

The Reasoned Schemer

The Reasoned Schemer
Second Edition

��!�����+��#��� �!
������ ��+��)#�
�������$��)"'
��$"!�	� �!!

�#�(�!�$��)��&�!������)

�"#�("#���)��&)��(�$��%������#+��!����#������)��&$$ �!
��%�#("#���)��"��#%��+��"(��$��

�����
���#�$$
�� �#����*���$$���&$�%%$
"!�"!*��!���!�

© 2018 Massachusetts Institute of Technology
All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.
This book was set in Computer Modern by the authors using . Printed and bound in the
United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Friedman, Daniel P., author.
Title: The reasoned schemer / Daniel P. Friedman, William E. Byrd, Oleg Kiselyov, and Jason
Hemann ; drawings by Duane Bibby ; foreword by Guy Lewis Steele Jr. and Gerald Jay Sussman
; afterword by Robert A. Kowalski.
Description: Second edition. — Cambridge, MA : The MIT Press, [2018] — Includes index.
Identifiers: LCCN 2017046328 — ISBN 9780262535519 (pbk. : alk. paper)
Subjects: LCSH: Scheme (Computer program language)
Classification: LCC QA76.73.S34 F76 2018 — DDC 005.13/3–dc23 LC record available at
https://lccn.loc.gov/2017046328
����������������
���	����������������

d_r0

To Mary, Sara, Rachel, Shannon and Rob, and to the memory of Brian.

To Mom & Dad, Brian & Claudia, Mary & Donald, and Renzhong & Lea.

To Dad.

To Mom and Dad.

((Contents)
(Copyright)
(Foreword)
(Preface)
(Acknowledgements)
(Since the First Edition)
(1. Playthings)
(2. Teaching Old Toys New Tricks)
(3. Seeing Old Friends in New Ways)
(4. Double Your Fun)
(5. Members Only)
(6. The Fun Never Ends …)
(7. A Bit Too Much)
(8. Just a Bit More)
(9. Thin Ice)
(10. Under the Hood)
(Connecting the Wires)
(Welcome to the Club)
(Afterword)
(Index))

Foreword

In Plato’s great dialogue Meno, written about 2400 years ago, we are treated to a wonderful
teaching demonstration. Socrates demonstrates to Meno that it is possible to teach a deep truth
of plane geometry to a relatively uneducated boy (who knows simple arithmetic but only a little
of geometry) by asking a carefully planned sequence of leading questions. Socrates first shows
Meno that the boy certainly has some incorrect beliefs, both about geometry and about what he
does or does not know: although the boy thinks he can construct a square with double the area
of a given square, he doesn’t even know that his idea is wrong. Socrates leads the boy to
understand that his proposed construction does not work, then remarks to Meno, “Mark now
the farther development. I shall only ask him, and not teach him, and he shall share the enquiry
with me: and do you watch and see if you find me telling or explaining anything to him, instead
of eliciting his opinion.” By a deliberate and very detailed line of questioning, Socrates leads the
boy to confirm the steps of a correct construction. Socrates concludes that the boy really knew
the correct result all along—that the knowledge was innate.

Nowadays we know (from the theory of NP-hard problems, for example) that it can be
substantially harder to find the solution to a problem than to confirm a proposed solution.
Unlike Socrates himself, we regard “Socratic dialogue” as a form of teaching, one that is actually
quite difficult to do well.

For over four decades, since his book The Little LISPer appeared in 1974, Dan Friedman,
working with many friends and students, has used superbly constructed Socratic dialogue to
teach deep truths about programming by asking carefully planned sequences of leading
questions. They take the reader on a journey that is entertaining as well as educational; as usual,
the examples are mostly about food. While working through this book, we each began to feel
that we already knew the results innately. “I see—I knew this all along! How could it be
otherwise?” Perhaps Socrates was right after all?

Earlier books from Dan and company taught the essentials of recursion and functional
programming. The Reasoned Schemer goes deeper, taking a gentle path to mastery of the essentials
of relational programming by building on a base of functional programming. By the end of the
book, we are able to use relational methods effectively; but even better, we learn how to erect an
elegant relational language on the functional substrate. It was not obvious up front that this
could be done in a manner so accessible and pretty—but step by step we can easily confirm the
presented solution.

 You know, don’t you, that The Little Schemer, like The Little LISPer, was a fun read?

 And is it not true that you like to read about food and about programming?

 And is not the book in your hands exactly that sort of book, the kind you would like to
read?

Guy Lewis Steele Jr. and Gerald Jay
Sussman
Cambridge, Massachusetts
August 2017

Preface

The Reasoned Schemer explores the often bizarre, sometimes frustrating, and always fascinating
world of relational programming.

The first book in the “little” series, The Little Schemer, presents ideas from functional
programming: each program corresponds to a mathematical function. A simple example of a
function is square, which multiplies an integer by itself: square(4) = 16, and so forth. In contrast,
The Reasoned Schemer presents ideas from relational programming, where programs correspond
to relations that generalize mathematical functions. For example, the relation squareo generalizes
square by relating pairs of integers: squareo(4, 16) relates 4 with 16, and so forth. We call a
relation supplied with arguments, such as squareo(4, 16), a goal. A goal can succeed, fail, or have
no value.

The great advantage of squareo over square is its flexibility. By passing a variable representing
an unknown value—rather than a concrete integer—to squareo, we can express a variety of
problems involving integers and their squares. For example, the goal squareo(3, x) succeeds by
associating 9 with the variable x. The goal squareo(y, 9) succeeds twice, by separately associating
−3 and then 3 with y. If we have written our squareo relation properly, the goal squareo(z, 5) fails,
and we conclude that there is no integer whose square is 5; otherwise, the goal has no value, and
we cannot draw any conclusions about z. Using two variables lets us create a goal squareo(w, v)
that succeeds an unbounded number of times, enumerating all pairs of integers such that the
second integer is the square of the first. Used together, the goals squareo(x, y) and squareo(−3, x)
succeed—regardless of the ordering of the goals—associating 9 with x and 81 with y. Welcome
to the strange and wonderful world of relational programming!

This book has three themes: how to understand, use, and create relations and goals (chapters
1–8); when to use non-relational operators that take us from relational programming to its
impure variant (chapter 9); and how to implement a complete relational programming language
on top of Scheme (chapter 10 and appendix A).

We show how to translate Scheme functions from most of the chapters of The Little Schemer
into relations. Once the power of programming with relations is understood, we then exploit this
power by defining in chapters 7 and 8 familiar arithmetic operators as relations. The +o relation
can not only add but also subtract; �o can not only multiply but also factor numbers; and logo

can not only find the logarithm given a number and a base but also find the base given a

logarithm and a number. Just as we can define the subtraction relation from the addition
relation, we can define the exponentiation relation from the logarithm relation. In general, given
(�o x y z) we can specify what we know about these numbers (their values, whether they are odd
or even, etc.) and ask �o to find the unspecified values. We don’t specify how to accomplish the
task; rather, we describe what we want in the result.

This relational thinking is yet another way of understanding computation and it can be
expressed using a tiny low-level language. We use this language to introduce the fundamental
notions of relational programming in chapter 1, and as the foundation of our implementation in
chapter 10. Later in chapter 1 we switch to a slightly friendlier syntax—inspired by Scheme’s
equal?, let, cond, and define—allowing us to more easily translate Scheme functions into
relations. Here is the higher-level syntax:

(� t0 t1) (fresh (x …) g …) (conde (g …) …) (defrel (name x …) g …)

The function � is defined in chapter 10; fresh, conde, and defrel are defined in the appendix
Connecting the Wires using Scheme’s syntactic extension mechanism.

The only requirement for understanding relational programming is familiarity with lists and
recursion. The implementation in chapter 10 requires an understanding of functions as values.
That is, a function can be both an argument to and the value of a function call. And that’s it—
we assume no further knowledge of mathematics or logic.

We have taken certain liberties with punctuation to increase clarity. Specifically, we have
omitted question marks in the left-hand side of frames that end with a special symbol or a
closing right parenthesis. We have done this, for example, to avoid confusion with function
names that end with a question mark, and to reduce clutter around the parentheses of lists.

Food appears in examples throughout the book for two reasons. First, food is easier to
visualize than abstract symbols; we hope the food imagery helps you to better understand the
examples and concepts. Second, we want to provide a little distraction. We know how frustrating
the subject matter can be, thus these culinary diversions are for whetting your appetite. As such,
we hope that thinking about food will cause you to stop reading and have a bite.

You are now ready to start. Good luck! We hope you enjoy the book.

Bon appétit!

Daniel P. Friedman
Bloomington, Indiana

William E. Byrd
Salt Lake City, Utah

Oleg Kiselyov
Sendai, Japan

Jason Hemann
Bloomington, Indiana

Acknowledgements

We thank Guy Steele and Gerry Sussman, the creators of Scheme, for contributing the foreword,
and Bob Kowalski, one of the creators of logic programming, for contributing the afterword. We
are grateful for their pioneering work that laid the foundations for the ideas in this book.

Mitch Wand has been an indispensable sounding board for both editions. Duane Bibby,
whose artwork sets the tone for these “Little” books, has provided several new illustrations. Ron
Garcia, David Christiansen, and Shriram Krishnamurthi and Malavika Jayaram kindly suggested
the delicious courses for the banquet in chapter 10. Carl Eastlund and David Christiansen
graciously shared their type-setting macros with us. Jon Loldrup inspired us to completely revise
the first chapter. Michael Ballantyne, Nada Amin, Lisa Zhang, Nick Drozd, and Oliver Bračevac
offered insightful observations. Greg Rosenblatt gave us detailed comments on every chapter in
the final draft of the book. Amr Sabry and the Computer Science Department’s administrative
staff at Indiana University’s School of Informatics, Computing, and Engineering have made
being here a true pleasure. The teaching staff and students of Indiana University’s C311 and
B521 courses are always an inspiration. C311 student Jeremy Penery discovered and fixed an
error in the definition of logo from the first edition. Finally, we have received great leadership
from the staff at MIT Press, specifically Christine Savage and our editor, Marie Lee. We offer
our grateful appreciation and thanks to all.

Will thanks Matt and Cristina Might, and the entire Might family, for their support. He also
thanks the members of the U Combinator research group at the University of Utah, and
gratefully acknowledges the support of DARPA under agreement number AFRL FA8750-15-2-
0092.

Acknowledgements from the First Edition
This book would not have been possible without earlier work on implementing and using logic
systems with Matthias Felleisen, Anurag Mendhekar, Jon Rossie, Michael Levin, Steve Ganz,
and Venkatesh Choppella. Steve showed how to partition Prolog’s named relations into
unnamed functions, while Venkatesh helped characterize the types in this early logic system. We
thank them for their effort during this developmental stage.

There are many others we wish to thank. Mitch Wand struggled through an early draft and
spent several days in Bloomington clarifying the semantics of the language, which led to the

elimination of superfluous language forms. We also appreciate Kent Dybvig’s and Yevgeniy
Makarov’s comments on the first few chapters of an early draft and Amr Sabry’s Haskell
implementation of the language.

We gratefully acknowledge Abdulaziz Ghuloum’s insistence that we remove some abstract
material from the introductory chapter. In addition, Aziz’s suggestions significantly clarified the
run interface. Also incredibly helpful were the detailed criticisms of Chung-chieh Shan, Erik
Hilsdale, John Small, Ronald Garcia, Phill Wolf, and Jos Koot. We are especially grateful to
Chung-chieh for Connecting the Wires so masterfully in the final implementation.

We thank David Mack and Kyle Blocher for teaching this material to students in our
undergraduate programming languages course and for making observations that led to many
improvements to this book. We also thank those students who not only learned from the
material but helped us to clarify its presentation.

There are several people we wish to thank for contributions not directly related to the ideas in
the book. We would be remiss if we did not acknowledge Dorai Sitaram’s incredibly clever
Scheme typesetting program, . We are grateful for Matthias Felleisen’s typesetting macros
(created for The Little Schemer), and for Oscar Waddell’s implementation of a tool that
selectively expands Scheme macros. Also, we thank Shriram Krishnamurthi for reminding us of a
promise we made that the food would be vegetarian in the next little book. Finally, we thank
Bob Prior, our editor, for his encouragement and enthusiasm for this effort.

Since the First Edition

Over a dozen years have passed since the first edition and much has changed.
There are five categories of changes since the first edition. These categories include changes to

the language, changes to the implementation, changes to the Laws and Commandments, along
with the introduction of the Translation, changes to the prose, and changes to how we express
quasiquoted lists.

There are seven changes to the language. First, we have generalized the behavior of conde,
fresh, and run*, which has allowed us to simplify the language by removing three forms: condi,
all, and alli. Second, we have introduced a new form, defrel, which defines relations, and which
replaces uses of define. Use of defrel is not strictly necessary—see the workaround as part of the
footnote in frame 82 of chapter 1 and in frame 61 of chapter 10. Third, � now calls a version of
unify that uses occurs? prior to extending a substitution. Fourth, we made changes to the run*
interface. run* can now take a single identifier, as in (run* x (� � x)), which is cleaner than the
notation in the first edition. We have also extended run* to take a list of one or more identifiers,
as in (run* (x y z) (� x y)). These identifiers are bound to unique fresh variables, and the reified
value of these variables is returned in a list. These changes apply as well to runn, which is now
written as run n. Fifth, we have dropped the else keyword from conde, conda, and condu,
making every line in these forms have the same structure. Sixth, the operators, alwayso and nevero

have become relations of zero arguments, rather than goals. Last, in chapter 1 we have
introduced the low-level binary disjunction (disj2) and conjuction (conj2), but only as a way to
explain conde and fresh.

The implementation is fully described in chapter 10. Though in the early part of this chapter
we still explain variables, substitutions, and other concepts related to unification. We then
explain streams, including suspensions, disj2, and conj2. We show how appendo (introduced in
chapter 4, swapped with what was formerly chapter 5) macro-expands to a relation in the lower-
level language introduced in chapter 1. Last, we show how to write ifte (for conda) and once (for
condu).

We define in chapter 10 as much of the implementation as possible as Scheme functions. This
allows us to greatly simplify the Scheme macros in appendix A that define the syntax of our
relational language. To further simplify the implementation, appendix A defines two recursive
help macros: disj, built from �� and disj2; and conj, built from �� and conj2. The appendix then

defines the seven user-level macros, of which only fresh and conda are recursive. We have also
added a short guide on understanding our style of writing macros. In the absence of macros, the
functions in chapter 10 can be defined in any language that supports functions as values.

Next, we have clarified the Laws and Commandments. In addition to these improvements,
we have added explicit Translation rules. For example, we now demand that, in any function we
transform into a relation, every last cond line begins with �� instead of else. This makes the
Laws and Commandments more uniform and easier to internalize. In addition, this simple
change improves understanding of the newly-added Translation, and makes it easier to
distinguish those Scheme functions that use �� from those in the implementation chapter that
use else.

We have made many changes to the prose of the book. We have completely rewritten chapter
1. There we introduce the notion of fusing two variables, meaning a reference to one is the same
as a reference to the other. Chapters 2–5 have been re-ordered and restructured, with some
examples dropped and others added. In these four chapters we explain and exploit the
Translation, so that transforming a function, written with our aforementioned changes to
cond’s else, is more direct. We have shortened chapter 6, which now focuses exclusively on
alwayso and nevero. Chapter 7 is mostly the same, with a few minor, yet important,
modifications. Chapter 8 is also mostly the same, but here we have added a detailed description
of splito. Understanding splito is necessary for understanding ÷o and logo, and we have re-
organized some of the complicated relations so that they can be read more easily. Chapter 9,
swapped with what was formerly chapter 10, is mostly the same. The first half places more
emphasis on necessary restrictions by using new Laws and Commandments for conda and
condu. The second half is mostly unchanged, but restricts the relations to be first-order, to
mirror the rest of the book. We, however, finish by shifting to a higher-order relation, allowing
the same relation enumerateo to enumerate +o, �o, and expo, and we describe how the remaining
relations, ÷o and logo, can also be enumerated.

Finally, we have replaced implicit punctuation of quasiquoted expressions with explicit
punctuation (backtick and comma).

The Reasoned Schemer

Welcome back. 1 It is good to be here, again.

Have you finished The Little Schemer?†

† Or The Little LISPer.

2 ��

That’s okay.

Do you know about

“Cons the Magnificent?”

3 	.

Do you know what recursion is? 4 Absolutely.

What is a goal? 5 It is something that either succeeds, fails, or
has no value.

� is a goal that succeeds. What is
†

† � is written succeed and
 is written fail. Each
operator’s index entry shows how that operator should be
written. Also, see the inside front page for how to write
various expressions from the book.

6 Is it a goal that fails?

Exactly. What is the value of

(run* q

)

7

(),
since
 fails, and because if g is a goal that
fails, then the expression

(run* q g)

produces the empty list.

What is (� ���������) 8 Is it also a goal?

Yes. Does the goal (�† ���������) succeed or
fail?

† � is written == and is pronounced “equals.”

9 It fails,
because ��� is not the same as ���.

Correct. What is the value of

(run* q
(� ���������))

10 (),
since the goal (� ���������) fails.

What is the value of

(run* q
(� q ����))

11

(���).
The goal (� q ����) succeeds, associating
��� with the fresh variable q.

If g is a goal that succeeds, then the
expression

(run* q g)

produces a non-empty list of values
associated with q.

Is the value of

(run* q
(� ���� q))

the same as the value of

(run* q
(� q ����))

12
Yes, they both have the value (���),

because the order of arguments to � does
not matter.

The First Law of �
(� v w) can be replaced by (� w v).

We use the phrase what value is associated
with to mean the same thing as the phrase
what is the value of, but with the outer

parentheses removed from the resulting value.
This lets us avoid one pair of matching
parentheses when describing the value of a
run* expression.

13 That’s important to remember!

What value is associated with q in

(run* q
(� ���� q))

14
���.

The value of the run* expression is (���),
and so the value associated with q is ���.

Does the variable q remain fresh in

(run* q
(� ���� q))

15

No.
In this expression q does not remain fresh
because the value ��� is associated with q.

We must mind our ���s and qs.

Does the variable q remain fresh in

(run* q
��)

16 Yes.

Every variable is initially fresh. A variable is
no longer fresh if it becomes associated with
a non-variable value or if it becomes
associated with a variable that, itself, is no
longer fresh.

What is the value of

(run* q
��)

17

(−0).
In the value of a run* expression, each fresh
variable is reified by appearing as the
underscore symbol followed by a numeric
subscript.

In the value (−0), what variable is reified as −0
†

† This symbol is written _�, and is created using (reify-name

18 The fresh variable q.

�). We define reify-name in 10:93 (our notation for frame 93
of chapter 10).

What is the value of

(run* q
(� ����������))

19
(−0).

Although the run* expression produces a
nonempty list, q remains fresh.

What is the value of

(run* q
(� q q))

20

(−0).
Although the run* expression produces a
nonempty list, the successful goal (� q q)
does not associate any value with the
variable q.

We can introduce a new fresh variable with
fresh. What value is associated with q in

(run* q
(fresh (x)

(� ���� q)))

21

���.
Introducing an unused variable does not
change the value associated with any other
variable.

Is x the only variable that begins fresh in

(run* q
(fresh (x)

(� ���� q)))

22
No,

since q also starts out fresh. All variables
introduced by fresh or run* begin fresh.

Is x the only variable that remains fresh in

(run* q
(fresh (x)

(� ���� q)))

23 Yes,
since ��� is associated with q.

Suppose that we instead use x in the �
expression. What value is associated with q in

(run* q
(fresh (x)

(� ���� x)))

24 −0,
since q remains fresh.

Suppose that we use both x and q. What
value is associated with q in

(run* q
(fresh (x)

(� (cons x '()) q)))

25
(−0).

The value of (cons x '()) is associated with q,
although x remains fresh.

What value is associated with q in

(run* q
(fresh (x)

(� ‘(,x) q)))

26 (−0),
since ‘(,x) is a shorthand for (cons x '()).

Is this a bit subtle? 27 Indeed.

Commas (,), as in the run* expression in
frame 26, can only precede variables. Thus,
what is not a variable behaves as if it were
quoted.

28 In that case, reading off the values of backtick
(‘) expressions should not be too difficult.

Two different fresh variables can be made the
same by fusing them.

29 How can we fuse two different fresh
variables?

We fuse two different fresh variables using �.
In the expression

(run* q
(fresh (x)

(� x q)))

x and q are different fresh variables, so they
are fused when the goal (� x q) succeeds.

30 Okay.

What value is associated with q in

(run* q
(fresh (x)

(� x q)))

31

−0.
x and q are fused, but remain fresh. Fused
variables get the same association if a value
(including another variable) is associated
later with either variable.

What value is associated with q in

(run* q
(� '(((���)) ���) '(((���)) ���)))

32
−0.

What value is associated with q in

(run* q
(� '(((���)) ���) ‘(((���)) ,q)))

33 ���.

What value is associated with q in

(run* q
(� ‘(((,q)) ���) '(((���)) ���)))

34 ���.

What value is associated with q in

(run* q
(fresh (x)

(� ‘(((,q)) ���) ‘(((,x)) ���))))

35
−0,

since q remains fresh, even though x is
fused with q.

What value is associated with q in

(run* q
(fresh (x)

(� ‘(((,q)) ,x) ‘(((,x)) ���))))

36
���,

because ��� is associated with x, and
because x is fused with q.

What value is associated with q in

(run* q
(fresh (x)

(� ‘(,x ,x) q)))

37

(−0 −0).
In the value of a run* expression, every
instance of the same fresh variable is
replaced by the same reified variable.

What value is associated with q in

(run* q
(fresh (x)

(fresh (y)
(� ‘(,q ,y) ‘((,x ,y) ,x)))))

38

(−0 −0),
because the value of ‘(,x ,y) is associated
with q, and because y is fused with x,
making y the same as x.

Two variables are different if they have not
been fused.

When are two variables different? 39 Every variable introduced by fresh (or run*)
is initially different from every other variable.

Are q and x different variables in

(run* q
(fresh (x)

 (� ���� q)))

40 Yes, they are different.

What value is associated with q in

(run* q
(fresh (x)

(fresh (y)
 (� ‘(,x ,y) q))))

41

(−0 −1).
In the value of a run* expression, each
different fresh variable is reified with an
underscore followed by a distinct numeric
subscript.

What value is associated with s in

(run* s
(fresh (t)

(fresh (u)
 (� ‘(,t ,u) s))))

42

(−0 −1).
This expression and the previous expression
differ only in the names of their lexical
variables. Such expressions have the same
values.

What value is associated with q in

(run* q
(fresh (x)

(fresh (y)
 (� ‘(,x ,y ,x) q))))

43

(−0 −1 −0).
x and y remain fresh, and since they are
different variables, they are reified
differently. Reified variables are indexed by
the order they appear in the value produced
by a run* expression.

Does

(� '(���) ����)

succeed?

44 No, since (���) is not the same as ���.

Does

(� ‘(,x) x) 45 No, since ((�������)) is not the same as (���
���).

succeed if (�������) is associated with x

Is there any value of x for which

(� ‘(,x) x)

succeeds?

46 No.
But what if x were fresh?

Even then, (� ‘(,x) x) could not succeed. No
matter what value is associated with x, x
cannot be equal to a list in which x occurs.

47 What does it mean for x to occur?

A variable x occurs in a variable y when x (or
any variable fused with x) appears in the value
associated with y.

48 When do we say a variable occurs in a list?

A variable x occurs in a list l when x (or any
variable fused with x) is an element of l, or
when x occurs in an element of l.

Does x occur in

‘(��� (,x) ���)

49 Yes, because x is in the value of ‘(,x), the
second element of the list.

The Second Law of �
If x is fresh, then (� v x) succeeds and
associates v with x, unless x occurs in v.

What is the value of

(run* q
(conj2† �����))

† conj2 is short for two-argument conjunction, and is written
conj2.

50
(−0),

because the goal (conj2 g1 g2) succeeds if the
goals g1 and g2 both succeed.

What value is associated with q in

(run* q
(conj2 �� (� ��	
� q)))

51
�	
�,

because �	
� is associated with q when (�
��	
� q) succeeds.

What is the value of

(run* q
(conj2 �� (� ��	
� q)))

52 (),
because the goal (conj2 g1 g2) fails if g1 fails.

Yes. The goal (conj2 g1 g2) also fails if g1
succeeds and g2 fails.

What is the value of

(run* q
(conj2 (� ��	
� q) (� ����� q)))

53

().
In order for the conj2 to succeed, (� ��	
�
q) and (� ����� q) must both succeed. The
first goal succeeds, associating �	
� with q.
The second goal cannot then associate ����
with q, since q is no longer fresh.

What is the value of

(run* q
(conj2 (� ��	
� q) (� ��	
� q)))

54

(�	
�).
The first goal succeeds, associating �	
�
with q. The second goal succeeds because
although q is no longer fresh, the value
associated with q is �	
�.

What is the value of

(run* q
(disj2† �����))

† disj2 is short for two-argument disjunction, and is written
disj2.

55
(),

because the goal (disj2 g1 g2) fails if both g1
and g2 fail.

What is the value of

(run* q
(disj2 (� �	��� q) ��))

56
(���),

because the goal (disj2 g1 g2) succeeds if
either g1 or g2 succeeds.

What is the value of (��),
because the goal (disj2 g1 g2) succeeds if

(run* q
(disj2 	� (� ���� q)))

57 either g1 or g2 succeeds.

What is the value of

(run* q
(disj2 (� ������ q) (� ���� q)))

58

(���������), a list of two values.
Both goals contribute values. (� ������ q)
succeeds, and ����� is the first value
associated with q. (� ���� q) also succeeds,
and ��� is the second value associated with
q.

What is the value of

(run* q
(fresh (x)

(fresh (y)
(disj2

(� ‘(,x ,y) q)
(� ‘(,y ,x) q)))))

59

((−0 −1) (−0 −1)),
because disj2 contributes two values. In the
first value, x is reified as −0 and y is reified as
−1. In the second value, y is reified as −0 and x
is reified as −1.

Correct!

The variables x and y are not fused in the
previous run* expression, however. Each
value produced by a run* expression is reified
independently of any other values. This
means that the numbering of reified variables
begins again, from 0, within each reified
value.

60 Okay.

Do we consider

(run* x
(disj2 (� ������ x) (� ���� x)))

and

(run* x
(disj2 (� ���� x) (� ������ x)))

to be the same?

61

Yes,
because the first run* expression produces
(���������), the second run* expression
produces (���������), and because the order
of the values does not matter.

What is the value of

(run* x
(disj2

(conj2 (� ������ x)
)
(� ���� x)))

62 (���).

What is the value of

(run* x
(disj2

(conj2 (� ������ x))
(� ���� x)))

63 (���������).

What is the value of

(run* x
(disj2

(� ���� x)
(conj2 (� ������ x))))

64 (���������).

What is the value of

(run* x
(disj2

(conj2 (� ������� x)
)
(disj2
(� ������ x)
(disj2
	
(� ���� x)))))

65

(����� −0 ���).
The goal (conj2 (� ������� x)
) fails.
Therefore, the body of the run* behaves the
same as the second disj2,

(disj2
(� ������ x)
(disj2
	
(� ���� x))).

In the previous frame’s expression, whose
value is (����� −0 ���), how do we end up with
−0

66
Through the 	 in the innermost disj2,

which succeeds without associating a value
with x.

What is the value of this run* expression?

(run* r

(fresh (x)
(fresh (y)
(conj2

(� 	����� x)
(conj2

(� 	��� y)
(� ‘(,x ,y) r))))))

67 ((���������)).

Is the value of this run* expression

(run* r
(fresh (x)

(fresh (y)
(conj2

(conj2
(� 	����� x)
(� 	��� y))

(� ‘(,x ,y) r)))))

the same as that of the previous frame?

68
Yes.

Can we make this run* expression shorter?

Is this,
(run* r

(fresh (x)
(fresh (y)

(conj2
(conj2

(� 	����� x)
(� 	��� y))

(� ‘(,x ,y) r)))))

shorter?

69
Very funny.

Is there another way to simplify this run*
expression?

Yes. If fresh were able to create any number
of variables, how might we rewrite the run*
expression in the previous frame?

70

Like this,

(run* r
(fresh (x y)

(conj2
(conj2

(� 	����� x)
(� 	��� y))

(� ‘(,x ,y) r)))).

Does the simplified expression in the previous
frame still produce the value ((�	����	��))

71
Yes.

Can we keep simplifying this expression?

Sure. If run* were able to create any number
of fresh variables, how might we rewrite the
expression from frame 70?

72

As this simpler expression,

(run* (r x y)
(conj2

(conj2
(� �	��� x)
(� 	�� y))

(� ‘(,x ,y) r))).

Does the expression in the previous frame still
produce the value ((�	����	��))

73

No.
The previous frame’s run* expression
produces (((�	����	��) �	����	��)), which is
a list containing the values associated with
r, x, and y, respectively.

How can we change the expression in frame
72 to get back the value from frame 70,
((�	����	��))

74 We can begin by removing r from the run*
variable list.

Okay, so far. What else must we do, once we
remove r from the run* variable list?

75

We must remove (� ‘(,x ,y) r), which uses r,
and the outer conj2, since conj2 expects two
goals. Here is the new run* expression,

(run* (x y)
(conj2

(� �	��� x)
(� 	�� y))).

What is the value of

(run* (x y)
(disj2

(conj2 (� �	��� x) (� 	�� y))

76 The list ((�	����	��) (
�������)).

(conj2 (� ���� x) (� ����� y))))

Good guess! What is the value of

(run* r
(fresh (x y)

(conj2
(disj2

(conj2 (� ��
�� x) (� �
�� y))
(conj2 (� ���� x) (� ����� y)))

(� ‘(,x ,y �	�
) r))))

77

The list

((�
���
����	�
) (����������	�
)).

Can we simplify this run* expression?

Yes. fresh can take two goals, in which case it
acts like a conj2.

How might we rewrite the run* expression in
the previous frame?

78

Like this,

(run* r
(fresh (x y)

(disj2
(conj2 (� ��
�� x) (� �
�� y))
(conj2 (� ���� x) (� ����� y)))

(� ‘(,x ,y �	�
) r))).

Can fresh have more than two goals?

Yes.

Rewrite the fresh expression

(fresh (x …)
(conj2

g1
(conj2
g2
g3)))

to not use conj2.

79

Can the expression be rewritten as

(fresh (x …)
g1
g2
g3)?

Yes, it can.

This expression produces the value ((�
���
��
�	�
) (����������	�
)), just like the run*

Yes.

We can allow run* to have more than one

expression in frame 78.

(run* (x y z)
(conj2

(disj2
(conj2 (� ��
�� x) (� �
�� y))
(conj2 (� ���� x) (� ����� y)))

(� ��	�
 z)))

Can this run* expression be simplified?

80

goal and act like a conj2, just as we did with
fresh,

(run* (x y z)
(disj2

(conj2 (� ��
�� x) (� �
�� y))
(conj2 (� ���� x) (� ����� y)))

(� ��	�
 z)).

How can we simplify this run* expression
from frame 75?

(run* (x y)
(conj2

(� ��
�� x)
(� �
�� y)))

81

Like this,

(run* (x y)
(� ��
�� x)
(� �
�� y)).

Consider this very simple definition.

(defrel† (teacupo t)
(disj2 (� ��� t) (� ���
 t)))

The name defrel is short for define relation.

† The defrel form is implemented as a macro (page 177). We
can write relations without defrel using define and two
lambdas. See the right hand side for an example showing
how teacupo would be written.

(define (teacupo t)
(lambda (s)

(lambda ()
((disj2 (� ��� t) (� ���
 t))

s)))).

When using define in this way, s is passed to the goal, (disj2
…). We have to ensure that s does not appear either in the
goal expression itself, or as an argument (here, t) to the
relation. Because hygienic macros avoid inadvertent variable
capture, we do not have these problems when we use defrel
instead of define. For more, see chapter 10 for
implementation details.

82 What is a relation?

A relation is a kind of function† that, when
given arguments, produces a goal.

What is the value of

(run* x
(teacupo x))

† Thanks, Robert A. Kowalski (1941–).

83 (�������).

What is the value of

(run* (x y)
(disj2

(conj2 (teacupo† x) (� 	� y))
(conj2 (� 	� x) (� 	� y))))

† teacupo is written teacupo. Henceforth, consult the
index for how we write the names of relations.

84

((��	�) (����	�) (����	�)).†
First (� 	� x) associates 	� with x, then
(teacupo x) associates ��� with x, and finally
(teacupo x) associates ��� with x.

† Remember that the order of the values does not matter (see
frame 61).

What is the value of

(run* (x y)
(teacupo x)
(teacupo y))

85 ((�������) (�������) (�������) (�������)).

What is the value of

(run* (x y)
(teacupo x)
(teacupo x))

86

((��� −0) (��� −0)).
The first (teacupo x) associates ��� with x
and then associates ��� with x, while the
second (teacupo x) already has the correct
associations for x, so it succeeds without
associating anything. y remains fresh.

And what is the value of

(run* (x y)
(disj2 87 ((�����) (�����) (��� −0) (��� −0)).

(conj2 (teacupo x) (teacupo x))
(conj2 (� �� x) (teacupo y))))

The run* expression in the previous frame
has a pattern that appears frequently: a disj2
containing conj2s. This pattern appears so
often that we introduce a new form, conde.†

(run* (x y)
(conde

((teacupo x) (teacupo x))
((� �� x) (teacupo y))))

Revise the run* expression below, from frame
76, to use conde instead of disj2 or conj2.

(run* (x y)
(disj2

(conj2 (� ��
�� x) (� �
�� y))
(conj2 (� ���� x) (� ����� y))))

† conde is written conde and is pronounced “con-dee.”

88

Here it is:

(run* (x y)
(conde

((� ��
�� x) (� �
�� y))
((� ���� x) (� ����� y)))).

conde can be used in place of disj2, even when
one of the goals in disj2 is not a conj2. Rewrite
this run* expression from frame 62 to use
conde.

(run* x
(disj2

(conj2 (� �	���� x) ��)
(� �	�� x)))

89

Like this,

(run* x
(conde

((� �	���� x) ��)
((� �	�� x)))).

What is the value of

(run* (x y)
(conde

((fresh (z)
90

((−0 −1) (−0 −0)).
In the first conde line x remains different
from y, and both are fresh. ����� is
associated with z, which is not reified. In

(� ���	�� z)))
((� x y))))

the second conde line, both x and y remain
fresh, but x is fused with y.

We can extend the number of lines in a
conde. What is the value of

(run* (x y)
(conde

((� ��
�� x) (� �
�� y))
((� ���� x) (� ����	 y))
((� �����	 x) (� ���	�� y))))

91

((�
���
��) (�������) (����	���	��)).

Does that mean disj2 and conj2 are
unnecessary?

Correct. We won’t see disj2 or conj2 again
until we go “Under the Hood” in chapter 10.

92 What does the “e” in conde stand for?

It stands for every, since every successful
conde line contributes one or more values.

93 Hmm, interesting.

The Law of conde

Every successful conde line contributes one
or more values.

� Now go make an almond butter and jam sandwich. �

This space reserved for

JAM STAINS!

What is the value of

(car '(���
���������
���))
1 ���
�.

What is the value of

(car '(����	����))
2 �.

What value is associated with q in

(run* q
(caro '(����	����) q))

3 �,
because � is the car of (����	����).

What value is associated with q in

(run* q
(caro '(����	����) �))

4 −0 ,
because � is the car of (����	����).

What value is associated with r in

(run* r
(fresh (x y)

(caro ‘(,r ,y) x)
(�
��� x)))

5

���.
Since the car of ‘(,r ,y), which is the fresh
variable r, is fused with x. Then
��� is
associated with x, which in turn associates

��� with r.

Here is caro.

(defrel (caro p a)
(fresh (d)

(� (cons a d) p)))

What is unusual about this definition?

6 Whereas car expects one argument, caro

expects two.

What is the value of

(cons
(car '(���
���������
���))
(car '((�) (�) (�))))

7 That’s familiar: (���
���).

What value is associated with r in

(run* r
(fresh (x y)

(caro '(���
���������
���) x)
(caro '((�) (�) (�)) y)
(� (cons x y) r)))

8 The same value: (���
���).

Why can we use cons in the previous frame? 9
Because variables introduced by fresh are
values, and each argument to cons can be any
value.

What is the value of

(cdr '(���
���������
���))
10 Another familiar one: (�������
���).

What is the value of

(car (cdr (cdr '(����	����))))
11 	.

What value is associated with r in

(run* r
(fresh (v)

(cdro '(����	����) v)
(fresh (w)
(cdro v w)
(caro w r))))

12

	.
The process of transforming (car (cdr (cdr
l))) into (cdro l v), (cdro v w), and (caro w r)
is called unnesting. We introduce fresh
expressions as necessary as we unnest.

Define cdro. 13

It is almost the same as caro.

(defrel (cdro p d)
(fresh (a)

(� (cons a d) p)))

What is the value of

(cons
(cdr '(���
���������
���))

14 Also familiar: ((�������
���) �).

(car '((�) (�) (�))))

What value is associated with r in

(run* r
(fresh (x y)

(cdro '(����������	�����) x)
(caro '((�) (�) (�)) y)
(� (cons x y) r)))

15 That’s the same: ((����	�����) �).

What value is associated with q in

(run* q
(cdro '(����
���) '(��
���)))

16 −0,
because (��
���) is the cdr of (����
���).

What value is associated with x in

(run* x
(cdro '(��
���) ‘(,x ��)))

17

,

because (
���) is the cdr of (��
���), so
 is
associated with x.

What value is associated with l in

(run* l
(fresh (x)

(cdro l '(��
���))
(caro l x)
(� �� x)))

18

(����
���),
because if the cdr of l is (��
���), then the
list ‘(,a ��
���) is associated with l, where a
is the variable introduced in the definition
of cdro. The caro of l, a, fuses with x. When
we associate � with x, we also associate �
with a, so the list (����
���) is associated
with l.

What value is associated with l in

(run* l
(conso '(�����) '(���) l))

19
((�����) ���),

since conso associates the value of (cons '(���
�) '(���)) with l.

What value is associated with x in

(run* x
(conso x '(�����) '(�������)))

20
�.

Since (cons �� '(�����)) is (�������), conso
associates � with x.

What value is associated with r in

(run* r
(fresh (x y z)

(� ‘(����� ,x) r)
(conso y ‘(� ,z �) r)))

21

(�������).
We first associate ‘(����� ,x) with r. We
then perform the conso, associating � with x,
� with z, and � with y.

What value is associated with x in

(run* x
(conso x ‘(� ,x �) ‘(��� ,x �)))

22
�,

the value we can associate with x so that
(cons x ‘(� ,x �)) is ‘(��� ,x �).

What value is associated with l in

(run* l
(fresh (x)

(� ‘(��� ,x �) l)
(conso x ‘(� ,x �) l)))

23

(�������).
First we associate ‘(��� ,x �) with l. Then
when we conso x to ‘(� ,x �), we associate �
with x.

What value is associated with l in

(run* l
(fresh (x)

(conso x ‘(� ,x �) l)
(� ‘(��� ,x �) l)))

24

(�������), as in the previous frame.
We conso x to ‘(� ,x �), associating the list
‘(,x � ,x �) with l. Then when we associate
‘(��� ,x �) with l, we associate � with x.

Define conso using caro and cdro. 25

Here is a definition.

(defrel (conso a d p)
(caro p a)
(cdro p d))

Now, define the conso relation using �
instead of caro and cdro.

26

Here is the new conso.

(defrel (conso a d p)
(� ‘(,a � ,d) p))

Here’s a bonus question.

What value is associated with l in

(run* l
(fresh (d t x y w)

(conso w '(�����) t)
(cdro l t)
(caro l x)
(� �� x)
(cdro l d)
(caro d y)
(� �	 y)))

27

It’s a five-element list.†

† t is (cdr l) and since l is fresh, (cdro l t) places a fresh variable
in the (car l), while associating (car t) with w; (car l) is the
fresh variable x; � is associated with x; t is associated with d
and the car of d is associated with y, which fuses w with y;
and the last step associates 	 with y.

What is the value of

(null? '(���
���������
���))
28 ��.

What is the value of

(null? '())
29 �.

What is the value of

(run* q
(nullo '(���
���������
���)))

30 ().

What is the value of

(run* q
(nullo '()))

31 (−0).

What is the value of

(run* x
(nullo x))

32
(()),

since the only way (nullo x) succeeds is if
the empty list, (), is associated with x.

Define nullo using �. 33

Here is nullo.

(defrel (nullo x)
(� '() x))

Is (
����������) a pair? 34
Yes.

Is ‘(
���� � ,x) a pair? 35 Yes.

What is the value of

(pair? '((
����) � ���))
36 �.

What is the value of

(pair? '())
37 �.

Is ���	 a pair? 38 No.

Is ���	 a pair? 39 No.

Is (���) a pair? 40 Yes,
it is the pair (���	 � ()).

What is the value of

(car '(���))
41 ���	.

What is the value of

(cdr '(���))
42 ().

How can we build these pairs? 43 Use Cons the Magnificent.

What is the value of

(cons '(
����) ����)
44 ((
����) � ���).

What value is associated with r in

(run* r
(fresh (x y)

45 (−0 −1 �
����).

(� (cons x (cons y �	����)) r)))

Here is pairo.

(defrel (pairo p)
(fresh (a d)

(conso a d p)))

Is pairo recursive?

46 No, it is not.

What is the value of

(run* q
(pairo (cons q q)))

47

(−0).
(cons q q) creates a pair of the same fresh
variable. But we are not interested in the
pair, only q.

What is the value of

(run* q
(pairo '()))

48 ().

What is the value of

(run* q
(pairo �����))

49 ().

What value is associated with x in

(run* x
(pairo x))

50 (−0 � −1).

What value is associated with r in

(run* r
(pairo (cons r '())))

51
−0.

Is (
���) a singleton? 52 Yes,
because it is a list of a single value,
���.

Is ((
���)) a singleton? 53 Yes,

because it is a list of a single value, (��
).

Is 	��
 a singleton? 54 No,
because it is not a list of a single value.

Is (��	��
) a singleton? 55 No,
because it is not a list of a single value.

Is () a singleton? 56 No,
because it is not a list of a single value.

Is (����	��
) a singleton? 57
No,

because (����	��
) is not a list of a single
value.

Consider the definition of singleton?.

(define (singleton? l)
(cond

((pair? l) (null? (cdr l)))
(else ��)))

What is the value of

(singleton? '((�) (���) �))

58 ��.

singleton? determines if its argument is a
proper list of length one.

59 What is a proper list?

A list is proper if it is the empty list or if it is a
pair whose cdr is proper.

What is the value of

(singleton? '())

60 ��.

What is the value of

(singleton? (cons ���� '()))
61 �	,

because (���) is a proper list of length one.

What is the value of

(singleton? '(��	�����	�))
62
�.

To translate singleton? into singletono, we must
replace else with
� in the last cond line.

63

Like this.

(define (singleton? l)
(cond

((pair? l) (null? (cdr l)))
(
��
�)))

Here is the translation of singleton?.

(defrel (singletono l)
(conde

((pairo l)
(fresh (d)

(cdro l d)
(nullo d)))

(
��
)))

Is singletono a correct definition?

64
It looks correct.

How do we translate a function into a
relation?

The Translation (Initial)
To translate a function into a relation, first
replace define with defrel. Then unnest each
expression in each cond line, and replace
each cond with conde. To unnest a
�,
replace it with
�. To unnest a
�, replace it
with
	.

Where does

(fresh (d)
(cdro l d)

65

It is an unnesting of (null? (cdr l)). First we
determine the cdr of l and associate it with the

(nullo d))

come from?

fresh variable d, and then we translate null? to
nullo.

Any conde line that has a top-level �� as a
goal cannot contribute values. Simplify
singletono.

66

Here it is.

(defrel (singletono l)
(conde

((pairo l)
(fresh (d)

(cdro l d)
(nullo d)))))

The Law of ��

Any conde line that has �� as a top-level goal
cannot contribute values.

Do we need (pairo l) in the definition of
singletono

67

No.
This conde line also uses (cdro l d). If d is
fresh, then (pairo l) succeeds exactly when
(cdro l d) succeeds. So here (pairo l) is
unnecessary.

After we remove (pairo l), the conde has only
one goal in its only line. We can also replace
the whole conde with just this goal.

What is our newly simplified definition of
singletono

68

It’s even shorter!

(defrel (singletono l)
(fresh (d)

(cdro l d)
(nullo d)))

� Define both caro and cdro using conso. �

Consider the definition of list?, where we
have replaced else with �	.

(define (list? l)
(cond

((null? l) �)
((pair? l) (list? (cdr l)))
(�	���)))

From now on we assume that each else has
been replaced by �	.

What is the value of

(list? '((�) (���) �))

1 �	.

What is the value of

(list? '())
2 �	.

What is the value of

(list? ��)
3 ��.

What is the value of

(list? '(����	������))
4 ��,

because (����	������) is not a proper list.

Translate list?. 5

This is almost the same as singletono.

(defrel (listo l)
(conde

((nullo l) ��)
((pairo l)
(fresh (d)

(cdro l d)
(listo d)))

(����
)))

Where does

(fresh (d)
(cdro l d)
(listo d))

come from?

6

It is an unnesting of (list? (cdr l)). First we
determine the cdr of l and associate it with the
fresh variable d, and then we use d as the
argument in the recursion.

Here is a simplified version of listo. What
simplifications have we made?

(defrel (listo l)
(conde

((nullo l) ��)
((fresh (d)
(cdro l d)
(listo d)))))

7

We have removed the final conde line,
because The Law of �� says conde lines that
have �� as a top-level goal cannot contribute
values. We also have removed (pairo l), as in
frame 2:68.

Can we simplify listo further?

Yes,
since any top-level �� can be removed from
a conde line.

8

Here is our simplified version.

(defrel (listo l)
(conde

((nullo l))
((fresh (d)
(cdro l d)
(listo d)))))

The Law of ��

Any top-level �� can be removed from a
conde line.

What is the value of

(run* x
(listo ‘(��� ,x �)))

9
(−0),

since x remains fresh.

where ����, and � are symbols, and x is a
variable?

Why is (−0) the value of

(run* x
(listo ‘(��� ,x �)))

10

For this use of listo to succeed, it is not
necessary to determine the value of x.
Therefore x remains fresh, which shows that
this use of listo succeeds for any value
associated with x.

How is (−0) the value of

(run* x
(listo ‘(��� ,x �)))

11

listo gets the cdr of each pair, and then uses
recursion on that cdr. When listo reaches the
end of ‘(��� ,x �), it succeeds because (nullo
'()) succeeds, thus leaving x fresh.

What is the value of

(run* x
(listo ‘(����� � ,x)))

12

This expression has no value.
Aren’t there an unbounded number of
possible values that could be associated with
x?

Yes, that’s why it has no value. We can use
run � to get a list of only the first value.
Describe run’s behavior.

13

Along with the arguments run* expects, run
also expects a positive number n. If the run
expression has a value, its value is a list of at
most n elements.

What is the value of

(run � x
(listo ‘(����� � ,x)))

14 (()).

What value is associated with x in

(run � x
(listo ‘(����� � ,x)))

15 ().

Why is () the value associated with x in

(run � x
(listo ‘(����� � ,x)))

16
Because ‘(����� � ,x) is a proper list when x is
the empty list.

How is () the value associated with x in

(run � x
(listo ‘(����� � ,x)))

17
When listo reaches the end of ‘(����� � ,x),
(nullo x) succeeds and associates x with the
empty list.

What is the value of

(run � x
(listo ‘(����� � ,x)))†

† As we state in frame 1:61, the order of values is
unimportant. This run gives the first five values under an
ordering determined by the listo relation. We see how the
implementation produces these values in particular when we
discover how the implementation works in chapter 10.

18

(()
(−0)
(−0 −1)
(−0 −1 −2)
(−0 −1 −2 −3)).

Why are the nonempty values lists of (−n) 19
Each −n corresponds to a fresh variable that
has been introduced in the goal of the second
conde line of listo.

We need one more example to understand
run. In frame 1:91 we use run* to produce all
three values. How many values would be
produced with run � instead of run*

20

The same three values,

((��
	�����) (�������) (�����
���	
)).

Does that mean if run* produces a list, then
run n either produces the same list, or a
prefix of that list?

Yes. Here is lol?, where lol? stands for list-of-
lists?.

(define (lol? l)
(cond

((null? l) ��)
((list? (car l)) (lol? (cdr l)))
(�����)))

Describe what lol? does.

21
As long as each top-level value in the list l is a
proper list, lol? produces ��. Otherwise, lol?
produces ��.

Here is the translation of lol?.

(defrel (lolo l)
(conde

((nullo l) ��)
((fresh (a)

(caro l a)
(listo a))

(fresh (d)
(cdro l d)
(lolo d)))

(�����)))

Simplify lolo using The Law of �� and The
Law of ��.

22

Here it is.

(defrel (lolo l)
(conde

((nullo l))
((fresh (a)

(caro l a)
(listo a))

(fresh (d)
(cdro l d)
(lolo d)))))

What value is associated with q in

(run* q
(fresh (x y)

(lolo ‘((���) (,x �) (� ,y)))))

23 −0,
since ‘((���) (,x �) (� ,y)) is a list of lists.

What is the value of

(run 	 l
(lolo l))

24
(()).

Since l is fresh, (nullo l) succeeds and
associates () with l.

What value is associated with q in

(run 	 q
(fresh (x)

(lolo ‘((���) � ,x))))

25

−0,
because nullo of a fresh variable always
succeeds and associates () with the fresh
variable x.

What is the value of

(run 	 x
(lolo ‘((���) (���) � ,x)))

26

(()),
since replacing x with the empty list in ‘((�
�) (���) � ,x) transforms it to ((���) (���) �
()), which is the same as ((���) (���)).

What is the value of
(()

(run � x
(lolo ‘((���) (���) � ,x)))

27 (())
((−0))
(() ())
((−0 −1))).

What do we get when we replace x in

‘((���) (���) � ,x)

by the fourth list in the previous frame?

28

((���) (���) � (() ())),

which is the same as

((���) (���) () ()).

What is the value of

(run � x
(lolo x))

29

(()
(())
((−0))
(() ())
((0 −1))).

Is ((�) (
	��)) a list of singletons? 30 Yes,
since both (�) and (
	��) are singletons.

Is ((�) (��
	��)) a list of singletons? 31 No,
since (��
	��) is not a singleton.

Recall our definition of singletono from frame
2:68.

(defrel (singletono l)
(fresh (d)

(cdro l d)
(nullo d)))

Redefine singletono without using cdro or
nullo.

32

Here it is.

(defrel (singletono l)
(fresh (a)

(� ‘(,a) l)))

Is this correct?

(defrel (loso l)
(conde

((nullo l))

Define loso, where loso stands for list of
singletons.

33 ((fresh (a)
(caro l a)
(singletono a))

(fresh (d)
(cdro l d)
(loso d)))))

Let’s try it out. What value is associated with
z in

(run � z
(loso ‘((�) � ,z)))

34 ().

Why is () the value associated with z in

(run � z
(loso ‘((�) � ,z)))

35 Because ‘((�) � ,z) is a list of singletons when
z is the empty list.

What do we get when we replace z in

‘((�) � ,z)

by ()

36 ((�) � ()),
which is the same as ((�)).

How is () the value associated with z in

(run � z
(loso ‘((�) � ,z)))

37

The variable l from the definition of loso starts
out as the list ‘((�) � ,z). Since this list is not
null, (nullo l) fails and we determine the
values contributed from the second conde

line. In the second conde line, d is fused with
z, the cdr of ‘((�) � ,z). The variable d is then
passed in the recursion. Since the variables d
and z are fresh, (nullo l) succeeds and
associates () with d and z.

What is the value of

(run � z 38

(()
((−0))
((−0) (−1))
((−0) (−1) (−2))

(loso ‘((�) � ,z))) ((−0) (−1) (−2) (−3))).

Why are the nonempty values (−n) 39
Each −n corresponds to a fresh variable a that
has been introduced in the first goal of the
second conde line of loso.

What do we get when we replace z in

‘((�) � ,z)

by the fourth list in frame 38?

40

((�) � ((−0) (−1) (−2))),
which is the same as

((�) (−0) (−1) (−2)).

What is the value of

(run � r
(fresh (w x y z)

(loso ‘((�) (� � ,w) (,x � ,y) � ,z))
(� ‘(,w (,x � ,y) ,z) r)))

41

((() (−0) ())
(() (−0) ((−1)))
(() (−0) ((−1) (−2)))
(() (−0) ((−1) (−2) (−3)))).

What do we get when we replace w, x, y, and
z in

‘((�) (� � ,w) (,x � ,y) � ,z)

using the third list in the previous frame?

42

((�) (�) (−0) � ((−1) (−2))),
which is the same as

((�) (�) (−0) (−1) (−2)).

What is the value of

(run � out
(fresh (w x y z)

(� ‘((�) (� � ,w) (,x � ,y) � ,z) out)
(loso out)))

43
(((�) (�) (−0))
((�) (�) (−0) (−1))
((�) (�) (−0) (−1) (−2))).

Remember member?.

(define (member? x l)
(cond

((null? l) ��)
((equal? (car l) x) ��) 44 ��.

(�
 (member? x (cdr l)))))

What is the value of

(member? ����� '(����������������))

Try to translate member?. 45

Is this membero correct?

(defrel (membero x l)
(conde

((nullo l) ��)
((fresh (a)

(caro l a)
(� a x))

�)
(�	
(fresh (d)

(cdro l d)
(membero x d)))))

Yes, because equal? unnests to �.

Simplify membero using The Law of �� and
The Law of �	.

46

This is a simpler definition.

(defrel (membero x l)
(conde

((fresh (a)
(caro l a)
(� a x)))

((fresh (d)
(cdro l d)
(membero x d)))))

Is this a simplification of membero

(defrel (membero x l)
(conde

((caro l x))
((fresh (d)

(cdro l d)

47

Yes,
since in the previous frame (� a x) fuses a
with x. Therefore (caro l a) is the same as
(caro l x).

(membero x d)))))

What value is associated with q in

(run* q
(membero �
���� '(�����	�
�����
��)))

48

−0,
because the use of membero succeeds, but
this is still uninteresting; the only variable q
is not used in the body of the run*
expression.

What value is associated with y in

(run � y
(membero y '(���������������)))

49

�����,
because the first conde line in membero

associates the value of (car l), which is
�����, with the fresh variable y.

What value is associated with y in

(run � y
(membero y '(���������)))

50

����,
because the first conde line associates the
value of (car l), which is ����, with the
fresh variable y.

What value is associated with y in

(run � y
(membero y '(����)))

51

����,
because the first conde line associates the
value of (car l), which is ����, with the fresh
variable y.

What is the value of

(run* y
(membero y '()))

52 (),
because neither conde line succeeds.

What is the value of

(run* y
(membero y '(���������������)))

53
(���������������).

We already know the value of each
recursion of membero, provided y is fresh.

So is the value of

(run* y
(membero y l)) 54 Yes, when l is a proper list.

always the value of l

What is the value of

(run* y
(membero y l))

where l is (�������������������)

55
(����������).

y is not the same as l in this case, since l is
not a proper list.

What value is associated with x in

(run* x
(membero ����(���� ,x ����
	�)))

56

�.
The list contains three values with a
variable in the middle. membero determines
that � is associated with x.

Why is � the value associated with x in

(run* x
(membero ����(���� ,x ����
	�)))

57

Because � is the only value that can be
associated with x so that

(membero ����(���� ,x ����
	�))
succeeds.

What have we just done? 58 We filled in a blank in the list so that
membero succeeds.

What value is associated with x in

(run � x
(membero ����(������ ,x ����
	�)))

59
−0,

because the recursion reaches �, and
succeeds, before it gets to x.

What value is associated with x in

(run � x
(membero ����(���� ,x ������
	�)))

60
�,

because the recursion reaches the variable x,
and succeeds, before it gets to �.

What is the value of

(run* (x y)
(membero ����(���� ,x ����
	� ,y)))

61 ((� −0) (−0 �)).

What does each value in the list mean? 62

There are two values in the list. We know
from frame 60 that for the first value when �
is associated with x, (membero ���(�
�� ,x
������� ,y)) succeeds, leaving y fresh. Then we
determine the second value. Here, � is
associated with y, while leaving x fresh.

What is the value of

(run* q
(fresh (x y)

(� ‘(�
�� ,x ������� ,y) q)
(membero �� q)))

63 ((�
������������ −0) (�
�� −0 ���������)).

What is the value of

(run � l
(membero ����� l))

64 ((���� � −0)).

Which lists are represented by (���� � −0) 65 Every list whose car is ����.

What is the value of

(run* l
(membero ����� l))

66
It has no value,

because run* never finishes building the
list.

What is the value of

(run � l
(membero ����� l))

67

((���� � −0)
(−0 ���� � −1)
(−0 −1 ���� � −2)
(−0 −1 −2 ���� � −3)
(−0 −1 −2 −3 ���� � −4)).
���� is in every list.

But can we require each list containing ����
to be a proper list, instead of having a dot
before each list’s final reified variable?

Perhaps. This final reified variable appears in
each value just after we find ����. In

membero, which conde line associates ����
with the car of a pair?

68 The first line, ((caro l x)).

What does membero’s first conde line say
about the cdr of l

69 Nothing. This is why the final cdrs remain
fresh in frame 67.

If the cdr of l is (), is l a proper list? 70 Yes.

If the cdr of l is (����), is l a proper list? 71 Yes.

Suppose l is a proper list. What values could
be l’s cdr

72 Any proper list.

Here is proper-membero.

(defrel (proper-membero x l)
(conde

((caro l x)
(fresh (d)

(cdro l d)
(listo d)))

((fresh (d)
(cdro l d)
(proper-membero x d)))))

Do proper-membero and membero differ?

73 Yes. The cdr of l in the first conde line of
proper-membero must be a proper list.

Now what is the value of

(run �	 l
(proper-membero ����� l))

74

Every list is proper.

((����)
(���� −0)
(���� −0 −1)
(−0 ����)
(���� −0 −1 −2)
(���� −0 −1 −2 −3)
(−0 ���� −1)
(���� −0 −1 −2 −3 −4)

(���� −0 −1 −2 −3 −4 −5)
(−0 ���� −1 −2)
(���� −0 −1 −2 −3 −4 −5 −6)
(−0 −1 ����)).

Is there a function proper-member? we can
transform and simplify into proper-membero

75

Yes. And here it is.

(define (proper-member? x l)
(cond

((null? l) ��)
((equal? (car l) x) (list? (cdr l)))
(�� (proper-member? x (cdr l)))))

� Now go make a cashew butter and marmalade sandwich
and eat it! �

This space reserved for

MARMALADE STAINS!

Here is append.†

(define (append l t)
(cond

((null? l) t)
(� (cons (car l)

(append (cdr l) t)))))

What is the value of

(append '(�����) '(���))

† For a different approach to append, see William F.
Clocksin. Clause and Effect. Springer, 1997, page 59.

1 (���������).

What is the value of

(append '(�����) '())
2 (�����).

What is the value of

(append '() '(���))
3 (���).

What is the value of

(append �� '(���))
4 It has no meaning,

because � is not a proper list.

What is the value of

(append '(���) ��)
5 It has no meaning, again?

No. The value is (�������). 6 How is that possible?

Look closely at the definition of append. 7 There are no cond-line questions asked about
t. Ouch.

Here is the translation from append and its

simplification to appendo.

(defrel (appendo l t out)
(conde

((nullo l) (� t out))
((fresh (res)

(fresh (d)
(cdro l d)
(appendo d t res))

(fresh (a)
(caro l a)
(conso a res out))))))

How does appendo differ from listo, lolo, and
membero

8

The list?, lol?, and member? definitions from
the previous chapter have only Booleans as
their values. append, on the other hand, has
more interesting values.

Are there consequences of this difference?

Yes, we introduce an additional argument,
which here we call out, that holds the value
that would have been produced by append’s
value.

9 That’s like caro, cdro, and conso, which also
take an additional argument.

The Translation (Final)
To translate a function into a relation, first
replace define with defrel. Then unnest each
expression in each cond line, and replace
each cond with conde. To unnest a ��,
replace it with ��. To unnest a ��, replace it
with ��.

If the value of at least one cond line can
be a non-Boolean, add an argument, say
out, to defrel to hold what would have been
the function’s value. When unnesting a line
whose value is not a Boolean, ensure that

either some value is associated with out, or
that out is the last argument to a recursion.

Why are there three freshes in

(fresh (res)
(fresh (d)

(cdro l d)
(appendo d t res))

(fresh (a)
(caro l a)
(conso a res out)))

10

Because d is only mentioned in (cdro l d) and
(appendo d t res); a is only mentioned in (caro l
a) and (conso a res out). But res is mentioned
in both inner freshes.

Rewrite

(fresh (res)
(fresh (d)

(cdro l d)
(appendo d t res))

(fresh (a)
(caro l a)
(conso a res out)))

using only one fresh.

11

(fresh (a d res)
(cdro l d)
(appendo d t res)
(caro l a)
(conso a res out)).

How might we use conso in place of the cdro

and the caro
12

(fresh (a d res)
(conso a d l)
(appendo d t res)
(conso a res out)).

Redefine appendo using these simplifications. 13

Here it is.

(defrel (appendo l t out)
(conde

((nullo l) (� t out))
((fresh (a d res)

(conso a d l)
(appendo d t res)

(conso a res out)))))

Can we similarly simplify our definitions of
loso as in frame 3:33, lolo as in frame 3:22,
and proper-membero as in frame 3:73?

14 Yes.

In our simplified definition of appendo, how
does the first conso differ from the second
one?

15

The first conso,

(conso a d l),

appears to associate values with the variables a
and d. In other words, it appears to take apart
a cons pair, whereas

(conso a res out)

appears to build a cons pair.

But, can appearances be deceiving? 16 Indeed they can.

What is the value of

(run � x
(fresh (y z)

(appendo x y z)))

17

(()
(−0)
(−0 −1)
(−0 −1 −2)
(−0 −1 −2 −3)
(−0 −1 −2 −3 −4)).

What is the value of

(run � y
(fresh (x z)

(appendo x y z)))

18
(−0
−0
−0
−0
−0

−0).

Since x is fresh, we know the first value comes
from (nullo l), which succeeds, associating ()
with l, and then t, which is also fresh, is fused
with out. But, how do we get the second
through sixth values?

19

A new fresh variable res is passed into each
recursion to appendo. After (nullo l) succeeds, t
is fused with res, which is fresh, since res is
passed as an argument (binding out) in the
recursion.

What is the value of

(run � z
(fresh (x y)

(appendo x y z)))

20

(−0

(−0 � −1)
(−0 −1 � −2)
(−0 −1 −2 � −3)
(−0 −1 −2 −3 � −4)
(−0 −1 −2 −3 −4 � −5)).

Now let’s look at the first six values of x, y,
and z at the same time.

What is the value of

(run � (x y z)
(appendo x y z))

21

((() −0 −0)
((−0) −1 (−0 � −1))
((−0 −1) −2 (−0 −1 � −2))
((−0 −1 −2) −3 (−0 −1 −2 � −3))
((−0 −1 −2 −3) −4 (−0 −1 −2 −3 � −4))
((−0 −1 −2 −3 −4) −5 (−0 −1 −2 −3 −4 � −5))).

What value is associated with x in

(run* x
(appendo

'(����)
'(
�	
�	������)
x))

22 (�����
�	
�	������).

What value is associated with x in

(run* x
(fresh (y)

(appendo

‘(��������� ,y)
'(
�	
�	������)
x)))

23 (��������� −0
�	
�	������).

What value is associated with x in

(run* x
(fresh (y)

(appendo

'(���������������)
y
x)))

24 (��������������� � −0).

What value is associated with x in

(run
 x
(fresh (y)

(appendo

‘(�����	���� � ,y)
'(���)
x)))

25
(�����	��������),

because the successful (nullo y) associates the
empty list with y.

What is the value of

(run � x
(fresh (y)

(appendo

‘(�����	���� � ,y)
'(���)
x)))

26

((�����	��������)
(�����	���� −0 ���)
(�����	���� −0 −1 ���)
(�����	���� −0 −1 −2 ���)
(�����	���� −0 −1 −2 −3 ���)).

What is the value of

(run � y
(fresh (x)

(appendo

‘(�����	���� � ,y)
'(���)
x)))

27

(()
(−0)
(−0 −1)
(−0 −1 −2)
(−0 −1 −2 −3)).

Let’s plug in (−0 −1 −2) for y in

‘(�����	���� � ,y).

Then we get

(�����	���� � (−0 −1 −2)).

What list is this the same as?

28 (�����	���� −0 −1 −2).

Right. Where have we seen the value of 29
This expression’s value is the fourth list in
frame 26.

(append '(���������� −0 −1 −2) '(��
))

What is the value of

(run x
(fresh (y)

(appendo

‘(���������� � ,y)
‘(��
 �,y)
x)))

30

((�������������
)
(���������� −0 ��
 −0)
(���������� −0 −1 ��
 −0 −1)
(���������� −0 −1 −2 ��
 −0 −1 −2)
(���������� −0 −1 −2 −3 ��
 −0 −1 −2 −3)).

What is the value of

(run* x
(fresh (z)

(appendo

'(������������	���)
‘(��
 � ,z)
x)))

31 ((������������	������
 � −0)).

Why does the list contain only one value? 32

Because t does not change in the recursion.
Therefore z stays fresh. The reason the list
contains only one value is that (����������
�	���) does not contain a variable, and is the
only value considered in every conde line of
appendo.

Let’s try an example in which the first two
arguments are variables.

What is the value of

(run � x
(fresh (y)

(appendo x y '(�������������
))))

33

(()
(����)
(������)
(����������)
(������������)
(�������������
)).

How might we describe these values? 34 The values include all of the prefixes of the
list (�������������
).

Now let’s try this variation.

(run � y
(fresh (x)

(appendo x y '(�����	��������))))

What is its value?

35

((�����	��������)
(��������)
(�������)
(���)
(�)
()).

How might we describe these values? 36 The values include all of the suffixes of the
list (�����	��������).

Let’s combine the previous two results.

What is the value of

(run � (x y)
(appendo x y '(�����	��������)))

37

((() (�����	��������))
((����) (��������))
((�����) (�������))
((�����	����) (���))
((�����	������) (�))
((�����	��������) ())).

How might we describe these values? 38

Each value includes two lists that, when
appended together, form the list

(�����	��������).

What is the value of

(run � (x y)
(appendo x y '(�����	��������)))

39
This expression has no value,

since appendo is still looking for the seventh
value.

Would we prefer that this expression’s value
be that of frame 37?

40

Yes, that would make sense.

How can we change the definition of appendo

so that these expressions have the same value?

† Thank you, Alain Colmerauer (1941–2017), and thanks,
Carl Hewitt (1945–) and Philippe Roussel (1945–).

(defrel (appendo l t out)
(conde

Swap the last two goals of appendo. 41 ((nullo l) (� t out))
((fresh (a d res)

(conso a d l)
(conso a res out)
(appendo d t res)))))

Now, using this revised definition of appendo,
what is the value of

(run* (x y)
(appendo x y '(�����	��������)))

42 The same six values are in frame 37. This
shows there are only six values.

The First Commandment
Within each sequence of goals, move non-
recursive goals before recursive goals.

Define swappendo, which is just appendo with
its two conde lines swapped.

43

Here it is.

(defrel (swappendo l t out)
(conde

((fresh (a d res)
(conso a d l)
(conso a res out)
(swappendo d t res)))

((nullo l) (� t out))))

What is the value of

(run* (x y)
(swappendo x y '(�����	��������)))

44 The same six values as in frame 37.

The Law of Swapping conde Lines

Swapping two conde lines does not affect the
values contributed by conde.

Consider this definition.

(define (unwrap x)
(cond

((pair? x) (unwrap (car x)))
(�� x)))

What is the value of

(unwrap '((((��)))))

45 	��.

What is the value of

(unwrap '((((���	��) ����)) ��
���))
46 	��.

Translate and simplify unwrap. 47

That’s a slice of pizza!

(defrel (unwrapo x out)
(conde

((fresh (a)
(caro x a)
(unwrapo a out)))

((� x out))))

What is the value of

(run* x
(unwrapo '(((��))) x))

48

((((��)))
((��))
(��)
	��).

The last value of the list seems right. In what
way are the other values correct?

49

They represent partially wrapped versions of
the list (((��))). And the first value is the
fully-wrapped original list (((��))).†

† unwrapo is a tricky relation whose behavior does not fully

comply with the behavior of the function unwrap.
Nevertheless, by keeping track of the fusing, you can follow
this ����� example.

DON’T PANIC
Thank you, Douglas Adams (1952–2001).

What value is associated with x in

(run � x
(unwrapo x ������))

50 �����.

What value is associated with x in

(run � x
(unwrapo ‘((,x)) ������))

51 �����.

What is the value of

(run � x
(unwrapo x ������))

52

(�����
(����� � −0)
((����� � −0) � −1)
(((����� � −0) � −1) � −2)
((((����� � −0) � −1) � −2) � −3)).

What is the value of

(run � x
(unwrapo x '((�����))))

53

(((�����))
(((�����)) � −0)
((((�����)) � −0) � −1)
(((((�����)) � −0) � −1) � −2)
((((((�����)) � −0) � −1) � −2) � −3)).

What is the value of

(run � x
(unwrapo ‘((,x)) ������))

54

(�����
(����� � −0)
((����� � −0) � 1)
(((����� � −0) � −1) � −2)
((((����� � −0) � −1) � −2) � −3)).

This might be a good time for a pizza break. 55 Good idea.

� Now go get a pizza and put it in your mouth! �

This space reserved for

PIZZA STAINS!

Consider this function.

(define (mem x l)
(cond

((null? l) ��)
((equal? (car l) x) l)
(�� (mem x (cdr l)))))

What is the value of

(mem ����
'(�
		�
��������������
		����))

1 (����������
		����).

What is the value of

(mem ����
'(�
		�
���������������
		����))

2 ��.

What is the value of

(mem ��
		
(mem ����

'(�
		�
��������������
		����)))

3
So familiar,

(�
		����).

Here is the translation of mem.

(defrel (memo x l out)
(conde

((nullo l) ��)
((fresh (a)

(caro l a)
(� a x))

(� l out))
(�
(fresh (d)

(cdro l d)
(memo x d out)))))

Do we know how to simplify memo

4

Of course, we can simplify it as in frame 3:47,
by following The Law of ��, and by
following The Law of �.

(defrel (memo x l out)
(conde

((caro l x) (� l out))
((fresh (d)

(cdro l d)
(memo x d out)))))

What is the value of

(run* q
(memo ���� '(���) '(���)))

5

().
Since the car of (���) is not ���, ���, (���),
and (���) do not have the memo

relationship.

What value is associated with out in

(run* out
(memo ���� '(���) out))

6
(���).

Since the car of (���) is ��������, (���), and
(���) have the memo relationship.

What value is associated with out in

(run* out
(memo ���� '(�������) out))

7 (�������).

What value is associated with r in

(run* r
(memo r

'(�
		�
�������������������)
'(���������������)))

8 ���.

What is the value of

(run* x
(memo ���� '(�������) ‘(��� ,x)))

9

(),
because there is no value that, when
associated with x, makes ‘(��� ,x) be (���
���).

What value is associated with x in

(run* x
(memo ���� '(�������) ‘(,x ���)))

10
���,

when the value associated with x is ���, then
‘(,x ���) is (�������).

What is the value of

(run* out
(memo ���� '(�����������) out))

11 ((�������)).

In this run � expression, for any goal g how

many times does out get an association?

(run � out g)

12 At most once, as we have seen in frame 3:13.

What is the value of

(run � out
(memo
��� '(��������	��) out))

13 ((��������	��)).

What is the value of

(run* out
(memo
��� '(��������	��) out))

14 The same value, we expect.

No. The value is ((��������	��) (����	��)). 15 This is quite a surprise.

Why is ((��������	��) (����	��)) the value? 16

We know from The Law of conde that every
successful conde line contributes one or more
values. The first conde line succeeds and
contributes the value (��������	��). The
second conde line contains a recursion. This
recursion succeeds, therefore the second
conde line succeeds, contributing the value
(����	��).

In this respect the cond in mem? differs from
the conde in memo.

17 We shall bear this difference in mind.

What is the value of

(run* out
(fresh (x)

(memo
��� ‘(� ,x �������) out)))

18 ((�����������) (�����)).

What is the value of

(run � (x y)
(memo
��� ‘(����������� � ,y) x))

19

(((����������� � −0) −0)
((����� � −0) −0)
((��� � −0) (��� � −0))
((��� � −0) (−1 ��� � −0))

((��� � −0) (−1 −2 ��� � −0))).

Explain how y, reified as −0 , remains fresh in
the first two values.

20

The first value corresponds to finding the first
��� in that list, and the second value
corresponds to finding the second ��� in that
list. In both cases, memo succeeds without
associating a value to y.

Where do the other three values associated
with y come from?

21

In order for

(memo ���� ‘(����������� � ,y) x)

to contribute values beyond those first two,
there must be a ��� in ‘(� � ,y), and therefore
in y.

So memo is creating all the possible suffixes
with ��� as an element.

22 That’s very interesting!

Remember rember.

(define (rember x l)
(cond

((null? l) '())
((equal? (car l) x) (cdr l))
(� (cons (car l)

(rember x (cdr l))))))

23 Of course, it’s an old friend.

What is the value of

(rember �	�� '(����	�����	����))
24 (������	����).

Here is the translation of rember.

(defrel (rembero x l out)
(conde

((nullo l) (� '() out))
((fresh (a)

(caro l a)

Yes, we can simplify rembero as in frames 4:10
to 4:12, and by following The Law of
 and
The First Commandment.

(� a x))
(cdro l out))

(�
(fresh (res)

(fresh (d)
(cdro l d)
(rembero x d res))

(fresh (a)
(caro l a)
(conso a res out))))))

Do we know how to simplify rembero

25

(defrel (rembero x l out)
(conde

((nullo l) (� '() out))
((conso x out l))
((fresh (a d res)

(conso a d l)
(conso a res out)
(rembero x d res)))))

What is the value of

(run* out
(rembero ���� '(���) out))

26
(() (���)).

When l is (���), both the second and third
conde lines in rembero contribute values.

What is the value of

(run* out
(rembero ���� '(�������) out))

27

((���) (���) (�������)).
When l is (�������), both the second and
third conde lines in rembero contribute
values. The second conde line contributes
the first value. The recursion in the third
conde line contributes the two values in the
frame above, () and (���). The second conso
relates the two contributed values in the
recursion with the last two values of this
expression, (���) and (�������).

What is the value of

(run* out
(fresh (y z)

(rembero y ‘(��� ,y � ,z �) out)))

28

((����� −0 �)
(����� −0 �)
(����� −0 �)
(����� −0 �)
(��� −0 ���)
(������� −0)
(��� −0 � −1 �)).

Why is

(����� −0 �)

a value?

29 It looks like � and � have been swapped, and
y has disappeared.

No. Why does � come first? 30 The � is first because the � has been removed
from the car.

Why does the list contain � now? 31 In order to remove �, � is associated with y.
The value of the y in the list is �.

What is −0 in this list? 32 The reified variable z. In this value z remains
fresh.

Why is

(����� −0 �)

the second value?

33 It looks like y has disappeared.

No. Has the � in the original list been
removed?

34 Yes.

Why does the list still contain a � 35
In order to remove � from the list, � is
associated with y. The value of the y in the list
is �.

Why is

(����� −0 �)

the third value?

36 Is it for the same reason that (����� −0 �) is the
second value?

Not quite. Has the � in the original list been
removed?

37 No,
but the y has been removed.

Why is

(����� −0 �) 38 Because the � has been removed from the list.

the fourth value?

Why does this list still contain a � 39 In order to remove � from the list, � is
associated with y.

Why is

(��� −0 ���)

the fifth value?

40 Because the z has been removed from the list.

Why does this list contain −0
41

In order to remove z from the list, z is fused
with y. These variables remain fresh, and the y
in the list is reified as −0.

Why is

(������� −0)

the sixth value?

42 Because the � has been removed from the list.

Why does this list still contain an � 43 In order to remove � from the list, � is
associated with y.

What variable does the −0 contained in this list
represent?

44 The reified variable z. In this value z remains
fresh.

z and y are fused in the fifth value, but not in
sixth value.

45

Correct.
conde lines contribute values independently
of one another. The case that removes z
from the list (and fuses it with y) is
independent of the case that removes �
from the list (and associates � with y).

Very well stated. Why is

(��� −0 � −1 �)

the seventh value?

46 Because we have not removed anything from
the list.

Why does this list contain −0 and −1
47

These are the reified variables y and z. This
case is independent of the previous cases.
Here, y and z remain different fresh variables.

What is the value of

(run* (y z)
(rembero y ‘(,y � ,z �) ‘(,y ���)))

48

((���)
(���)
(−0 −0)
(���)).

Why is

(���)

the first value?

49

When y is � and z is �, then

(rembero �� '(�������) '(�����))

succeeds.

Why is

(���)

the second value?

50

When y is � and z is �, then

(rembero �� '(�������) '(�����))

succeeds.

Why is

(−0 −0)

the third value?

51 y and z are fused, but they remain fresh.

How is

(���)

the first value?

52

rembero removes y from the list ‘(,y � ,z �),
yielding the list ‘(� ,z �); ‘(� ,z �) is the
same as the third argument to rembero, ‘(,y �
�), only when � is associated with both y and
z.

How is

(���)

the second value?

53

Next, rembero removes � from the list ‘(,y �
,z �), yielding the list ‘(,y ,z �); ‘(,y ,z �) is
the same as the third argument to rembero,
‘(,y ���), only when � is associated with z.
Also, in order to remove �, � is associated
with y.

How is

(−0 −0)

the third value?

54

Next, rembero removes z from the list ‘(,y � ,z
�), yielding the list ‘(,y ���); ‘(,y ���) is
always the same as the third argument to
rembero, ‘(,y ���). Also, in order to remove z,
y is fused with z.

Finally, how is

(���)

the fourth value?

55

rembero removes � from the list ‘(,y � ,z �),
yielding the list ‘(,y � ,z); ‘(,y � ,z) is the
same as the third argument to rembero, ‘(,y �
�), only when � is associated with z. Also, in
order to remove ���� is associated with y.

What is the value of

(run � (y z w out)
(rembero y ‘(,z � ,w) out))

56

((−0 −0 −1 −1)
(−0 −1 () (−1))
(−0 −1 (−0 � −2) (−1 � −2))
(−0 −1 (−2) (−1 −2))).

How is

(−0 −0 −1 −1)

the first value?

57
For the first value, rembero removes z from
the list ‘(,z � ,w). rembero fuses y with z and
fuses w with out.

How is

(−0 −1 () (−1))

the second value?

58
rembero removes no value from the list ‘(,z �
,w). (nullo l) in the first conde line then
succeeds, associating w with the empty list.

How is

(−0 −1 (−0 � −2) (−1 � −2))

the third value?

59

rembero removes no value from the list ‘(,z �
,w). The second conde line also succeeds, and
associates the pair ‘(,y � ,out) with w. The out
of the recursion, however, is just the fresh
variable res, and the last conso in rembero

associates the pair ‘(,z � ,res) with out.

How is

(−0 −1 (−2) (−1 −2))

the fourth value?

60 This is the same as the second value, (−0 −1 ()
(−1)), except with an additional recursion.

If we had instead written

(run � (y z w out)
(rembero y ‘(,z � ,w) out))

what would be the fifth value?

61

(−0 −1 (−2 −0 � −3) (−1 −2 � −3)),
because this is the same as the third value,
(−0 −1 (−0 � −2) (−1 � −2)), except with an
additional recursion.

� Now go munch on some carrots. �

This space reserved for

CARROT STAINS!

Here is a useful definition.

(defrel (alwayso)
(conde

(��)
((alwayso))))

What value is associated with q in

(run � q
(alwayso))

1
−0.

What is the value of

(run � q
(conde

(��)
((alwayso))))

2 (−0),
because the first conde line succeeds.

Compare (alwayso) to ��. 3 (alwayso) succeeds any number of times,
whereas �� succeeds only once.

What is the value of

(run* q
(alwayso))

4
It has no value,

since run* never finishes building the list (−0

0 −0 …

What is the value of

(run* q
(conde

(��)
((alwayso))))

5
It has no value,

since run* never finishes building the list (−0

−0 −0 …

What is the value of

(run � q 6 (−0 −0−0−0−0).

(alwayso))

And what is the value of

(run � q
(� ������ q)
(alwayso))

7 (�����������������������������).

What is the value of

(run � q
(alwayso)
�)

8

It has no value,
because (alwayso) succeeds, followed by �,
which causes (alwayso) to be retried, which
succeeds again, which leads to � again, etc.

What is the value of

(run � q
(� ���	��� q)

(� ������ q))

9 ().

What is the value of

(run � q
(� ���	��� q)
(alwayso)
(� ������ q))

10

It has no value.
First ��	��� is associated with q, then alwayso
succeeds, then (� ������ q) fails, since q is
already ��	���. This causes (alwayso) to be
retried, which succeeds again, which leads
to (� ������ q) failing again, etc.

What is the value of

(run � q
(conde

((� ���	��� q) (alwayso))
((� ������ q)))

(� ������ q))

11 (�����).

What happens if we try for more values?

(run � q It has no value,

(conde

((� ���	��� q) (alwayso))
((� ������ q)))

(� ������ q))

12 since only the second conde line associates
����� with q.

So does this give more values?

(run � q
(conde

((� ���	��� q) (alwayso))
((� 'onion q) (alwayso)))

(� ������ q))

13

Yes, it yields as many as are requested,

(�����������������������������).

The (alwayso) in the first conde line succeeds
five times, but contributes none of the five
values, since then ��	��� would be in the list.

Here is an unusual definition.

(defrel (nevero)
(nevero))

Is (nevero) a goal?

14 Yes it is!

Compare � to (nevero). 15 � is a goal that fails, whereas (nevero) is a
goal that neither succeeds nor fails.

What is the value of

(run � q
(nevero))

16 This run � expression has no value.

What is the value of

(run � q
�
(nevero))

17
(),

because � fails before (nevero) is
attempted.

What is the value of

(run � q
(conde

(
)
18 (−0),

because the first conde line succeeds.

((nevero))))

What is the value of

(run � q
(conde

((nevero))
(��)))

19

(−0),
because The Law of Swapping conde

Lines says the expressions in this and the
previous frame have the same values.

What is the value of

(run � q
(conde

(��)
((nevero))))

20

It has no value,
because run* never finishes determining the
second value; the goal (nevero) never
succeeds and never fails.

What is the value of

(run � q
(conde

(��)
((nevero)))

��)

21

It has no value.
After the first conde line succeeds, �� fails.
This causes (nevero) in the second conde

line to be tried; as we have seen, (nevero)
neither succeeds nor fails.

What is the value of

(run � q
(conde

((nevero))
((alwayso))
((nevero))))

22 It is (−0 −0 −0 −0 −0).

What is the value of

(run � q
(conde

((� ��
��� q) (nevero))
((� ��	 q) (nevero))
((� ��

�� q) (alwayso))

23
It is (�

����������

����������

��������).

As we know from frame 1:61, the order of
the values does not matter.

((� ������ q) (alwayso))))

Can we use nevero and alwayso in other
recursive definitions?

24

Yes.

Here is the definition of very-recursiveo.

(defrel (very-recursiveo)
(conde

((nevero))
((very-recursiveo))
((alwayso))
((very-recursiveo))
((nevero))))

Does (run ������� q (very-recursiveo)) have a
value?

25 Yes, indeed!
A list of one million −0 values.

� Take a peek “Under the Hood” at chapter 10. �

Is � a bit? 1 Yes.

Is � a bit? 2 Yes.

Is � a bit? 3 No.
A bit is either a � or a �.

Which bits are represented by a fresh variable
x

4 � and �.

Here is bit-xoro.

(defrel (bit-xoro x y r)
(conde

((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))))

When is � the value of r

5

When x and y have the same value.†

† Another way to define bit-xoro is to use bit-nando

(defrel (bit-xoro x y r)
(fresh (s t u)

(bit-nando x y s)
(bit-nando s y u)
(bit-nando x s t)
(bit-nando t u r))),

where bit-nando is

(defrel (bit-nando x y r)
(conde

((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r)))).

Both bit-xoro and bit-nando are universal binary Boolean
relations, since either can be used to define all other binary
Boolean relations.

Demonstrate this using run*. 6

(run* (x y)
(bit-xoro x y �))
which has the value

((���)
(���)).

When is � the value of r 7 When x and y have different values.

Demonstrate this using run*. 8

(run* (x y)
(bit-xoro x y �))
which has the value

((���)
(���)).

What is the value of

(run* (x y r)
(bit-xoro x y r))

9

((�����)
(�����)
(�����)
(�����)).

Here is bit-ando.

(defrel (bit-ando x y r)
(conde

((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))
((� � x) (� � y) (� � r))))

When is � the value of r

10

When x and y are both �.†

† Another way to define bit-ando is to use bit-nando and bit-
noto

(defrel (bit-ando x y r)
(fresh (s)

(bit-nando x y s)
(bit-noto s r)))

where bit-noto itself is defined in terms of bit-nando

(defrel (bit-noto x r)
(bit-nando x x r)).

Demonstrate this using run*. 11

(run* (x y)
(bit-ando x y �))
which has the value

((���)).

Here is half-addero.

(defrel (half-addero x y r c)
(bit-xoro x y r)
(bit-ando x y c)) 12

�.†

† half-addero can be redefined,

(defrel (half-addero x y r c)

What value is associated with r in

(run*r
(half-addero ��� r �))

(conde

((� � x) (� � y) (� � r) (� � c))
((� � x) (� � y) (� � r) (� � c))
((� � x) (� � y) (� � r) (� � c))
((� � x) (� � y) (� � r) (� � c)))).

What is the value of

(run* (x y r c)
(half-addero x y r c))

13

((�������)
(�������)
(�������)
(�������)).

Describe half-addero. 14 Given the bits x, y, r, and c, half-addero

satisfies x + y = r + 2 · c.

Here is full-addero.

(defrel (full-addero b x y r c)
(fresh (w xy wz)

(half-addero x y w xy)
(half-addero w b r wz)
(bit-xoro xy wz c)))

The x, y, r, and c variables serve the same
purpose as in half-addero.
full-addero also expects a carry-in bit, b. What
values are associated with r and c in

(run* (r c)
(full-addero ����� r c))

15

(���).†

† full-addero can be redefined,

(defrel (full-addero b x y r c)
(conde

((� � b) (� � x) (� � y) (� � r) (� � c))
((� � b) (� � x) (� � y) (� � r) (� � c))
((� � b) (� � x) (� � y) (� � r) (� � c))
((� � b) (� � x) (� � y) (� � r) (� � c))
((� � b) (� � x) (� � y) (� � r) (� � c))
((� � b) (� � x) (� � y) (� � r) (� � c))
((� � b) (� � x) (� � y) (� � r) (� � c))
((� � b) (� � x) (� � y) (� � r) (� � c)))).

What value is associated with (r c) in

(run* (r c)
(full-addero ����� r c))

16 (���).

What is the value of

(run* (b x y r c)
17

((���������)
(���������)
(���������)
(���������)

(full-addero b x y r c)) (���������)
(���������)
(���������)
(���������)).

Describe full-addero. 18 Given the bits b, x, y, r, and c, full-addero

satisfies b + x + y = r + 2 · c.

What is a natural number? 19
A natural number is an integer greater than or
equal to zero. Are there any other kinds of
numbers?

Is each number represented by a bit? 20 No.
Each number is represented as a list of bits.

Which list represents the number zero? 21 The empty list ()?

Correct. Good guess. 22 Does (�) also represent the number zero?

No.
Each number has a unique representation,
therefore (�) cannot also be zero.
Furthermore, (�) does not represent a
number.

Which list represents 1 · 20? That is to say,
which list represents the number one?

23 (�).

Which number is represented by

(�����)
24

�,
because the value of (�����) is 1 · 20 + 0 · 21

+ 1 · 22, which is the same as 1 + 0 + 4,
which is five.

Correct. Which number is represented by

(�����)
25

�,
because the value of (�����) is 1 · 20 + 1 · 21

+ 1 · 22, which is the same as 1 + 2 + 4,
which is seven.

Also correct. Which list represents �? 26

(�������),
because the value of (�������) is 1 · 20 + 0 ·
21 + 0 · 22 + 1 · 23, which is the same as 1 +
0 + 0 + 8, which is nine.

Yes. How do we represent �? 27 As the list (�����)?

No. Try again. 28

Then it must be (�����),
because the value of (�����) is 0 · 20 + 1 · 21

+ 1 · 22, which is the same as 0 + 2 + 4,
which is six.

Correct. Does this seem unusual? 29 Yes, it seems very unusual.

How do we represent ��? 30 As the list (���������)?

Yes. How do we represent ����? 31 As the list (���������������������)?

Correct again. What is interesting about the
lists that represent the numbers we have seen?

32 They contain only �’s and �’s.

Yes. What else is interesting? 33 Every non-empty list ends with a �.

Does every list representation of a number
end with a �?

34 Almost always, except for the empty list, (),
which represents zero.

Compare the numbers represented by n and
‘(� � ,n).

35
‘(� � ,n) is twice n.

But n cannot be (), since ‘(� � ,n) is (�),
which does not represent a number.

If n is (�����), what is ‘(� � ,n) 36 (�������),
since twice five is ten.

Compare the numbers represented by n and
‘(� � ,n)

37 ‘(� � ,n) is one more than twice n,
even when n is ().

If n is (�����), what is ‘(� � ,n) 38 (�������),
since one more than twice five is eleven.

What is the value of

(build-num �)
39 ().

What is the value of

(build-num ��)
40 (�����������).

What is the value of

(build-num �)
41 (���������).

Define build-num. 42

Here is one way to define it.

(define (build-num n)
(cond

((zero? n) �())
((even? n)
(cons �

(build-num (÷ n �))))
((odd? n)
(cons �

(build-num (÷ (− n �) �))))))

Redefine build-num, where (zero? n) is the
question of the last cond line. 43

Here it is.

(define (build-num n)
(cond

((odd? n)
(cons �

(build-num (÷ (− n �) �))))
((and (not (zero? n)) (even? n))
(cons �

(build-num (÷ n �))))

((zero? n) �())))

Is there anything interesting about the
previous definition of build-num

44 For any number n, one and only one cond
question is true.

Can we rearrange these cond lines in any
order?

45

Yes.
This is called the non-overlapping property.†
It appears rather frequently throughout this
and the next chapter.

† Thank you Edsger W. Dijkstra (1930–2002).

What is the sum of (�) and (�) 46 (���), which is two.

What is the sum of (�������) and (�����) 47 (�������), which is fifteen.

What is the sum of (�����) and (�������) 48 This is also (�������), which is fifteen.

What is the sum of (���������) and () 49 (���������), which is nineteen.

What is the sum of () and (���������) 50 This is also (���������), which is nineteen.

What is the sum of (���������) and (�) 51 (���������), which is twenty-four.

Which number is represented by

‘(,x �)
52 It depends on what x is.

Which number would be represented by

‘(,x �)

if x were �?

53 Two,
which is represented by (���).

Which number would be represented by

‘(,x �)

if x were �?

54 Three,
which is represented by (���).

So which numbers are represented by

‘(,x �)
55 Two and three.

Which numbers are represented by

‘(,x ,x �)
56

Four and seven,
which are represented by (�����) and (���
�), respectively.

Which numbers are represented by

‘(,x � ,y �)
57

Eight, nine, twelve, and thirteen,
which are represented by (�������), (�����
�), (�������), and (�������), respectively.

Which numbers are represented by

‘(,x � ,y ,z)
58

Once again, eight, nine, twelve, and thirteen,
which are represented by (�������), (�����
�), (�������), and (�������), respectively.

Which number is represented by

‘(,x)
59

One,
which is represented by (�). Since (�) does
not represent a number, x must be �.

Which number is represented by

‘(� ,x)

60

Two,
which is represented by (���). Since (���)
does not represent a number, x must be �.

Which numbers are represented by

‘(� � ,z)
61 It depends on what z is. What does z

represent?

Which number is represented by

‘(� � ,z) 62 One,
since (� � ()) is (�).

where z is ()

Which number is represented by

‘(� � ,z)

where z is (�)

63 Three,
since (� � (�)) is (���).

Which number is represented by

‘(� � ,z)

where z is (���)

64 Five,
since (� � (���)) is (�����).

So which numbers are represented by

‘(� � ,z)
65 All the odd numbers?

Right. Then, which numbers are represented
by

‘(� � ,z)

66 All the even numbers?

Not quite. Which even number is not of the
form ‘(� � ,z)

67 Zero, which is represented by ().

For which values of z does

‘(� � ,z)

represent a number?

68 It represents a number for all z greater than
zero.

Which numbers are represented by

‘(��� � ,z)
69 Every other even number, starting with four.

Which numbers are represented by

‘(��� � ,z)
70 Every other even number, starting with two.

Which numbers are represented by

‘(��� � ,z)
71 Every other odd number, starting with five.

Which numbers are represented by

‘(��� ,y � ,z)
72 Once again, every other odd number, starting

with five.

Why do ‘(��� � ,z) and ‘(��� ,y � ,z)
represent the same numbers?

73
Because z cannot be the empty list in ‘(��� �
,z) and y cannot be � when z is the empty list
in ‘(��� ,y � ,z).

Which numbers are represented by

‘(� ,y � ,z)
74 Every even number, starting with two.

Which numbers are represented by

‘(� ,y � ,z)
75 Every odd number, starting with three.

Which numbers are represented by

‘(,y � ,z)
76 Every number, starting with one—in other

words, the positive numbers.

Here is poso.

(defrel (poso n)
(fresh (a d)

(� ‘(,a � ,d) n)))

What value is associated with q in

(run* q
(poso �(�����)))

77
−0.

What value is associated with q in

(run* q
(poso �(�)))

78
−0.

What is the value of

(run* q
(poso �()))

79 ().

What value is associated with r in

(run* r
(poso r))

80 (−0 � −1).

Does this mean that (poso r) always succeeds
when r is fresh?

81 Yes.

Which numbers are represented by

‘(,x ,y � ,z)
82 Every number, starting with two—in other

words, every number greater than one.

Here is >1o.

(defrel (>1o n)
(fresh (a ad dd)†

(� ‘(,a ,ad � ,dd) n)))

What value is associated with q in

(run* q
(>1o �(�����)))

† The names a, ad, and dd correspond to car, cadr, and cddr.
cadr is a Scheme function that stands for the car of the cdr,
and cddr stands for the cdr of the cdr.

83
−0.

What is the value of

(run* q
(>1o �(���)))

84 (−0).

What is the value of

(run* q 85 ().

(>1o �(�)))

What is the value of

(run* q
(>1o �()))

86 ().

What value is associated with r in

(run* r
(>1o r))

87 (−0 −1 � −2).

Does this mean that (>1o r) always succeeds
when r is fresh?

88 Yes.

What is the value of

(run � (x y r)
(addero � x y r))

89

We have not seen addero. We understand,
however, that (addero b n m r) satisfies the
equation b + n + m = r, where b is a bit, and
n, m, and r are numbers.

We find addero’s definition in frame 104.
What is the value of

(run � (x y r)
(addero � x y r))

90

((−0 () −0)
(() (−0 � −1) (−0 � −1))
((�) (�) (���))).

(addero � x y r) sums x and y to produce r.
For example, in the first value, a number
added to zero is that number. In the
second value, the sum of () and (−0 � −1) is
(−0 � −1). In other words, the sum of zero
and a positive number is the positive
number.

Does ((�) (�) (���)) represent a ground value? 91 Yes.

Does (−0 () −0) represent a ground value? 92 No,
because it contains reified variables.

What can we say about the three values in The third value is ground, and the first two

frame 90? 93 values are not.

Before reading the next frame,

Treat Yourself to a Hot Fudge Sundae!

What is the value of

(run �� (x y r)
(addero � x y r))

94

((−0 () −0)
(() (−0 � −1) (−0 � −1))
((�) (�) (���))
((�) (� −0 � −1) (� −0 � −1))
((�) (���) (�����))
((���) (���) (�����))
((�) (��� −0 � −1) (��� −0 � −1))
((� −0 � −1) (�) (� −0 � −1))
((�) (�����) (�������))
((���) (���) (�����))
((���) (�) (�����))
((�) (����� −0 � −1) (����� −0 � −1))
((�) (�������) (���������))
((�) (������� −0 � −1) (������� −0 � −1))
((��� −0 � −1) (�) (��� −0 � −1))
((�) (���������) (�����������))
((���) (���) (�����))
((�����) (�) (�������))
((���) (���) (�����))).

How many of its values are ground and how
many are not?

95 Eleven are ground and eight are not.

((−0 () −0)
(() (−0 � −1) (−0 � −1))
((�) (� −0 � −1) (� −0 � −1))
((�) (��� −0 � −1) (��� −0 � −1))

What are the nonground values? 96 ((� −0 � −1) (�) (� −0 � −1))
((�) (����� −0 � −1) (����� −0 � −1))
((�) (������� −0 � −1) (������� −0 � −1))
((��� −0 � −1) (�) (��� −0 � −1))).

What is an interesting property that these
nonground values possess?

97 Variables appear in r, and in either x or y, but
not in both.

Describe the third nonground value. 98

Here x is (�) and y is (� −0 � −1), a positive even
number. Adding x to y yields all but the first
odd number.

Is the third nonground value the same as the
fifth nonground value?

Almost,
since x + y = y + x.

99 Oh.

Does each nonground value have a
corresponding nonground value in which x
and y are swapped?

100

No.
For example, the first two nonground
values do not correspond to any other
values.

Describe the fourth nonground value. 101

Frame �� shows that
(��� −0 � −1) represents every other odd
number, starting at five. Adding one to the
fourth nonground number produces every
other even number, starting at six, which is
represented by (��� −0 � −1).

What are the ground values of frame 94? 102

(((�) (�) (���))
((�) (���) (�����))
((���) (���) (�����))
((�) (�����) (�������))
((���) (���) (�����))
((���) (�) (�����))
((�) (�������) (���������))

((�) (���������) (�����������))
((���) (���) (�����))
((�����) (�) (�������))
((���) (���) (�����))).

What is another interesting property of these
ground values?

103

Each list cannot be created from any list in
frame 96, regardless of which values are
chosen for the variables there. This is an
example of the non-overlapping property
described in frame 45.

� First-time readers may skip to frame 114. �
Here are addero and gen-addero.

(defrel (addero b n m r)
(conde

((� � b) (� �() m) (� n r))
((� � b) (� �() n) (� m r)
(poso m))

((� � b) (� �() m)
(addero � n �(�) r))

((� � b) (� �() n) (poso m)
(addero 0 �(�) m r))

((� �(�) n) (� �(�) m)
(fresh (a c)

(� ‘(,a ,c) r)
(full-addero b ��� a c)))

((� �(�) n) (gen-addero b n m r))
((� �(�) m) (>1o n) (>1o r)
(addero b �(�) n r))

((>1o n) (gen-addero b n m r))))

(defrel (gen-addero b n m r)
(fresh (a c d e x y z)

(� ‘(,a � ,x) n)
(� ‘(,d � ,y) m) (poso y)
(� ‘(,c � ,z) r) (poso z)
(full-addero b a d c e)

104 A carry bit.

(addero e x y z)))

What is b

What are n, m, and r 105 They are numbers.

What value is associated with s in

(run* s
(gen-addero � �(�����) �(���) s))

106 (�������).

What are a, c, d, and e 107 They are bits.

What are x, y, and z 108 They are numbers.

In the definition of gen-addero, (poso y) and
(poso z) follow (� ‘(,d � ,y) m) and (� ‘(,c �
,z) r), respectively. Why isn’t there a (poso x)

109 Because in the first use of gen-addero from
addero, n can be (�).

What about the other use of gen-addero from
addero

110

(>1o n) that precedes the use of gen-addero

would be the same as if we had placed a (poso
x) following (� ‘(,a � ,x) n). But if we were
to use (poso x) in gen-addero, then it would fail
for n being (�).

Describe gen-addero. 111

Given the carry bit b, and the numbers n, m,
and r, gen-addero satisfies b + n + m = r,
provided that n is positive and m and r are
greater than one.

What is the value of

(run* (x y)
(addero � x y �(�����)))

112

(((�����) ())
(() (�����))
((�) (�����))
((�����) (�))
((���) (���))
((���) (���))).

Describe the values produced by

(run* (x y)
(addero � x y �(�����)))

113 The values are the pairs of numbers that sum
to five.

We can define +o using addero.

(defrel (+o n m k)
(addero � n m k))

Use +o to generate the pairs of numbers that
sum to five.

114

Here is an expression that generates the pairs
of numbers that sum to five,

(run* (x y)
(+o x y �(�����))).

What is the value of

(run* (x y)
(+o x y �(�����)))

115

(((�����) ())
(() (�����))
((�) (�����))
((�����) (�))
((���) (���))
((���) (���))).

Now define −o using +o. 116

Wow.

(defrel (−o n m k)
(+o m k n))

What is the value of

(run* q
(−o �(�������) �(�����) q))

117 ((���)).

What is the value of

(run* q
(−o �(�����) �(�����) q))

118 (()).

What is the value of

(run* q
(−o �(�����) �(�������) q))

119
().

Eight cannot be subtracted from six, since
we do not represent negative numbers.

Here is length.

(define ����������
(cond

((null? l) �)
(�� (+ � (length (cdr l))))))

Define lengtho.

120

That’s familiar enough.

(defrel (lengtho l n)
(conde

((nullo l) (� �() n))
((fresh (d res)

(cdro l d)
(+o �(�) res n)
(lengtho d res)))))

What value is associated with n in

(run � n
(lengtho �(����	��
����
������) n))

121 (���).

And what value is associated with ls in

(run* ls
(lengtho ls �(�����)))

122 (−0 −1 −2 −3 −4),
since this represents a five-element list.

What is the value of

(run* q
(lengtho �(�����) �))

123 (),
since (���) is not �.

What is the value of

(run � q
(lengtho q q))

124
(() (�) (���)),

since these numbers are the same as their
lengths.

What is the value of

(run � q
(lengtho q q))

125 This expression has no value,
since it is still looking for the fourth value.

We could represent both negative and
positive integers as ‘(,sign-bit � ,n), where n is
our representation of natural numbers. If

sign-bit is �, then we have the negative
integers and if sign-bit is �, then we have the
positive integers. We would still use () to
represent zero. And, of course, sign-bit could
be fresh.

Define sumo, which expects three integers
instead of three natural numbers like +o.

126 That does sound challenging! Perhaps over
lunch.

� Now go make yourself a baba ghanoush pita wrap. �

This space reserved for

BABA GHANOUSH STAINS!

What is the value of

(run �� (x y r)
(�o x y r))

1

((() −0 ())
((−0 � −1) () ())
((�) (−0 � −1) (−0 � −1))
((−0 −1 � −2) (�) (−0 −1 � −2))
((���) (−0 −1 � −2) (� −0 −1 � −2))
((�����) (−0 −1 � −2) (��� −0 −1 � −2))
((� −0 � −1) (���) ((��� −0 � −1))
((�������) (−0 −1 � −2) (����� −0 −1 � −2))
((� −0 � −1) (�����) (����� −0 � −1))
((��� −0 � −1) (���) (����� −0 � −1))).

It is difficult to see patterns when looking at
ten values. Would it be easier to examine only
its nonground values?

2 Not at all,
since the first ten values are nonground.

The value associated with p in

(run* p
(�o �(���) �(�����) p))

is (�������). To which nonground value does
this correspond?

3 The fifth nonground value,
((���) (−0 −1 � −2) (� −0 −1 � −2)).

Describe the fifth nonground value. 4 The product of two and a number greater
than one is twice the number.

Describe the seventh nonground value. 5 The product of two and an odd number
greater than one is twice the odd number.

Is the product of (� −0 � −1) and (���) odd or
even?

6 It is even,
since the first bit of (��� −0 � −1) is �.

Is there a nonground value that shows that
the product of three and three is nine?

7 No.

What is the value of
(((���) (���) (�������))),

(run � (x y r)
(� ‘(,x ,y ,r) �((���) (���) (�������)))
(�o x y r))

8 which shows that the product of three and
three is nine.

Here is �o.

(defrel (�o n m p)
(conde

((� �() n) (� �() p))
((poso n) (� �() m) (� �() p))
((� �(�) n) (poso m) (� m p))
((>1o n) (� �(�) m) (� n p))
((fresh (x z)
(� ‘(� � ,x) n) (poso x)
(� ‘(� � ,z) p) (poso z)
(>1o m)
(�o x m z)))

((fresh (x y)
(� ‘(� � ,x) n) (poso x)
(� ‘(� � ,y) m) (poso y)
(�o m n p)))

((fresh (x y)
(� ‘(� � ,x) n) (poso x)
(� ‘(� � ,y) m) (poso y)
(odd-�o x n m p)))))

Describe the first and second conde lines.

9

The first conde line says that the product of
zero and anything is zero. The second line
says that the product of a positive number
and zero is also equal to zero.

Why isn’t ((� �() m) (� �() p)) the second
conde line?

10

If so, the second conde line would also
contribute (n = 0, m = 0, p = 0), already
contributed by the first line. We would like to
avoid duplications. In other words, we
enforce the non-overlapping property.

Describe the third and fourth conde lines. 11

The third conde line says that the product of
one and a positive number is that number.
The fourth conde line says that the product of

a number greater than one and one is the
number.

Describe the fifth conde line. 12

The fifth conde line says that the product of
an even positive number and a number
greater than one is an even positive number,
using the equation
.

Why do we use this equation? 13
For the recursion to have a value, one of the
arguments to �o must shrink. Dividing n by
two shrinks n.

How do we divide n by two? 14 With (� ‘(� � ,x) n), where x is not ().

Describe the sixth conde line. 15

The sixth conde line says that the product of
an odd positive number and an even positive
number is the same as the product of the even
positive number and the odd positive
number.

Describe the seventh conde line. 16

The seventh conde line says that the product
of an odd number greater than one and
another odd number greater than one is the
result of (odd-�o x n m p), where x is .

Here is odd-�o.

(defrel (odd-�o x n m p)
(fresh (q)

(bound-�o q p n m)
(�o x m q)
(+o ‘(� � ,q) m p)))

If we ignore bound-�o, what equation
describes odd-�o

17 We know that x is . Therefore,
.

Here is a hypothetical definition of bound-
�o.

(defrel (bound-�o q p n m)
��)

18 Okay, so this is not the final definition of
bound-�o.

Using the hypothetical definition of bound-
�o, what values would be associated with n
and m in

(run � (n m)
(�o n m �(�)))

19
((�) (�)).

This value is contributed by the third conde

line of �o.

Now what is the value of

(run � (n m)
(>1o n)
(>1o m)
(�o n m �(���)))

20
It has no value,

since (�o n m �(���)) neither succeeds nor
fails.

Why does (�o n m �(���)) neither succeed nor
fail in the previous frame?

21

Because �o tries

n = 2, 3, 4, …

and similarly for m, trying bigger and bigger
numbers to see if their product is three. Since
there is no bound on how big the numbers
can be, �o tries bigger and bigger numbers
forever.

How can we make (�o n m �(���)) fail in this
case?

22 By redefining bound-�o.

How should bound-�o work? 23

If we are trying to see if n � m = r, then any
n > r will not work. So, we can stop searching
when n is equal to r. Or, to make it easier to
test: (�o n m r) can only succeed if the
lengths (in bits) of n and m do not exceed the
length (in bits) of r.

Here is bound-�o.

(defrel (bound-�o q p n m)
(conde

((� �() q) (poso p))
((fresh (a0 a1 a2 a3 x y z)
(� ‘(,a0 � ,x) q)
(� ‘(,a1 � ,y) p)
(conde

((� �() n)
(� ‘(,a2 � ,z) m)
(bound-�o x y z �()))

((� ‘(,a3 � ,z) n)
(bound-�o x y z m)))))))

Is this definition recursive?

24 Yes, indeed.

What is the value of

(run � (n m)
(�o n m �(�)))

25

(((�) (�))),
because bound-�o fails when the product of
n and m is larger than p, and since the
length of n plus the length of m is an upper
bound on the length of p.

What value is associated with p in

(run* p
(�o �(�����) �(�����������) p))

26 (�����������������),
which contains nine bits.

If we replace a � by a � in

(�o �(�����) �(�����������) p),

is nine still the maximum length of p

27

Yes,
because �(�����) and �(�����������) represent
the largest numbers of lengths three and six,
respectively. Of course the rightmost 1 in
each number cannot be replaced by a 0.

Here is =lo.

(defrel (=lo n m)

(conde

((� �() n) (� �() m))
((� �(�) n) (� �(�) m))
((fresh (a x b y)
(� ‘(,a � ,x) n) (poso x)
(� ‘(,b � ,y) m) (poso y)
(=lo x y)))))

Is this definition recursive?

28 Yes, it is.

What is the value of

(run* (w x y)
(=lo ‘(� ,w ,x � ,y) �(���������)))

29
((−0 −1 (−2 �))).

y is (−2 �), so the length of ‘(� ,w ,x � ,y) is
the same as the length of (���������).

What value is associated with b in

(run* b
(=lo �(�) ‘(,b)))

30

�,
because if � were associated with b, then
‘(,b) would have become (�), which does
not represent a number.

What value is associated with n in

(run* n
(=lo ‘(����� � ,n) �(���������)))

31

(−0 �),
because if n were (−0 �), then the length of
‘(����� � ,n) would be the same as the
length of (���������).

What is the value of

(run � (y z)
(=lo ‘(� � ,y) ‘(� � ,z)))

32

((() ())
((�) (�))
((−0 �) (−1 �))
((−0 −1 �) (−2 −3 �))
((−0 −1 −2 �) (−3 −4 −5 �))),
because each y and z must be the same
length in order for ‘(� � ,y) and ‘(� � ,z) to
be the same length.

What is the value of

(run � (y z)
(=lo ‘(� � ,y) ‘(� � ,z)))

33

(((�) (�))
((−0 �) (−1 �))
((−0 −1 �) (−2 −3 �))
((−0 −1 −2 �) (−3 −4 −5 �))

((−0 −1 −2 −3 �) (−4 −5 −6 −7 �))).

Why isn’t (() ()) the first value? 34 Because if z were (), then ‘(� � ,z) would not
represent a number.

What is the value of

(run � (y z)
(=lo ‘(� � ,y) ‘(��������� � ,z)))

35

(((−0 −1 −2 �) ())
((−0 −1 −2 −3 �) (�))
((−0 −1 −2 −3 −4 �) (−5 �))
((−0 −1 −2 −3 −4 −5 �) (−6 −7 �))
((−0 −1 −2 −3 −4 −5 −6 �) (−7 −8 −9 �))).
The shortest z is (), which forces y to be a
list of length four. Thereafter, as y grows in
length, so does z.

Here is <lo.

(defrel (<lo n m)
(conde

((� �() n) (poso m))
((� �(�) n) (>1o m))
((fresh (a x b y)
(� ‘(,a � ,x) n) (poso x)
(� ‘(,b � ,y) m) (poso y)
(<lo x y)))))

How does this definition differ from the
definition of =lo

36

In the first conde line, (� �() m) is replaced
by (poso m). In the second conde line, (� �(�)
m) is replaced by (>1o m). This <lo relation
guarantees that n is shorter than m.

What is the value of

(run � (y z)
(<lo ‘(� � ,y) ‘(��������� � ,z)))

37

((() −0)
((�) −0)
((−0 �) −1)
((−0 −1 �) −2)
((−0 −1 −2 �) (−3 � −4))
((−0 −1 −2 −3 �) (−4 −5 � −6))
((−0 −1 −2 −3 −4 �) (−5 −6 −7 � −8))
((−0 −1 −2 −3 −4 −5 �) (−6 −7 −8 −9 � −10))).

Why is z fresh in the first four values? 38

A list that represents a number is associated
with the variable y. If the length of this list is
at most three, then ‘(� � ,y) is shorter than
‘(��������� � ,z), regardless of the value
associated with z.

What is the value of

(run � n
(<lo n n))

39

It has no value.
The first two conde lines fail. In the
recursion, x and y are fused with the same
fresh variable, which is where we started.

Define �lo using =lo and <lo. 40

Is this correct?

(defrel (�lo n m)
(conde

((=lo n m))
((<lo n m))))

It looks like it might be correct. What is the
value of

(run � (n m)
(�lo n m))

41

((() ())
((�) (�))
(() (−0 � −1))
((−0 �) (−1 �))
((�) (−0 −1 � −2))
((−0 −1 �) (−2 −3 �))
((−0 �) (−1 −2 −3 � −4))
((−0 −1 −2 �) (−3 −4 −5 �))).

What values are associated with n and m in

(run � (n m)
(�lo n m)
(�o n �(���) m))

42 (() ()).

What is the value of

((() ())
((�) (���))
((���) (�����))
((���) (�����))

(run �� (n m)
(�lo n m)
(�o n �(���) m))

43 ((1 −0 �) (��� −0 �))
((�����) (�������))
((�����) (�������))
((� −0 −1 �) (��� −0 −1 �))
((��� −0 �) (����� −0 �))
((�������) (���������))).

Now what is the value of

(run � (n m)
(�lo n m))

44

((() ())
((�) (�))
(() (−0 � −1))
((−0 �) (−1 �))
((�) (−0 −1 � −2))
((−0 −1 �) (−2 −3 �))
((−0 �) (−1 −2 −3 � −4))
((−0 −1 −2 �) (−3 −4 −5 �))
((−0 −1 �) (−2 −3 −4 −5 � −6))).

Do these values include all of the values
produced in frame 41?

45 Yes.

Here is <o.

(defrel (<o n m)
(conde

((<lo n m))
((=lo n m)
(fresh (x)
(poso x)
(+o n x m)))))

Define �o using <o.

46

Here is �o.

(defrel (�o n m)
(conde

((� n m))
((<o n m))))

What value is associated with q in

(run* q
(<o �(�����) �(�����)))

47 −0,
since five is less than seven.

What is the value of

(run* q
(<o �(�����) �(�����)))

48 (),
since seven is not less than five.

What is the value of

(run* q
(<o �(�����) �(�����)))

49

(),
since five is not less than five. But if we
were to replace <o with �o, the value would
be (−0).

What is the value of

(run � n
(<o n �(�����)))

50
(() (�) (−0 �) (�����)),

since (−0 �) represents the numbers two and
three.

What is the value of

(run � m
(<o �(�����) m))

51
((−0 −1 −2 −3 � −4) (�����) (�����)),

since (−0 −1 −2 −3 � −4) represents all the numbers
greater than seven.

What is the value of

(run* n
(<o n n))

52
It has no value,

since <o uses <lo and we know from frame
39 that (<lo n n) has no value.

What is the value of

(run � (n m q r)
(÷o n m q r))

53

((() (−0 � −1) () ())
((�) (−0 −1 � −2) () (�))
((−0 �) (−1 −2 −3 � −4) () (−0 �))
((−0 −1 �) (−2 −3 −4 −5 � −6) () (−0 −1 �))).
÷o divides n by m, producing a quotient q
and a remainder r.

Define ÷o. 54

(defrel (÷o n m q r)
(conde

((� �() q) (� n r) (<o n m))
((� �(�) q) (� �() r) (� n m)
(<o r m))
((<o m n) (<o r m)

(fresh (mq)
(�lo mq n)
(�o m q mq)
(+o mq r n))))).

With which three cases do the three conde

lines correspond?
55

The cases in which the dividend n is less than,
equal to, or greater than the divisor m,
respectively.

Describe the first conde line. 56

The first conde line divides a number n by a
number m greater than n.
Therefore the quotient is zero, and the
remainder is equal to n.

According to the standard definition of
division, division by zero is undefined and
the remainder r must always be less than the
divisor m. Does the first conde line enforce
both of these restrictions?

57

Yes.
The divisor m is greater than the dividend
n, which means that m cannot be zero.
Also, since m is greater than n and n is
equal to r, we know that m is greater than
the remainder r. By enforcing the second
restriction, we automatically enforce the
first.

In the second conde line the dividend and
divisor are equal, so the quotient must be
one. Why, then, is the (<o r m) goal
necessary?

58 Because this goal enforces both of the
restrictions given in the previous frame.

Describe the first two goals in the third conde

line.
59

The goal (<o m n) ensures that the divisor is
less than the dividend, while the goal (<o r m)
enforces the restrictions in frame 57.

The last three goals perform division in terms
of multiplication and addition. The equation

Describe the last three goals in the third
conde line.

60 can be rewritten as

n = m · q + r.

That is, if mq is the product of m and q, then
n is the sum of mq and r. Also, since r cannot
be less than zero, mq cannot be greater than
n.

Why does the third goal in the last conde line
use �lo instead of <o

61

Because �lo is a closer approximation of <o. If
mq is less than or equal to n, then certainly
the length of the list representing mq cannot
exceed the length of the list representing n.

What is the value of

(run* m
(fresh (r)

(÷o �(�����) m �(�����) r)))

62

().
We are trying to find a number m such that
dividing five by m produces seven. Of
course, we will not be able to find that
number.

How is () the value of

(run* m
(fresh (r)

(÷o �(�����) m�(�����) r)))

63

The third conde line of ÷o ensures that m is
less than n when q is greater than one. Thus,
÷o can stop looking for possible values of m
when m reaches four.

Why do we need the first two conde lines,
given that the third conde line seems so
general? Why don’t we just remove the first
two conde lines and remove the (<o m n) goal
from the third conde line, giving us a simpler
definition of ÷o

(defrel (÷o n m q r)
(fresh (mq)

(<o r m)
(�lo mq n)
(�o m q mq)
(+o mq r n)))

64

Unfortunately, our “improved” definition of
÷o has a problem—the expression

(run* m
(fresh (r)

(÷o �(�����) m �(�����) r)))

no longer has a value.

Why doesn’t the expression

(run* m
(fresh (r)

(÷o �(�����) m �(�����) r)))

have a value when we use this new definition
of ÷o

65

Because the new ÷o does not ensure that m is
less than n when q is greater than one. Thus,
this new ÷o never stops trying to find an m
such that dividing five by m produces seven.

� Hold on! It’s going to get subtle! �

What is the value of this expression when
using the original definition of ÷o, as defined
in frame 54?

(run � (y z)
(÷o ‘(��� � ,y) �(���) z�()))

66

It has no value.
We cannot divide an odd number by two
and get a remainder of zero. The original
definition of ÷o never stops looking for
values of y and z that satisfy the division
relation, although there are no such values.
Instead, we would like it to fail
immediately.

How can we define a better version of ÷o, one
that allows the run* expression in frame 66 to
have a value?

67
Since a number is represented as a list of bits,
let’s break up the problem by splitting the list
into two parts—the “head” and the “rest.”

Good idea! How exactly can we split up a
number?

68
If n is a positive number, we split it into parts
nhigh, which might be � and nlow. n = nhigh ·
2p + nlow, where nlow has at most p bits.

That’s right! We can perform this task using
splito.

(defrel (splito n r l h)
(conde

((� �() n) (� �() h) (� �() l))
((fresh (b)

(� ‘(� ,b � ,) n) (� �() r)
(� ‘(,b � ,) h) (� �() l)))

((fresh ()
(� ‘(� � ,) n) (� �() r)
(� h) (� �(�) l)))

((fresh (b a)
(� ‘(� � ,b � ,) n)
(� ‘(,a � ,) r) (� �() l)
(splito ‘(,b � ,) �() h)))

((fresh (a)
(� ‘(� � ,) n)
(� ‘(,a � ,) r) (� �(�) l)
(splito �() h)))

((fresh (b a l)
(� ‘(,b � ,) n)
(� ‘(,a � ,) r)
(� ‘(,b � ,) l)
(poso)
(splito h)))))

What does splito do?

69

(splito n �() l h) moves the lowest bit† of n, if
any, into l, and moves the remaining bits of n
into h; (splito n �(�) l h) moves the two lowest
bits of n into l and moves the remaining bits
of n into h; and
(splito n �(�������) l h),
(splito n �(�������) l h), or
(splito n �(�������) l h) move the five lowest
bits of n into l and move the remaining bits
into h; and so on.

† The lowest bit of a positive number n is the car of n.

What else does splito do? 70

Since splito is a relation, it can construct n by
combining the lower-order bits of l with the
higher-order bits of h, inserting padding
(using the length of r) bits.

Why is splito’s definition so complicated? 71

Because splito must not allow the list (�) to
represent a number. For example,
(splito �(�����) �() �() �(���)) should succeed,
but
(splito �(�����) �() �(�) �(���)) should not.

How does splito ensure that (�) is not
constructed?

72
By removing the rightmost zeros after
splitting the number n into its lower-order
bits and its higher-order bits.

What is the value of

(run* (l h)
(splito �(���������) �() l h))

73 ((() (�������))).

What is the value of

(run* (l h)
(splito �(���������) �(�) l h))

74 ((() (�����))).

What is the value of

(run* (l h)
(splito �(���������) �(���) l h))

75 (((�����) (���))).

What is the value of

(run* (l h)
(splito �(���������) �(���) l h))

76 (((�����) (���))).

What is the value of

(run* (r l h)
(splito �(���������) r l h))

77

((() () (�������))
((−0) () (�����))
((−0 −1) (�����) (���))
((−0 −1 −2) (�����) (�))
((−0 −1 −2 −3) (���������) ())
((−0 −1 −2 −3 −4 � −5) (���������) ())).

Now we are ready for division! If we split n
(the divisor) in two parts, nhigh and nlow, it
stands to reason that q is also split into qhigh
and qlow.

78 Then what?

Remember, n = m · q + r. Substituting n =
nhigh · 2p + nlow and q = qhigh · 2p + qlow
yields nhigh · 2p + nlow = m · qhigh · 2p + m ·
qlow + r.

79
Okay.

Then what should happen?

We try to divide nhigh by m obtaining qhigh
and rhigh: nhigh = m · qhigh + rhigh from

which we get nhigh · 2p = m · qhigh · 2p +
rhigh · 2p. Subtracting from the original, we
obtain the relation nlow = m · qlow + r − rhigh
· 2p, which means that m · qlow + r − nlow
must be divisible by 2p and the result is rhigh.
The advantage is that when checking the
latter two equations, the numbers nlow, qlow,
and so on, are all range-limited, and must fit
within p bits. We can therefore check the
equations without danger of trying higher
and higher numbers forever. Now we can just
define our arithmetic relations by directly
using these equations.

80 Okay.

Here is an improved definition of ÷o which is
more sophisticated than the ones given in
frames 54 and 64. All three definitions
implement division with remainder, which
means that (÷o n m q r) satisfies n = m · q + r
with 0 � r < m.

(defrel (÷o n m q r)
(conde

((� �() q) (� r n) (<o n m))
((� �(�) q) (=lo m n) (+o r m n)
(<o r m))
((poso q) (<lo m n) (<o r m)
(n-wider-than-mo n m q r))))

Does the redefined ÷o use any new helper
relations?

81

Yes,
the new ÷o relies on n-wider-than-mo, which
itself relies on splito.

(defrel (n-wider-than-mo n m q r)
(fresh (nhigh nlow qhigh qlow)

(fresh (mqlow mrqlow rr rhigh)
(splito n r nlow nhigh)
(splito q r qlow qhigh)
(conde

((� �() nhigh)
(� �() qhigh)
(−o nlow r mqlow)
(�o m qlow mqlow))
((poso nhigh)
(�o m qlow mqlow)
(+o r mqlow mrqlow)
(−o mrqlow nlow rr)
(splito rr r �() rhigh)
(÷o nhigh m qhigh rhigh))))))

What is the value of this expression when
using the original definition of ÷o, as defined
in frame 54?

(run � (y z)
(÷o ‘(��� � ,y) �(���) z �()))

82

It has no value.
We cannot divide an odd number by two
and get a remainder of zero. The original
definition of ÷o never stops looking for
values of y and z that satisfy the division
relation, even though there are no such
values. Instead, we would like it to fail
immediately.

Describe the latest version of ÷o. 83

This version of ÷o fails when it determines
that the relation cannot hold. For example,
dividing the number 6 + 8 · k by 4 does not
have a remainder of 0 or 1, for all possible
values of k.

Here is logo with its three helper relations.

(defrel (logo n b q r)
(conde

((� �() q) (�o n b)
(+o r �(�) n))

((� �(�) q) (>1o b) (=lo n b)
(+o r b n))

((� �(�) b) (poso q)
(+o r �(�) n))

((� �() b) (poso q) (� r n))
((� �(���) b)
(fresh (a ad dd)

(poso dd)
(� ‘(,a ,ad � ,dd) n)
(exp2o n �() q)
(fresh (s)
(splito n dd r s))))

((�o �(���) b) (<lo b n)
(base-three-or-moreo n b q r))))

(defrel (exp2o n b q)

84

The relations base-three-or-moreo and repeated-
mulo require some thinking.

(defrel (base-three-or-moreo n b q r)
(fresh (bw1 bw nw nw1 qlow1 qlow s)

(exp2o b �() bw1)
(+o bw1 �(�) bw)
(<lo q n)
(fresh (q1 bwq1)

(+o q �(�) q1)
(�o bw q1 bwq1)
(<o nw1 bwq1))

(exp2o n �() nw1)
(+o nw1 �(�) nw)
(÷o nw bw qlow1 s)
(+o qlow �(�) qlow1)
(�lo qlow q)
(fresh (bqlow qhigh s qdhigh qd)

(repeated-mulo b qlow bqlow)
(÷o nw bw1 qhigh s)
(+o qlow qdhigh qhigh)

(conde

((� �(�) n) (� �() q))
((>1o n) (� �(�) q)
(fresh (s)

(splito n b s �(�))))
((fresh (q1 b2)

(� ‘(� � ,q1) q) (poso q1)
(<lo b n)
(appendo b ‘(� � ,b) b2)
(exp2o n b2 q1)))

((fresh (q1 nhigh b2 s)
(� ‘(� � ,q1) q) (poso q1)
(poso nhigh)
(splito n b s nhigh)
(appendo b ‘(� � ,b) b2)
(exp2o nhigh b2 q1)))))

(+o qlow qd q)
(�o qd qdhigh)
(fresh (bqd bq1 bq)

(repeated-mulo b qd bqd)
(�o bqlow bqd bq)
(�o b bq bq1)
(+o bq r n)
(<o n bq1)))))

(defrel (repeated-mulo n q nq)
(conde

((poso n) (� �() q) (� �(�) nq))
((� �(�) q) (� n nq))
((>1o q)
(fresh (q1 nq1)

(+o q1 �(�) q)
(repeated-mulo n q1 nq1)
(�o nq1 n nq)))))

Guess what logo does? 85 It builds a split-rail fence.

Not quite. Try again. 86 It implements the logarithm relation: (logo n b
q r) holds if n = bq + r.

Are there any other conditions that the
logarithm relation must satisfy?

87

There had better be!
Otherwise, the relation would always hold
if q = 0 and r = n − 1, regardless of the value
of b.

Give the complete logarithm relation. 88
(logo n b q r) holds if n = bq + r, where 0 � r
and q is the largest number that satisfies the
relation.

Does the logarithm relation look familiar? 89

Yes.
The logarithm relation is similar to the

division relation, but with exponentiation
in place of multiplication.

In which ways are logo and ÷o similar? 90

Both logo and ÷o are relations that take four
arguments, each of which could be fresh. The
÷o relation can be used to define the �o

relation—the remainder must be zero, and
the zero divisor case must be accounted for.
Also, ÷o can be used to define the +o relation.

The logo relation is equally flexible, and can
be used to define exponentiation, to
determine exact discrete logarithms, and even
to determine discrete logarithms with a
remainder. The logo relation can also find the
base b that corresponds to a given n and q.

What value is associated with r in

(run* r
(logo �(�������) �(���) �(���) r))

91 (�����),
since 14 = 23 + 6.

What is the value of

(run � (b q r)
(logo �(�������������) b q r)
(>1o q))

92

((() (−0 −1 � −2) (�������������))
((�) (−0 −1 � −2) (�������������))
((���) (�����) (�����))
((���) (���) (�����������))
((�����) (���) (�����))
((�������) (���) (�����))
((�����) (���) (�����������))
((�����) (���) (�����������))
((�����) (���) (���������))),

since
68 = 0n + 68 where n > 1,
68 = 1n + 67 where n > 1,
68 = 26 + 4,
68 = 33 + 41,
68 = 43 + 4,
68 = 82 + 4,
68 = 52 + 43,

68 = 62 + 32, and
68 = 72 + 19.

Define expo using logo. 93 (defrel (expo b q n)
(logo n b q �()))

What value is associated with t in

(run* t
(expo �(���) �(�����) t))

94 (���������������),
which is the same as (build-num ���).

� Addition can be defined using ÷o (frame 90). �
� Define addition using only conde, �, <o, and ÷o. �

Does

(conda

(
��
�)
(
��
�))

succeed?†

† conda is written conda and is pronounced “con-day.”
conda is like the so-called soft-cut (also known as if-then-else)
and is described on page 45 of William F. Clocksin. Clause
and Effect. Springer, 1997.

1

No,
because the first goal of the first conda line
is the goal
�, so conda tries the second
line. In the spirit of cond, we refer to the
first goal of a conda line as its question, and
the rest of the goals as its answer.

Does

(conda

(
��
�)
(
��
�))

succeed?

2

Yes,
because the question of the first conda line
is the goal
�, so conda tries the second
line.

Does

(conda

(
��
�)
(
��
�))

succeed?

3

No,
because the question of the first conda line
is the goal
�, so conda tries the answer of
the first line.

Does

(conda

(
��
�)
(
��
�))

succeed?

4

Yes,
because the question of the first conda line
is the goal
�, so conda tries the answer of
the first line.

What is the value of

(run* x
(conda 5

(�����),
because (� 	����� x) succeeds; therefore,
conda tries the answer of the first conda

((� ������ x) ��)
(�� (� ���� x))))

line, which is ��. The �� preserves the
association of ����� to x.

What does the “a” in conda stand for?

The Law of conda

The first conda line whose question succeeds
is the only line that can contribute values.

It stands for a single line, since at most a
single line can succeed.

6 Hmm, interesting.

What is the value of

(run* x
(conda

((� ���
��� x) �)
((� ������ x) ��)
(�� (� ���� x))))

7

(),
because (� ���
��� x) succeeds, we get to
assume that the remaining two conda lines
no longer can contribute values. So, when
the conda line fails, the entire conda

expression fails.

This is a big difference from every conde

line contributing values to exactly one conda

line possibly contributing values when the
first successful question is discovered.

What is the value of

(run* q
(fresh (x y)

(� ��	��� x)
(� �	�� y)
(conda

((� ��	��� x) (� x y))
(�����))))

8

().
The (� ��	��� x) question in the conda

expression succeeds, since �	��� is already
associated with x. The answer, (� x y), fails,
however, because x and y are associated
with different values.

What is the value of

(run* q
(fresh (x y)

(� �	���
 x)
(� ���� y)
(conda

((� x y) (� �	���
 x))
(�))))

9

(−0).
(� x y) fails, since x and y are associated
with different values. The question of the
first conda line fails, therefore we try the
second conda line, which succeeds.

Why does the value change when we switch
the order of (� �	���
 x) and (� x y) within
the first conda line?

10

Because only if the question of a conda line
fails do we consider the remaining conda

lines. If the question succeeds, it is as if the
remaining conda lines have been replaced by
a single (��).

Consider the definition of not-pastao.

(defrel (not-pastao x)
(conda

((� ���	
� x) �)
(�)))

What is the value of

(run* x
(conda

((not-pastao x) �)
((� �	�����

� x))))

11

(�����

�),
because x starts out fresh, but the question
(not-pastao x) associates x with ���	
�, but
then fails. Since (not-pastao x) fails, we try
(� �	�����

� x).

Then, what is the value of

(run* x
(� �	�����

� x)
(conda

((not-pastao x) �)
((� �	�����

� x))))

12

(),
because (not-pastao x) succeeds, which
shows the risks involved when using conda.
We can’t allow a fresh variable to become
associated as part of a conda question.

The Second Commandment (Initial)
If prior to determining the question of a

conda line a variable is fresh, it must remain
fresh in that line’s question.

What is the value of

(run* q
(conda

((alwayso) ��)
(�����)))

13
It has no value,

since run* never finishes building the list of
−0 s.

What is the value of†

(run* q
(condu

((alwayso) ��)
(�����)))

† condu is written condu and is pronounced “cond-you.”
condu corresponds to Mercury’s committed choice (so-called
once), which is described in Fergus Henderson, Thomas
Conway, Zoltan Somogyi, and David Jeffery. “The Mercury
language reference manual.” University of Melbourne
Technical Report 96/10, 1996. Mercury was the first
language to effectively combine and extensively use soft-cuts
as in frame 1 and committed choice, avoiding the cut of
Prolog. See Lee Naish. “Pruning in logic programming.”
University of Melbourne Technical Report 95/16, 1995.

14

(−0),
because condu is like conda, except that the
successful question, here (alwayso), succeeds
exactly once.

What is the value of

(run* q
(condu

(�� (alwayso))
(�����)))

15

It has no value,
since run* never finishes building the list of
−0 s.

What does the “u” in condu stand for?

It stands for uni-, because the successful
question of a condu line succeeds exactly once.

16 Hmm, interesting.

What is the value of

(run 	 q
(conda

((alwayso) ��)
(�����))

��)

17 It has no value, since the outer �� fails each
time (alwayso) succeeds.

What is the value of

(run 	 q
(condu

((alwayso) ��)
(�����))

��)

18
(),

because condu’s successful question,
(alwayso), succeeds only once.

The Law of condu

condu behaves like conda, except that a
successful question succeeds only once.

Does condu need a commandment, too? 19 Yes it does.

The Second Commandment (Final)
If prior to determining the question of a
conda or condu line a variable is fresh, it
must remain fresh in that line’s question.

Here is teacupo once again, using conde rather
than disj2 as in frame 1:82.

(defrel (teacupo t)
(conde

((� ���� t))

20 Sure.

((�
�	� t))))

Here is onceo.

(defrel (onceo g)
(condu

(g ��)
(����)))

What is the value of

(run* x
(onceo (teacupo x)))

21

(���).
The first conde line of teacupo succeeds.
Since onceo’s goal can succeed only once,
there are no more values. But, The Second
Commandment is broken by this use of
onceo.

What is the value of

(run* r
(conde

((teacupo r) ��)
((� �� r) ��)))

22 (��������	�).

What is the value of

(run* r
(conda

((teacupo r) ��)
(�� (� �� r))))

23
(�����	�).

But the question in the first conda line
breaks The Second Commandment.

And, what is the value of

(run* r
(� �� r)
(conda

((teacupo r) ��)
((� �� r) ��)
(����)))

24 (��),
since this value is included in frame 22.

What is the value of

(run* r

(� �� r)
(condu

((teacupo r) ��)
((� �� r) ��)
(�����)))

25 (��).
More arithmetic?

Sure. Here is bumpo.

(defrel (bumpo n x)
(conde

((� n x))
((fresh (m)

(−o n �(�) m)
(bumpo m x)))))

What is the value of

(run* x
(bumpo �(�����) x))

26

((�����)
(�����)
(�����)
(�����)
(���)
(���)
(�)
()).

Here is gen&test+o.

(defrel (gen&test+o i j k)
(onceo

(fresh (x y z)
(+o x y z)
(� i x)
(� j y)
(� k z))))

What is the value of

(run* q
(gen&test+o �(�����) �(���) �(�����)))

27
(−0)

because four plus three is seven, but there is
more.

What values are associated with x, y, and z
after (+o x y z)

28
−0, (), and −0, since x and z have been fused.

What happens next?

(� i x) succeeds.
(�����) is associated with i and is fused with

29 the fresh x. As a result, (�����) is associated
with x.

What happens after (� i x) succeeds? 30
(� j y) fails,

since (���) is associated with j and () is
associated with y.

What happens after (� j y) fails? 31
(+o x y z) is tried again, and this time
associates () with x, and this pair (−0 � −1) with
both y and z.

What happens next? 32
(� i x) fails,

since (�����) is still associated with i and ()
is associated with x.

What happens after (� i x) fails? 33
(+o x y z) is tried again and this time
associating (�) with the fused x and y. Finally,
(���) is associated with z.

What happens next? 34
(� i x) fails,

since (�����) is still associated with i and (�)
is associated with x.

What happens the 230th time that (+o x y z)
is used?

35 (+o x y z) associates (��� −0 � −1), with x, (���)
with y, and (��� −0 � −1), with z.

What happens next? 36
(� i x) succeeds,

associating (�����) with x and therefore (���
�) with z.

What happens after (� i x) succeeds? 37
(� j y) succeeds,

since (���) is associated with the fused j and
y.

(� k z) succeeds,

What happens after (� j y) succeeds? 38 since (�����) is associated with the fused k
and z.

What values are associated with x, y, and z
before (+o x y z) is used in the body of
gen&test+o

39 There are no values associated with x, y, and z
since they are fresh.

What is the value of

(run � q
(gen&test+o

�(�����) �(���) �(�����)))

40 It has no value.

Can (+o x y z) fail when x, y, and z are fresh? 41 Never.

Why doesn’t

(run � q
(gen&test+o

�(�����) �(���) �(�����)))

have a value?

42

In gen&test+o, (+o x y z) generates various
associations for x, y, and z. Next, (� i x), (� j
y), and (� k z) test if the given triple of values
i, j , and k is present among the generated
triple x, y, and z. All the generated triples
satisfy, by definition, the relation +o. If the
triple of values i, j , and k is chosen so that i +
j is not equal to k, and our definition of +o is
correct, then that triple of values cannot be
found among those generated by +o.

(+o x y z) continues to generate associations,
and the tests (� i x), (� j y), and (� k z)
continue to reject them. So this run �
expression has no value.

Here is enumerate+o.

(defrel (enumerate+o r n)
(fresh (i j k)

(bumpo n i)
(bumpo n j)

((() (���) (���))
((���) () (���))
((���) (���) (�����))
(() (���) (���))
((���) (���) (�����))
(() (�) (�))
((���) (�) (�����))

(+o i j k)
(gen&test+o i j k)
(� ‘(,i ,j ,k) r)))

What is the value of

(run* s
(enumerate+o s �(���)))

43 ((�) (���) (�����))
(() () ())
((�) (�) (���))
((�) (���) (���))
((���) () (���))
((�) () (�))
((���) (���) (�����))
((���) (���) (�����))
((���) (�) (���))).

Describe the values in the previous frame. 44

The values can be thought of as four groups
of four values. Within the first group, the first
value is always (); within the second group,
the first value is always (�); etc. Then, within
each group, the second value ranges from ()
to (���). And the third value, of course, is the
sum of the first two values.

What is true about the value in frame 43? 45
It appears to contain all triples of values of i, j
, and k, where i + j = k with i and j ranging
from () to (���).

All such triples? 46 It seems so.

Can we be certain without counting and
analyzing the values? Can we be sure just
knowing that there is at least one value?

47 That’s confusing.

Okay, suppose one of the triples, ((���) (���)
(�����)), were missing.

48

But how could that be? We know (bumpo n i)
associates the numbers within the range ()
through n with i. So if we try it enough times,
we eventually get all such numbers. The same
is true for (bumpo n j). So, we definitely
determine (+o i j k) when (���) is associated
with i and (���) is associated with j, which
then associates (�����) with k. We have
already seen that.

Then what happens? 49

Then we try to determine if (gen&test+o i j k)
can succeed, where (���) is associated with i,
(���) is associated with j, and (�����) is
associated with k.

At least once? 50

Yes,
since we are interested in only one value.
After (+o x y z), we check that (���) is
associated with x, (���) with y, and (�����)
with z. If not, we try (+o x y z) again, and
again.

What if such a triple were found? 51

Then gen&test+o would succeed, producing
the triple as the result of enumerate+o. Then,
because the fresh expression in gen&test+o is
wrapped in a onceo, we would pick a new pair
of i-j values, etc.

What if we were unable to find such a triple? 52 Then the run expression would have no
value.

Why would it have no value? 53
If no result of (+o x y z) matches the desired
triple, then, as in frame 40, we would keep
trying (+o x y z) forever.

So can we say, just by glancing at the value in
frame 43, that

(run* s
(enumerate+o s �(���)))

produces all triples i, j , and k such that i + j =
k, for i and j ranging from () to (���)?

54
Yes, that’s clear.

If one triple were missing, we would have
no value at all!

So what does enumerate+o determine? 55

It determines that (+o x y z) with x, y, and z
being fresh eventually generates all triples,
where x + y = z. At least, enumerate+o

determines that for x and y being () through
some n.

What is the value of

(run � s
(enumerate+o s �(�����)))

56 ((() (�����) (�����))).

Do we need gen&test+o 57

Not at all.
The same variables i, j , and k that are
arguments to gen&test+o can be found in
the fresh expression in enumerate+o, so we
can replace (gen&test+o i j k) with the onceo

expression unchanged in enumerate+o.

Here is the new enumerate+o.

(defrel (enumerate+o r n)
(fresh (i j k)

(bumpo n i)
(bumpo n j)
(+o i j k)
(onceo

(fresh (x y z)
(+o x y z)
(� i x)
(� j y)
(� k z)))

(� ‘(,i ,j ,k) r)))

58 Now that we have this new enumerate+o, can
we also use enumerate+o with �o and expo.

Yes, if we rename it and include an operator
argument, op.

59

Here is enumerateo.

(defrel (enumerateo op r n)
(fresh (i j k)

(bumpo n i)
(bumpo n j)
(op i j k)
(onceo

Define enumerateo so that op is an expected
argument.

(fresh (x y z)
(op x y z)
(� i x)
(� j y)
(� k z)))

(� ‘(,i ,j ,k) r)))

But, what about ÷o and logo?

The op argument of enumerateo expects three
arguments. But, ÷o and logo expect four
arguments. This proposed variant of
enumerateo would need two additional fresh
variables: one for the outer fresh, say h, and
one for the inner fresh, say w.

60 The rest should follow naturally, right?

Ready to look under the hood?

Now it is time to understand the core of �,
fresh, conde, run, run�, and defrel.

1 What about conda and condu?

Of course, we show the core of conda and
condu as well.

2 Shall we begin with �?

Sure! The definition of � relies on unify,
which we shall discuss soon. But we’ll need a
few new ideas first.

3 Okay, let’s begin.

Here is how we create a unique† variable.

(define (var name) (vector name))

Define var?

† vector creates a vector, a datatype distinct from pairs,
strings, characters, numbers, Booleans, symbols, and (). Each
use of var creates a new one-element vector representing a
unique variable. We ignore the vectors’ contents, instead
distinguishing vectors by their addresses in memory. We
could instead distinguish variables by their values, provided
we ensure their values are unique (for example, using a
unique natural number in each variable).

4
And here is a simple definition of var?.

(define (var? x) (vector? x))

We create three variables u, v, and w.

(define u (var ��))

(define v (var ��))

(define w (var ��))

Define the variables x, y, and z.

5

Okay, here are the variables x, y, and z.

(define x (var ��))

(define y (var ��))

(define z (var ��))

The pair ‘(,z � �) is an association of � with
the variable z.

6 When is a pair an association?

When the car of that pair is a variable. The
cdr of an association may be itself a variable

or a value that contains zero or more
variables. What is the value of

(cdr ‘(,z � �))

7 ��

What is the value of

(cdr ‘(,z � (,x � ,y)))
8 The list ‘(,x � ,y).

The list

‘((,z � ���) (,x � ���))

is a substitution.

9 What is a substitution?

A substitution† is a special kind of list of
associations. In the substitution

‘((,x � ,z))

what does the association ‘(,x � ,z) represent?

† These substitutions are known as triangular substitutions.
For more on these substitutions see Franz Baader and Wayne
Snyder. “Unification theory,” Chapter 8 of Handbook of
Automated Reasoning, edited by John Alan Robinson and
Andrei Voronkov. Elsevier Science and MIT Press, 2001.

10
In a substitution, an association whose cdr is
also a variable represents the fusing of that
association’s two variables.

Here is empty-s.

(define empty-s 	())

What is empty-s

11 The substitution that contains no
associations.

Is

‘((,z � �) (,x � ,w) (,z � �))

a substitution?

12
Not here,

since our substitutions cannot contain two
or more associations with the same car.

What is the value of
�,

because we look up z in the substitution

(walk z
‘((,z � �) (,x � ,w) (,y � ,z)))

13 (walk’s second argument) to find its
association, ‘(,z � �), and walk produces
this association’s cdr, �, since � is not a
variable.

What is the value of

(walk y
‘((,z � �) (,x � ,w) (,y � ,z)))

14

�,
because we look up y in the substitution to
find its association, ‘(,y � ,z) and we look
up z in the same substitution to find its
association, ‘(,z � �), and walk produces
this association’s cdr, �, since � is not a
variable.

What is the value of

(walk x
‘((,z � �) (,x � ,w) (,y � ,z)))

15

The variable w,
because we look up x in the substitution to
find its association, ‘(,x � ,w), and produce
its association’s cdr, w, because the variable
w is not the car of any association in the
substitution.

The value of the expression below is y.

(walk x
‘((,x � ,y) (,v � ,x) (,w � ,x)))

What are the walks of v and w

16

Their values are also y.
When we look up the variable v
(respectively, w) in the substitution, we find
the association ‘(,v � ,x) (respectively, ‘(,w
� ,x)) and we know what happens when we
walk x in this substitution.

What is the value of

(walk w
‘((,x � �) (,z � ,y) (,w � (,x � ,z))))

17 The list ‘(,x � ,z).

Here is walk, which relies on assv. assv is a
function that expects a value v and a list of
associations l. assv either produces the first
association in l that has v as its car using eqv?,
or produces �� if l has no such association.

(define (walk v s) 18 When a is an association rather than ��.

(let ((a (and (var? v) (assv v s))))
(cond

((pair? a) (walk (cdr a) s))
(else v))))

When is walk recursive?

What property holds when a variable has
been walk’d?

19
If a variable has been walk’d in a substitution
s, and walk has produced a variable x, then we
know that x is fresh.

Here are ext-s and occurs?.

(define (ext-s x v s)
(cond

((occurs? x v s)† ��)
(else (cons ‘(,x � ,v) s))))

(define (occurs? x v s)
(let ((v (walk v s)))

(cond
((var? v) (eqv? v x))
((pair? v)
(or (occurs? x (car v) s)

(occurs? x (cdr v) s)))
(else ��))))

Describe the behavior of ext-s.

† This expression tests whether or not x occurs in v, using the
substitution s. It is also called the occurs check. See frames
1:47–49.

20

ext-s either extends a substitution s with an
association between the variable x and the
value v, or it produces �� if extending the
substitution with the pair ‘(,x � ,v) would
have created a cycle.

Is

‘((,z � �) (,x � ,x) (,y � ,z))
a substitution?

21

Not here,
since we forbid a substitution from
containing a cycle like ‘(,x � ,x) in which
its car is the same as its cdr.

Not here,

Is

‘((,x � ,y) (,w � �) (,z � ,x) (,y � ,z))

a substitution?

22
since we forbid a substitution from
containing associations that create a cycle: if
x, y, and z are already fused, and x is fresh
in the substitution, adding the association
‘(,x � ,y) would have created a cycle.

Is

‘((,x � (� ,y)) (,z � ,w) (,y � (,x)))

a substitution?

23

Not here,
since we forbid a substitution from
containing associations that create a cycle: x
is the same as ‘(� ,y), and y is the same as
‘(,x). Therefore ‘(� (,x)) is the same as x, a
variable occurring in ‘(� (,x)).

What is the value of

(occurs? x x �())
24

��,
To begin with, occurs?’s second argument,
the variable x, is walk’d. The let is used to
hold the value of that walk, and since the
substitution is empty, we know that every
variable must be fresh. So in the definition
of occurs?, (var? v), where v is x is ��, and
thus the first argument, also x, is the same
as v.

What is the value of

(occurs? x ‘(,y) ‘((,y � ,x)))
25

���
since occurs? walks recursively over the cars
and cdrs of ‘(,y).

What is the value of

(ext-s x ‘(,x) empty-s)
26

��,
since we do not permit associations between
a variable and a value in which that variable
occurs (see frame 23).

What is the value of

(ext-s x ‘(,y) ‘((,y � ,x)))
27

��,
since we do not permit associations between
a variable and a value in which that variable
occurs (see frame 23).

What is the value of �,

(let ((s ‘((,z � ,x) (,y � ,z))))
(let ((s (ext-s x �� s)))

(and s (walk y s))))

28 We are asking what is the value of walking y
after consing the association ‘(,x � �) onto
that substitution.

walk and ext-s are used in unify.†

(define (unify u v s)
(let ((u (walk u s)) (v (walk v s)))

(cond
((eqv? u v) s)
((var? u) (ext-s u v s))
((var? v) (ext-s v u s))
((and (pair? u) (pair? v))
(let ((s (unify (car u) (car v) s)))

(and s
(unify (cdr u) (cdr v) s))))

(else ��))))

What kinds of values are produced by unify

† Thank you Jacques Herbrand (1908–1931) and John Alan
Robinson (1930–2016), and thanks Dag Prawitz (1936–).

29
Either �� or the substitution s extended with
zero or more associations, where the cycle
conditions in frames 22 and 23 can lead to ��.

What is the first thing that happens in unify 30

We use let, which binds u and v to their
walk’d values. If u walks to a variable, then u
is fresh, and likewise if v walks to a variable,
then v is fresh.

What is the purpose of the eqv? test in unify’s
first cond line?

31

If u and v are the same according to eqv?, we
do not extend the substitution. eqv? works for
strings, characters, numbers, Booleans,
symbols, (), and our variables.

Describe unify’s second cond line. 32
If (var? u) is ��, then u is fresh, and therefore
u is the first argument when attempting to
extend s.

If (var? v) is ��, then v is fresh, and therefore v

And describe unify’s third cond line. 33 is the first argument when attempting to
extend s.

What happens on unify’s fourth cond line,
when both u and v are pairs?

34

We attempt to unify the car of u with the car
of v. If they unify, we get a substitution,
which we use to attempt to unify the cdr of u
with the cdr of v.

This completes the definition of unify. 35 Okay.

� Take a break after the 1st course! �
Pumpkin soup.

—or—

Tomato salad with fresh basil and avocado slices.

—or—

A platter of little lentil cakes with hot powder (����	�������	����).

Welcome back. 36 Can we now discuss �?

Not yet. We need one more idea: streams. 37 What is a stream?

A stream is either the empty list, a pair whose
cdr is a stream, or a suspension.

38 What is a suspension?

A suspension is a function formed from
(lambda () body) where
((lambda () body)) is a stream.

39 Okay.

Here’s a stream of symbols,

(cons
�

(cons ��
(cons ��
(cons ����())))).

40 Isn’t that just a proper list?

Yes. Here is another stream of symbols,

(cons ��
(cons ��

(lambda ()
(cons ��

(cons ����()))))).

What type of stream is the second argument
to the second cons

41

The lambda expression,

(lambda ()
(cons ��

(cons ����()))),

is a suspension.

And here is one more stream,

(lambda ()
(cons ��

(cons ��
(cons ��

(cons ����()))))).

Why is the expression a stream?

42

The lambda expression is a stream, because it
is a lambda expression of the form (lambda
() …) and we already know that this cons
expression is a stream, since it is the list from
frame 40.

Here is �.

(define (� u v)
(lambda (s)

(let ((s (unify u v s)))
(if s ‘(,s) �()))))

43 What does � produce?

It produces a goal. Here are two more goals.

(define 	�
(lambda (s)
‘(,s)))

(define 	�
(lambda (s)
�()))

44 What is a goal?

Each of �, ��, and �� has a

(lambda (s)
…).

A goal is a function that expects a
substitution and, if it returns, produces a
stream of substitutions.

45 Thus, s is a substitution. And every goal
produces a stream of substitutions.

From now on, all our streams are streams of
substitutions and we use “stream” to mean
“stream of substitutions.”

46 Okay.

Look at the definitions of the goals ��, ��,
and (� u v). What sizes are the streams these
goals produce?

47

�� produces singleton streams and ��
produces the empty stream, while goals like
(� u v) can produce either singleton streams
or the empty stream.

May we try out these streams?

Let’s. Here is an example. What is the value
of

((� �����) empty-s)

48

().
Because �� and �� do not unify in the
empty substitution, or indeed in any
substitution, the goal produces the empty
stream.

Is there a simpler way to write

((� �����) empty-s)
49 ((� �����) empty-s) is the same as

(�� empty-s).

And is there a simpler way to write

((� �����) empty-s)
50 How about

(�� empty-s)?

What is the value of

((� x y) empty-s)
51

‘(((,x � ,y))), a singleton of the substitution
‘((,x � ,y)),† since unifying x and y extends
this substitution with an association of y to x.

† The value of ((� y x) empty-s) is instead a singleton of the
substitution ‘((,y � ,x)). To ensure The First Law of �, we
reify each value (see frame 104).

� Take a break after the 2nd course! �
Spinach salad.

—or—

Roasted fingerling potatoes.

—or—

A moong daal, cucumber, and carrot salad (��
����	�).

When do we need conde 52
Never. As we have seen in frame 1:88, we can
always replace a conde with uses of disj2 and
conj2.

Recall (disj2 (� ������ x) (� ���� x)) from
frame 1:58.

What is the value of

((disj2 (� ������ x) (� ���� x)) empty-s)

53

‘(((,x � �����)) ((,x � ���))),
a stream of size two. The first associates
����� with x, and the second associates ���
with x.

Here is disj2.

(define (disj2 g1 g2)
(lambda (s)

(append∞ (g1 s) (g2 s))))

What are g1 and g2?

54 Are g1 and g2 goals?

It produces a function that expects a
substitution as an argument. Therefore, if

Exactly. Does disj2 produce a goal? 55 append∞ produces a stream, then disj2
produces a goal.

Here is append∞.

(define (append∞ s∞ t∞)
(cond

((null? s∞) t∞)
((pair? s∞)
(cons (car s∞)
(append∞ (cdr s∞) t∞)))

(else (lambda ()
(append∞ t∞ (s∞))))))

What are s∞ and t∞

56 Each must be a stream.

Yes. What might we name append∞, if its
third cond line were absent?

57 It would then behave the same as append in
frame 4:1.

What type of stream is s∞ in the answer of
append∞’s third cond line?

58 In the third cond line, s∞ must be a
suspension.

What type of stream is

(lambda ()
(append∞ t∞ (s∞)))

in the answer of append∞’s third cond line?

59

In the third cond line,

(lambda ()
(append∞ t∞ (s∞)))

is also a suspension.

Look carefully at the suspension in append∞.
The suspension’s body,

(append∞ t∞ (s∞)),

swaps the arguments to append∞, and (s∞)
forces the suspension s∞.

When is the suspension s∞ forced?

60

The suspension s∞ is forced when the
suspension

(lambda ()
(append∞ t∞ (s∞)))

is itself forced.

Here is the relation nevero from frame 6:14
with define instead of defrel,

(define (nevero)
(lambda (s)

(lambda ()
((nevero) s)))).

61 Does nevero produce a goal?

Yes it does. What is the value of

((nevero) empty-s)
62

A suspension.
nevero is a relation that, when invoked,
produces a goal. The goal, when given a
substitution, here empty-s, produces a
suspension in the same way as (nevero), and
so on.

What is the value of

(let ((s∞ ((disj2
(� ������ x)
(nevero))

empty-s)))
s∞)

63
This stream, s∞, is a pair whose car is the
substitution ‘((,x � �����)) and whose cdr is a
stream.

What is the value of

(let ((s∞ ((disj2
(nevero)
(� ������ x))

empty-s)))
s∞)

where the two expressions in disj2 have been
swapped?

64 This stream, s∞, is a suspension.

Why isn’t the value a pair whose car is the
substitution ‘((,x � �����)) and whose cdr is a
suspension, as in frame 63?

65

Because disj2 uses append∞, and the answer of
the third cond line of append∞ is a
suspension.

How do we get the substitution ‘((,x �
�����)) out of that suspension?

By forcing the suspension s∞.

What is the value of

(let ((s∞ ((disj2
(nevero)
(� ������ x))

empty-s)))
(s∞))

66
A pair whose car is the substitution ‘((,x �
�����)) and whose cdr is a stream like the
value in frame 63.

Describe how append∞ merges the streams

((� ������ x) empty-s)

and

((nevero) empty-s)

so that we can see the substitution

‘((,x � �����)).

67

As described in frame 60, each time we force
a suspension produced by the third cond line
of append∞, we swap the arguments to
append∞ as the answer of that cond line.
When we force the suspension, what was the
second argument, t∞, becomes the first
argument. Thus, the second argument to
disj2, the productive stream, ((� ������ x)
empty-s), becomes the first argument to
append∞ of the recursion in the third cond
line.

When does the recursion in append∞’s third
cond line merge these streams?

68

If the result of the third cond line is forced,
then append∞’s recursion merges these
streams. And because of this, ((� ������ x)
empty-s) produces a value.

Here is the relation alwayso from frame 6:1
with define instead of defrel,

(define (alwayso)
(lambda (s)

(lambda ()
((disj2 �� (alwayso)) s)))).

What is the value of

69 A pair whose car is (), the empty substitution,
and whose cdr is a stream.

(((alwayso) empty-s))

Using alwayso, how would we create a list of
the first empty substitution?

70

Like this,

(let ((s∞ (((alwayso) empty-s))))
(cons (car s∞) �())).

We can only use the car of a stream if that
stream is a pair.

How would we create a list of the first two
empty substitutions?

71

That would be tedious,

(let ((s∞ (((alwayso) empty-s))))
(cons (car s∞)

(let ((s∞ ((cdr s∞))))
(cons (car s∞) �())))).

Here, ((alwayso) empty-s) is a suspension.
Forcing the suspension produces a pair. The
car of the pair is a substitution. The cdr of the
pair is a new suspension. Forcing the new
suspension produces yet another pair.

How would we create a list of the first three
empty substitutions?

72

That would be more tedious,

(let ((s∞ (((alwayso) empty-s))))
(cons (car s∞)

(let ((s∞ ((cdr s∞))))
(cons (car s∞)

(let ((s∞ ((cdr s∞))))
(cons (car s∞) �())))))).

How would we create a list of the first thirty-
seven empty substitutions?

73
That would be most tedious.

Can we keep track of how many substitutions
we still need?

Need a break?

Take Five
Thank you, Dave Brubeck (1920–2012).

Yes, using take∞.

(define (take∞ n s∞)
(cond

((and n (zero? n)) �())
((null? s∞) �())
((pair? s∞)
(cons (car s∞)

(take∞ (and n (sub1 n))
(cdr s∞))))

(else (take∞ n (s∞)))))

Describe what take∞ does when n is a
number.

74

When given a number n and a stream s∞, if
take∞ returns, it produces a list of at most n
values. When n is a number, the expression
(and n e) behaves the same as the expression
e.

Yes. What is the value of

(take∞ � ((nevero) empty-s))
75

It has no value.
The value of ((nevero) empty-s) is a
suspension. Every suspension created by
nevero, when forced, creates another similar
suspension. Thus every use of take∞ causes
another use of take∞.

How does take∞ differ when n is �� 76

When n is ��, the expression (and n e)
behaves the same as ��. Thus, the recursion in
take∞’s last cond line behaves the same as

(take∞ �� (s∞)).

Furthermore, when n is ��, the first cond
question is never true. Thus if take∞ returns,
it produces a list of all the values.

Yes. Use take∞ and alwayso to make a list of
three empty substitutions.

77
It must be this,

(take∞ � ((alwayso) empty-s))

has the value (() () ()).

What is the value of

(take∞ �� ((alwayso) empty-s))
78

It has no value,
because the stream produced by ((alwayso)
empty-s) can always produce another
substitution for take∞.

What is the value of

(let ((k (length
(take∞ �

((disj2 (� ��
	�� x) (� ��	
 x))
empty-s)))))

‘(����� ,k ��� � ���	���	��))

79 (����� � ��� � ���	���	��).

And what is the value of

(map† length
(take∞ �

((disj2 (� ��
	�� x) (� ��	
 x))
empty-s)))

† map takes a function f and a list ls and builds a list (using
cons), where each element of that list is produced by applying
f to the corresponding element of ls.

80 (���),
since each substitution has one association.

� Take a break after the 3rd course! �
Roasted brussel sprouts.

—or—

Peppers stuffed with lentils and buckwheat groats.

—or—

Rice with tamarind sauce and vegetables (�		���
������).

Here is conj2.

(define (conj2 g1 g2)
(lambda (s)

(append-map∞ g2 (g1 s))))

What are g1 and g2?

81 Are g1 and g2 goals, again?

Yes. Does conj2 produce a goal? 82
Probably,

since there’s a (lambda (s) …). So we
presume append-map∞ produces a stream.

What is (g1 s)? 83 It must be a stream.

Yes. Here is the definition of append-map∞.†

(define (append-map∞ g s∞)
(cond

((null? s∞) �())
((pair? s∞)
(append∞ (g (car s∞))

(append-map∞ g (cdr s∞))))
(else (lambda ()

(append-map∞ g (s∞))))))

† If append-map∞ ’s third cond line and append∞ ’s third
cond line were absent, append-map∞ would then behave the
same as append-map. append-map is like map (see frame 80),
but it uses append instead of cons to build its result.

84 How does it work?

If s∞ were (()), which cond line would be
used?

85 The second cond line.

What would be the value of (car s∞) 86 The empty substitution ().

If g were a goal, what would (g (car s∞)) be
when s∞ is a pair?

87 (g (car s∞)) would be a stream.

And we did presume that append-map∞
would produce a stream.

88 Indeed, we did.

What would append∞ produce, given two
streams as arguments?

89 A stream. Therefore, conj2 would indeed
produce a goal.

� Take a break after the 4th course! �
Linguini pasta in cashew cream sauce.

—or—

Thinly-sliced fennel with lemon juice and fresh thyme.

—or—

Rice with curds, pomegranate seeds, ginger, and chili (�����	�
����).

We define the function call/fresh to introduce
variables.

(define (call/fresh name f)
(f (var name)))

Although name is used, it is ignored.

90 What does call/fresh expect as its second
argument?

call/fresh expects its second argument to be a
lambda expression. More specifically, that
lambda expression should expect a variable
and produce a goal. That goal then has access
to the variable just created. Give an example
of such an f.

91

Something like

(lambda (fruit)
(� ����� fruit)),

which then could be passed a variable,

(take∞ �
((call/fresh ����

(lambda (fruit)
(� ����� fruit)))

empty-s)).

When would it make sense to use distinct
symbols for variables?

92 When we present values.

Yes. Every variable that we present is
presented as a corresponding symbol: an
underscore followed by a natural number. We
call these symbols reified variables as in frame
1:17.

How can we create a reified variable given a
number?

93

How about this†?

(define (reify-name n)
(string�symbol

(string-append "_"
(number�string n))))

† Avoid using constants that resemble reified variables, since
this could cause confusion.

Now that we can create reified variables, how
do we associate reified variables with
variables?

94
Wouldn’t the association of variables with
reified variables just be another kind of
substitution?

Yes, we call such a substitution a reified-name
substitution. What is the reified-name
substitution for the fresh variables in the
value ‘(,x ,y ,x ,z ,z)

95 ‘((,z � −2) (,y � −1) (,x � −0)).

What is the reified value of
‘(,x ,y ,x ,z ,z), using the reified-name
substitution from the previous frame?

96 (−0 −1 −0 −2 −2).

Recall the walk expression from frame 17

(walk w
‘((,x � �) (,z � ,y) (,w � (,x � ,z))))

has the value ‘(,x � ,z).

What is the value of

(walk� w
‘((,x � �) (,z � ,y) (,w � (,x � ,z))))

97
The list ‘(��� ,y).

First, walk� walks w to ‘(,x � ,z). walk�
then recursively walk�s x and ‘(� ,z).

Here is walk�.

(define (walk� v s)
(let ((v (walk v s)))

(cond
((var? v) v)
((pair? v)
(cons

(walk� (car v) s)
(walk� (cdr v) s)))

(else v))))

Is walk� recursive?

98

Yes, and it’s also useful.†

† Here is project (pronounced “pro·ject”).

(define-syntax project
(syntax-rules ()

((project (x …) g …)
(lambda (s)

(let ((x (walk� x s)) …)
((conj g …) s))))))

project behaves like fresh, but it binds different values to the
lexical variables. project binds walk�’d values, whereas fresh
binds variables using var.

When do the values of (walk� v s) and (walk
v s) differ?

99
They differ when v walks in s to a pair, and
the pair contains a variable that has an
association in s.

Does walk�’s behavior differ from walk’s
behavior if v, the result of walk, is a variable?

100 No.

How does walk�’s behavior differ from
walk’s behavior if v, the result of walk, is a
pair?

101

If v’s walk’d value is a pair, the second cond
line of walk� is used. Then, walk�
constructs a new pair of the walk�’d values
in that pair, whereas the walk’d value is just v.

If v’s walk’d value is neither a variable nor a
pair, does walk� behave like walk

102 Yes.

What property holds when a value is
walk�’d?

103
If a value is walk�’d in a substitution s, and
walk� produces a value v, then we know that
each variable in v is fresh.

Here is reify-s, which initially expects a value
v and an empty reified-name substitution r.

(define (reify-s v r)
(let ((v (walk v r)))

(cond

unify.
reify-s, unlike unify, expects only one value
in addition to a substitution. Also, reify-s
cannot produce ��. But, like unify, reify-s
begins by walking v. Then in both cases, if

((var? v)
(let ((n (length r)))
(let ((rn (reify-name n)))

(cons ‘(,v � ,rn) r))))
((pair? v)
(let ((r (reify-s (car v) r)))
(reify-s (cdr v) r)))

(else r))))

What definition is reify-s reminiscent of?

104

the walk’d v is a variable, we know it is
fresh and we use that fresh variable to
extend the substitution. Unlike in unify, no
occurs? is needed in reify-s. In both cases, if v
is a pair, we first produce a new
substitution based on the car of the pair.
That substitution can then be extended
using the cdr of the pair. And, there is a
case where the substitution remains
unchanged.

Right. What is the first thing that happens in
reify-s

105 We use let, which gives a walk’d (and
possibly different) value to v.

Describe reify-s’s first cond line. 106
If (var? v) is ��, then v is a fresh variable in r,
and therefore can be used in extending r with
a reified variable.

Why is length used? 107 Every time reify-s extends r, length produces a
unique number to pass to reify-name.

Describe reify-s’s second cond line, when v is
a pair.

108

We extend the reified-name substitution with
v’s car, and extend that substitution to make
another reified-name substitution with v’s
cdr.

When v is neither a variable nor a pair, what
is the result?

109 It is the current reified-name substitution.

Now that we know how to create a reified-
name substitution, how should we use the
substitution to replace all the fresh variables
in a value?

110
We use walk� in the reified-name
substitution to replace all the variables in the
value.

Consider the definition of reify, which relies
on reify-s.

(define (reify v)

(lambda (s)
(let ((v (walk� v s)))
(let ((r (reify-s v empty-s)))

(walk� v r)))))

Is reify recursive?

111 No, reify is not recursive.

Describe the behavior of the expression
(walk� v r) in reify’s last line.

112
Each fresh variable in v is replaced by its
reified variable in the reified-name
substitution r.

What is the value of

(let ((a1‘(,x � (,u ,w ,y ,z ((���) ,z))))
(a2‘(,y � ����))
(a3‘(,w � (,v ,u))))

(let ((s ‘(,a1 ,a2 ,a3)))
((reify x) s)))

113 (−0 (−1 −0) ���� −2 ((���) −2)).

What is the value of

(map (reify x)
(take∞ �

((disj2 (�
���	� x) (�
��� x))
empty-s)))

114 (���	�����).

We can combine take∞ with passing the
empty substitution to a goal.

(define (run-goal n g)
(take∞ n (g empty-s)))

Using run-goal, rewrite the expression in the
previous frame.

115

Here it is,

(map (reify x)
(run-goal �

(disj2 (�
���	� x) (�
��� x)))).

Let’s put the pieces together!

We can now define appendo from frame 4:41,
replacing conde, fresh, and defrel with the
functions defined in this chapter.

116

Like this,

(define (appendo l t out)
(lambda (s)

(lambda ()
((disj2

(conj2 (nullo l) (� t out))
(call/fresh ��

(lambda (a)
(call/fresh ��

(lambda (d)
(call/fresh �
��

(lambda (res)
(conj2

(conso a d l)
(conj2

(conso a res out)
(appendo d t

res))))))))))
s)))).

Now, the argument to run-goal is �� instead
of a number, so that we get all the values,

(let ((q (var �)))
(map (reify q)

(run-goal ��
(call/fresh �

(lambda (x)
(call/fresh ��

(lambda (y)
(conj2

(� ‘(,x ,y) q)
(appendo x y
�(��������������)))))))))).

117

And behold, we get the result in frame 4:42,
((() (��������������))
((����) (���������))
((������) (�������))
((����������) (���))
((������������) (�))
((��������������) ())).

These last few frames should aid

understanding the hygienic† rewrite macros
on page 177: defrel, run, run�, fresh, and
conde.

† Thanks, Eugene Kohlbecker (1954–).

118

Not only is the result the same, but the run�
expression in frame 4:42 rewrites to the run-
goal expression in the previous frame. And the
appendo definition in frame 4:41 is virtually
the same appendo definition in frame 116.

� Take a break after the 5th course! �
Lemon sorbet.

—or—

Espresso.

—or—

Jackfruit dessert with a dollop of coconut cream (�������	
�������).

In all the excitement, have we forgotten
something?

119 What about conda and condu?

conda relies on ifte, so let’s start there. 120 Okay.

What is the value of

((ifte ��
(� �� y)
(� �� y))

empty-s)

121
‘(((,y � ��))),

because the first goal �� succeeds, so we try
the second goal (� �� y).

What is the value of

((ifte �
(� �� y)
(� �� y))

empty-s)

122
‘(((,y � ��))),

because the first goal � fails, so we instead
try the third goal (� �� y).

What is the value of
‘(((,y � ��) (,x � ��))),

((ifte (� �� x)
(� �� y)
(� �� y))

empty-s)

123 because the first goal (� �� x) succeeds,
producing a stream of one substitution, so
we try the second goal on that substitution.

What is the value of

((ifte (disj2 (� �� x) (� �� x))
(� �� y)
(� �� y))

empty-s)

124

‘(((,y � ��) (,x � ��)) ((,y � ��) (,x � ��))),
because the first goal (disj2 (� �� x) (� ��
x)) succeeds, producing a stream of two
substitutions, so we try the second goal on
each of those substitutions.

What might the name ifte† suggest?

† Here is the expression in frame 124 using conda rather
than ifte.

((conda

((disj2 (� �� x) (� �� x)) (� �� y))

((� �� y)))
empty-s)

This use of conda, however, violates The Second
Commandment as in frames 9:11 and 12. Although The
Second Commandment is described in terms of conda, the
uses of ifte in frames 123 and 124 violate the spirit of this
commandment.

125 if-then-else.

Here is ifte.

(define (ifte g1 g2 g3)
(lambda (s)

(let loop ((s∞ (g1 s)))
(cond

((null? s∞) (g3 s))
((pair? s∞)
(append-map∞ g2 s∞))

(else (lambda ()
(loop (s∞))))))))

Is ifte recursive?

126 No, but ifte’s helper, loop, is recursive.

What does ifte produce? 127 A goal.

The body of that goal is

(let loop ((s∞ (g1 s))) …).

What does let loop’s (cond …) produce?

128 The (cond …) produces a stream.

Where have we seen these same cond
questions?

129
In the definitions of append∞ and append-
map∞, and in the last three lines in the
definition of take∞.

What is the value of

((ifte (once (disj2 (� �� x) (� �� x)))†

(� �� y)
(� �� y))

empty-s)

† Although The Second Commandment is described in
terms of conda and condu, these expand into expressions
that use ifte and once (appendix A). The expression in this
frame is equivalent to a condu expression that violates The
Second Commandment as in frame 9:19.

130

‘(((,y � ��) (,x � ��))),
because the first goal (disj2 (� �� x) (� ��
x)) succeeds once, producing a stream of a
single substitution, so we try the second
goal on that substitution.

Here is once.

(define (once g)
(lambda (s)

(let loop ((s∞ (g s)))
(cond

((null? s∞) �())
((pair? s∞)
(cons (car s∞) �()))

(else (lambda ()
(loop (s∞))))))))

What is the value when s∞ is a pair?

131 The value is a singleton stream.

In once, what happens to the remaining
substitutions in s∞

132 They vanish!

The end, sort of.
Time for vacation.

Are you back yet?

Get ready to connect the wires!

In chapter 10 we define functions for a low-level relational programming language. We now
define—and explain how to read—macros, which extend Scheme’s syntax to provide the
language used in most of the book. We could instead interpret our programs as data, as in the
Scheme interpreter in chapter 10 of The Little Schemer.

Recall disj2 from frame 10:54.

Here is a simple disj2 expression:

(disj2 (� ���������) ��).

We now add the syntax (disj g …).

(disj (� ���������) �����)

macro expands to the expression

(disj2 (� ���������) (disj2�����)),

which does not contain disj. Here are the helper macros disj and conj.

(define-syntax disj
(syntax-rules ()
((disj) ��)
((disj g) g)
((disj g0 g …) (disj2 g0 (disj g …)))))

(define-syntax conj
(syntax-rules ()
((conj) ��)
((conj g) g)
((conj g0 g …) (conj2 g0 (conj g …)))))

syntax-rules begins with a keyword list, empty here, followed by one or more rules. Each rule
has a left and right side. The first rule says that (disj) expands to ��. The second rule says that
(disj g) expands to g. In the last rule “g0 g …” means at least one goal expression, since “g …”
means zero or more goal expressions. The right-hand side expands to a disj2 of two goal
expressions: g0, and a disj macro expansion with one fewer goal expressions. conj behaves like
disj with disj2 replaced by conj2 and #u replaced by #s.

Each defrel expression defines a new function. run’s first rule and fresh’s second rule scope each
variable “x0 x …” within “g …”. run’s second rule scopes q within “g …”. The second “…”
indicates each conde expression may have zero lines. condu expands to a conda.

(define-syntax defrel

(syntax-rules ()
((defrel (name x …) g …)
(define (name x …)

(lambda (s)
(lambda ()

((conj g …) s)))))))

(define-syntax run
(syntax-rules ()
((run n (x0 x …) g …)
(run n q (fresh (x0 x …)

(� ‘(,x0 ,x …) q) g …)))
((run n q g …)
(let ((q (var ��)))

(map (reify q)
(run-goal n (conj g …)))))))

(define-syntax run*
(syntax-rules ()
((run* q g …) (run �� q g …))))

(define-syntax fresh
(syntax-rules ()
((fresh () g …) (conj g …))
((fresh (x0 x …) g …)
(call/fresh ��0

(lambda (x0)
(fresh (x …) g …))))))

(define-syntax conde

(syntax-rules ()
((conde (g …) …)
(disj (conj g …) …))))

(define-syntax conda

(syntax-rules ()
((conda (g0 g …)) (conj g0 g …))

((conda (g0 g …) ln …)
(ifte g0 (conj g …) (conda ln …)))))

(define-syntax condu

(syntax-rules ()
((condu (g0 g …) …)
(conda ((once g0) g …) …))))

Here is a small collection of entertaining and illuminating books.

Carroll, Lewis. The Annotated Alice: The Definitive Edition. W. W. Norton & Company, New
York, 1999. Introduction and notes by Martin Gardner.

Franzén, Torkel. Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. A. K. Peters Ltd.,
Wellesley, MA, 2005.

Hein, Piet. Grooks. The MIT Press, 1960.

Hofstadter, Douglas R. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, Inc., 1979.

Nagel, Ernest, and James R. Newman. Gödel’s Proof. New York University Press, 1958.

Smullyan, Raymond. To Mock a Mockingbird. Alfred A. Knopf, Inc., 1985.

Suppes, Patrick. Introduction to Logic. Van Nostrand Co., 1957.

Afterword

It is commonplace to note that computer technology affects almost all aspects of our lives today,
from the way we do our banking, to the games we play and to the way we interact with our
friends. Because of its all-pervasive nature, the more we understand how it works and the better
we understand how to control it, the better we will be able to survive and prosper in the future.

The importance of improving our understanding of computer technology has been
recognised by the educational community, with the result that computing is rapidly becoming a
core academic subject in primary and secondary schools. Unfortunately, few school teachers have
the background and the training needed to deal with this challenge, which is made worse by the
confusing variety of computer languages and computing paradigms that are competing for
adoption.

Even more challenging for teachers in many respects is the promotion of computational
thinking as a basic problem solving skill that applies not only to computing but to virtually all
problem domains. Teachers have to decide not only what computer languages to teach, but
whether to teach children to think imperatively, declaratively, object-orientedly, or in one of the
many other ways in which computers are programmed today.

Computer scientists by and large have not been very helpful in dealing with this state of
confusion. The subject of computing has become so vast that few computer scientists are able or
willing to venture outside the confines of their own specialised sub-disciplines, with the
consequence that the gap between different approaches to computing seems to be widening
rather than narrowing. Instead of serving as a true science, concerned with unifying different
approaches and different paradigms, computer science has all too often been magnifying the
differences and shying away from the big issues.

This is where The Reasoned Schemer makes an important contribution, showing how to
bridge the gap between functional programming and relational (or logic) programming—not
combining the two in one heterogeneous, hybrid system, but showing how the two are deeply
related. Moreover, it doesn’t rest content with merely addressing the experts, but it aims to
educate the next generation of laypeople and experts, for a day when Computer Science will
genuinely be worthy of its title. And, because computing is not disjoint from other academic
disciplines, it also builds upon and strengthens the links between mathematics and computing.

The Reasoned Schemer is not just a book for the future, showing the way to build bridges
between different paradigms. But it is also a book that honours the past in its use of the Socratic

method to engage the reader. It is a book for all time, and a book that deserves to serve as an
example to others.

Robert A. Kowalski
Petworth, West Sussex, England
August 2017

Index

Italic page numbers refer to definitions.

,. See comma
‘. See backtick
�o (�o), xi, xii, xvi, 108
+o (pluso), xi, xvi, 103
−o (minuso), 103
÷o (/o), xvi, 118

simplified, incorrect version, 120
sophisticated version using splito, 124

�lo (<=lo), 115
�o (<=o), 116
<lo (<lo), 114
<o (<o), 116
� (==), xii, xv, 4, 154
=lo (=lo), 112
>1o (>1o), 97
�� (fail), 3, 154
�� (succeed), 3, 154

Adams, Douglas, 63
addero (addero), 101
alli (alli), xv
all (all), xv
alwayso (alwayso), xvi, 79, 159

append (append), 53
append∞ (append-inf), 156
append-map∞ (append-map-inf), 163
appendo (appendo), xv, 54

simplified definition, 56
simplified, using conso, 55
swapping last two goals, 61
using functions from chapter 10, 170

arithmetic, xi
arithmetic operators
�o, xi, xii, xvi, 108
−o, 103
+o, xi, xvi, 103
÷o, xvi, 118

simplified, incorrect version, 120
sophisticated version using splito, 124

�lo, 115
�o, 116
<lo, 114
<o, 116
=lo, 112
>1o, 97
addero, 101
build-num, 91

showing non-overlapping property, 91
expo, xvi, 127
gen-addero, 101
length, 104
lengtho, 104
logo, xi, xiii, xvi, 125
poso, 96

association (of a value with a variable), 4, 5, 146
assv (assv), 148

Baader, Franz, 146
backtick (‘), 8
base-three-or-moreo

(base-three-or-moreo), 125
bit operators

bit-ando, 86
bit-nando, 85
bit-noto, 86
bit-xoro, 85
full-addero, 87
half-addero, 87

bit-ando (bit-ando), 86
using bit-nando and bit-noto, 86

bit-nando (bit-nando), 85
bit-noto (bit-noto), 86
bit-xoro (bit-xoro), 85

using bit-nando, 85
bound-�o (bound-�o), 111

hypothetical definition, 110
Brubeck, Dave, 160
build-num (build-num), 91

showing non-overlapping property, 91
bumpo (bumpo), 135

call/fresh (call/fresh), 164, 177
caro (caro), 25
Carroll, Lewis, 179
carry bit, 101
cdro (cdro), 26
Clocksin, William F., 53, 129
Colmerauer, Alain, 61
comma (,), 8
Commandments

The First Commandment, 61
The Second Commandment

Final, 134
Initial, 132

committed-choice, 132
conda (conda), xv, 129, 177

line
answer, 129
question, 129

meaning of name, 130
conde (conde), xii, xv, 21, 177

line, 21
meaning of name, 22

condi (condi), xv
condu (condu), xv, 132, 177

meaning of name, 133
conj (conj), 177
conj2 (conj2), 12, 163, 177
“Cons the Magnificent”, 3, 31
conso (conso), 28

using � instead of caro and cdro, 29
Conway, Thomas, 132
cut operator, 132

define (define), xv, 19, 177
compared with defrel, 19

define-syntax (define-syntax), 177
The Definition of fresh, 6
defrel (defrel), xv, 19, 177

compared with define, 19
Dijkstra, Edsger W., 92
discrete logarithm. See logo

disj (disj), 177
disj2 (disj2), 13, 156, 177
DON’T PANIC, 63

empty-s (empty-s), 146
enumerate+o (enumerate+o), 138

without gen&test+o, 141
eqv? (eqv?), 151

used to distinguish between variables, 151
exp2o (exp2o), 125
expo (expo), xvi, 127
ext-s (ext-s), 149

fail (appears as �� in the book), 3, 154
failure (of a goal), xi, 3
The First Commandment, 61
The First Law of �, 5
food, xii
Franzén, Torkel, 179

fresh (fresh), xii, xv, 7, 177
fresh variable, xv, 5, 146
full-addero (full-addero), 87

using conde rather than half-addero and bit-xoro, 87
functional programming, xi
functions (as values), xii
fused variables, xvi, 8

Gardner, Martin, 179
gen&test+o (gen&test+o), 136
gen&testo (gen&testo), 141
gen-addero (gen-addero), 101
goal, xi, xv, 3

failure, xi, 3
has no value, xi, 3
success, xi, 3

ground value, 98

half-addero (half-addero), 87
using conde rather than bit-xoro and bit-ando, 87

has no value (for a goal), xi, 3
Haskell, xiv
Hein, Piet, 179
Henderson, Fergus, 132
Herbrand, Jacques, 151
Hewitt, Carl, 61
Hofstadter, Douglas R., 179

ifte (ifte), 173, 177
implementation, xii
�, 154
��, 154
��, 154
append∞, 156
append-map∞, 163
call/fresh, 164
changes to, xvi
conda, 177
conde, 177
condu, 177
conj, 177

conj2, 163
defrel, 177
disj, 177
disj2, 156
empty-s, 146
ext-s, 149
fresh, 177
ifte, 173
occurs?, 149
once, 174
reify, 168
reify-name, 6, 165
reify-s, 167
run, 177
run�, 177
run-goal, 169
take∞, 161
unify, xv, 151
var, 145
var?, 145
walk, 148
walk�, 166

Jeffery, David, 132

Kohlbecker, Eugene, 171
Kowalski, Robert A., xiii, 19

language of the book
changes to, xv

The Law of �
First, 5
Second, 11

The Law of ��, 35
The Law of ��, 38
The Law of conda, 130
The Law of conde, 22
The Law of condu, 133
The Law of Swapping conde Lines, 62
length (length), 104
lengtho (lengtho), 104

lexical variable, 166
line

of a conde, 21
list-of-lists? (list-of-lists?). See lol?
list? (list?), 37
listo (listo), 37

with #s removed, 38
with final conde line removed, 38

The Little LISPer, ix, 3
The Little Schemer, x, xi, 3
logic programming, xiii
logo (logo), xi, xiii, xvi, 125
lol? (lol?), 41
lolo (lolo), 41

simplified definition, 41
simplified, using conso, 56

loso (loso), 43
simplified, using conso, 56

macros
, xiv

Scheme, xv, 19, 177
mem (mem), 67
memo (memo), 67

simplified definition, 67
member? (member?), 45
membero (membero), 45

simplified definition, 46
simplified, without explicit �, 46

Meno, ix
Mercury, 132

soft-cut operator, 132

n-wider-than-mo (n-wider-than-mo), 124
Nagel, Ernest, 179
Naish, Lee, 132
natural number, 88
nevero (nevero), xvi, 81

using define rather than defrel, 157
Newman, James R., 179

non-overlapping property, 92
not-pastao (not-pastao), 131
notational conventions

lists, 8
no value (for an expression), 39
nullo (nullo), 30
number�string (number->string), 165

occurs check, 149
occurs? (occurs?), xv, 149
odd-�o (odd-�o), 110
once (once), 174, 177
onceo (onceo), 134

pairo (pairo), 31
Plato, ix
poso (poso), 96
Prawitz, Dag, 151
programming languages

Haskell, xiv
Mercury, 132

soft-cut operator, 132
Prolog

cut operator, 132
Scheme, xi, xiii

macros, xv, 19, 177
project (project), 166
Prolog

cut operator, 132
proper list, 33, 37
proper-member? (proper-member?), 50
proper-membero (proper-membero), 50

simplified, using conso, 56
punctuation, xii

recursion, 3
reification, 165
reified

variable, 6, 165
reify (reify), 168, 177
reify-name (reify-name), 6, 165

reify-s (reify-s), 167
relation, xv, 19
relational programming, xi, 19
relations

partitioning into unnamed functions, xiv
rember (rember), 70
rembero (rembero), 71

simplified definition, 71
repeated-mulo (repeated-mulo), 125
Robinson, John Alan, 146, 151
Roussel, Philippe, 61
run (run), xv, 39, 177
run� (run�), xv, 3, 177
run-goal (run-goal), 169, 177

Scheme, xi, xiii
macros, xv, 19, 177

The Second Commandment
Final, 134
Initial, 132

The Second Law of �, 11
singleton? (singleton?), 33

using �� rather than else, 34
singletono (singletono), 34

simplified, using cdro and nullo, 35
simplified, without using cdro or nullo, 43
without lines containing #u, 35

, xiv
Smullyan, Raymond, 179
Snyder, Wayne, 146
Socrates, ix, 182
soft-cut operator, 129, 132
Somogyi, Zoltan, 132
splito (splito), 121
Steele, Guy Lewis, Jr., xiii
stream, xv, 152

empty list, 153
pair, 153
suspension, 153

string-append (string-append), 165

string�symbol (string->symbol), 165
substitution, xv, 146
succeed (appears as �� in the book), 3, 154
success (of a goal), xi, 3
Suppes, Patrick, 179
suspension, xv, 153
Sussman, Gerald Jay, xiii
swappendo (swappendo), 62
syntax-rules (syntax-rules), 177

Take Five, 160
take∞ (take-inf), 161
teacupo (teacupo), 19

using conde rather than disj2, 134
using define rather than defrel, 19

The Translation
Final, for any function, 54
Initial, for Boolean-valued functions only, 34

unification, xv, 146
unify (unify), xv. See also �, 151
unnamed functions, xiv
unnesting an expression, 26

unnesting equal?, 46
unwrap (unwrap), 62
unwrapo (unwrapo), 63

value of a run/run� expression, 3, 5
var (var), 145
var? (var?), 145
variable

fresh, xv, 5, 146
fused, 8
lexical, 166
reified, 6, 165

vector (vector), 145
vector? (vector?), 145
very-recursiveo (very-recursiveo), 83
Voronkov, Andrei, 146

walk (walk), 148

walk� (walk�), 166

	Cover
	Copyright
	Contents
	Foreword
	Preface
	Acknowledgements
	Since the First Edition
	1. Playthings
	2. Teaching Old Toys New Tricks
	3. Seeing Old Friends in New Ways
	4. Double Your Fun
	5. Members Only
	6. The Fun Never Ends …
	7. A Bit Too Much
	8. Just a Bit More
	9. Thin Ice
	10. Under the Hood
	A. Connecting the Wires
	B. Welcome to the Club
	Afterword
	Index

