
plingo: A system for probabilistic reasoning in clingo
based on lpmln

Susana Hahn1, Tomi Janhunen2, Roland Kaminski1, Javier Romero1, Nicolas Rühling1,
and Torsten Schaub1

1 University of Potsdam, Germany
2 University of Tampere, Finland

Abstract. We present plingo, an extension of the ASP system clingo with various
probabilistic reasoning modes. Plingo is centered upon LPMLN , a probabilistic
extension of ASP based on a weight scheme from Markov Logic. This choice is
motivated by the fact that the core probabilistic reasoning modes can be mapped
onto optimization problems and that LPMLN may serve as a middle-ground
formalism connecting to other probabilistic approaches. As a result, plingo offers
three alternative frontends, for LPMLN , P-log, and ProbLog. The corresponding
input languages and reasoning modes are implemented by means of clingo’s
multi-shot and theory solving capabilities. The core of plingo amounts to a re-
implementation of LPMLN in terms of modern ASP technology, extended by an
approximation technique based on a new method for answer set enumeration in the
order of optimality. We evaluate plingo’s performance empirically by comparing
it to other probabilistic systems.

1 Introduction

Answer Set Programming (ASP; [14]) offers a rich knowledge representation language
along with powerful solving technology. Moreover, it has seen over the recent years
several extensions for probabilistic reasoning, among them LPMLN [11], ProbLog [16],
and P-log [3].

In this work, we present an extension of the ASP system clingo, called plingo,
that features various probabilistic reasoning modes. Plingo is centered on LPMLN , a
probabilistic extension of ASP based upon a weight scheme from Markov Logic [17].
LPMLN has already proven to be useful in several settings [12,1] and it serves us also
as a middle-ground formalism connecting to other probabilistic approaches. We rely
on translations from ProbLog and P-log to LPMLN [11,13], respectively, to capture
these approaches as well. In fact, LPMLN has already been implemented in the system
lpmln2asp [10] by mapping LPMLN -based reasoning into reasoning modes in clingo
(viz. optimization and enumeration of stable models). As such, plingo can be seen as a
re-implementation of lpmln2asp that is well integrated with clingo by using its multi-shot
and theory reasoning functionalities.

In more detail, the language of plingo constitutes a subset of LPMLN restricting the
form of weight rules while being extended with ASP’s regular weak constraints. This
restriction allows us to partition logic programs into two independent parts: A hard part
generating optimal stable models and a soft part determining the probabilities of these

ar
X

iv
:2

20
6.

11
51

5v
1

 [
cs

.A
I]

 2
3

Ju
n

20
22

optimal stable models. Arguably, this separation yields a simpler semantics that leads in
turn to an easier way of modeling probabilistic logic programs. Nonetheless, it turns out
that this variant is still general enough to capture full LPMLN . Moreover, plingo allows
us to capture such probabilistic programs within the input language of clingo. The idea is
to describe the hard part in terms of normal rules and weak constraints at priority levels
different from 0, and the soft part via weak constraints at priority level 0.3 On top of this,
plingo offers three alternative frontends, for LPMLN , P-log, and ProbLog, featuring
dedicated language constructs that are in turn translated into the format described above.
As regards solving, plingo follows the approach of lpmln2asp of reducing probabilistic
reasoning to clingo’s regular optimization and enumeration modes. In addition, plingo
features an approximation method that calculates probabilities using only the most
probable k stable models for an input parameter k. This is accomplished by an improved
implementation of answer set enumeration in the order of optimality [15]. We empirically
evaluate plingo’s performance by contrasting it to original implementations of LPMLN ,
ProbLog and P-log.

2 Background

A logic program is a set of propositional formulas. A logic program with weak constraints
is a set Π1 ∪Π2 where Π1 is a logic program and Π2 is a set of weak constraints of
the form :∼ F [w , l] where F is a formula, w is a real number, and l is a nonnegative
integer. For the definition of the stable models of a logic program, possibly with weak
constraints, we refer the reader to [7,4]. We denote by SM (Π) the set of stable models
of a logic program Π .

We next review the definition of LPMLN [11]. An LPMLN program Π is a finite
set of weighted formulas w : F where F is a propositional formula and w is either
a real number (in which case, the weighted formula is called soft) or α for denoting
the infinite weight (in which case, the weighted formula is called hard). If Π is an
LPMLN program, by Πsoft and Πhard we denote the set of soft and hard formulas
of Π , respectively. For any LPMLN program Π and any set X of atoms, Π denotes
the set of usual (unweighted) formulas obtained from Π by dropping the weights, and
ΠX denotes the set of w : F in Π such that X |= F . Given an LPMLN program Π ,
SSM (Π) denotes the set of soft stable models {X | X is a stable model of ΠX}. The
total weight ofΠ , written TW (Π), is defined as exp(

∑
w:F∈Π w). The weightWΠ(X)

of an interpretation and its probability PΠ(X) are defined, respectively, as

WΠ(X) =

{
TW (ΠX) if X ∈ SSM (Π)

0 otherwise
and PΠ(X) = lim

α→∞

WΠ(X)∑
Y ∈SSM (Π)

WΠ(Y)
.

An interpretation X is called a probabilistic stable model of Π if PΠ(X) 6= 0. Besides
this standard definition, we consider also an alternative definition for LPMLN from [11],
where soft stable models must satisfy all hard formulas of Π . In this case, we have that

3This fits well with the semantics of clingo, where higher priority levels are more important.

SSM alt(Π) denotes the set {X | X is a (standard) stable model of ΠX that satisfies Πhard},
while the weight W alt

Π (X) of an interpretation and its probability P alt
Π (X) are defined,

respectively, as

W alt
Π (X) =

{
TW (Πsoft

X) if X ∈ SSM alt(Π)

0 otherwise
and P alt

Π (X) =
W alt
Π (X)∑

Y ∈SSM alt (Π)

W alt
Π (Y)

.

The set SSM alt(Π) may be empty if there is no soft stable model that satisfies all hard
formulas of Π , in which case P alt

Π (X) is not defined. On the other hand, if SSM alt(Π)
is not empty, then for every interpretation X the values of P alt

Π (X) and PΠ(X) are the
same (cf. Proposition 2 from [11]).

3 LPMLN± and the language of plingo

LPMLN± programs are based on LPMLN programs under the alternative semantics.
On the one (−) hand, they are a subset of LPMLN programs where the soft formulas
are so-called soft integrity constraints of the form w : ¬F , for some propositional
formula F . This restriction is interesting because it allows us to provide a definition of
the semantics that is arguably very simple and intuitive. Interestingly, the translations
from ProbLog and P-log ([11,13]) fall into this fragment of LPMLN . Recall that in
ASP, integrity constraints of the form ¬F do not affect the generation of stable models,
but they can only eliminate some of the stable models generated by the rest of the
program. In LPMLN , integrity soft constraints parallel that role, since they do not affect
the generation of soft stable models, but they can only affect the probabilistic weights of
the soft stable models generated by the rest of the program. More precisely, it holds that
the soft models of an LPMLN program Π remain the same if we delete from Π all its
soft integrity constraints. This observation leads us to the following proposition.

Proposition 1. If Π is an LPMLN program such that Πsoft contains only soft integrity
constraints, then SSM alt(Π) = SM (Πhard).

This allows us to leave aside the notion of soft stable models and simply replace in
W alt
Π (X) and P alt

Π (X) the set SSM alt(Π) by SM (Πhard). From this perspective, an
LPMLN program of this restricted form has two separated parts: Πhard , that generates
stable models; and Πsoft , that determines the weights of the stable models, from which
their probabilities can be calculated.

On the other (+) hand, LPMLN± extends LPMLN with regular ASP’s weak con-
straints. This is a natural extension, that moreover allows us to capture the whole LPMLN

language.
With this, we can define the syntax and semantics of LPMLN± programs. Formally,

an LPMLN± program Π is a set of hard rules, soft integrity constraints, and weak
constraints, denoted respectively byΠhard ,Πsoft andΠweak . By OSM±(Π) we denote
the optimal stable models of Πhard ∪Πweak . Then, the weight and the probability of an

interpretation X , written W±Π (X) and P±Π (X), are the same as W alt
Π (X) and P alt

Π (X),
but replacing the set SSM alt(Π) by OSM±(Π):

W±Π (X) =

{
TW (Πsoft

X) if X ∈ OSM±(Π)

0 otherwise
and P±Π (X) =

W±Π (X)∑
Y ∈OSM±(Π)

W±Π (Y)
.

Note that, as before, OSM±(Π) may be empty, in which case P±Π (X) is not defined.
We can capture LPMLN by LPMLN± programs using a translation that is based on

the translation lpmln2wc from [13]. Given an LPMLN program Π , by Π? we denote
the LPMLN± program that contains the hard formulas {α : F ∨ ¬F | w : F ∈ Π},
the soft formulas {w : ¬¬F | w : F ∈ Π,w 6= α}, and the weak constraints {:∼
F [−1, 1] | w : F ∈ Π,w = α}. The hard rules generate the soft stable models of Π ,
the weak constraints select those which satisfy most of the hard rules of Π , while the
soft rules attach the right weight to each of them, without interfering in their generation.
To represent the alternative semantics, we consider another LPMLN± program Π• that
contains the same soft rules and weak constraints as Π?, but whose hard rules are
{α : F | w : F ∈ Π,w = α} joined with {α : F ∨ ¬F | w : F ∈ Π,w 6= α}. The
former formulas enforce that hard formulas of Π must be satisfied, while the latter are
the same as in Π?, but only for the soft formulas of Π .

Proposition 2. Let Π be an LPMLN program. For every interpretation X it holds that
PΠ(X) and P±Π?(X) coincide; and P alt

Π (X) and P±Π•(X) coincide.

As noted in [10], this kind of translations can be troublesome when applied to logic
programs with variables in the input language of clingo. This is the case of the LPMLN

frontend in plingo, where the rules at the input can be seen as safe implications H ← B
where H is a disjunction and B a conjunction of first-order atoms. It is not easy to see
how can we apply the previous translations in such a way that the resulting soft formulas
and weak constraints belong to the input language of clingo, in particular since the result
has to safisfy clingo’s safety conditions. To overcome this issue, we can use the negative
version of the previous translations, based on the translation lpmln2wcpnt from [13],
with the following soft rules {−w : ¬F | w : F ∈ Π,w 6= α}, and weak constraints
{:∼ ¬F [1, 1] | w : F ∈ Π,w = α} where F occurs always under one negation. In this
case, when F has the form H ← B, the formula ¬F can be simply written as ¬H ∧B,
and this formulation can be easily incorporated into clingo. This version is justified by
the following result, that is closely related to Corollary 1 from [13].

Proposition 3. Given an LPMLN± program Π , let Π ′ be the set of rules Πhard ∪
{−w : ¬F | w : F ∈ Πsoft} ∪ {:∼ ¬F [−w, l] | :∼ F [w, l] ∈ Πweak}. For every
interpretation X it holds that P±Π (X) and P±Π′(X) coincide.

We can move on now to the implementation of LPMLN± in plingo. The main idea
of the system is to keep the input language of clingo, and re-interpret weak constraints
at priority level 0 as soft integrity constraints that are not considered to determine the
optimal stable models, but instead are used to determine the weights of them, from
which their probabilities are calculated. For propositional formulas, this boils down

to interpreting the union of a set Π1 of propositional formulas with a set Π2 of weak
constraints as the LPMLN± program that contains the hard rules {α : F | F ∈ Π1},
the soft integrity constraints {w : ¬¬F | :∼ F [w, 0] ∈ Π2}, and the weak constraints
Π2 \ {:∼ F [w, 0] | :∼ F [w, 0] ∈ Π2}. For programs in the input language of plingo (or
of clingo, that is the same) we can in fact provide a general definition that relies on the
definitions used for clingo ([5]), and that therefore covers its whole language. We define
a plingo program Π as a logic program in the language of clingo, and we let OSM pl(Π)
denote the optimal models of Π without considering weak constraints at level 0, and
CostΠ(X, 0) denote the cost of the interpretation X at priority level 0, according to the
definitions of [5]. Then, the weight W pl

Π (X) of an interpretation X and its probability
P pl
Π (X) are defined as:

W pl
Π (X) =

{
CostΠ(X, 0) if X ∈ OSM pl(Π)

0 otherwise
and P pl

Π (X) =
W pl
Π (X)∑

Y ∈OSM pl (Π)

W pl
Π (Y)

.

4 Frontends

In this section we illustrate the frontends of plingo with examples, and show in each case
what is the result of the translation to the core language of plingo.

4.1 LPMLN

Listing 1.1 shows the birds example from [11] using the LPMLN frontend of plingo.
To start with, there is some general knowledge about birds: both resident birds and
migratory birds are birds, and a bird cannot be both resident and migratory. This is
represented by the hard rules in Lines 1-3, that are written as common clingo rules.
Additionally, from one source we have the fact that jo is a resident bird, while from
another we have that jo is a migratory bird. For some reason, we hold the first source
to be more trustworthy than the second. This information is represented by the soft
rules in Lines 4 and 5, where the weights are expressed by the (integer) arguments of
their &weight/1 atoms in the body. The first soft rule corresponds to the weighted
formula 2 : resident(jo), and the second to 1 : migratory(jo). Under both the stan-
dard and the alternative semantics, this program has three probabilistic stable models:
{}, {resident(jo), bird(jo)}, and {migratory(jo), bird(jo)}, whose probabilities are
0.09, 0.67, and 0.24, respectively. They can be computed by plingo, running the com-
mand plingo --mode=lpmln birds.plp for the standard semantics, and using
the option --mode=lpmln-alt for the alternative semantics.

Plingo translates LPMLN programs using the negative versions of the translations
? and • from the previous section. Considering first the alternative semantics, the
normal rules remain the same, while the soft rules are translated as shown in List-
ing 1.2. According to the negative version of •, the soft formula 2 : resident(jo)
becomes the hard formula α : resident(jo) ∨ ¬resident(jo) and the soft formula
−2 : ¬resident(jo). In plingo, the first is written as the choice rule in Line 1, and
the second as the weak constraint at level 0 of Line 2. The translation of the other

soft fact is similar. Considering now the standard semantics, the first rule of Listing 1.1
becomes the choice rule {bird(X)} :- resident(X) together with the weak con-
straint :˜ not bird(X), resident(X).[-1@1,X]. The second rule is trans-
lated similarly. The third one becomes simply :˜ resident(X), migratory(X).
[-1@1,X], since the additional choice rule is a tautology and can be skipped. Observe
that both weak constraints use the variable X in the expression [-1@1,X]. This en-
sures that stable models obtain a weight of -1 for every ground instantiation of the
corresponding body that they satisfy.

1 bird(X) :- resident(X).
2 bird(X) :- migratory(X).
3 :- resident(X), migratory(X).
4 resident(jo) :- &weight(2).
5 migratory(jo) :- &weight(1).

Listing 1.1. LPMLN birds example
(birds.plp).

1 { resident(jo) }.
2 :˜ not resident(jo). [-2@0]

4 { migratory(jo) }.
5 :˜ not migratory(jo). [-1@0]

Listing 1.2. Translation of the birds
example.

4.2 ProbLog

We illustrate the frontend for ProbLog with an example where we toss two biased
coins whose probability of turning up heads is 0.6. We would like to know what is
the probability of the first coin turning heads, given some evidence against the case
that both coins turn heads. The representation in plingo is shown in Listing 1.3. The
first rule represents the toss of the coins. Its ground instantiation leads to two so-called
probabilistic facts, one for each coin, whose associated probabilities are specified by the
&problog/1 atom in the body. The argument of &problog/1 atoms is a string that
contains either a float number or an expression, e.g., “3/5”. Since the argument is a
probability, the string must either contain or evaluate to a real number between 0 and 1.
The next line poses the query about the probability of the first coin turning heads, using
the theory atom &query/1, whose unique argument is an atom. Finally, Lines 3 and 4
add the available evidence, using the theory atom &evidence/2, whose arguments are
an atom and a truth value (true or false). In ProbLog, the probabilistic facts alone
lead to four possible worlds: {} with probability 0.4 ∗ 0.4 = 0.16, {heads(1)} and
{heads(2)} with probability 0.6 ∗ 0.4 = 0.24 each, and {heads(1),heads(2)}
with probability 0.6 ∗ 0.6 = 0.36. The last possible world is eliminated by the evidence,
and we are left with three possible worlds. Then, the probability of heads(1) is the
result of dividing the probability of {heads(1)} by the sum of the probabilities of
the three possible worlds, i.e., 0.24

0.16+0.24+0.24 = 0.375. This is the result that we obtain
running the command plingo --mode=problog coins.plp.

Plingo translates ProbLog programs combining the translation from [10] to LPMLN

with the translation • from Section 3. The result in this case is shown in Listing 1.4.
In the propositional case, the probabilistic ProbLog fact 0.6 :: heads(1) is translated

to the weighted fact w : heads(1), where w = ln(0.6/(1 − 0.6)) ≈ 0.40546,4 that
in LPMLN± becomes the hard formula α : heads(1) ∨ ¬heads(1) together with the
soft integrity constraint w : ¬¬heads(1). The translation for the other probabilistic
fact is similar. In plingo, for C=1..2, the hard formula is written as the choice rule of
Line 1, and the soft one is written as a weak constraint at level 0 in the next line, after
simplifying away the double negation, where @f(X) is an external function that returns
the logarithm of X/(1-X). Going back to the original program, the &query/1 atom is
stored by the system to determine what reasoning task to solve, the normal rule in Line 3
is kept as it is, and the &evidence/1 atom is translated to the integrity constraint of
Line 4, that excludes the possibility of both coins turning heads.

1 heads(C) :- &problog("0.6"), C=1..2.
2 &query(heads(1)).
3 two heads :- heads(1), heads(2).
4 &evidence(two heads, false).

Listing 1.3. ProbLog tossing coins example (coins.plp).

1 { heads(C) } :- C=1..2.
2 :˜ heads(C), C=1..2. [@f("0.6")@0,C]
3 two heads :- heads(1), heads(2).
4 :- two heads.

Listing 1.4. Translation of the coins example.

4.3 P-log

We illustrate the P-log frontend with a simplified version of the dice example from [3],
where there are two dice of six faces. The first dice is fair, while the second one is biased
to roll 6 half of the times. We roll both dice, and observe that the first rolls a 1. We
would like to know what is the probability of the second dice rolling another 1. The
representation in plingo using the P-log frontend is shown in Listing 1.5. Given that the
original language P-log is sorted, a representation in that language would contain the
sorts dice = {d1,d2} and roll = {1, . . . ,6}, and the attribute roll : dice → score.
In plingo there are no attributes, and the sorts are represented by normal atoms, like in
the first two lines of Listing 1.5. Then, for example, to assert that the result of rolling
dice d2 is 6, in P-log one would write an assignment roll(d2)=6 stating that the
attribute roll(d2) has the value 6, while in plingo one would use a normal atom
of the form roll(d2,6). Going back to the encoding, Line 3 contains a random
selection rule that describes the experiments of rolling every dice D. Each of these
experiments selects at random one of the scores of the dice, unless this value is fixed
by a deliberate action of the form &do(A), that does not occur in our example. Line 4
contains a probabilistic atom stating that the probability of dice d2 rolling a 6 is 1/2.
By the principle of indifference, embodied in the semantics of P-log, the probability of
the other 5 faces of d2 is (1− 1/2)/5 = 0.1, while the probability of each face of d1

4See the explanation in footnote 5 about this usage of logarithms.

1 dice(d1;d2).
2 score(1..6).
3 &random { roll(D,X) : score(X) } :- dice(D).
4 &pr { roll(d2,6) } = "1/2".
5 &obs{ roll(d1,1) } = true.
6 &query(roll(d2,1)).

Listing 1.5. P-log dice example (dice.plp).

1 random(roll(D),(roll(D),X)) :- score(X); dice(D).
2 pr(roll(d2),(roll(d2),6),"1/2").
3 obs((roll(d1),1),true).

5 h((roll(D),X)) :- roll(D,X).
6 roll(D,X) :- h((roll(D),X)).

Listing 1.6. Translation of the dice example.

is 1/6. Line 5 represents the observation of the first dice rolling a 1, and the last line
states the query about the probability of the second dice rolling another 1. Running the
command plingo --mode=plog dice.plp, we obtain that this probability is, as
expected, 0.1. If we replace the query by &query(roll(d1,1)), then we obtain a
probability of 1, and not of 1/6, because the observation in Line 5 is only consistent
with the first dice rolling a 1.

Plingo translates P-log programs combining the translation from [10] to LPMLN

with the translation • from the previous section. Given the input file dice.plp, plingo
copies the normal rules of Lines 1-2, translates the rules specific to P-log into the
Listing 1.6, stores internally the information about the &query atom, and adds the
general meta-encoding of Listing 1.7. In Listing 1.6, Line 1 defines for every dice D one
random experiment, identified by the term roll(D), that may select for the attribute
roll(D) one possible score X. The atoms defined that way are fed to the first rule of
the meta-encoding to choose exactly one of those assigments, represented in this case by
an special predicate h/1, that is made equivalent to the predicate roll/2 in Lines 5-6
of Listing 1.7. Those lines are the interface between the specific input program and the
general meta-encoding. They allow the latter to refer to the atoms of the former using
the predicate h/1. Next, Line 2 of Listing 1.6 defines the probability of the second
dice rolling a 6 in the experiment identified by the term roll(d2). This is used in
Line 8 of the meta-encoding, where @f1(P) returns the logarithm of P,5 to add that
weight whenever the following conditions hold: the attribute A has the value V, this
value has not been fixed by a deliberate action, and some probabilistic atom gives the
probability P. If there is no such probabilistic atom, then the rule of Line 9 derives that
the assignment chosen in the experiment E receives the default probability, calculated in

5With this representation, the weights do not stand for probabilities, but for the logarithm of
the probabilities. Then, the cost of a stable model at level 0 represents the sum of the logarithms
of the relevant probabilities and, by exponentiating that value, the probabilistic weight of a stable
model becomes the product of the corresponding probabilities.

1 { h(A) : random(E,A) } = 1 :- random(E,).

3 :- not h(A), obs(A, true).
4 :- h(A), obs(A,false).

6 h(A) :- do(A).

8 :˜ h((A,V)), not do((A,)), pr(E,(A,V),P). [@f1(P),E]
9 df(E) :- h((A,V)), not do((A,)), not pr(E,(A,V),), random(E,(A,)).

11 :˜ df(E), Y = #sum{ @int(P),A : random(E,A), pr(E,A,P) }.
12 [@f2(Y),num,E]
13 :˜ df(E), M = #sum{ 1,A : random(E,A), not pr(E,A,) }.
14 [@f3(M),den,E]

Listing 1.7. Meta encoding for the frontend of P-log.

Lines 11-14 following the principle of indifference mentioned above, where @f2(Y)
returns the logarithm of 1-Y, and @f3(M) returns the logarithm of 1/M. The idea of
this calculation is as follows. For some experiment E, the number Y accounts for the
sum of the probabilities of the probabilistic atoms related to E, and M is the number
of outcomes of the experiment E for which there are no probabilistic atoms. Then, the
probability of each outcome of the experiment E for which there is no probabilistic
atom is (1-Y)*(1/M). Instead of multiplying those probabilities 1-Y and 1/M, the
encoding adds their logarithms6, and it does so in two steps: one in each of the last
two weak constraints. Finally, the observation fact generated in Line 3 of Listing 1.6 is
handled by Lines 3-4 of Listing 1.7, and the possible deliberate actions, represented by
atoms of the form do(A), are handled in Line 6 of the meta-encoding.

5 The system plingo

The implementation of plingo is based on clingo and its Python API (v5.5, [9]). The
system architecture is described in Figure 1. The input is a logic program written in
some probabilistic language: LPMLN±, LPMLN , ProbLog or P-log. For LPMLN±, the
input language (orange element of Figure 1) is the same as the input language of clingo,
except for the fact that the weights of the weak constraints can be strings representing
real numbers. For the other languages, the system uses the corresponding frontends, that
translate the input logic programs (yellow elements of Figure 1) to the input language of
plingo using the Transformer module, as illustrated by the examples of section 4. Among
other things, this involves converting the theory atoms (preceeded by ‘&’) to normal
atoms. The only exception to this are &query atoms, that are eliminated from the
program and stored internally. For P-log, the frontend also appends the meta encoding
(Listing 1.7) to the translation of the input program.

6See footnote 5.

LPMLN±

LPMLN

ProbLog

P-log

Transformer

Solver

Probability
ModuleTransforms

theory directives

Computes
stable models of a
LPMLN± program

ASEO

Optimal weight

Exact probability

Approximate probability

All models

Some models

Optimal model

Fig. 1. System architecture of plingo. Inputs are yellow for the different frontends provided.
Modules of the system are gray boxes. The green flow corresponds to MAP inference, the blue to
Exact Marginal Inference, and the purple to Approximate Marginal Inference.

Plingo can be used to solve two reasoning tasks: MAP inference and marginal
inference. MAP inference is the task of finding a most probable stable model of a
probabilistic logic program. Following the approach of [10], in plingo this task is
reduced to finding one optimal stable model of the input program using clingo’s built-in
optimization methods. The only changes that have to be made concern handling the
strings that may occur as weights of the weak constraints, and switching the sign of
those weights, since otherwise clingo would compute the least probable stable models.
Regarding marginal inference, it can be either applied in general, or with respect to a
query. In the first case, the task is to find all stable models and their probabilities. In the
second case, the task is to find the probability of some query atom, that is defined as the
sum of the probabilities of the stable models that contain that atom. The implementation
for both cases is the same. First, plingo enumerates all optimal stable models of the input
program excluding the weak constraints at level 0. Afterwards, those optimal stable
models are passed, together with their cost at level 0, to the Probability module, that
calculates the required probabilities.

In addition to this exact method (represented by the blue arrows in Figure 1), plingo
implements an approximation method (purple arrows in Figure 1) based on the approach
presented in [15]. The idea is to simplify the solving process by computing just a subset
of the stable models, and using this smaller set to approximate the actual probabilities.
Formally, in the definitions of W pl

Π (X) and P pl
Π (X), this implies replacing the set

OSM pl(Π) by one of its subsets. In the implementation, the modularity of this change is
reflected by the fact that the Probability module is agnostic to whether the stable models
that it receives as input are all or just some subset of them. For marginal inference
in general, this smaller subset consists of k stable models with the highest possible
probability, given some positive integer k that is part of the input. To compute this
subset, the Solver module of plingo uses a new implementation for the task of answer set
enumeration in the order of optimality (ASEO) presented in [15].7 Given some positive
integer k, the implementation first computes the stable models of the smallest cost, then,
among the remaining stable models, computes the ones of the smallest cost, and so on
until k stable models (if they exist) have been computed. For marginal inference with

7The implementation of the method for clingo in general is available at https://github.
com/potassco/clingo/tree/master/examples/clingo/opt-enum.

https://github.com/potassco/clingo/tree/master/examples/clingo/opt-enum
https://github.com/potassco/clingo/tree/master/examples/clingo/opt-enum

respect to a query, the smaller subset consists of k stable models containing the query of
the highest possible probability, and another k stable models without the query of the
highest possible probability. In this case, the algorithm for ASEO is set to compute 2k
stable models. But once it has computed k stable models that contain the query, or k
stable models that do not contain the query, whichever happens first, it adds a constraint
enforcing that the remaining stable models fall into the opposite case.

6 Experiments

In this section, we experimentally evaluate plingo and compare it to native imple-
mentations of LPMLN , ProbLog and P-log.8 For LPMLN , we evaluate the system
lpmln2asp ([10]), that is the basis for our implementation of plingo. For ProbLog, we
consider the problog system version 2.1 ([8]), that implements various methods for prob-
abilistic reasoning. In the experiments, we use one of those methods, that is designed
specifically to answer probabilistic queries. It converts the input program to a weighted
Boolean formula and then applies a knowledge compilation method for weighted model
counting. For P-log, we evaluate two implementations, that we call plog-naive and
plog-dco ([2]). While the former works like plingo and lpmln2asp by enumerating stable
models, the latter implements a different algorithm that builds a computation tree specific
to the input query. All benchmarks were run on an Intel Xeon E5-2650v4 under Debian
GNU/Linux 10, with a memory limit of 24 GB, and a timeout of 1200 seconds per
instance.

We have performed three experiments. In the first one, our goal is to evaluate the
performance of the exact and the approximation methods of plingo and compare it to
the performance of all the other systems on the same domain. In particular, we want
to analyze how much faster is the approximation method than the exact one, and how
accurate are the probabilities that it returns. In the second experiment, our goal is to
compare plingo with the implementations of P-log on domains that are specific to this
language. Finally, the goal of the third experiment is to compare plingo and lpmln2asp
on the task of MAP inference. In this case, both implementations are very similar and
boil down to a single call to clingo. We would like to evaluate if in this situation there is
any difference in performance between both systems.

In the first experiment, we compare all systems on the task of marginal inference
with respect to a query in a probabilistic Grid domain from [19], that appeared in a
slightly different form in [8]. We have chosen this domain because it can be easily and
similarly represented in all these probabilistic languages, which is required if we want
to compare all systems at the same time. In this domain there is a grid of size m × n,
where each node (i, j) passes information to the nodes (i+ 1, j) and (i, j + 1) if (i, j)
is not faulty, and each node in the grid can be faulty with probability 0.1. The task poses
the following question: what is the probability that node (m,n) receives information
from node (1, 1)? To answer this, we run exact marginal inference with all systems, and
approximate marginal inference with plingo for different values of k: 101, 102, . . . , and

8Available, respectively, at https://github.com/azreasoners/lpmln,
https://github.com/ML-KULeuven/problog, and https://github.com/
iensen/plog2.0.

https://github.com/azreasoners/lpmln
https://github.com/ML-KULeuven/problog
https://github.com/iensen/plog2.0
https://github.com/iensen/plog2.0

106. The results are shown in Figure 2. On the left side there is a cactus plot representing
how many instances where solved within a given runtime. The dashed lines represent
the runtimes of the approximate marginal inference of plingo for k = 105 and k = 106.
Among the exact implementations, the system problog is the clear winner. In this case,
its specific algorithm for answering queries is much faster than the other exact systems
that either have to enumerate all stable models or, in the case of plog-dco, may have to
explore its whole solution tree. The runtimes among the rest of the exact systems are
comparable, but plingo is a bit faster than the others. For the approximation method, on
the right side of Figure 2, for every value of k and every instance, there is a dot whose
coordinates represent the probability calculated by the approximation method and the
true probability (calculated by problog). This is complemented by Table 1, that shows the
average absolute error and the maximal absolute error for each value of k in %, where the
absolute error for some instance and some k in % is defined as the absolute value of the
difference between the calculated probability and the true probability for that instance,
multiplied by 100. We can see that, as the value of k increases, the performance of the
approximation method deteriorates, while the quality of the approximated probabilities
increases. A good compromise is found for k = 105, where the runtime is better than
problog, and the average error is below 1%.

Fig. 2. Runtimes of all systems and quality of the approximation method on the Grid domain.

k 101 102 103 104 105 106

Avg. Error 4.7± 4.3 3.3± 2.7 2.1± 1.5 1.4± 1.2 0.9± 0.9 0.6± 0.8
Max. Error 20.3 12.7 6.5 4.3 2.5 2.3

Table 1. Average and maximal error (in %) of the approximation method on the Grid domain for
different values of k.

In the second experiment, we compare the performance of the exact method of plingo
using the P-log frontend with the two native implementations of that language, on tasks
of marginal inference with respect to a query in three different domains: NASA, Blocks

and Squirrel. The NASA domain ([2]) involves logical and probabilistic reasoning about
the faults of a control system. For this domain there are only three instances. All of them
are solved by plingo in about a second, while plog-naive takes between 1 and 5 seconds,
and plog-dco between 40 and 100 seconds. The Blocks domain ([19]) starts with a
grid and a set of n blocks, and asks what is the probability that two locations are still
connected after the n blocks have been randomly placed on the grid. In the experiments
we use a single map of 20 locations and vary n between 1 and 5. The results are shown
in Figure 3, where we can see a similar pattern as in the NASA domain: plingo and
plog-naive solve all instances in just a few seconds, while plog-dco needs much more
time for the bigger instances. The Squirrel domain ([2,3]) is an example of Bayesian
learning, where the task is to update the probability of a squirrel finding some food in
a patch after failing to find it on n consecutive days. In the experiments we vary the
number of days n between 1 and 27. The results are shown in figure 3. Now plog-naive is
slower and can solve only instances up to 23 days, while plingo and plog-dco can solve
instances up to 27 days. To interpret the results, recall that the underlying algorithms of
plog-naive and plingo are very similar. Hence, we conjecture that the better performance
of plingo is due to details of the implementation. On the other hand, plog-dco uses a
completely different algorithm. According to the authors ([2]), this algorithm should
be faster than plog-naive when the value of the query can be determined from a partial
assignment of the atoms of the program. This may be what is happening in the Squirrel
domain, where it is on par with plingo, while it does not seem to be the case for the other
domains.

Fig. 3. Runtimes of plingo, plog-naive and plog-dco on the P-log domains.

In the third experiment, we compare the performance of the exact method of plingo
using the LPMLN frontend with the system lpmln2asp on tasks of MAP inference in
two domains: Alzheimer and Smokers. The goal in the Alzheimer domain ([16]) is to
determine the probability that two edges are connected in a directed probabilistic graph
based on a real-world biological dataset of Alzheimer genes ([18]).9 The data consists of
a directed probabilistic graph with 11530 edges and 5220 nodes. In the experiments we

9We thank Gerda Janssens for providing us the instances.

select different subgraphs of this larger graph, varying the number of nodes from 100 to
2800. The results are shown in Figure 4, where we observe that for the smaller and bigger
instances the performance of plingo and lpmln2asp is quite similar, while in the middle
there are some instances that lpmln2asp can solve within the time limit while plingo
cannot. The Smokers domain involves probabilistic reasoning about a network of friends.
Originally it was presented in [6], but we use a slightly simplified version from [10].
In the experiments we vary the number of friends in the network. In Figure 4, we can
observe that for the smaller instances the performance of plingo and lpmln2asp is similar,
but for larger instances plingo is faster. Given that the underlying algorithms of plingo
and lpmln2asp are similar, we expected them to have a similar performance. Looking at
the results, we have no specific explanation for the differences in some instances of the
Alzheimer domain, and we conjecture that they are due to the usual variations in solver
performance. With respect to the Smokers domain, the worse performance of lpmln2asp
seems to be due to the usage of an external parser that increases a lot the preprocessing
time for the bigger instances.

Fig. 4. Runtimes of plingo and lpmln2asp on the LPMLN domains.

7 Conclusion

We have presented plingo, an extension of the ASP system clingo with various probabilis-
tic reasoning modes. Although based on LPMLN , it also supports P-log and ProbLog.
While the basic syntax of plingo is the same as the one of clingo, its semantics relies on
re-interpreting the cost of a stable model at priority level 0 as a measure of its probability.
Solving exploits the relation between most probable stable models and optimal stable
models [13]; it relies on clingo’s optimization and enumeration modes, as well as an
approximation method based on answer set enumeration in the order of optimality [15].
Our empirical evaluation has shown that plingo is at eye height with other ASP-based
probabilistic systems, except for ProbLog that relies on well-founded semantics. Notably,
the approximation method produced low runtimes and low error rates (below 1%). Plingo
is freely available at https://github.com/potassco/plingo.

https://github.com/potassco/plingo

References

1. Ahmadi, N., Lee, J., Papotti, P., Saeed, M.: Explainable fact checking with probabilistic
answer set programming. In: Liakata, M., Vlachos, A. (eds.) Proceedings of the 2019 Truth
and Trust Online Conference (2019)

2. Balaii, E.: Investigating and extending P-log. Ph.D. thesis, Texas Tech University (2017)
3. Baral, C., Gelfond, M., Rushton, J.: Probabilistic reasoning with answer sets. Theory and

Practice of Logic Programming 9(1), 57–144 (2009)
4. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE

Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)
5. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,

Ricca, F., Schaub, T.: ASP-Core-2: Input language format. Available at https://www.
mat.unical.it/aspcomp2013/ASPStandardization (2012)

6. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Probabilistic Inductive
Logic Programming - Theory and Applications, Lecture Notes in Computer Science, vol. 4911.
Springer-Verlag (2008)

7. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone, N.,
Terracina, G. (eds.) Proceedings of the Eighth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’05). Lecture Notes in Artificial Intelligence,
vol. 3662, pp. 119–131. Springer-Verlag (2005)

8. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G.,
Raedt, L.D.: Inference and learning in probabilistic logic programs using weighted boolean
formulas. Theory and Practice of Logic Programming 15(3), 385–401 (2015)

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with clingo 5. In: Carro, M., King, A. (eds.) Technical Communications of
the Thirty-second International Conference on Logic Programming (ICLP’16). OpenAccess
Series in Informatics (OASIcs), vol. 52, pp. 2:1–2:15. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik (2016)

10. Lee, J., Talsania, S., Wang, Y.: Computing LPMLN using ASP and MLN solvers. Theory and
Practice of Logic Programming 17(5-6), 942–960 (2017)

11. Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: C. Baral, J. Delgrande,
F.W. (ed.) Proceedings of the Fifteenth International Conference on Principles of Knowledge
Representation and Reasoning. pp. 145–154. AAAI/MIT Press (2016)

12. Lee, J., Wang, Y.: Weight learning in a probabilistic extension of answer set programs. In:
Proceedings of the 16th International Conference on Principles of Knowledge Representation
and Reasoning. pp. 22–31 (2018)

13. Lee, J., Yang, Z.: LPMLN, weak constraints and P-log. In: Proceedings of the 31st AAAI
Conference on Artificial Intelligence. pp. 1170–1177 (2017)

14. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2),
39–54 (2002)

15. Pajunen, J., Janhunen, T.: Solution enumeration by optimality in answer set programming.
Theory and Practice of Logic Programming 21(1), 750–767 (2021)

16. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its applications
in link discovery. In: Proceedings of the Twenty-second National Conference on Artificial
Intelligence (AAAI’07). pp. 2468–2473. AAAI Press (2007)

17. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136
(2006)

18. Shterionov, D.: Design and Development of Probabilistic Inference Pipelines. Ph.D. thesis,
KU Leuven (2015)

19. Zhu, W.: Plog: Its algorithms and applications. Ph.D. thesis, Texas Tech University (2012)

https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://www.mat.unical.it/aspcomp2013/ASPStandardization

	plingo: A system for probabilistic reasoning in clingo based on lpmln

