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1 INTRODUCTION

Reasoning about knowledge is widely used in many applied fields such as computer science, ar-
tificial intelligence, economics, game theory, and so on [3, 4, 20, 27]. A particular line of research
concerns the formalization in terms of multi-agent epistemic logics, which speak about knowledge
about facts, but also about knowledge of other agents. One of the central notions is that of common
knowledge, which has been shown as crucial for a variety of applications dealing with reaching
agreements or coordinated actions [23]. Intuitively, φ is common knowledge of a group of agents
exactly when everyone knows that everyone knows that everyone knows . . . that φ is true.

However, it has been shown that in many practical systems common knowledge cannot be
attained [19, 23]. This motivated some researchers to consider a weaker variant that still may be

1This article is a revised and extended version of the conference paper [47] presented at the 13th European Conference
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sufficient for carrying out a number of coordinated actions [27, 36, 42]. One of the approaches pro-
poses a probabilistic variant of common knowledge [35], which assumes that coordinated actions
hold with high probability. Possible applications of probabilistic common knowledge are discussed
in the context of practical distributed systems and cryptographic protocols in References [25, 27,
32]. A propositional logical system that formalizes that notion is presented in Reference [17], where
Fagin and Halpern developed a joint framework for reasoning about knowledge and probability
and proposed a complete axiomatization.

We use Reference [17] as a starting point and generalize it in two ways:
First, we extend the propositional formalization from Reference [17] by allowing reasoning

about knowledge and probability of events expressible in a first-order language. We use the most
general approach, allowing arbitrary combination of standard epistemic operators, probability op-
erators, first-order quantifiers, and, in addition, of probabilistic common knowledge operator. The
need for first-order extension is recognized by epistemic and probability logic communities. Wolter
[49] pointed out that first-order common knowledge logics are of interest both from the point of
view of applications and of pure logic. He argued that first-order base is necessary whenever the
application domains are infinite (like in epistemic analysis of the playability of games with mixed
strategies) or finite, but with the cardinality of which is not known in advance, which is a frequent
case in the field of Knowledge Representation. Bacchus [5] gave the similar argument in the con-
text of probability logics, arguing that, while a domain may be finite, it is questionable if there is
a fixed upper bound on its size, and he also pointed out that there are many domains, interesting
for AI applications, that are not finite.

Second, we consider infinite number of agents. While this assumption is not of interest in prob-
ability logic, it was studied in epistemic logic. Halpern and Shore [26] pointed out that economies,
when regarded as teams in a game, are often modeled as having infinitely many agents and that
such modeling in epistemic logic is also convenient in the situations where the group of agents
and its upper limit are not known a priori.

The semantics for our logic consists of Kripke models enriched with probability spaces. Each
possible world contains a first-order structure, and each agent in each world is equipped with a
set of accessible worlds and a finitely additive probability on measurable sets of worlds. In this
article, we consider the most general semantics, with independent modalities for knowledge and
probability. Nevertheless, in Section 5.2, we show how to modify the definitions and results of
our logic to capture some interesting relationships between the modalities for knowledge and
probability (previously considered in Reference [17]), especially the semantics in which agents
assign probabilities only to the sets of worlds they consider possible.

The main result of this article is a sound and strongly complete (“every consistent set of sentences
is satisfiable”) axiomatization. The negative result of Wolter [49] shows that there is no finite way
to axiomatize first-order common knowledge logics, and that infinitary axiomatizations are the
best we can do (see Section 2.3). The same type of negative result for first-order probability logics
is obtained by Abadi and Halpern [1]. We obtain completeness using infinitary rules of inference.
Thus, formulas are finite, while only proofs are allowed to be (countably) infinite. We use a Henkin-
style construction of saturated extensions of consistent theories. From the technical point of view,
we modify some of our earlier developed methods presented in References [12, 13, 15, 16, 34, 39, 40,
43].2 Although we use an alternative axiomatization for the epistemic part of logic (i.e., different
from original axiomatization given in References [17, 24]), we prove that standard axioms are
derivable in our system.

There are several papers on completeness of epistemic logics with common knowledge.

2For a detailed overview of the approach, we refer the reader to Reference [41].
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In propositional case, a finitary axiomatization, which is weakly complete (“every consistent for-
mula is satisfiable”), is obtained by Halpern and Moses [24] using a fixed-point axiom for common
knowledge. However, strong completeness for any finitary axiomatization is impossible, due to
lack of compactness (see Section 2.3). Strongly complete axiomatic systems are proposed in Refer-
ences [11, 45]. They contain an infinitary inference rule, similar to one of our rules, for capturing
semantic relationship between the operators of group knowledge and common knowledge.

In first-order case, the set of valid formulas is not recursively enumerable [49] and, consequently,
there is no complete finitary axiomatization. One way to overcome this problem is by including
infinite formulas in the language as in Reference [46]. A logic with finite formulas, but an infinitary
inference rule, is proposed in Reference [31], while a Genzen-style axiomatization with an inifini-
tary rule is presented in Reference [45]. However, a finitary axiomatization of monadic fragments
of the logic, without function symbols and equality, is proposed in Reference [44].

Fagin and Halpern [17] proposed a joint frame for reasoning about knowledge and probabil-
ity. Following the approach from Reference [18], they extended the propositional epistemic lan-
guage with formulas that express linear combinations of probabilities, i.e., the formulas of the
form a1p (φ1) + · · · + akp (φk ) ≥ b, where a1, ..,ak ,b ∈ Q, k ≥ 1. They proposed a finitary axioma-
tization and proved weak completeness using the small-model theorem. Our axiomatization tech-
nique is different. Since in the first-order case a complete finitary axiomatization is not possible,
we use infinitary rules and we prove strong completeness using the Henkin-style method. We use
unary probability operators and we axiomatize the probabilistic part of our logic following the
techniques from Reference [41]. In particular, our logic incorporates the single-agent probability
logic LFOP1 from Reference [40]. However, our approach can be easily extended to include linear
combinations of probabilities, similarly as it was done in References [14, 38].

Recently, some first-order logical systems have emerged dealing with common knowledge [7]
and probabilistic beliefs [8, 9], but no proof system is presented for those logics. References [7,
8] consider a so-called “only knowing” notion with the basic idea that the beliefs of an agent are
precisely those inferred from its knowledge base, providing semantics without axiomatization.
Reference [7] introduces a first-order multiagent logic with “only knowing” and common knowl-
edge. Its propositional part without “only knowing” operator is proven to be related to the KC45n

logic (K45 modal logic with n agents and common knowledge [20, 30]). The authors study the
interactions between the notions of common knowledge and only knowing, providing an account
of the muddy children puzzle as logical implications of what is only known initially. References [8,
9] consider single agent only with probabilistic beliefs (degrees of belief) in the presence of noisy
sensing and acting using situation calculus. Roughly speaking, the degree of belief in formula ϕ is
a normalized sum of the weights of the worlds where ϕ holds and can be thought of as a subjective
probability (initially introduced in Reference [6]). This notion can be expressed in our semantics,
but we also allow different probability spaces across the worlds. In Reference [8], a first-order
logic with “only knowing” and degrees of belief that capture the beliefs of a fully introspective
knowledge base via “only knowing” operator is proposed. Reference [9] takes into consideration
that many robotic applications require continuous domains and overcomes the limitation of the
degrees of belief being restricted to discrete probability distributions in Reference [6] by incorpo-
rating continuous densities in its approach.

We point out that all the above mentioned logics do not support an infinite group of agents, so
the group knowledge operator is defined as the conjunction of knowledge of individual agents. A
weakly complete axiomatization for common knowledge with infinite number of agents (in non-
probabilistic setting) is presented in Reference [26]. In our approach, the knowledge operators
of groups and individual agents are related via an infinitary rule (RE from Section 3). It is used
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to overcome the non-compactness issue that appears in this extended framework with infinite
number of agents (see Section 2.3 and Example 3.4).

To the best of our knowledge, this work provides the first logical framework with a proof sys-
tem that combines reasoning about probability and epistemic reasoning in a first-order setting.
As we already mentioned, the negative results from References [1, 49] show that it is not possible
to obtain (even weakly) complete finite (recursive) axiomatization for this first-order framework.
To achieve completeness, we propose an axiom system with infinitary rules of inference, and we
combine and extend several existing approaches. We extend both the Henkin’s method of con-
stants for first-order logic [28] and our previously developed infinitary approaches for logics with
possible world semantics [13, 14, 16, 39, 40] for establishing the strong completeness. We adopt the
infinitary rule for connecting the epistemic operators of group knowledge and common knowl-
edge from Reference [11] (the rule RC from Section 3) and generalize the standard Archimedean
rule whose role is to controll the range of probability measures [41] (the rule RA from Section 3). In
addition, we propose three novel infinitary rules: the rule RE, which relates group knowledge with
knowledge of the members of the group, its probabilistic variant RPE, and RPC, which captures the
semantic property of probabilistic common knowledge. Those three rules crucially contributed to
the two novel aspects of this work:

• We propose the first axiomatization in the literature for a logic that includes the operator
of probabilistic common knowledge.

• We propose the first strongly complete axiomatization of epistemic logic with infinite
groups of agents.

We adapted all the infinitary rules of inference by considering premises and conclusions in the
form of k-nested implications (Definition 2.3) to prove strong necessitation of knowledge opera-
tors (Theorem 4.2), which is crucial for the proof of Truth lemma (Lemma 5.4). k-nested implica-
tions are already used in probabilistic, epistemic, and temporal logics for obtaining various strong
necessitation results [11, 32, 34].

The rest of the article is organized as follows: In Section 2, we introduce Syntax and Semantics.
Section 3 provides the axiomatization of our logic system, followed by the proofs of its soundness.
In Section 4, we prove several theorems, including Deduction theorem and Strong necessitation.
The completeness result is proven in Section 5. In Section 6, we consider an extension of our logic
by incorporating the consistency condition [17]. The concluding remarks are given in Section 7.

2 SYNTAX AND SEMATICS

In this section, we present the syntax and semantics of our logic, which we call PCK f o .3 Since
the main goal of this article is to combine the epistemic first-order logic with reasoning about
probability, our language extends a first-order language with both epistemic operators, and the
operators for reasoning about probability and probabilistic knowledge. We introduce the set of
formulas based on this language and the corresponding possible world semantics, and we define
the satisfiability relation.

2.1 Syntax

Let [0, 1]Q be the set of rational numbers from the real interval [0, 1], N the set of non-negative
integers, A an at-most countable set of agents, and G a countable set of nonempty subsets
of A.

3PCK stands for “probabilistic common knowledge,” while f o indicates that our logic is a first-order logic.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 16. Publication date: January 2020.
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The language LPCK f o of the logic PCK f o contains:

• a countable set of variables Var = {x1,x2, . . .},
• m-ary relation symbols Rm

0 ,R
m
1 , . . . and function symbols f m

0 , f
m
1 , . . . for every integer

m ≥ 0,
• Boolean connectives ∧ and ¬, and the first-order quantifier ∀,
• unary modal knowledge operators Ki ,EG ,CG , for every i ∈ A and G ∈ G,
• unary probability operator Pi,≥r and the operators for probabilistic knowledge Er

G
and Cr

G
,

where i ∈ A, G ∈ G, r ∈ [0, 1]Q.

By the standard convention, constants are 0−ary function symbols. Terms and atomic formulas
are defined in the same way as in the classical first-order logic.

Definition 2.1 (Formula). The set of formulas ForPCK f o is the least set containing all atomic for-
mulas such that: ifφ,ψ ∈ F orPCK f o , then¬φ,φ ∧ψ ,Kiφ, EGφ,CGφ, Er

G
φ,Cr

G
φ, Pi,≥rφ ∈ F orPCK f o ,

for every i ∈ A, G ∈ G and r ∈ [0, 1]Q.

We use the standard abbreviations to introduce other Boolean connectives →, ∨, and ↔, the
quantifier ∃, and the symbols ⊥,�. We also introduce the operator Kr

i (for i ∈ A and r ∈ [0, 1]Q)
in the following way: the formula Kr

i φ abbreviates Ki (Pi,≥rφ).
The meanings of the operators of our logic are as follows:

• Kiφ is read as “agent i knows φ” and EGφ as “everyone in the groupG knows φ.” The formula
CGφ is read “φ is common knowledge among the agents in G,” which means that everyone
(from G) knows φ, everyone knows that everyone knows φ, and so on.

Example. The sentence “everyone in the groupG knows that if agent i doesn’t know φ, thenψ
is common knowledge in G,” is written as

EG (¬Kiφ → CGψ ).

• The probabilistic formula Pi,≥rφ says that the probability that formula φ holds is at least r
according to the agent i .

• Kr
i φ abbreviates the formula Ki (Pi,≥rφ). It means that agent i knows that the probability of

φ is at least r .

Example. Suppose that agent i considers two only possible scenarios for an eventφ, and that
each of these scenarios puts a different probability space on events. In the first scenario, the
probability of φ is 1/2, and in the second one it is 1/4. Therefore, the agent knows that
probability of φ is at least 1/4, i.e., Ki (Pi,≥1/4φ).

• Er
G
φ denotes that everyone in the group G knows that the probability of φ is at least r . Once

Kr
i φ is introduced, Er

G
is defined as a straightforward probabilistic generalization of the

operator EG .
• Cr

G
φ denotes that it is a common knowledge in the group G that the probability of φ is at

least r . For a given threshold r ∈ [0, 1]Q,Cr
G

represents a generalization of non-probabilistic
operator CG .

Example. The formula

Es
G (Ki (∃x )φ (x ) ∧ ¬Cr

Gψ )

says that everyone in the groupG knows that the probability that both agent i knows that φ (x )
holds for some x , and thatψ is not common knowledge among the agents inG with probability
at least r , is at least s .

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 16. Publication date: January 2020.
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Note that the other types of probabilistic operators can also be introduced as abbreviations:
Pi,<rφ is ¬Pi,≥rφ, Pi,≤rφ is Pi,≥1−r¬φ, Pi,>rφ is ¬Pi,≤rφ, and Pi,=rφ is Pi,≤rφ ∧ Pi,≥rφ.

Now, we define what we mean by a sentence and a theory. The following definition uses the
notion free variable, which is defined in the same way as in the classical first-order logic.

Definition 2.2 (Sentence). A formula with no free variables is called a sentence. The set of all
sentences is denoted by SentPCK f o . A set of sentences is called theory.

Next, we introduce a special kind of formula in the implicative form, called k-nested implications,
which will have an important role in our axiomatization.

Definition 2.3 (k-nested Implication). Let τ ∈ ForPCK f o be a formula and let k ∈ N . Let θ =
(θ0, . . . ,θk ) be a sequence of k formulas, and X = (X1, . . . ,Xk ) a sequence of knowledge operators
from {Ki | i ∈ A}. The k-nested implication formula Φk,θ,X (τ ) is defined inductively, as follows:

Φk,θ,X (τ ) =
⎧⎪⎨⎪⎩
θ0 → τ , k = 0
θk → Xk Φ

k−1,θk−1
j=0 ,X

k−1
j=0

(τ ), k ≥ 1.

For example, if X = (Ka ,Kb ,Kc ), a,b, c ∈ A, then

Φ3,θ,X (τ ) = θ3 → Kc (θ2 → Kb (θ1 → Ka (θ0 → τ ))).

Formulas of this form are used to formulate infinitary inference rules that are essential in the
axiomatization presented in Section 3. The need of k-nested implications in those rules comes
directly from our completeness proof where they give a form of deep inference that is very similar
to nested sequents [10]. Deep inference refers to deductive systems in which rules can not only be
applied to outermost connectives but also be deep inside formulas.

The structure of these k-nested implications is shown to be especially convenient for the proof
of the Deduction theorem (Theorem 4.1) and the Strong necessitation theorem (Theorem 4.2), as
we discuss in Remark 2 and Remark 3.

2.2 Semantics

The semantic approach for PCK f o extends the classical possible-worlds model for epistemic logics,
with probabilistic spaces.

Definition 2.4 (PCK f o Model). A PCK f o model is a Kripke structure for knowledge and probability
that is represented by a tuple

M = (S,D, I ,K ,P ),

where:

• S is a nonempty set of states (or possible worlds);
• D is a nonempty domain;
• I associates an interpretation I (s ) with each state s in S such that for all i ∈ A and all

k,m ∈ N:
— I (s ) ( f m

k
) is a function from Dm to D,

—for each s ′ ∈ S , I (s ′) ( f m
k

) = I (s ) ( f m
k

),
— I (s ) (Rm

k
) is a subset of Dm ;

• K = {Ki | i ∈ A} is a set of binary relations on S . We denote Ki (s )
def
= {t ∈ s | (s, t ) ∈ Ki },

and write sKit if t ∈ Ki (s );
• P associates to every agent i ∈ A and every state s ∈ S a probability space P (i, s ) =

(Si,s , χi,s , μi,s ), such that
—Si,s is a non-empty subset of S ,
— χi,s is an algebra of subsets of Si,s , whose elements are called measurable sets; and

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 16. Publication date: January 2020.
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—μi,s : χi,s → [0, 1] is a finitely additive probability measure, i.e.,
* μi,s (Si,s ) = 1, and
* μi,s (A ∪ B) = μi,s (A) + μi,s (B) if A ∩ B = ∅,A,B ∈ χi,s .

In the previous definition, we assume that the domain is fixed (i.e., the domain is same in all the
worlds) and that the terms are rigid, i.e., for every model their meanings are the same in all worlds.
Intuitively, the first assumption means that it is common knowledge that objects exist. Note that
the second assumption implies that it is common knowledge which object a constant designates. As
it is pointed out in Reference [44], the first assumption is natural for all those application domains
that deal not with knowledge about the existence of certain objects, but rather with knowledge
about facts. Also, the two assumptions allow us to give semantics of probabilistic formulas, which
is similar to the objectual interpretation for first-order modal logics [21].

Note that those standard assumptions for modal logics are essential to ensure validity of all
first-order axioms. For example, if the terms are not rigid, the classical first-order axiom

∀φ (x ) → φ (t ),

where the term t is free for x in φ, would not be valid (an example is given in Reference [22]).
Similarly, Barcan formula (axiom FO3 in Section 3) holds only for fixed domain models.

For a model M = (S,D, I ,K ,P ) to be a PCK f o , the notion of variable valuation is defined in
the usual way: a variable valuation v is a function that assigns the elements of the domain to the
variables, i.e., v : Var → D. If v is a valuation, then v[d/x] is a valuation identical to v , with the
exception that v[d/x](x ) = d .

Definition 2.5 (Value of a Term). The value of a term t in a state s with respect to v , denoted by
I (s ) (t )v , is defined in the following way:

• if t ∈ Var , then I (s ) (t )v = v (t ),
• if t = Fk

j (t1, . . . , tk ), then I (s ) (t )v = I (s ) (Fk
j ) (I (s ) (t1)v , . . . , I (s ) (tk )v ).

The next definition will use the following knowledge operators, which we introduce in the
inductive way:

• (EG )1φ = EGφ;
• (EG )m+1φ = EG ((EG )kφ),m ∈ N;
• (F r

G
)0φ = �;

• (F r
G

)m+1φ = Er
G

(φ ∧ (F r
G

)mφ),m ∈ N .

Now, we define satisfiability of formulas from in the states of introduced models.

Definition 2.6 (Satisfiability Relation). Satisfiability of formula φ in a state s ∈ S of a model M ,
under a valuation v , denoted by

(M, s,v ) |= φ,

is defined in the following way:

(1) (M, s,v ) |= Rk
j (t1, . . . , tk ) iff (I (s ) (t1)v , . . . , I (s ) (tk )v ) ∈ I (s ) (Rk

j )

(2) (M, s,v ) |= ¬φ iff (M, s,v ) � |= φ
(3) (M, s,v ) |= φ ∧ψ iff (M, s,v ) |= φ and (M, s,v ) |= ψ
(4) (M, s,v ) |= (∀x )φ iff for every d ∈ D, (M, s,v[d/x]) |= φ
(5) (M, s,v ) |= Kiφ iff (M, t ,v ) |= φ for all t ∈ Ki (s )
(6) (M, s,v ) |= EGφ iff (M, s,v ) |= Kiφ for all i ∈ G
(7) (M, s,v ) |= CGφ iff (M, s,v ) |= (EG )mφ for everym ∈ N
(8) (M, s,v ) |= Pi,≥rφ iff μi,s ({t ∈ Si,s | (M, t ,v ) |= φ}) ≥ r

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 16. Publication date: January 2020.



16:8 S. Tomović et al.

(9) (M, s,v ) |= Er
G
φ iff (M, s,v ) |= Kr

i φ for all i ∈ G
(10) (M, s,v ) |= Cr

G
φ iff (M, s,v ) |= (F r

G
)mφ for everym ∈ N

Note that the satisfiability relation |= defined in Definition 2.6 is a partial relation, i.e., it is not in
general defined for all formulas. Indeed, a formula of the form Pi,≥rφ can be evaluated only under
assumption that the corresponding set of states

[φ]v
i,s = {s ∈ Si,s | (M, s,v ) |= φ}

is a measurable set. To keep the satisfiability relation total, i.e., well-defined for all the formulas,
in this article, we consider only the models in which all those sets are measurable.

Definition 2.7 (Measurable Model). A model M = (S,D, I ,K ,P ) is a measurable model if

[φ]v
i,s ∈ χi,s ,

for every formula φ, valuation v , state s , and agent i . We denote the class of all these models as
MMEAS
A .

Remark 1. The semantic definition of the probabilistic common knowledge operator Cr
G

from
the last item of Definition 2.6 is first proposed by Fagin and Halpern in Reference [17], as a
generalization of the operator CG regarded as the infinite conjunction of all degrees of group
knowledge. It is important to mention that this is not the only proposal for generalizing the non-
probabilistic case. Monderer and Samet [35] proposed a more intuitive definition, where proba-
bilistic common knowledge is semantically equivalent to the infinite conjunction of the formulas
Er

G
φ, (Er

G
)2φ, (Er

G
)3φ . . . Although both are legitimate probabilistic generalizations, in this article,

we accept the definition of Fagin and Halpern [17], who argued that their proposal seems more
adequate for the analysis of problems such as probabilistic coordinated attack and Byzantine agree-
ment protocols [27]. As we point out in the Conclusion, our axiomatization approach can be easily
modified to capture the definition of Monderer and Samet.

If (M, s,v ) |= φ holds for every valuation v , then we write (M, s ) |= φ. If (M, s ) |= φ for all s ∈ S ,
then we write M |= φ.

Definition 2.8 (Satisfiability of Sentences). A sentence φ is satisfiable if there is a state s in some
model M such that (M, s ) |= φ. A set of sentencesT is satisfiable if there exists a state s in a model
M such that (M, s ) |= φ for each φ ∈ T . A sentence φ is valid if ¬φ is not satisfiable.

Note that in the previous definition the satisfiability of sentences does not depend on a valuation,
since they do not contain any free variable.

Observe that if φ is a sentence, then the set [φ]v
i,s does not depend on v ; thus, we relax the

notation by denoting it by [φ]i,s . Also, we write μi,s ([φ]) instead of μi,s ([φ]i,s ).

2.3 Axiomatization Issues

At the end of this section, we analyze two common characteristics of epistemic logics and proba-
bility logics, which have impacts on their axiomatizations.

The first one is the non-compactness phenomenon—there are unsatisfiable sets of formulas such
that all their finite subsets are satisfiable. The existence of such sets in epistemic logic is a conse-
quence of the fact that the common knowledge operatorCG can be semantically seen as an infinite
conjunction of all the degrees of the group knowledge operator EG , which leads to the example

{(EG )mφ |m ∈ N} ∪ {¬CGφ}.

ACM Transactions on Computational Logic, Vol. 21, No. 2, Article 16. Publication date: January 2020.



A First-order Logic for Reasoning about Knowledge and Probability 16:9

In real-valued probability logics, a standard example of unsatisfiable set whose finite subsets are
all satisfiable is

{Pi,≥1− 1
n
φ |m ∈ N} ∪ {¬Pi,�1φ},

where φ is a satisfiable sentence that is not valid.
Apart from those two classical examples of non-compactness of epistemic and probability logics,

this specific work faces three additional sources of non-compactness. The first two are due to the
fact that there might exist an infinite group of agents G ∈ G:

{Kiφ | i ∈ G} ∪ {¬EGφ}, {Kr
i φ | i ∈ G} ∪ {¬Er

Gφ},

while the third is due to the presence of operators of probabilistic common knowledge:

{(F r
G )mφ |m ∈ N} ∪ {¬Cr

Gφ}.

One significant consequence of non-compactness is that there is no finitary axiomatization that
is strongly complete [48], i.e., simple completeness is the most one can achieve.

In the first-order case, the situation is even worse. Namely, the set of valid formulas is not re-
cursively enumerable, neither for first-order logic with common knowledge [49] nor for first-order
probability logics [1] (moreover, even their monadic fragments suffer from the same drawback [41,
49]). This means that there is no finitary axiomatization that could be (even simply) complete. An
approach for overcoming this issue, proposed by Wolter [49] and Ognjanovic and Raskovic [39],
is to consider infinitary logics as the only interesting alternative.

In this article, we introduce the axiomatization with ω-rules (inference rules with countably
many premises) [11, 40]. This allows us to keep the object language countable and to move infinity
to meta language only: The formulas are finite, while only proofs are allowed to be infinite.

3 THE AXIOMATIZATION AxP C K f o

In this section, we introduce the axiomatic system for the logic PCK f o , denoted by AxPCK f o . It
consists of the following axiom schemata and rules of inference:

I First-order axioms and rules

Prop. All instances of tautologies of the propositional calculus

MP.
φ,φ → ψ

ψ
(Modus Ponens)

FO1. ∀x (φ → ψ ) → (φ → ∀xψ ), where x is not a free variable un φ
FO2. ∀φ (x ) → φ (t ), where φ (t ) is the result of substitution of all free occurrences of x in φ (x )

by a term t that is free for x in φ (x )
FO3. ∀xKiφ (x ) → Ki∀xφ (x ) (Barcan formula)

FOR.
φ

∀xφ
II Axioms and rules for reasoning about knowledge

AK. (Kiφ ∧ Ki (φ → ψ )) → Kiψ , i ∈ G (Distribution Axiom)

RK.
φ

Kiφ
(Knowledge Necessitation)

AE. EGφ → Kiφ, i ∈ G

RE.
{Φk,θ,X (Kiφ) | i ∈ G}

Φk,θ,X (EGφ)

AC. CGφ → (EG )mφ,m ∈ N
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RC.
{Φk,θ,X ((EG )mφ) |m ∈ N}

Φk,θ,X (CGφ)

III Axioms and rule for reasoning about probabilities

P1. Pi,≥0φ
P2. Pi,≤rφ → Pi,<tφ, t > r
P3. Pi,<tφ → Pi,≤tφ
P4. (Pi,≥rφ ∧ Pi,≥tψ ∧ Pi,≥1¬(φ ∧ψ )) → Pi,≥min (1,r+t ) (φ ∨ψ )

P5. (Pi,≤rφ ∧ Pi,<tφ) → Pi,<r+t (φ ∨ψ ), r + t ≤ 1

RP.
φ

Pi,≥1φ
(Probabilistic Necessitation)

RA.
{Φk,θ,X (Pi,≥r− 1

m
φ) |m ≥ 1

r
,m ∈ N }

Φk,θ,X (Pi,≥rφ)
, r ∈ (0, 1]Q (Archimedean rule)

IV Axioms and rules for reasoning about probabilistic knowledge

APE. Er
G
φ → Kr

i φ, i ∈ G

RPE.
{Φk,θ,X (Kr

i φ) | i ∈ G}
Φk,θ,X (Er

G
φ)

APC. Cr
G
φ → (F r

G
)mφ, m ∈ N

RPC.
{Φk,θ,X (F r

G
)mφ) |m ∈ N}

Φk,θ,X (Cr
G
φ)

The given axioms and rules are divided into four groups, according to the type of reasoning. The
first group contains the standard axiomatization for first-order logic and, in addition, a variant of
the well-known axiom for modal logics, called Barcan formula. It is proved that Barcan formula
holds in the class of all first-order fixed domain modal models, and that it is independent from the
other modal axioms [29, 30]. The second group contains axioms and rules for epistemic reasoning.
AK and RK are classical Distribution axiom and Necessitation rule for the knowledge operator. The
axiom AE and the rule RE are novel; they properly relate the knowledge operators and the operator
of group knowledge EG , regardless of the cardinality of the groupG. Similarly, AC and RC properly
relate the operators EG and CG . The infinitary rule RC is a generalization of the rule In f C from
Reference [11]. The third group contains a multi-agent variant of a standard axiomatization for
reasoning about probability [41]. The infinitary rule RA is a variant of the so-called Archimedean
rule, generalized by incorporating the k-nested implications in a similar way as it has been done
in Reference [34] in purely probabilistic settings. This rule informally says that if probability of a
formula is considered by an agent i to be arbitrarily close to some number r , then, according to the
agent i , the probability of the fomula must be equal to r . The last group consists of novel axioms
and rules that allow reasoning about probabilistic knowledge. They properly capture the semantic
relationship between the operators Kr

i , Er
G

, F r
G

, and Cr
G

, and they are in spirit similar to the last
four axioms and rules from the second group.

Altogether, our axiomatization contains five infinitary rules of inference; they directly corre-
spond to the five sources of non-compactness of our logic, identified in Section 2.3—each of them
can be used to formally prove the inconsistency of the corresponding example of an unsatisfiable
set (we illustrate that fact by Example 3.4, for the rule RE). Note that those sets would be consistent
under any finitary axiomatization.

Note that we use the structure of these k-nested implications in all of our infinitary inference
rules. As we have already mentioned, the reason is that this form allows us to prove the Deduction
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theorem and Strong necessitation theorem. Note that by choosing k = 0, θ0 = � in the inference
rules RE, RC, RPE, RPC, we obtain the intuitive forms of the rules:

{Kiφ | i ∈ G}
EGφ

,
{(EG )mφ |m ≥ 1}

CGφ
,
{Kr

i φ | i ∈ G}
Er

G
φ

,
{(F r

G
)mφ |m ≥ 0}
Cr

G
φ

.

Next, we define some basic notions of proof theory.

Definition 3.1. A formula φ is a theorem, denoted by � φ, if there is an at-most countable se-
quence of formulas φ0,φ1, . . . ,φλ+1 (λ is a finite or countable ordinal4) of formulas from ForPCK f o ,
such that φλ+1 = φ, and every φi is an instance of some axiom schemata or is obtained from the
preceding formulas by an inference rule.

A formulaφ is derivable from a setT of formulas (T � φ) if there is an at-most countable sequence
of formulas φ0,φ1, . . . ,φλ+1 (λ is a finite or countable ordinal) such that φλ+1 = φ, and each φi is an
instance of some axiom schemata or a formula from the set T , or it is obtained from the previous
formulas by an inference rule, with the exception that the premises of the inference rules RK and
RP must be theorems. The corresponding sequence of formulas is a proof for φ from T .

A set of formulasT is deductively closed if it contains all the formulas derivable fromT , i.e.,φ ∈ T
whenever T � φ.

Obviously, a formula is a theorem iff it is derivable from the empty set. Now, we introduce the
notions of consistency and maximal consistency.

Definition 3.2. A set T of formulas is inconsistent if T � φ for every formula φ, otherwise it is
consistent. A set T of formulas is maximal consistent if it is consistent and each proper superset of
T is inconsistent.

It is easy to see that T is inconsistent iff T � ⊥.
In the proof of completeness theorem, we will use a special type of maximal consistent set, called

saturated sets.

Definition 3.3. A set T of formulas is saturated iff it is maximal consistent and the following
condition holds:

if ¬(∀x )φ (x ) ∈ T , then there is a term t such that ¬φ (t ) ∈ T .

Note the notions of deductive closeness, maximal consistency, and saturates sets are defined for
formulas, but they can be defined for theories (sets of sentences) in the same way. We omit the
formal definitions here, since they would have the identical form as the ones above, but we will
use the mentioned notions in the following sections.

Now, we show an example of how the infinitary rules are used in practice.

Example 3.4. Let us show that the set T = {Kiφ | i ∈ G} ∪ {¬EGφ} of formulas saying that each
member of some (possibly infinite) group G knows φ and that the whole group G does not know
φ is an inconsistent set with respect to our axiomatization:

(1) T � ¬EGφ, since ¬EGφ ∈ T
(2) T � Kiφ, since Kiφ ∈ T , for all i ∈ G
(3) T � EGφ, by RE for k = 0 and θ = �
(4) T � ⊥, from (1) and (3).

4I.e., the length of a proof is an at-most countable successor ordinal.
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16:12 S. Tomović et al.

The following result shows that the proposed axioms from AxPCK f o are valid, and the inference
rules preserve validity.

Theorem 3.5 (Soundness). The axiomatic system AxPCK f o is sound with respect to the class of

PCK f o models.

Proof. The soundness of the propositional part follows directly from the fact that interpretation
of ∧ and ¬ in the definition of |= relation is the same as in the propositional calculus. The proofs
for FO1. and FOR. are standard.

AE. AC., and APC. follow immediately from the semantics of operators EG , CG , and Cr
G

.
FO2. Let (M, s ) |= (∀x )φ (x ). Then (M, s,v ) |= (∀x )φ (x ) for every valuation v . Note that for

every v , among all valuations there must be a valuation v ′ such that v ′(s ) (x ) = d = I (s ) (t )v
and (M, s,v ′) |= φ (x ). From the equivalence (M, s,v ′) |= φ (x ) iff (M, s,v ) |= φ (t ), we obtain that
(M, s,v ) |= φ (t ) holds for every valuation. Thus, every instance of FO2 is valid.

FO3. (Barcan formula) Suppose that (M, s ) |= (∀x )Kiφ (x ), i.e., for each evaluation v , (M, s,v ) |=
(∀x )Kiφ (x ). Then for each valuation v and every d ∈ D, (M, s,v[d/x]) |= Kiφ (x ). Therefore, for
every v and d and every t ∈ Ki (s ), we have (M, t ,v[d/x]) |= φ (x ). Thus, for every t ∈ Ki (s ) and
every valuation v , (M, t ,v ) |= (∀x )φ (x ). Finally, since for every t ∈ Ki (s ), (M, t ) |= (∀x )φ (x ), we
have (M, s ) |= Ki (∀x )φ (x ).

RC. We will prove by induction on k that if (M, s,v ) |= Φk,θ,X ((EG )mφ), for allm ∈ N , then also
(M, s,v ) |= Φk,θ,X (CGφ), for each state s and valuation v of any Kripke structure M :

Induction base k = 0. Let (M, s,v ) |= θ0 → (EG )mφ, for allm ∈ N . Assume that it is not
(M, s,v ) |= θ0 → CGφ, i.e.,

(M, s,v ) |= θ0 ∧ ¬CGφ. (3.1)

Then, (M, s,v ) |= (EG )mφ, for allm ∈ N , and therefore (M, s,v ) |= CGφ (by the definition of the
satisfiability relation), which contradicts Equation (3.1).

Inductive step. Let (M, s,v ) |= Φk+1,θ,X ((EG )mφ), for allm ∈ N where θ = (θ0, . . . ,θk+1).
Suppose Xk+1 = Ki for some i ∈ A, i.e., (M, s,v ) |= θk+1 → Ki Φk,θk

j=0,X
k
j=0

((EG )mφ), for allm ∈
N . Assume the opposite, that (M, s,v ) � |= Φk+1,θ,X (CGφ), i.e., (M, s,v ) |= θk+1 ∧
¬Ki Φk,θk

j=0,X
k
j=0

(CGφ). Then also (M, s,v ) |= Ki Φk,θk
j=0,X

k
j=0

((EG )mφ), for allm ∈ N , so for ev-

ery state t ∈ Ki (s ), we have that (M, t ,v ) |= Φ
k,θk

j=0,X
k
j=0

((EG )mφ), for allm ∈ N , and by the

induction hypothesis (M, t ,v ) |= Φ
k,θk

j=0,X
k
j=0

(CGφ). Therefore, (M, s,v ) |= Ki Φk,θk
j=0,X

k
j=0

(CGφ),

leading to a contradiction.
RA. We prove the soundness of this rule by induction on k , i.e., if (M, s,v ) |= Φk,θ,X (Pi,≥r− 1

m
φ)

for every m ∈ N , m ≥ 1
r

and r > 0, given some model M , state s and valuation v , then (M, s,v ) |=
Φk,θ,X (Pi,≥rφ).

Induction base k = 0. This case follows by the properties of the real numbers.
Inductive step. Let (M, s,v ) |= Φk+1,θ,X (Pi,≥r− 1

m
φ) and Xk+1 = Ki for some i ∈ A, i.e.,

(M, s,v ) |= θk+1 → Ki Φk,θk
j=0,X

k
j=0

(Pi,≥r− 1
m
φ) for every m ∈ N , m ≥ 1

r
. Assume the opposite,

that (M, s,v ) � |= Φk+1,θ,X (Pi,≥rφ). Then, (M, s,v ) |= θk+1 ∧ ¬Ki Φk,θk
j=0,X

k
j=0

(Pi,≥rφ), so (M, s,v ) |=
Ki Φk,θk

j=0,X
k
j=0

(Pi,≥r− 1
m
φ) for everym ∈ N ,m ≥ 1

r
. Therefore, for every state t ∈ Ki (s ): (M, t ,v ) |=

Φ
k,θk

j=0,X
k
j=0

(Pi,≥r− 1
m
φ) and (M, t ,v ) |= Φ

k,θk
j=0,X

k
j=0

(Pi,≥r φ ) by the induction hypothesis, so

(M, s,v ) |= Ki Φk,θk
j=0,X

k
j=0

(Pi,≥rφ), which is a contradiction.

RPC. Now, we show that rule RPC preserves validity by induction on k .

Let us prove the implication: if (M, s,v ) |= Φk,θ,X ((F r
G

)mφ), for all m ∈ N , and PCK
f o
∞ -models

M , then also (M, s,v ) |= Φk,θ,X (Cr
G
φ), for each state s in M :
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Induction base k = 0. Suppose (M, s,v ) |= θ0 → (F r
G

)mφ for all m ∈ N . If it is not (M, s,v ) |=
θ0 → Cr

G
φ, i.e., (M, s,v ) |= θ0 ∧ ¬Cr

G
φ, then (M, s,v ) |= (F r

G
)mφ, for all m ∈ N . Therefore,

(M, s,v ) |= Cr
G
φ, which is a contradiction.

Inductive step. Let (M, s,v ) |= Φk+1,θ,X ((F r
G

)mφ), for allm ∈ N .
Suppose Xk+1 = Ki , i ∈ A, i.e., (M, s,v ) |= θk+1 → Ki Φk,θk

j=0,X
k
j=0

((F r
G

)mφ), for allm ∈ N .

If s � |= Φk+1,θ,X (Cr
G
φ), i.e., (M, s,v ) |= θk+1 ∧ ¬Ki Φk,θk

j=0,X
k
j=0

(Cr
G
φ) (*), then (M, s,v ) |=

Ki Φk,θk
j=0,X

k
j=0

((F r
G

)mφ), for all m ∈ N . So for each t ∈ Ki (s ), we have (M, t ,v ) |= Φk,θ,X ((F r
G

)mφ).

By the induction hypothesis on k it follows that (M, t ,v ) |= Φ
k,θk

j=0,X
k
j=0

(Cr
G
φ). But then

(M, s,v ) |= Ki Φk,θk
j=0,X

k
j=0

(Cr
G
φ), which contradicts (*). �

4 SOME THEOREMS OF PCK f o

In this section, we prove several theorems. Some of them will be useful in proving the completeness
of the axiomatization AxPCK f o . We start with the deduction theorem. Since we will frequently use
this theorem, we will not always explicitly mention it in the proofs.

Theorem 4.1 (Deduction Theorem). If T is a theory and φ,ψ are sentences, then T ∪ {φ} � ψ
implies T � φ → ψ .

Proof. We use the transfinite induction on the length of the proof ofψ fromT ∪ {φ}. The case
ψ = φ is obvious; ifψ is an axiom, then � ψ , so T � ψ , and therefore T � φ → ψ . Ifψ was obtained
by rule RK, i.e.,ψ = Kiφ where φ is a theorem, then � Kiφ (by R2); that is, � ψ , so T � φ → ψ . The
reasoning is analogous for cases of other inference rules that require a theorem as a premise. Now,
we consider the case where ψ was obtained by rule RPC. The proof for the other infinitary rules
is similar.

Let T ,φ � {Φk,θ,X ((F r
G

)mη) |m ∈ N} � ψ where ψ = Φk,θ,X (Cr
G
η),θ = (θ0,θ1 . . . ,θk ),k ≥ 1.

Then,
T � φ → Φk,θ,X ((F r

G
)mη), for allm ∈ N , by the induction hypothesis.

Suppose Xk = Ki , for some i ∈ A.
T � φ → (θk → Ki Φk−1,θk−1

j=0 ,X
k−1
j=0

((F r
G

)mη)), by the definition of Φk

T � (φ ∧ θk ) → Ki Φk−1,θk−1
j=0 ,X

k−1
j=0

((F r
G

)mη), by the propositional tautology

(p → (q → r )) ←→ ((p ∧ q) → r ). (4.1)

Let θ = (θ0, . . . ,θk−1,φ ∧ θk ). Then, we have:

T � θk → Ki Φ
k−1,θ

k−1

j=0 ,X
k−1
j=0

((F r
G

)mη), for allm ∈ N
T � Φ

k,θ,X
((F r

G
)mη), for allm ∈ N

T � Φ
k,θ,X

(Cr
G
η) by RPC

T � (φ ∧ θk ) → Ki Φk−1,θk−1
j=0 ,X

k−1
j=0

(Cr
G
η)

T � φ → (θk → Ki Φk−1,θk−1
j=0 ,X

k−1
j=0

(Cr
G
η), by the tautology (4.1)

T � φ → Φk,θ,X (Cr
G
η)

T � φ → ψ .
The case k = 0 follows in a similar way. �

Remark 2 (Implicative form of the Infinitary Rules). Note that the proof of the Deduction theorem
relies on the fact that the infinitary rules of inference are given in the implicative form, i.e., all the
formulas in the premises and the conclusion of (every instance of) a rule are implications with the
same antecedent. This is a standard technical solution that ensures that the Deduction theorem
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can be proved using the transfinite induction on the length of the inference. They are used, among
others, in probabilistic, temporal, and epistemic logic, in the approaches when strong completeness
theorems are obtained using infinitary rules to overcome non-compactness issues of the logics [2,
11, 13, 33, 38].

Let us explain the intuition behind the use of implicative forms. Suppose that the rule

{ψm |m ≥ 0}
ψ

(4.2)

intuitively captures some specific non-compactness issue (e.g., in this article, we consider
{(F r

G
)mφ | m≥0}

Cr
G

φ
to describe probabilistic common knowledge operator).

In the inductive proof of the Deduction theorem, in the case when T ,θ � ψ is obtained by an
application of the rule (4.2), we need to use the induction hypothesis T ,θ � ψm ⇒ T � θ → ψm ,
for everym ≥ 0. Then the implicative form (with antecedent θ ) is an obstacle to directly apply the
rule (4.2) on the set {θ → ψm |m ≥ 0} to infer T � θ → ψ . For that reason, the rule (4.2) is relaxed
to include all inferences of the form

{φ → ψm |m ≥ 0}
φ → ψ

(4.3)

for every formulaφ. This modification allows us to concludeT � (θ ∧ φ) → ψm fromT ,θ � φ → ψm

in the induction step, using the tautology (4.1) for every m ≥ 0. Then, we can apply the instance
{(θ∧φ )→ψm | m≥0}

(θ∧φ )→ψ
of (4.3) and finally conclude θ → (φ → ψ ) using (4.1).

Note that this proof strategy requires only the implicative form of the rule, while nesting of
knowledge operators is not used in the proof of the Deduction theorem. However, the nesting of
those operators is necessary for the proof of the Strong necessitation theorem (Theorem 4.2), and
we discuss its use in Remark 3.

Next, we prove several results about the purely epistemic part of our logic. First, we show that
the strong variant of necessitation for knowledge operator is a consequence of the axiomatization
AxPCK f o . This theorem will have an important role in the proof of completeness theorem, in the
construction of the canonical model.

First, we need to introduce some notation. For a given set of formulas T and i ∈ A, we define
the set KiT as the set of all formulas Kiφ, where φ belongs to T , i.e.,

KiT = {Kiφ | φ ∈ T }.

Theorem 4.2 (Strong Necessitation). IfT is a theory andT � φ, then KiT � Kiφ, for all i ∈ A.

Proof. LetT � φ. We will proveKiT � Kiφ using the transfinite induction on the length of proof
of T � φ. Here, we will only consider the application of rules FOR and RPC, while the cases when
we apply the other infinitary rules are similar to the proof for RCP.

(1) Suppose that T � φ, where φ = (∀x )ψ , was obtained from T � ψ by the inference rule FOR.
Then:
T � ψ by the assumption
KiT � Kiψ by the induction hypothesis
KiT � (∀x )Kiψ by FOR
KiT � Ki (∀x )ψ by Barcan formula.
(2) Suppose that T � φ where φ = Φk,θ,X (Cr

G
ψ ) was derived by application of RPC. Then:

T � Φk,θ,X ((F r
G

)mψ ), for allm ∈ N
KiT � Ki Φk,θ,X ((F r

G
)mψ ), for allm ∈ N , by induction hypothesis

KiT � � → Ki Φk,θ,X ((F r
G

)mψ ), for allm ∈ N
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KiT � Φ
k+1,θ,X

((F r
G

)mψ ), where θ = (θ,�) and X = (X,Ki ).

KiT � Φ
k+1,θ,X

(Cr
G
ψ ), by RPC

KiT � � → Ki Φk,θ,X (Cr
G
ψ )

KiT � � → Kiφ
KiT � Kiφ. �

Remark 3 (k−nested Formulas in the Infinitary Rules). Note that in a finitary axiom system, the
Strong necessitation theorem would be a direct consequence of the Necessitation inference rule
and Distribution axiom, due to the fact that any proof uses a finite set of premises.

In the presence of the rules of the form (4.2), the derivations can be infinite and the proof that
T � ψ implies KiT � Kiψ , by induction on the length of the proofT � ψ , must also include the case
of application of Equation (4.2), assumingT � ψm for everym ≥ 0. In the induction step, we use the
hypothesis that KiT � Kiψm , for every m. Then the presence of knowledge operator Ki prevents
us to directly apply Equation (4.2) on the set {Kiψm |m ≥ 0} to infer KiT � Kiψ . For that reason, it
is convenient to generalize the rule (4.2) by allowing all inferences of the form

{Kin
Kin−1 . . .Ki1ψm |m ≥ 0}
Kin

Kin−1 . . .Ki1ψ
, (4.4)

for every integern and every block of knowledge operatorsKin
Kin−1 . . .Ki1 . With this modification,

the case of application of Equation (4.4) in the inductive proof would be considered as follows: Let

us denote K = Kin
Kin−1 . . .Ki1 and assume that T � Kψ is obtained by Equation (4.4), so T � Kψm

for every m. Then, KiT � KiKψm for every m by the induction hypothesis, which allows us to

obtain KiT � KiKψ by applying the instance
{Ki Kψm | m≥0}

Ki Kψ
of Equation (4.4).

This idea is directly applied to the case (2) (rule RPC) in the previous proof, and it can be applied
in the same way for the remaining three infinitary rules. Since the rules must formally be in an
implicative form because of the Deduction theorem (see Remark 2), we used the implication with
the antecedent �.

In our approach, we need to meet both requirements of implicative forms and nesting of knowl-
edge operators, i.e., our infinitary rules must generalize both Equations (4.3) and (4.4), which di-
rectly leads to our form of k-nested implication in Definition 2.3.

As a consequence, we also obtain strong necessitation for the operators of group knowledge.
As we will see later, this result is necessary to prove so-called fixed-point axiom for common
knowledge operator.

Corollary 4.3. If T is a theory and T � φ, then EGT � EGφ, for all G ⊆ A.

Proof. Let T � φ. For every i ∈ G, we have EGT � KiT by the axiom AE, and KiT � Kiφ, by
Theorem 4.2. Since by the rule RE, where we choose k = 0 and θ0 = �, we have

{Kiφ | i ∈ G} � EGφ,

and we obtain EGT � EGφ. �

Now, we show that some standard properties of epistemic operators can be proved in AxPCK f o .
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Proposition 4.4. Let φ,ψ , φ j , j = 1, . . . ,m be formulas, i ∈ A and G ∈ G. Then:

(1) � Ki (φ → ψ ) → (Kiφ → Kiψ )
(2) � EG (φ → ψ ) → (EGφ → EGψ )
(3) � CG (φ → ψ ) → (CGφ → CGψ )

(4) � Ki (
m∧
j=1

φ j ) ≡
m∧
j=1

Kiφ j ,∀i ∈ G,

(5) � EG (
m∧
j=1

φ j ) ≡
m∧
j=1

EGφ j

(6) � CGφ → EG (φ ∧CGφ).

Proof.

(1) follows directly from AK.
(2) We use the following derivation:

EGφ ∧ EG (φ → ψ ) � {Kiφ ∧ Ki (φ → ψ ) | ∀i ∈ G} (by AE)

� {Kiψ | ∀i ∈ G} (by AK)

� EGψ (by RE).

Therefore, by Deduction theorem � EGφ ∧ EG (φ → ψ ) → EGψ , i.e., � EG (φ → ψ ) →
(EGφ → EGψ ).

(3) Let us first prove, using the induction on n, that

� (EG )m (φ → ψ ) → ((EG )mφ → (EG )mψ ) (4.5)

holds for everym ∈ N .
Induction base is proved in the previous part of this proposition (2).
Induction step:
� (EG )m (φ → ψ ) → ((EG )mφ → (EG )mψ ), induction hypothesis
� Ki ((EG )m (φ → ψ ) → ((EG )mφ → (EG )mψ )),∀i ∈ G, by RK
� EG ((EG )m (φ → ψ ) → ((EG )mφ → (EG )mψ )), by RE
� EG ((EG )m (φ → ψ ) → ((EG )mφ → (EG )mψ )) → (Em+1

G
(φ → ψ ) → EG ((EG )mφ →

(EG )mψ )), by induction base
� (EG )m+1 (φ → ψ ) → EG ((EG )mφ → (EG )mψ ), by previous two
� EG ((EG )mφ → (EG )mψ ) → ((EG )m+1φ → (EG )m+1ψ ), by induction base
� (EG )m+1 (φ → ψ ) → ((EG )m+1φ → (EG )m+1ψ ), by previous two.
Thus, Equation (4.5) holds. Next,

CGφ ∧CG (φ → ψ ) � {(EG )mφ ∧ (EG )m (φ → ψ ) | ∀m ∈ N} (by AC)

� {(EG )mψ | ∀m ∈ N} (by (4.5))

� CGψ (by RC).

Then, � CG (φ → ψ ) → (CGφ → CGψ ), by the Deduction theorem.
(4) This standard result in modal logics follows from the Distribution axiom and propositional

reasoning.
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(5) First, we prove that EG (
m∧
j=1

φ j ) implies
m∧
j=1

EGφ j .

EG
��
�

m∧

j=1

φ j
	

�
�
⎧⎪⎪⎨⎪⎪⎩
Ki

��
�

m∧

j=1

φ j
	

�
| i ∈ G

⎫⎪⎪⎬⎪⎪⎭
(by AE)

�
⎧⎪⎪⎨⎪⎪⎩

m∧

j=1

Kiφ j | i ∈ G
⎫⎪⎪⎬⎪⎪⎭

(by the previous part of the proposition (4))

�
m⋃

j=1

{Kiφ j | i ∈ G} ��
�
since

m∧

j=1

Kiφ j → Kiφ j , ∀j = 1, . . . ,m	

�

�
m⋃

j=1

{EGφ j | i ∈ G} (by RE)

�
m∧

j=1

EGφ j (by propositional reasoning).

Conversely,

m∧

j=1

EGφ j � {Kiφ1 | i ∈ G} ∪ {Kiφ2 | i ∈ G} ∪ ... ∪ {Kiφm | i ∈ G} (by AE)

�
⎧⎪⎪⎨⎪⎪⎩

m∧

j=1

Kiφ j | i ∈ G
⎫⎪⎪⎬⎪⎪⎭

�
⎧⎪⎪⎨⎪⎪⎩
Ki

��
�

m∧

j=1

φ j
	

�
| i ∈ G

⎫⎪⎪⎬⎪⎪⎭
(by the previous part of the proposition (4))

� EG
��
�

m∧

j=1

φ j
	

�

(by RE).

Therefore, by the Deduction theorem, we have that � EG (
m∧
j=1

φ j ) ≡
m∧
j=1

EGφ j .

(6) � CGφ → EG {(EG )mφ |m ∈ N}, by AC
EG {(EG )mφ |m ∈ N} � EGCGφ, by RC and Corollary 4.3
� CGφ → EGCGφ, by previous two
� CGφ → EGφ, by AC
� CGφ → EG (φ ∧CGφ), by previous two and the previous part (5) of the proposition. �

Note that (3) and (6) (the fixed-point axiom) are two standard axioms of epistemic logic with
common knowledge [17, 24]. The axiom (3) is often written in an equivalent form

(CGφ ∧CG (φ → ψ )) → CGψ .

The previous result shows that they are provable in our axiomatic system AxPCK f o .
The standard axiomatization for epistemic logics (with finitely many agents) [17, 24] also in-

cludes one axiom for group knowledge operator, which states that group knowledge EGφ is
equivalent to the conjunction of Kiφ, where all the agents i from the group are considered. The
next result shows that both that axiom and its probabilistic variant hold in our logic.
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Proposition 4.5. Let φ be a formula, r ∈ [0, 1]Q, and letG ∈ G be a finite set of agents. Then the
following hold:

(1) � EGφ ≡
∧

i ∈G Kiφ
(2) � Er

G
φ ≡ ∧i ∈G Kr

i φ.

Proof.

(1) From the axiom AE, using propositional reasoning, we can obtain � EGφ →
∧

i ∈G Kiφ.
However, from the inference rule RE, choosing k = 0 and θ0 = �, we obtain {Kiφ | i ∈ G} �
EGφ, i.e.,

∧
i ∈G Kiφ � EGφ, so � ∧i ∈G Kiφ → EGφ follows from the Deduction theorem.

(2) This result can be proved in the same way as the first statement, using the obvious analo-
gies between the axioms AE and APE, and the rules RE and RPE. �

Note that the distribution properties of the epistemic operatorsKi , EG , andCG , proved in Propo-
sition 4.4 (1)–(3), cannot be directly transferred to the properties of the corresponding operators of
probabilistic knowledge. For example, it is easy to see that Er

G
(φ → ψ ) → (Er

G
φ → Er

G
ψ ) is not a

valid formula.5 Nevertheless, we can prove that probabilistic versions of knowledge, group knowl-
edge, and common knowledge are closed under consequences.

Proposition 4.6. Let φ andψ be formulas such that � φ → ψ . Let r ∈ [0, 1]Q, i ∈ A, andG ∈ G.
Then:

(1) � Kr
i φ → Kr

i ψ
(2) � Er

G
φ → Er

G
ψ

(3) � Cr
G
φ → Cr

G
ψ .

Proof.

(1) Note that

� Ki (Pi,≥1 (φ → ψ ) → (Pi,≥rφ → Pi,≥rψ )) → (KiPi,≥1 (φ → ψ ) → Ki (Pi,≥rφ → Pi,≥rψ )) (4.6)

by Proposition 4.4(1). From the assumption � φ → ψ , applying the rule RP and then the
rule RK, we obtain

� K1
i (φ → ψ ). (4.7)

Note that � ¬φ ∨ ¬⊥ (a propositional tautology), so

� Pi,≥1 (¬φ ∨ ¬⊥), by RP. (4.8)

Also, � ¬(φ ∧ ¬⊥) ∨ ¬¬φ, so

� Pi,≥1 (¬(φ ∧ ¬⊥) ∨ ¬¬φ), by RP. (4.9)

By P4, we have � (Pi,≥rφ ∧ Pi,≥0¬⊥ ∧ Pi,≥1 (¬φ ∨ ¬⊥)) → Pi,≥1 (φ ∨ ⊥), so

� Pi,≥rφ → Pi,≥r (φ ∨ ⊥), by (4.8) using the instance Pi,≥0¬⊥ of P1. (4.10)

The formula Pi,≥r (φ ∨ ⊥) denotes Pi,≥r¬(¬φ ∧ ¬⊥), which is the same as
Pi,≥1−(1−r )¬(¬φ ∧ ¬⊥), and can be abbreviated as Pi,≤1−r (¬φ ∧ ¬⊥). Similarly,
¬Pi,≥r¬¬φ denotes Pi,<r¬¬φ. From P5, we obtain � (Pi,≤1−r (¬φ ∧ ¬⊥) ∧ Pi,<r¬¬φ) →
Pi,<1 ((¬φ ∧ ¬⊥) ∨ ¬¬φ).

5However, it can be shown that the formula E1
G

(φ → ψ ) → (Er
G

φ → Er
G

ψ ) is valid and it is a theorem of our logic

(see (4.17)).
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Since Pi,≥1 (¬(φ ∧ ¬⊥) ∨ ¬¬φ) denotes ¬Pi,<1 ((¬φ ∧ ¬⊥) ∨ ¬¬φ), from (4.9), we have
� (Pi,≤1−r (¬φ ∧ ¬⊥) ∧ Pi,<r¬¬φ) → Pi,<1 ((¬φ ∧ ¬⊥) ∨ ¬¬φ) ∧ ¬Pi,<1 ((¬φ ∧ ¬⊥)∨
¬¬φ)), by P5, and therefore � Pi,≤1−r (¬φ ∧ ¬⊥) → Pi,<r¬¬φ, i.e.,

� Pi,≥r (φ ∨ ⊥) → Pi,≥r¬¬φ. (4.11)

From (4.10) and (4.11), we obtain � Pi,≥r (φ) → Pi,≥r¬¬φ. The negation of the formula

Pi,≥1 (φ → ψ ) → (Pi,≥rφ → Pi,≥rψ ) (4.12)

is equivalent to Pi,≥1 (¬φ ∨ψ ) ∧ Pi,≥rφ ∧ Pi,<rψ . Since Pi,≥rφ → Pi,≥r¬¬φ, then
Pi,≥1 (¬φ ∨ψ ) ∧ Pi,≥r¬¬φ ∧ Pi,<rψ , which can be written as Pi,≥1 (¬φ ∨ψ ) ∧ Pi,≤1−r¬φ ∧
Pi,<rψ . Then, � Pi,≤1−r¬φ ∧ Pi,<rψ → Pi,<r (¬φ ∨ψ ), by P5, and, since Pi,<1φ is
an abbreviation for ¬Pi,≥1φ, we have � ¬(Pi,≥1 (φ → ψ ) → (Pi,≥rφ → Pi,≥rψ )) →
Pi,≥1 (¬φ ∨ψ ) ∧ ¬Pi,≥1 (¬φ ∨ψ ), a contradiction. Thus, the formula (4.12) is a theorem of
our axiomatization. By applying the rule RK to the theorem, we obtain

� Ki (Pi,≥1 (φ → ψ ) → (Pi,≥rφ → Pi,≥rψ )). (4.13)

From (4.6) and (4.13), we obtain

� KiPi,≥1 (φ → ψ ) → Ki (Pi,≥rφ → Pi,≥rψ ). (4.14)

By Proposition 4.4(1), we have

� Ki (Pi,≥rφ → Pi,≥rψ ) → (KiPi,≥rφ → KiPi,≥rψ ). (4.15)

From (4.14) and (4.15), we obtain � KiPi,≥1 (φ → ψ ) → (KiPi,≥rφ → KiPi,≥rψ ), i.e.,

� K1
i (φ → ψ ) → (Kr

i φ → Kr
i ψ ). (4.16)

Finally, from (4.7) and (4.16), we obtain � Kr
i φ → Kr

i ψ .
(2) We start with the following derivation:

Er
Gφ ∧ E1

G (φ → ψ ) � {Kr
i φ ∧ K1

i (φ → ψ ) | ∀i ∈ G}, by APE

� {Kr
i ψ | ∀i ∈ G}, by (4.16)

� Er
Gψ , by RPE.

Therefore,

� E1
G (φ → ψ ) → (Er

Gφ → Er
Gψ ) (4.17)

by the Deduction theorem. From (4.8), using the rule RPE, we obtain

� E1
G (φ → ψ ). (4.18)

Finally, from (4.17) and (4.18), we obtain � Er
G
φ → Er

G
ψ .

(3) First, we prove that

� (F r
G )mφ → (F r

G )mψ (4.19)

holds for everym. We prove the claim by induction.
Induction base follows trivially, since (F r

G
)0φ = �.

Suppose that � (F r
G

)mφ → (F r
G

)mψ (induction hypothesis).
� (φ ∧ (F r

G
)mφ) → (φ ∧ (F r

G
)mψ )

� Pi,≥1 ((φ ∧ (F r
G

)mφ) → (φ ∧ (F r
G

)mψ )),∀i ∈ G, by RP
� KiPi,≥1 ((φ ∧ (F r

G
)mφ) → (φ ∧ (F r

G
)mψ )),∀i ∈ G, by RK

� E1
G ((φ ∧ (F r

G
)mφ) → (φ ∧ (F r

G
)mψ )), by RPE

� E1
G ((φ ∧ (F r

G
)mφ) → (φ ∧ (F r

G
)mψ )) → (Er

G
(φ ∧ (F r

G
)mφ) → Er

G
(φ ∧ (F r

G
)mψ )), by

(4.17)
� Er

G
(φ ∧ (F r

G
)mφ) → Er

G
(φ ∧ (F r

G
)mψ ) by previous two, i.e.,
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� (F r
G

)m+1φ → (F r
G

)m+1ψ .
Thus, (4.19) holds.

Cr
Gφ � {(F

r
G )mφ | ∀m ∈ N0} (by APC)

� {(F r
G )mψ | ∀m ∈ N0}, by (4.19)

� Cr
Gψ , by RPC.

Now � Cr
G
φ → Cr

G
ψ follows from the Deduction theorem. �

Next, we prove several results about maximal consistent sets with respect to our axiomatic
system. Those results will be useful in proving the Truth lemma.

Lemma 4.7. Let T be a maximal consistent set of formulas for AxPCK f o . Then, T satisfies the fol-
lowing properties:

(1) for every formula φ, exactly one of φ and ¬φ is in T ,
(2) T is deductively closed,
(3) φ ∧ψ ∈ T iff φ ∈ T andψ ∈ T ,
(4) if {φ,φ → ψ } ⊆ T , thenψ ∈ T ,
(5) if r = sup {q ∈ [0, 1]Q | Pi,≥qφ ∈ T } and r ∈ [0, 1]Q, then Pi,≥rφ ∈ T .

Proof.

(1) If both formulas φ,¬φ ∈ T , then T would be inconsistent. Suppose φ � T . Since T is max-
imal, T ∪ {φ} is inconsistent, and by the Deduction theorem T � ¬φ. Similarly, if ¬φ � T ,
then T � φ. Therefore, if both formulas φ,¬φ � T , set T would be inconsistent, so exactly
one of them is in T .

(2) Otherwise, if there is some φ such thatT � φ and φ � T , then, by the previous part of this
lemma, ¬φ ∈ T , so T would be inconsistent.

(3) Suppose φ ∈ T and ψ ∈ T . Then, T � φ, T � ψ , T � φ ∧ψ and φ ∧ψ ∈ T , because T is de-
ductively closed by Lemma 4.7(2). For the other direction, let φ ∧ψ ∈ T . Then, T � φ ∧ψ ,
T � (φ ∧ψ ) → φ,T � (φ ∧ψ ) → ψ ,T � φ andT � ψ . Therefore,φ,ψ ∈ T , by Lemma 4.7(2).

(4) If {φ,φ → ψ } ⊆ T , then T � φ, T � φ → ψ and T � ψ , soψ ∈ T by Lemma 4.7(2).
(5) Let r = sup {q | Pi,≥qφ ∈ T }, thus T � Pi,≥qφ for every q < r , q ∈ [0, 1]Q. Then, by

the Archimedean rule RA, we have that T � Pi,≥rφ. Therefore, Pi,≥rφ ∈ T by
Lemma 4.7(2). �

Lemma 4.8. Let V be a maximal consistent set of formulas.

(1) EGφ ∈ V iff (Kiφ ∈ V for all i ∈ G)
(2) Er

G
φ ∈ V iff (Kr

i φ ∈ V for all i ∈ G)
(3) CGφ ∈ V iff ((EG )mφ ∈ V for allm ∈ N)
(4) Cr

G
φ ∈ V iff ((F r

G
)mφ ∈ V for all m ∈ N),

Proof. For the proof of (1), suppose that EGφ ∈ V . Since EGφ → Kiφ, for all i ∈ G is the axiom
AE, then also EGφ → Kiφ ∈ V for all i ∈ G. Therefore, Kiφ ∈ V for all i ∈ G by Lemma 4.7(4), be-
causeV is maximal consistent. For the other direction, ifKiφ ∈ V for all i ∈ G, and, since {Kiφ | i ∈
G} � EGφ (by the rule RE, where k = 0 and θ0 = �), we have that EGφ ∈ V , by Lemma 4.7(2).

The cases (2), (3), and (4) can be proved in a similar way, by replacing EGφ, Kiφ, for all i ∈ G,
axiom AE, and rule RE with Er

G
φ,Kr

i φ, for all i ∈ G, APE, RPE (case (2)),CGφ, (EG )mφ, for allm ∈
N , AC, RC (case (3)), and Cr

G
φ, (F r

G
)mφ for allm ∈ N , APC, RPC (case (4)), respectively. �
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5 COMPLETENESS

In this section, we prove that the axiomatic system AxPCK f o is strongly complete with respect to
the class of measurable MMEAS

A models. We will use Henkin-style construction [28], extending
our language with infinitely many new constant symbols, known as witnessing constants, in a
particular manner. We prove completeness in three main steps:

• First, we prove Lindenbaum’s theorem, i.e., we show how to extend a consistent set of sen-
tences T to a saturated maximal consistent set of sentences T ∗ step-by-step, in an infinite
process, considering in each step one sentence and checking its consistency with the con-
sidered theory in that step. Due to the presence of infinitary rules, we modify the standard
completion technique in the case that the considered sentence can be derived by an infini-
tary rule, by adding the negation of one of the premises of the rule. Such a premise always
exists, for every considered infinitary rule, due to the presence of the Deduction theorem.
We will discuss further necessity of this modification of the standard completion technique
in Remark 4.

• Second, we use saturated sets to construct a special PCK f o modelM∗, which we will call the
canonical model, and we show that it belongs to the classMMEAS

A . The states of this model
correspond to saturated theories. The key step in proving that M∗ is a measurable model is
the Truth lemma (Lemma 5.4), which ensures that a formula belongs to a saturated theory iff
it is satisfied in the corresponding state of the canonical model. The proof of the lemma is by
induction on complexity of the formula, and the important case when a formula is obtained
by application of a knowledge operator essentially depends on the Strong necessitation
theorem.

• Finally, using the saturation T ∗ of the considered theory T , we show that T is satisfiable in
the corresponding state sT ∗ of the canonical model.

5.1 Lindenbaum’s Theorem

We start with the Henkin construction of saturated extensions of theories. For that purpose, we
consider a broader language, obtained by adding countably many novel constant symbols. First,
we motivate our modification of the standard proof strategy.

Remark 4. The standard process of extending a theory to a maximal consistent theory assumes
an enumeration {φi | i ∈ N} of all sentences, and in the step k of the process the formula φk is
considered and added to the current theory in the case that it is consistent with it. This standard
infinite process is not directly applicable if the axiomatization contains infinitary rules of infer-
ence, as the resulting theory might be inconsistent even if in each step we ensure consistency.
To illustrate that fact, let us consider the theory T0 = {¬Cr

G
φ}, for some sentence φ, and the se-

quence of formulas φ1,φ2,φ3, . . . , where φi = (F r
G

)iφ for every i . Then, at each step k, the set

Tk = Tk−1 ∪ {φk } is consistent, but the set
⋃+∞

i=0Ti is not, since {φ1,φ2,φ3, . . . } � Cr
G
φ, by RPC.

For that reason, we modify the procedure by considering an enumeration of all sentences and
adding, in the case when the considered sentence can be derived by an infinitary rule, the negation
of one of the premises of the rule. We will see in the proof of the following result that such a premise
always exists, as a consequence of the Deduction theorem.

Theorem 5.1 (Lindenbaum’s Theorem). Let T be a consistent theory in the language LPCK f o ,
and C an infinite enumerable set of new constant symbols (i.e., C ∩ LPCK f o = ∅). Then, T can be
extended to a saturated theory T ∗ in the language L∗ = LPCK f o ∪C .
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Proof. Let {φi | i ∈ N} be an enumeration of all sentences in SentPCK f o . Let C be an infinite
enumerable set of constant symbols such that C ∩ LPCK f o = ∅. We define the family of theories
(Ti )i ∈N and the set T ∗ in the following way:

(1) T0 = T .
(2) For every i ∈ N:

(a) if Ti ∪ {φi } is consistent, then Ti+1 = Ti ∪ {φi }
(b) if Ti ∪ {φi } is inconsistent, and

(b1) φi = Φk,θ,X (EGφ), then Ti+1 = Ti ∪ {¬φi ,¬Φk,θ,X (Kjφ)},
for some j ∈ G such that Ti+1 is consistent;

(b2) φi = Φk,θ,X (CGφ), then Ti+1 = Ti ∪ {¬φi ,¬Φk,θ,X ((EG )mφ)},
for somem ∈ N such that Ti+1 is consistent;

(b3) φi = Φk,θ,X (Er
G
φ), then Ti+1 = Ti ∪ {¬φi ,¬Φk,θ,X (Kr

j φ)},
for some j ∈ G such that Ti+1 is consistent;

(b4) φi = Φk,θ,X (Cr
G
φ), then Ti+1 = Ti ∪ {¬φi ,¬Φk,θ,X ((F r

G
)mφ)}, for some m ∈ N

such that Ti+1 is consistent;
(b5) φi = Φk,θ,X (Pi,≥rφ), thenTi+1 = Ti ∪ {¬φi ,¬Φk,θ,X (Pi,≥r− 1

m
φ)}, for somem ∈ N

such that Ti+1 is consistent;
(b6) φi = (∀x )φ (x ), then Ti+1 = Ti ∪ {¬φi ,¬φ (c )}, for some constant symbol c ∈ C ,

which does not occur in any of the formulas from Ti such that Ti+1 remains
consistent

(c) Otherwise, Ti+1 = Ti ∪ {¬φi }.
(3) T ∗ =

∞⋃
i=0

Ti .

First, we need to prove that the set T ∗ is well defined, i.e., we need to show that the agents
j ∈ G used the steps (b1) and (b3) exist, that the numbers m ∈ N used in the steps (b2), (b4),
and (b5) exist, and that the constant c ∈ C from step (b6) exists. Let us prove correctness in
step (b4) exists, i.e., that if Ti ∪ {Φk,θ,X (Cr

G
φ)} is inconsistent, then there exists m ≥ 1 such that

Ti ∪ {¬Φk,θ,X ((F r
G

)mφ)} is consistent. Otherwise, if Ti ∪ {¬Φk,θ,X ((Fb
G

)mφ)} would be inconsis-
tent for every m, then Ti � Φk,θ,X ((F r

G
)mφ) for each m by the Deduction theorem, and therefore

Ti � Φk,θ,X (Cr
G
φ) by the inference rule RPC. But, sinceTi ∪ {Φk,θ,X (Cr

G
φ)} is inconsistent, we have

Ti � ¬Φk,θ,X (Cr
G
φ), which is in a contradiction with consistency of Ti . In a similar way, we can

prove existence of j andm in steps (b1–b5), where the other infinitary rules are considered. Let us
now consider the case (b6). It is obvious that the formula ¬(∀x )φ (x ) can be consistently added to
Ti , and if there is already some c ∈ C such that ¬φ (c ) ∈ Ti , the proof is finished. If there is no such
c , then observe thatTi is constructed by adding finitely many formulas toT , so there is a constant
symbol c ∈ C that does not appear inTi . Let us show that we can choose that c in (b6). If we suppose
that Ti ∪ {¬(∀x )φ (x ),¬β (c )} � ⊥, then by the Deduction theorem, we have Ti ,¬(∀x )φ (x ) � φ (c ).
Note that c does not appear in Ti ∪ {¬(∀x )φ (x )}, and therefore, Ti ,¬(∀x )φ (x ) � (∀x )φ (x ), which
is impossible. Thus, the sets Ti are well defined. Note that they are consistent by construction.

Next, we prove that T ∗ is deductively closed, using the induction on the length of proof. The
proof is straightforward in the case of finitary rules. Here, we will only prove that T ∗ is closed
under the rule RPC, since the cases when other infinitary rules are considered can be treated in a
similar way.

Suppose T ∗ � ϕ was obtained by RPC, where Φk,θ,X ((F r
G

)nφ) ∈ T ∗ for all n ∈ N , and ϕ =
Φk,θ,X (Cr

G
φ). Assume that Φk,θ,X (Cr

G
φ) � T ∗. Let i be the positive integer such that φi =

Φk,θ,X (Cr
G
φ). Then, Ti ∪ {φi } is inconsistent, since otherwise Φk,θ,X (Cr

G
φ) = φi ∈ Ti+1 ⊂ T ∗.
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Therefore,Ti+1 = Ti ∪ {¬Φk,θ,X ((F r
G

)mφ)} for somem, so¬Φk,θ,X ((F r
G

)mφ) ∈ T ∗, which contradicts
the consistency of Tj .

If we would suppose T is inconsistent, i.e., T ∗ � ⊥, then we would have ⊥ ∈ T ∗, since T ∗ is
deductively closed. Therefore, there would be some i such that ⊥ ∈ Ti , which is impossible. Thus,
T ∗ is consistent.

Finally, the step (b6) of the construction guarantees that the theory T ∗ is saturated in the ex-
tended language L∗. �

5.2 Canonical Model

Now, we construct a special Kripke structure whose set of states consists of saturated theories.
First, we need to introduce some notation. For a given set of formulas T and i ∈ A, we define the
set T /Ki as the set of all formulas φ, such that Kiφ belongs to T , i.e.,

T /Ki = {φ |Kiφ ∈ T }.

Definition 5.2 (Canonical Model). The canonical model is the structure M∗ = (S,D, I ,K ,P ), such
that

• S = {sV | V is a saturated theory};
• D is the set of all variable-free terms;
• Ki = {(sV , sU ) | V /Ki ⊆ U }, K = {Ki | i ∈ A};
• I (s ) is an interpretation such that:

—for each function symbol f k
j , I (s ) ( f k

j ) is a function fromDk toD such that for all variable-

free terms t1, . . . , tk , I (s ) ( f k
j ) :(t1, . . . , tk )→ f k

j (t1, . . . , tk ),

—for each relational symbol Rk
j ,

I (s ) (Rk
j ) = {(t1, . . . , tk ) | t1, . . . , tk are variable-free terms in Rk

j (t1, . . . , tk ) ∈ V , where

s = sV };
• P (i, s ) = (Si,s , χi,s , μi,s ), where

—Si,s = S,
— χi,s = {[φ]i,s | φ ∈ SentPCK }, where [φ]i,s = {sV ∈ Si,s | φ ∈ V },
—if [φ]i,s ∈ χi,s , then μi,s ([φ]i,s ) = sup {r | Pi,≥rφ ∈ V , where s = sV }.

Note that the sets [φ]i,s in the definition of the canonical mode actually do not depend on i and
s , so in the rest of this section, we will sometimes relax the notation by omitting the subscript.

Also, since there is a bijection between saturated theories and states of the canonical model,
we will often write just s when we denote either state of the corresponding saturated theory. For
example, we can write the last item of the definition above as μi,s ([φ]i,s ) = sup {r | Pi,≥rφ ∈ s}.

Now, we will show that M∗ is a well-defined PCK f o model, i.e., that:

• The definition of μi,s is correct, i.e., μi,s ([φ]i,s ) does not depend on the way we choose a
sentence from the class [φ]i,s ;

• Each P (i, s ) is a probability space, i.e., each χi,s is an algebra of subsets of Si,s , and each μi,s

is a finitely additive probability measure; and
• M∗ is a measurable model. Note that above in the algebras χi,s , sets [φ]i,s are defined using

φ ∈ s , and not (M∗, s ) |= φ, as it is required for PCK f o models. We prove in Lemma 5.4 that
those sets actually coincide.

First, we show that P (i, s ) is a well-defined probability space.
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Lemma 5.3. LetM∗ = (S,D, I ,K ,P ) be the canonical model. Then, for each agent i ∈ A and s ∈ S,
the following hold6:

(1) If φ and ψ are two sentences such that [φ]i,s = [ψ ]i,s , then sup {r | Pi,≥rψ ∈ s} =
sup {r | Pi,≥rφ ∈ s}

(2) P (i, s ) is a is a probability space.

Proof.

(1) If [φ]i,s = [ψ ]i,s , then φ and ψ belong to the same saturated theories, so � φ ≡ ψ . From
� φ → ψ , we obtain � Pi,≥1 (φ → ψ ) by RA, and therefore for every r , we have � Pi,≥rφ →
Pi,≥rψ by (4.12). Consequently, Pi,≥rφ → Pi,≥rψ ∈ s . If Pi,≥rφ ∈ s , then, by Lemma 4.7(4),
also Pi,≥rψ ∈ s . Therefore, sup {r | Pi,≥rψ ∈ s} ≥ sup {r | Pi,≥rφ ∈ s}. In the same way, we
can prove sup {r | Pi,≥rψ ∈ s} ≤ sup {r | Pi,≥rφ ∈ s} using � ψ → φ.

(2) First, we show that for each agent i ∈ A and s ∈ S , the class χi,s = {[φ] | φ ∈ SentPCK∞ } is
an algebra of subsets of Si,s . Obviously, we have that Si,s = [φ ∨ ¬φ], for every formula φ.
Also, if [φ] ∈ χi,s , then [¬φ] is a complement of the set [φ], and it belongs to χi,s Finally, if
[φ1], [φ2] ∈ χi,s , then [φ1] ∪ [φ2] ∈ χi,s , because [φ1] ∪ [φ2] = [φ1 ∨ φ2]. Therefore, each
χi,s is an algebra of subsets of Si,s .

Note that from the axiom Pi,≥oφ, we can obtain μi,s ([φ]) ≥ 0. Next, we show
μi,s ([φ]) = 1 − μi,s ([¬φ]). Suppose q = μi,s ([φ]) = sup {r | Pi,≥rφ ∈ s}. If q = 1, then
Pi,≥rφ = Pi,≤0¬φ = ¬Pi,>0¬φ and ¬Pi,>0¬φ ∈ s . If for some l > 0, Pi,≥l¬φ ∈ s , then
Pi,>0¬φ ∈ s , by axiom P2, which is a contradiction. Therefore, μi,s ([φ]) = 1. Suppose
q < 1. Then, for every rational number q′ ∈ (q, 1], ¬Pi,≥q′φ = Pi,<q′φ, so Pi,<q′φ ∈
s . Then, by P2, Pi,≤q′φ and Pi,≥1−q′¬φ ∈ s . However, if there is a rational q′′ ∈
[0, r ) such that Pi,≥1−q′′¬φ ∈ s , then ¬Pi,>q′′ ∈ s , which is a contradiction. There-
fore, sup {r | Pi,≥r¬φ ∈ s} = 1 − sup {r | Pi,≥rφ ∈ s}. Thus, μi,s ([φ]) = 1 − μi,s ([¬φ]). Let
[φ]i,s ∩ [ψ ]i,s = ∅, μi,s ([φ]) = q, μi,s ([ψ ]) = l . Since [ψ ]i,s ⊂ [¬φ]i,s , it follows thatq + l ≤
q + (1 − q) = 1. Suppose that q, l > 0. Because of supremum and monotonicity properties,
for all rational numbers q′ ∈ [0,q) and l ′ ∈ [0, l ): Pi,≥q′φ, Pi,≥l ′ψ ∈ s . Then, Pi,≥q′+l ′ (φ ∨
ψ ) ∈ s by P4. Therefore,q + l ≤ sup {r | Pi,≥r (φ ∨ψ ) ∈ s}. Ifq + l = 1, then the statement is
obviously valid. Supposeq + l < 1. Ifq + l < r0 =≤ sup {r | Pi,≥r (φ ∨ψ ) ∈ s}, then for each
rational r ′ ∈ (q + l , r0), Pi,≥r ′ (φ ∨ψ ) ∈ s . Let us choose rational q′′ > q and s ′′ > s such
that ¬Pi,≥q′′φ, Pi,<q′′φ ∈ s , ¬Pi,≥l ′′ψ , Pi,<l ′′ψ ∈ s and q′′ + l ′′ = r ′ ≤ 1. Then, Pi,≤q′′φ ∈ s
by the axiom P3. And by P5, we have Pi,≤q′′+′l ′′ (φ ∨ψ ), ¬Pi,≥q′′+′l ′′ (φ ∨ψ ) and ¬Pi,≥r ′ (φ ∨
ψ ), which is a contradiction. Therefore, μi,s ([φ] ∪ [ψ ]) = μi,s ([φ]) + μi,s ([ψ ]). Finally, let
us assume that q = 0 or l = 0. In that case, we can repeat the previous reasoning by taking
either q′ = 0 or l ′ = 0. �

The previous result still does not ensure that M∗ belongs to the classMMEAS
A . Indeed, in Def-

inition 5.2, the sets [φ] from χi,s are defined using φ ∈ T , and not (M∗, sT ) |= φ. However, the
following lemma shows that the former and latter coincide:

Lemma 5.4 (Truth Lemma). Let T be a saturated theory. Then,

φ ∈ T iff (M∗, sT ) |= φ.

6The proof of Lemma 5.3 is essentially the same as the proofs of corresponding statements in single-agent probability logics

[41]. We present it here for the completeness of the article, and also because some steps in the proof will be useful for the

proof of Theorem 6.3.
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Proof. We prove the equivalence by induction on complexity of φ:

—If the formula φ is atomic, then φ ∈ T iff (M∗, sT ) |= φ, by the definition of I (s ) in M∗;
—Let φ = ¬ψ . Then, (M∗, sT ) |= ¬ψ iff (M∗, sT ) � |= ψ iffψ � T (induction hypothesis) iff ¬ψ ∈
T ;

—Letφ = ψ ∧ η. Then, (M∗, sT ) |= ψ ∧ η iff (M∗, sT ) |= ψ and (M∗, sT ) |= η iffψ ∈ T and η ∈ T
(induction hypothesis) iffψ ∧ η ∈ T by Lemma 4.7(3);

—Let φ = (∀x )ψ and φ ∈ T . Then, ψ (t/x ) for all t ∈ D by FO2. It follows that (M∗, sT ) |=
ψ (t/x ) for all t ∈ D by induction hypothesis, and therefore (M∗, sT ) |= (∀x )ψ . In the other
direction, let (M∗, sT ) |= (∀x )ψ and assume the opposite, i.e., φ = (∀x )ψ � T . Then, there
exists some term t ∈ D such that (M∗, sT ) |= ¬ψ (t/x ) (T is saturated), leading to a contra-
diction (M∗, sT ) � |= (∀x )ψ ;

—Let φ = Pi,≥rψ . If φ ∈ T , then sup {q | Pi,≥qψ ∈ T } = μi,sT
([ψ ]) ≥ r and (M∗, sT ) |= Pi,≥rψ .

In the other direction, let (M∗, sT ) |= Pi,≥rψ , i.e., sup {q | Pi,≥qψ ∈ T } ≥ r . If μi,sT
([ψ ]) > r ,

then Pi,≥rψ ∈ T , because of the properties of supremum and monotonicity of the probabil-
ity measure μi,sT

. If μi,sT
([ψ ]) = r , then Pi,≥rψ ∈ T by Lemma 4.7(5).

—Suppose φ = Kiψ . Let Kiψ ∈ T . Since ψ ∈ T /Ki , then ψ ∈ U for every U such that sTKisU

(by the definition ofKi ). Therefore, (M∗, sU ) |= ψ by induction hypothesis (ψ is subformula
of Kiψ ), and then (M∗, sT ) |= Kiψ .

Let (M∗, sT ) |= Kiψ . Assume the opposite, that Kiψ � T . Then, T /Ki ∪ {¬ψ } must be
consistent. If it would not be consistent, then T /Ki � ψ by the Deduction theorem and
T ⊃ Ki (T /Ki ) � Kiψ by Theorem 4.2, i.e., Kiψ ∈ T , which is a contradiction. Therefore,
T /Ki ∪ {¬ψ } can be extended to a maximal consistent U , so sTKisU . Since ¬ψ ∈ U , then
(M∗, sU ) |= ¬ψ by induction hypothesis, so we get the contradiction (M∗, sT ) � |=M∗ Kiψ .

—Observe that φ = EGψ ∈ T iff Kiψ ∈ T for all i ∈ G (by Lemma 4.8(1)) iff (M∗, sT ) |= Kiψ
for all i ∈ G (by previous case), i.e., (M∗, sT ) |= EGψ (by the definition of |= relation).

—φ = CGψ ∈ T iff (EG )mψ ∈ T for allm ∈ N (by Lemma 4.8(3)) iff (M∗, sT ) |= (EG )mψ
for allm ∈ N (by previous case), i.e., (M∗, sT ) |= CGψ .

—φ = Er
G
ψ ∈ T iff Kr

i ψ = Ki (Pi,≥rψ ) ∈ T for all i ∈ G (by Lemma 4.8(2)) iff (M∗, sT ) |=
Ki (Pi,≥rψ ) (by the previous case φ = Kiψ ), i.e., (M∗, sT ) |= Er

G
ψ .

—Let φ = (F r
G

)mψ . Since (F r
G

)0ψ = �, the claim holds trivially. Also, φ = (F r
G

)m+1ψ =
Er

G
(ψ ∧ (F r

G
)mψ ) ∈ T iff (M∗, sT ) |= Er

G
(ψ ∧ (F r

G
)mψ ) (by the previous case), i.e., (M∗, sT ) |=

(F r
G

)m+1ψ ,m ∈ N .
—φ = Cr

G
ψ ∈ T iff (F r

G
)mψ ∈ T for allm ∈ N (by Lemma 4.8(4)) iff (M∗, sT ) |= (F r

G
)mψ

for allm ∈ N (by the previous case), i.e., (M∗, sT ) |= CGψ . �

From Lemma 5.3 and Lemma 5.4, we immediately obtain the following corollary:

Theorem 5.5. M∗ ∈ MMEAS
A .

5.3 Completeness Theorem

Now, we state the main result of this article. In the following theorem, we summarize the results
obtained above to prove the strong completeness of our axiomatic system for the class of measur-
able models.

Theorem 5.6 (Strong Completeness Theorem). A theory T is consistent if and only if it is
satisfiable in anMMEAS

A −model.

Proof. The direction from right to left is a consequence of the Soundness theorem. For the other
direction, suppose thatT is a consistent theory. We will show thatT is satisfiable in the canonical
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model M∗, which belongs to MMEAS
A , by Theorem 5.5. By Theorem 5.1, T can be extended to a

saturated theory T ∗. From Lemma 5.4, we have that φ ∈ V iff (M∗, sV ) |= φ, for every saturated
theory V . Consequently, (M∗, sT ∗ ) |= φ, for every φ ∈ T ∗, and therefore (M∗, sT ∗ ) |= T . �

6 ADDING THE CONSISTENCY CONDITION

In the logic PCK f o presented in this article, we proposed the most general case, where no relation-
ship is posed between the modalities for knowledge and probability. Indeed, in the definition of the
probability spaces P (i, s ) = (Si,s , χi,s , μi,s ) the sample space of possible events Si,s is an arbitrary
nonempty subset of the set of all states S .

Now, we consider a natural additional assumption, called consistency condition in Reference [17],
which forbids an agent to place a positive probability to the event she knows to be false.
This assumption can be semantically captured by adding the condition Si,s ⊆ Ki (s ) to Defini-
tion 2.4. In the following definition, we introduce the corresponding subclass of measurable models

MMEAS,CO N
A :

Definition 6.1. MMEAS,CO N
A is the class of all measurable modelsM = (S,D, I ,K ,P ) ∈ MMEAS

A ,
such that

Si,s ⊆ Ki (s )

for all i and s , where P (i, s ) = (Si,s , χi,s , μi,s ).

We will prove that adding the axiom7

CON. Kiφ → Pi,≥1φ

to our axiomatization results in a system that is complete for the class of models MMEAS,CO N
A .

Note that in that case, we can remove Probabilistic Necessitation from the list of inference rules,
since, in presence of CON, it is derivable from Knowledge Necessitation. Indeed, the applications
of the rules RK and RP are restricted to theorems only, so if � φ, then � Kiφ by RK, and � Pi,≥1φ
by CON. Thus,

φ

Pi,≥1φ
is a derivable rule in the axiomatic system that we propose in the following

definition:

Definition 6.2. The axiomatization AxCO N
PCK f o

consists of all the axiom schemata and inference

rules from AxPCK f o except RP and, in addition, it contains the axiom CON.

The proposed axiomatic system is complete for the class of modelsMMEAS,CO N
A .

Theorem 6.3. The axiomatization AxCO N
PCK f o

is strongly complete for the class of models

MMEAS,CO N
A .

Proof. The proof follows the idea of the proof of completeness of AxPCK f o for the class of
modelsMMEAS

A presented above. Similarly as it is done in Section 5.1, we can show that any con-

sistent theoryT can be extended to a saturated theory in AxCO N
PCK f o

(not that the saturated theories

in AxCO N
PCK f o and AxPCK f o do not coincide; for example, the formula Kiφ ∧ Pi,<1φ is consistent for

the former axiomatization, but it is inconsistent for the later one). Then, we can construct the
canonical model M∗ = (S,D, I ,K ,P ) using the saturated theories and prove the Truth lemma as
in Section 5.2, and prove that (M∗, sT ∗ ) |= T in the same way as in the proof of Theorem 5.6.

7This type of axiom is standard in logics in which probability is seen as an approximation of other modalities; for example,

in probabilistic temporal logic, the axiom Gφ → P≥1φ (“if φ always holds, then its probability is equal to 1”) is a part of

axiomatization [37].
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The problem is that M∗ does not belong to the class MMEAS,CO N
A , since the condition Si,s ⊆

Ki (s ) is not ensured. Nevertheless, we can use M∗ to obtain a model M∗
′

from MMEAS,CO N
A ,

in which T is also satisfied. We define M∗
′

by modifying only the probability spaces P (i, s ) =
(Si,s , χi,s , μi,s ) from M∗ (i.e., S,D, I , and K are the same in both structures) in the following way:

M∗
′
= (S,D, I ,K ,P′), such that

• P′(i, s ) = (S ′i,s , χ
′
i,s , μ

′
i,s ), where

—S ′i,s = S ∩ Ki (s );
— χ ′i,s = {[φ]′i,s | φ ∈ SentPCK }, where [φ]′ = [φ]i,s ∩ Ki (s );
—if [φ]′i,s ∈ χ ′i,s then μ ′i,s ([φ]′i,s ) = μi,s ([φ]i,s ) = sup {r | Pi,≥rφ ∈ s}.

Now it only remains to prove that M∗
′
is a model, i.e., that each P′(i, s ) is a probability space, since

the rest of the proof is trivial: Si,s ⊆ Ki (s ) obviously holds, and (M∗
′
, sT ∗ ) |= T is ensured by the

construction of P′, and the fact that (M∗, sT ∗ ) |= T .
First, we show that every χ ′i,s is an algebra of sets using the corresponding results from the

proof of Lemma 5.3(2)

• [φ]′i,s ∪ [ψ ]′i,s = ([φ]i,s ∩ Ki (s )) ∪ ([ψ ]i,s ∩ Ki (s )) = ([φ]i,s ∪ [ψ ]i,s ) ∩ Ki (s ) =
[φ ∨ψ ]i,s ∩ Ki (s ) = [φ ∨ψ ]′i,s ∈ χ ′i,s ;

• S ′i,s \ [φ]′i,s = S ′i,s \ ([φ]i,s ∩ Ki (s )), so from S ′i,s = Ki (s ) and [φ]i,s = S \ [¬φ]i,s , we obtain

S ′i,s \ [φ]′i,s = [¬φ]i,s ∩ Ki (s ) = [¬φ]′i,s ∈ χ ′i,s .

Finally, we prove that μ ′i,s is a finitely additive probability measure, for every i and s .

• μ ′i,s (S ′i,s ) = ([�]′i,s ) = μi,s ([�]i,s ) = 1;

• To prove finite additivity of μ ′i,s , we need to prove that

μ ′i,s ([φ ∨ψ ]′i,s ) = μ ′i,s ([φ]′i,s ) + μ ′i,s ([ψ ]′i,s ) (6.1)

whenever

[φ]′i,s ∩ [ψ ]′i,s = ∅. (6.2)

The possible problem is that Equation (6.2) does not necessarily imply [φ]i,s ∩ [ψ ]i,s = ∅,
so we cannot directly use finite additivity of μi,s . However, we know that μi,s ([φ ∨ψ ]i,s ) =
μi,s ([φ]i,s ) + μi,s ([ψ ]i,s ) − μi,s ([φ ∧ψ ]i,s ). Since μ ′i,s ([ϕ]′i,s ) = μi,s ([ϕ]i,s ) for every ϕ, to

prove Equation (6.1) it is sufficient to show that

([φ ∧ψ ]i,s ) = 0. (6.3)

From Equation (6.2), we obtain [φ]i,s ∩ [ψ ]i,s ∩ Ki (s ) = ∅, i.e., [φ ∧ψ ]i,s ∩ Ki (s ) = ∅. Con-
sequently, [¬(φ ∧ψ )]i,s ⊆ Ki (s ), so (M∗, t ) |= ¬(φ ∧ψ ) for every t ∈ Ki (s ), and (M∗, s ) |=
Ki¬(φ ∧ψ ). Since s is a saturated theory, from the Truth lemma, we have Ki¬(φ ∧ψ ) ∈ s ,
and consequently Pi,≥1¬(φ ∧ψ ) ∈ s , by CON. Then, μi,s ([φ]i,s ) = sup {r | Pi,≥rφ ∈ s} = 1,
which implies Equation (6.3). �

Remark 5. Apart from consistency condition, Fagin and Halpern [17] consider other relations
between the sample space Si,s and possible worlds Ki (s ), which model some typical situations in
the multi-agent systems. They also provide their characterization by the corresponding axioms.

First they analyze the situations in which the probabilities of the events are common knowledge,
i.e, there is a unique, collective, and objective view on the probability of the events. Then the agents
in the same state share the same known probability spaces, which is captured by the condition of
objectivity: P (i, s ) = P (j, s ) for all i, j, and s .
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Second, they model the situation where an agent uses the same probability space in all the
worlds he considers possible. This situation occurs when no nonprobabilistic choices are made
to cause different probability distributions in the possible worlds. The corresponding condition,
called state determined property, says that if t ∈ Ki (s ), then P (i, s ) = P (i, t ).

Third, sometimes the nonprobabilistic choices happen and induce varied probability spaces.
Then the possible worlds could be divided into partitions that share the same probability distri-
butions, after such choice has been made. This case is specified by the condition of uniformity: if
P (i, s ) = (Si,s , χi,s , μi,s ) and t ∈ Si,s , then P (i, s ) = P (i, t ).

Similarly as we have done with the consistency condition, we can also characterize the three
above mentioned conditions by adding corresponding axioms to our axiomatic system. It is
straightforward to check that the following axioms, which are similar to the ones proposed in
Reference [17], capture the mentioned relations between modalities of knowledge and probability:

Pi,≥rφ → Pj,≥rφ (objectivity),
Pi,≥rφ → KiPi,≥rφ (state determined property),
Pi,≥rφ → Pi,≥1Pi,≥rφ (uniformity).

7 CONCLUSION

The starting points for our research were References [17, 26], where weakly complete axioma-
tizations for a propositional logic combining knowledge and probability, and a non-probabilistic
propositional logic for knowledge with infinitely many agents (respectively), are presented. We
combine those two approaches and extend both of them to the logic PCK f o with an expressive
first-order language.

We provide a sound and strongly complete axiomatization AxPCK f o for the corresponding se-

mantics of PCK f o . Since any reasonable, semantically defined first-order epistemic logic with com-
mon knowledge is not recursively axiomatizable [49], we propose the axiomatization with infini-
tary rules of inference, and we obtain completeness modifying the standard Henkin construction
of saturated extensions of consistent theories. In the logic PCK f o , we consider the most general
semantics, with independent modalities for knowledge and probability. We also show how to ex-
tend the set of axioms and modify the axiomatization technique to capture models in which agents
assign probabilities only to the sets of worlds they consider possible. We also give hints how to
extend our axiomatization in several different ways to capture other interesting relationships be-
tween the modalities for knowledge and probability, considered in Reference [17].

In this article, we use the semantic definition of the probabilistic common knowledge operator
Cr

G
proposed by Fagin and Halpern [17]. As we have mentioned in Section 2.2, Monderer and

Samet [35] proposed a different definition, where probabilistic common knowledge is equivalent
to the infinite conjunction of the formulas Er

G
φ, (Er

G
)2φ, (Er

G
)3φ . . . It is easy to check that our

axiomatization AxPCK f o can be easily modified to capture the definition of Monderer and Samet.
Namely, the axiom APC and rule RPC should be replaced with the axiomCr

G
φ → (Er

G
)mφ, m ∈ N

and the inference rule
{Φk,θ,X (Er

G
)mφ ) |m∈N }

Φk,θ,X (Cr
G

φ ) .

Finally, although this article is focused on the issue of providing a strongly complete axiom-
atization, we should also mention that logics of this type could be used to reason about various
distributed systems with interacting agents [20]. More recently, Reference [32] proposes a tempo-
ral epistemic logic with a non-rigid set of agents for analyzing the blockchain protocol, while
for the same protocol Reference [25] uses common knowledge about probabilities to describe
conditions for achieving consensus on a public ledger. It may happen that probabilistic common
knowledge can provide additional insight into the convergence for reaching the consensus in that
framework.
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