
Inductive Logic Programming

Inductive logic programming (ILP) is a form of machine learning (ML). As with other forms of ML, the goal of
ILP is to induce a hypothesis that generalises training examples. However, whereas most forms of ML use
vectors/tensors to represent data (examples and hypotheses), ILP uses logic programs (sets of logical rules).
Moreover, whereas most forms of ML learn functions, ILP learns relations.

Why ILP?

• Data efficiency. Many forms of ML are notorious for their inability to generalise from small numbers of
training examples, notably deep learning. By contrast, ILP can induce hypotheses from small numbers of
examples, often from a single example.

• Background knowledge. ILP learns using BK represented as a logic program. Moreover, because hypothe‑
ses are symbolic, hypotheses can be added the to BK, and thus ILP systems naturally support lifelong and
transfer learning.

• Expressivity. Because of the expressivity of logic programs, ILP can learn complex relational theories. Be‑
cause of the symbolic nature of logic programs, ILP can reason about hypotheses, which allows it to learn
optimal programs.

• Explainability. Because of logic’s similarity to natural language, logic programs can be easily read by hu‑
mans, which is crucial for explainable AI.

Recent Advances

• Search: Meta‑level
• Recursion: Yes
• Predicate Invention: Limited
• Hypotheses: Higher‑order; ASP
• Optimality: Yes
• Technology: Prolog; ASP; NNs

Review

• Search. The fundamental ILP problem is to efficiently search a large hypothesis space. Most older ILP
approaches search in either a top‑down or bottom‑up fashion. A third new search approach has recently
emerged called meta‑level ILP.

– Top‑down approaches start with a general hypothesis and then specialise it.
– Bottom‑up approaches start with the examples and generalise them.
– Meta‑level. (Most) approaches encode the ILP problem as a program that reasons about programs.

• Recursion. Learning recursive programs has long been considered a difficult problem for ILP. The power of
recursion is that an infinite number of computations can be described by a finite recursive program.
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– Interest in recursion has resurgedwith the introduction ofmeta‑interpretive learning (MIL) and theMIL
system Metagol. The key idea of MIL is to use metarules, or program templates, to restrict the form of
inducible programs, and thus the hypothesis space. Ametarule is a higher‑order clause. FollowingMIL,
manymeta‑level ILP systems can learn recursive programs. With recursion, ILP systems cannowgener‑
alise from small numbers of examples, often a single example. Moreover, the ability to learn recursive
programs has opened up ILP to new application areas.

• Predicate invention. A key characteristic of ILP is the use of BK. BK is similar to features used inmost forms
of ML. However, whereas features are tables, BK contains facts and rules (extensional and intensional defi‑
nitions) in the form of a logic program.

– Rather than expecting a user to provide all the necessary BK, the goal of predicate invention (PI) is for
an ILP system to automatically invent new auxiliary predicate symbols. Whilst PI has attracted interest
since the beginnings of ILP, and has subsequently been repeatedly stated as a major challenge, most
ILP systems do not support it.

– Several PI approaches try to address this challenge: Placeholders, Metarules, Pre/post‑processing, Life‑
long Learning.

– The aforementioned techniques have improved the ability of ILP to invent high‑level concepts. How‑
ever, PI is still difficult and there are many challenges to overcome. The challenges are that (i) many
systems struggle to performPI at all, and (ii) those that do support PImostly needmuch user‑guidance,
metarules to restrict the spaceof invented symbols or that auser specifies thearity andargument types
of invented symbols.

– ILP systems have traditionally induced definite and normal logic programs, typically represented as
Prolog programs. A recent development has been to use different hypothesis representations.

* Datalog is a syntactical subset of Prolog which disallows complex terms as arguments of predi‑
cates and imposes restrictions on the use of negation. The general motivation for reducing the
expressivity of the representation language from Prolog to Datalog is to allow the problem to be
encoded as a satisfiability problem, particularly to leverage recent developments in SAT and SMT.

* Answer Set Programming (ASP) is a logic programming paradigm based on the stable model se‑
mantics of normal logic programs that can be implemented using the latest advances in SAT solv‑
ing technology.

· When learning Prolog programs, the procedural aspect of SLD‑resolution must be taken into
account. By contrast, as ASP is a truly declarative language, no such consideration need be
taken into account when learning ASP programs. Compared to Datalog and Prolog, ASP sup‑
ports addition language constructs, such as disjunction in the head of a clause, choice rules,
and hard and weak constraints.

· A key difference between ASP and Prolog is semantics. A definite logic program has only one
model (the least Herbrandmodel). By contrast, an ASP program can have one, many, or even
no stable models (answer sets). Due to its non‑monotonicity, ASP is particularly useful for
expressing common‑sense reasoning.

· Approaches to learning ASP programs can mostly be divided into two categories: brave learn‑
ers, which aim to learn a program such that at least one answer set covers the examples, and
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cautious learners, which aim to find a programwhich covers the examples in all answer sets.

* Higher‑order programswhere predicate symbols can be used as terms.

* Probabilistic logic programs. A major limitation of logical representations, such as Prolog and
its derivatives, is the implicit assumption that the BK is perfect. This assumption is problematic if
data is noisy, which is often the case.

· Integrating probabilistic reasoning into logical representations is a principled way to handle
such uncertainty in data. This integration is the focus of statistical relational artificial intelli‑
gence (StarAI). In essence, StarAI hypothesis representations extend BK with probabilities or
weights indicating the degree of confidence in the correctness of parts of BK. Generally, StarAI
techniques can be divided in two groups: distribution representations andmaximum entropy
approaches.

· Distribution semantics approaches explicitly annotate uncertainties in BK. To allow such an‑
notation, they extend Prolog with two primitives for stochastic execution: probabilistic facts
and annotated disjunctions. Probabilistic facts are the most basic stochastic primitive and
they take the form of logical facts labelled with a probability p. Each probabilistic fact rep‑
resents a Boolean random variable that is true with probability p and false with probability
1 − p. Whereas probabilistic facts introduce non‑deterministic behaviour on the level of facts,
annotateddisjunctions introducenon‑determinismon the level of clauses. Annotateddisjunc‑
tions allow for multiple literals in the head, where only one of the head literals can be true at
a time.

· Maximum entropy approaches annotate uncertainties only at the level of a logical theory.
That is, they assume that the predicates in the BK are labelled as either true or false, but the
label may be incorrect. These approaches are not based on logic programming, but rather on
first‑order logic. Consequently, the underlying semantics are different: rather than consider
proofs, these approaches considermodels or groundings of a theory. This difference primarily
changes what uncertainties represent. For instance, Markov Logic Networks (MLN) represent
programs as a set of weighted clauses. The weights in MLN do not correspond to probabilities
of a formula being true but, intuitively, to a log odds between a possible world (an interpreta‑
tion) where the clause is true and a world where the clause is false.

· The techniques from learning suchprobabilistic programsare typically direct extensionsof ILP
techniques.

• Optimality. There are often multiple (sometimes infinitely many) hypotheses that explain the data. Decid‑
ing which hypothesis to choose has long been a difficult problem.

– Older ILP systems were not guaranteed to induce optimal programs, where optimal typically means
with respect to the size of the induced program or the coverage of examples. A key reason for this
limitationwas thatmost search techniques learneda single clauseat a time, leading to theconstruction
of sub‑programs which were sub‑optimal in terms of program size and coverage.

– Newer ILP systems try to address this limitation. As with the ability to learn recursive programs, the
main development is to take a global view of the induction task by usingmeta‑level search techniques.
In other words, rather than induce a single clause at a time from a single example, the idea is to induce
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multiple clauses frommultiple examples.
– The ability to learn optimal programs opens up ILP to new problems. For instance, learning efficient
logic programs has long been considered a difficult problem in ILP, mainly because there is no declar‑
ative difference between an efficient program and an inefficient program.

• Technologies. Older ILP systems mostly use Prolog for reasoning. Recent work considers using different
technologies.

– Constraint satisfaction and satisfiability. There have been tremendous recent advances in SAT.

* To leverage these advances, much recent work in ILP uses related techniques, notably ASP. The
main motivations for using ASP are to leverage (i) the language benefits of ASP, and (ii) the effi‑
ciency and optimisation techniques of modern ASP solvers, which supports conflict propagation
and learning.

* With similar motivations, other approaches encode the ILP problem as SAT or SMT problems.
These approaches have been shown able to reduce learning times compared to standard
Prolog‑based approaches.

* However, someunresolved issues remain. A key issue is thatmost approaches encode an ILP prob‑
lem as a single (often very large) satisfiability problem. These approaches therefore often struggle
to scale to very large problems, although preliminary work attempts to tackle this issue.

– Neural Networks. With the rise of deep learning, several approaches have explored using gradient‑
based methods to learn logic programs. These approaches all replace discrete logical reasoning with
a relaxed version that yields continuous values reflecting the confidence of the conclusion.

• Applications.

– Scientific discovery. Perhaps the most prominent application of ILP is in scientific discovery: iden‑
tify and predict ligands (substructures responsible for medical activity) and infer missing pathways in
protein signalling networks; ecology.

– Program analysis. learning SQL queries; programming language semantics, and code search.
– Robotics. Robotics applications often require incorporating domain knowledge or imposing certain
requirements on the learnt programs.

– Games. Inducing game rules has a long history in ILP, where chess has often been the focus
– Data curation and transformation. Another successful application of ILP is in data curation and trans‑
formation, which is again largely because ILP can learn executable programs. There ismuch interest in
this topic, largely due to success in synthesising programs for end‑user problems, such as string trans‑
formations. Other transformation tasks include extracting values from semi‑structured data (e.g. XML
files or medical records), extracting relations from ecological papers, and spreadsheet manipulation.

– Learning from trajectories. Learning from interpretation transitions (LFIT) automatically constructs
amodel of the dynamics of a system from theobservation of its state transitions. LFIT has been applied
to learn biological models, like Boolean Networks, under several semantics: memory‑less determinis‑
tic systems, and theirmulti‑valued extensions. The Apperception Engine explain sequential data, such
as cellular automata traces, rhythms and simple nursery tunes, image occlusion tasks, gamedynamics,
and sequence induction intelligence tests. Surprisingly, can achieve human‑level performance on the
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sequence induction intelligence tests in the zero‑shot setting (without having been trained on lots of
other examples of such tests, and without hand‑engineered knowledge of the particular setting). At
a high level, these systems take the unique selling point of ILP systems (the ability to strongly gener‑
alise from a handful of data), and apply it to the self‑supervised setting, producing an explicit human‑
readable theory that explains the observed state transitions.

• Limitations and future research.

– Better systems. A problem with ILP is the lack of well engineered tools. They state that whilst over
100 ILP systems have been built, less than a handful of systems can be meaningfully used by ILP re‑
searchers. By contrast, driven by industry, other forms of ML now have reliable and well‑maintained
implementations, which has helped drive research. A frustrating issuewith ILP systems is that they use
many different language biases or even different syntax for the same biases. For ILP to be more widely
adopted both inside and outside of academia, we must develop more standardised, user‑friendly, and
better‑engineered tools.

– Language biases. Onemajor issue with ILP is choosing an appropriate language bias. Even for ILP ex‑
perts, determininga suitable languagebias is oftena frustratingand time‑consumingprocess. We think
the need for an almost perfect language bias is severely holding back ILP from being widely adopted.
We think that an important direction for future work in ILP is to develop techniques for automatically
identifying suitable language biases. This area of research is largely under‑researched.

– Better datasets. Interesting problems, alongside usable systems, drive research and attract interest
in a research field. This relationship is most evident in the deep learning community which has, over
a decade, grown into the largest AI community. This community growth has been supported by the
constant introduction of new problems, datasets, and well‑engineered tools. ILP has, unfortunately,
failed todeliveron this front: most research is still evaluatedon20‑yearolddatasets. Mostnewdatasets
that have been introduced often come from toy domains and are designed to test specific properties of
the introduced technique. We think that the ILP community should learn from the experiences of other
AI communities and put significant efforts into developing datasets that identify limitations of existing
methods as well as showcase potential applications of ILP.

– Relevance. New methods for predicate invention have improved the abilities of ILP systems to learn
large programs. Moreover, these techniques raise the potential for ILP to be used in lifelong learning
settings. However, inventing and acquiring new BK could lead to a problem of too much BK, which
can overwhelm an ILP system. On this issue, a key under‑explored topic is that of relevancy. Given a
new induction problem with large amounts of BK, how does an ILP system decide which BK is relevant?
One emerging technique is to train a neural network to score how relevant programs are in the BK and
to then only use BK with the highest score to learn programs. Without efficient methods of relevance
identification, it is unclear how efficient lifelong learning can be achieved.

– Handlingmislabelled and ambiguous data. Amajor open question in ILP is howbest to handle noisy
and ambiguous data. Neural ILP systems are designed from the start to robustly handle mislabelled
data. Although there has been work in recent years on designing ILP systems that can handle noisy
mislabelled data, there is much less work on the even harder and more fundamental problem of de‑
signing ILP systems that can handle raw ambiguous data. ILP systems typically assume that the input
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has already been preprocessed into symbolic declarative form (typically, a set of ground atoms repre‑
senting positive and negative examples). But real‑world input does not arrive in symbolic form. For
ILP systems to be widely applicable in the real world, they need to be redesigned so they can handle raw
ambiguous input from the outset.

– Probabilistic ILP. Real‑world data is often noisy and uncertain. Extending ILP to deal with such un‑
certainty substantially broadens its applicability. While StarAI is receiving growing attention, learning
probabilistic programs fromdata is still largely under‑investigateddue to the complexity of joint
probabilistic and logical inference. When working with probabilistic programs, we are interested in
the probability that a program covers an example, not only whether the program covers the example.
Consequently, probabilistic programs need to compute all possible derivations of an example, not just
a single one. Despite added complexity, probabilistic ILP opens many new challenges. Most of the ex‑
isting work on probabilistic ILP considers the minimal extension of ILP to the probabilistic setting, by
assuming that either (i) BK facts are uncertain, or (ii) that learned clauses need to model uncertainty.
These assumptionsmake it possible to separate structure fromuncertainty and simply reuse ex‑
isting ILP techniques. Following this minimal extension, the existing work focuses on discriminative
learning in which the goal is to learn a program for a single target relation. However, a grand chal‑
lenge in probabilistic programming is generative learning. That is, learning a program describing a
generative process behind the data, not a single target relation. Learning generative programs is a
significantly more challenging problem, which has received very little attention in probabilistic
ILP.

– Explainability. Explainability is one of the claimed advantages of a symbolic representation. Recent
work evaluates the comprehensibility of ILP hypotheses using Michie’s framework of ultra‑strong ma‑
chine learning,wherea learnedhypothesis is expected tonotonlybeaccuratebut toalsodemonstrably
improve the performance of a human being provided with the learned hypothesis. [Some work] em‑
pirically demonstrate improved human understanding directly through learned hypotheses. However,
more work is required to better understand the conditions under which this can be achieved, especially
given the rise of PI.
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