naive) example in pseudocode:

1. Fit a model to the data: F1(x) = y
2. Fit a model to the residuals: h1(x) = y − F1(x)
3. Create a new model: F2(x) = F1(x) + h1(x)

Generalize this idea: F (x) = F1(x) 7→ F2(x) = F1(x) + h1(x)... 7→ FM (x) =
FM−1(x) + hM−1(x)

FIGURE 11.1: Simplified visualization of a gradient boosting machine. One
trains a model based on the data. Then you fit a model to the resulting
residuals. The result is then used to create a new model. This process is
repeated until the desired result is achieved.

The over- and underfitting behavior of gradient boosting machines can be
controlled via several regularization hyperparameters. An overfitting model
can be trained by setting e.g. a high max_depth, i.e. the depth of trees fitted
in each iteration, or a low min_bucket, i.e a low minimum of samples that
need to be present in each leaf in order to allow for further splitting. Vice-
versa, an underfitting can be created by adjusting the hyper-parameters in
the opposite direction. This results in a very flexible algorithm, that allows us
to cover various situations between underfitting, good fit and overfitting.
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11.3.2 Data sets used for calculations

As Mentioned above, we want to use to different data sets:

1. A self-created data set with pre-specified correlation structure.

2. A real data set to see if the observations made under “laboratory
conditions” can also be observed in the real world.

Our self created data set looks as follows:

• Uncorrelated features which leads to a 0/1-classification
• x1, x2, x3 and x4 normally distributed with zero mean and standard devia-

tion of 1
• Target variable based on linear function with a bias.
• Same data set with 2 highly correlated features x1 and x2 (correlation of

0.9)

The second data set is the IBM Watson Analytics Lab data for employee
attrition:

• Uncover factors that lead to employee attrition

• Dataset contains 1470 rows

Used Features:

– Overtime
– Job Satisfaction
– Years at Company
– Age
– Gender
– Business Travel
– Monthly Income
– Distance from home
– Work-Life-Balance
– Education
– Years in current role

With these data sets, several models are fitted in order to generate over- and
underfitting. The results are listed in the following section

11.3.3 Results

In this section we want to give an overview of the results of the comparison
between the calculation of permutation feature importance based on the test
and the training data.
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We will start with the uncorrelated self created data set. Then the correlated
self created data set and in the end we will have a look at the IBM Watson
Employee Attrition data set.

Self created Data Set without Correlation

First, we will have the two permutation feature importance plots for a well
tuned gradient boosting machine. We have four features, created based on the
following formula:

z = 1 + 2 ∗ x1 + 3 ∗ x2 + x3 + 4 ∗ x4

On the x-axis you can see the feature importance and on the y-axis the feature.

x4

x2

x1

x3

0.8 0.9 1.0

Feature Importance (loss: mse)

Well-tuned GBM based on uncorrelated test data

FIGURE 11.2: The used features are located on the x-axis. The correspond-
ing permutation feature importance can be found on the y-axis. x4 ist the
most important feature, followed by x2, x1 and x3

As you can see, both plots are quite similar. The order of test and training
data is exactly the same. x4 is the most important feature, followed by x2 and
x1. The least important feature is x3.

Furthermore, the range of the two plots is not the same - but comparable. The
PFI-plot based on test data has a range from 1 to 2.4 and the PFI-plot based
on training data from 1.1 to 4. This indicates still an overfit of the GBM.

Now, we used the same data set but an overfitting GBM. You can find the
corresponding plots below:

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.
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Well-tuned GBM based on uncorrelated training data

FIGURE 11.3: Again, x4 ist the most important feature, followed by x2, x1
and x3. The range of the PFI values differes from 1 - 4 and is therefore wider
than the range regarding the test data
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FIGURE 11.4: For an overfitting GBM the order for test data is the same
as seen before in the well fitted case. The range of the test data is quite the
same as before.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.



188 11 PFI: Training vs. Test Data

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.



11.3 Reaction to model behavior 189

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

x4

x2

x1

x3

0.7 0.8 0.9

Feature Importance (loss: mse)

Overfitted GBM based on uncorrelated training data

At first sight these two plots look very similar to the first two. The order
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of the features has remained the same and the relative distances to each
other are also very similar. It is also noticeable that the plot regarding the
test data has hardly changed - whereas the range of the permutation feature
importance based on training data has become much wider. This is a typical
behavior of overfitting in terms of feature importance, since the models learns
to use a variable “better” than it actually is.

The last 2 plots for the uncorrelated data set are the ones of an underfitting
GBM:
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FIGURE 11.5: PFI plot of an underfitting GBM based on test data. The
importance is now reduced with highest value at around 1.6 in contrast to 2.4
before. Furthermore, x1 is the least important feature now.

## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table



194 11 PFI: Training vs. Test Data

## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table



11.3 Reaction to model behavior 195

## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

## Warning in use.package("data.table"): data.table
## cannot be used without R package bit64 version 0.9.7 or
## higher. Please upgrade to take advangage of data.table
## speedups.

x4

x2

x1

x3

0.75 0.80 0.85 0.90 0.95 1.00

Feature Importance (loss: mse)

Underfitted GBM based on uncorrelated training data

With the plots for an underfitting GBM it is noticeable that the range is
almost the same - but at a low level (from 1-1.8 or 1-1.6). Most noticeable,
however, is that the order has changed. Based on the test data, x1 is now
the least important variable. Overall, the feature importance decreases - and
therefore a change in the positions becomes more probable.

Self created Data Set without Correlation
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Now, we used the same data set but included 2 highly correlated features. The
correlation between x1 and x2 is set to 0.9.

In the first plot the results for a well tuned GBM are compared for
test and training data. The noteworthy areas are highlighted in red.

FIGURE 11.6: For the well fitted GBM at the correlated self created data
set, the order differs. For the test data x4 ist the most important feature
followed by x1, x2 and x3 whereas for the training data x2 and x3 changed
places

The order of the features has changed - but in the area of features that are
close to 1 (i.e. unimportant features).

In the next plot, we want to compare test and training data per-
mutation feature importance of an overfitting GBM:

The range for the training data set is much wider again - similar to the
range for the uncorrelated data. In addition it is noticeable that the order
has changed in the lower range - which is again due to the fact that the less
important features are close to 1 (i.e. have no influence on the MSE).

The last plot for correlated data used an underfitting GBM:
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FIGURE 11.7: x4 is the most important feature in both plots. Followed by
x1, x3 and x2 in descending order for the test data - and again x2 and x3
changed places for the training data. It has to be stated, that the range for
training data is much wider.

It can be said that the order has remained the same - but x1 x2 and x3 are
very close to a feature importance of 1 (which means: no influence on the
MSE). Furthermore, the range is very comparable.

IBM Watson Data of Employee Attrition

Finally, we will take a look at how test and training data behave outside labo-
ratory conditions with real data. Here we looked at which variables contribute
to an employee leaving the company.

Again, we compared the permutation feature importance of test
and training data set.

The noticeable features are highlighted in green. As with the previous well
fitted GBM, the range is very comparable - the order has also remained the
same, at least in parts. (Overtime is the most important variable in both
cases)
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FIGURE 11.8: x4 is the most important feature in both plots. Followed
by x1, x3 and x2 in descending order. Except x4 all permutation feature
importance values are close to 1

Also here we want to have a look at the behavior at over- and underfitting.

We start again with the plots for overfitting:

There’s really a lot going on here. Both the range (as always with overfitting)
and the order change a lot. The results are not comparable in any way.

Last but not least we will have a look at the underfitting GBM for
the IBM Watson data set:

The range is comparable - but very small (0.9 - 1.2). Again underfitting has a
reducing effect on the feature importance. In addition, the order has changed
extremely (work life balance has changed from the least important variable at
the test data to the most important variable at the training data).
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FIGURE 11.9: For both data sets Overtime is the most important feature.
Furthermore, the 4 least important variables are the same - and in the same
order (Dist from home, WorkLifeBalance, Education and YearsInCurrentRole)

11.3.4 Interpretation of the results

At the end of this sub-chapter we want to answer the question how the permu-
tation feature importance behaves with regard to over- and underfitting. First,
it can be said that in the case of a well fit GBM there are only slight differences
in feature importance. The results on test and training data are in any case
comparable. But now we come to the problems regarding the meaningfulness
of feature importance:

Problems with overfitting:

• Overfitting results in a very strong effect on the MSE only on the training
data

• Furthermore, the order differs a lot

Problems with underfitting:

• The effect on the MSE is low - the results a consistently lower
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FIGURE 11.10: For the test data based on an overfitting GBM, Distance-
FromHome is the most important variable. For the training data it is only
the fourth most important one, wheras Overtime is most important. It can be
stated that the order changed a lot

• As in the overfitting case the order differs a lot

Over- and underfitting has definitely an impact on feature impor-
tance

Our third question was, if correlation does effect the decision whether to use
test or training data for calculating the permutation feature importance:

11.4 Summary

The Question what data set you use for calculation of the permutation feature
importance still depends on what you are interested in:
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FIGURE 11.11: In this Figure it is quite interesting that the order changed
completly. Overtime is the most important variable based on the test data
and is only at place number 8 for the training data. Even more extreme is the
case with WorkLifeBalance

FIGURE 11.12: Visualisation of the impact of correlation on the feature
importance. As you have seen above, correlation is a problem regarding per-
mutation feature importance but does not effect the decision regarding test
vs. training data
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• Contribution to the performance on unknown data?

or

• How much the model relies for prediction?

It was shown that PFI reacts strongly to over- and underfitting:

• PFI on both can be a proxy identifying over- or underfitting

Correlated features have a big influence on the results of feature importance,
but not on the question whether to use test or training data - therefore they
are negligible in this question. Nevertheless, correlations have been shown to
lead to major feature importance problems, as discussed in previous chapters.

Basically it can be said that it has been shown that the model behavior (over-
fitting or underfitting) greatly distorts the interpretation of the feature im-
portance. Therefore it is important to set up your model well, because it was
shown that the differences for a well calibrated model are only small and the
question of choice doesn’t play a big role anymore.
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When doing machine learning we always build models. Models are simplifica-
tions of reality. Even if the predictive power of a model may be very strong, it
will still only be a model. However, models with high predictive capacity do
most of the time not seem simple to a human as seen throughout this book. In
order to simplify a complex model we could use another model. These simpli-
fying models are referred to as surrogate models. They imitate the black box
prediction behavior of a machine learning model subject to a specific and im-
portant constraint: surrogate models are interpretable. For example, we may
use a neural network to solve a classification task. While a neural network
is anything but interpretable, we may find that some of the decision bound-
aries are explained reasonably well by a logistic regression which in fact yields
interpretable coefficients.

In general, there are two kinds of surrogate models: global and local surrogate
models. In this chapter, we will focus on the latter ones.

12.1 Local Surrogate Models and LIME

The concept of local surrogate models is heavily tied to Ribeiro et al. (2016b),
who propose local interpretable model-agnostic explanations (LIME). Differ-
ent from global surrogate models, local ones aim to rather explain single pre-
dictions by interpretable models than the whole black box model at once.
These surrogate models, also referred to as explainers, need to be easily in-
terpretable (like linear regressions or decision trees) and thus may of course
not have the adaptability and flexibility of the original black box model which
they aim to explain. However, we actually don’t care about a global fit in

203



20412 Introduction to Local Interpretable Model-Agnostic Explanations (LIME)

this case. We only want to have a very local fit of the surrogate model in the
proximity of the instance whose prediction is explained.

A LIME explanation could be retrieved by the following algorithm:

1. Get instance x out of the data space for which we desire an expla-
nation for its predicted target value.

2. Perturb your dataset X and receive a perturbed data set Z of in-
creased size.

3. Retrieve predictions ŷZ for Z using the black box model f .

4. Weight Z w.r.t. the proximity/neighborhood to x.

5. Train an explainable weighted model g on Z and the associated
predictions ŷZ .

Return: An explanation for the interpretable model g.

The visualization below nicely depicts the described algorithm for a two-
dimensional classification problem based on simulated data. We start only
with our data split into two classes: 1 and 0. Then, we fit a model that can
perfectly distinguish between the two classes. This is indicated by the sinus-
shaped function drawn as a black curve. We do not perturb the data in this
case. (However, we may argue that our perturbation strategy is to use the
original data. We will more formally discuss perturbation later on.) Now, we
choose the data point, which we want an explanation for. It is colored in yellow.
With respect to this point, we weight our data by giving close observations
higher weights. We illustrate this by the size of data points. Afterwards, we
fit a classification model based on these weighted instances. This yields an
interpretable linear decision boundary – depicted by the purple line. As we
can see, this is indeed locally very similar to the black box decision boundary
and seems to be a reasonable result.

This way we receive a single explanation. This one explanation can only help
to understand and validate the corresponding prediction. However, the model
as a whole can be examined and validated by multiple (representative) LIME
explanations.

12.2 How LIME works in detail

So far so good. However, the previous outline was not very specific and leaves
(at least) three questions. First, what does neighborhood refer to? Second,
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FIGURE 12.1: Simplified graphical representaion of the LIME algorithm.
Each single panel represents one step of the described algorithm. It reads
from left to right.
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what properties should suitable explainers have? Third, what data do we use,
why and how do we perturb this data?

To better assess these open questions it may be helpful to study the math-
ematical definition of LIME. The explanation for a datapoint x, which we
aim to interpret, can be represented by the following formula:

explanation (x) = arg mingϵG L (f, g, πx) + Ω (g)

Let’s decompose this compact, yet precise definition:

x can be an instance that is entirely new to us as long as it can be repre-
sented in the same way as the training data of the black box model. The final
explanation for x results from the maximisation of the loss-like fidelity term
L (f, g, πx) and a complexity term Ω (g). f refers to the black box model we
want to explain and g to the explainer. G represents the complete hypothesis
space of a given interpretable learner. The explanation has to deal with two
trade-off terms when minimizing: The first term L (f, g, πx) is responsible to
deliver the optimal fit of g to the model f while a low loss is desirable in-
dicating high (local) fidelity. The optimal fit is only found with respect to a
proximity measure πx(z) in the neighborhood of x.

12.2.1 Neighborhood

This leads us to the first open question: What does neighborhood refer to?
neighborhood is a very vague term. This is for good reason because a priori it is
not clear how to specify a neighborhood properly. Technically, there are many
different options to deal with this issue. Weighting the observations w.r.t. their
distance to the observation being explained seems like a good idea. This may
be implemented as an arbitrarily parametrized kernel. However, this leaves
in total many scientific degrees of freedom which makes the neighborhood
definition somewhat problematic. This neighborhood issue will be discussed
in more detail in the next chapter.

12.2.2 What makes a good explainer?

We already answered the second open question – what properties suitable
explainers should have – in parts. We mentioned the interpretability property
and outlined generalized linear models or decision trees as examples. However,
we did not discuss further desired properties of these models. Since they have
strong assumptions, it is unlikely that they are capable of maintaining an
optimal fit to the original black box model. Recall our formula. As we want
local optimal fit subjected to a certain (low) degree of explainer complexity –
in order to allow interpretation – our formula needs to facilitate this aspect.
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Ω (g) is our complexity measure and responsible to choose the model with the
lowest complexity. For example, for decision trees, tree depth may describe
the complexity. In the case of linear regression, the L1 norm may indicate how
simple the interpretation has to be. The resulting LASSO model allows us to
focus only on the most important features.

12.2.3 Sampling and perturbation

Having answered the first two open question we still have the last question
related to the data and the perturbation unresolved. Besides the tabular data
case, we can also interpret models trained on more complex data, like text data
or image data. However, some data representations (e.g. word embeddings)
are not human-interpretable and must be replaced by interpretable variants
(e.g. one-hot-encoded word vectors) for LIME to yield interpretable results.
The function modeled by the black box model operates in the complete feature
space. It can even yield predictions for instances not seen in the training data.
This means that the original data does not sufficiently explore the feature
space. Hence, we want to create a more complete grid of the data and fill the
feature space with new observations so that we can better study the behavior
of the black box model. Still, the data for the explainer should be related to
the original data. Otherwise the explainer may be ill-placed in space having
nothing in common with the original problem anymore. This is why we perturb
the original data. But how does perturbation work? This is a priori not clear
at all. For categorical features, perturbation may be realized by randomly
changing the categories of a random amount of features, or even recombining
all possible levels of these. Numerical features may be drawn from a properly
parametrized (normal) distribution. The perturbed data set, which is used to
train the explainer, should be much larger than the original one and supposed
to better represent the (possible) feature space, giving the surrogate model
more anchor points – especially in sparse areas. Further details on this topic
will be studied in the next chapters.

12.3 Example

A fully implemented example of LIME can be seen in the following code
block with its resulting plot. In the latter we can observe how much each
feature contributes to the surrogate model’s prediction and to what extend
this prediction offers a good fit on the black box model (‘Explanation Fit’
between 0 and 1).
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library(lime)

##
## Attaching package: 'lime'

## The following object is masked from 'package:generics':
##
## explain

## The following object is masked from 'package:dplyr':
##
## explain
library(mlr)

# separate data point we want to explain
to_explain = iris[ 1, 1:4]
train_set = iris[-1, ]

# create task and calculate black box model
task_iris = makeClassifTask(data = train_set,

target = "Species")
learner = makeLearner("classif.randomForest",

ntree = 200, predict.type = "prob")
black_box = train(learner, task_iris)

# use lime to explain new data point
explainer = lime(train_set[, 1:4], black_box)
explanation = explain(to_explain,

explainer,
n_labels = 1,
n_features = 4)

plot_features(explanation)

12.4 Outlook

The definition of LIME still seems after all very rough and vague. This leaves
us many scientific degrees of freedom when implementing it – for the good
and for the bad. For example, we see that the model f can be any machine
learning model that exists. This gives us the opportunity to drastically change
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FIGURE 12.2: Basic example of a LIME application. We create a black box
model on the iris dataset without the first data point and then explain the
prediction of this point with LIME.

the underlying predictive model while keeping the same explainer g with the
same complexity constraints.

On the other hand, LIME being a very generic approach also means
that many “hyperparameters”, like the neighborhood definition or the sam-
pling/perturbation strategy, are arbitrary. Hence, it is likely that in some use
cases LIME explanations heavily depend on changing the hyperparameters.
In these cases, the explanations can hardly be trusted and should be treated
with great care.

The following two chapters will focus on two very significant hyperparameters:
the neighborhood definition and the sampling strategy. They will investigate
how these affect the results of the method and their interpretability. We will
emphasize the coefficient stability of LIME explainers in order to illustrate
the trustworthiness of the results.
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This section will discuss the effect of the neighborhood on LIME’s explanations.
This is in particular critical for tabular data. Hence, we will limit ourselves to
the analysis of tabular data for the remainder of this chapter.

As described in the previous chapter, LIME aims to create local surrogate
models – one for each observation to be explained. These local models operate
in the proximity or neighborhood of the instance to be explained. They are
fitted based on weights which indicate their proximity to the observation to be
explained. The weights are typically determined using kernels that transform
the proximity measure.

The proper parametrization of the kernel is obviously important. However, this
is true for any approach that uses kernels, such as kernel density estimations.
Figure 13.1 illustrates kernel densities from a standard normal distribution.
We applied different kernel widths for the curve estimation.

One can easily see that the left panel seems to be appropriate while the right
one is too granular. The proper definition of the neighborhood is very crucial
in this case. However, with no prior information, this definition is arbitrary.
1 We can only judge on the proper definition of the neighborhood from our
experience and our expectations. This may work in low dimensional problems
and descriptive statistics. However, machine learning models operate in mul-
tivariate space and mostly tackle complex associations. Thus, it seems much
harder to argue on the proper neighborhood definition when working with
LIME.

This chapter reviews the neighborhood issue of the LIME algorithm critically.
The objective of this chapter is rather to outline this particular issue and not
to suggest solutions for it. First of all, it describes the neighborhood definition
abstractly in greater detail (section 13.1). Then, it illustrates how problem-
atic the neighborhood definition can be in a simple one-dimensional example
in section 13.2. Furthermore, we study the effect of altering the kernel size
more systematically in more complex contexts in the next section (13.3). This

1Note that heuristics exist, though.
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FIGURE 13.1: In(appropriate) kernel widths for kernel density estimations.
The left panel illustrates an appropriate kernel width. The right one features
an inappropriate one.

section deals with both, simulated (13.3.1) and real (13.3.2) data. The first
subsection of the simulation (13.3.1.1) investigates multivariate globally linear
relationships. The second one (13.3.1.2) researches local coefficients. The third
one (13.3.1.3) studies non-linear effects. Section 13.3.2 uses the Washington
D.C. bicycle data set to study LIME’s neighborhood in a real-world appli-
cation. Afterwards, in section 13.4, we discuss the results and contextualize
them with the existing literature. After concluding, we explain how LIME was
used and why in section 13.5.

13.1 The Neighborhood in LIME in more detail

When obtaining explanations with LIME, the neighborhood of an observation
is determined when fitting the model by applying weights to the data. These
weights are chosen w.r.t. the proximity to the observation to be explained.
However, there is no natural law stating that local models have to be found this
way. Alternatively, Craven and Shavlik (1996) show that increasing the density
of observations around the instance of interest is very helpful to achieve locally
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fidele models. Hence, locality could be obtained in many more different ways
than weighting observations combined with global sampling as it is in LIME.
After sampling, the data points are weighted w.r.t. their proximity to the
observation to be explained. One possible alternative to this procedure might
be to combine steps 2 (sampling) and 4 (weighting) of the LIME algorithm 2 to
a local sampling. This way we would increase the density around the instance
already by proper sampling. In fact, Laugel et al. (2018) claim that this way
should be preferred over the way LIME samples. In this chapter, however, we
focus on the explicit implementation of LIME and analyze how the weighting
strategy ceteris paribus affects surrogate model accuracy and stability.

When working with LIME, the weighting of instances is performed using a
kernel function over the distances of all other observations to the observation
of interest. This leaves us arbitrary (in fact, they may not be that arbitrary)
choices on two parameters: the distance and the kernel function. Typical dis-
tance functions applicable to statistical data analysis are based on the L0,
L1 and L2 norms. For numerical features, one tends to use either Manhat-
tan distance (L1) or Euclidean distance (L2). For categorical features, one
would classically apply Hamming distance (L0). For mixed data (data with
both categorical and numerical features), one usually combines distances for
numerical and categorical features. So does Gower’s distance (Gower (1971))
or the distance proposed by Huang (1998):

dH(xi, xj) = deuc(xi, xj) + λdham(xi, xj)

with deuc referring to the Euclidean distance and dham to the Hamming dis-
tance. deuc is only computed for numerical and dham only for categorical
ones. λ steers the importance of categorical features relative to numerical ones.
Huang (1998) recommends setting λ equal to the average standard deviation
of the numerical features. For scaled numerical features (standard deviation
is one) this metric is equivalent to the Euclidean distance. It is important
to note that despite these existing measures it may be challenging to prop-
erly determine distances for mixed data. For text data, Ribeiro et al. (2016b)
recommend using cosine distance and Euclidean distance for images.

For the kernel function itself, there are two parameters to be set. First of all,
the type of kernel. Second, the kernel width. By default, the R implementation
uses an exponential kernel where the kernel width equals the square root of
the number of features.

The choice of the distance measure seems least arbitrary. Furthermore, the
choice of the kernel function is not expected to have the most crucial impact
on the neighborhood definition. Thus, we focus on the kernel width in our
experimental study.

2Refer to the previous chapter.
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13.2 The problem in a one-dimensional setting

How crucial the proper setting of the kernel width can be, is illustrated by a
very simple example. We simulate data with one target and two features. One
feature is pure noise and the other one has a non-linear sinus-like effect on the
target. If we plot the influential feature on the x-axis and the target on the
y-axis, we can observe this pattern in figure 13.2.

FIGURE 13.2: Simulated data: The non-linear relationship between the
feature and the target.

Now we fit a random forest on this data situation which should be able to
detect the non-linearity and incorporate it into its predictive surface. We ob-
serve that the predictions of the random forest look very accurate in figure
13.3. Only on the edges of the covariate (where the density is lower) the ran-
dom forest turns out to extrapolate not optimally.

LIME could now be used to explain this random forest locally. “Good” local
models would look very different w.r.t. the value of the feature, x1. For exam-



13.2 The problem in a one-dimensional setting 215

FIGURE 13.3: Simulated data: Random forest predictions for non-linear
univariate relationship. The solid line represents the true predictive surface.

ple, we could describe the predictions locally well by piece-wise linear models.
This is depicted in figure 13.4.

LIME should be able to find these good local explanations – given the right
kernel size. Let’s select one instance which we want an explanation for. We il-
lustrate this instance by the green point in figure 13.5. This particular instance
can be approximately linearly described by a linear regression with intercept
60 and slope −4.5. If we set the kernel width to 0.08, we fit this local model.
This is indicated by the red line in figure 13.5. However, if we increased the
kernel width to 2, the coefficients change to −2.84 (intercept) and 0.64 (slope)
(on average) which seems drastically distorted as observed by the yellow line
in figure 13.5. The yellow line does not seem to fit a local linear model but
rather a global one.

As a next step, we review explanations resulting from altering the kernel size
in figure 13.6 more systematically. We average over many different models to
achieve more robust local models. We do that because we observe some coeffi-
cient variations resulting from the (random) sampling in the LIME algorithm.
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FIGURE 13.4: Simulated data: Non-linear univariate relationship explained
by a piece-wise linear model.

In figure 13.6 (upper panel) we see these averaged models for different kernel
sizes. We observe that the larger we set the kernel size, the more we converge
to a linear model that operates globally. The largest three kernel sizes (0.5,
1 and 2) appear very global while 0.05 and 0.1 seem to fit good local mod-
els. 0.25 and 0.3 are neither global nor very local. This is very intuitive and
complies with the idea of a weighted local regression.

Additionally, we analyze the same alteration of the kernel size for an observa-
tion where a good local approximation would be a linear model with a positive
slope in the lower panel of figure 13.6. We observe a similar behavior.

This behavior is not necessarily a problem but only a property of LIME. How-
ever, it can be problematic that the appropriate kernel size is not a priori clear.
Additionally, there is no straight forward way to determine a good kernel width
for a given observation to be explained. The only generic goodness-of-fit cri-
terion of LIME, model fidelity, is not necessarily representative: If we set the
kernel size extremely small there will be many models with an extremely good
local fit as local refers only to a single observation. In our examples, it looks
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FIGURE 13.5: Simulated data: Possible local (LIME) models for the non-
linear univariate relationship.

as if a very small kernel size should be preferred. A small kernel width indeed
grants local fit. But what a small kernel width means, also strongly depends
on the dimensionality and complexity of the problem.

13.3 The problem in more complex settings

The previous setting was trivial for LIME. The problem was univariate and
we could visualize the predictive surface in the first place. This means that
interpretability was mostly given. We will study our problem in more complex
– non-trivial – settings to show that it persists. We will do so by examining
simulated and real data.
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FIGURE 13.6: Simulated data: Local (LIME) models for non-linear univari-
ate relationship with different kernel sizes for different observations.
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13.3.1 Simulated data

We simulate data with multiple numeric features and a numeric target. We as-
sume the features to originate from a multivariate normal distribution where
all features are moderately correlated. We simulate three different data sets.
In the first one, the true associations are linear (globally linear). In the second
one, the true associations are linear but only affect the target within a subin-
terval of the feature domain (locally linear). 3 In the third one, we simulate
globally non-linear associations. For all three data sets, we expect the kernel
width to have an impact on the resulting explainer. However, for the global
linear relationships, we expect the weakest dependency because the true local
model and the true global model are identical. Details on the simulation can
be obtained in our R code and section 13.3.1.1.

13.3.1.1 Global Linear Relationships

We simulate data where the true predictive surface is a hyperplane. Good
machine learning models should be able to approximate this hyperplane. This
case is – again – somewhat trivial for LIME. The most suitable model for this
data would be linear regression which is interpretable in the first place. Thus,
LIME can be easily tested in this controlled environment. We know the true
local coefficients as they are equal to the global ones. We can evaluate the
suitability of the kernel width appropriately.

The simulated data looks as follows: The feature space consists of three fea-
tures (x1, x2, x3). All originate from a multivariate Gaussian distribution with
mean µ and covariance Σ. µ is set to be 5 for all features and Σ incorporates
moderate correlation. The true relationship of the features on the target y is
described by:

y = β0 + β1x1 + β2x2 + β3x3 + ϵ

We set the true coefficients to be β1 = 4, β2 = −3, β3 = 5.

We use linear regression (the true model) as a black box model. Using cross-
validation, we confirm that the model has a high predictive capacity – ap-
proaching the Bayes error. Not surprisingly, the linear model describes the
association very well.

We choose random observations and compute the local LIME model for each
one of them w.r.t. different kernel sizes. We expect that the kernel size may be
infinitely large as the global model should equal good local models. However,
if the kernel width is set too small we may fit too much noise. Hence, in this
case, we may find no good local models.

3This should examine LIME’s ability to assess local features.
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The figures below (all four panels of figure 13.7) indicate the local parame-
ters for one of the selected observations for different kernel sizes which have
been determined by LIME. The three vertical lines indicate the true global
coefficients. This behavior is representative of all observations.

FIGURE 13.7: Simulated data: Each panel represents a single (representa-
tive) observation. For each observation we analyze the LIME coefficients for
different kernel widths. The underlying ground truth model is a linear model.
Each feature is depicted in a different color. The solid vertical lines represent
the true coefficient of the LIME explanation.

We observe that too small kernel widths are not able to reproduce the global
predictive surface at all. However, provided the kernel width is not too small,
all kinds of kernel widths from small size to very large kernels fit very similar
models which are all very close to the true model.

These results allow concluding that for explaining linear models the kernel
width is a non-critical parameter. However, this case may be seen as trivial
and tautological for most users of LIME. Still, this result is valuable as it
shows that LIME works as expected.
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13.3.1.2 Local Linear Relationships

For non-linear relationships, we have already seen that the kernel width is
more crucial. Thus, we aim to study the behavior of the explanations w.r.t.
the kernel size where the true associations are non-linear or locally different.

We may induce non-linearity by different means. However, first of all it seems
interesting to study how the kernel width affects LIME explanations in a very
simple form of non-linearity: The features only affect the target locally linearly,
as expressed by:

y = β0 + β1x11x1<c1 + β2x2 + β3x3 + ϵ + γ01x1>c1 + ϵi

where x1 only affects y within the given interval. γ0 corrects the predictive
surface by another intercept to avoid discontinuities. This time, we fit a MARS
(multivariate adaptive regression splines) model (Friedman et al. (1991)) which
can deal with this property of local features. In theory, MARS can reproduce
the data generating process perfectly and hence is our first choice. Using
cross-validation we confirm that the model has a high predictive capacity.
However, note that all of our results would be qualitatively (MARS turns out
to feature clearer results.) identical between MARS and random forest. Given
an appropriate kernel, LIME should succeed in recovering the local predictive
surface.

We set β1 = 5, β2 = −4, β3 = 3 and c1 = 5. This means that the slope of β1
equals to 5 until x1 = 5 and to 0 afterwards. This results in an average slope
of 2.5 over the whole domain.

We investigate representative observations, i.e. belonging to each bin of the
predictive surface to check if LIME recovers all local coefficients.

Hence, representative means that we should investigate observations with the
following properties:

1. x1 < 5

2. x1 > 5

We think these observations are best explained in areas with reasonable margin
to x1 = 5.

Below in figure 13.8, we depict the coefficient paths for four representative
observations, two belonging to each bin (upper panels: x1 < 5, lower panels:
x1 > 5). The true local coefficients are displayed by solid vertical lines.

We can see that in this case, we cannot simply set an arbitrary kernel width.
The true local coefficient for x1 is only approximated well within a limited
interval of the kernel width. In our scenario, good kernel widths are between
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FIGURE 13.8: Simulated data: Each panel represents a single (represen-
tative) observation. For each observation we analyze the LIME coefficients
for different kernel widthss. The underlying ground truth model is a linear
model where x1 only has a local coefficient. Each feature is depicted in a dif-
ferent color. The solid vertical lines represent the true coefficient of the LIME
explanation.

0.1 and 0.7 (while the upper bound varies for the observations). As before, we
observe that a too-small kernel width (< 0.1) produces non-meaningful coeffi-
cients. On the other hand, for large kernel widths (> 0.7) the true coefficient
is not approximated, but rather the global (average) linear coefficient: For x1
a large kernel width results in a linear model that averages the local slopes.
More formally, one could describe this sort of explanation as a global surro-
gate model. Additionally, we observe that for smaller kernel widths, the local
models are rather volatile. More systematically, Alvarez-Melis and Jaakkola
(2018) investigate this volatility and find that LIME is prone to finding unsta-
ble explanations.

This motivates us to further research the volatility. We display the mean
and the confidence intervals of the coefficients of 100 different models for
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different kernel sizes in figure 13.9 for x1. The black lines interpolate averaged
coefficient estimates for different kernel sizes. The solid black line indicates
the true local coefficient. The grey shaded area represents the (capped) 95%
confidence intervals. For very low kernel widths we observe massive volatility.
The volatility decreases to an acceptable level only after 0.1 for all covariates.

FIGURE 13.9: Simulated data: For one observation we display the local
coefficient and confidence intervals for different kernel widths. The underlying
ground truth model is a linear model where x1 only has a local coefficient.
Hence, we only investigate x1.

Note that we obtain the same picture for every covariate and other repre-
sentative observations. We observe that there is a trade-off between stable
coefficients and locality (expressed by a small kernel width). Our analysis sug-
gests the following: Too large kernel sizes result in explanations biased towards
a global surrogate. At the same time, the kernel width must result in stable
coefficients. This means we cannot set it infinitesimally small. The resulting
trade-off suggests choosing the minimal kernel size with stable coefficients as
an optimal solution. Mathematically speaking, we aim minimal kernel size
which still satisfies a volatility condition.
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13.3.1.3 Global Non-Linearity

We further generalize the approach from the previous section and simulate
data with the underlying data generating mechanism:

y = β0 + β1x1 + β2,1x21x2<c1 + β2,2x21c1<x2<c2 + β2,3x21c2<x2 + β3x3 + ϵ

where the slope β2 is piece-wise linear and changes over the whole domain of
x2. We set β1 = 5, β2,1 = −4, β2,2 = 3, β2,3 = −3 β3 = 3, c1 = 4 and c2 = 6.

We omitted the support intercepts γ01c1<x1<c2 + γ01x1>c2 in the equation
above (which guarantee continuity).

We study three representative observations complying with:

1. x2 < 4

2. 4 < x2 < 6

3. 6 < x2

As before, we use a MARS model as our black box. When explaining the
black box with LIME, we observe the same pattern as before. Figures 13.10
and 13.11 look very similar to the corresponding figures of the previous section.
However, the intervals of “good” solutions are – naturally – much smaller. The
more complex the true associations become, the more we observe this trend
of decreasing solution intervals. It seems as if the more complex the predictive
surface is, the harder it is for LIME to even find a good local model.

For globally non-linear associations, we also find that we prefer a small kernel
which however also produces stable coefficients.

FIGURE 13.10: Simulated data: Local coefficients for different kernel widths
explaining non-linear relationship (for x2).

Having investigated simulated data where we knew the ground truth, gave us
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FIGURE 13.11: Simulated data: Local coefficients and confidence intervals
for different kernel widths explaining non-linear relationship (for x2).

a good intuition on how the kernel size affects the resulting explainer model.
The neighborhood problem can be described briefly by the following. A (too)
small kernel width usually worsens coefficient stability whilst a too large kernel
width fits a global surrogate model. An optimal kernel size should balance
these effects. We may formulate the problem as a minimization problem w.r.t.
the kernel size. However, the minimization needs to consider the constraint
that coefficients need to be stable.

13.3.2 Real data

Leaving the controlled environment may make things more difficult. Relevant
challenges include:

1. High-dimensional data may be an issue for the computation of the
kernel width. LIME computes dissimilarities. It is well-known that
(some) dissimilarities get increasingly less meaningful as the feature
space expands. This is one consequence of the curse of dimensional-
ity.

2. Computing some dissimilarities (e.g. Manhattan or Euclidean) also
comes with the problem that the cardinality of the features mainly
steers this measure. Thus, LIME should always apply scaling.

3. When working with real data sets with many features, we typically
want a sparse explanation. To achieve this, we should let LIME
perform feature selection.

Luckily, the latter two are featured in the Python and R implementations.

Within this section, we study whether we can confirm our simulated data
findings for real-world data. We will work with the well-known Washington
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D.C. bicycle rental data set. This dataset contains daily bicycle hire counts of a
Washington D.C. based rental company. The data has been made openly avail-
able by the company itself (Capital-Bikeshare). Fanaee-T and Gama (2014)
added supplementary information on the weather data and season associated
with each day. For details on the data set please refer to Molnar (2019) (https:
//christophm.github.io/interpretable-ml-book/bike-data.html). We
select this data set because it is well-known in the machine learning commu-
nity and this regression problem is easily accessible to most people. Further-
more, it has a reasonable feature space making it not highly prone to the curse
of dimensionality of the distance measures. We only make use of a subset of
all possible features as some are somewhat collinear.

Using this data we aim to use a random forest to predict the number of daily
bicycle hires. We use LIME to explain the black box.

When working with LIME in practice, we want to obtain stable explanations.
An explanation is stable if the surrogate model does not change much when
altering the randomly drawn samples. We evaluate this property with the aid
of a modified version of stability paths (Meinshausen and Bühlmann (2010)).
Stability paths are used for sparse (regularised) models and indicate how likely
each covariate is part of the model – w.r.t. a given degree of regularisation.
Normally, they analyze the association of the regularisation strength and in-
clusion probabilities of features. On the x-axis, one depicts the regularisation
strength and on the y-axis the inclusion probabilities (for all covariates). The
probabilities for different regularisations are grouped by feature.

However, for LIME we rather aim to study how likely a covariate is part of the
(sparse) model over a grid of kernel widths. Our motivation to use stability
paths is that they are easier to interpret compared to coefficients paths (or
similar evaluation methods) in our setting.

Over a grid of kernel widths (from almost 0 to 20), we compute multiple
sparse explanations for the same kernel width. Sparse means that we limit
our explainer to only the three most influential local features. We count how
frequently each covariate has been part of the explanation model (out of all
iterations). We divide by the total number of iterations and achieve estimates
for the sampling probability for a given observation, a given number of features
and a given kernel width. We search the full (predefined) grid of kernel widths.
We can repeat this procedure for any other observation.

Our pseudo stability paths are stable in areas where we have extreme prob-
abilities, i.e. either probabilities close to 1 or close to 0. Furthermore, they
should not change extremely when the kernel width slightly changes.

Figure 13.12 displays ideal stability paths with the three distinct areas ob-
served earlier:

1. High variability for small kernels.

https://christophm.github.io/interpretable-ml-book/bike-data.html
https://christophm.github.io/interpretable-ml-book/bike-data.html
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2. Local stability for optimal kernels.

3. Convergence to a global surrogate for large kernels.

FIGURE 13.12: Real data: Example for ideal stability paths with three
distinct areas. The x-axis displays different kernel widths. The y-axis indicates
the respective inclusion probability of each variable. The variables are grouped
by color.

The (toy example) stability paths suggest that temperature, weather situation
and holiday are the local features while temperature, humidity and wind speed
are deemed as the global ones.

This figure would help us to clearly identify a stable local model. However,
in real life, things mostly are more complex. In figure 13.13, we display the
stability paths for different selected observations for our random forest.

We observe that stability paths converge to a set of covariates if we set the
kernel width large. These are the global features. There is one interesting
observation about this. Different observations sometimes converge to different
global surrogate models. The covariates humidity and temperature are always
selected. Then, either the windspeed (e.g. only observation 1) or the season
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FIGURE 13.13: Real data: Stability paths for different observations from
the bycicle data set explaining a random forest.

(the remainder observations) is selected as global feature. We believe that this
is because both covariates are similarly strong on the global scope. Globally
evaluating the feature importance of the random forest suggests that in fact
temperature, season, humidity and wind speed are the most relevant features.

Furthermore, we observe that for small values of the kernel width, we have
– like in our simulation – high variation. Here, this variation is expressed
by intersecting paths where most covariates are (almost) equally likely to be
sampled.

For some observations, there seems to be a narrow range where there are sta-
ble and local explanations. For instance, consider observations 1 and 3. Here,
the local models seem quite clear. For observation 1, between kernel widths
of 0.5 and 1 it seems as if the temperature, the wind speed, and the weather
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situation are most influential. For observation 3, the selected local features are
temperature, wind speed and season. For other observations, such as observa-
tions 4 and 8, we may argue that there are local and stable explanations, too.
These are, however, by far less convincing than the previous ones. Addition-
ally, we are struggling to identify stable local models for many observations,
like observation 2 and 6. For those observations, there is only instability for
small kernel widths which transforms immediately to the global surrogate once
stabilized. The reasons for this variation of behavior can be manifold. How-
ever, not knowing the ground truth, it is hard to evaluate what is going on
here in particular.

So even though we may find meaningful explanations from case to case, there is
too much clutter to be finally sure about the explanations’ goodness. Further-
more, “local” explanations still seem quite global as they seem quite similar for
many different observations. Considering our explanations, the sparse models
were highly correlated consisting of similar features for different observations.
The only truly stable explanations remain essentially global ones with large
kernel width. It seems as if the predictive surface is too complex to facilitate
local and stable surrogate models properly. The curse of dimensionality affects
locality very strongly. As distances in higher-dimensional Euclidean space are
increasingly less meaningful, the definition of locality is very poor with an
increasing number of features.

Summarizing, we observe both effects being described in the literature also
for our real data example: instability (Alvarez-Melis and Jaakkola (2018)) for
small kernel widths and global surrogates (Laugel et al. (2018)) for large ones.
For simulated data, we can observe these effects as well. At the same time,
we can identify local and stable explanations in this controlled environment.
For real data, however, it is hard to locate the area which we identified for
simulated data where we find a stable and local model.

13.4 Discussion and outlook

LIME is capable of finding local models. We show this using simulated data.
The specification of a proper kernel width is crucial to achieving this. A proper
locality is expressed by the minimal kernel width producing stable coefficients.
However, we see that it is difficult to find these models in practice. We are
unable to detect explanations that were both, stable and local, for our real data
application – at least with certainty. We largely observe the pattern described
by Laugel et al. (2018) who claim that LIME explanations are strongly biased
towards global features. At the same time, our study agrees with Alvarez-Melis
and Jaakkola (2018) who find that local explanations are highly unstable. We
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confirm these findings using the bicycle rental data set. Additionally, also for
simulated data, it becomes harder to detect a good locality if the predictive
surface becomes more complex.

Similar results can be obtained for alternative data sets. For the practitioner
using LIME (for tabular data), this means that LIME should be used with
great care. Furthermore, we suggest analyzing the resulting explanations’ sta-
bility when making use of LIME.

We think that the global sampling of LIME is responsible for many of the
pitfalls identified. Hence, we propose that LIME should be altered in the way
proposed by Laugel et al. (2018) to LIME-K. Local sampling should replace
global sampling to better control for the locality.

Even though having said this, we think that LIME is one of the most promising
recent contributions to the Interpretable Machine Learning community. The
problems described in this chapter are mainly associated with tabular data.
Domains where LIME has been applied successfully include image data and
text data. Within these domains, LIME works differently from tabular data.
For example, LIME’s sampling for text data is already very local. It only
creates perturbations based on the instance to be explained.

13.5 Note to the reader

13.5.1 Packages used

For our analysis, we used R (R Core Team (2020)). For all black box models,
we used the mlr package (Bischl et al. (2020)) and the lime package (Pedersen
and Benesty (2019)) for the LIME explanations. All plots have been created
using ggplot2 (Wickham et al. (2020)).

13.5.2 How we used the lime R package and why

Using the lime package we heavily deviated from the default package options.
We strongly recommend to not bin numerical features. The next chapter will
outline in detail why this is not a good idea. In the first place, the main ar-
gument for binning has been enhanced interpretability. We suggest, though,
that the same interpretability can be obtained by the absolute contribution
of the feature to the prediction. This means, instead of the local coefficient,
LIME should rather print the local coefficient times the feature value within
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its explanation. This argument makes binning – provided that there is no ad-
ditional benefit except interpretability (Refer to the next chapter.) – obsolete.

While we think Gower distance is an interesting approach to deal with mixed
data, we explicitly promote not to use it. In the current (July 2019) R im-
plementation, when working with Gower distance there is no kernel applied.
Explanations do not correspond to altering the kernel width. As we have seen,
a proper kernel width may look very different depending on the associated
problem. So it is highly unlikely that a one-size-fits-all implicit kernel width
always results in a proper result. In figure 13.14 we analyze this statement
by comparing the Gower distance’s local coefficient to the true coefficient and
the local estimates of the non-linear data simulation from section 13.3.1.3.

FIGURE 13.14: Simulated data: Gower distance vs. Euclidean distance
(non-linear relationship). The blue line is the true coefficient. The interpolated
curve represents the LIME coefficient estimates for different kernel widths
when using Euclidean distance. The green line represents to estimate result-
ing from LIME when using Gower distance.

We see that our argument is valid. Gower distance is not able to recover the
true coefficients and acts as a global surrogate.



232 13 LIME and Neighborhood

Even though we think that Gower distance may result in some cases in good
local models, its (currently) lacking flexibility most likely causes either instable
or global explanations.

Usually, LASSO is the preferred option for variable selection as it is less seed
dependent than, let’s say, step-wise forward selection. However, we do not use
LASSO but step-wise forward selection because the current implementation of
LASSO has shortcomings and does not deliver results suitable for our analysis.

All in all, we strongly discourage the user of the lime R package to use the
default settings.
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This chapter will deal with the sampling step in LIME and the resulting side
effects in terms of feature weight stability of the surrogate model. Due to the
randomness of sampling, the resulting feature weights may suffer from high
discrepancies between repeated evaluations. As a consequence, trust in the
explanation offered by LIME is impacted negatively.

14.1 Understanding sampling in LIME

In this section, we will discuss the fundamentals of LIME from a slightly
different angle to receive a further understanding of what enables sampling
and to have a look at how basic results look like.

14.1.1 Formula

If we do some small changes of notations compared to the introduction chapter,
the task of calculating the LIME explainer can be seen as

g∗ = arg min
gϵG

n′∑
i=1

πx̃(x(i))L
(

f
(
x(i)), g

(
x(i)))

+ Ω (g)

with L (f, g, πx̃) :=
∑n′

i=1 πx̃(x(i))×L
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f
(
x(i)), g

(
x(i)))

further expressed more
in detail as in the introduction and x̃ as our desired point to explain (Peltola
(2018)). This change of notation allows us to spot the enabling property for
sampling. Namely, the original target variable y is replaced by the response
f

(
x(i)) of the black box model. This means nothing more besides that we

minimize this problem without accessing the original target. The great thing

233
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about this is, that f can be evaluated for any value in the feature space, giving
us – theoretically – an arbitrarily amount n′ of non-stochastic observations
compared to before. This may sound great at first, but we still need the values
of our feature space for evaluation. And this is where problems arise on the
horizon. At this point, one may ask why even try to receive new values of
the feature space? Is our real dataset not enough? The ground truth for our
surrogate model is a function of an infinite domain (assuming at least one
numeric variable is present), so the more information we gather about this
function, the better our approximation is going to be. So, if we can get more
data, we will simply take it. One issue here is the definition of the feature space.
We need a new dataset to receive the responses of f . However, a priori, it is not
clear how this new data may look like. Our original dataset is a finite sample
of infinite space in the numerical case, or of finite space exponentially growing
with its dimension in the categorical case. As a consequence, we cannot assume
producing a dataset equal to the size of our feature space – we need strategies
to receive the best possible representation concerning our task.

14.1.2 Sampling strategies

Originally, sampling in LIME was meant as a perturbation of the original
data, to stay as close as possible to the real data distribution (Ribeiro et al.
(2016b)). Though, the implementations of LIME in R and Python (Pedersen
(2019) and Ribeiro (2019)) took a different path and decided to estimate a
univariate distribution for each feature and then draw samples out of that.
The consequence of this approach is the total loss of the covariance structure,
as our estimated distribution for the whole feature space is simply a product
of several univariate distributions. This way, we may receive samples that
lie outside the space of our real data generation process. Because almost all
machine learning models are well defined on the whole input space, evaluating
unrealistic values leads to no problems at first. But in theory, issues could
occur, if a lot of unrealistic evaluations lied close to our point for explanation
and influenced greatly the fit of the surrogate model. In that case, we would
not be able to trust the results of LIME anymore, even though we got told
the local fit is a very decent approximation. On the other hand, an issue like
this was not encountered during the preparation of this work as most used
learners are well regularized in space of low data denseness.

14.1.2.1 Categorical features

Categorical features are handled more straight forward then numerical ones
due to finite space. The R LIME package (Pedersen (2019)) will sample
with probabilities of the frequency of each category appearing in the original
dataset. The case when this goes wrong is if one category is very infrequent
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and then – due to bad luck – simply not drawn. Since the original data is
thrown away after sampling, no information is leftover about this category for
the fitting process. Additionally, by ignoring feature combinations, we may
sample points that are impossible in the real world and add no value to our
fit, or may even distort it.

14.1.2.2 Numerical features

Numerical features rise the challenge higher. While categorical features make
it possible for at least very low dimensions to gather a dataset with all possible
values, numerical features are theoretically of infinite size. There are currently
three different options implemented in the R LIME package (Pedersen (2019))
for sampling numerical features. The first – and default – one uses a fixed
amount of bins. The limits of these bins are picked by the quantiles of the
original dataset. In the sampling step, one of these bins will be randomly
picked and after that, a value is uniformly sampled between the lower and
upper limit of that bin. The small benefit here is being allowed to fine-tune the
number of bins, leading to a rougher or more detailed sample representation
of the original feature. The downside is that the order of the bins is ignored,
as a consequence risking the loss of a global fit as each bin receives its own
weight. Additionally, bins have a lower and upper limit, i.e. the new point for
explanation may lie outside of all bins. The current implementation handles
this by discretizing the explanation with each bin as a category class, making
it possible to assign values to the lowest (or highest) bin even if it lies below
(or above) that bin. Another option would be to approximate the original
feature through a normal distribution and then sample out of that one. This
is relatively straight forward, but one may ask if the assumption of normally
distributed features is correct. A lack of denseness of the training data for the
surrogate model may be a result of a wrong assumption. Additionally, it is not
possible to change options for each feature, so by choosing this distribution,
all your features will be handled as normally distributed with their individual
mean and variance. The last option for numerical features is approximating the
real feature distribution through a kernel density estimation. Any downsides
besides slightly increased computational effort have not been encountered with
this option. Thus – and after gathering empirical evidence supporting this –,
we choose to not use binning, but rather kernel density estimation for most of
our trials following down.

14.1.3 Visualization of a basic example

To give more substance to the introduction, in figure 14.1 one can see two
LIME results of a simple numerical example. Both use the same settings except
one uses a different sample seed than the other. The black box model in blue
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is tried to be explained by the surrogate model as the red line. The black dots
are the sampled values dealing as training data set for the surrogate model,
which tries to explain our target point, the dot in yellow. The vertical bars
are an indicator of the kernel width. This color scheme is kept from now on
in all further graphics.

FIGURE 14.1: Visulization of LIME applied on a non-linear function - the
right plot uses the same settings but is resampled

As can be seen the results in both cases are very similar, as one would wish.
But this may not always be the case. The surrogate models depend only
on randomly generated samples, that lie closer or further spread across the
feature space. This raises the following questions. How much influence has
a new sample of the explanation? What is the average confidence of certain
weights? Do certain settings influence these and is there a tendency?

14.2 Sketching Problems of Sampling

To give an idea of the potential problems, a few artificial showcases are pre-
sented in the following. In figure 14.2 a sinus shaped black box model is tried
to be explained twice again with a different seed.

The two LIME explanations of the same scenario and with the same settings
hold totally different results. This indicates how untrustworthy single expla-
nations could be. So, what can we do here?

The most obvious step is increasing the sample size. As it is depicted in figure
14.3, this indeed shrinks the problem to irrelevancy, restoring some of the lost
trust in our explanation. But the problem with this solution is its heavy com-
putational burden, so it would be good to know in which cases the additional
computational effort is necessary.
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FIGURE 14.2: LIME applied on a non-convex function - again, the right
plot uses the same settings but is resampled

FIGURE 14.3: LIME applied twice on a non-convex function with increased
sample size but different sample seed

Another possible step would be to increase the kernel width as seen in figure
14.4, making the explanations again more similar, but also greatly losing the
locality of the explanation. Since chapter 13 already gave a thorough overview
of this and because we assume we do not want to lose any locality, we focus
on the default kernel width in the following and investigate the influence of
further options on the weight stability of the LIME explanations.

14.3 Real World Problems with LIME

So far, only artificial problems have been shown for demonstration purposes,
but how does LIME behave applied to real-world problems? We are using real
datasets in the following to show weight stability associated with different
circumstances.
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FIGURE 14.4: LIME applied on a non-convex function with increased kernel
width and two different sample seeds in each plot

14.3.1 Boston Housing Data

Boston Housing dataset is a well-known data set, so a deeper description of its
properties is skipped here. It is offering a good amount of numerical features
(p = 12) and can be seen as a typical case of a numerical regression task. A
quick overview of each of its features versus the target – the median housing
price – is depicted in figure 14.5.

FIGURE 14.5: Overview of the normalized numerical features compared to
the target ’medv’ in the Boston Housing dataset
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In the following, weight stability is explored by resampling an explanation 100
times for a specific setting. Of the 100 weights of each feature in the expla-
nations, the mean and the empirical 2.5% and 97.5% quantiles are calculated
and depicted in the figures. Based on the quantiles we then plot the empirical
95% confidence interval. As the black box model, a random forest model with
default parameters is used. The reasoning here is, that random forests are
very common in practice and their default parameters usually perform well
without tuning. For the sampling, we choose to use kernel density estimation.
The reason is the results of later experiments, showing kernel density estima-
tion as a benefactor for weight stability compared to the other methods. The
target point to explain is the mean of the original dataset. In each of the
following scenarios, only one of the above-described settings is changed. Not
all possible scenarios are shown, but only a cherry-picked selection supposed
to spark interest in the experiments further down.

14.3.1.1 Mean point versus outlying point

In the first showcase, the mean data point is compared with an extreme outlier
(having the maximum appearing value of each feature). As we can see in
figure 14.6, the outlier has larger confidence intervals as the mean point. This
suggests that either the model is behaving roughly in its area, or, more likely,
the sample size in the neighborhood has a significant influence on our stability,
as our original features have higher density mass around the mean with the
kernel density estimation copying that approximately.

FIGURE 14.6: Weight coefficients of LIME applied to the mean data point
in the left plot and an extreme outlier on the right plot – error bars indicating
the empirical 95% confidence interval across repeated runs

14.3.1.2 Decision tree versus linear regression model

This scenario compares two different black box models. The left plot in figure
14.7 shows the weights explaining a decision tree, while the right one shows
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the case for a linear regression model. It is kind of expected of the linear model
to have very stable weights, but the differences to the decision tree are still
striking, suggesting the black box model could have a huge influence on weight
stability.

FIGURE 14.7: LIME weights of a decision tree as black box model versus
a linear regression model

14.3.1.3 Kernel density estimation versus binning

In this case, we compare two different sampling options. Binning is the de-
fault setting in the R LIME package (Pedersen (2019)). Due to sampling via
normal distribution acting very similar to the kernel density estimation in the
experiments further down, this option is left out here. The differences in figure
14.8 are clearly visible, leading to the question if there are strict ranks of the
sampling options concerning weight stability.

FIGURE 14.8: LIME weights of the mean data point with kernel density
estimation as sampling strategy versus binning
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14.3.2 Rental Bikes Data

So far, we only used numerical features. To also cover the categorical case,
we are using the Rental Bikes dataset with only categorical features here.
Originally, the data also contained a few numerical features, but these have
been manually categorized by creating classes based on their 25%-, 50%-, and
75%-quantiles. In figure 14.9, boxplots of the classes in each feature with
respect to the target ‘cnt’ – the count of bikes rented a day – is shown to give
a quick overview. This means we are forced to use the Gower distance (Gower
(1971)), a binary distance measure for the categorical case. The purpose of
this short section is: Do we get similar results as for numerical features?

FIGURE 14.9: Overview of the categorical features compared to the target
’cnt’ in the Rental Bikes dataset

We compare the same scenarios under the same settings as in the case of
the Boston Housing data, except the sampling option, as we only have one
(the class frequency of each feature). As we cannot calculate the mean and
maximum of a categorical variable, we switch to the majority and minority
point – the point having the most, and analogous the least frequent class in
each feature respectively.
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14.3.2.1 Majority data point versus minority data point

In figure 14.10, the majority data point is compared to the minority data
point. The differences are a lot more subtle than in the Boston Housing case,
almost not visible.

FIGURE 14.10: Weight coefficients of LIME applied to the majority data
point versus the minority data point

14.3.2.2 Decision tree versus linear regression model

Again, we are comparing a decision tree with a linear regression model as the
black box model in figure 14.11. The differences are visible, but by far not as
much as in the numerical case. This suggests we include this categorical data
set in our experiments further down but expect the results will not be as clear
cut as in the numerical case.

FIGURE 14.11: LIME weights of a decision tree as black box model versus
a linear regression model
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14.4 Experiments regarding Sampling stability

All the different scenarios we have encountered so far show more or less dis-
crepancy in weight stability between certain settings. We have observed:

• a target point in an area with higher sample denseness is more stable than
an extreme outlier

• different black box models have highly different stableness

• different sampling options and numerical features compared to categorical
ones also show different behavior

Based on these findings, we construct several experiments to investigate each
point and to see, if we receive results showing a clear, monotonous tendency
for weight stability concerning available parameters.

14.4.1 Influence of feature dimension

The first and most obvious question regarding sampling, that was not show-
able for a fixed dataset, is if an increasing number of features also increases
weight instability. The curse of dimensionality is a known problem in Machine
Learning and to uncover its hidden influence on our case, we run the following
experiment regarding feature dimension.

14.4.1.1 Feature dimension - setup

The experiment is designed as given by this algorithm:

1) Start with only two features of the original data as the training
data.

2) Train a black box model (random forest with default parameters).

3) Ten randomly sampled data points of the original data set are ex-
plained repeatedly ten times.

4) The standard deviation of the ten weights of each feature and each
explained point is calculated, and then all the standard deviations
are averaged to a single value.

5) If there are unused features left, add a new feature to the existing
feature set and continue from step 2), else stop.



244 14 LIME and Sampling

14.4.1.2 Feature dimension - results

This procedure is executed for all the sampling options possible for the Boston
Housing and the Rental Bikes dataset. The results are shown in figure 14.12
and as can be seen, it is hard to spot a clear tendency. If the curse of dimen-
sionality would apply for our case, we definitely would not expect improving
stability by adding new features. Thus, a curse of dimensionality can not be
identified in our case and a high feature amount should not necessarily con-
cern the user. As a further thought, since LIME models the black box and not
the original data, dimensionality in the dataset has only an indirect impact
as what matters is how the model fits interactions between features.

FIGURE 14.12: Average standard deviation of the resulting LIME weights
regarding the feature dimension of the Boston Housing and Rental Bikes
dataset. Each line shows a different sampling option.

14.4.1.3 Amount of features selected - setup

In the R LIME package (Pedersen (2019)), an option is available to only ex-
plain a fixed amount of features with the highest weight. This may sound inter-
esting as a small side experiment to the general amount of features. Maybe this
selection offers better stability in the results? For this, we use the full dataset
instead of iterating over the number of features, but iterate over increasing
parameter values of ′n_features′ in the explainer function.

14.4.1.4 Amount of features selected - results

As can be seen in figure 14.13, weight stability is remarkably constant for a
low amount of features and suddenly becomes very jumpy for a higher amount
of selected features. If the experiment was only evaluated for small amounts of
selected features, a clear recommendation of sticking to less explained features
could be given, but unfortunately, no real rule of thumb can be suggested in
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this case. The inverted ‘U’ shape of the graph may result due to globally linear
predictions for the least important features.

FIGURE 14.13: Average standard deviation with the same settings as before
but with full feature size. The x-axis plots the number of features selected for
the explainer.

14.4.2 Influence of sample size

The next experiment is about the influence of the sample size. The difference
between an explained point in a high-density region compared to one sitting in
a low-density area was easily recognizable in figure 14.6. The question is how
this relates to an increased global sampling size, which we try to answer in the
following. Here, the setup is basically the same as in the case for the experiment
about the number of features selected, except we iterate over different sample
sizes.

14.4.2.1 Sample size – results

Again, we run the modified algorithm of the experiment for all the possible
sampling options at the Boston Housing and Rental Bike dataset. As a result,
we receive the average standard deviation of all weights per sample size and
sampling option. These are depicted in figure 14.14 and show a clear and
monotonous trend of more samples having a huge positive impact on the
stability. Additionally, binning seems to be consistently dominated by other
sampling options.

We have seen before in figure 14.12 feature dimension being relatively unre-
lated to weight stability, while the sample size is the total opposite – does
this make sense? After all if not the feature dimension, what else may cause
a high sample requirement? As we have already seen in figure 14.7 the black
box model may be the phantom we are hunting. This motivates the last two
experiments in this chapter.
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FIGURE 14.14: Average standard deviation with the same settings as before
but increasing sample size. A clear trend can be seen here: Increasing the
amount of samples (which is acting as train data for our surrogate model) has
remarkable influence on weight stability.

14.4.3 Influence of black box

The simulations already presented in figure 14.1 and figure 14.2 suggest more
volatility and less smoothness of the prediction surface may influence weight
stability. Demonstrating the problem through a slightly adjusted real case
problem, we are using sampled Boston Housing data of sample size 20, and
modeling only medv ∼ lstat. Because LIME does not know the original data,
the resulting black box fit seems like an impossible task to approximate linearly
in an appropriate manner with only small samples as seen in figure 14.15.

FIGURE 14.15: LIME trying to explain an extremely volatily prediction
surface. The prediction surface is an extreme overfit of a small subset of the
Boston Housing data.
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14.4.3.1 Black box – setup

To receive meaningful results, we need comparable models. For this, we choose
to pick a random forest as the model class and iterate over the two parameters
being the most responsible for a smooth fit. These are the tree amount and the
minimum node size. A higher tree amount gives the prediction surface more
smoothness (by reducing the average step size of each step in the prediction
function), while a higher minimum node size reduces overfitting (by making
predictions dependent on more train data points) and as consequence reducing
the volatility of the prediction surface. Here is a slightly modified algorithm
as the framework for our experiment:

1) Start with a tree amount of one and a minimum node size of one.

2) Train a random forest with these parameters on the full data.

3) Ten randomly sampled data points of the original data set are ex-
plained ten times repeatedly.

4) The standard deviation of the ten weights of each feature and each
explained points is calculated, and then all the standard

5) If we have not reached ten iterations, increment the tree amount by
ten and the minimum node size by one, and continue from step 2),
else stop.

14.4.3.2 Black box – results

The results in figure 14.16 are unambiguous: It is shown clearly how important
the smoothness of the model is for weight stability. Keep in mind the model
was fitted on two very specific datasets, which means if we would pick more
complex data, the line could take much longer to flatten out, and vice versa for
less complex data. As a small sidenote, binning is again consistently inferior.

We have just seen how important the smoothness is, but this would mean we
can expect the inverted effect for more overfitting. After all, our data case
could be misleading as there are more complicated tasks in the real world
requiring a much more volatile fit. A certain level of smoothness is then often
not given, so it would be nice to know of how much worse the stability can
get in the case of extreme overfitting. This leads us to the last experiment.

14.4.3.3 Black box overfit – setup

Before, we started with a very unsmooth model and gradually added more
regularisation (more trees and higher minimum node size). But now, we are
doing the opposite with a model class being able to fit an arbitrarily complex
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FIGURE 14.16: Average standard deviation of the same settings as before
versus the black box model smoothness. As the black box model class, a ran-
dom forest was used with increasing parameters per iteration. The last tick in
this graph is corresponding to a random forest with 91 trees and a minimum
node size of 10.

data structure by increasing only a single hyperparameter: Extreme Gradient
Boosting (Chen and Guestrin (2016)). For this, we start with only two trees
and double the amount with each iteration. All the other settings and the
algorithm for receiving the results are kept the same. Additionally, we are also
interested in the training error as it is a good indicator of when our boosting
algorithm stops overfitting more (due to its nature of fitting residuals the test
error cannot get worse after the training data is fitted perfectly).

14.4.3.4 Black box overfit – results

As we can see in figure 14.17, as long as the XGBoost learner is able to reduce
the training error, the weight stability gets consistently worse, but not any
longer. Let’s try to dissect why this is happening in such a dependent fashion:
What makes the training error get smaller? Reducing the residuals. What
consequence has reducing the residuals on the prediction surface assuming a
certain level of Gaussian noise? It becomes more volatile. And this volatility
kills our weight stability.
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FIGURE 14.17: Average standard deviation with the same settings as before
versus the tree amount of the XGBoost model used as black box predictor.
The black line indicates the train error rescaled linearly to fit between the
plot boundaries.

14.5 Outlook

So far all the sampling methods have been about drawing out of a distribution
representing the whole space of each feature. This global sampling disregards
the covariance structure and results in a lot of samples drawn in areas so far
away in distance from the point to explain, that their weight for the fitting
process is essentially zero. (Just to not spark any confusion: ‘Weight’ in this
subchapter refers to the weights in the loss function and not the weights of the
explanation, as we have used so far.) These samples are a huge computational
burden while having almost no influence at all on the fit. A solution to this
problem is not implemented in the R and Python LIME packages (Pedersen
(2019) and Ribeiro (2019)) but Laugel et al. (2018) gives a thorough overview
of how local sampling tackles exactly that for the classification case. In short,
the weighting based on a distance measure can be removed while we only
sample in the area around the point to explain. Thus, points having a higher
distance are sampled less likely or not at all, making the weights redundant and
hugely increasing sampling efficiency. Because we only focused on regression
tasks in our work so far, the figure 14.18 will also only show this case – for
more details about classification please have a look into Laugel et al. (2018).

In practice the increase in sampling efficiency would not improve our compu-
tational burden since the sample size was a strictly monotonous benefactor for
explanation stability and thus should not be reduced. But in the end, under
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FIGURE 14.18: By sampling locally around our target point we can catch
the plateau the point sits on as seen on the left plot. Indeed, the samples are
too close to the explained point to be visible. As a local sampling strategy,
a normal distribution was used with variance equal to the kernel width of
the distance measure in the usual procedure. Achieving the same with global
sampling in the right plot is a game of luck since the plateau is very narrow
and hard to hit. In this case, our explanation even fails drastically as all the
samples receive zero weight due to the small kernel width.

the same settings, we simply draw more in the area of relevance, drastically
increasing the sample size in the neighborhood of our explained point, making
our results more stable and trustworthy. Due to the absence of implementa-
tion in the R LIME package (Pedersen (2019)), this new ambitious procedure
could not be part of the experiments to reinforce the assertions just made, but
further research is strongly recommended.

14.6 Conclusion

In all cases of categorical and numerical data we investigated, weight stability
issues can be found easily. But LIME explanations for numerical data can
be stabilized a lot by simply changing the default option of binning as the
sampling strategy to kernel density estimation. The advantage of binning lies
in a purely pragmatic way: By using bins, numerical features are handled as
categoricals and the effects of classes occupied are a lot easier to explain to the
layman than the slope of a regression line. In a more general way, we would
ask ourselves in the end, what makes us have trust in a single explanation?
Weight stability is almost independent of the weight size, so high weights
are very trustworthy. Additionally, picking a very high sample size increases
stability in our experiments. This should be done whenever possible as the
only disadvantage is a longer runtime. Furthermore, what makes us have less
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trust in the LIME result? When we know the data set is very complex with a
curvy/wavy fit almost surely going to happen, then we should be very careful.
The same is suggested by our empirical findings if the model we are using is
capable of extreme overfitting. In this case, the less regularisation we put onto
it, the less stable our LIME explanations are going to be. If we are unsure
about the trustworthiness of our explanation, it is always beneficial to rerun
the same explanation a few times and average the results – this has a similar
effect than a higher sample size, but this way we can actually use already
computed results and we can also calculate a confidence interval, giving good
indication of how much variance the results have.
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