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Foreword 

One of the most interesting recent developments within the field of auto- 
mated deduction is inductive logic programming, an area that combines logic 
programming with machine learning. Within a short time this area has grown 
to an impressive field, rich in spectacular applications and full of techniques 
calling for new theoretical insights. 

This is the first book that provides a systematic introduction to the theo- 
retical foundations of this area. It is a most welcome addition to the literature 
concerning learning, resolution, and logic programming. 

The authors offer in this book a solid, scholarly presentation of the sub- 
ject. By starting their presentation with a self-contained account of the res- 
olution method and of the foundations of logic programming they enable 
the reader to place the theory of inductive logic programming in the right 
historical and mathematical perspective. By presenting in detail the theoret- 
ical aspects of all components of inductive logic programming they make it 
clear that this field has grown into an important area of theoretical computer 
science. 

The presentation given by the authors also allows us to reevaluate the 
role of some, until now, isolated results in the field of resolution and yields 
an interesting novel framework that sheds new light on the use of first-order 
logic in computer science. 

I would like to take this opportunity to congratulate the authors on the 
outcome of their work. I am sure this book will have an impact on the future 
of inductive logic programming. 

March 1997 
Krzysztof R. Apt 

CWI and University of Amsterdam 
The Netherlands 
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A b o u t  the  B o o k  

Inductive logic programming (ILP) is a relatively young branch of machine 
learning. It is concerned with learning from examples, commonly called induc- 
tion. The possible learning tasks include learning concept descriptions from 
instances of those concepts, finding regularities among large amounts of data, 
etc. The feature of ILP that distinguishes it from other branches of machine 
learning is its use of the framework provided by formal (clausal) logic. On the 
one hand, the use of logic in knowledge-based systems and problem solving 
has already been prominent in artificial intelligence (AI) for a long time. On 
the other hand, machine learning has also been recognized as a key subfield 
of AI. It seems only natural to combine these two, and to study learning in a 
logical framework. Hence ILP can be defined as the intersection of machine 
learning and logic programming. 

Although inductive logic programming can be traced back to the work 
of Plotkin and Reynolds around 1970 and the work of Shapiro in the early 
1980s, many researchers have only turned to ILP in the last 5 to 10 years. 
In these years, the operational side of ILP has been well served: many ILP 
systems have been implemented and applied quite succesfully to various real- 
world learning tasks. However, the theoretical side of much work in ILP is 
sometimes less than optimal. As with many other young fields of research, 
many of the main concepts and results of ILP are only available in research 
papers, widely scattered over numerous journals, conference proceedings, and 
technical reports. As a consequence, concepts are not always uniformly de- 
fined, definitions are sometimes imprecise or unclear, and results and proofs 
are not always correct. 

Hence we feel that a unified, rigorous, self-contained book which gives the 
theoretical basis of ILP is needed. We have written this book to fill that need. 

Some existing books on logic could partly serve as a theoretical basis for 
the logical component of ILP, in particular the book by Chang and Lee [CL73] 
on theorem proving for general clauses, and the books by Lloyd [Llo87], 
Doets [Doe94], and Apt [Apt97] on logic programming. However, both Horn 
clauses and general clauses are sometimes used in ILP~ so both should be 
covered. Existing logic books usually address only one of these, instead of 
giving a unified treatment of both. Moreover, those books discuss resolution- 
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based theorem proving only in relation to the refutation completeness, which 
is a completeness result for proof by contradiction. Actually, a different com- 
pleteness result, called the Subsumption Theorem, provides a much more "di- 
rect" form of completeness than refutation completeness. The Subsumption 
Theorem gives us a more clear view of the structure of logical implication, 
which makes it a very powerful and important tool for theoretical analysis 
in clausal logic in general, and ILP in particular. It is used in many articles 
on ILP (though not always correctly). Therefore, Part I of the present book, 
which covers both general clauses and Horn clauses, and includes proofs of 
several versions of the Subsumption Theorem, is better suited as a basis for 
the logical component of ILP than existing books. In fact, this first part of 
the book can be seen as a basis for clausal logic in general. 

In Part II of the book, we consider the "learning" component of ILP: 
induction. This is not discussed in the logic books mentioned above. A number 
of books related to this learning component have appeared in recent years, but 
these are generally more oriented towards practice than theory, and typically 
focus, after a brief general introduction, on one or more particular systems 
implemented by their authors: [BGS91] focuses on ML-SMART, [DR92] is 
about CLINT, [MWKE93] is about a series of related systems (particularly 
MOBAL), [LD94] devotes most attention to LINUS, and [BG96a] is largely 
devoted to FILP and TRACY. There also exist two collections of ILP papers 
[Mug92a, DR96]. Though these contain some important papers, they do not 
provide a unified and self-contained introduction to the field. 

Other than earlier books on ILP, the present work neither contains de- 
tailed descriptions of existing implemented systems nor case studies of appli- 
cations. Instead, we intend to explicate here what we regard as the founda- 
tions of the field. We give a unified treatment of the main concepts of ILP, 
illustrated by many examples, and prove the main theoretical results. The 
book is intended both as a reference book for researchers and as an introduc- 
tion to ILP from the theoretical perspective. We hope in this work to provide 
the reader with a sound and sufficiently broad theoretical basis for future 
research, as well as implementation and application of ILP. 

Before giving a quick overview of the book in the following pages, we want 
to express our gratitude to Krzysztof Apt, who wrote the foreword and gave 
some very helpful comments concerning the logic programming part of the 
book. Furthermore, we would iike to thank Akihiro Yamamoto and Tam~s 
Horvg~th, who each read parts of the manuscript and gave many valuable 
comments. Finally, thanks should go to Springer and its editors Alfred Hof- 
mann and Andrew Ross, for their co-operation and help in publishing this 
book. 

March 1997 
Shan-Hwei Nienhuys-Cheng and Ronald de Wolf 

Rotterdam 
The Netherlands 
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An Overview of the Book 

ILP is concerned with learning a general theory from examples, within a 
logical framework. Accordingly, its foundations are twofold: one component 
concerns logic (deduction), the other concerns learning (induction). This is 
reflected in the structure of the book. In the first part, Chapters 1-8, we 
introduce the logical framework that we need. This part is not concerned 
with induction, so it can be seen as a self-contained introduction to logic 
programming. The second part of the book, Chapters 9-19, discusses various 
concepts and techniques that form the fundamentals of learning within logic. 
Below we give a brief overview of these two parts. 

Logic 
Chapte r s  1 and 2 introduce propositional logic and first-order logic. In par- 
ticular, these chapters define the concepts of a well-formed formula, an inter- 
pretation of a language, and logical implication. In ILP, most often we use 
only a special kind of formula, called a clause, and a special kind of interpre- 
tation, called a Herbrand interpretation. These are introduced in Chap te r  3. 

Then in Chap te r s  4-8, we turn to several ways in which logical implica- 
tion between clauses can be characterized. We define various proof procedures 
for this: "unconstrained" resolution (Chapters  4 and 5) and linear and in- 
put resolution (Chapte r  6) for general clauses, and SLD-resolution for Horn 
clauses (Chap te r  7). 

For each of these forms of resolution, we prove two completeness results: 
the Subsumption Theorem and refutation completeness. In the standard lit- 
erature on resolution, only the latter is given. Though the two results can 
be proved from each other for the forms of resolution we consider, the Sub- 
sumption Theorem is a more direct form of completeness than refutation 
completeness, and hence sometimes more useful for theoretical analysis. 

The f~rst part of the book ends with Chap t e r  8, where we discuss 
SLDNF-resolution. This is SLD-resolution augmented with a technique for 
handling negative information, tt forms the basis of the logic programming 
language PROLOG. 

Inductive Logic Programming 
The introductory Chap te r  9 characterizes ILP by means of two different 
problem settings. In the normal setting, we have to find a theory (a finite set 
of clauses) that is correct with respect to given example-clauses, taking any 
given background knowledge into account. In the nonmonotonic setting, par- 
ticularly suited for the task of data mining, the examples are interpretations, 
and we have to find a theory that conforms to those interpretations. In either 
setting, we have to search for an appropriate theory, using generalization and 
specialization steps to adjust a theory to fit the examples. If some particular 
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Chapter 1 

Propositional Logic 

1.1 Introduct ion  

Propositional logic is a formalization of some simple forms of reasoning. For 
example, suppose we know the following sentences (the premises) to be true: 

"If I swim, then I will get wet." 
"If I take a shower, then I will get wet." 

From these sentences, we are justified to conclude: 

"If I swim or I take a shower, then I will get wet." 

Propositional logic is able to capture the form of this argument. Let P rep- 
resent "I swim", let Q represent "I take a shower", and let R stand for "I 
will get wet". Each of these sentences may be either true or false. Then the 
premises can be rephrased to: 

If P,  then R. 
If Q, then R. 

and the conclusion becomes: 

If P or Q, then R. 

That  this is indeed a valid argument (i.e., if the premises are true, the con- 
clusion must also be true), can be explained in propositional logic. 

George Boole [Boo58] is usually regarded as the founder of propositional 
logic, though traces of it can already be found in the stoic philosophers of 
Greek antiquity. In this chapter we will introduce those parts of proposi- 
tional logic which are necessary for a thorough understanding of the rest of 
this work. We discuss propositional logic for two reasons. First, to facilitate 
the introduction of first-order logic in the next chapter. Propositional logic 
resembles first-order logic in a number of ways, but is much simpler. It is in 
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fact embedded in first-order logic. Accordingly, an introduction to proposi- 
tional logic will facilitate understanding first-order logic. The second reason 
for this introduction is the fact that  many concepts of the later chapters can 
be better illustrated by examples using propositional logic, than by exam- 
ples in first-order logic. If the concepts of propositional logic are sufficient 
to express something, it is preferable to avoid using the more complex fea- 
tures of first-order logic. Hence we will use propositional logic where possible, 
avoiding unnecessary complexity. 

There are two sides to propositional logic: on the one hand we have syntax 
(or grammar),  which specifies which sequences of symbols are considered well- 
formed. On the other hand stands semantics, which specifics the relations 
between those well-formed sequences, and their truth or falsity. 

1.2 Syntax 

Every formal language has a syntax: an exact specification of which sequences 
of which symbols are allowed (considered well-formed), and which are not. 
Thus syntax starts with a specification of the alphabet of the language: the 
set of symbols from which well-formed sequences are constructed. Here is the 
definition for the propositional logic. 

D e f i n i t i o n  1.1 An alphabet of the propositional logic consists of the follow- 
ing symbols: 

1. A non-empty set of atoms: P, Q, etc. These may be subscripted, so P1, 
P2, etc. are also allowed as atoms. 

2. The following five connectives: -7, A, V, -+, and ~ .  
3. Two punctuation symbols: '(' and ')'. 

With every possible set of atoms corresponds a different alphabet, but 
each alphabet has the same five connectives, and the same two punctuation 
symbols. Using the symbols from the alphabet, we can form sequences of 
symbols. The set of well-formed sequences (formulas) is defined as follows. 

D e f i n i t i o n  1.2 Well-formed formulas (usually just called formulas) are de- 
fined as follows: 

1. An atom is a formula. 
2. If r is a formula, then -7r is a formula. 
3. If r and r are formulas, then (r A ~p), (4 V r (r --+ r and (r ++ r 

are formulas. 

The simplest kind of formula is an atom. A formula which is not an atom, 
for example - ,P,  or (P  V Q), is called a composite formula. 

E x a m p l e  1.3 The following sequences of symbols are all examples of for- 
mulas, assuming that the atoms used here are all in the alphabet: 
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. P  
�9 ( P v n )  
�9 A Q) v Q)) 
�9 A (0 v R)) (P1 (Q v R2))) 

The following sequences are not formulas, since they cannot be "generated" 
by applying the rules of Definition 1.2: 

�9 (P), the parentheses should be left out. 
| P V Q, this is no formula because, strictly speaking, it should be sur- 

rounded by parentheses according to rule no. 2 of Definition 1.2. How- 
ever, in Section 1.4 we will loosen this restriction somewhat. 

�9 (P  V Q v R) is not a formula, since the placing of parentheses is not in 
accordance with Definition 1.2 (though see Section 1.4). 

�9 (P  V (QA -+ R)), the sequence 'A --+' cannot be generated by the three 
rules in our syntax definition. 

�9 ( (P V Q) ++ -~-,P --+ Q), some parentheses are left out. There are 
several places where pairs of parentheses can be inserted in this sequence 
to turn it into a formula. For instance, ( (P V Q) ++ (-~-~P --+ Q)), 
( (P V Q) +-~ -~(-~P --+ Q)) and (((P V Q) ++ -~-~P) --+ Q) are formulas. 

< 

D e f i n i t i o n  1.4 The propositional language given by an alphabet is the set 
of all (well-formed) formulas which can be constructed from the symbols of 
the alphabet. 

If alphabet ,41 and alphabet A2 are different--that  is, if the set of atoms 
belonging to ~41 is different from the set of atoms belonging to A~-- then 
the propositional language given by ,41 is different from the propositional 
language given by ~42. Note that a propositional language is always an infinite 
set, even if the set of atoms in the alphabet contains only one atom. 

1 . 3  S e m a n t i c s  

In the last section, we gave a specification of the concept of a propositional 
language: the set of (well-formed) formulas which can be constructed from 
some alphabet. In this section we define the semantics of this set. This is 
where a formula acquires its meaning. A formula can be either true or false, 
depending on the truth or falsity of the simpler formulas which are its compo- 
nents. For instance, the truth or falsity of (PVQ)  depends on its components 
P and Q. Thus we can trace the truth or falsity of some formula all the way 
back to its smallest elements. These smallest elements are the atoms, which 
are simply given a value ' true'  or 'false' according to some interpretation. 

1 . 3 . 1  I n f o r m a l l y  

Before giving the formal semantics for the propositional logic, let us explain 
roughly how the meaning of a formula depends on the simpler formulas and 
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connectives it contains. Since five connectives can be used to construct com- 
posite formulas, we can consider five different kinds of composite formulas. 
Below we will discuss each of these in turn, informally explaining what they 
m e a n ,  

1. First, formulas of the form --r where r is an arbitrary formula. The 
connective used here ('-,') is called negation. We say the formula --r is 
true if the formula r is false, and we say -,r is false if r is true. From 
this, we see that the connective '-~' can be used to model the way the 
word 'not '  is used in English: "-~r is true if, and only if, r is not true". 
Thus the formula --r is pronounced as "not r 

2. Second, formulas of the form (05 A r where r and r are arbitrary 
formulas. A formula of this form is called a conjunction. We say that  
the formula (r A r is true if and only if both components of the formula 
(i.e., r and ~) are true. This is similar to the way the word 'and' is 
used in English: we can say that the sentence "John is 25 years old and 
John is married" is true if, and only if, the components "John is 25 
years old" and "John is married" are both true. Accordingly, (r A ~) is 
pronounced as "r and ~". 

3. Third, formulas of the form (05 V r A formula of this form is called a 
disjunction. We say that the formula (05 V ~b) is true if and only if at 
least one of the components of the formula (i.e., 05 or V)) is true. This 
is similar to the way the word 'or' is used in English. Thus (05 A ~b) 
is pronounced as "05 or ~". Note that by 'or', we mean 'and/or '  here: 
(05 V r is true if r is true, if ~b is true, or if 05 and r are both true. 

4. Fourth, formulas of the form (05 -+ ~b). Such a formula is called an 
implication. By this connective, we want to model the way ' if . . .  then' 
is used in English. Therefore, (r --+ ~b) is pronounced as "if 05 then ~b", 
or as "r implies ~b". We model ' if . . .  then' by saying that (05 -+ ~) is 
false just in case 05 is true and r is false (i.e., in English we cannot call 
"if 05 is true, then ~/~ is true" a true sentence if we observe that  r is true, 
but r is false), and true otherwise. 

Note that  we say (05 --> ~b) is true in case r is false, no matter  what V~ 
is. This may seem strange at first: why would "if 05, then ~b" be true 
if ~ is false? But in fact this way of using the symbol :-+' is not so 
remote from the way we sometimes use ' if . . .  then'  in natural language. 
Consider for example the case where person A is extremely angry at 
person B. A might then say for instance to B "If you beg me ten billion 
times to calm down, I will forgive you". Obviously, the 'if' condition 
is not true, because B won't beg ten billion times. Yet this ' if . . .  then' 
sentence certainly makes sense, and it can in a way be said that the 
sentence is true, independently of the fact whether or not A actually 
will forgive B. 



1.3. SEMANTICS 7 

5. Fifth, formulas of the form (0 ++ r Such a formula is called an equiva- 
lence. The formula (r ~ 3) is similar to the combination of the formulas 
(r --+ ~) and (~ -+ 6). The connective ' ~ '  is used to model the English 
words 'if, and only if'. Thus the formula is pronounced as "r if, and 
only if, r  or as "r is equivalent to r  We say (r ++ r is true if 6 
and r are both true, or both false, and (6 ++ ~) is false otherwise. 

E x a m p l e  1.5 Let L be the propositional language which has {P, Q, R} as 
its set of atoms. Using the concepts defined so far, we can formalize--in terms 
of the language L - - t he  example given in the introduction to this chapter. Let 
P represent "I swim", let Q represent "I take a shower", and let R stand for 
"I will get wet". Then the premises of the example can be represented by: 

(P  --~ R), or "If I swim, then I will get wet". 
(Q -+ R), or "If I take a shower, then I will get wet". 

and the conclusion becomes: 

((PVQ) ~ R), or "If I swim or I take a shower, then I will get wet". 
<1 

1 . 3 . 2  I n t e r p r e t a t i o n s  

We will now formalize the informal meaning explained in the previous sec- 
tion. A key concept in formal semantics is the interpretation of a language. 
The interpretation defines which atoms of the language are true, and which 
are false. An interpretation "sets the stage" for determining whether or not 
some complex formula is true or false. For example, if we use atoms P and Q 
to denote the sentences "My dog is outside" and "My cat is outside", respec- 
tively, then we need to know the truth or falsity of these atoms to be able 
to determine the truth or falsity of the more complex sentence "My dog is 
outside and my cat is outside". So knowledge of the truth or falsity of atoms 
(that is, knowledge of the interpretation), is the first step to determining the 
truth or falsity of arbitrary complex formulas. 

D e f i n i t i o n  1.6 Let L be a propositional language. Let A be the set of atoms 
of L. Then an interpretation of L is a mapping from A to {T, F}. T and F 
are called truth values. 

An interpretation I can be efficiently expressed as a subset of the atom- 
set ,4, namely I = {A E A I I(A) = T}. So in this representation, I is the 
set of all atoms in .4 that are assigned T by t .  

E x a m p l e  1.7 Let .4, the set of all atoms of the language, be {P, Q, R}. Then 
an example of an interpretation t is: 

I ( P )  = T, 
I(Q) = F, 
I(R) = T. 
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In the "subset representation", ! = {P,/~}. 
Another possible interpretation I ~, is the following: 

i ' ( P )  = T, 
I ' (Q)  = T, 
I ' (R)  = r .  

Which can be represented as I r = {P, Q}. 

Note that if the set of all atoms contains n atoms, then 2" different inter- 
pretations are possible, since each of the n atoms can be assigned T or F in- 
dependently of the assignment to the other atoms. Thus in Example 1.7, the 
set of possible interpretations is {{}, {P}, {O}, {R}, {P, Q}, {P, R],  {Q, R}, 
{P, Q, R}}, which contains 8 = 2 a possible interpretations. 

Usually we assume that  the language L is fixed. When we give an example, 
we assume implicitly that  the set of atoms of the language is the set of atoms 
used in the example, unless we state otherwise explicitly. In this case, we will 
just talk about interpretations, instead of interpretations of L. 

The t ruth value of the atoms does not depend on other a toms- -an  atom is 
just defined to have some truth value by the interpretation [. The t ruth value 
of a composite formula, however, depends completely on the connectives and 
the t ruth values of the atoms it contains. For instance, the composite formula 
( P v Q )  has t ruth value T under I if, and only if, P and/or  Q have truth value 
T under I. The way that the t ruth value of a composite formula depends on 
its components and connectives is laid out in so-called truth tables, one for 
each connective. These truth tables are combined in Table 1.1. 

T F F .F T F 
F T T F T T 
F F T T 

Table 1.1: The truth table for the five connectives 

The truth table should be read row-wise: each row specifies the truth 
value of a composite formula containing r and r (or just r in case of the 
negation) in regard of the truth values bestowed on r and V) in the first two 
columns of that  row. Thus if r has t ruth value T and ~ has t ruth value F,  
then we can see from the second row that (r -~ r has truth value F.  

E x a m p l e  1.8 Let I be the interpretation {P}, and let r be the formula ((PA 
Q) --~ Q). Working "bottom-up", we can use the truth table to determine 
the t ruth value of r 

1. P has t ruth value T under I, Q has t ruth value F.  
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2. (P  A Q) has t ruth value F. 
3. r has t ruth value T. <3 

Reasoning in the manner of the previous example, we can--given an in- 
terpretation / - -de te rmine  the truth value of any formula, no mat ter  how 
complex. Instead of the rather unintuitive "truth value", we can also use the 
following terminology: 

D e f i n i t i o n  1.9 Let r be a formula, and f an interpretation. r is said to be 
true under I if its t ruth value under I is T. I is then said to satisfy r or to 
make r true. 

r is said to be false under I if its truth value is F under I. I is then said 
to falsify 6, or to make r false. �9 

1 . 3 . 3  M o d e l s  

The t ruth value of a formula usually 1 depends on the interpretation; under 
some interpretations the formula is true, under others it is false. If some 
formula r is true under a particular interpretation I, then I is called a model 
of r 

D e f i n i t i o n  1.10 Let r be a formula, and f an interpretation. I is said to be 
a model of r if I satisfies r r is then said to have I as a model. 

E x a m p l e  1.11 Let {P, Q, R} be the set of all atoms in the language, and r 
be the formula ( ( P A Q )  ++ (R -~ Q)). Let I be the interpretation that  makes 
P and R true, and Q false (so I = {P, R}). We determine whether r is true 
or false under I as follows: 

1. P is true under I, and Q is false under I, so (P  A Q) is false under I. 
2. R is true under I, Q is false under I, so (R -+ Q) is false under I. 
3. (P  A Q) and (R --~ Q) are both false under f, so r is true under I. 

Since r is true under I, I is a model of r 
Let I '  = {P}. Then (P  A Q) is false, and (R ~ Q) is true under I ' .  Thus 

r is false under 1/, and Y is not a model of r <~ 

The definitions solar only dealt with single formulas. In logic, one often 
has to deal with sets of formulas. The definition of a model can easily be 
generalized to this case. 

D e f i n i t i o n  1.12 Let E be a set of formulas, and 1 an interpretation, f is 
said to be a model of E if I is a model of all formulas r E E. E is then said 
to have I as a model. 

1The only exceptions are tautologies and contradictions, see below. 
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E x a m p l e  1.13 Let E = {P, (Q v R), (Q -4/~)},  and let I = {P,R},  I '  = 
{P, Q, R}, and ["  = {P, Q} be interpretations. I and I '  satisfy all formulas 
in E, so [ and I '  are models of E. On the other hand, I"  falsifies (Q --4 R), 
so I" is not a model of E. <1 

A very important  concept is the concept of 'logical consequence'. Roughly, 
some formula r is a logical consequence of some set of formulas, if the t ruth 
of all formulas in the set implies the truth of r This concept is defined as 
follows. 

D e f i n i t i o n  1.14 Let E be a set of formulas, and r a formula. Then r is said 
to be a logical consequence of E (written as E ~ r if every model of E is a 
model of r If E ~ r we also sometimes say that E logically implies (or just 
implies) 4. If E = {•}, this can be written as • ~ r �9 

D e f i n i t i o n  1.15 Let E and P be sets of formulas. Then F is said to be a 
logical consequence of E (written as E ~ r ) ,  if E ~ r for every formula 
r E F. We also sometimes say E (logically) implies F. 

If r is not a logical consequence of E, we write E ~= r and similarly E ~= F 
if not E ~ P. 

E x a m p l e  1.16 Let P stand for "I am outside", let Q represent "It rains", 
and let R represent "I will get wet". Suppose we know the following sentences 
a r e  t r u e :  

"If I am outside and it rains, then I will get wet.:', or in formulas: 
((P A Q) -+ n). 
"It rains.", or represented as a formula: Q. 

From these sentences, we want to conclude: 

"If I am outside, I will get wet.", or the formula (P -4 R). 

We can prove that this conclusion is correct by proving that (P  -4 /7) is a 
logical consequence of the set E = { ( (PAQ)  --4 R), Q}. We will use Table 1.2 
for this. 

Each row represents a possible interpretation of the atom-set {P, Q, R}. 
The only rows which are models of E are the first, fifth and sixth row, since 
these are the only rows in which both ((P A Q) -+ R) and Q are true (see 
the underlined t ruth values). In these three rows (P -4 R) is also true, hence 
every model of E is also a model of (P -+ R). Therefore E ~ (P -4 R), so 
we have proved that  our conclusion is correct. <~ 

E x a m p l e  1.17 The set E = {(P A Q), (P -+ R)} logically implies the set 
r = {P, Q, R). 

We now have three related concepts, all called 'implication': 
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T T I T  T T F 
T F T 
T F F 
F T T 
F ~ F 

F - f i T  
F I F  F 

Q) -~ R) (P-~ 
T T 
F F 
T T 
T F 
T_ T_ 
T T, 
T T 
T T 

R) 

Table 1.2: The truth table for E and (P -+ R) 
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1. The connective '--+': a syntactical symbol called 'if. . .  then'  or 'implica- 
tion'. 

2. The concept of 'logical consequence' or '(logical) implication', denoted 
by ' ~ ' .  

3. The phrase ' if . . .  then', which is used when stating, for example, propo- 
sitions or theorems. 

In order to avoid confusion, we will here briefly emphasise the differences 
between these concepts. First, "~-+'. This is a syntactical symbol, appearing 
within formulas. The truth value of the formula (r --~ r depends on the 
particular interpretation I we happen to be considering: according to the 
truth table, (r --4 r is true under I if r is false under I and/or ~ is true 
under I; (r --4 r is false otherwise. 

Second, the concept of '(logical) implication'. This concept describes a 
semantical relation between formulas. It is defined in terms of all interpreta- 
tions: 'r ~ ~' is true if every interpretation that is a model of r is also a 
model of *p. 

Third, ' if . . .  then', also sometimes called 'implication'. This describes a 
relation between assertions which are phrased in (more or less) natural lan- 
guage. It is used for instance in proofs of theorems, when we state that  some 
assertion implies another assertion. Sometimes we use the symbols '::~' or 
' ~ '  for this. If assertion A implies assertion B, we say that B is a necessary 
condition for A (i.e., if A is true, B must necessarily be true), and A is a 
sufficient condition for B (i.e., the truth of B is sufficient to make A true). In 
case A implies B, and B implies A, we write "A iff B", where tiff' abbreviates 
'if, and only if'. 

The following Deduction Theorem describes a relation between these no- 
tions: 

T h e o r e m  1.18 ( D e d u c t i o n  T h e o r e m )  Let E be a set of formulas, and r 
and ~ be formulas. Then r U {*} ~ r ( f i e  ~ (r --+ r 

Proof Z U {~) ~ ~ iff 
All models of E U {r are models of ~p iff 
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All models of E are models of -7r or of r iff 
All models of E are models of (r -+ ~b) iff 

> (r [] 

Next we will define the concept of equivalence between formulas or sets 
of formulas. 

D e f i n i t i o n  1.19 Two formulas r and ~ are said to be (logically) equivalent 
(denoted by r r r if both r ~ r and r ~ r (so r arid r have exactly 
the same models). Similarly, two sets of formulas E and F are said to be 
(logically) equivalent, if both E ~ F and F ~ E. �9 

E x a m p l e  1.20 The sets E = {P,-~Q, (P v R)} and P = {(R V P),  (-~R V 
-~Q), P, ( P --+ -~Q)} are equivalent. <~ 

The distinctions between '<-~', 'r and 'iff' are analogous to the distinctions 
between '--+', ' ~ '  and ' if . . .  then' explained above. 

Formulas can be divided in the following categories: 

D e f i n i t i o n  1.21 Let r be a formula. Then: 

1. r is called valid, or a tautology, if every interpretation is a model of r 
This can be written as ~ r r is called invalid otherwise. 

2. r is called satisfiable, or consistent, if some interpretation is a model of 
(~. 

3. r is called inconsistent, or unsatisfiable, or a contradiction, if no inter- 
pretation is a model of r In other words, r is inconsistent if it has no 
models. 

4. r is called contingent if it is satisfiable, but invalid. O 

Intuitively, a tautology is "always true" and a contradiction is "always 
false". An invalid formula is "not always true" and a satisfiable formula is 
"sometimes true". A contingent formula is "sometimes true, and sometimes 
false". Note that some formula r is a tautology if, and only if, -~r is a con- 
tradiction. Also note that  because a contradiction has no models, it logically 
implies any formula. The way these definitions subdivide the class of all for- 
mulas is graphically illustrated in figure 1.1. 

These concepts can be defined similarly for a set E of formulas. E is a 
tautology if every interpretation is a model of E, E is satisfiable if it has at 
least one model, etc. 

E x a m p l e  1.22 Some examples to illustrate Definition 1.21: 

�9 The formula (P  V -~P) is a tautology (or a valid formula): every inter- 
pretation makes either P or -~P true, so every interpretation is a model 
of (P  V ~P) .  Even the empty interpretation I = {}, which makes all 
atoms false, is a model of (P  V ~P) .  
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r 

Tautology Contingent Inconsistent 
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Always 
true 

Sometimes true, 
sometimes false 

Satisfiable 

Always 
false 

Y 

Unsatisfiable 

Figure  1.1: The class of tautologies, contingent formulas, etc. 

�9 The formula P is satisfiable, but is invalid (not a tautology), hence a 
contingent formula. 

�9 The formula ((P A (P  ~ Q)) -+ Q) is a tautology (or a valid formula), 
see Example 1.23. 

�9 The formula (P  e+ -~P) is a contradiction (or an unsatisfiable formula). 
�9 The set of formulas {P, Q, (- ,P v -~Q)} is a contradiction (an unsatisfi- 

able set of formulas). 
�9 The set {P, (Q A R)} is satisfiable, but invalid, hence contingent. The 

set is true under I = {P, Q, R}, but false under I '  = {P, Q}. <~ 

Truth tables can be used to prove that some formula is a tautology or a 
contradiction: 

E x a m p l e  1.23 Let r be the formula ((P A (P --+ Q)) -+ Q). Using a t ruth 
table to systematically try out all possible interpretations, we will prove that 
r is true under all possible interpretations. See Table 1.3. 

II P IQ ]] (P -+ Q) 
T T T 
T F F 
F T T 
F F T 

(e  A (e  ~ Q)) ((e A (P ~ q)) --+ Q) 
T T 
F T 
F T 
F T 

Table 1.3: The truth table for ((P A (P -+ Q)) ~ Q) 

Note that  the third column is derived from the first two columns, the 
fourth is derived from the first and the third column, and the last column is 
derived from the fourth and second columns. 

The first two columns contain all possible interpretations of {P, Q}. The 
last column shows that r is true under all these interpretations. So every 
interpretation is a model of r hence r is a tautology. <~ 
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Note the following relation between logical consequence and unsatisfiabil- 
ity: 

P r o p o s i t i o n  1.24 Let E be a set of formulas and r a formula. Then E ~ O 
iff E U {-~r is unsatisfiable. 

P r o o f  E ~ r  
is true under all models of E iff 

E U {-~r has no models iff 
E U {-~r is unsatisfiable. 

Also note the following relation between logical equivalence and tautolo- 
gies: 

P r o p o s i t i o n  1.25 / f  r and ~ are formulas, then r ~ r iff @ (r +4 t~). 

P r o o f  e v v ~ i f f  
r and r have the same models iff 
Every interpretation is a model of r and ~, or a model of 46 and --~ iff 
Every interpretation is a model of (r 4+ r iff 

(~ ++ ~). [] 

The following assertions will be useful in the rest of the book. The second 
and third of these are sometimes called De Morgan's laws. 

P r o p o s i t i o n  1.26 The following assertions hold. 

2. (-~r v ~ )  ~ -~(r A ~) 

4. ((0 v r A x) "~ ((4 A x) v (~ A x)) 
5. ((~ A ~) v x) ~ ((r v x) A (r v x)) 
6. (r -+ ~) ,~ (7r v r 
7. (0 +4 g)) r ((r "-4 0) A (r --4 r 

P r o o f  We will only prove the sixth assertion, leaving the other proofs to 
the reader. This assertion follows from Table 1.4, which shows that  (r --4 r 
and (~r V r have exactly the same models. 

(4 -~ r 
T T T 

--T--! F F 
F T T 
F F T 

(~4vr  ]] 
T 
F 
T 
T 

Table !.4: The truth table for (4 ~ r and (-~0 V r 

[] 
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1.4 Conventions to Simplify Notat ion 

A complex formula can get overcrowded with parentheses. In this section, we 
make some simplifying conventions. Strictly speaking, these simplifications 
are not in accordance with the syntax of Definition 1.2, but since they are 
unambiguous and will not arouse confusion, no harm will be done. 

First, according to Definition 1.2, (P V Q v R) is not a formula, but 
(PV (QV_R)) and ((PVQ) VR) are. It can be easily proved that  (PV(QVR))  
and ((P V Q) v R) are equivalent. Hence, we will sometimes write (P V Q v R) 
instead of (P v (Q v R)) or ((P v Q) v R). Like (P V Q), such a formula is called 
a disjunction. Similarly, we will sometimes use (P1 V P2 V P3 V P4) instead 
of (P1 V (P2 V (P3 V P4))). The same conventions can be made regarding the 
connective 'A', so we will write (P A Q A R) instead of (P A (Q A R)), etc. 
Such a formula is also called a conjunction. Note that a finite set of formulas 
{r  r is logically equivalent to the conjunction (~1 A . . .  A r 

Second, we will often omit the outer parentheses of a formula. So the 
formula (P -+ Q) can also be written as P ~ Q. 

Third, by giving V and A precedence over --~ and +% we can omit the 
parentheses around the two components of an implication or equivalence. 
Combining this with the previous conventions, we can write P1 A P2 A Pa ~ Q 
instead of ((P1 A (P2 A Pa)) --+ Q)- 

Note that  these simplifications still allow no ambiguity. For example, the 
sequence P V Q A R (which might either mean (P V (Q A R)) or ((P V Q) A R), 
which are not equivalent), is not allowed. We will use appropriate parentheses 
anywhere where confusion or ambiguity might arise. 

1.5 Summary 

In this chapter we defined propositional logic, a relatively simple system of 
logic. The syntax determined the set of well-formed formulas in a proposi- 
tional language. Those formulas are well-formed that can be built up fi'om 
atoms and the connectives we discussed. The semantics of propositional logic 
is based upon the notion of an interpretation. An interpretation assigns truth 
values to the propositional atoms, and extends these truth values to compos- 
ite formulas using a truth table to handle the connectives. An interpretation 
is a model of a formula if that  formula is true under the interpretation. A 
formula r (logically) implies a formula ~b, denoted by r ~ r if every model 
of q~ is also a model of ~b. Formulas r and r are (logically) equivalent, denoted 
by r <:~ r if r ~ ~b and r ~ r Similar concepts were defined for sets of 
formulas. 



Chapter 2 

First-Order Logic 

2.1 Introduct ion  

Propositional logic, as defined in the previous chapter, is a nice little formal- 
ism, but not a very strong or expressive one. 

Let us try for example to formalize the sentence "John is Peter's father" in 
propositional logic. Since this sentence cannot be broken up in smaller pieces 
which could be connected by one of the five connectives, our only option is 
to use an atom to formalize it. But now let us consider the sentence "Paul 
is Mary's father". Again, this cannot be broken up into smaller components, 
and hence must be formalized as another atom. There are obvious similarities 
between these two sentences: they both mention the same relation (father- 
hood). In the first sentence this relation holds between John and Peter; in 
the second it holds between Paul and Mary. Yet this similarity cannot be 
expressed in propositional logic, since both sentences can only be denoted by 
different atoms. 

We would like a more expressive system of logic to satisfy the following 
requirements. Firstly, it should be able to distinguish between "things" (such 
as 'Paul') and "assertions about things", Secondly, the same "thing" should 
be denoted everywhere by the same symbol. Thus when formalizing the sen- 
tences "Paul is a father" and "Paul is a teacher", the two formalizations 
should both contain the same symbol denoting 'Paul'.  Similarly, a concept 
or predicate (such as fatherhood) should be denoted by the same symbol ev- 
erywhere. And thirdly, we would like to be able to use variables, which can 
be used to denote different things. For instance, we want to be able to say 
"every x who is a child of Mary, is a teacher." 

First-order logic is a formalism which satisfies these three requirements. 
It was initially introduced by Gottlob Frege [Fre79], and further developed 
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by Alfred North Whitehead and Bertrand Russell [WR27]. The semantics of 
first-order logic was developed by Alfred Tarski [Tar36, Tar56]. 1 

Even though first-order logic is much more complex than propositional 
logic, both are built up along the same lines: first we define what constitutes 
a well-forlned formula (syntax), then we define what a well-formed formula 
means and how it acquires a t ruth value (semantics). Syntax is the subject 
of the next section, semantics of the section after that.  Of course, there is 
much more to first-order logic than just the basic concepts we introduce in 
this chapter. For a more extensive introduction we refer to [Men87, B J89]. 

2.2 Syntax 

First-order logic is much more complex than propositional logic. This will be 
evident from the syntax: whereas in propositional logic we only had formulas, 
in first-order logic we have two different syntactical categories---terms and 
formulas. Intuitively, a term denotes a "thing" which can be talked about 
(like a number, a human being, etc.), and a formula is an assertion about 
things. 

As in propositional logic, we first specify an alphabet, the set of all symbols 
which can be used in forming syntactical structures. Then we define the rules 
with which well-formed syntactical structures (terms and formulas) can be 
constructed. 

D e f i n i t i o n  2.1 An alphabet of first-order logic consists of the following sym- 
bols: 

1. A set of constants: a, b, ..., which may be subscripted. 
2. A set of variables: u, v, w, x, y , . . . ,  which may be subscripted. 
3. A set of function symbols: f , g , . . . ,  which may be subscripted. Each 

function symbol has a natural number (its arity) assigned to it. 
4. A non-empty set of predicate symbols: P, Q , . . . ,  which may be sub- 

scripted. Each predicate symbol has a natural number (its arity) as- 
signed to it. 

5. The following five connectives: -~, A, V, ~ and ~ .  
6. Two quantifiers: ~ (called the existential quantifier) and V (called the 

universal quantifier). 
7. Three punctuation symbols: '('~ ') '  and ','. <7 

As indicated in this definition, each function symbol has an arity assigned 
to it. By this we mean the number of arguments the function has. This is 
similar to functions in mathematics. For instance, the mathematical  function 
f ( x ,  y) = x + 2y has two arguments, and is therefore of arity 2. A function 

1As the word "first-order" implies, there are also "higher-order" logics. We will not  
discuss these here (see [BJ89] for an int roduct ion to second-order logic). Other  names  
somet imes  used for first-order logic are (first-order) predicate logic or predicate calculus. 
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symbol of arity 1 is called a unary function, a function of arity 2 is a binary 
function. In general, a function symbol of arity n is called an n-ary function 
symbol. The arity of a function may be 0, this is similar to for example the 
constant function 5 in mathematics. Though we mentioned constants as a 
separate class of symbols in the previous definition, this is not necessary: it is 
often convenient to view constants as function symbols of arity 0. Thus the 
set of constants is actually a subclass of the set of function symbols. 

Each predicate symbol also has an arity assigned to it, which gives its 
number of arguments. As will be explained in the following section, predicates 
can be used to denote properties or relations. For example, the relationship 
"x loves y" could be denoted by a binary predicate symbol. As was the case 
with function symbols, the predicate symbols of arity 0 play a special role: 
they can be used in the same way as atoms were used in propositional logic. 
Since the connectives can also be used in the same way as they were used in 
propositional logic, first-order logic is in fact a generalization of propositional 
logic. In other words, the structure of propositional logic is embedded in the 
structure of first-order logic. 

D e f i n i t i o n  2.2 Terms are defined as follows: 

1. A constant is a term. 
2. A variable is a term. 
3. If f is an n-ary function symbol and t l , t 2 , . . ,  tn are terms, then 

f ( t l , t 2 , . . . , t ~ )  is a term. <~ 

E x a m p l e  2.3 Suppose we have an alphabet consisting (apart from the con- 
nectives, punctuation symbols and quantifiers) of the following: 

1. The set of constants is {a, b, c}. 
2. The set of variables is {xl, z2, y}. 
3. The set of (non-constant) function symbols is {f, g}, where f has arity 

1, and g has arity 3. 
4. The set of predicate symbols is {P, Q, R, S}, where P has arity 2, Q 

has arity 1, R has arity 2, and S has arity 0. 

Then the following are all examples of terms which can be formed from this 
alphabet: 

�9 a 

�9 X 2  

�9 f ( c )  
�9 f ( f ( f ( x t ) ) )  
�9 g(x2, xi,  f ( f ( f (a ) ) ) )  

The following sequences of formulas are not terms (given this alphabet): 

�9 f(a,  b): f has arity 1. 
�9 P(b, a): predicate symbols cannot be used when constructing terms. 
�9 (a V x2): connectives cannot be used when constructing terms. <~ 
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Using terms, we can construct formulas. As in propositional logic, the 
smallest possible formula is called an atom. An atom is constructed by "fill- 
ing in" the n argument-places of an n-ary predicate symbol with n terms. 
From atoms, more complex formulas can be constructed using the connectives 
(similarly to propositional logic), and the quantifiers. 

D e f i n i t i o n  2.4 Well-formed formulas (or just formulas) are defined as fol- 
lows: 

1. If P is an n-dry predicate symbol and Q,t2, . . . ,t ,~ are terms, then 
P(tl, t2, . . . ,  tn) is a formula, called an atom. 

2. If r is a formula, then -~r is a formula. 
3. If r and r are formulas, then (r A ,9), (r V r (r + ~) and (r e+ r 

are formulas. 
4. If r is a formula and x is a variable, then 3x r and Vx r are formulas. 

<5 

A formula which is not an atom, for example (P(a) V Q(x, y)), is called a 
composite formula. 

E x a m p l e  2.5 If we use the same alphabet as in Example 2.3, the following 
sequences of symbols are all formulas: 

�9 Q(a) 
| S (remember that S is a 0-ary predicate symbol) 
| P( f ( f (x l ) ) ,  g(a, c, f(b))) 
�9 ( ( /~ ( f (c ) ,  f ( c ) )  ~ -~Q(I(e))) +4 P(x2, g(y, y, y))) 
, Vx Q(z)  
�9 -,3x Q(x) 

| (Vx13x2 R(x2,xl) AVy Q(a)) 
| Vx,~x2 (R(x2, xl) A Vy Q(a)) 

On the other hand, the following sequences are not formulas: 

. (P(a, b) V f(y)):  f(y) is not a formula. 
| P(a) :  P has arity 2. 
�9 P(a, b)V R(a, b): this should be surrounded by parentheses according to 

our present Definition 2.4 (though see Section 2.4 for some simplifying 
conventions). 

| Q(P(a, b)): P(a, b) is a formula and not a term, hence it cannot be used 
to fill the argument place of Q. 

| Va Q(a): a is not a variable, hence cannot be used with the V-quantifier. 

<3 

From an alphabet, we can construct an infinite number of formulas. As 
in propostional logic, the set of all well-formed formulas which can be con- 
structed from some alphabet is called a language. 
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D e f i n i t i o n  2.6 The first-order language given by an alphabet is the set of 
all (well-formed) formulas which can be constructed from the symbols of the 
alphabet.  

Strictly speaking, only formulas are in the language L. But sometimes we 
will speak loosely about  the "terms in L", or the "variables in L". Of course, 
in that  case we mean the terms constructable from the alphabet  on which L 
is based. 

When we give an example in the rest of this chapter, we will not explicitly 
specify the alphabet  we use. Instead, we assume that  all the symbols we use 
in the example are in the alphabet.  Similarly, we assume that  the arities of 
the function and predicate symbols used are as described implicitly in the 
example. For instance, if we use the formula "P(x, a)", we assume that  P is 
a predicate of arity 2 in the alphabet,  that  x is a variable, and that  a is a 
constant in the alphabet.  

We now define some concepts concerning the relation between quantifiers 
and variables in a formula. We will not need them in this section, but since 
these are purely syntactical concepts, we define them here. 

D e f i n i t i o n  2.7 The scope of gx (respectively 3x) in gx r (resp. 3x r is r 
<> 

E x a m p l e  2.8 

�9 The scope of the 3-quantifier in the formula 3x (P(x, y) -+ Q(x)) is the 
formula (P(x, y) --+ Q(x)). 

�9 The scope of the 3-quantifier in the formula 3x (Vy P(x, y) A Q(x)) is 
the formula (Vy P(x ,  y)/ ' ,  Q(x)),  the scope of the V-quantifier is the 

formula P(x, y). <1 

When a formula gx r is constructed, we intend the quantifier Y to apply to 
all occurrences of x in r but not to other occurrences of x or other variables. 
Wha t  this "applying" means is part  of the semantics, the subject of the next 
section. A variable-occurrence within the scope of some quantifier is called 
bound, an occurrence outside of the scope of any quantifier is called free. For 
example,  the occurrence of x in Yx P(x, y) is a bound occurrence (since it 
lies within the scope of the g-qnantifier), the occurrence of y in this same 
formula is free. 

D e f i n i t i o n  2.9 A bound occurrence of a variable x in a formula is an occur- 
rence of x immediate ly  following a quantifier, or an occurrence of x within 
the scope of a quantifier that  is immediately followed by x. An occurrence of 
a variable which is not bound, is called free. �9 

E x a m p l e  2.10 Some examples to illustrate the previous definition: 
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* All occurrences of the variables x and y in the formula 3z (P(x, y) --+ 
P(z, x)) are free, the occurrence of z is bound. 

* The first occurence of x in (Vx Q(x)VP(x, f(c))) is a bound occurrence. 
The second oceurence of x is free, since this second occurrence of x, in 
P(x, f(c)), is not within the scope of the V-quantifier. <~ 

D e f i n i t i o n  2.11 A closed formula is a formula which does not contain any 
free occurrences of variables. <5 

E x a m p l e  2.12 The formula -~3y P(a, y) is a closed formula. The formuia 
Vx (Q(x) v P(x, f(c))) is a closed formula, but the formula (Vx Q(m) v 
P(x, f(c))) is not, since the occurrence of x in P(x, f(c)) is not in the scope 
of the V-quantifier in the last formula. <l 

De f in i t i on  2.13 A ground term (respectively ground formula) is a term 
(resp. formula) which does not contain any variables. <5 

E x a m p l e  2.14 The term f(g(a, b)) is a ground term, h(a, b, x) is not, since 
it contains the variable x. The formula P(a, f(g(a, b))) is a ground atom, the 
formula Vx (Q(a,g(x))A P(x, y))is not ground. <:] 

2.3 Semant ics  

2 . 3 . 1  I n f o r m a l l y  

In first-order logic, a term refers to a "thing", and a formula is an assertion 
about things, which may be either true or false. What sort of "things" do the 
terms refer to? This depends on the way we interpret a first-order language. 
Part of such an interpretation is a specification of the domain that  the terms 
in our language refer to. The domain could for example be the set of natural 
numbers, a set of blocks, or a set of Dutch people. 

A term in the language refers to an object in the domain. The term 
assignment tells us to which domain element each term refers. Thus it tells 
us what the constants refer to, how to handle function symbols, etc. We 
visualize the term assignment in Figure 2.1. 

terms 
the term assignment 

domain 

Figure 2.1: The term assignment maps each term to an object in the domain. 
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When we have interpreted the terms, we can determine the t ruth value of 
a toms containing these terms. Remember  that  an a tom is an n-ary predicate 
symbol  whose n argument-places each are "filled" with a term. What  we want 
is to determine the t ruth value of some atom, given the n-tuple of domain 
elements to which the n terms in the a tom refer. 

An example will make this clearer. Suppose we use the set of natural  num- 
bers as our domain, so each term in our language refers to a natural  number. 
Suppose also that  we have some 3-ary predicate symbol P.  We can interpret 
this predicate symbol as ' + ' ,  as follows: we define the a tom P(tl, t2, ta) to 
be true if the sum of the numbers to which the terms tl  and t2 refer, equals 
the number  to which the term ta refers, and we define P(tl,  t2, t3) to be false 
otherwise. 

Once we have determined to which objects the terms refer, and which 
a toms are true, we can determine the truth or falsity of the composite for- 
mulas. Here the connectives are treated in the same way as they were in 
proposit ional logic. Thus a formula (r A r is true iff r is true and ~b is true, 
etc. But, apart  from the five connectives, we can also use the two quantifiers 
when constructing a composite formula. The way these quantifiers work can 
be informally explained as follows: 

. First the existential quantifier 3. Suppose we have some formula 3x r 
where x is a variable which occurs in the formula r (this formula is 
pronounced as "there exists an x such that  r is true"). This formula 
3x r says that  there is at least one element in the domain which, when 
x refers to this element, makes the formula r true. Hence 3z r is said 
to be true iff such an element indeed exists. 

. Second, the universal quantifier V. Suppose we have some formula gx r 
where again x is a variable which occurs in the formula r (this is pro- 
nounced as "for all x, r is true"). This formula ~'x r says that  each 
element of the domain makes r true, when x refers to this element. 
Thus we say that  gx r is true iff indeed each object in the domain 
makes r a true formula. 

Interpreting a first-order language thus consists of three steps: 

1. Determine the domain and the connection between the terms and the 
domain (i.e., answer the question "to which object refers each term").  

2. Determine the t ruth  value of each atom, given the interpretation of the 
terms which the a tom contains (i.e., assign to each predicate symbol a 
function from the set of n-tuples of domain elements to {T, F}).  

3. Determine the t ruth value of each composite formula, given the previous 
two steps in the interpretation. This step involves using the rules for 
the connectives and the quantifiers. 
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2 . 3 . 2  I n t e r p r e t a t i o n s  

Part of the semantics of first-order logic is a definition of the relation between 
the terms in the language, and the domain we talk about. Each term "refers 
to" (or "denotes") an object from this domain. The pre-inteTTretatwn is a 
precise definition of this "referring"~ 

D e f i n i t i o n  2.15 A pre-inter~retation J of a first-order language L consists 
of the following: 

1. A non-empty set D, called the domain of the pre-interpretation. 
2. Each constant i.n L is assigned an element of D. 
3. Each n~ary function symbol f in L is assigned a mapping Jf  from D ~ 

to D. 

The domain D may be either finite or infinite. By D n we mean the set 
of all n-tuples of domain elements: D ~ m {(dl~ . . . ,dn)  i for every 1 ( i < 
n, di E D}. So, for instance~ if D -- {2, 3}, then D 3 contains 2 3 --- 8 elements~ 
such as (2, 2, 2), (2, 2, 3), (2, 3, 2). 

We use function symbols to model functions. Suppose for example that 
we want to model the mathematical function which gives the sum of its two 
arguments. Suppose we use as our domain D the set of natural numbers. 
We could model this mathematical  function by inserting in our language 
the function symbol g, of arity 2, and assigning in our pre-interpretation 
the following mapping Jg (from D 2 to D) to g: Jg(n ,m)  = n + m, where 
'+ '  is the usual mathematical  addition function. We see what the phrase "a 
mapping from D ~ to D" means: two elements of the domain (namely the 
arguments n and m of Jg) are mapped to one element in the domain (namely 
the sum n 4- m). It is important  not to confuse the function symbol g with 
the mapping Jg. The function symbol g is a symbol m the language, whereas 
the mapping Jg is not a symbol in the language, but is used to interpret the 
function symbol g to which it is assigned. 

E x a m p l e  2.16 Suppose our alphabet contains only one constant~ a, and one 
function symbol f ,  of arity 1. We could model the natural numbers (which 
we take as our domain) as follows: a denotes the number 0, f (a)  denotes the 
number l, f ( f ( a ) )  denotes 2, f ( f ( f ( a ) ) )  denotes 3~ etc. This can be achieved 
by the following pre-interpretation J: 

1. The domain D is the set of natural numbers: {0, 1, 2, 3 , . . .} .  
2. The constant a is assigned the natural number 0. 
3. The function symbol f is assigned the following mapping from D to D: 

J]  (n) = n 4- 1, where '4-' is the usual addition function. 

This gives us for instance the following: 

�9 a refers to the number 0. 
| f (a)  refers to Jr(0) -- l. 
| f ( f ( a ) )  refers to Jr(Jr(O)) -- J r ( l )  = 2. <~ 
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Thus a pre-interpretation "translates" the constants in L to objects in D, 
and it translates the n-ary function symbols in L to functions from D ~ to D. 
Using a pre-interpretation, we can map  each ground term to an element in 
the domain.  But, of course, there are also terms which are not ground, that  
is, terms which contain variables. We want to say something about  terms 
containing variables also. For this we need a separate concept: a variable 
assignment. The variable assignment tells us to which domain element each 
variable in the language refers. 

D e f i n i t i o n  2.17 Let J be a pre-interpretation with domain D of a first- 
order language L. A variable assignment V with respect to L is a mapping  
from the set of variables in L to the domain D of J .  

We use V(x /d )  to denote the variable assignment which maps the variable 
x to d E D, and maps  the other variables according to V. �9 

E x a m p l e  2.18 Let the alphabet  and the pre-interpretation J be as de- 
scribed in Example  2.16, and let the alphabet contain also the variables x, y, 
Yl and z. Then the following V is a variable assignment with respect to the 
language L given by the alphabet: 

�9 V ( x )  = 5.  

�9 = o .  

�9 v(y ) = 5 .  

�9 V ( z )  = 12. 
<3 

Remember  that  terms are constructed from constants, variables, and func- 
tion symbols. The variable assignment tells us to which domain element each 
variable refers. Similarly, the pre-interpretation tells us to which domain el- 
ement each constant refers, and how to treat function symbols. 

We may  combine the information we get from a pre-interpretation J and a 
variable assignment V. Suppose J has as domain the set of natural  numbers, 
and has Jg(n) = 3 * n, where ' , '  is the usual mathemat ica l  multiplication 
function. Suppose also that  V tells us that  the variable x is mapped  to the 
natural  number  4. Then we can, from the combination of J and V, figure out 
that  the t e rm g(x) refers to the domain element 12. Such a combination of 
a pre-interpretat ion and a variable assignment is called a term assignment, 
since it assigns a domain element to each term in the language. 

D e f i n i t i o n  2.19 Let J be a pre-interpretation with domain D of a first- 
order language L, and let V be a variable assignment with respect to L. The 
term assignment with respect to J and V of the terms in L is the following 
mapping  from the set of terms in L to the domain D: 

1. Each constant is mapped  to an element in D by Y. 
2. Each variable is mapped  to an element in D by V. 
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3. If d l , . . . ,  d,~ are the elements of the domain to which the terms t 1, �9 - -, t,~ 
are mapped, respectively, then the term f ( t ] . , . . . , t ,  0 is mapped to 
J / ( d l , . . . , d , O ,  where J/ is the function from D '~ to D assigned to 
the function symbol f by J. 

E x a m p l e  2.20 Let Z be the term assignment which can be constructed from 
the pre-interpretation J defined in Example 2.16 and the variable assignment 
V defined in Example 2.18. Then for instance: 

�9 Z( f (a ) )  : 1. 

�9 Z ( f ( f ( x ) ) )  = 7. 
| Z (a )  : Z ( y )  = O. 

. Z ( f ( f ( f ( z ) ) ) )  = 15 .  <t 

Once we have a pre-interpretation, we can define an interpretation. An 
interpretation "translates" each n-ary predicate to a corresponding function 
from D n to {T, F}.  That  is, to each predicate corresponds a function which 
assigns either T or F to all possible n-tuples of domain elements. 

D e f i n i t i o n  2.21 An interp,vtation I of a first-order language L consists of 
the following: 

1. A pre-interpretation J,  with some domain D, of L. I is said to be based 
0/2 J .  

2. Each n-ary predicate symbol P in L is assigned a mapping IF from D ~ 
to {T, F}.  0 

Since a 0-dry predicate symbol has no arguments, its interpretation is 
simply the assignment of a t ruth value. Thus 0-dry predicate symbols have 
the same role as atoms in propositional logic. In this way, propositional logic 
is embedded in first-order logic. 

E x a m p l e  2.22 Let us continue Examples 2.16, 2.18, and 2.20. Suppose the 
alphabet contains, apart from a, f and the four variables, one predicate 
symbol P,  of arity 3. We want to model P as %' .  This can be done by the 
following interpretation I: 

1. The pre-interpretation is J as defined in Example 2.16 (thus D is the 
set of natural numbers). 

2. We associate with P the following mapping [p from D a to {T, F}: 
Ip (n l ,n2 ,  na) = T if nl + n2 = ha, and Ip (n l ,n2 ,n3)  = F otherwise. 

Some examples of the way the func t ion / t ,  works: 

�9 Ip (1 ,2 ,3)  = T, since 1 +  2 = 3. 
| Ip(225, 11,236) = T,  since 225 + 11 = 236. 
| Ip(5,22,  16) = F,  since 5 + 22 # 16. 
�9 Ip (6, 7, 0) = F,  since 6 + 7 -~ 0. <1 
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When we have a pre-interpretation J and a variable assignment V, the 
term assignment with respect to o r and V tells us for each term in the lan- 
guage to which domain element this term refers. Also, when we have an 
interpretation I (based on J),  we can determine the truth value of any atom 
once we know to which domain elements the terms in the atom refer. 

Since any formula is constructed from atoms, connectives, and quantifiers, 
we can determine the truth value of any formula once we know how to handle 
the connectives and quantifers. How to determine the truth value of any 
formula, given an interpretation and a variable assignment, is specified in the 
following definition. 

Before giving the definition, we note that special care must be taken in 
case of quantifiers. Suppose we have the formula r = Vx R(f(x),  y). The 
term assignment with respect to J and V assigns a domain element to the 
variable x, and it also assigns a domain element to the term f(x),  so the 
formula R(f(x) ,  y) can be given a t ruth value by applying the function [R 
to the domain elements assigned to f (x)  and y. But the formula r in fact 
claims that R( f (x ) ,  y) is true for every assignment to x, not just for the one 
specific domain element assigned to x by V. 

We solve this problem by defining that  Vx R(f(x),  y) has truth value T iff 
for all elements d ~ D, R(f(x),  y) has truth value T under I and V(x/d). So 
for r to have truth value T, we require that R(f(x),  y) has t ruth value T for all 
possible assignments to x, keeping I and the rest of V (that is, the assignments 
to variables other than x) fixed. The 3-quantifier is handled similarly in the 
next definition. We have inserted some examples in this definition, continuing 
Example 2.22. 

D e f i n i t i o n  2.23 Let I be an interpretation, based on the pre-interpretation 
J with domain D, of the first-order language L, and let V be a variable 
assignment with respect to L. Let Z be the term assignment with respect to 
J and V. Then a formula r in L has a truth value under I and V, as follows: 

1. If r is the atom P( t l , . . . ,  t,~), and di is the domain element assigned 
to tl by Z (i = 1 , . . . , n ) ,  then the truth value of r under I and V is 
Ip(dl , . . . ,dn) .  
Example (continuing Example 2.22) 
P(f(a),  f(a), f( f(a)))  has truth value Ip(1, 1, 2) = T under I and V. 
P(f(x) ,  a, f ( f(y)))  has truth value Ip(6, O, 2) = F under I and V. 

2. If r is a formula of the form ~p,  (r A X), (~ V X), (r -+ X) or (r ++ X), 
then the t ruth value of 0 is determined by the truth table for the 
five connectives, Table 1.1 of the previous chapter (of course, we must 
determine the truth values of r and X first, before we can apply the 
truth table to find the truth value of r 

Example 
( P(f(x) ,  a, f ( f (y)  ) ) -+ P(f(a), f(a), f ( f (a)  ) ) ) has truth value T under 
I and V. 
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3. If r is a fornaula of the form 3x r then r has truth value T under I 
and V if there exists an element d E D for which r has t ruth  value T 
under I and V(x/d). Otherwise, r has truth value F under I and V. 

Example 
3z P(z, z, f(a)) has truth value F under I and v, since there exists no 
d E D such that  P(z, z, f(a)) has truth value T under I and V(z/d) 
(there is no natural  number d such that  d + d = 1). 

4. If r is a formula of the form Vx tb, then r has truth value T under I and 
V if for all elements d E D, r has t ruth value T under I and V(~:/d). 
Otherwise, r has t ruth value F under I and V. 

Example 
Vx P(x, f(a), f(x)) has t ruth value T under I and V, because for all 
d E D, P(x, f(a), f(x)) has t ruth value T under t and V(x/d) (for all 
d E D it is true that  d + l = d + l ) .  

O 

E x a m p l e  2 .24 Some more examples, also continuing Example 2.22. 

| The t ruth  value of P(f(a), a, f(a)) under ~ and Y is T, since we have 
Ie(1 ,  0, 1) = T (in other words, 1 + 0 = 1). 

* The t ruth value of P(f(f(a)), a, f(y)) under I and V is F,  since 2 + 0  r 
1. 

| The t ruth  value of the formula. (P(f(a), a, f(a)) A P(f(f(a)), a, f(y))) 
under I and V is F.  

| The t ruth value of -~?x P(Z(a), f(a), f(f(f(x)))) under I and V is T, 
since there does not exist a natural  number x such that  1 + 1 = 3 + ~. 

| The t ruth value of VxVyVz (P(x, y, z) ++ P(f(a), y, f(z))) under I and 
V i s T .  <1 

The t ruth value under I and V of a closed formula does not depend on the 
variable assignment V we use. This can be seen as follows: in a closed formula, 
all occurrences of variables are bound occurrences. So all occurrences of vari- 
ables are within the scope of some quantifier. This means that  when we are 
figuring out what the truth value of some closed formula is, every variable x 
is handled by the quantifier-rules, which use the variable assignment V(x/d). 
This in turn means that  the assignments made by the particular variable 
assignment V are irrelevant for the t ruth value of the closed formula, hence 
this t ruth  value is determined completely by I.  

Example 2.25 Define the interpretation I as follows: let D be a set of human 
beings, P be a unary predicate symbol which we interpret as "is mortal" ,  
and V be a variable assignment which maps x to John E D. Then the closed 
formula r = Vx P(x)  has t ruth  value T under I and V, since every element 
of the domain is human, and hence mortal .  Note that  it does not mat te r  here 
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that  V(x) = John, even though x appears in r Since the V-quantifier makes 
x in r range over the domain as a whole, the particular variable assignment 
V is irrelevant for the t ruth  value of r <~ 

E x a m p l e  2.26 Let 's  continue Example 2.22 once more. The closed formula 
Vx3y P(x, y, f(a)) has t ruth value F under I ,  obtained as follows: 

1. Vx3y P(x, y, f(a)) has t ruth value T under I and V iff 
2. for every d C D, 3y P(x, y, f(a)) has t ruth value T under I and V(x/d) 

iff 
3. for every d ~ D, there exists a d' E D such that  P(x, y, f(a)) has truth 

value T under I and V(z/d)(y/d') iff 
4. for every d ~ D, there exists a d ~ E D such that  IF (d, d', 1) = T i f f  
5. for every natural  number d, there exists a natural  number  d' such that  

rp(d ,  d', 1) = :r 
6. for every natural  number  d, there exists a natural  number f such that  

d + f = l .  

Since the last part  of this iff-sequence is false, the closed formula we began 
with has t ruth  value F under [ and V. But while determining this t ruth 
value, we have not used the assignments made by V at all. V assigns x the 
domain element 5, but the truth value of this closed formula does not depend 
on this particular assignment to x. The formula would have had t ruth value 
F even if V(x) were 1,000,000,000. <~ 

From these examples, we see that  V is irrelevant when determining the 
truth value of some closed formula. In the rest of this work we are only 
interested in closed formulas. Thus we can leave out the variable assignment 
V, and speak of "truth value under I"  instead of "truth value under I and 
V". Also, when we use the word ' formula '  later on, we mean 'closed formula ' ,  
unless stated otherwise explicitly. 

We end this Subsection by generalizing the terminology of true and false 
to (closed) first-order formulas: 

D e f i n i t i o n  2.27 Let r be a formula in the first-order language L, and / -  an 
interpretation of L. Then r is said to be true under I if its t ruth value under 
I is T. I is then said to satisfy 6, or to make r true. 

Similarly, r is said to be false under I if its t ruth value is F under I.  I is 
then said to falsify r or to make r false. �9 

2 . 3 . 3  M o d e l s  

As in propositional logic, an  interpretation which makes some formula true is 
called a model of that  formula. The concepts of logical consequence, tautolo- 
gies, etc. can also be easily generalized to the case of first-order logic. The 
following definitions are almost literally the same as in propositional logic, 
so we will pass over them fairly quickly. 
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D e f i n i t i o n  2.28 Let r be a formula, and I an interpretation. I is said to be 
a model of r if I satisfies r r is then said to have I as a model. <5 

D e f i n i t i o n  2.29 Let E be a set of formulas, and I an interpretation. I is 
said to be a model of E if I is a model of all formulas r E E. E is then said 
to have I as a model. �9 

D e f i n i t i o n  2.30 Let E be a set of formulas, and r a formula. Then r is said 
to be a logical consequence of E (written as E ~ r if every model of E is 
also a model of r We also sometimes say ~ (logically) implies r If E = {r 
this can also be written as ~p ~ 4. �9 

D e f i n i t i o n  2.31 Let E and P be sets of formulas. Then r is said to be a 
logical consequence of E (written as E ~ r ) ,  if E ~ r for every formula 
r E r .  We also say E (logically) implies r. 

E x a m p l e  2.32 Some examples: 

�9 Let the interpretation I have D = {1,2} as domain, P be a binary 
predicate interpreted as '> ' ,  let a denote 1 and b denote 2. Then I is a 
model of the formula Vx P(z, x), since 1 _> 1 and 2 >_ 2. On the other 
hand, I is not a model of the formula Yx3y ~P(x, y), since there is no 
number n in the domain for which 2 > n is false. 

| The formula Q(a) is a logical consequence of the formula Vy Q(y). 
�9 The set of formulas {Q(f(b)), Q(f(f(c))} is a logical consequence of the 

set {vx (P(x) P(b), P(f(c))}. < 

If r is not a logical consequence of E, we write E ~= r and similarly E ~= F 
if not E ~ F. 

Logical consequence is a very important  concept in artificial intelligence. 
Often, the knowledge of some system (a robot, for instance) can be repre- 
sented by a set of first-order formulas. We might then say that the system 
"knows" some sentence, if the formula representing this sentence is a logical 
consequence of its set of formulas. 

In propositional logic, testing whether or not ~ ~ r is easy: the number 
of possible interpretations that we need to consider, is finite (namely 2 ~, 
where n is the number of atoms occurring in ~ and r so we can always 
decide in finite time whether or not r is true in all models of D, simply by 
examining all possible interpretations. This property is called the decidability 
of propositional logic. 

Unfortunately, things are not as easy when we let ~ and r consist of 
first-order formulas. Since the number of possible terms is usually infinite, 
the number of possible interpretations is also usually infinite. Hence we may 
not be able to find out in finite time whether or not D ~ r by checking all 
possible interpretations. This problem of finding out or proving that D ~ r 
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or E ~: r will be quite prominent in the next chapters. But first we will 
generalize some other definitions from propositional logic to the first-order 
c a s e .  

D e f i n i t i o n  2.33 Two formulas 0 and ~ are said to be (logically) equivalent 
(denoted by 0 r r if both b ~ ~ and r ~ r (so r and V5 have exactly 
the same models). Similarly, two sets of formulas E and F are said to be 
(logically) equivalent, if both E ~ P and r ~ E. �9 

D e f i n i t i o n  2.34 Let r be a formula. Then: 

1. r is called valid, or a tautology, if every interpretation is a model of r 
This can be written as ~ r r is called invalid otherwise. 

2. r is called satisfiable, or consistent, if some interpretation is a model of 

3. r is called inconsistent, or unsatisfiable, or a contradiction, if no inter- 
pretation is a model of r In other words, r is inconsistent if it has no 
models. 

4. r is called contingent if it is satisfiable, but invalid. 

The above definition subdivides the set of all formulas in the same way 
as in propositional logic. We again illustrate this graphically in figure 2.2. 

All formulas 

Tautology Contingent Inconsistent 

Always 
t r u e  

Sometimes true, 
sometimes false 

Always 
false i 

Satisfiable Unsatisfiable 

Figure 2.2: The class of tautologies, contingent formulas, etc. 

These concepts can be defined similarly for a set E of formulas. E is a tau- 
tology if every interpretation is a model of I2, E is satisfiable if it has at least 
one model, etc. 

E x a m p l e  2.35 Some examples co illustrate Definition 2.34: 

�9 The formula (Sx Q(x) -+ --,gx ~Q(x)) is a tautology. 
�9 The set of formulas {gx (P(x)A Q(x)),-~P(a)} is unsatisfiable. <a 

We now generalize some results from the previous chapter to the case of 
first-order logic. The proofs are the same as for the propositional case. 



32 CHAPTER 2. FIRST-ORDER LOGIC 

T h e o r e m  2.36 (Deduc t ion  Theorem)  Let E be a set of formulas, and r 
and r be .formulas. Then E U {r ~ r iff E ~ (r -+ ~). 

P ropos i t ion  2.37 Let E be a set of formulas and r a formula. Then E ~ r 
iff E U {-,4} is unsatisfiable. 

Propos i t ion  2.38 If r and ~ are formulas, then r ~=~ r iff ~ (r ++ ~). 

Before proving the next proposition, we will first illustrate the eighth 
assertion in that proposition by a more intuitive example. 

Example  2.39 Suppose we have a language which contains the predicate P, 
of arity 2. Suppose we have an interpretation I, with a domain consisting of 
all human beings currently alive, and a function Ip such that Ip(hl, h~) = T 
iff human being hi loves human being h2. Suppose also that our language 
contains a constant a, which is mapped by I to the human being John. 

Intuitively, the following sentences mean the same thing: 

* "John loves everybody." 
, "There isn't a human being whom John does not love." 

First-order logic confirms this intuition, because we can prove that the fol- 
lowing formulas are equivalent: 

. Vx P(a, x) 

Example  2.40 We give another example fbr the same language as in Ex- 
ample 2.39. The two formulas 

1. Vx3y P(x, y) 
2. ~yvx P(x, y) 

are not equivalent. 
This can informally be illustrated using the interpretation defined in Ex- 

ample 2.39: if we use this interpretation, then the first formula informally 
means something like "everbody loves someone", and the second formula 
means "there is someone whom everybody loves". Clearly, the first formula 
can be true (if for example everbody loves his/her mother) while in the 
same interpretation the second formula is false (if there does not exist a 
person whom everybody loves). So these formulas are not equivalent. In fact, 
3yVx P(x, y) ~ Vx3y P(x, y), but Vx3y P(x, y) ~ ByVx P(x, y). <~ 

Propos i t ion  2.41 The following assertions hold. 

I. r , ,  -,-,4 

s. (~r A ~r r -qr v ~) 
~. ((r v 0) A X) ~ ((r A X) V (r A X)) 
5. ((r A e) v x) ~ ((~ v x) A (e v x)) 
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6. (r -+ r r  v 
7, (r ++ r r  ((r r A -+ r 
8. Vx r r  -~3x -,r 
9. 3x r r  -~Vx --r 

P r o o f  The proofs of the first seven items are the same as the proofs of 
Proposition 1.26. The proof of the ninth assertion is similar to the proof of 
the eigth item, which we give below: 

Vx r is true under some interpretation I iff 2 
Vx r is true under I and some variable assignment V iff 
for all elements d e D, r is true under I and V(x/d) iff 
for all elements d E D, -~r is false under I and V(x/d) iff 
there is no element d E D, such that -~r is true under I and V(x/d) iff 
~x -~r is false under I and V iff 
- ~ x  -1r is true under I and V iff 
-~3x 7r  is true under I. 
Hence Vx r and -,3x -,r have exactly the same models. [] 

We end this section by giving a very fundamental result: the Compactness 
Theorem, which will be needed in later chapters. The proof of this important 
result lies beyond the scope of our work (see for instance [BJ89] for a proof). 

T h e o r e m  2.42 ( C o m p a c t n e s s )  IrE is an infinite, unsatisfiabte set of for- 
mulas, then there exists a finite, unsatisfiable subset of E. 

Note the following consequence of this theorem: 

T h e o r e m  2.43 Let E be an infinite set of formulas, and r be a formula. If  
E ~ r then there is a finite subset E' of E, such that E' ~ r 

P r o o f  If E ~ r then by Proposition 2.37, E U {7r is unsatisfiable. By the 
Compactness Theorem, there is a finite unsatisfiable set r C_ E U {-,r Put 
E' = F\{-~r Then ~ '  C E, and since E' U {-~r is unsatisfiable, we have 
E ~ ~ r by Proposition 2.37. [] 

2.4 Convent ions  to Simplify Nota t ion  

First-order logic faces the same notational problem as propositional logic: 
huge amounts of parentheses make many complex formulas very hard to 
read. To avoid this, we will make the same simplifying conventions as we have 
already made for propositional logic, in Section 1.4 of the previous chapter. 
So we have for instance the following: 

2 R e m e m b e r  t h a t  we are only dea l ing  with closed formulas .  
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�9 Both (P(a) V (3x Q(x) v Vx P(f(x)))) and ((P(a) v 3x Q(x)) v 
gx P(f(x))) will be written as P(a) V Bx Q(x) v Vx P(f(x)).  

| ((P(a) A 3x (Q(x) v R(x))) A (P(f(e)) A Q(f(b)))) will be written as 
P(a) A 3x (Q(x) V R(x)) A P(f(c)) A Q(f(b)). 

| ((VxVy S(x, y) A P(b)) -4 (Q(a) v Q(f(a)))) is written as VxVy S(x, y) A 
P(b) -+ Q(a) v Q(f(a)). 

We will also sometimes abbreviate iterated function symbols in the following 
manner: f~(a) denotes f(f(a)), fa(a) denotes f( f( f(a))) ,  etc. 

2.5 Summary 

This chapter generalized propositional logic to first-order logic, which has a 
much greater expressive power. It allows us to talk about objects and their 
properties and relations. The syntax of first-order logic has two different cat- 
egories: terms and formulas. Terms are constructed from constants, variables 
and function symbols. Atomic formulas are constructed by filling in terms in 
the argument places of predicate symbols. The set of well-formed formulas 
in a first-order language can be built up from the atomic formulas, using the 
five connectives and the universal and existential quantifiers. 

The semantics of first-order logic consists of a generalization of the no- 
tion of an interpretation in the propositional logic. An interpretation roughly 
consists of a domain of objects, an assignment of objects to the terms of the 
language, and an assignment of truth values to atomic formulas. The truth 
values of more complex formulas are determined by rules for the connec- 
tives (the familiar truth table from propositional logic) and rules for the two 
quantifiers. A particular interpretation is a model of some formula, if that 
formula is true under the interpretatiom A formula r (logically) implies a 
formula r (r ~ ~) if every model of r is also a model of r Formulas r and 

are (logically) equivalent, denoted by r Ca ~, if r ~ ~ and ~ ~ r Similar 
concepts were defined for sets of formulas. 



Chapter 3 

N o r m a l  Forms and 
He r b r and  M o d e l s  

3.1 Introduct ion  

In the previous chapter, we discussed the basic properties of first-order logic. 
A first-order language consists of formulas, which stand in need of an inter- 
pretation. The interpretation defines the domain our language "talks about",  
it specifies the relation between the terms in the language and the objects in 
the domain, and it gives each (closed) formula a truth value. 

As we have seen, formulas can be built in many different ways. Some- 
times formulas which look very differently are in fact logically equivalent. 
For instance, the formulas -~x (P(x) --+ Q(x)) and Yy (P(y) A-,Q(y)) are 
equivalent, despite their widely differing form. 

It would be nice if we had some restricted normal form, to which all 
formulas could in some way be reduced, and in which formulas could be com- 
pared. For example, we would like a normal form in which the two formulas 
above would "look alike". If we had such a normal form, we could for example 
restrict many proofs to formulas in normal form, since any formula could be 
put in such a form. In this chapter we will define two special forms: prenex 
conjunctive normal form and Skolem standard form. 

The prenex conjunctive normal form has the nice property that for any 
formula, there exists another formula in prenex conjunctive normal form, 
which is equivalent to the first formula. Skolem standard form does not have 
this property, but is still very important  for inductive logic programming. 
In the final sections of this chapter, we will discuss the so-called Herbrand 
interpretations, which have the set of ground terms in the language as their 
domain. 
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3.2 Prenex Conjunctive Normal  Form 

In this section we will define a first normal form, the prenex conjunctive 
normal form of a formula. Recall that  by ' formula ' ,  we mean 'closed formula ' .  
The basic building blocks in the prenex conjunctive normal form are literals, 
which in turn make up clauses. 

D e f i n i t i o n  3.1 A literal is an a tom or the negation of an atom. A positive 
literal is an atom, a negative literal is the negation of an atom. �9 

E x a m p l e  3.2 P(x) and Q(a, y) are positive literals, -~Q(b, f(e)) is a negative 
literal. <~ 

D e f i n i t i o n  3.3 A clause is a finite disjunction of zero or more literals. (> 

E x a m p l e  3.4 The following formulas are clauses: 

�9 P(a) v - ,P(x) v Q(x, y) 
�9 ~R(x, a, f(y)) (this is a "disjunction" of one literal) <~ 

The notion of a first-order language can be restricted to clauses: 

D e f i n i t i o n  3.5 The clausal language C given by an alphabet,  is the set of 
all clauses which can be constructed from the symbols in the alphabet.  <5 

Clauses are very important ,  because sets of clauses are commonly used to 
express theories in inductive logic programming.  Note that  a clause may be 
a disjunction of zero literals. This is called the empty clause, denoted by o .  
We will explain what we mean by this in the next chapter, for this chapter 
the empty  clause is not relevant. 

A formula in prenex conjunctive normal form starts with a sequence of 
quantifier-variable pairs (called the prenex of the formula), followed by a 
conjunction of clauses (the matrix of the formula). For instance, the formula 
3x ((P(x) V -,Q(a)) A R(x)) is in prenex conjunctive normal form. 

D e f i n i t i o n  3.6 A formula is in prenex conjunctive normal form if it has the 
following form: 

qlxl . . .qnXn (C1 A . . .  A Gin), 

P r e n e x  M a t r i x  

where each qi is either B or V, xl . . . .  , x,~ are all the variables occurring in the 
formula, and each Cj is a clause. The first part  of the formula (the sequence 
of quantifiers with variables) is called the prenex of the formula. The second 
part  is called the matrix of the formula 1, which we sometimes abbreviate to 
M[xl,..., x,d. O 

t T h i s  t e r m  ~ m a t r i x '  is j u s t  a n a m e  we use ;  i t  d o e s  n o t  h a v e  v e r y  m u c h  in  c o m m o n  w i t h  
the  m a t h e m a t i c a l  c o n c e p t  o f  a m a t r i x .  
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Example  3.7 These formulas are in prenex conjunctive normal form: 

�9 Vx3y ((e(x) V ~Q(y)) A (-,R(a, b) V -,P(a))) 
�9 3 ,3v3z  (s(x, z, v) A P(v)) 
�9 Vx ((P(a) V P(b) V P(c)) A -,P(d) h (Q(x) v -.P(x))) 

These formulas are not in prenex conjunctive normal form: 

�9 3x~3y3z (S(z, y, z) A P(x)) 
�9 v .  (p ( . )  + p(I(x)))  < 

In fact, any formula r can be transformed into an equivalent formula 
tb, which is in prenex conjunctive normal form. We then say that r is a 
prenex conjunctive normal form of r As a first, simple example, we will put 
the formula 3x P(x) --+ 3x Q(x) in prenex conjunctive normal form, taking 
small steps, each of which preserves equivalence (see Proposition 2.41): 

3 .  e (x )  3x O(x) r  

-~x P(x) V 3x O(,)  r 
-,Bx P(x) v By Q(y) r 
Vx -,P(x) V By O(y) r 
vx (-,e(x) v By O(v)) 
VxBy v 

The last formula, which is equivalent to the first formula, is in prenex con- 
junctive normal form. We will now prove the following theorem, which shows 
that this method of putting a formula in prenex conjunctive normal form 
always works. 

T h e o r e m  3.8 Let r be a formula. Then there exists a formula ~ in prenex 
conjunctive normal form, such that r and ~ are equivalent. 

P r o o f  We give a constructive proof, i.e., we describe a procedure to transform 
r into an equivalent formula 9, where ~ is in prenex conjunctive normal form. 
Our procedure consists of five steps. To make the procedure more readily 
understandable, we will let an example run parallel with the proof: during 
the proof, we will apply the different steps in the procedure to the formula 
Vx (P(x) -+ P(f(x)))  V ~Vx (Q(x) v R(x, a)). It is not very difficult to see 
that each step does what it is supposed to do; we will leave the details of the 
proof to the reader. 

1. Remove all occurrences in r of the connectives -+ and +-~, using the 
following operations, which by Proposition 2.41 preserve equivalence: 

1. replace (9 -+ X) by (-~r V X) 
2. replace (9 ~ X) 

Call the formula thus 

Example 

by ((-~tb V X) A (-~X V r 

obtained r Then r r r 

gx (P(x) --+ P(f(x)))  V -~Vx (Q(x) v R(x, a)) r 
Vx (-,P(x) V P(f(x)))  V ~Vx (Q(x) v R(x, a)) 
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. 

. 

. 

. 

1. replace 
2. replace 
3. replace 
4. replace 
5. replace 

Example 

Rename variables in r such that no two quantifiers are followed by 
the same variable. Call the formula thus obtained r Then r ** r 

Example 
Vx (--,P(x) V P( f (x ) ) )  V ',Vx (Q(x) v R(:c, a)) 
w (~P(~) v P(s  v ~vy (Q(y) v R(y, ~)) 

Construct from r an equivalent formula r in which each occurrence 
of the connective -~ immediately precedes an atom, using the following 
equivalence-preserving operations: 

-~3x ~p by Vx -,r 
-~(r v x) by (-~r A ~x) 
-~(~b A X) by (-~b V -~X) 
-,-7r by ~p 

w (~P(~) 
w (~P(~) 
w (~e(~) 

V P(f(~c))) V -,Vy (Q(y) V l=t(y, a)) z~z 
V P(f(x)))  V 3y ~(Q(y) v It(y, a)) 
v P(/(x))) v 3y (~Q(~) A ~R(y, a)) 

Construct from r an equivalent formula r in which all quantifiers are 
at the front of the formula, using the following equivalence-preserving 
operations: 

1. replace ~x ~p V ~ by 3x (r V X) 
2. replace ~p V 3x g by ~x (~p V X) 
3. replace Vx r V X by Vx (r V X) 
4. replace ~ V Vx ;g by Vx (r V )/) 
5. replace 3x ~ A X by 3x (g? A X) 
6. replace ~ A 3x ;~ by 3x (~ A X) 
7. replace Vx r A )~ by Vx (r A X) 
8. replace g? A Vx X by Vx (g) A X) 

Note that r is of the form q~xl ...q,~x,~ X, where X does not contain 
any quantifiers. So the first part of the prenex conjunctive normal form 
(the prenex qlxl .. .  q~x~) is already in order. 

Example 
Vx (-,P(x) V e ( f ( x ) ) )  V 3y (~Q(y) A -~R(y, a)) 
Vx ((~P(x)  V P( f (x ) ) )  V 3y (-~Q(y) A ~R(y,  a))) r 
Yx3y ((-,P(x) V P(f (x) ) )  V (-,Q(y) A -R (y ,  a))) 

Finally, construct from r an equivalent formula r which is in prenex 
conjunctive normal form. This means that the part of r following 
the prenex must be transformed into a conjunction of disjunctions of 
literals. This can be done using the following equivalence-preserving 
operations: 

1. replace ((0 A X) V~) by ((0 V ~) A (X V ~)) 
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2. replace (r V (x A by ((r v x) A (r v r 
Example 
Vx3y ( (~P(x)  V P(f(x))) V (-~Q(y) A -~R(y, a))) 
gx~y ((-P(x) V P(f(x)) V ~Q(y)) A (-.P(x) V P(f(x)) V ~R(y, a))) 

The final formula ~b is the desired prenex conjunctive normal form of r D 

The prenex conjunctive normal form of some formula r is not unique. 
For example,  both  Vx3yVz (P(x, y) A Q(a, z)) and Vx3y (P(x, y) A Q(a, x)) 
are prenex conjunctive normal  forms of the formula r = Vx3y P(x,y) A 
Vx Q(a, x). When we use the constructive procedure given in the previous 
proof, we obtain the first of these prenex conjunctive normal forms. However, 
the second one is also in prenex conjunctive normal form, and can be shown 
to be equivalent to r 

3 . 3  S k o l e m  S t a n d a r d  F o r m  

In this section, we will define the Skolem standard form, named after the 
logician Thoral f  Skolem. Strictly speaking it is not a normal form, because 
not every formula is equivalent to a formula in Skolem standard form. Still 
Skolem standard form, which we will usually just call standard form, will 
turn out to be very useful. 

3.3.1 Clauses  and Universa l  Quant i f icat ion 

The Skolem standard form is a conjunction of universally quantified clauses. 
Wha t  do we mean by universally quantified? To explain this, note that  a 
clause may  contain variables. Since a clause, being a disjunction of literals, 
does not contain any quantifiers, all occurrences of variables in a clause are 
free occurrences. This means that  a clause containing one or more variables 
is not a closed formula, and hence cannot be given a t ruth value without a 
variable assignment. However, we usually take a clause to be preceded by a 
V-quantifier for every variable in the clause. In this way, a clause is treated 
as a closed formula. 

Example 3.9 The following formulas are universally quantified clauses: 

�9 VxVy (P(x) V -,Q(a, y)) 
�9 VyVz (-~Q(g(y, f(z))) v ~P(b)) <1 

For the general case, we can define universal quantification as follows: 

Definition 3.10 Let r be a (not necessarily closed) formula. Let xl, �9 Xn 
be all distinct variables which occur free in 4. Then we use V(r to denote 
the formula Vxl . . .Vx~ r This V(r is a universally quantified formula. 
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Intuitively, we can see that the formula Vx (P(x) A Q(a, x)) is logically 
equivalent to Vx P(x)  A Vx Q(a, x). In particular, if Vx (P(z) A Q(a, x)) is 
true under some interpretation [, then no matter  which domain element is 
assigned to x, Q(a, x) is true under I. So then Vx Q(a, x) is true under I. Thus 
it can be shown that Vx (P(z)AQ(a, z))logically implies Vx P(x)AVx Q(a, x). 
The converse is also easy to see, so these two formulas are indeed equivalent. 

In general, if C1 , . . . ,  C,~ are clauses containing the variables x l , . . . ,  x,~, 
and f is an interpretation with domain D, then 

V(C1 A C~ A . . .  A C,~) is true under I iff 
for every d l , . . . ,  dn E D, C1 A . . .  ACm is true under / and some V(xl/dl) 
... ( x d & )  iff 
for every d l , . . . , d ~  E D, C1 and , . . a n d  Cm are true under I and some 

V(C1) AV(C2) A . . .  A V(Cm) is true under I. 

Hence: V(C1AC~A...ACre) 4e~ V(C1)AV(C2)A...AV(Cm). Thus we can write 
each conjunction of universally quantified clauses as a universally quantified 
conjunction of clauses, and vice versa. 

Something needs to be said about the names of variables in a conjunction 
of universally quantified clauses, namely that it does not mat ter  whether two 
or more clauses in the conjunction contain the same variables. Examine for 
instance the following: 

Vx (P(x) V -~Q(a, x)) A VxVy Q(y, x) r 
Vy (P(y) V -,Q(a, y)) A VzVx Q(x, z). 

Since a conjunction of universally quantified clauses is equivalent to the uni- 
versally quantified conjunction of these same clauses, we also have: 

w r y  v  Q(a, A Q(y, 
wvyw v  Q(a, A Q(y, 

From this example, we see that  we can rename variables in a clause without 
regard to the variables occurring in other clauses in the conjunction. Re- 
naming variables in clauses preserves equivalence. Of course, renaming the 
variables in a clause should not change the meaning of the clause, so we are 
not allowed to rename P(x) V Q(x, y) to P(z) v Q(z, z). 

3 . 3 . 2  S t a n d a r d  F o r m  

In this subsection we will define the Skolem standard form. Every formula 
can be put  in this form, but not every formula has a standard form which is 
equivalent to the originM formula. On the other hand, we do have the weaker 
result that  a formula is unsatisfiable iff its standard form is unsatisfiable. 

What  we want here, is to take a formula r which is in prenex conjunctive 
normal form, and construct from r a formula which can be written as a 
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conjunction of universally quantified clauses. This new formula will then be 
called a Skolem standard form of the original formula. Since a conjunction 
of universally quantified clauses is equivalent to the universally quantified 
conjunction of these clauses, it does not really mat ter  whether we search for 
the former or the latter. 

Recall what a formula in prenex conjunctive normal form looks like: 

where each qi is either ~ or V, and each Cj is a clause. In fact, without 
existential quantifiers, a formula in prenex conjunctive normal form would 
already be a universally quantified conjunction of clauses, and hence could 
be written as we want it: as a conjunction of universally quantified clauses. 
So all we have to do, is get rid of the existential quantifiers in the prenex of 
r This is done by a process called Skdemization. 

We will illustrate this process by a small example. Suppose we have the 
formula r = Vx3y Q(x, y). We want to construct a "similar" formula without 
the existential quantifier. Consider the following mathematical  proposition: 
"for every natural number n there exists a natural number m such that 
n < rn". We know that if we define the mathematical  function f(n) = n + 1, 
then for every natural number n, n < f(n). In other words, we could replace 
m in the proposition by a function of n. Similarly, we could replace the 
variable y in r by a unary function symbol having x as argument. So what 
we do, is take a new function symbol, say f ,  and add this to the alphabet. 
Now we replace the variable y by f(x),  obtaining r = Vx Q(x, f(*)). This 
new formula r a Skolemized.form of r is a universally quantified conjunction 
of (in this case only one) clauses. 

D e f i n i t i o n  3.11 Let r = qlXl . . .qnx~M[xl , . . . ,  xm] be a formulain prenex 
conjunctive normal form. Then a Skolemized form of r is a formula r ob- 
tained by applying the following procedure to r 

1. Set r 1 6 2  
2. If the prenex of r contains only universal quantifiers, then stop. 
3. Let qi be the first (from the left) existential quantifier in r Let 

xil, �9 �9 xij be the variables on the left of xi (that is, those variables 
from x l , . . . ,  xi-1 that have not been deleted). 

4. Add a new j -cry  function symbol, which we denote here by f ,  to the 
alphabet. Replace each occurrence of xi in the matr ix of r by the term 
f ( x i l , .  �9 xlj). If there are no universal quantifiers to the left of xi in 
r then replace each occurrence of xi by a new constant (0-ary function 
symbol) which is added to the alphabet. 

5. Delete 3xi from the prenex of r 
6. Goto step number 2. 

The new function symbols and constants which are added to the alphabet 
are called Skolem functions and Skolem constants, respectively. �9 
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It is important  to note that we extend the alphabet in this process: each 
new Skolem function or constant was not previously in the alphabet. 

E x a m p l e  3.12 Here we describe the steps we take to find a Skolemized form 
of 3xVyVz3u (P(x) A (-,Q(y, g(a, x)) V R(f(u), b, z))). 

1. We replace each occurrence of x by the new constant c, and remove 3x 
from the prenex, to obtain the formula: 

VyVz3u (P(c) A (-~Q(y,g(a, c)) V R(f(u), b, z))). 
2. Then we replace each occurrence of u by the new term h(y, z), and 

remove 3u from the prenex. We then obtain the following Skolemized 
form of the original formula: 

VyVz (P(c) A (-~Q(y,g(a, c)) V R(f(h(y,  z)), b, z))). <a 

Note that  a Skolemized form is a universally quantified conjunction of 
clauses. This can be rewritten as a conjunction of universally quantified 
clauses. This last form is then called a Skolem standard form. 

D e f i n i t i o n  3.13 Let .6 be a formula, let r be a prenex conjunctive normal 
form of r and let 6" = V(C1 A . . .  A C~) be a Skolemized form of CJ. Define 
the formula r as V(C,) A . . .  A V(C,). Then r is called a Skolem standard 
form (or just a standard form) of 6. 

We say the standard form ~ is based on the prenex conjunctive normal 
form 6'. We also say that r has r as a standard form. �9 

Note that  in the previous definition, 6"  and the standard form r are equiv- 
alent formulas. Every formula has a prenex conjunctive normal form, every 
prenex conjunctive normal form has a Skolemized form, and every Skolem- 
ized form is equivalent to a conjunction of universally quantified clauses. Thus 
clearly, every formula has a standard form. 

E x a m p l e  3.14 Below we describe the steps we take to get a standard form 
of the formula r = gx (P(x) -+ P(f(x)))  V -,Vx (Q(x) v R(x, a)). 

1. First we construct 6'~ which is a prenex conjunctive normal form of r 
(see the example in the proof of Theorem 3.8): 

gx3y ((-~P(x) V P(f(x))  V -~Q(y)) A (--,P(x) V P(f(x))  V ~R(y, a))). 

2. Replacing y by g(x) we obtain the following 6", which is a Skolemized 
form of r hence a universally quantified conjunction of clauses: 

Vx ((--,P(x) V P(f(x))  V -,Q(g(z))) A (--P(x) V P(f(x))  V ~R(g(x), a))). 
3. Finally we rewrite 6" into standard form, as a conjunction of universally 

quantified clauses: 

= gx (~P(x) V P(f(x))  V --~Q(g(x))) A Yx (~P(x) V P(f(x))  V 
a)). 

E x a m p l e  3.15 Note the difference between the following two cases: 
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�9 Vx P(x, f(x)) is a standard form of the formula Vx3y P(x, y). 
�9 Vx P(a:, a) is a standard form of the formula 3ygx P(x, y). <1 

A set E = { r  r of formulas is equivalent to the formula (r A 
. . .  A Cn), so we can define the (Skolem) standard form of the set E as the 
s tandard from of (r A . . .  A r 

Since the prenex conjunctive normal form of some formula r is not unique, 
the s tandard form of this formula is not unique, either. When we replace a 
variable by a new function symbol, we can choose among different possible 
function symbols. For example, both Vx P(a, f(x)) and Vx P(a,g(x)) are 
standard forms of the formula Yx~y P(a,y). The two functions f and g 
may be interpreted as different functions over the domain. Analogously, in 
the earlier proposition "for every natural  number n there exists a natural  
number  m such that  n < m",  we could replace m by f(n) = n + 1, but also 
by for instance g(n) = n + 2. 

E x a m p l e  3.16 In this example we will show that  a standard form of some 
formula need not be equivalent to the original formula. The formula ~ = P (a) 
is a s tandard form of the formula. r = 3x P(x), yet r and r are not equivalent. 
We prove this by the following interpretation I ,  which is a model of r but 
not of r 

1. z) = {1, 2}. 
2. The constant a is mapped  to the number 2. 
3. /p(1)  = T a n d / p ( 2 )  = F.  <1 

From the previous example we see that  putt ing a formula in s tandard 
form does not preserve equivalence: if ~p is a s tandard form of r then r 
and ~ are not necessarily equivalent. However, putt ing an unsatisfiable for- 
mula  in s tandard form does preserve unsatisfiablity: the original formula is 
unsatisfiable iff the s tandard form is unsatisfiable (equivalently, the original 
formula has a model iff the standard form has a model). This will be shown 
in Theorem 3.19. To prove the theorem, we first need the following results. 

Proposition 3.17 Let r be a formula, and let r be a standard form of r 
Then ~ ~ r 

Proof  Without  loss of generality, we assume r is the following prenex con- 
junctive normal  form: 

qlxl . . ,  q~x~ M [ < , . . . ,  x~], 

where we use M [ X l , . . . ,  xn] to denote the matr ix  of the formula, which con- 
tains the variables xl ,  �9  x,~. We also assume (again, without loss of gener- 
ality) that  r is based on this prenex conjunctive normal form r 

Let q~ be the first existential quantifier in r Defne  r as follows: 
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Vxl . . .Vxv-1  qr+lxr+l.., qnxn M[xl, .., Xr-1, f r (X l , . . . ,  Xr--1), Zr-t-1, .-, Xn], 

where the notation MIx1, . . . ,  x,_ 1, f ,  (x l , . . . ,  xr_ 1), x ,+~ , . . . ,  x,] means that 
each occurrence of Xr in the matrix is replaced by f~(x l , . . . ,  x~-l), f~ being 
the Skolem function (or Skolem constant if r = 1) that has been used to 
replace x~ when constructing ~. 

We will show that  61 ~ r Suppose that the interpretation I (with pre- 
interpretation J and domain D) is a model of r This means that if V is 
some arbitrary variable assignment, then for all d l , . . .~  d~-i E D, 

is true under I and V(x l /d z ) . . .  (xr-i/d~_~). Let d~ be the domain element 
Jf~(dl , . . . ,  d~-l). Then 

q~+lz~+l ... q,~z,~ M[x l , . . . ,  x,-1, z~, x~+l,. . . ,  x~] 

is true under / and V ( x l / d l ) . . .  (x~-l/d~-l)(x~/d~). This means that for all 
dl , . . . ,dr -1 ,  3x~ q~+lx~+l ...q~x~ M[xl , . . . , x~- l , x~ ,x~+l , . . . , xn]  is true 
under I and V ( x l / d l ) . . .  (x~-l/dr-~). And this in turn means that  r is true 
under I, so I is a model of 6. Hence 61 ~ 4- 

Suppose qs is the first existential quantifier among q~+l, �9 �9 %. From 41 
we can define a new formula 62, where qsx~ is removed from the prenex, 
and each occurrence of x~ in the matrix of 61 is replaced by another Skolem 
function fs, having x l , . . . , z ~ - l ,  x~+l , . . . ,x~- i  as arguments (again, f~ is 
the Skolem function which has been used to replace zo~ when constructing 
~). Then we can prove in the same way as befbr% that r ~ 61, so CB ~ r 

In this way, we can continue defining formulas 4; until all existential 
quantifiers are removed from the prenex (each 4i will contain one existential 
quantifier less than @-1). Everytime we will have the result that @ ~ 4. 
So, if 6 contains k existential quantifiers, then r will contain only universal 
quantifiers, and we will have the result that 6~r ~- 6. But since the Skolem 
functions used to construct Ck are the same as the Skolem functions used to 
construct ~, and since 6~ and ~b are based on the same prenex conjunctive 
normal form 4, we see that  Ck = ~. Hence ~ ~ 6. [] 

P r o p o s i t i o n  3.18 Let 6 be a formula, and let tb be a standard form ore .  If 
is unsatisfiable, then r is unsatisfiable. 

P r o o f  We make the same assumptions (without loss of generality), and we 
define the same r  Ck as in the proof of Proposition 3.17. 

We will prove that  if r is unsatisfiable, then r is unsatisfiable. So suppose 
r is unsatisfiable. If r is satisfiable, then there exists an interpretation I 
(with pre-interpretation J and domain D) such that r is true under I. That  
is, if V is some arbitrary variable assignment, then for all d I , . . . ,  d~-I ~ D, 
there exists a dr 6 D such that 
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qr+lXr+l...qnXn M [ x l , . . . , X r - l , X r , X r + l , . . . , x n ]  

is true under I and V(x l /d l )  .... (x~/d~). 
Now let the interpretation F (with pre-interpretation J~ and domain D) 

be I, with the addition that  J}r (d l , . . . ,  d~-l) = d~. Then r is true under 
I ' ,  so 61 is satisfiable. This is a contradiction, so if 61 is unsatisfiable then r 
is also unsatisfiable. 

We can also prove in the same way that if 62 is unsatisfiable, then r is 
unsatisfiable, so then r is unsatisfiable. And similarly, we can proof that  if 
r is unsatisfiable, then r is unsatisfiable, etc. Finally we have that if Ck is 
unsatisfiable, then r is unsatisfiable. Since 6k = r we have the result that if 

is unsatisfiable, then r is unsatisfiable. [] 

Now we can prove the theorem: 

T h e o r e m  3.19 Let r be a formula, and let r be a standard form of r Then 
6 is unsatisfiable iff r is unsatisfiable. 

P r o o f  
~ :  Suppose r is unsatifiabIe. If r has a model M, then by Proposi- 

tion 3.17, M is also a model of 6- Hence ~ has no models. 
~ :  This is Proposition 3.18. D 

To end this section, note the following property of clauses: 

P r o p o s i t i o n  3.20 A clause C is a tautology iff C contains a complementary 
pair of literals (i.e., both A and -~A). 

P r o o f  
r This is obvious. 
::~: Suppose C = L1 V . . .  V Lk is a tautology, but does not contain A 

and -~A. Let X l , . . . ,  x,~ be all distinct variables in C. Let D = { d l , . . . ,  d,~}, 
and V be a variable assignment which assigns di to xi, for every 1 < i < n. 
Because C does not contain a complementary pair, and each xi is assigned 
a different di, we can define an interpretation I, with domain D, such that 
every literal Lj in C is false under I and V. But then C is false under I, 
contradicting that  C is a tautology. Hence C must contain a complementary 
pair. [] 

3.4  H e r b r a n d  M o d e l s  

In this section, we will describe a special and very interesting class of inter- 
pretations, the so-called Herbrand interpretations, named after the French lo- 
gician Jacques Herbrand. Herbrand interpretations are particularly suited for 
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clauses. In the next section, we will prove some interesting propositions con- 
cerning Herbralld models. These propositions partly explain why Herbrand 
models are useful, and why we need them in this work. Another reason why 
we introduce Herbrand models, is that they provide a very natural semantics 
for definite programs, which will be discussed in Chapter 7. 

We start by defining the Herbrand universe (the set of all ground terms 
in the language), and the Herbrand base (the set of all ground atoms in the 
language). 

D e f i n i t i o n  3.21 Let L be a first-order language. The Herbrand universe 
UL for L is the set of all ground terms which can be formed out of the 
constants and function symbols appearing in L. In ease L does not contain 
any constants, we add one arbitrary constant to the alphabet to be able to 
form ground terms. 

D e f i n i t i o n  3.22 Let L be a first-order language. The Herbrand base BL for 
L is the set of all ground atoms which can be formed out of the predicate 
symbols in L and the terms in the Herbrand universe UL. 

Often when we give an example, we do not first sum up the alphabet. 
Instead, we just assume the alphabet consists of all symbols occurring in the 
formulas we use. 

E x a m p l e  3.23 Consider the set of formulas {P(a),Q(a,  f(b)),Vx (P(x) -+ 
Q(x, x))}. Let L be the first-order language given by the symbols in this set. 
Then the Herbrand universe UL is the infinite set 

{a, b, f(a), f(b), f ( f (a )  ), f ( f (b)  ), . . .}. 

The Herbrand base BL is the infinite set 

{P(a) ,  P(b), Q(a, b), P(f(a)) ,  P(f(b) ), Q(a, f(a) ), Q(a, f(b) ), . . .}. 

<3 

Like all interpretations, a Herbrand interpretation starts with a pre- 
interpretation. What  is special about Herbrand interpretations, is that we 
take the set of ground terms (i.e., UL) as our domain. The mapping from 
terms to domain elements is such, that each ground term is mapped to the 
corresponding element in the domain, namely that term itself. So each ground 
term in the language refers to itself in the domain. 

D e f i n i t i o n  3.24 Let L be a first-order language. The Herbrand pre-inter- 
pretation for L is the pre-interpretation consisting of the following: 

1. The domain of the pre-interpretation is the Herbrand universe UL. 
2. Constants in L are assigned themselves in UL. 
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3. Each n-ary function symbol f in L is assigned the mapping J] from 
g~ to UL, defined by J f ( t l , . . . , t ~ )  = f ( t l , . . . , t n ) .  O 

Thus the function Jf  maps t l , .  �9 t,~ to the ground term f ( t l ,  . . . ,  t~) in 
the Herbrand universe UL. 

E x a m p l e  3.25 We will give the Herbrand pre-interpretation for the alpha- 
bet described in Example 3.23: 

1. The domain is UL, as described in the previous example. 
2. The constant a is mapped to a ~ UL, b is mapped to b E UL. 
3. The function symbol f is assigned the following mapping Jf  from UL 

to uL: J (t) = ] ( t )  

So for example, the term f ( f ( b ) )  is mapped to f ( f (b ) )  r UL. <:J 

Given an alphabet, essentially only one Herbrand pre-interpretation is 
possible. 2 Based on this Herbrand pre-interpretation, we can define an Her- 
brand interpretation by assigning to each n-ary predicate symbol P a map- 
ping Ip from U~ to {T, F}. If UL is an infinite set (as is usually the case), an 
infinite number of different IF's are possible, hence an infinite number of Her- 
brand interpretations can be based on the unique Herbrand pre-interpretation 
for a given alphabet. 

De f in i t i on  3.26 Let L be a first-order language and d a Herbrand pre- 
interpretation. Any interpretation based on J is called a Herbrand interpre- 
tation. �9 

Since a Herbrand interpretation assigns a mapping IF from U~ to {T, F} 
to each n-ary predicate symbol P,  it in fact divides the Herbrand base BL in 
two disjoint sets: 

1. The set of ground atoms P ( t l , . . . , t ~ )  such that I p ( t l , . . . , t ~ )  = T, 
where P is an n-ary predicate symbol. 

2. The set of ground atoms P ( t l , . . . , t ~ )  such that I p ( t l , . . . , t ~ )  = F. 

This means that a Herbrand interpretation I is completely specified by the 
set of all A E BL which are true under I. So we can represent any Herbrand 
interpretation I economically by a subset (which we also call I) of Bc. 

E x a m p l e  3.27 We define the following Herbrand interpretation I of the 
language L defined in Example 3.23: 

1. The pre-interpretation on which I is based, is the pre-interpretation 
defined in the previous example. 

2The only exception is the case where L does not contain any constants ,  and we have 
to add one. Here we could choose different symbols  for this new cons tant  (a, or b, or c, 
etc), so different Herbrand  pre- interpreta t ions  would be possible in this case. 
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2. P is assigned the following function from UL to UL : [p (t) = T if t = a 
or i f t  = f ( f (a) ) ,  Ip(t) = F otherwise. 
Q is assigned the following function from U~ to UL: IQ(ti,t2) = T if 
tl = t~, IQ(tl,t~) = F otherwise. 

This I can be represented by the following infinite subset of BL: 

{P(a) ,  P( f ( f (a ) ) ) ,  O(a, a), Q(b, b), Q(f(a),  f(a)), Q(f(b), f (b)) , . . . } .  < 

As the reader may already suspect, if some tbrmula is true under some 
Herbrand interpretation I, then I is called an Herbrand model of this formula. 

D e f i n i t i o n  3.28 Let L be a first-order language, E a set of formulas of L, 
and I a Herbrand interpretation of L. If I is a model of E, it is called a 
Herbrand model of E. 

E x a m p l e  3.29 Continuing Example 3.23, the following are all Herbrand 
interpretations of L: 

�9 /1 = { P ( a ) , P ( b ) , Q ( a , b ) , Q ( b , b ) } .  
I2 = { P ( a ) ,  Q(a, a), Q(a, f (b) ) } .  

�9 Ia = {P( f ( f (a ) ) ) ,  P(b), Q(a, a), Q(a, f(b))}. 
�9 /4 = { P ( a ) ,  P(b), Q(a, a), Q(b, b), Q(a, f (b) ) } .  

12 and /4 are Herbrand models of E = {P(a) ,Q(a , f (b) ) ,Vx  (P(x) -+ 
Q(x, x))}. I1 and Ia are not. <a 

3.5 Results  Concerning Herbrand Models  

Now, why do we need Herbrand models? To show the usefulness of Herbrand 
models, we need the following proposition. 

P r o p o s i t i o n  3.30 Let E be a set of clauses in a first-order language L. Then 
has a model iff E has a Herbrand model. 

P r o o f  
o :  Suppose E has a model M. Then we define the following Herbrand 

interpretation I: 

1. The pre-interpretation is the Herbrand pre-interpretation of L. 
2. Let P be an n-ary predicate symbol occurring in E. Then we define 

the function Iv from U~ to { T , F }  as follows: I v ( t 1 , . . . , t , )  = T if 
P ( t ~ , . . .  ,t~) is true under M, and Iv ( t1 , . . .  ,t~) = F otherwise. 

It can easily be shown that  I is a Herbrand model of E. 
~ :  This is obvious (a Herbrand model is a model). [] 

Note that  in the previous proposition, E is required to be a set of clauses. 
The proposition does not hold in the general case of arbitrary non-clausal 
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formulas. For example, consider the language L given by" the symbols in 
= {3x P(x),- ,P(a)}.  Here E has a model, but does not have a Herbrand 

model. The problem lies in the domain: the Herbrand universe for this set of 
formulas is the set {a}, whereas we need a domain of at least two elements 
to make both formulas in E true. 

We have already mentioned the importance of the concept of logical im- 
plication (or logical consequence). Often, we have a set E and a formula r 
and we want to find out whether E ~ r holds. E ~ r holds iff each model of 

is also a model of r Thus a first idea might be to just check all models of 
E, and see if r is true under these models. But, of course, because of the huge 
(infinite) number of different ways of defining a model of E this approach is 
intractable. Now a nice thing about Herbrand models is that we can restrict 
our attention to Herbrand models when trying to prove E ~ r This is shown 
by the following proposition: 

P r o p o s i t i o n  3.31 Let E be a set of formulas and r a formula. Let S be a 
standard form of E U {--r Then E ~ r iff S has no Herbrand models. 

P r o o f  E ~ r iff (by Proposition 2.37) 
E U {-,r is unsatisfiable iff (by Theorem 3.19) 
S is unsatisfiable iff 
S has no models iff (by Proposition 3.30) 
S has no Herbrand models. [] 

What  the previous proposition shows, is that  when trying to prove E ~ r 
we only have to consider Herbrand interpretations of a standard form of 

U {7r Though the number of Herbrand interpretations is usually infinite, 
the task of investigating all Herbrand interpretations is much more tractable 
than the task of investigating all arbitrary interpretations, since in Herbrand 
interpretations we restrict ourselves to only one domain: the Herbrand uni- 
verse UL. 

E x a m p l e  3.32 Let E = {Vz (P(x) -+ Q(x)), 3x P(x)}, and r = ~x Q(x). 
The set of clauses {(-,P(x) V Q(x)), p(a),-,Q(y)} is a standard form of the 
set E U (-,r  Proposition 3.31 implies that E ~ r iff S has no Herbrand 
models. It can be shown that S has no Herbrand models, so E ~ r <~ 

E x a m p l e  3.33 Let E = {3x P (x ) , - ,P (a )} ,  and r = P(b). Then the set of 
clauses {P(c) , -~P(a) , - -P(b)}  is a standard form of E U {-~r This standard 
form has a Herbrand model, namely I = {P(c)}. Hence it follows that E ~= r 

We have assumed here, in constructing this standard form, that c was 
not part of the alphabet already (recall that  introducing Skolem constants or 
functions means extending the alphabet). We cannot use b as the new Skolem 
constant instead of c, since b is already part of the alphabet (it occurs in 
P(b)). For instance, if we took {P(b),-~P(a)} to be a standard form of E, 
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then adding -~r would give the set of clauses {P(b) ,- ,P(a) , -~P(b)},  which 
has no Herbrand model. So we would then mistakenly conclude that E ~ r 

Finally, it should be noted that though Herbrand interpretations are suffi- 
cient for determining the satisfiability of a set of clauses, they are not sufficient 
for logical implication. For example, suppose we have a language L with only 
one predicate symbol P,  of arity 1, only one constant a, and no function sym- 
bols of arity >_ 1. Then this language has only two Herbrand interpretations: 
I1 = ~J and I2 = {P(a)}.  The only Herbrand model of P(a) is I~, which is 
also a Herbrand model of P(x). Hence every Herbrand model of P(a) is a 
Herbrand model of P(x). Still, P(a) ~ P(x) does not hold, because we can 
easily construct a non-Herbrand model of P(a) which is not a model of P(x). 

3.6 Summary 

This chapter defined two normal forms for first-order formulas. Firstly, we 
discussed prenex conjunctive normal form, in which all quantifiers are at 
the front of the formula, and the rest of the formula is a conjunction of 
disjunctions of literals. A disjunction of literals is a clause. Sets of clauses 
will be the vehicle for expressing theories in inductive logic programming. 
Every formula can be put in prenex conjunctive normal form, and this normal 
form will be logically equivalent to the original formula. Secondly, we defined 
(Skolem) standard form, in which all existential quantifiers are eliminated. A 
standard form can be written as a set or conjunction of universally quantified 
clauses. Putt ing a formula in standard form does not always preserve logical 
equivalence, but it does preserve satisfiability: the original formula has a 
model iff the standard form has a model. 

Furthermore, we defined the special class of Herbrand interpretations and 
Herbrand models, which have the set of ground terms in the language as 
domain. We showed that  a set of clauses has a model iff it has a Herbrand 
model. This means that  in testing unsatisfiability of sets of clauses, we can 
restrict attention to Herbrand models. 
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3 .A Al ternat ive  Nota t ion  for Standard Forms 

A standard form is a conjunction of universally quantified clauses. Usually, 
the universal quantifiers are omit ted to simplify notation. Other notational 
variants are also sometimes used in the ILP-li terature for such standard 
forms. In this appendix, we will discuss most of these different notations. 

First, concerning the building blocks of standard forms: clauses. A clause 
is a finite disjunction of zero or more literals. The following different notations 
are used in the li terature to denote a clause L1 V . . .  V L~. We will illustrate 
each notat ion on the clause P(a) V -~Q(x, y) v -,P(z) v Q(a, f(x)). 

1. As a universally quantified disjunction of literals. 

Example 
VxVy (P(a) V -,Q(x, y) V -,P(x) V Q(a, f(x))) 

2. As we defined it in the previous section, so as a disjunction of literals, 
without explicit universal quantifiers. 

Example 
P(a) V -~Q(x, y) V -~P(x) V Q(a, f(x)) 

3. As a set ofli terals:  { L , , . . . , L ~ } .  

Example 
{P(a) , -~Q(x,  y),-~P(x), Q(a, f (x) )  } 
Note that  both  P(a) and P(a)VP(a) are represented by the set {P(a)}.  
So in case of set-notation, a clause contains a literal only once. 

4. As an implication. Suppose L1 = --,A1,... ,  Li = -~Ai are all negative 
literals, and Li+l,. . . ,  Ln are all positive literals in the clause. Then the 
clause is equivalent to the formula (A1 A . . .  A Ai) --+ (Li+l V . . .  V L~). 
If the clause contains only positive literals, the '-+' symbol is usually 
omit ted.  If  there are only negative literats, we can write (A1 A . . .  A 
A~)-< 
For the notat ion of a clause as an implication there are also several 
alternatives3: 

1. As the formula (A1 A . . .  AA;) --+ (Li+~ V . . . V  L~). 

Example 
(O(x, y) A P(x)) --)" (P(a) V Q(a, f(x))) 

2. Without  the parentheses: A1 A . . .  A Ai -+ Li+l V . . .  V Ln. 
Example 
Q(x, y) A P(x) --+ P(a) V Q(a, f(x)) 

aTo complicate this notational mess even more, the implication r --+ r is often written 
"the other way around" as ~b +- & We ignore this notation here, but will introduce it in 
Chapter 7. 
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3. As { A 1 , . . . , A , }  --~ { L i + l , . . . , L n } ,  where { A 1 , . . . , A , }  means 
(A1 A. . .  A Ai), and {Li+I, �9 �9 Ln} means (Li+l V . . .  V L,~). Note 
that  the commas  in the first set mean 'A', whereas in the second 
set they mean 'V'. 

Example 
{Q(< P( . ) )  -+ {P(a), Q(a, 

4. As the previous case, but without parentheses: 
AI, . . . ,  A~ --+ L~+I,..., L,~. 
Example 
Q(x, y), P(x) -+ P(a), Q(a, f(x)) 

Now that  we have seen the many different ways of representing a clause, 
let us see how we can represent a standard form. We will illustrate this by 
applying each notation to the formula VxVy (~P(a) V Q(x, y)) A gx P(x) h 
Vy (Q(a, b) V -,P(y)). 

1. As we defined it in the previous section, so as a conjunction of univer- 
sally quantified clauses. 

Example 
VxVy (-~P(a) V Q(x, y)) A W. e(x) A Vy (Q(a, b) V ~P(Y)) 

2. As a conjunction of clauses, where the universal quantifiers are left 
implicit for simplicity. 

Example 
(-,P(a) V Q(oe, y)) A e(x) A (Q(a, b) V -~P(y)) 

3. As a set of clauses, where the universal quantification is implicit. In 
principle, this way of representing a standard form as a set of clauses can 
be combined with any of the clause-representations mentioned above. 

Example (if we represent a clause as a set of literals) 
{{- ,P(a) ,  O(x, y)}, {P(x)},  {Q(a, b),-,P(y) }} 

Example (if we represent a clause as a disjunction of literals) 
v O(x, y)), P( .) ,  (Q(< b) v 

Note that  that  if we do not make clear explicitly which notation we use, 
sets like {P(a) ,  P(b)} are ambiguous: this set may either be the clause 
P(a) V P(b), or a set consisting of the two clauses P(a) and P(b). In 
this book, it will always be clear from the context whether we mean a 
set to denote a clause, or a set of clauses. 

Recall what we said at the end of Subsection 3.a.1: we can rename vari- 
ables within clauses without regard to the variable names used in other 
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clauses. This means for example that the standard forms represented 
by the following sets are all equivalent: 

{ {~P(a), Q(x, y)}, {P(x)},  { Q(a, b),-~P(y)}) 

{{-~P(a), Q(z, y)}, {P(u)},  {Q(a, b),-~P(u)} } 

{{-~P(a), Q(y, Xl)}, {P(y)},  { Q(a, b), -~P(y) } } 

We hope the reader will not be put off by all these notational variants. In 
the rest of our work, we will use the notation that  seems most appropriate in 
the context. We will t ry to be as consistent as possible in our own notational 
conventions. 

In the sequel, we will leave the universal quantification of a clause implicit. 
So if we have a set E -- {C1, . . . ,  C,~} of clauses and a clause C, then we can 
use E ~ C as an abbreviation of V(C1) A . . .  A V(C~) ~ V(C). Similarly, if C 
and D are clauses, we use C ~ D as an abbreviation of V(C) ~ V(D). For 
notational convenience, we sometimes use L E C to denote that a clause C 
contains a literal L, and C C D to denote that the set of literals in C is a 
subset of the set of literals in D. 



Chapter 4 

R e s o l u t i o n  

4.1 In troduct ion  

Logic programming concerns the use of (clausal) logic for representing and 
solving problems [Kow79]. 1 This use is widespread throughout many parts 
of artificial intelligence. The idea is that some problem or subject of inquiry 
can be described by a set of formulas, preferably clauses. If this description 
is sufficiently accurate, then the solution to the problem, or some particu- 
lar piece of information about the subject of inquiry, is logically implied by 
the set of formulas. Thus, clearly, finding out which formulas r are logical 
consequences of some set of formulas E is crucial to many areas of artificial 
intelligence, including inductive logic programming. 

Accordingly, we would like to have a procedure, an algorithm, which could 
find out whether or not E ~ r is the case. What  is an algorithm? We will 
only give an informal explanantion here, referring to [HUT9, CLRg0] for the 
more formal details. Intuitively, an algorithm is a procedure, a specific se- 
quence of operations upon given data. It is used to solve some problem, and 
should terminate after a finite number of steps for the given data. The data 
(input) given to the algorithm is a particular instance of the problem, and 
the desired result (output) is a solution to this instance. Consider for instance 
the problem "is the natural number n prime?" It is well known that there 
exists an algorithm which can give the right answer for each instance of this 
problem (i.e., for each particular n). 

In general, suppose we have some problem P. If there exists an algorithm 
which can give the right answer to each instance of P,  then P is called 
computable. An example of a computable problem is the problem "give the 
smallest prime number greater than n". The most straightforward algorithm 

1The  t e r m  'logic p r o g r a m m i n g '  is of ten  res t r ic ted  to the  use of Horn c lauses  (see Chap-  
ter  7). However,  in t h e  b road  sense  in which we take  it here,  it refers to a n y t h i n g  h a v i n g  
to do wi th  c lauses  and  reso lu t ion .  
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to solve this problem simply checks whether n + 1 is prime; if so, it outputs 
n + 1; if not, it checks whether n + 2 is prime, etc. Since there is no greatest 
prime number, this procedure outputs the right answer after a finite number 
of steps, for each instance of the problem. 

One special class of problems, are the problems where the answer to each 
instance can only take on the values 'yes' or 'no'. An important example of 
this, is logical implication: "given a finite set of formulas E and a formula ~, 
does E ~ r hold?" Clearly, each instance of this problem can only have 'yes' 
or 'no' as answer. If such a two-valued problem is computable, it is called 
decidable, and an algorithm which solves it is called a decision procedure. If 
not, the problem is called undecidable. 

For the propositional logic, logical implication is indeed decidable. For 
suppose we are given E and r Let n be the number of distinct atoms in 
these formulas. Then the number of interpretations is finite, namely 2 n. Hence 
there is an algorithm to find out whether E D $ holds: this decision procedure 
simply checks whether r is true in all models of E, and outputs 'yes' if this 
is the case, and 'no' otherwise. 

But what about logical implication in first-order logic? Here we can have 
infinitely many different domains and hence infinitely many different inter- 
pretations, which means that the decision procedure for propositional logic 
will not work here. In fact, it can be proved that such a decision procedure 
does not exist at all for first-order logic: logical implication for first-order 
logic is an undecidable problem. This is called Church's Theorem. It follows 
from a result proved independently by Alonzo Church [Chu36] and Alan 
Turing [Tur36], the proof of which is beyond the scope of this book (see for 
instance [B J89]). 

T h e o r e m  4.1 (Church)  The problem whether E ~ r where E is an arbi- 
trary finite set of formulas and r is an arbitrary formuIa~ is undecidable. 

Note carefully that the problem is undecidable for arbitrary E and r there 
is no single algorithm which can always--after a finite number of steps-- 
return the right answer to the problem "is r a logical consequence of E?" for 
any E and r 

So our problem of deciding E ~ r cannot be solved by an algorithm 
(and hence cannot be solved by a computer). There are, however, procedures 
which can be of great help here. These are called proof procedures. Before 
explaing what a proof procedure is in the next subsection, we will first make 
some remarks on the impact of such procedures on the problem of deciding 

There exist procedures which, when given as input arbitrary E and r for 
which E ~ r holds, can verify in a finite number of steps that indeed E ~ ~.2 
This seems perhaps a bit trivial (what's the point of verifying E ~ r when 

2Because of the existence of such procedures, logical implication is sometimes called 
semi-decidable. 
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you already know this?), but ig is not. The point is that such a procedure can 
be given N and r as input for which you do not know yet whether ~ ~ r 
The procedure is then guaranteed to terminate in a finite number of steps 
and give a correct answer if indeed 2 ~ r If, on the other hand, the input 
has the property that  2 ~: r then the procedure either terminates with the 
correct answer 'no', or continues forever. This last property of such proce- 
dures, that  they need not terminate if N ~: r is very unfortunate. However, 
it is unavoidable: if the procedure also always terminated with the right an- 
swer if 2 g= r it would contradict Church's Theorem. In the next section, 
we will elaborate a bit on such procedures. After that, we will introduce the 
resolution rule, which forms the basis of some important proof procedures. 

4 .2  W h a t  Is a P r o o f  P r o c e d u r e ?  

In the previous section, we have already made some remarks on proof pro- 
cedures, without really explaining what a such procedure is. We will explain 
this presently. Roughly, a proof procedure is a way of generating a proof that 
some formula r is a logical consequence of some set of formulas ~. The for- 
mulas in ~ are usually called the premises of the proof, and r is called the 
conclusion of the proof. 

Usually, such a proof consists of a number of small steps of some spe- 
cial form. In each step, a new formula is "derived" from the premises and 
previously derived formulas. By 'deriving a formula' we mean constructing 
a formula from the premises and previously derived formulas, according to 
some specific rule. For instance, a proof procedure that is often used in math- 
ematics is modus ponens. Modus ponens is the rule that allows one to derive 
the formula r from the set of formulas {r (r --+ r This rule can be schema- 
tized as follows. Here the premises are above the line, and the derived formula 
is shown below the line: 

~, r162 
r 

We can link several modus ponens steps together to form a proof. For ex- 
ample, suppose we have }2 = {P(a), (P(a) --+ Q(b)), (Q(b) --+ 3x R(x))}. 
Taking two modus ponens steps, we can derive the formula 3x R(x) from s 
as follows: 

1. Derive O(b) from {P(a), (P(a) -+ O(b))}. 
2. Derive 3x R(x) from {Q(b), (Q(b) --+ 3x R(x))}. 

The previous sequence of steps constitutes a proof that  3x R(x) can be de- 
rived from N, using modus ponens. In general, a proof consists of one or more 
steps, each taken according to the rule (or rules) specified by the proof pro- 
cedure, where in each step the premises are the original set B and previously 
derived formulas. 

Clearly, if we use modus ponens, the conclusion r is a logical consequence 
of the premises: {r (r --~ r ,~ r This property of modus ponens is called 
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soundness. In general, a proof procedure is sound if all formulas 6 that can 
be derived from some set E, according to this proof procedure, are logical 
consequences of E. In other words, a proof procedure is sound if it allows 
only logical consequences of the premises to be derived. 

For most purposes, soundness is a necessary property of a "good" proof 
procedure: a proof procedure which provides us with "proofs" of things which 
do not follow from the premises could be rather misleading, a The following 
scheme represents an example of an unsound proof procedure: 

~, ~ - ~  

This rule allows us to derive the formula P(a) from the set {Q(a), (P(a) --+ 
Q(a))}. But clearly {Q(a), (P(a) -+ Q(a))} ~: P(a), so this rule is not sound. 

A second desirable property of proof procedures is completeness. A proof 
procedure is complete if every formula that is a logical consequence of the 
premises E, can be derived by this particular proof procedure. Modus ponens 
by itself is not complete. For instance, there is no sequence of modus ponens 
steps which can derive the formula P(a) from the premises E = {P(a)AP(b)}, 
though surely E ~ P(a). To see why this is so, note that we need a formula 
of the form (4 --+ ~P) to be able to apply modus ponens. The set E does not 
contain any formulas of this form. An example of a complete proof procedure 
is represented by the following rule: 

This rule allows us to derive any formula from any premise. It is clear that  
this rule is complete: since we can use this rule to derive any formula from 
the premises, we can also use it to derive any logical consequence of the 
premises. Unfortunately, this rule is not sound: it allows us for example to 
derive the formula -~P(a) from the premises {P(a)}. We see that obtaining 
completeness is easy, but obtaining completeness and soundness at the same 
time is much harder. To summarize: a proof procedure is sound if it can only 
derive logical consequences of the premises, and it is complete if it can derive 
all logical consequences of the premises. 

In this and the next chapters we will discuss the derivation rule that is 
probably the most important principle of mechanical theorem proving. 4 This 
rule is called resolution. In this chapter we will define this rule and prove 
its soundness. In later chapters we will prove several completeness results 
involving resolution: the refutation completeness of resolution itself, and a 
more direct completeness result (the Subsumption Theorem) which combines 
resolution with another rule, called subsumption. Before we go into resolution, 

3One excep t ion  is SLDNF-reso lu t ion ,  the  topic  of C h a p t e r  8. 
4If b can  be der ived f rom E us ing  some  der iva t ion  rules,  t hen  ~ is cal led a theorem 

of the  c o m b i n a t i o n  of E a n d  these  der iva t ion  rules.  Hence  the  n a m e  mechan ica l  theorem 
proving. 
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we will first introduce in the following section some tools that  are presupposed 
by the definition of resolution: substitution and unification. 

4.3 Subst i tut ion  and Unification 

4 . 3 . 1  S u b s t i t u t i o n  

In this subsection we will define substitutions. A substitution replaces vari- 
ables by terms. For example,  we could replace the variable x by the term f(a) 
in the clause P(x) V Q(x). We then get the new clause P(Z(a)) V Q(f(a)). If  
we take the clauses to be universally quantified, we may say that  this substi- 
tution makes the clause "less general". Whereas the first clause "says" that  
IF (d) = T or IQ (d) = T is true for all d in the domain, the second clause only 
claims tha t  IF (d) or IQ (d) is true if d is the domain element to which the 
term f(a) is mapped  by the pre-interpretation. Note that  the second clause 
is a logical consequence of the first clause: P(x) V Q(x) ~ P(f(a)) v Q(f(a)). 

Defini t ion  4.2 A substitution ~ is a finite set of the form 

{x l / t l , . . . ,  > o, 

where the xi are distinct variables and the ti are terms. We say ti is substituted 
for xi. xi/ti is called a binding for xi. The substitution 0 is called a ground 
substitution if every ti is ground. 

The substi tution given by the empty  set (n = 0) is called the identity 
substitution, or the empty substitution, and is denoted by e. The restriction 
of 0 to a set of variables V is the substitution {x/t  C 0 I x E V}. <7 

E x a m p l e  4.3 {y/x, x/g(x, y)} and {x/a, y/f(z),  z/f(a),  xl/b} are substitu- 
tions. The restriction of the latter to {x, z} is {x/a, z/f(a)}.  <3 

Defini t ion  4.4 An expression is either a term, a literal, or a conjunction or 
disjunction of literals. A simple expression is a term or a literal. 

Note that  a clause is an expression. A substitution can be applied to an 
expression, this means that  variables in the expression are replaced by terms 
according to the substitution. 

Defini t ion  4.5 Let 0 = {xl / t~, . . . ,  xn/tn} be a substitution, and E an ex- 
pression. Then EO, the instance of E by 0, is the expression obtained from 
E by simultaneously replacing each occurrence of xi by ti, 1 < i < n. If E0 
is ground, then E0 is called a ground instance. If 0 is a ground substitution 
and E0 is ground, then 0 is called a ground substitution for E. 

If  E = { E l , . . . ,  En} is a finite set of expressions, then E0 denotes 
E O}. <> 
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E x a m p l e  4.6 Let/V be the expression P(y, f(x)) and let 0 be the substitu- 
tion {x/a, y/g(g(x))}. The instance of E by 0 is EO = P(g(g(x)), f(a)). Note 
that x and y are simultaneously replaced by their respective terms, mean- 
ing that the x in y/g(g(x)) is not affected by the substitution x/a. Another 
substitution is c~ = {x/Z(a), y/b}. E(r = P(b, f(f(a))) is ground, so E a  is a 
ground instance of E,  and ~r is a ground substitution for E. <1 

To understand substitutions, it may help to regard a substitution 0 = 
{ x l / t l , . . . ,  xn/t,~} as the following mapping from the set of variables in the 
language to the set of terms in the language: 

f ti i f v = z i ,  O(v) \ v otherwise. 

In this case, e would represent the identity mapping. 
For example, suppose that the set of variables in the language is {x, y, z}, 

and 0 = {x /a , z / f ( z ) } .  Then 0 represents the following mapping from 
{x, y, z} to the set of terms in the language: 

a i fv  = x, 
O(v) = y i f v = y ,  

f(z) i f v = z .  

Applying 0 to an expression E (i.e., determining the instance EO) then means 
replacing each v in E by O(v), for each variable v occurring in E. For example, 
i f E  = P(x, z,g(y, z)), then EO is obtained by replacing in E each x by a, "re- 
placing" each y by y, and replacing each z by f(z):  EO = P(a, f(z), g(Y, a)). 

It is always possible to expand a substitution 0 such that it works on more 
variables in the language, by just adding the binding x/x  for variables x that  
0 does not act on. Hence we can always assume without loss of generality that  
a substitution is defined on any variable in the language. For the previous 
substitution 0 we could add y/y, which yields {x/a, y/y, z/Z(z)}. This way 
we can make explicit the way in which a substitution works like a mapping, 
in the usual mathematical  sense. 

If E is an expression which is not a term (i.e., a literal or a conjunction 
or disjunction of literals), and 0 is a substitution, then the following holds: 
E ~ EO. For example, P(x)v-~Q(y) ~- P(a) v-~Q(y), where we have used 
the substitution {z/a}. The proof for this example is easy: suppose I is a 
model, with domain D, of P(x)  V ",Q(y). Then for all dl E D, and for all 
d2 E D, IF(d1) = T or I0(d2 ) = F.  Suppose a is mapped to domain element 
d by I. Then for all d2 E D, IF(d) = T or IQ(d2) = F. Hence I is a model of 
P(a) V -~Q(y). It is clear that for different E or 0, a similar proof can always 
be given. Hence always E ~ E0. 

We can apply some substitution 0, and then some substitution ~r. We then 
get the composition of these two substitutions. Again, regarding substitutions 
as mappings is helpful in understanding this definition. The composition of 
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the substitutions 0 and c, is like the composition of two mappings: first ap- 
ply 0, and then apply c< This composition can then itself be regarded as a 
mapping  from the set of variables in the language to the set of terms. 

For instance, the composition of 0 = {y/ f (z)}  and r = {x/b, y/a, z/a} 
is 0c~ = {y/f(a),  x/b, z/a}. Let us see how this operates on the variable y: 
yO = f(z), and (yO)~ = f(z)r = f(a). This gives the same result as applying 
the composit ion 0r immediately to y: y(Ocr) = f(a). 

D e f i n i t i o n  4.7 Let 0 = {x l / s l , . . . , x ,~ /s ,~}  and o" = {Y l /h , . . . ,Y~ / t~}  be 
substitutions. Consider the sequence of bindings 

x l  / ( s l  ~ ) ,  . . . , x~/(sm~), y l / h ,  . . . , y ~ / t ~ .  

Delete from this sequence any binding x~/(sir for which xi = (sicJ, and any 
binding yj/tj  for which yj E {x l , . . . ,  x,~}. The substitution consisting of the 
bindings in the resulting sequence is called the composition of 0 and r and 
is denoted by Oct. 

E x a m p l e  4.8 Let 0 = {x/ f(y) ,  z/u} and ~ = {y/b, u/z}. We construct 
the sequence of bindings x/(f(y)o-), z/(u~r), y/b, u/z, which is x/f(b), z/z,  
y/b, u/z. Deleting the binding z/z, we obtain the sequence x/f(b), y/b, u/z, 
which yields the composition 0~r = {x/f(b), y/b, u/z}. 

Let 0 = {x/y} and a = {x/a, y/a]. We construct the sequence of bindings 
x / ( y~ ) , x / a, y / a = x / a, x / a, y / a. After deleting the second occurrence of the 
binding x/a (though not the first occurrence!) from this sequence, we obtain 
0o" = {x/a, y/a}. <~ 

D e f i n i t i o n  4.9 Let 0 and cr be substitutions. We say 0 is an instance of ~r if 
there exists a substitution 7 such that  c~ 7 = 0. O 

E x a m p l e  4.10 The substitution 0 = {x/f(b), y/a} is an instance of c~ = 
{ x / f ( x ) ,  y / a } ,  since = O. 

We now prove some properties of substitutions (if we regard substitu- 
tions as mapp ings - - a s  explained above- - then  these properties are obvious 
consequences of properties of mappings in general). 

P r o p o s i t i o n  4.11 Let E be an expression, and let O, ~ and ~ be substitu- 
tions. Then the following hold: 

1. O=Oe=sO. 
2. (EO)~ = E(O,). 
s. (o~)~ : o(-v). 

P r o o f  

1. This is obvious, since ~ does not change anything. 
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C H A P T E R  4. R E S O L U T I O N  

It is sufficient to prove that the result holds for all variables occurring in 
E. Let x be a variable occurring in E. Suppose 0 = { x l / s ~ , . . . ,  x ,~ /Sm}  
a n d  = 

If x ~ { x l , . . . , x m }  U {Yl,...,Yn}~ then x = (x0)G = x(0a). 
= { X l , . . . ,  t h e n  (x0)  = = 

If x = y~" E {Yl,. . . ,Y~}, and x ~ { x l , . . . , x m } ,  then (xO)cr = x~r = ti = 

Let x be a variable. Then, using the previous part of this proposition, 
x((0.)7)  = (x (0 . ) ) ;  = ((x0).)~. = (x0)(.~) = ~(0(.7)).  [] 

Since (EO)(r = E(0c~), we will usually omit the parentheses, and write 
this as EO~. Though the previous proposition shows that substitutions have 
some nice properties, it is not generally true that 0~r = ~r0. For example, let 
0 = { x / a }  and let ~r = {x /b} .  Then 0c~ = { x / a } ,  but c~0 = {x /b} .  

Sometimes we need to rename the variables in a formula. The new formula, 
which is equivalent to the old one, is called a variant of the old formula. We 
can obtain such a variant by applying a renaming substitution, defined as 
follows: 

De f in i t i on  4.12 Let E be an expression, and let 0 be the substitution 
{ x l / y l , . . . , x ~ / y ~ } .  We say 0 is a renaming substitution for  E if each xi 
occurs in E, and Yl, �9 �9 Yn are distinct variables such that each Yi is either 
equal to some x j  in 0, or Yi does not occur in E. <5 

E x a m p l e  4.13 Let E = f(a ,  x, y, z). Then 0 = { x / x l ,  z / z }  is a renaming 
substitution for E and EO = f (a ,  x l ,  y, x).  On the other hand, ~r = { x / y }  is 
not a renaming substitution for E, because y is not equal to x and y already 
occurs in E. <~ 

D e f i n i t i o n  4.14 Let E and F be expressions. We say E and F are variants, 
or E is a variant of F, if there exist renaming substitutions 0 and c~ such that 
E = FO and F = Ec,. C, 

E x a m p l e  4.15 The clauses C = P ( x )  V Q(x ,  y) and D = P(y)  V Q(y,  z) are 
variants, since C = DO for 0 = {v /x ,  z /v} ,  and D = f o r .  = {xlv ,  v / z} ,  
where 0 is a renaming substitution for C2, and cr is a renaming substitution 

for C1. <3 

P r o p o s i t i o n  4.16 Let E and F be expressions. I f  there exist substi tutions 
0 and (r such that E = FO and F = Ec% then E and F are variants. 

P r o o f  We assume without loss of generality that 0 only acts on variables in 
F, and ~ only acts on variables in E. If 0 was not a renaming substitution 
for F, then we could not have FO~ = EG = F, so 0 must be a renaming 
substitution for F. Similarly, c~ must be a renaming substitution for E, and 
E and F are variants. 71 
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4.3 .2  U n i f i c a t i o n  

A unifier for the set of expressions {Ez, E 2 , . . . ,  E~} is a substitution 0 such 
that  EIO = E20 = ... = E~O. 

D e f i n i t i o n  4 .17  Let E be a finite set of expressions. A substitution 0 is 
called a unifier for E if E0 is a singleton (a set containing exactly one ele- 
ment).  If  there exists a unifier for E, we say E is unifiable. <5 

E x a m p l e  4 .18 The substitution 0 = {x/a, y/f(a)} is a unifier for the set 
E = {(P(x)  V-~Q(y)), (P(a) v ~Q(f(x)))}, since E0 = {P(a)  V -,Q(f(a))}. 

The set {P(a, f(x)), P(a, g(x))} is not unifiable, because f(x) and g(r 
are not unifiable. The set {P(a, x), P(y, b)} is unifiable, while the set {P(a, x), 
P(x, b)} is not. <1 

D e f i n i t i o n  4.19 If  0 is a unifier for E, and if for any unifier c~ for E there 
exists a substitution 7 such that  ~r = Off, then 0 is called a most general 
unifier (abbreviated to mgu) for E. 

E x a m p l e  4.20 Let N be the set {R(x, x), R(z, f(y)}.  Then 0 = {x//(y), 
z/ f(y)} is an mgu for 2. The substitution e~ = {x/f(a), z/f(a), u/a} is a 
unifier for N, but not an mgu, since there does not exist a substitution 7 for 
which ~r 3, = 0. <~ 

The mgu for some set of expressions is not unique: both {x/y} and {y/x} 
are mgu ' s  for the set {P(x) ,  P(y)}.  Note that  0 = {x/z, y/z} is not an mgu 
for this set, since there is no 3, such that  {x/y} = 07. In particular, O{z/y} = 

r {x/y}. 
Below, we describe an algorithm to find an mgu for a set of expressions. 

D e f i n i t i o n  4.21 Let E be a finite set of simple expressions. The disagree- 
ment set of E is defined as follows. Locate the leftmost symbol position at 
which not all members  of E have the same symbol, and extract from each 
expression in E the subexpression beginning at that  symbol position. The set 
of all these expressions is the disagreement set. O 

E x a m p l e  4 .22 Let E be the set 

{P(x, y, v), P(x, f(g(a)), x), P(x, f(z), f (a ) )  }. 

The leffmost symbol position at which not all members  of E have the same 
symbol is in this case the second argument place of P.  The disagreement set of 
E is thus the set {y, f(g(a)), f (z)} ,  the set of all subexpressions at the second 
argument  place of each expression in E (the underlined subexpressions). The 
disagreement set of E = {P(x) ,  Q(a),--,R(x)} is {P(x) ,  Q(a),-~R(x)}. <3 



64 CHAPTER 4. RESOLUTION 

The following algorithm takes as input a set E of simple expressions (terms 
or literals), and at tempts to construct an mgu for this set. It can be proved 
that  the algorithm always finds an mgu if one exists, and always reports that  
E is not unifiable if there does not exist an mgu for E. 

Algorithm 4.1 (Unification Algorithm) 
Input: A finite set E of simple expressions. 
Output: An mgu for E (if E is unifiable). 

1. Set k = 0 a n d ~ 0  =~ .  
2. If E~rk is a singleton, then stop: ~rk is an mgu for E. 

Otherwise, find the disagreement set Dk of E(rk. 
3. If there exist x and t in Dk such that  x is a variable not occurring in t, 

then set o'~+1 = ~k{x/t}, increment k by 1 and go to step 2. 
Otherwise, report that  E is not unifiable, and stop. 

E x a m p l e  4.23 We will show how the algorithm works on the set E = 
{P(x, y, v), P(x, f(g(a)), x), P(x, f(z), f (a))} .  In each E~k, we have under- 
lined the members of the disagreement set. 

i. ~r0 = ~. 
Echo = {P(x, y, v), P(x ,  f(g(a)), x), P(x ,  f(z), f(a))}.  

2. Do = {y, f(g~a)), f(z)},-~l - {y/f(g(a))~. 
~0"1 --~ {P(~, f(g(a)), v)~ P(x, f(g(a)), x), P(x~ f(z), f(a))}.  

3. D1 = {g(a), z } , - ~ 2  -- {y/f(g(a)),-~g(a)}. 
Ecr2 = {P(x, f(g(a)), v_), P(x, f(g(a)), z_), P(x, f(g(a)), f(a))}.  

4. D2 = {v, x, f (a)},  ~2 = {y/f(g(a)), z/g(a), v/x}. 
E~rs = {P(x, f(g(a)),x_), P(x~ f(g(a)), f (a))} .  

5. Ds = {x, f (a)},  ~r3 = {y/f(g(a)), z/g(a~,~/f(a)~ z / f (a)} .  
Ecr4 = {P(f(a),  f(g(a)), f(a))}.  

E(r4 is a singleton, so ~r4 is an mgu for E. 

E x a m p l e  4.24 Another application of the algorithm, this time to the set 
E = {Q(a, x), Q(y, f (x))},  which is not unifiable. 

1. O'o = g. 

Ea0 = {Q(a_, x), Q(y_,/(~J)}. 
2. Do : {a,y}, o'z = {g/a}. 

Eal  = {Q(a,~),  O(a~ f (x))}.  
3. D~ = {x, f (x)} ,  and there are no variable x and term t in D~ such that  

x does not occur in t, so the algorithm terminates and correctly reports 
that  E is not unifiable. <1 

Note the phrase "x is a variable not occurring in t" in the third step 
of the algorithm. This check if x does not occur in t is called the occur 
check. The occur check is crucial for the performance of the algorithm. For 
example, without the occur check, the algorithm would not detect that  the 
set E = {x, f (x)}  is not unifiable, and would continue forever. We will give 
the first few steps of the way the algorithm without the occur check would 
handle this E: 
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1. (rO=~. 
Zo" 0 = { z , / (X) ) .  

2. Do = {x, f - ~  (note that x occurs in f(x)i),  o'1 = {x / / ( x ) } .  
~0" 1 -- {f(x),  f ( f ( x ) ) } .  

3. D1 = {x, f(x)},  G2 = { x / f ( f ( x ) ) } .  
E~2 = {f ( f (x) ) ,  f ( f ( f ( x ) ) ) } .  

Clearly, this goes on forever. In each step, the algorithm mistakenly sets 
o'k = ~ k - l { x / f ( x ) } ,  since it does not notice that x occurs in f (x) .  

It can be proved by induction on the number k of steps used, that algo- 
ri thm 4.1 always terminates, and always finds an mgu if one exists. We will 
not give the details of the proof here, but refer instead to [Llo87, Theorem 4.3] 
or [CL73, Theorem 5.2]. 

T h e o r e m  4.25 (Un i f i ca t i on  T h e o r e m )  Let E be a finite set of simple ex- 
pressions. If  E is unifiable, then the Unification Algorithm terminates and 
gives an mgu for ~. If  E is not unifiable, then the Unification Algorithm 
terminates and reports the fact that E is not unifiable. 

For more efficient unification algorithms, see [PW78, MM82]. More on 
substitutions and (most general) unification may be found in [Ede85, LMM88] 
and in Chapter 2 of [Apt97]. 

4.4 An Informal Introduct ion to Reso lut ion  

Now that  we know what a proof procedure is, and how to use substitutions to 
unify sets of simple expressions, we can explain resolution. To avoid stating 
immediately a large sequence of definitions, we will first informally introduce 
the resolution principle in this section. Let us start with some examples: 

�9 If we know that  
1. Peter plays chess or Peter plays football. 
2. Peter does not play football. 

then we can conclude that Peter plays chess. 
�9 {(P V Q), -~Q} ~ P (note that this can be seen as a formal representa- 

tion of the previous example, where P stands for "Peter plays chess", 
and Q stands for "Peter plays football"). 

�9 { ( -~3x  P(x) V O(a)), (Q(b) v Sx P(x)) ~ O(a) v Q(b) 
�9 {(P(a)VQ(b)) ,  (-~P(a)v(Q(a) -+ R(a,b)))} ~ Q(b)v(Q(a) --+ _R(a, b)) 

Note the resemblance between these examples--they all conform to the 
following scheme: {(r V r (-~r V X)} ~ r V X. This scheme, where r and/or  
X may be omitted, and the order of the formulas is not important, can be 
viewed as the following derivation rule: 
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The proof procedure based on this rule is called resolution. It was introduced 
in 1965 by J. A. Robinson [Rob65], who proved its refutation completeness 
(for which see the next chapter). 

It can be easily shown that the resolution rule is sound. Suppose both 
premises are true. Since either r or -,8 must be false, at least one of the 
formulas r and X must be true, for otherwise one of the premises r V r or 
-~8 V X would be false. Hence the derived formula, ~b V X is true. Thus r V X 
is a logical consequence of the two premises. 

The formulas 0 and -10 which occur in the two premises are said to form 
a complementary pair. In the scheme above, the formulas of the complemen- 
tary pair are required to be the leftmost subformulas of the two premises, 
respectively. But this order within each premise is of course not necessary: 
the derivation of R(a)V Q(a) from {(R(a)V P(b)), (Q(a)V-~P(b))} is a valid 
application of resolution, even though the formulas in the complementary 
pair (P(b) and -~P(b)), are not at the front of their respective premises. 

Resolution can be applied to all sorts of formulas, but usually the ap- 
plication of resolution is restricted to clauses. That  is, the premises and the 
conclusion of the derivation are required to be clauses (thought to be uni- 
versally quantified, as usual). The reason for this restriction is that  we can 
prove some important  completeness results if we restrict ourselves to clauses. 
So henceforth, we will only use resolution to derive clauses from clauses. 
Applying a resolution step to two clauses is easy: the conclusion is just the 
disjunction of all the literals in the two premise-clauses, except for the com- 
plementary pair. For example, P(a) V Q(a) can be derived from the premises 
P(a) V R(b) and -,R(b) V Q(a). 

One or more applications of this derivation rule (resolution) together form 
a derivation. As a simple example from propositional logic, let us see how we 
can derive the clause P V Q from the set E = {(P V S), (-~S V Q v -~R), R}: 

1. Derive P V Q V -~_R from {(P V S), (~S V Q v -~R)}. 
2. Derive P V Q from {(P V Q v -~.R), R}. 

Since resolution is a sound derivation rule, we have found a proof that {(P V 
S), (~S V Q V ~R), R} ~ (P V Q). 

Such a derivation can be represented by a binary tree. For the previous 
example this tree is pictured i:n Figure 4.1. The tree should be read top-down: 
the leaves are clauses from E, each node N that is not a leaf is derived (using 
the resolution-scheme) from the two clauses on the nodes leading to N, and 
the root of the tree is the conclusion of the derivation. 

In the case of first-order logic, we have to make one important  addition, 
namely that  we often must use unification to create a complementary pair. 
For instance, the clauses C1 = --P(x) V-,R(a) and C~ = R(y) v- ,Q(y)  do not 
contain a complementary pair. However, when we apply the mgu 0 = {y/a}, 
then C~O and C20 contain the complementary pair {-~/~(a), R(a)}. So after 
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P v S  . . S v Q v R  

PvQv'~.R 

P v Q  

F i g u r e  4.1: The tree for the derivation of P V Q 
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a p p l y i n g  this  subs t i t u t i on ,  we can use the  resolu t ion  pr incip le  to derive the  
new clause  R = -,P(x) V -,Q(a) f rom C10 and C20; see F igure  4.2. 

c~ : -,P(~) v ~R(a) c :  = n(y) v -Q(y) 

-.P(~) v -,Q(a) 

F i g u r e  4.2: Derivation of -,P(x) V -,Q(a), with mgu {y/a} 

Also in the  f i rs t -order  case, several  reso lu t ion  s teps  toge ther  form a der iva-  

t ion.  For ins tance,  we can find a de r iva t ion  of  the  clause R(a) f rom the  set 
2 = {(Q(a)  v P(a)), (-,Q(x) v P(x) v / ~ ( x ) ) , - ~ P ( y ) } ;  see F igure  4.3. 

Q(a) v P(a) ,p(y)  ~p(s) -Q( . )  v P(~) v n(~) 

Q(a) -,Q(~) v n(~) 

n(a) 

F i g u r e  4.3: Derivation of It(a) 

One specia l  case of  a de r iva t ion  is a refutation, this  is a de r iva t ion  
of  the  empty clause n. For instance,  there  exists  a re fu ta t ion  of  the  set 
{ P ( a ) , - ~ P ( x ) } ,  involving one resolu t ion  step.  
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Up till now, we have not explained what the empty clause means. We 
will explain this presently. A clause C is thought to be universally quantified. 
Suppose x l , . . . ,  x,~ are all the variables appearing in C. Then C is true under 
some interpretation I, with domain D, if for all dl, . . . ,  d,~ E D, at least 
one literal in C is true under I and V(xl /d l ) . . .  (x~/d~) (where V is some 
arbitrary variable assignment). But the empty clause does not contain any 
literals which can be true, hence it is false under any I. This means that  we 
can consider [:3 as a contradiction. Later on in this chapter, we will formally 
prove the soundness of derivations. This soundness implies that if we have 
found a refutation (a derivation of the contradiction c3), we have found a 
proof that  E is unsatisfiable: every model of E is then a model of D, but [] 
has no models, so E has no models. 

4.5 A Formal Treatment  of Reso lut ion  

In this section, we will make the informal discussion of the previous section 
more precise, by providing formal definitions of the concepts used there. Be- 
cause the syntax of propositional logic is embedded in the syntax of first-order 
logic, all these definitions apply to propositional logic as well as to first-order 
logic. Some subtle points that  have been swept under the rug in the previous 
section, will also be explained here. 

To be able to apply resolution to clauses, we need two clauses which 
contain a complementary pair, such as P(a) and -~P(a). So we start off with 
the corresponding definition: 

D e f i n i t i o n  4.26 Let L1 be a positive literal, and let L2 be a negative literal. 
Then L1 and L2 form a complementary pair if --L1 = L2. <5 

Here we adopt the convention that the negation of a negative literal -~A is 
A. So for instance, if L = -~Q(x, y), then we use --L to denote Q(x, y). 

E x a m p l e  4.27 

* '~Q(x, y, f(b)) and Q(x, y, f(b)) form a complementary pair. 
| The clauses P(x) V Q(a) and R(x, y) V -~Q(a) v -~P(f(a)) contain the 

complementary pair Q(a) and -,Q(a). <~ 

If we have two clauses containing a complementary pair, we can derive a 
clause which is called a binary resolvent of these two clauses, following the 
resolution scheme presented in the previous section. The binary resolvent 
then contains all the literals in the two original clauses, except for the two 
literals in the complementary pair. 

But as we have seen in Figure 4.2, sometimes we first have to apply a 
substitution to the two original clauses in order to obtain a complementary 
pair. An important  and rather subtle point concerns the names of variables 
in a clause. Suppose we have C1 = P(a) vQ(x) and C2 = -~P(a) VS(x). Then 
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by the resolution scheme, we could derive R = Q(x) v S(x) from C1 and C2. 
But  suppose we rename C2 to C~ = -~P(a) V S(y). Then we could derive 
R' = Q(x) v S(y). Clearly, R and R' are not equivalent, in fact R' ~ R but 
R ~ R I. The problem is, of course, that  C1 and C2 both contain the variable 
x. Intuitively, this is not "the same variable x". Yet the difference between 
these two variables x is obliterated when we derive the clause R. 

We want our binary resolvents to be as "general" as possible. Thus in the 
previous example we would prefer R I to R as a binary resolvent. In order 
to assure that  we always get the binary resolvent we want, we make the 
convention of renaming one (or both, though this is not necessary) of the 
premises such that  they do not have any variables in common.  They are then 
said to be standardized apart. This way, we do not accidentally consider a 
variable x occurring in both of the original clauses to be the "same" variable. 
Only after the renaming we construct the binary resolvent. 

D e f i n i t i o n  4.28 Let C1 and C2 be clauses. If C1 and C2 have no variables 
in common,  then they are said to be standardized apart. 

D e f i n i t i o n  4 .29 Let C1 : L1 V . . .  V Li V. . .  V Lm and C2 = M1 V . . .  V Mj V 
. . .  V M,~ be two clauses which are standardized apart .  If  the substitution 0 
is an mgu for the set {Li , - ,Mj},  then the clause 

(L1 V ... V Li_I V Li+1 V . . . V L ~  VM1 V . . . V M j _ I  V Mj+I V . . .  V M.)O 

is called a binary resolvent of 6"1 and 6"2. The literals Li and Mj are said to 
be the literals resolved upon. �9 

If  C1 and C2 are not standardized apart ,  we can use a variant C~ of C2 
such that  C1 and C~ are standardized apart ,  and then take a binary resolvent 
of C1 and C~. For simplicity, this is then also called a binary resolvent of C1 
and C2 itself. 

Note that  if Li and My are the literals resolved upon and 0 is the mgu 
used, then LiO and MjO form a complementary pair. We require 0 to be a 
most general unifier, instead of an arbi trary unifier. The reason for this is that  
we want to restrict the number  of possible binary resolvents. If  we allowed 0 
to be an arbi t rary unifier, the set of binary resolvents of two clauses would 
often be infinite, which makes the search for a deduction (see Section 5.6) 
extremely complex. 

E x a m p l e  4.30 Let C1 = Q(x)V~P(x)VR(y) and C2 = P(x)V~S(y, x). C1 
and C2 are not standardized apart ,  so we rename C2 to C~ = P(u) V ~S(v, u). 
Let 0 = {u/x}. Then 0 is an mgu for {P(x) ,  P(u)} .  Hence C - Q(x) v R(x) V 
~S(v,  x) is a binary resolvent of Cl and C2. ~P(x) and P(u) are the literals 
resolved upon here. <3 
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In the previous definition, the binary resolvent may be the empty  clause. 
This is the case if C1 and C2 each consist of exactly one literal. For example, 
the empty  clause [] is a binary resolvent of the clauses C1 = P(x) and C2 = 
-~P(a). We have already explained in the previous section that  [] represents 
a contradiction. 

The previous definition of a binary resolvent is not sufficient: it does not 
allow us yet to derive all the clauses we want. For instance, we would like 
to be able to derive the empty  clause [] from the clauses C1 = P(x) V P(y) 
and C2 = -~P(u) V -~P(v), since clearly, [] is a clause which is a logical 
consequence of the clauses C1 and C2. However, given only the definition of 
a binary resolvent, it is not possible to construct a series of binary resolvents 
from C1 and C~ which leads to the empty  clause •, because every such 
resolvent would still contain two literals. 

To be able to derive [] f rom this C1 and C2, we need to introduce the 
notion of a factor. A factor of a clause C is obtained by applying a substitution 
0 to C which unifies one or more literals in C, and then deleting all but one 
copy of these unified literals. For instance, 0 = {y/x} unifies the two literals 
P(x) and P(y) in Cl. Thus C~ = P(x) is a factor of C1, obtained by deleting 
the second copy of F(x)  from CIO = P(x)  V P(x) .  Similarly, C~ = -~P(u) is 
a factor of C2. 

D e f i n i t i o n  4.31 Let C be a clause, LI, . . . ,  L, (n k 1) some unifiable literals 
from C, and 0 an mgu for the set {L1 , . . . ,  Ln}. Then the clause obtained by 
deleting L20,..., LnO from CO is called a factor of C. <> 

Note that  every non-empty clause C is a factor of C itself, using the 
identity substitution ~ as mgu for one literal in C. It can easily be shown 
that  if C t is a factor of C, then C ~ C I. We leave this to the reader. 

E x a m p l e  4.32 Some examples of factors: 

* -~Q(a) v P(f(a)) is a factor of the clause -~Q(a) v P(f(a)) v P(y), using 
{y/f(a)} as an mgu for {P(f(a)), P(y)}.  

| O(x} V P(x, a) is a factor of Q(~) v Q(y) v Q(z) v P(z, a). <l 

Factors are importanL because they enable us to derive from two clauses 
C1 and C2 clauses which are not binary resolvents of C1 and C2. If we allow 
factors of C1 and C2 to be used as intermediate clauses before taking a 
binary resolvent, we can for instance derive [] from C~ = P(x) V P(y) and 
C2 = -~P(u) V -~P(v), using the factor P(x) of C1 and the factor -~P(u) of 
C2. When we use factors to find a resolvent, the resulting clause is called a 
resotvent. From the following definition we see that  every binary resolvent is 
a resolvent, but not every resolvent is a binary resolvent. 

D e f i n i t i o n  4.33 Let C1 and C2 be two clauses. A resolvent C of C1 and C2 
is a binary resolvent of a factor of C1 and a factor of C2, where the literals 
resolved upon are the literals unified by the respective factors. C1 and C2 are 
called the parent clauses of C. <~ 
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E x a m p l e  4.34 Some examples: 

�9 -~P(a) vQ(a, y) is a factor of Cz = ~P(x)  v -~P(a )vQ(x ,  y). So Q(a, y) v 
R(z) is a resolvent of Cl and C2 = R(z) V P(a). Note that the literal 
~P(a) that  was resolved upon, was the literal unified in the factor of 

C1. 
�9 [] is a resolvent of C1 = Q(x) and C2 = -,Q(a) v-~Q(x). <1 

A derivation of some clause C from some set of clauses E is a sequence of 
clauses, such that each clause is either a member of E, or a resolvent of two 
earlier clauses in the sequence. 

D e f i n i t i o n  4.35 Let E be a set of clauses and C a clause. A derivation of 
C from E is a finite sequence of clauses R 1 , . . . ,  Rk = C, such that each 
Ri is either in E, or a resolvent of two clauses in {R1 , . . . ,  Ri - !} .  If such a 
derivation exists, we write E ~,. C. We then say C can be derived from E. A 
derivation of the empty clause [] from E is called a refutation of E. 

In the previous section, we have already seen some examples of deriva- 
tions, in their representation as binary trees. Some more examples: 

Example  4.36 We will give a derivation of ~P(x) from E = {(-~P(x) V 
-~R(x) V -~Q(a) ), R(y), ~Q(b), (Q(a) v Q(b))}. See Figure 4.4. 

1. ~P(x) V -~R(x) V -~Q(a) 
2. n(~) 

4. Q(a) V Q(b) 
5. ~P(x) V ~Q(a) (from 1 and 2) 
6. Q(a) (from 3 and 4) 
7. -~P(x) (from 5 and 6) 

~P(~) v ~n(~) v -Q(a) n(v) ~Q(b) Q(a) v Q(b) 

-~P(~) v ~Q(~) Q(~) 

~P(~) 

Figure  4.4: The tree for the derivation of "~P(x) from E 
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E x a m p l e  4.37 We can prove that the set E = {(P(x) V Q(x, y)),-~P(z), 
(-,Q(a, b) V P(a) v P(b))} is unsatisfiable, by giving a refutation of E. See 
Figure 4.5 for illustration. 

1. P(x) V Q(x,y) 
2. -~P(z) 
3. b) v v P(b) 
4. Q(x, y) (a resolvent of 1 and 2) 
5. P(a) V P(b) (from 4 and 3) 
6. P(b) (from 5 and 2) 
7. [] (from 6 and 2) <~ 

P(x) V Q(x,y) .P(z )  

\ /  
Q(x,y) -~Q(a, b) V P(a) v P(b) 

\ , /  
P(a) V P(b) -P(z)  

P(~) -~,(z) 

[3 

Figure 4.5: The tree for the refutation of 

The soundness of resolution is easily proved. First for a single resolution 
step: 

L e m m a  4.38 Let C1 and C2 be clauses. If R is a resolvent of C1 and C2, 
then {61, C2} ~ R. 

P r o o f  Without loss of generality, we assume C1 and C2 are standardized 
apart. Suppose R is a binary resolvent of C~ (a factor of C J  and C~ (a factor 
of C J .  Let L~ (a literal in C~) and Mj (a literal in C~) be the literals resolved 
upon, and let 0 be the mgu for {Li,-,Mj] that is used to obtain R. Then 
C1 b C[ O and C2 ~ C~O. 

Suppose the interpretation I (with domain D) is a model of {C1, C;}. 
Then I is also a model of {C[O,C~O}. Let r  be all the vari- 
ables occurring in C[O or C~O. Let V be an arbitrary variable assign- 
ment. Then for all dl E D , . . . , d n  6 D, if LiO is false under I and 
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V(xl/dl)...(x~/d~), at least one of the other literals in C[O is true un- 
der I and V(zl /dl) . . .  (z,/d,). Similarly, for all dl E D , . . . ,  d~ E D, if MjO 
is false under I and V(xl/dl) . . .  (xn/dn), at least one of the other literals in 
C~O is true under I and V(xl/dl) . . .  (xn/dn). 

R consists of all literals in C[O and C~O, except for LiO and MjO. Since 
either LiO or MjO (which form a complementary pair) is false under I and 
V(zt /dl) . . .  (xn/d~), at least one of the literals in R is true under I and 
V(zl /dl) . . .  (xn/d~), so I is a model of R. Hence {6'1, C2} ~ R. 

The soundness of derivations follows easily from the previous lemma. 

T h e o r e m  4.39 ( S o u n d n e s s  o f  d e r i v a t i o n )  Let E be a set of clauses, and 
C be a clause. IfE F-r C, then E ~ C. 

P r o o f  Suppose N ~-~ C. Then there exists a derivation R 1 , . . . ,  Rk = C of 
C from E. We will prove by induction on k that  ~ ~ C. 

1. Suppose k = 1. Then R1 = C E ~, so obviously 2 ~ C. 
2. Suppose the theorem holds if k _< m. Let R 1 , . . . , R m + I  = C be a 

derivation of C from ~. If R,~+I E E then the theorem is obvious. 
Otherwise, R,~+I = C is a resolvent of some Ri and Rj (i, j < m + 1). 
By the induction hypothesis, we have ~ ~ Ri and ~ ~ Rj. From 
Lemma 4.38, it follows that  {.Ri, Rj} ~ C. Hence ~ ~ C. [] 

Note in particular what this soundness result means in case of a refutation. 
If E F-~ D, then we have found a proof that E ~ []: E is unsatisfiable. 

Resolution by itself is not complete in general. For instance, we cannot 
derive P(f(z)) from P(~),  even though P(x) ~ P(I(z)). In the next chapter, 
we will examine what needs to be added to resolution to get a complete proof 
procedure. On the other hand, we will also show that resolution is complete 
with respect to unsatisfiable sets of clauses: E is unsatisfiable iff E has a 
refutation. 

4.6 Summary 

Logic programming is concerned with describing problems as a set of for- 
mulas (clauses), and solving those problems by checking which formulas are 
logically implied by those formulas. According to Church's Theorem, logical 
implication is undecidable for first-order logic: there is no algorithm that can 
find out whether E ~ r holds, for every E and r However, there do exist 
proof procedures which are both sound and complete, that  is, which can prove 
all and only logical consequences of a set ~. 

One of the most important  proof procedures is based on the resolution 
rule. In essence, this rule derives a resolvent CVx from two premises CV~b and 
--r V X- For first-order clauses, we also need unification and factors in such a 
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resolution step. Combining several resolution steps, starting from clauses in 
E and ending in a clause C, we get a derivation from E, denoted by E F r  C. 
Derivations are sound: if E br C, then E ~ C. Completeness results involving 
resolution will be given in the following chapters. A derivation of the empty 
clause [] is called a refutation of E. Since [] is a contradiction, a refutation 
of E is a proof that  E is unsatisfiable. 



Chapter 5 

Subsumption Theorem and 
Refutation Completeness 

5.1 In troduct ion  

We start this chapter with an example showing how resolution can be used 
to formalize some every-day reasoning. After that,  we will see what needs to 
be added to resolution in order to get a complete proof procedure. 

E x a m p l e  5.1 Mary, the school teacher of little John, notices that little John 
is not in school today. She knows that if someone is not in school then that 
persoon is either ill, or lazy. She also knows that ill people do not go shopping, 
but she has seen little John come out of the candy shop today. 

We can formalize this as follows: a denotes little John, P(x) means "x is 
in school today",  Q(x) means "x is ill", R(x) means "x is lazy", and S(x) 
means "x goes shopping". Now we have the following premises: 

1. ~P(a) ("little John is not in school today") 
2. Vx (~P(x) --+ (Q(x) v R(x))) ("people who are not in school are either 

ill or lazy (or both)") '  
3. Vx (Q(x) --4 -~S(x)) ("ill people don' t  go shopping") 
4. S(a) ("little John has gone shopping today") 

We can write these formulas as the following clauses: 

1. -~P(a) 
2. P( . )  v q(x) v R(,)  
3. -~Q(~) v -~s(~) 
4. S(a) 

We can now prove that  little John is lazy, by deriving the clause R(a) ("little 
John is lazy") from these clauses: see Figure 5.1. <1 
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P(z) V Q(:c) v R(.v) -,P(a) 

Q(a) v R(a) ~Q(x) v -~S(x) 

R(~) v -~s(~) s(~) 

% /  
Figure 5.1: The proof tha~ little John is lazy 

Derivations are a powerful tool. However, sometimes it is not possible 
to derive a clause we want to prove, but only something more general. For 
instance, suppose we want to prove that R(a) V R(b) is a logical consequence 
of the clauses in the previous example, which it clearly is, since R(a) 
R(a) V R(b). Even though there is a derivation of R(a) from those clauses, 
there is no derivation of R(a) V R(b). Or take another example: suppose 
E = {(Q(x) v P(a)),-,P(a)} and C = Q(b). Clearly, E ~ C, but using 
resolution there only exists a derivation of Q(x) from E, not of Q(b). We 
can patch this up by introducing subsumption. C subsumes D if there is a 
substitution 0, such that CO C_ D. Clearly, R(a) subsumes R(a) V R(b), and 
Q(x) subsumes q(b). 

In this chapter we introduce a deduction as the combination of a deriva- 
tion and a subsumption step. We then prove the soundness and complete- 
ness of deductions. The main result is the Subsumption Theorem. We also 
prove another completeness result, the refutation completeness of resolution 
for unsatisfiable sets of clauses, and show that these two completeness results 
are in a sense equivalent: the one can be proved from the other. Refutation 
completeness was originally proved by Robinson [Rob65]. The Subsumption 
Theorem was first proved in [Lee67, SCL69], where it was called the 'com- 
pleteness theorem for consequence finding'. Kowalski [Kow70] first used the 
name 'Subsumption Theorem'.  In ILP, it was rediscovered by Bain and Mug- 
gleton [BM92]. The proofs in this chapter are adapted from [NW95, NW96d]. 

The two completeness results mentioned here only apply to sets of clauses. 
However, in Section 5.5 we show a way in which logical implication between 
formulas other than clauses can also be proved by means of resolution. After 
that,  we give a procedure to find a proof if one exists. The chapter is followed 



5.2. DEDUCTIONS 77 

by an appendix which discusses some alternative, but equivalent definitions 
of resolution. 

5.2 D e d u c t i o n s  

Definit ion 5.2 Let C and D be clauses, we  say C subsumes D if there exists 
a substi tution ~ such that  C0 C D (i.e., every literal in C0 also appears in 
D). �9 

Subsumption is also sometimes called 0wsubsumption. 

E x a m p l e  5.3 Some illustrations of subsumption: 

�9 C = P ( z )  subsumes D = P(a) V Q(x), since C{x/a} = P(a), and 
{P(a)}  _C {P(a), Q(x)}. 

�9 C = P(a) v P(a) subsumes D = P(a). Also, D subsumes C. 
�9 C = P(x) V -~Q(a) subsumes D = P(a) V -~P(f(x)) V -~Q(a). 
�9 The empty  clause [] subsumes any clause, because the empty  set is a 

subset of the set of literals in any clause. 
�9 The only clause which subsumes the empty  clause •, is [] itself. <3 

We leave it to the reader to prove that  if C subsumes D, then C ~ D. The 
combination of a derivation and subsumption yields a deduction. 1 Note that  
E ~ C may  be true for clauses C which have nothing to do whatsoever with 
E. This is the case with tautologies: C = Q(x) v-~Q(x) v R(y) is a tautology, 
hence E ~ C for any set E. We want to define a 'deduction'  in such a way 
that  it is complete, so it should also work for tautologies. For this reason, we 
include the case where C is a tautology in our concept of a deduction. 

Defini t ion 5.4 Let E be a set of clauses and C a clause. We say there exists 
a deduction of C from E, written as E ~-d C, if C is a tautology, or if there 
exists a clause D such that  E ~-r D and D subsumes C. If  E F-d C, we say C 
can be deduced from E. �9 

E x a m p l e  5.5 Let C = -~P(b) V n(y)  and E = {(-~P(x) V ~R(x)  V ~Q(a)), 
R(y),-~Q(b), (Q(a) v Q(b))}. Figure 4.4 (p. 71) showed that  E ~-r -~P(x). 
Since -,P(x) subsumes C, we have E ~-d C. <3 

The soundness of deductions follows immediately from the soundness of 
derivations (Theorem 4.39) and the fact that  if D subsumes C, then D ~ C. 

T h e o r e m  5.6 ( S o u n d n e s s  o f  d e d u c t i o n )  Let E be a set of clauses, and 
C be a clause. I f E  F-d C, then E ~ C. 

lit should be noted that our terminology is somewhat non-standard here. For instance, 
Chang and Lee [CL73] use the term 'deduction' for what we call a derivation. 
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CHAPTER 5. SUBSUMPTION THEOREM 

The Subsumption Theorem 

In this section, we give a proof of our most important  completeness result: if 
E ~ C, then E Fd C. In other words: any clause which is a logical consequence 
of E, can be deduced from E. Combined with its converse, the soundness 
of deductions, this is called the Subsumption Theorem. We prove this in a 
number of successive steps in the following subsections. First we prove the 
result in case both E and C are ground, then we prove it in case E consists 
of arbitrary clauses but C is ground, and finally we prove the theorem when 
neither E nor C need be ground. 

5 . 3 . 1  T h e  S u b s u m p t i o n  T h e o r e m  f o r  G r o u n d  E a n d  C 

L e m m a  5.7 Let E be a set of ground ctauses, and C be a ground clause. If 
E ~ C, then E [-d C. 

P r o o f  By Theorem 2,43, we can assume E is finite. Assume C is not a 
tautology. Then we need to find a clause D such that E F r  D and D C C 
(for ground clauses D and C, D subsumes C iff D C C). The proof is by 
induction on the number of clauses in E. 

1. Suppose E = {C1}. We will show that C1 C C. Suppose C1 (~ C. 
Then there exists a literal L such that L C C1 but L ~ C. Let I be an 
interpretation which makes L true, and all literals in C false (such an 
i exists, since C is not a tautology). Then I is a model of C1, but not 
of C. But that  contradicts E ~ C. So C1 C C, and E ~-d C. 

2. (See Figure 5.2 for illustration of this case). Suppose the theorem holds 
if IF] _< m. We will prove that this implies that the theorem also holds 
if IEI = r n +  1. Let E : {C1 , . . . ,Cm+l} ,  and E' = {C1, . . . ,Cm}.  If 
C,~+1 subsumes C or E' ~ C, then the theorem holds. So assume C,~+1 
does not subsume C and E' ~ C. 
The idea is to derive, using the induction hypothesis, a number of 
clauses from which a derivation of a subset of C can be constructed. 
First note that  since E ~ U {Cm+l} ~ C, it follows from Theorem 2.36 
that E' ~ (C~+1 -7 C), hence E' ~ C V-~C,~+x. 
Let L 1 , . . . , L k  be all the literals in Cm+l which are not in C (k >_ 1 
since C~+1 does not subsume C). Then we can write Cm+l = L1 V 
. . .  V Lk V C ~, where C ~ C_ C. Since C does not contain Li (1 < i < k), 
the clause C V -~Li is not a tautology. Also, since E ~ ~ C V -,C,~+1 and 
Cm+l is ground, we have that E ~ ~ CV-~Li,  for each i. Then by the 
induction hypothesis there exists for each i a ground clause Di such 
that E' Fr Di and Di C (C V-~Li). 
We will use Cm+l and the derivations from E ~ of these Di to construct 
a derivation of a subset of C from E. For each i, -,Li E Di, for otherwise 
we would have Di C_ C and E' ~ C. So we can write each Di as -~LiVD}, 
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and D~ C C (the case where some Di contains -~Li more than once can 
be solved by taking a factor of Di). 
Now we can construct a derivation of the ground clause defined as 
D = C'  V D~ V . . .  V D;, from E, using C,~+1 and the derivations of 
D 1 , . . . ,  Dk from E'. See Figure 5.2 for a schematic representation of 
this derivation. In this tree, the derivations of D1, �9 Dk are indicated 
by the vertical dots. So we have that E t-r D. Since C'  _C C, and D~ C_ C 
for each i, we have that D C C. Hence E [-4 C. [] 

C m + l  = L1 v . V L k  V C j D1 -= ~ L 1  v D~ 

L~ V . . .  v Lk V C' v D' 1 D2 = ~L~ v D~ 

L3 V .. . v Lk v C' v D' 1 v D~ 

La v CJ v D~ v v D' �9 k - 1  D k  = - , L k  V D ~  

C /  
D = C ' v  D~ v . . .  v D~k 

Figure  5.2: The tree for the derivation of D from E 

5 . 3 . 2  T h e  S u b s u m p t i o n  T h e o r e m  w h e n  C is  G r o u n d  

In this section, we will prove the Subsumption Theorem in case C is ground 
and E is a set of arbitrary clauses. The idea is to "translate" E ~ C to 
Eg ~ C, where Eg is a set of ground instances of clauses of E. Then by 
Lemma 5.7 there is a clause D such that Eg k~ D, and D subsumes C. 
Finally, we "li f t"  this derivation to a derivation from E. The next two results 
show that logical implication between clauses can be translated to logical 
implication between ground clauses. The first of these is Herbrand's Theorem. 

T h e o r e m  5.8 ( H e r b r a n d )  A set  o f  clauses E is unsat is f iable  i f f  there exis ts  

a f i n i t e  unsat is f iable  se t  Eg o f  ground  ins tances  o f  clauses f r o m  E .  
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P r o o f  
r Eg is a finite set of ground instances of clauses from E, so E ~ Eg~ 

Hence if Eg is unsatisfiable, then E is unsatisfiable. 
:=~: Let E ~ be the (possibly infinite) set of all ground instances of clauses 

from E. It is not very difficult to see that a Herbrand interpretation I is a 
model of a clause C iff I is a model of the set of all ground instances of C. 
Hence such an I is a model of E iff it is a model of Eq Now: 

E is unsatisfiable iff (by Proposition 3.30) 
E has no Herbrand models iff 
E' has no Herbrand models iff (by Proposition 3.30) 
E t is unsatisfiable. 

Finally, by the Compactness Theorem (Theorem 2.42) there is a finite unsat- 
isfiable subset Eg of E'. O 

T h e o r e m  5.9 Let E be a non-empty set of clauses, and C be a ground clause. 
Then E ~ C iff there exists a finitc set Eg of ground instances of clauses from 
E, such that E 9 ~ C. 

P r o o f  
~ :  If Eg is a finite set of ground instances of clauses from E, then E ~ Eg. 

Hence if Eg ~ C, then E ~ C. 
~ :  Suppose E ~ C. Let C = L1 V . . .  V Lk (k > 0). Note that  since C is 

ground, -~C is equivalent to -~L1 A . . .  A -~Lk. Then: 

E ~ C iff (by Proposition 2.37) 
E U {-~C} is unsatisfiable iff 
E U {-~L1,...,-~Lk} is unsatisfiable iff (by Theorem 5.8) 
there exists a finite unsatisfiable set E ~, consisting of ground in- 
stances of clauses from E U {-~L1,...,--~Lk}. 

Since adding clauses to an unsatisfiable set preserves unsatisfiability, we may 
assume without loss of generality that  E' contains every -~Li, 1 < i < k. Thus 
we can write E' = Eg U {-~L1,...,-~L~}, where Eg is a finite set of ground 
instances of clauses from E. (Eg may be empty if C is a tautology.) Now: 

E' is unsatisfiable iff 
Eg U {-~L1,...,-~Lk} is unsatisfiable iff 
Eg U {-'(/,1 V . . .  V Lk)} is unsatisfiable iff (Proposition 2.37) 
Eg ~ L 1 V . . . V L k .  

E x a m p l e  5.10 Let E = {(P(f(x))  V --,P(z)), P(a)} and C = P(f(f(a))) .  
Then E ~ C. Here Eg = {(P(f( f(a)))V-,P(f(a))) ,  (P(f(a))V-~P(a)), P(a)} 
is a set of ground instances of clauses of E, for which we have Eg ~ C. <3 
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The following two lemmas are sufficient to "lift" a derivation, that  is, 
to turn a derivation from instances of certain clauses into a derivation from 
those clauses themselves. 

L e m m a  5.11 Let C1 and C2 be two clauses, and C[ and C~ instances of C1 
and C2, respectively. If  R' is a resolvent of C[ and C;, then there exists a 
resolvent R of C1 and C2, such that R I is an instance of R. 

P r o o f  We assume without loss of generality that  C1 and C2, and C[ and 
C; are standardized apart .  Let C1 = L1 V . . .  V L,~, 6"2 = M1 V . . .  V M~, 
C[ = Cloh, and C~ = 6'2o'2. Suppose R' is a resolvent of C[ and C~. Then 
R'  is a binary resolvent of a factor of C[ and a factor of C~. See the figure 
for illustration. 

For notational  convenience, we assume without loss of generality that  the 
factor of C[ is (L1 V . . .  V La)ch01, where 01 is an mgu for La~r l , . . . ,Lmch .  
Similarly, the factor of C; that  is used, is (Mx V . . .  V Mb)c~202, where 02 is 
an mgu for M b c % . . . ,  M ~ 2 .  Let Li~lO1 and Mj~r202 be the literals resolved 
upon, with mgu p. Abbreviate L1 V . . .  V Li-1 V Li+l V . . .  V L~ to D1, and 
M1 V . . .  V Mj-1 V Mj+I V . . .  V Mb to D2. Then R'  = (DI~101 V D2r 
By our assumption of standardizing apart ,  this can be written as /~ '  = (D1 V 
D2 )o'101o'202 #. 

Let 71 be an mgu for La V . . .  V Lm. Then (L1 V . . .  V La)71 is a factor 
of C1. Note that  oh01 is a unifier for L a , . . . , L m .  Since 71 is an mgu for 
L~, . . . ,  L,~, there exists a substitution 51 such that  ch01 = 7151. Similarly, 
(21//1 V . . .  V Mb)72 is a factor of C2, with 72 as mgu for Mb V . . .  V M~, and 
there is a ~2 such that  c~202 = '7262. 

Since Lio'lO 1 and ~Mjo'202 c a n  be unified (they have # as mgu) and 7i is 
more general than cri0i (i = 1, 2), LiT1 and -'Mj72 can be unified. Let 0 be an 
mgu for LiT1 and -'Mj72. Define/~ = (D171 V D272)0, which can be written 
as R = (D1 V D2)71720. Since R is a binary resolvent of the above-mentioned 
factors of C1 and 6'2, it is a resolvent of C1 and 6'2. 

C1 C2 

I ~1 f a c t o r  f a c t o r  ~Z 

0 J 

R ~ 

It  remains to show that  /~' is an instance of R. Since Li71o~152# = 

Licr10132~ = Lio'lOl# = -~Mjo'2~2# = -~Mj7252# = -~Mj"/25152~, the sub- 
st i tution 5152p is a unifier for LiT1 and -~Mj72. 0 is an mgu for Li71 and 
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-,Mj72 , so there exists a substitution g such that 51(~2~  = 0(~. Therefore 
~t = (D1 V D2)~1010"202~ = (D1 V D2)"/15172(~2# = (D1 V D2)713"2~152# = 
(D1 V D2)"/17205 = Rh. Hence/~t is an instance of R. [] 

L e m m a  5.12 ( D e r i v a t i o n  l i f t ing)  Let E be a set of clauses, and E ~ a set 
of instances of clauses .from E. Suppose R~, . . . ,  P~ is a derivation of the 
clause R~ from E'. Then there exists a derivation R I , . . . ,  Rk of the clause 
Rk from E, such that R} is an instance of Ri, for each i. 

P r o o f  The proof is by induction on k. 

1. Suppose k = 1. R~ E E 1, so there exists a clause/~1 E E such that  R~. 
is an instance of J~l. 

l 2. Suppose the lemma holds if k < m. Let R~ , . . . ,  R~, Rm+ I be a deriva- 
tion of R~+ I from Eq By the induction hypothesis, there exists a deriva- 
t i on /~1 , . . . ,  R,~ of R.~ from E, such that R} is an instance o f / t i  for all 
i, l < i < m .  I f R  p m+l E E ~, the lemma is obvious. Otherwise, Rm+ I is 
a resolvent of two clauses C[ and C; in {Ri , .  ~., R~}. Then there exist 
two clauses C1 and C~ in {/~1, . . . ,  Rm} such that C[ is an instance of 
C1, and C~ is an instance of C~. It follows h'om Lemma 5.11 that  there 
is a resolvent /~rn+l of C1 and C2, such that R' is an instance of m-I-1 
Rm+l. Hence the lemma holds for k = m + 1. [] 

The previous lemmas are sufficient to prove the Subsumption Theorem 
for the case where C is ground. 

L e m m a  5.13 Let E be a set of clauses, and C be a ground clause. IrE ~ C, 
then E ~- d C. 

P r o o f  Assume C is not a tautology. We want to find a clause D such that  
E ~-~ D and D subsumes C. From E ~ C and Theorem 5.9, there exists a 
finite set Eg such that  each clause in Eg is a ground instance of a clause in 
E, and E 9 ~ C. Then from Lemma 5.7 there exists a clause D' such that  
Eg ~-r D', and D' subsumes C. Let R~ , . . . ,  R~ = D' be a derivation of D' 
from Eg. It follows from Lemma 5.12 that we can lift this to a derivation 
R1, . . .~  Rk of Ra from G, where D e is an instance of Rk. Let D = Rk. Then 
E ~-~ D and D subsumes C (since D' subsumes C). o 

5.3.3 The Subsumption Theorem (General Case) 
Finally we prove the Subsumption Theorem for arbitrary E and C. Here we 
need a Skolem substitution, which is related to the introduction of Skolem 
constants that  we used in Chapter 3. 
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D e f i n i t i o n  5.14 Let E be a set of clauses, and C be a clause. Let xl,  �9  x~ 
be all the variables appearing in C, and a l , . . . ,  an be distinct constants not 
appearing in E or C. Then the substitution { x l / a l , . . . ,  x~/an} is called a 
Skolem substitution for C with respect to E. 

Similarly, if S is a set of clauses, Yl, �9 �9 yrn are all the variables appearing 
in S, and b l , . . . ,  b,~ are distinct constants not appearing in E or S', then 
{y~/bl , . . . ,  ym/bm} is a Skolem substitution for S with respect to E. 0 

E x a m p l e  5.15 Let E = {P(x)  V -~Q(y, f (a ) )}  and C = Q(z,y) v P(b). 
Then {z/c, y/d} is a Skolem substitution for C with respect to E. If S = 
{P(x) ,  Q(x, y)}, then {x/b, y/c} is a Skolem substitution for S with respect 
to E. <3 

The following l emma shows that  if we have derived some clause D from 2 
which subsumes C0- -where  0 is a Skolem substitution for C with respect to 
B - - t h e n  D also subsumes C. For instance, suppose D = P(x) ,  C = P(y) V 
Q(z) and 0 = {y/a, z/b}. D subsumes CO, but since 0 replaces each variable 
by a constant that  does not appear in E, C or D, D also subsumes C itself. 

L e m m a  5.16 Let C and D be clauses. Let 0 = {xm/al , . . . ,xn/a~} be a 
Skolem substitution for C with respect to D. If D subsumes CO, then D also 
subsumes C. 

P r o o f  Since D subsumes CO, there exists a substitution r such that  Do" C__ 
CO. Let o" be the substitution { y l / t l , . . . ,  y,~/t,~}. Let o.' be the substitution 
obtained from o" by replacing each ai by xi in every tj. Note that  o" = o"'0. 
Since 0 only replaces each xi by ai (1 < i < n), it follows that  D #  C_ C, so 
D subsumes C. [] 

Finally we can prove the general case of the Subsumption Theorem: 

T h e o r e m  5.17 ( S u b s u m p t i o n  T h e o r e m )  Let ~ be a set of clauses, and 
C be a clause. Then E ~ C iff ~ ~-d C. 

P r o o f  
<=: By Theorem 5.6. 
=~: Assume C is not a tautology. Let 0 be a Skolem substitution for C 

with respect to E. Then CO is a ground clause which is not a tautology, and 
E ~ CO. So by Lemma  5.13 there is a clause D such that  E ~-~ D and D 
subsumes CO. Since D is derived from E, D does not contain any of the 
constants in 0. Therefore 0 is also a Skolem substitution for C with respect 
to D. Then by L e m m a  5.16, D subsumes C. Hence ~ t-d C. [] 
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5.4 Refutation Completeness 

5.4.1 From the Subsumpt ion  Theorem to Refutat ion  
Comple teness  

The Subsumption Theorem actually tells us that  resolution and subsumption 
form a complete set of derivation rules for clauses. Though the resolution rule 
by itself is not complete for clauses in general~ it is complete with respect to 
unsatisfiable sets of clauses. This refutation completeness is an easy conse- 
quence of the Subsumption Theorem: 

T h e o r e m  5.18 (Refutation completeness of resolution) Let E be a set 
of clauses. Then E is unsatisfiable iff E F-~ •. 

Proof 
~ :  By Theorem 4.39. 
O :  Suppose E is unsatisfiable. Then E ~ []. So by Theorem 5.17 there 

exists a clause D, such that  E F-r D and D subsumes the empty  clause rn. 
But [] is the only clause which subsumes [], so D = [:2. [] 

Surprisingly, the Subsumption Theorem hardly ever appears in the stan- 
dard literature about  resolution, which mainly focuses on refutations. We 
include the Subsumption Theorem here because it is a much more "direct" 
form of completeness than refutation completeness. Though E ~ C can be 
proved by giving a refutation of EU {-,C} (see Section 5.5), a direct deduction 
of C from E is much more straightforward. A deduction has the advantage 
that  the relation between the premises in E and the conclusion C is easier 
to see. For this reason, the Subsumption Theorem will be very useful in the 
proofs of a number of results in the second part  of this book. 

5.4.2 From Refutat ion  Completeness  to the Subsump-  
tion T h e o r e m  

In the previous subsection~ we showed that  refutation completeness is a direct 
consequence of the Subsumption Theorem. Here we will show the converse: 
that  we can obtain the Subsumption Theorem from refutation completeness. 
This shows that  these two results are in a sense equally powerful in case of 
unconstrained resolution. 

To prove the Subsumption Theorem from refutation completeness, we will 
first show how to turn a refutation of E U {-~L1, . . . , - ,L~} into a deduction 
of L1 V . . .  V Lk from E. Thus our proof is constructive. We start  with an 
example. Suppose E = { (P(x )V ~R(f(f(b)))), (R(f(x))V-~R(x))},  and C = 
P(x) V Q(x) v --,R(b). First we note that  0 = {x/a} is a Skolem substitution 
for C with respect to E. Now --,CO ~:~ {-~P(a),-~Q(a), R(b)}. Figure 5.3 shows 
a refutation of E U {- ,P(a ) , - ,Q(a ) ,  R(b)}. 
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n(](~)) v -~n(~) 

P(~) v ~n(f(](b))) I-P(�9 I n(f(~)) v-~R(~) n(](b)) 

-.n(y(f(b))) n(f(](b))) 

Q 

F i g u r e  5 . 3 :  A refutation of E U {-~P(a), ~Q(a), R(b)} 

Now by omit t ing the leaves of the refutation tree which come from -~Ct) 
(the framed literals) and by making appropriate changes in the tree, we get 
a derivation of the clause D = P ( x )  V-~R(b) (Figure 5.4). D subsumes C, so 
we have turned the refutation of Figure 5.3 into a deduction of C from E. 

n(f(~)) v -~n(x) n(f(y)) v -~n(y) 

P(~) v -~n(](/(b))) n(/(f(y))) v -~n(y) 

D = P(~)  v -,n(b) 

subsumption 

c = P(~) v q(~) v -n(b) 

F igure  5.4: A deduction of C from E, obtained from the previous figure 

This approach also works in the general case. The following l emma does 
most  of the work. 

L e m m a  5.19 Let E be a set o f  clauses, and C = L1 V . . .  V Lk be a non- 
tautologous ground clause. I r E  U {-~LI, . . . ,--~Lk } F-r •, then E t-d C. 

P r o o f  Suppose E U {--~L1,...,-~Lk} ~-r []- Then there exists a refutation 
R I , . . . ,  R,~ = [] of E U { -~L1 , . . . , -~Lk} .  Let r be the number of resolvents in 
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this sequence (i.e., r = n -  the number of members  of E U {-~L1,. . . , -~Lk} in 
R 1 , . . . ,  R . ) .  We prove the l emma by induction on r. 

1. If  r = 0, then Rn = D r E. Since [] subsumes any C, the l emma holds. 
2. Suppose the l emma holds for r < m. We will prove that  this implies 

that  the l emma also holds for r = m + 1. Let R 1 , . . . , R n  = [] be a 
refutation of E to { - , L l , . . . , - , L k }  containing m + 1 resolvents. Let Ri 
be the first resolvent. Then/~1, �9 ..,/~,~ = [] is a refutation of E U {/~i} tO 
{-~L1,. . . , -~Lk} containing only m resolvents, since Ri is now one of the 
original premises. Hence by the induction hypothesis, there is a clause 
D, such that  E t0 {Ri} k> D and D subsumes C. 
Suppose Ri is itself a resolvent of two members  of ~. Then we also have 
E ~-,. D, so the l emma holds in this case. 
Ri cannot be a resolvent of two members  of {-~L1, . . . ,  -~Lk}, since this 
set does not contain a complementary pair (C is not a tautology).  
The only remaining case we have to check, is where R~ is a resolvent of 
C ~ E E  and some-~L~ (l < .s < k). Let C j = M 1 V . . . V M j V . . . V M h .  
Suppose Ri is a binary resolvent of (M~ V . . .  V Mj)cr (a factor of C j, 
using o" as an mgu for { M j , . . . ,  Mh}) and -~L~, with 0 as mgu for Mj~r 
and Ls. Then R~ = (M1 V . . . V  Mj_l)o'O and C~o'O = t:ti V Ls V . . .  V L~ 
(h - j + 1 copies of Le), since M j , . . . ,  M/~ are all unified to L, by ~0. 
Now replace each t ime Ri appears as leaf in the derivation tree of D, 
by C'(rO = t~i V L~ V . . .  V L,, and add L, V . . .  V L, to all decendants of 
such an Ri-leaf. Then we obtain a derivation of D V Ls V . . .  V Ls from 

U {C'~rO}. Since C'crO is an instance of a clause from E, we can lift 
(by Lemma  5.12) this derivation to a derivation from E of a clause D ~, 
which has D V L, V . . .  V L, as an instance. Since D subsumes C and 
L~ E C, D'  also subsumes C. Hence E ~-d C. [] 

Now we can prove the Subsumption Theorem (Theorem 5.17) once more, 
this t ime starting from Theorem 5.18. 

T h e o r e m  5.17 ( S u b s u m p t i o n  T h e o r e m )  Let E be a set of clauses, and 
C be a clause. Then E ~ C i f f ~  ~-d C. 

P r o o f  
~ :  By Theorem 5.6. 
~ :  If  C is a tautology, the theorem is obvious. Assume C is not a tau- 

tology. Let 0 be a Skolem substitution for C with respect to Z. Suppose 
CO = L1 V . . .  V Lk. Because C is not a tautology, C0 is not a tautology. 
Since CO is ground and E ~ CO, by Proposition 2.37 the set of clauses 

U (-~L1, �9 . . ,-~Lk} is unsatisfiable. Then it follows from Theorem 5.18 that  
E U {-~L1,. �9 --,Lk} ~-r O. Therefore by Lemma  5.19, there exists a clause D 
such that  E ~-~ D, and D subsumes CO. Finally, from Lemma  5.16, D also 
subsumes C itself. Hence E ~-d C.  [] 
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5.5 Proving Non-Clausal  Logical Implication 

The two previous completeness results, the Subsumption Theorem and refuta- 
tion completeness, are very important,  but they only apply to sets of clauses. 
In general, if we want to prove E ~ r E need not be a set of clauses, nor 
does r have to be a clause. For instance, let E = {Vx (P(x) --+ Q(x)), P(a)},  
and let ~ = 3x Q(x). Clearly E ~ r but there is no way that  this can be 
proved by resolution "directly". 

There is, however, a trick to avoid this problem. The trick is not to apply 
resolution to E, but to a standard form of 2 U {-7r A standard form can 
always be represented by a set of clauses, hence we can apply resolution to it. 
If E ~ r then this standard form of E U {--,r will be unsatisfiable, and the 
refutation completeness of resolution guarantees us that we can prove this. 
We then have the following result, which shows that  resolution can be used 
to prove any case of logical implication. 

T h e o r e m  5.20 Let E be a set of formulas, let r be a formula, and let S be 
a set of clauses representing a standard form of E U {-~r Then E ~ r iff 
S F~ []. 

P r o o f  2 ~ r iff (by Proposition 2.37) 
E U {-~r is unsatisfiable iff (by Theorem 3.19) 
S is unsatisfiable iff (by Theorem 5.18) 
S~ [] [] 

So to prove a case of non-clausal implication N ~ r we use the refutation 
completeness of resolution. It should be noted that we cannot determine 
separately a standard form S of E and a standard form I' of r and then use the 
Subsumption Theorem. For instance, suppose E = {P(a)} and r -- 3x P(x) .  
Then S = {P(a)} is a standard form of E, and r = {P(b)} is a standard 
form of r We had 2 ~ r but this property is lost in this case when we move 
to standard forms: S ~ F, because of the introduction of the new constant b 
in I'. 

E x a m p l e  5.21 Let N = {Vx (P(x) ~ Q(x)), P(a)},  and let r = 3y Q(y). 
We will prove that E ~ r We first obtain a standard form of E U {-,r 
S = {(-~P(x) V Q(x)), P(a),-~Q(y)}. Then we prove by resolution that  S is 
unsatisfiable, by giving a refutation of S. See Figure 5.5. Thus S is unsatis- 
fiable, and we have E ~ r from Theorem 5.20. <~ 

5.6 How to Find a Deduct ion 

Suppose we want to find out whether E ~ C holds. By the Subsumption 
Theorem, this is the case iff there is a deduction of C from E. There are 
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"~P(x) v Q(x) ~Q(y) 

O 

Figure  5.5: The tree for the refutation of S 

two kinds of deductions: (1) C is a tautology, and (2) there is a derivation 
from E of a clause D, which subsumes C. Checking the first case is easy: 
by Proposition 3.20, C is a tautology iff C contains a complementary pair. 
Unfortunately, checking the second case is much harder. In fact, this is an 
undecidable problem, even if E contains only one clause. This follows from a 
result proved by Schmidt-Schauss [SS88]: 

T h e o r e m  5.22 ( S c h m i d t - S c h a u s s )  The problem whether C ~ D, where 
C and D are arbitrary clauses, is undecidable. 

Some related undecidability results are given in Section 7.8. 
Since C ~ D iff C ~-d D, the existence of a deduction of D from C is also 

undecidable. Then clearly, if E is a set of clauses and C is a clause, E F-d C 
is also undecidable. 

This means that the best we can do, is find a procedure that  always finds 
a deduction of C from E if one exists. Such a procedure is not guaranteed to 
terminate if a deduction does not exist. The simplest procedure of this kind 
is based on two observations. Firstly, the set of clauses which can be derived 
from E by a derivation tree of depth n, is finite. And secondly, whether some 
clause subsumes C is decidable (see Section 14.3). Thus we first check if 
some clause in E subsumes C. If not, we construct the set of clauses which 
can be derived from E by a derivation tree of depth 1, and check if one of these 
subsumes C. If not, we construct the set of clauses which can be derived from 
E by a derivation tree of depth 2, and see if one of these clauses subsumes C, 
etc. If E ~-d C and C is not a tautology, then there is a derivation of a clause 
which subsumes C, and this will eventually be found. 

The following procedure, called the level-saturation method, implements 
this idea. It tries to find a derivation from E of a clause which subsumes C, 
by summing up E ~ E l, E~ , . . .  defined as follows: 

E 0 = E  
E n + ~ = { C  I C i s a r e s ~  ofC~ E ( E  ~  ~ U . . . U E  ~) a n d C 2 � 9  ~} 
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The set B" contains all clauses which can be derived from Z by a derivation 
tree of depth n. An example will make this clearer. 

E x a m p l e  5.23 Let C = P(x ,  b) and X = {(P(x,  y) V R(z)),  (Q(u) v ',R(a)), 
(--,Q(b) v -~Q(v))}. Then P~ ~ C. We will use the level-saturation method to 
find a derivation of a clause which subsumes C. See Table 5.1 for the first 
three sets that  are generated. 

~o: (1) P(x, y) V R(z) 
(5) Q(.) v ~R(a) 
(3) -Q(b) v~Q(v) 

E 1 : (4) P(x, y) V Q(u) from (1) and (2) 
(5) -~R(a) v ~O(v) from (5) and (3) 
(6) -,R(a) V "~Q(b) from (2) and (3) 
(7) -.R(a) from (2) and (3) 

I22: (8) P(x, y) v ~Q(v) from (1) and (5) 
(9) P(x, y) V ~Q(b) from (1) and (6) 

(10) P(~, v) from (1) and (r) 
(11) -.R(a) V ~R(a) from (2) and (5) 
(12) -,_R(a) V-~R(a) from (2) and (6) 
(13) -~Q(b) vP(x,y) from (3) and (4) 
(14) -.O(v) vP(x,y) from (3) and (4) 
(15) P(x,y) from (3) and (4) 
(16) P(x,g) V--R(a) from (4) and (5) 
(17) P(x,y) V.R(a) from (4) and (6) 

Table  5.1-" The sets of resolvents constructed by the level-saturation method 

Note that  two clauses may have more than one resolvent. For instance, 
clauses (5), (6) and (7) are all resolvents of (2) and (3). We wanted to find a 
derivation of a clause which subsumes C = P(x,  b). E 2 contains such a clause: 
clause (10) is P(x, y). One such a clause is enough, so there is no need to 
construct E 3, E 4, etc. 

P(~v, y) V H(z) "~R(a) 

P(~, y) 

F igure  5.6: The derivation obtained from the level-saturation method 
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Since P(x, y) E E 2, there exists a derivation tree of depth 2, representing 
a derivation of P(x, y) from E. The parent clauses of P(x, y) were clauses (1) 
and (7). (1) is a member of E, and (7) has (2) and (3) as parents, which are 
also in E. Hence the derivation of P(x, y) is as pictured in Figure 5.6. <a 

Note that  when looking for a deduction of the empty clause n, we can 
ignore the subsumption step, since [] is the only clause which subsumes []. 
Thus it suffices to check whether some E ~ contains D. 

As can be seen from the previous example, the number of clauses in E ~ 
rapidly increases, even for small n. This can make the search for a deduction 
very inefficient. Numerous tricks and procedures have been invented to speed 
up the search. For instance, all tautologies can be removed from E ~, since 
tautologies are not necessary in a deduction anyhow--if  Cn is a tautology and 
{C1, . . . ,  C~} ~ C, then also {C1, . . . ,  C~_~} ~ C. Removing the tautologies 
decreases the number of clauses in En+l and later sets, since we won't have 
to bother then about resolvents that have one of the tautologies in E ~ as 
parent clause. For discussions of what can be done to speed up the search~ we 
refer the interested reader to books such as [CL73, Lov78, GN87], and articles 
such as [KK71, MR72, Ino92]. In the next chapter, we will give two examples 
of more efficient procedures, called linear resolution and input resolution. 
Here some restrictions are put on the form of derivations. This decreases the 
number of possible derivations, thus making the search for a derivation more 
efficient. We will show that the first of these is still complete, while the second 
is not. 

5.7 Summary 

A deduction combines a derivation and a subsumption step. Deduction is 
sound and complete: the Subsumption Theorem states that  E ~ C iff E t-d C. 
This result immediately implies the refutation completeness: E is unsatisfiable 
iff E k~ D. Conversely, we can also prove the Subsumption Theorem start- 
ing from the refutation completeness. Furthermore, refutation completeness 
can also be used to prove non-clausal cases of logical implication. The level- 
saturation method, essentially a way of summing up all possible derivations, 
can be used to find a deduction if one exists. 
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5.A Alternative Definitions of Resolut ion 
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It  should be noted that  the way we have defined resolution here is not the 
only possible way: Here we will briefly discuss three alternatives which have 
appeared in the literature. This appendix is somewhat  subtle and perhaps 
confusing; since it is not necessary for an understanding of the rest of this 
work, the reader may  wish to skip it. 

R o b i n s o n  

Firstly, in Robinson's  paper [Rob65] which first introduced resolution, a 
clause is taken to be a set of literals (see the Appendix to Chapter  3), and 
factors are built into the resolution step itself. 2 A set M of positive literals 
from a clause C1 is (most generally) unified with the a toms in a set N of 
negative literals from a clause C2, instead of resolving upon a single literal 
f rom each parent. If  0 is the mgu used, then the resolvent is 

((C,\M) u (C2\N))O. 

For example, if we consider the clauses C1 --~ {P(~g, y), P(a, a), Q(x)} and 
C2 = {-~P(z, z),-~P(a, z), R(z)}, then we can use M = {P(x, y), P(a, a)} C 
Ci, N = {~P(z, z), ~P(a, z)} __ C~, and mgu {x/a, y/a, z/a}, to obtain the 
resolvent {Q(a), R(a)}. 

C h a n g  a n d  L e e  

Secondly, in Chang and Lee's [CL73] a clause is treated as a set ofliterals (but 
written down as a disjunction). A binary resolvent of C1 and C2, resolved 
upon literals L1 E C1 and L2 E C2 with mgu 0, is defined as 

(C10 - LIO) ~ (C20 - L20). 

A resolvent of C1 and C2 is defined as a binary resolvent of factors of C1 
and C2. Since a set of literals contains literals only once, taking a factor is 
a special case of applying a substitution. There is no need to delete all but 
one copies of the unified literals, since by definition a set contains literals 
only once, and hence all but one of the unified literals as it were "disappear 
automatical ly"  from the clause. For instance, if C = P(a)VP(x)VQ(x), then 
the mgu  0 = {x/a} yields the factor CO = P(a) V Q(a). 

Note that  every [Rob65]-resolvent is also a [CL73]-resolvent: if the sets 
M C C1 and N C C2 are used to construct a [Rob65]-resolvent R of C1 
and C2, then we can use an mgu o'1 of M and an mgu 0"2 of N to construct 
factors C~ = Cl0"1 and C~ = C2c~2. It is easy to see that  R is a [CL73]- 
resolvent, obtained as a binary resolvent of C~ and C~. Conversely, not every 

2In th is  work, we have  chosen to s epa ra t e  the  definit ions of  a fac tor  and  a b ina ry  
resolvent ,  s ince  b ina ry  resolu t ion  wi thou t  factors  is sufficient in case of SLD-reso lu t ion  for 
Horn  c lauses  (see C h a p t e r  7). 
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[CL73]-resolvent is a [Rob65]-resolvent: if C1 = {P(x), P(a), Q(a)} and C2 = 
{~Q(a)}, then {P(a)} is a [CL73]-resolvent (using the factor {P(a), Q(a)} of 
C1), while the only [Rob65]-resolvent is {P(x), P(a)}. 

Genese re th  and  Nilsson 

A third alternative is used in Genesereth and Nilsson's [GN87]. There a clause 
is, again, treated as a set of literals. A binary resolvent of C1 and CB, resolved 
upon literals L1 and L2 with mgu ~), is defined as 

- u - 

Apart from the set notation, this is the same as our own definition. Clearly, for 
every binary resolvent R of C1 and C~ in our definition, there exists a binary 
resolvent R' of C1 and C2 in the definition of [GN87], such that R' C R. 
[GN87] define a resolvent of CI and C2 as a binary resolvent of factors of 
C1 and C2. Thus it can be seen that if 7{ is a resolvent of C1 and C2 in our 
definition, then there is a [GN87]-resolvent R' of C1 and C2 such that R' C R 
(and hence R' ~ R). 

Note that if R is a [GN87]-resolvent of C1 and C2~ then there is a [CL73]- 
resolvent R' of C1 and C2 such that R t C_ R. Some [GN87]-resoIvents are 
not [CL73]-resolvents. For instance, suppose C1 = {P(x, a),P(x,x)} and 
C~ =- {~P(a, a)}. Then {P(a, a)} is a [GN87]-resolvent of C1 and C2, while 
the only [CL73]-resolvent is the empty clause. On the other hand, every 
[CL73]-resolvent is a [GN87]-resolvent, due to the use of factors. 

Despite the differences between these alternative definitions and our own, 
oar proof of the Subsumption Theorem in this chapter can fairly easily be 
adjusted to accommodate these alternative definitions. Thus, even though 
the number of resolution steps required for the deduction of some particular 
clause may vary between definitions, eventually each definition can deduce 
exactly the same clauses from a set E~ namely the logical consequences of E. 



Chapter 6 

Linear and Input 
Resolution 

6.1 Introduction 

In the previous two chapters, we defined resolution, and proved deductions to 
be sound and complete. We also explained how the level-saturation method 
can find a deduction of C from E, if one exists. Essentially, it just tries 
out all possible derivations--and often the set of all possible derivations is 
infinite. Searching for a proof is very cumbersome, because in "unconstrained" 
resolution, any two clauses (both clauses from the original set E, and previous 
resolvents), can be resolved together. This means that in each step, there is 
a large number of possibilities which all ought to be tried. 

This number of possibilities could be reduced by imposing constraints on 
the derivations that  are allowed. Ideally, such a restricted form of resolution 
significantly reduces the number of possibilities that have to be tried (com- 
pared to unconstrained resolution), without sacrificing completeness. That  
is, we want a restricted form of resolution which is more efficient than un- 
constrained resolution, but which still allows us to deduce any clause that  is 
a logical consequence of the premises. 

Many important  restrictions have been developed since the introduction 
of the resolution principle by Robinson in 1965. The most important  of these 
can be subdivided into two broad classes: forms of semantic resolution and 
forms of linear resolution. 

Semantic resolution takes particular interpretations and orderings of lit- 
erals into account. By imposing all sorts of restrictions on the possible deriva- 
tions, in terms of the chosen interpretation and ordering, semantic resolution 
is much more efficient than unconstrained resolution. It was introduced by 
Slagle in [Sla67]. Chapter 6 of [CL7a] discusses several forms of semantic reso- 
lution, and proves the refutation completeness of those forms. Slagle, Chang, 
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and Lee proved versions of the Subsumption Theorem for semantic resolution 
in [SCL69]. 

However, in this book we will not discuss semantic resolution in detail. 
Instead, we define a simple form of linear resolution, and prove its complete- 
ness. We prefer linear resolution over semantic resolution here, because it is 
conceptually simpler and provides a bridge between the unconstrained reso- 
lution of the previous chapters, and the SLD-resolution of the next chapter 
(which is a special case of linear resolution). 

Linear resolution is characterized by the linear shape of its derivations. 
It was independently introduced by Loveland [Lov70] and Luckham [LucT0]. 
An important  further restriction called SL-resolution (Linear resolution with 
a Selection function) was introduced by Kowalski and Kuehner [KKT1], 
and proven to be refutation-complete. Chang and Lee [CL73] discuss OL- 
resolution (Ordered Linear resolution). 1 Minicozzi and Reiter proved the 
Subsumption Theorem for linear resolution in [MR72]. More recently, In- 
oue [Ino92] developed SOL-resolution (Skip-OL-resolution) and proved a ver- 
sion of the Subsumption Theorem for it. 

For the sake of transparency, we will discuss a very simple form of linear 
resolution here. Many features and restrictions could be added on to improve 
efficiency (see the references given above). We will prove the Subsumption 
Theorem and refutation completeness fbr this form of linear resolution. Af- 
ter that,  we will define a further restriction of linear resolution called input 
resolution, and show that this is not complete for general clauses, not even 
when the set of premises contains only one clause. 

6.2 Linear Reso lu t ion  

D e f i n i t i o n  6.1 Let E be a set of clauses and C be a clause. A linear deriva- 
tion of C from E is a finite sequence of clauses R0 , . . . ,  Rk = C, such that  
R0 E E and each Ri with 1 < i _< k is a resolvent of Ri-1 and a clause 
@ ~ ZU{Ro,...,.R~_~}. 

R0 is called the top clause, Ao, . . . ,  Rk the center clauses, and C 1 , . . . ,  Ck 
are called the side clauses of this linear derivation. If a linear derivation of C 
from E exists, we write E f-tr C. 

A linear derivation of [] from E is called a linear refutation of E. 

It is instructive to see how linear resolution fits into the definition of 
unconstrained resolution. Whereas in unconstrained resolution a clause Ri 
in the derivation can be a resolvent of any two previous clauses, in linear 
resolution /~i should be a resolvent of R~'-I and a clause from E or one of 
the previous center clauses. This greatly reduces the search space of possible 
derivations. 

t However, their  proof  of refutat ion completeness contains an error. OL-resolution is not  
refutat ion-complete,  as described on pp. 324-325 of [Ino92]. 
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Linear derivations are characterized by the "linear" shape of their corre- 
sponding derivation trees. See Figure 6.1. Such a tree can be turned into a 
derivation tree for unconstrained resolution by adding the derivations of each 
side clause Ci which is not in ~. 

Ro C1 

R1 C2 

Rz 

Rk- i Ck 

R~ 

Figure  6.1: The characteristic shape of a linear derivation 

Linear deductions are defined as follows: 

D e f i n i t i o n  6.2 Let P. be a set of clauses and C a clause. There exists a 
linear deduction of C from 2, written as N ~-m C, if C is a tautology, or if 
there exists a clause D such that  E ~-~ D and D subsumes C. �9 

E x a m p l e  6.3 We will give a linear deduction of C = Q(a) v / / ( a )  from 
G = {(P(x)V~O(x)), (~P(x)V~Q(a)), (-,P(x)vQ(x)), (P(x)VQ(x)VR(x))}. 
Figure 6.2 shows a linear derivation of D = R(a) from E. Note that  the 
underlined side clause C4 is the center clause R1. Note also that  we sometimes 
rename side clauses to achieve that  the side clauses and the corresponding 
center clauses are standardized apart .  Since D subsumes C, we have a linear 
deduction of C from ~. Hence G ~-Id C. <] 

6.3 Refutation Completeness 

A proof of the refutation completeness of linear resolution is given in Theo- 
rem 7.2 of [CL73] (but see the note on p. 94). We adapt  this proof for our 
own definitions here, first proving the case for ground clauses, which is then 
lifted. The proof of the following lifting l emma is similar to Lemma 5.12. 
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n o : P ( g )  V "~Q(T,) Cl -= "~P(y)  V "~Q(a) 

nl = ~Q(~) v ~Q(~) c2 = ~P(y) v Q(y) 

Ru = "~P(a) C3 = P ( x )  V Q(x )  v -~(x) 

n~ = c2(~) v R(~) c~ = - ,Q(~) v - ,Q(~) 

R4 = D = R(a )  

Figure  6.2: A linear derivation of D from E 

L e m m a  6.4 ( L i n e a r  d e r i v a t i o n  l i f t ing)  Let E be a set of clauses, and 
E' be a set of instances of clauses from E. Suppose R~o,..., R~ is a linear 
derivation of the clause R~ from E ~. Then there exists a linear derivation 
[ to , . . . ,  ftk of the clause Rk from E, such that R~ is an instance of fti, for 
each i. 

The following l emma is the refutation completeness of linear resolution 
for ground clauses. 

L e m m a  6.5 I f  E is an unsatisfiable set of ground clauses, and C C E such 
that E \ { C }  is satisfiable, then there is a linear refutation of E with C as top 
clause. 

P r o o f  By the Compactness Theorem (Theorem 2.42), we can assume E is 
finite. Let n be the number  of distinct ground atoms occurring in literals in 
clauses in E. We prove the l emma by induction on n. 

1. If  n = 0, then E = {D}. Since E \{C}  is satisfiable, C = [] 
2. Suppose the l emma holds for n < m, and suppose m + 1 distinct a toms 

appear  in E. We distinguish two cases. 
C a s e  1: Suppose C = L, where L is a literal. We first delete all clauses 
from E which contain the literal L (so we also delete C itself from 
E). Then we replace clauses which contain the literal -,L by clauses 
constructed by deleting these -~L (so for example, L1 V --L V L2 will 
be replaced by L1 V L2). Call the finite set obtained in this way F. 
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Note that  neither the literal L, nor its negation~ appears in clauses in 
F. If M were a Herbrand model of F, then M U {L} (i.e., the Herbrand 
interpretation which makes L true, and is the same as M for other 
literals) would be a Herbrand model of E. Thus since E is unsatisfiable, 
P must  be unsatisfiable. 
Now let E'  be an unsatisfiable subset of F, such that  every proper 
subset of E ~ is satisfiable. E'  must  contain a clause D '  obtained from a 
member  of E which contained -~L, for otherwise the unsatisfiable set E ' 
would be a subset of E \{C} ,  contradicting the assumption that  E \{C}  
is satisfiable. By construction of E' ,  we have that  E ' \ { D  ~} is satisfiable. 
Furthermore,  E'  contains at most m distinct atoms, so by the induction 
hypothesis there exists a linear refutation of E '  with top clause D ' .  See 
the left of Figure 6.3 for illustration. 

D ~ 6 E' Ci E E ~ 

R1  C~ E E ~ 

[3 

C=L6 ~ D =-~LVD' 6 ~ 

D' Ci V -~L 6 E 

RI V -~L C~ 6 E 

-~L L 

[3 

Figure  6.3: Case 1 of the proof 

Each side clause in this refutation that  is not equal to a previous center 
clause, is either a member  of E or is obtained from a member  of E by 
means of the deletion of-~L. In the latter kind of side clauses, put back 
the deleted -~L literals, and add these -~L to all later center clauses. Note 
that  afterwards, these center clauses may contain multiple copies of ~L.  
In particular,  the last center clause changes from [] to -,L V . . .  V -~L. 
Since D / is a resolvent of C and D = -,L V D '  E E, we can add C and 
D as parent clauses on top of the previous top clause D' .  Tha t  way, 
we get a linear derivation of --L V . . .  V -,L from E, with top clause C. 
Finally, the literals in -~L V . . .  V--,L can be resolved away using the top 
clause C = L as side clause. This yields a linear refutation of E with 
top clause C (see the right of Figure 6.3). 
C a s e  2: Suppose C = L V C' ,  where C '  is a non-empty clause. C '  
cannot contain -~L, for otherwise C would be a tautology, contradicting 
the assumption that  E is unsatisfiable while E \{C}  is satisfiable. 
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Obtain E ~ from E by deleting clauses containing -~L, and by removing 
the literal L from the remaining clauses. Note that C ~ C E'. If M were 
a Herbrand model of E' ,  then M O {-,L} is a Herbrand model of E. 
Thus since E is unsatisfiable, E ~ is unsatisfiable. 
Furthermore, because E \{C}  is satisfiable, by Proposition 3.30 there is 
a Herbrand model M ~ of E\{C}.  Since E is unsatisfiable, M ~ is not a 
model of C. L is a literal in C, hence L must be false under M ~. Every 
clause in E ' \ { C ' }  is obtained from a clause in E \{C}  by deleting L 
from it. Since M p is a model of every clause in E \ { C )  and L is false 
under M',  every clause in E ' \ { C  ~} is true under M ~. Therefore M ~ is a 
model of E ' \{C '} ,  which shows that  E ' \{C '}  is satisfiable. 
Then by the induction hypothesis, there exists a linear refutation of E ~ 
with top clause C r. Now similar to case 1, put back previously deleted 
L literals to the top and side clauses, and to the appropriate center 
clauses. This gives a linear derivation of L V . . .  V L from E with top 
clause C. 
Note that {L} U (E\{C})  is unsatisfiable, because L is false in any 
Herbrand model of E\{C},  as shown above. On the other hand, E \{C}  
is satisfiable. Thus by case 1 of this proof, there exists a linear refutation 
of {L} O (E\{C}~ with top clause L. Since L is a factor of L V . . .  V L, 
we can put our linear derivation of L V . . .  v L "on top" of this linear 
refutation of {L} O (E\{C})  with top clause L, thus obtaining a linear 
refutation of E with top clause C. [] 

Theorem 6.6 (Refutation completeness of linear resolution) Let E be 
a set of clauses. Then E is unsatisfiable iff E F-tr n 

P r o o f  
z;=: From Theorem 4.39. 
=~: Suppose E is unsatisfiable. Then by Theorem 5.8, there is a finite 

unsatisfiable set Eg of ground instances of clauses in E ~. Let E~ be an um 
satisfiable subset of Eg, and C E E~ such that E ; \ { C }  is satisfiable. From 
Lemma 6.5, we have Eg F-~r Q. Hence E P~r [] by Lemma 6.4. [] 

6.4 The Subsumption Theorem 

Starting from refutation completeness, it is now possible to prove also the 
Sttbsumption Theorem for linear resolution. Our proof is similar to the one 
given in [MR72]. We use refutation completeness, and then turn a linear 
refutation into a linear deduction, using the following lemma: 

L e m m a 6 . 7  Let E be a set of clauses, and C :- L1 V . . .  V Lk be a non- 
tautologous ground clause. I f  E 0 {-~L1,. . . , - ,Lk} ~-lr C3, then E ~-~ C. 
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P r o o f  Suppose ~ U {-~L1,...,-~Lk] ~-z~ []. Then there exists a linear refu- 
tat ion R 0 , . . . ,  R,~ -- [] of P, (; {-~L1,. �9 -~Lk}. Notice that  the top clause 
and the first side clause in this linear refutation cannot both be members  of 
{-~L1,. . . , -~Lk}, because C is not a tautology. Thus we can assume R0 E ~. 
It is then possible to prove by induction on n that  this linear refutation can 
be t ransformed into a linear deduction of C from ~, with top clause R0: 

1. I f  n - 0, then R0 -- [] is a member  of ~. Since [] subsumes any clause 
C, the result follows. 

2. Suppose the l emma holds for n _< m. Let R 0 , . . . , R , ~ + I  = [] be a 
linear refutation of ~ U {-~L1, �9 �9 -~Lk}. Then R1,. �9 R~n+l is a linear 
refutation of ~ U {R1) U {'-~L1,...,-~Lk}. By the induction hypothesis, 
there is a linear derivation of a clause D from ~ LJ {R1}, with top clause 
R1, such that  D subsumes C. 
Suppose R1 is itself a resolvent of two members  of ~. Then we also have 

PL~ D, so the l emma holds in this case. 
The only remaining case we have to check, is where R1 is a resolvent of 
R0 E ~ and some -~Ls (1 < s < k). Let R0 -- M1 V . . .  V Mj V . . .  V Mh. 
Suppose R~ is a binary resolvent of (M~ V . . .  V Mj)~ (a factor of R0, 
using cr as an mgu for {Mj , . . . ,  Mh}) and -~L~, with 0 as mgu for Mj~ 
and Ls. Then R1 = (M1V. . .V  Mj_I)~O and RoCrO = R1V L~ V . . . V  L~ 
(h - j + 1 copies of Ls), since M j , . . . ,  Mh are all unified to L~ by c~0. 
Now replace each t ime R1 appears as leaf (i.e., top or side clause) in the 
derivation tree o lD ,  by Rocr0 = R1VL~V...VL~, and add L~V...VL~ to 
all decendants of such an Rl-leaf. This gives a new derivation, in which 
each resolvent is the corresponding resolvent in the old derivation of 
D plus some extra copies of L~. Thus we obtain a linear derivation of 
D V L~ V . . .  V L~ from E U {R0~r0). Since R0c~0 is an instance of a clause 
from E, we can lift (by Lemma 6.4) this derivation to a derivation from 
E of a clause D' ,  which has D V L~ V . . .  V Ls as an instance. Since D 
subsumes C, D '  also subsumes C. Hence ~ F-td C. [] 

T h e o r e m  6.8 ( S u b s u m p t i o n  T h e o r e m  for  l i n e a r  r e s o l u t i o n )  Let ~ be 
a set of clauses, and C be a clause. Then E ~ C iff E ~-Id C. 

P r o o f  
~ :  From Theorem 5.6. 
~ :  If  C is a tautology, the theorem is obvious. Assume C is not a tau- 

tology. Let 0 be a Skolem substitution for C with respect to E. Let C8 be 
the clause L1 V . . .  V Lk. Since C is not a tautology, CO is not a tautol-  
ogy. CO is ground and E ~ CO, so the set of clauses E U {-~L1, . . . , -~Lk) 
is unsatisfiable by Proposition 2.37. Then it follows from Theorem 6.6 tha t  
E O {-~L1, �9  -~Lk} ~-lr D. Therefore by Lemma  6.7, there exists a clause D 
such that  E ~-Ir D, and D subsumes CO. From Lemma 5.16, D also subsumes 
C itself. Hence E ~-ld C. 
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6.5 The Incompleteness of Input Resolution 

Linear resolution is a restriction of unconstrained resolution. Linear resolution 
itself can be further restricted to input resolution, by stipulating that each 
side clause should be a member of E. Input resolution is significant for two 
reasons. Firstly, SLD-resolution, which we will introduce in the next chapter, 
is in turn a restricted form of input resolution. And secondly, input resolution 
is used fairly often in the literature. Contrary to linear resolution, input 
resolution is not complete, not even when the set of premises E contains only 
one clause. Before we give our counterexample, we will first formally define 
input resolution: 

D e f i n i t i o n  6.9 Let E be a set of clauses and C be a clause. An input deriva- 
tion of C from E is a linear derivation in which each side clause Ci is a member 
of E. The side clauses C1, �9  Ck in an input derivation are also called input 
clauses. If an input derivation of C from E exists, we write E ~-ir C. 

An input derivation of [] from E is called an input refutation of E. <~ 

D e f i n i t i o n  6.10 Let E be a set of clauses and C a clause. There exists an 
input deduction of C from E, written as E Pid C, if C is a tautology, or if 
there exists a clause D such that  E ~-i~ D and D subsumes C. <5 

Most examples of the previous chapters were cases of input resolution, and 
many derivations that  are not input derivations can be transformed into input 
derivations. This might induce us to expect that input resolution is complete. 
That  is, we might expect that the Subsumption Theorem and refutation 
completeness can be stated in terms of input resolution. However, this is not 
the case. 

Input resolution is not refutation-complete. A simple propositional exam- 
ple suffices to show this. Let E = {(P V Q), (P v-~Q), (=P  v Q), (- ,P v "~O)}. 
Figure 6.4 shows a refutation by unconstrained resolution of E. This proves 
that E is unsatisfiable. 

g v Q  Pv-~Q ~PvQ ~P v-~Q 

P V P -~P V -~P 

O 

Figure  6.4: An unconstrained refutation of E 
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Unfortunately, there does not exist an input refutation of E. It is easy 
to see why this is so. To reach the empty clause [3, the last input clause 
should contain only one literal, or have a factor containing only one literal. 
However, each clause in E contains two distinct literals. Hence there is no 
input refutation of E, and input resolution is not refutation-complete. 

This also implies that the Subsumption Theorem does not hold either for 
input resolution, since refutation completeness would be a direct consequence 
of it. We can in fact prove a stronger negative result, namely that  the Sub- 
sumption Theorem for input resolution is not even true in the simple case 
where E contains only a single clause. In our counterexample we let E : {C}, 
where C is the following clause: 

C : P(r x2) V Q(z2, z3) v -,Q(x3, x4) v ~P(x4, xl). 

Figure 6.5 shows that  clause D (see below) can be derived from C by uncon- 
strained resolution. This also shows that C ~ D. 

C1 C2 C3 C4 

Dt D~ 

factor i i factor 

Di D; 

D 

F igure  6.5: The derivation of D from C by unconstrained resolution 

Figure 6.5 makes use of the clauses listed below. C1, C2, C3, C4 are 
variants of C. Dz is a binary resolvent of Cz and C2, D2 is a binary resolvent 
of C3 and C4 (the underlined literals are the literals resolved upon). D~ is 
a factor of D1, using the substitution {xs/xl, x6/z2}. D'2 is a factor of D2, 
using {xll/x12, x13/xg}. Finally~ D is a binary resolvent of D~ and D~. 

C1 = P(xl ,  z2) V q(x2,  z~) v ~q(x3, x4) v -~P(x4, xl). 
C2 = P(xs, xr V Q(x6, xT) v -~q(xT, xs) v -~P(xs, x5). 

c~ = P ( ~ ,  ~ )  v q(~4 ,  ~15) v -'Q(~I~, x~6) v ~P(~6,  ~3).  
D, = P ( ~ ,  ~ )  v -'Q(~3, ~ )  v - ,P(~ ,  ~ )  v P ( ~ ,  ~6) v Q(~ ,  ~ )  v - ,P(~ ,  ~ ) .  
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D~ = P(.~, xt0) v -~Q(<~, <~) v - .P( .~ , .~)  v P(<~, <~) v Q(<~, <0)v 
~P(x11, xla). 

D i = P(xl, x2) V ~Q(xs, x4) v -~P(*4, xl) v Q(x2, x2) v ',P(xa, x,) .  
D'2 = P(xg, *10) V ~Q(x12, "12) v ~P(x,2, xg) v P(x9, *14) v Q(x14, XlO). 
D = --,Q(xa, *4) V -~P(*4, xl)  V Q(x2, *2) V -~P(xa, *1) V P( , , ,  x,o)V 

~O(xl, xl) V P(x2, x14) V O(x14, xlo). 

Thus D can be derived from C using unconstrained resolution. However, 
neither D nor a clause which subsumes D can be derived from C using only 
input resolution. We prove this in Proposition 6.12. This shows that  input 
resolution is not complete, not even if E contains only one clause. 

The following l emma shows that  each clause which can be derived from 
C by input resolution contains an instance of P(xl, x2) V -~P(x4~ Xl) or an 
instance of  Q(x2, x3) v -,Q(x3, x4). 

L e m m a  6.11 Let C be as defined above. If C ~-ir E, then E contains an 
instance of P(xl,  x2) V -,P(x4, xl) or an instance of Q(x2, xa) v -,Q(xa, x4). 

P r o o f  Let Ro, �9  Rk = E be an input derivation of E from C. We prove 
the l emma by induction on k: 

1. Ro = C, so the l emma is obvious if k = 0. 
2. Suppose the l emma holds for k <_ n. Let R o , . . . ,  R~+I = E be an input 

derivation of E from C. Note that  the only factor of C is C itself. 
Therefore E is a binary resolvent of C and a factor of R,~. Let 0 be the 
mgu used in obtaining this binary resolvent. If P(xl, x2) or -~P(x4, Xl) 
is the literal resolved upon in C, then E must contain (Q(x2, x3) v 
-~Q(xa, x4))0. Otherwise Q(x2, xa) or -,Q(x3, x4) is the literal resolved 
upon in C, so then E contains (P(Xl, x2) V ~P(x4, xl))O. Hence the 
l emma also holds for k = n + 1. 

P r o p o s i t i o n  6.12 Let C and D be as defined above. Then C ~/ia D. 

P r o o f  Suppose C ~-ia D. Then since D is not a tautology, there exists 
a clause E such that  C ~'iT E and E subsumes D. From Lemma  6.11 we 
know that. E contains an instance of P(x~, x2) V -,P(x4, xl) or an instance of 
Q(x2, x3) v ~Q(x3, x4). It  is easy to see that  neither P(xl, x~) V-,P(x4, xl) 
nor Q(x2, x3) v -~Q(x3, x4) subsumes D. But then 13 does not subsume D, so 
we have found a contradiction. Hence C Vi~ D. [] 

So we see that  input resolution is not complete: C ~ D, but C ~/id D. This 
is unfortunate,  since input resolution is more efficient than unconstrained res- 
olution or linear resolution. However, if we restrict ourselves to Horn clauses 
(clauses containing at most one positive literal), a special case of input reso- 
lution called SLD-resolution can be shown to be complete. This will be the 
topic of the next chapter. 
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6.6 Summary 

This chapter defined linear resolution and input resolution, two important 
restrictions of unconstrained resolution, which are characterized by the linear 
shapes of their derivations. We proved the Subsumption Theorem for linear 
resolution, as well as its refutation completeness. On the other hand, input 
resolution is not complete, not even when E (the set of premises) contains 
only one clause. 



Chapter 7 

SLD-Reso lut ion  

7.1 Introduct ion  

Thus far, we have concerned ourselves with the set of all clauses. However, in 
practice as well as theory, one often restricts this set. In this chapter, we will 
discuss an impor tant  example of such a restriction, namely the restriction to 
Horn clauses, named after the logician Alfred Horn. These are clauses with 
at most  one positive literal. The set of Horn clauses is indeed a restriction, 
since formulas such as P(a) V P(b) cannot he expressed as Horn clauses. 

This loss of expressive power is compensated for by a gain in tractability: 
due to their restricted form, sets of Horn clauses are easier to handle than 
sets of general clauses. In particular, deduction based on SLD-resolution 1, 
which is a special case of input resolution, is complete for Horn clauses. One 
form of this completeness is the Subsumption Theorem for SLD-resolution, 
a second is its refutation completeness. A third form of completeness is in 
terms of the least Herbrand model of a set of Horn clauses. 

SLD-resolution was introduced by Kowalski in [Kow74]. It  is simpler than 
the unconstrained or linear resolution that  we need for general clauses. Fur- 
thermore,  the use of Horn clauses is supported by the wide availability and 
applicability of the programming language PROLOG, which is built on SLD- 
resolution and which will be discussed in the next chapter. For these reasons, 
most applications and much theoretical work in ILP is only concerned with 
Horn clauses. 

In this chapter we will discuss Horn clauses and SLD-resolution, and 
prove its soundness and completeness. Much of the material  in this chap te r - -  
particularly in the later sections--is drawn from [Llo87], which is the stan- 
dard reference for logic programming.  However, we also refer to more recent 

1The abbreviation 'SLD' stands for 'SL-resolution for Definite clauses', where 'SL- 
resolution' abbreviates 'Linear resolution with a Selection function' (see [KK7"I]). A 'selec- 
tion function' is similar to the concept of a 'computation rule' that we will introduce in 
this chapter. 



106 CHAPTER 7. SLD-RESOLUTION 

texts [Doe94, Apt97] on logic programming, which correct some subtle errors 
in [Llo87]. The completeness results of the later sections were first proved in 
[Hi174, Cla79, AE821, and more recent proofs may be found in [St~igo, BezgO]. 
The definition of SLD-derivation we give here is more general than the one 
given in [Llo87], which only focuses on refutations. Our main completeness 
result, the Subsumption Theorem for SLD-resolution, is not given in [Lto87], 
nor in the other references mentioned above. Furthermore, the proofs of some 
of the completeness results we give here are quite different from the ones given 
in [Llo87], in that we do make use of fixed-point theory, but use only the basic 
definitions of resolution. 

7.2 SLD-Resolut ion 

D e f i n i t i o n  7.1 A definite program clause is a clause containing one positive, 
and zero or more negative literals. A definite goal is a clause containing only 
negative literals. A Horn clause is either a definite program clause, or a 
definite goal. O 

If a definite program clause consists of the positive literal A and the 
negative literals -~B1,. �9 -~B,., then such a clause can equivalently be written 
as the following implication: 

(B1 A . . . A  Bn) --+ A. 

In most papers and books about logic programming, this is written as: 

A +-- B 1 , . . . , • n .  

A is called the head of the clause, B1, �9 �9 B~ is called the body of the clause. 
It will be convenient to denote the head of a clause C by C +, and the body 
(the conjunction B1A. . .ABn)  by C - .  In case of an atom A (that is, if n = 0), 
we carl omit the 'e - '  symbol~ A definite goal can equivalently be written as 

4- BL,.. , ,B~. 

The empty clause [] is also considered to be a goal. 
In the same way as we have clausal languages, we also have more restricted 

Horn languages: 

D e f i n i t i o n  7.2 The Horn language 7{ given by an alphabet is the set of all 
Horn clauses which can be constructed from the symbols in the alphabet. O 

As our proof procedure for Horn clauses, we use SLD-resolution. This is 
input resolution with some restrictions: 

1. SLD-resolution is only applied to a set E of Horn clauses. The top clause 
can be either a definite program clause or a goal in E. 

2. All input clauses are definite program clauses from E. 
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3. The literals resolved upon are the head of the input clause, and a se- 
lected atom in the body of the center clause. 

4. No factors are used, so all resolvents are binary resolvents. 

More formally: 

D e f i n i t i o n  7.3 Let s be a set of Horn clauses, and C be a Horn-clause. An 
SLD-derivation of length k of C from g is a finite sequence of Horn clauses 
R 0 , . . . , / ~ k  = C, such that  R0 C ~ and each Ri (1 < i < k) is a binary 
resolvent of -Ri- 1 and a definite program clause Ci E ~, using the head of Ci 
and a selected atom in the body of Ri-1 as the literals resolved upon. 

R0 is called the top clause, and the Ci are the input clauses of this SLD- 
derivation. If  an SLD-derivation of C from N exists, we write N ~-,. C. An 
SLD-derivation of [] from E is called an SLD-refutation of E. <? 

Note that  either each /~i in an SLD-derivation is a goal, or each R~ is a 
definite program clause. We will discuss the selected a tom in Section 7.6. 

D e f i n i t i o n  7.4 Let N be a set of Horn clauses and C a Horn clause. There 
exists an SLD-deduction of C from 2,  written as 2 P,d C, if C is a tautology, 
or if there is a Horn clause D, such that  E ~-~ D and D subsumes C. O 

E x a m p l e  7.5 Consider E = {P(0, x, x), (P(s(x) ,  y, s(z)) +-- P(x ,  y, z))}, 
a set of clauses which formalizes addition. Let us see how we can prove 
C = P(s2(O), s(O), sa(0)) (i.e., 2 + 1 = 3) from this set by SLD-resolution. 
Figure 7.1 shows an SLD-derivation of R2 = P(s2(0), y, s2(y)) from 2. The 
selected a toms are underlined. Since R~ subsumes C, we have N ~-~d C. <~ 

Ro = P(s(~),v,~(z)) ~- P(~,v,*) c, = P(s(~),., ~(~)) ~- e( . ,~,~) 

R1 = P ( s ~ ( x ) , y , s ~ ( z ) )  +-- P ( x , y , z )  C~ = P ( O , v , v )  

R~ = P(,~(o), y, ~(~)) 

subsumes 

c = P(s~(0), ~(0), ~(0)) 

F i g u r e  7.1: An SLD-deduction of C from 
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7.3 Soundness and Completeness 

In this section, we are concerned with the soundness and completeness of 
SLD-resolution. Since SLD-resolution is a special case of unconstrained reso- 
lution, the soundness is obvious: if E ~-,d C, then E ~ C. For the complete- 
ness of SLD-resolution, we have to do a little more work. The main result 
here will be the Subsumption Theorem for SLD-resolution, which we prove 
starting from the refutation completeness. 

7 . 3 . 1  R e f u t a t i o n  C o m p l e t e n e s s  

In this subsection, we will prove that SLD-resolution is refutation-complete: 
a set of Horn clauses is unsatisfiable iff it has an SLD-refutation. First we 
establish refutation completeness for ground Horn clauses: 

L e m m a  7.6 If E is a finite unsatisflable set of ground Horn clauses, then 

P r o o f  Let n be the number of facts (clauses consisting of a single positive 
literal) in E. The proof is by induction on n. 

1. If n = 0, then [] E E, for otherwise the empty set would be a Herbrand 
model of E. 

2. Suppose the lemma holds for 0 _< n < m. Suppose 53 contains m + 1 
distinct facts. If [] E E the lemma is obvious, so suppose D ~ ~. 
Let A be a fact in E. We first delete all clauses from E which have A 
as head (so we also delete the fact A from E). Then we replace clauses 
which have A in their body by clauses constructed by deleting these 
atoms A from the body (so for example, B +- A, B 1 , . . . ,  Bk will be 
replaced by B +- B1 , . . . ,  Bh). Call the set obtained in this way 531. 
[f M is a Herbrand model of 53 r, then MU{A} is a Herbrand model of E. 
Thus since E is unsatisfiable, E / must be unsatisfiable. 53/only contains 
m facts, so by the induction hypothesis, there is an SLD-refutation of 
E /  If this refutation only uses clauses from E / which were also in Y3, 
then this is also an SLD-refutation of E, so then we are done. 
,Otherwise, if C is the top clause or an input clause in this refutation 
and C ~ 53, then C was obtained from some C t E E by deleting all 
atoms A from the body of C f. For all such C, do the following: restore 
the previously deleted copies of A to the body of C (which turns C into 
C ~ again), and add these atoms A to all later resolvents. This way, we 
can turn the SLD-refutation of E ~ into an SLD-derivation of +- A, . . . ,  A 
from E. See Figure 7.2 for illustration, where we add previously deleted 
atoms A to the bodies of R0 and C'2. Since also A ~ E, we can construct 
an SLD-refutation of E, using A a number of times as input clause to 
resolve away all members of the goa.1 +~ A, . . .~  A. [] 

The proof of the lifting lemma for SLD-resolution is similar to Lemma 5.12. 
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R0 ~'E CI E E (RoV'~A) E ~ C1 E 

1 /  1 /  
R1 C2 ff Z R1 v "~A C2 V "~A E 

l /  
R 2 = O  ,~- A,  

l 
+--A 

[] 

/ 
A A E E  

/ 
A E E  

/ 
Figure  7.2: The SLD-refutations of E' (left) and E (right) 
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L e m m a  7.7 ( S L D - d e r i v a t i o n  l i f t ing)  Let E be a set of Horn clauses, and 
E' be a set of instances of clauses from E. Suppose R'o,..., R~ is an SLD- 
derivation of the clause R~ from E'. Then there exists an SLD-derivation 
Ro , . . . ,  Ra of the clause Rk from E, such that R~ is an instance of Ri, for 
each i. 

The previous lemmas allow us to prove the refutation completeness of 
SLD-resolution: 

T h e o r e m  7.8 ( R e f u t a t i o n  c o m p l e t e n e s s  o f  S L D - r e s o l u t i o n )  Let E be 
a set of Horn clauses. Then E is unsatisfiable iff E Fsr D. 

P r o o f  
~ :  By Theorem 4.39. 
~ :  Suppose E is unsatisfiable. By Theorem 5.8, there is a finite unsatisfi- 

able set E~ of ground instances of clauses from E. From Lemma 7.6, we have 
E~ b ~  D. Using Lemma 7.7, we can lift this to E F~ D. [] 

7.3.2 The Subsumption Theorem 

Here we will prove the Subsumption Theorem for SLD-resolution. As in the 
case of linear resolution, we establish this result by translating a refutation 
to a deduction, using the following lemma: 

L e m m a  7.9 Let E be a set of Horn clauses, and C = L1V . . .VLk  be a non- 
tautologous ground Horn clause. If E U {-~LI~..., ~Lk } bsr D, then E Fsd C. 

P r o o f  Suppose E U {~L1,. . .~-~Lk} b~  D, that  is, there exists an SLD-re- 
futation Ro, . . . ,  I~  = [] of E U {-~L1,... ,-~Lk}. By induction on n: 
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1. If n = 0, then /{0 = [] E E, so then the l emma is obvious. 
2. Suppose the l emma holds for n _< m. Let Ro, . . . ,Rm+l = [] be an 

SLD-refutation of E tO {-~L1,..., '~Lk}. Then R1, . . . ,  R,~+I is an SLD- 
refutation of E U {R1} tO {~L1, . . . ,  ~Lk}. By the induction hypothesis, 
there is an SLD-derivation /{~, R ~ , . . . ,  R~ from E O {/{1}, where /{~ 
subsumes C. Note that  R1 must be a definite goal, so R,  is either the 
top clause in this derivation, or not used at all. 
If /{~ ~ R1, then R~ E E. Moreover, in that  case R1 is used nowhere 
in the SLD-derivation of R~, so then this is an SLD-derivation of R~ 
from E, and hence E ~-~d C. In case R~ = /~1, we distinguish three 
possibilities: 

t. /{1 is a binary resolvent of a goal G E E and a definite clause 
C1 E E. Then G, R' 1, R'>. . . ,  RI, with C, as first input clause, is 
an SLD-derivation from P,. R~ subsumes C, so then E F-,d C. 

2. /{1 is a binary resolvent of a negative literal ~L E {=L1,. . . ,  -~Lk}, 
and a definite clause C1 E E (note that  this means that  C is a 
definite program clause, with L as head). Let 0 be the mgu used in 
this resolution-step, so C16 = L \ /R , .  Then C10, L V R ~ , . . . ,  L V/{~ 
is an SLD-derivation of L V R I from E U .{C~O}. (See Figure 7.3 for 
illustration.) C,0 is an instance of a clause in E, so by Lemma 7.7, 
we can find an SLD-derivation from E of a clause D, of which 
L V R I is an instance. Since R I subsumes C and L E C, L V/{~ 
subsumes C, and hence D also subsumes C. Therefore E ~-~d C. 

-~L C1 E E 

R~I = R1 C2 E E CIO =- L V R1 C2 6 E 

R; L v R; 

Figure  7.3: Illustration of case 2 of the proof 

3. t{1 is a binary resolvent of a goal G E E, and a positive literal 
L E {-~L1 . . . .  , -~Lk}. Let 0 be the mgu used in this resolution step, 
so GO = -~L V R1. Then GO(= ~L V/{I),-~L V / { ~ , . . . ,  ~L V/{~ is 
an SLD-derivation of -~L V R~ fi'om E U {GO}. G6 is an instance 
of a clause in E, so by Lemma 7.7, we can find an SLD-derivation 
from E of a clause D, of which ~L V R~ is an instance. Since R I 
subsumes C and -~L E C, -~L V R~ subsumes C, and hence D also 
subsumes C. Therefore E F-~d C. [] 
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Now we can prove the Subsumption Theorem for SLD-resolution: 

T h e o r e m  7.10 ( S u b s u m p t i o n  T h e o r e m  fo r  S L D - r e s o l u t i o n )  Let E be 
a set of Horn clauses, and C be a Horn clause. Then E ~ C iff E ~-~d C. 

P r o o f  
r By Theorem 5.6. 
=~: If  C is a tautology, the theorem is obvious. Assume C is not a tau- 

tology. Let 0 be a Skolem substitution for C with respect to 2. Let CO be 
the clause L1 V . . .  V Lk. Since C is not a tautology, CO is not a tautol- 
ogy. CO is ground and E ~ CO, so by Proposition 2.37 the set of clauses 

U {-~L1,. . . ,-~L~} is unsatisfiable. Then it follows from Theorem 7.8 that  
E U {-,L1, . . . ,  -~Lk} F-s~ []. Therefore by Lemma 7.9, there exists a clause D 
such that  E ~-~ D, and D subsumes CO. From Lemma 5.16, D also subsumes 
C itself. Hence E ~-~d C. [] 

Note the following special case of this result: if E is a set of definite 
program clauses and A is an a tom such that  E ~ A, then there exists an 
a tom B such that  ~ l-st B and A is an instance of B. 

7 . 4  D e f i n i t e  P r o g r a m s  a n d  L e a s t  H e r b r a n d  

M o d e l s  

It should be noted that  our definition of SLD-resolution is more general than 
usual. Usually, for instance in [Llo87], SLD-resolution is only applied to find 
the logical consequences of sets of definite program clauses, rather than arbi- 
t rary  sets of Horn clauses. Moreover, only SLD-refutations are used for this, 
not arbi t rary derivations. In this and the next sections, we will discuss this 
more restricted case. 

D e f i n i t i o n  7.11 A definite program is a finite set of definite program clau- 
ses. 

We will usually denote definite programs by the symbol II. 

E x a m p l e  7.12 The set H consisting of the following clauses is a definite 
program. 

1. P(0, x, x) 
2 P(s(x), y, s(z)) ~- P(x, y, z) 
3. Q(s(0), s(0)) 
4. O(s(s(0)), s(0)) 
5. Q(s(s(x)), u) +-- Q(x, y), Q(s(x), z), P(y, z, u) 

It  formalizes the Fibonacci numbers, which are defined as follows: the first 
and second Fibonacci numbers are both equal to one, while the (n + 2)-th 
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number is the sum of the n-th and (n + 1)-th number. The predicate symbol 
P denotes addition (i.e., P(tl ,  ty, t3) means tl  +t2 : t 3 ) ,  and the predicate Q 
denotes the Fibonaeci nmnbers (i.e., Q(n, m) means that  the n-th Fihonacci 
number is m). <~ 

We will use Herbrand models to specify the semantics of definite pro- 
grams. To define a Herbrand model, we need a Herbrand pre-interpretation. 
This means that  we must first define an alphabet. Usually, we assume the 
alphabet is implicitly given in the program II we are dealing with. Tha t  is, 
we use the alphabet which consists of all symbols appearing in II. If H does 
not contain a constant, we add one constant a to the language. We will use 
UI~ to denote the Herbrand universe for the language given by this alphabet, 
and Bn to denote the Herbrand base for this language. 

Note that  Br~ (the set of all ground atoms which can be constructed from 
the symbols in II) is a Herbraad model of every definite clause, while the 
empty set is a Herbrand model of every definite goal other than []. If H is a 
definite program, then Bn is a Herbrand model of every clause in II, so every 
definite program is satisfiable. Usually, some subsets of Bn are Herbrand 
models of H, and some other subsets are not. As the next proposition shows, 
the intersection of some Herbrand models of II is itself also a Herbrand model 
of 11. This does not hold for sets of arbitrary non-Horn clauses. For example, 
both {P(a)} and {Q(a)} are Herbrand models of E = {P(a) V Q(a)}, while 
their intersection is the empty set, which itself is not a model of E. 

P r o p o s i t i o n  7.13 Let H be a definite program. If {M1, My, . . . ,  Mk, . . . }  is 
a (possibly infinite) set of Herbrand models of H, then their intersection M = 
Ni-VLi is also a Herbrand model of H. 

P r o o f  Suppose each of the Mi is a Herbrand model of H, but M = NiMi is 
not.. Then there is a ground instance CO of a clause C E H which is false under 
M. Let CO = A +- B1, . . . ,B ,~  (n >_ 0). Then Bj C M for every 1 < j < n, 
but A ~ M. Since M = r we have Bj ~ /Vii for every 1 _< j < n and 
i > 1. But since each Mi is a model of CO, we must then also have A E Mi, 
for each i > 1. But then A E M = fliMi, which is a contradiction. [] 

It follows from the previous proposition that the intersection of all Her- 
brand models of H, which will be called the least Herbrand model, is itself 
also a Herbrand model of II. 

D e f i n i t i o n  7.14 Let II be a definite program. The intersection of all Her- 
brand models of H is called the least Herbrand model of II, and is denoted by 

MII. 

E x a m p l e  7.15 Suppose we have the following definite program H: 

1. e (~ ,  z) ~- Q(x, y), P(y,  z) 
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2. P(x, x) 
3. Q(a, b) 

Then M = {P(a, a), P(b, b), P(a, b), O(a,b)) is a Herbrand model of 11. 
Clearly, every other Herbrand model of II must contain this M, so M is 
in fact the least Herbrand model 2~Iii of II. ,3 

The least Herbrand model of a definite program II is the model that 
is "implicit" in the program. The domain of the model is the set of ground 
terms constructable from the symbols in 11; each ground term in the language 
denotes the corresponding ground term in the domain; furthermore, exactly 
those ground atoms which are logical consequences of II, are true in Mn: 

T h e o r e m  7.16 I f I I  is a definite program, then Mn = {A E Bn [ II ~ A}. 

P r o o f  Let A E Bri. Then we have: 
1I ~ A iff (by Proposition 2.37) 
II U {-~A} is unsatisfiable iff 
II U {-~A} has no models iff (by Proposition 3.a0) 
H U {-,A} has no Herbrand models iff 
A is true under all Herbrand models of 1I iff 
A E MII. rn 

D e f i n i t i o n  7.17 Let II be a definite program. The success set of 11 is {A E 
Bn t H U { e - - A }  bs~ rn}. 

Thus the success set of 11 consists of those ground atoms A such that 
H U {+-- A} has an SLD-refutation. Since II U {e- A} ~-s~ ~ iff H U {+-- A} 
is unsatisfiable iff II ~ A iff II E MII, we have the following completeness 
result: 

Theorem 7.18 (Completeness  with respect to MII) Let II be a defi- 
nite program. The success set of H is equal to its least Herbrand model Mrs. 

7 .5  C o r r e c t  A n s w e r s  a n d  C o m p u t e d  A n s w e r s  

In this section we will take a slightly different approach towards SLD- 
resolution than used in the Subsumption Theorem, by considering correct and 
computed answers. This approach, which points forward to PROLOG, views 
SLD-refutations as a means of answering the question "What follows from a 
definite program?" (hence the term 'answer'). Such questions are answered by 
examining the substitutions used in SLD-refutations of a set 1I U {G}, where 
G is a goal. In the rest of this chapter, when we discuss some SLD-refutation 
of II U {G}, we assume G r rn. 
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Because the actual mgu's used in a refutation are crucial for computed 
answers, we have to be very precise about the condition of standardizing 
apart. It  is not sufficient here merely to require--as we have done up till 
now-- tha t  the two parent clauses in each resolution step are standardized 
apart. Example 7.22 below shows what might go wrong if we only use that.  
Instead, when dealing with correct and computed answers we will require 
SLD-refutations to satisfy the following stronger condition: 

C o n d i t i o n  * 
In an SLD-refutation of IIU {G}, with mgu's 01,- . . ,  0n and input 
clauses C1, . . . ,  C,,  no variable in C/ should occur in G or in 
C1 , . . . ,C~-1  or in 01, . . . ,0~-1.  

In other words, C{ neither shares variables with G, nor with earlier mgu's 
and input clauses. This can easily be achieved by using appropriate variants 
of clauses in II as input clauses: given some SLD-refutation which does not 
satisfy Condition *, we can simply rename some input clauses and make 
corresponding changes in later mgu's and center clauses to obtain an SLD- 
refutation which does satisfy Condition *. In the remainder of this chapter, 
whenever we use a phrase like "let l) be an SLD-refutation", we assume this 
refutation to satisfy Condition *. Note that Condition * implies that  every 
Ci is standardized apart from each earlier center clause. 

With this additional condition in place, we can now define correct and 
computed answers. 

D e f i n i t i o n  7.19 Let II be a definite program, G = + - A j , . . . ,  Ak a definite 
goal, and 0 be a substitution for variables of G. We say that 0 is a correct 
answerfor 110 {G} i f H  ~ g ( (d l  A . . .  A A~)0). �9 

A correct answer for H U {G} provides a correct answer to the question 
"What  follows from H?" A correct answer is a semantical notion, which has its 
proof procedural counterpart in the concept of a computed answer, obtained 
from an SLD-refutation of H O {G} (satisfying Condition *, as we stated 
above). Later on in this section, we will show that  ~ is a correct answer iff 
is (roughly) an instance of a computed answer. 2 

D e f i n i t i o n  7.20 Let II be a definite program, and G a definite goal. Let 
61 , . . . ,  ~ be the sequence of mgu's used in some SLD-refutation of II U {G}. 
A computed answer 0 for IIU{G} is the restriction of the composition 01 . . .  07~ 
to the variables of G. <~ 

E x a m p l e  7.21 Consider again the following program II: 

t. P(x, z) <- Q(x, y), P(y, z) 

2An impor tan t  result, the proof of which lies beyond the scope of this book, says tha t  
any computable  function is computable by a definite program. See [Llo87, Theorem 9.6] 
or [Doe94, Chapter  7]. 
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2. P(x, x) 
3. Q(a, b) 

Suppose G = + -  P(x, b). Figure 7.4 shows an SLD-refutation of H U {G}, 
where the 0i denote the mgu ' s  used in each step. The selected atoms are 
underlined. This refutation corresponds to the computed answer {x/a}, since 
0102t~3 = {v/a, x/a, y/b, z/b, w/b}. <1 

Ro = G =+-- P(x ,  b) C1 = P(v ,  z) e-- Q(v, y), P(y ,  z), 81 = {v / x ,  z /b}  

R1 =+- Q ( x , y ) , P ( y , b )  C2 = Q(a,b),02 = {x la ,  y lb}  

~a=D 

Figure  7.4: An SLD-refutation of II U {G}, with computed answer {x/a} 

E x a m p l e  7.22 The following example, adapted from Apt and Doets [AD94], 
shows what can go wrong if we do not impose Condition *. Consider the 
program H: 

1. O(x', y') O(y', y') 
2. Q(x, x) 

Suppose G =+-- Q(x, y). Since I1 ~ VxVy Q(x, y), the empty  substitution c 
is a correct answer, and we would like this to be a computed answer as well. 
Figure 7.5 shows an SLD-refutation of IIU {G}. The composition of the mgu 's  
in this refutation, restricted to the variables in G, is {x/y}. Note that  in each 
resolution step, the two parent clauses are standardized apart ,  so the weak 
requirement that  we used up till now is satisfied. However, G and the second 
input clause share the variable x, so Condition * is not satisfied. Because of 
this, we do not get the computer  answer ~ that  we want, but only the weaker 
answer {x/y}.  On the other hand, if we rename the second input clause to its 
variant Q(w, w), thus satisfying Condition *, then we do get c as computed 
answer. Thus, if we do not impose Condition *, two SLD-refutations with 
the same center clauses, the same selected a toms in each center clause, and 
variant input clauses, sometimes yield very different results. <~ 

The problem described in the last example does not mat te r  if we are 
only interested in the existence of an SLD-derivation or SLD-refutation: as 
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Ro = ~ = + -  Q ( ~ , y )  c~ = Q,(~:',~') +- ? , ( y ' , y ' ) , o ~  = { = ' l ~ , y ' / y }  

nl =e- O(y, y) c~ = Q(~, ~), o~ = {~/y} 

/~2 = E] 

Figure  7.5: The variables x in G and in C2 interfere 

long as the two parent clauses in each resolution step are standardized apart ,  
renaming an input clause to one of its variants gives a resolvent which is a 
variant of the old resolvent. However, when we are particularly interested in 
computed answers we really need Condition * 

In the rest of this section, we will show how the correct and computed 
answers coincide. Tha t  is, we will show that  0 is a correct answer iff 0 equals 
the restriction of some instance of a computed answer to the variables in G. 
First we will prove that  if 0 is a computed answer, then 0 (and hence also all 
instances of 0) is correct. This is another form of soundness. 

T h e o r e m  7.23 ( S o u n d n e s s  o f  c o m p u t e d  a n s w e r s )  Let H be a definite 
program, and G a definite goal. Then every computed answer for H U {G} is 
a correct answer for H U {G}. 

P r o o f  Let G =+-- A1, . . . ,A,~,  and 01, . . . ,Ok be the sequence of mgu 's  in 
an SLD-refutation of length k of 1I U {G} with computed answer 0. We will 
prove by induction on k that  I! ~ V((A1 A . . .  A An)01 . . .  Ok), thus showing 
that  0 is a correct answer. 

1. If k = 1, then G =+-  A1 and there is an a tom B E II such that  
B01 = A101. Hence B ~ V(A101). 

2. Suppose the result holds for k _< m, and let 01 , . . . ,  0,~+1 be the sequence 
of mgu ' s  in an SLD-refutation of length m +  1 of IiU {G} with computed 
answer 0. Suppose the first input clause is C1 = B +- B 1 , . . . ,  Bq (q >_ 
0), and As is the selected a tom in G. Then the second center clause 
in the refutation is ~,- ( A 1 , . . . , A ~ - I , B 1 , . . . , B q , A s + I , . . . , A n ) 0 1 .  By 
the induction hypothesis, we have II ~ V((.A~ h . . .  A A~-I  A B1 A . . .  A 
Bq A As+  1 A , . .  A An)01 . , .  Ore+l). Furthermore, note that  C1 U V((B~ A 
. . .  A Bq)01, . .0re+l)  ~ B O a . . . O r e + l ,  hence also II ~ V((A1 A . . .  A 

A~-I  A B A Aa+~ A . . .  A An)01 ...Ore+l}. Finally, since B01 = AsOt, 
we can replace B by As in the previous formula, thus obtaining II 
V((A1 A . . .  A A . )O l . , ,0m+l ) ,  [] 

Not every correct answer is a computed answer. Take for instance II  = 
{P(x,  a)}, G =+-  P(x ,  a) and 0 = {x /a} .  Then 0 is a correct answer but 
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not a computed answer for H U {G}, since the only computed answers are 
the empty substitution r and substitutions of the form { x / y } ,  where y is a 
variable. However, we can prove that if 0 is a correct answer, then there is a 
computed answer ~r and a substitution 3', such that 0 equals the restriction 
of o" 7 to the variables in G. For this, we need the next two lemmas. 

L e m m a  7.24 Let  H be a definite program, G a definite goal, and 0 a sub- 
stitution. Suppose there exists an SLD-refutat ion of  H U {GO} with mgu's  
0 1 , . . . ,  Ok. Then there exists an SLD-refutat ion of  H U { G }  of  the same length 
with mgu's  0~ , . . . , 0~, such that there is a substitution 7 with the property that 

GO01 . . .Ok = GO'~ . . .  O'k 7. 

P r o o f  By induction on k: 

1. If k = 1, then GO =+-- AO, the first input clause is some C1 = B E 
H, and 01 is an mgu for AO and B. We can assume G and C1 are 
standardized apart, then 001 is a unifier for A and B. Let 0~ be an mgu 
for A and B, then there is a 7 such that 001 = 017. Now R~ = G , / ~  = 
0, with input clause C1 and mgu 0[, is an SLD-refutation of II U {G}, 
and we have GO01 = GO~ 7. 

2. Suppose the lemma holds for k _< m. Let R0 = GO, R1, � 9  Rm+l = [] 
be an SLD-refutation of II U {GO} with mgu's 01 , . . . ,  0,~+1, and with 
C1 as first input clause (see Figure 7.6 for illustration). Assume G and 
C1 are standardized apart. Then 01 is an mgu for the selected atom 
A~O in GO and C +, so 001 is a unifier for As in G and C +. Let 05 be 
an mgu for these two atoms, then there is a p such that 001 = O'lp. 
Let G =+-- A1 , . . . ,AN.  There is a binary resolvent /~  =+-  (A1, . . . ,  
A s - l ,  C f ,  A ~ + I , . . . ,  An)O~ of G and C1, with mgu 01, such that R i p  = 
R1. By the induction hypothesis, there is an SLD-refutation R~ , . . . ,  
R~n+l = [] of H U {R i } with mgu's 0 I, . . . ,  Ore+ 1 '  , and there is a 7' such 
that  R~p02 . �9 0,n+l ' ' ' ' = R102 . . .  0m+17 . We may assume without loss of 
generality that the SLD-refu ta t ion/~  = G, R [ , . . . ,  -R~+ 1 '  = [] satisfies 
Condition *. Because R~ =+-- (A1, . . . ,  As- i ,  Ci-, A , + I , . . . ,  A~)O~I and 
0 ~ p  : 001, we have (G - ~ A s ) O 0 1 . .  . Om+l = ( a -  ~As)O~l - �9 �9 0m+l '  7 "  

Let xl, �9 . . ,  xp be the variables in A,O[ that  do not occur in R~. It follows 
from Condition * that 01 ' 7' , . . . ,0 re+l ,  do not act on any of these z~, 
so xiO'2. �9 �9 Ore+ 1 '  7~ = zi  for 1 < i < p. Define t~ = xip02 �9 �9 0,~+1 and 
7 = 7 ~ U { z l / t l , . . . , z p / t p } .  Now suppose x is a variable in As, and g 
is a variable occurring in zO'~. If y occurs in R~, then yO~.. .  0"+17 = 
yO'2 ' ' . . . 0 m + 1 7  = ypO 2 . . . 0 m +  1 . If y does not occur in R~, then y = 
xj  for some 1 < j < p, so then yO~ ~ = xjO~ ' = - -  _ - - . 0 m + 1 7  . . .  0 m + l "  / 

X j 7  = t j  = Z I P 0 2 . . . O m + l  = yp02. .  . . . .  0m+l. Hence xO~O~ 0rn.t_ 1 '  ~/ = 

xO~p02 . . .  0m+l = x00102 ..~ 0,~+1. Since this holds for every variable z 
in A~, we have A~O01 . . .  0,~+! = A~O[ - �9 �9 0m+l' 7. 
Combining the conclusions of the last two paragraphs, it follows that 
GO0~ . . .  Om+~ = GO'I . . .  0~+~7. [] 
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GO--+-- (Az , . . . ,As , . . . ,Ar~)O Cj,,Oj. 

R1 

Flm C~+1, ~m+l 

i 
R m + l  = El 

C H A P T E R  7. S L D - R E S O L U T I O N  

G =+- (A1,...,A_~,...,A~) C1,0~ 

1 
Ri 

Rk 

R ~ + ,  = [] 

Figure 7.6: The induction step in the lemma 

L e m m a  7.25 Let H be a definite program, and !et G =<-- A 1 , . . . , A ~  be a 
definite goal. / f l I  ~ V(A~ A . . .  A An) then there exists an SLD-refutation of 
II U {G} with the empty substitution e as the computed answer. 

P r o o f  Suppose 11 ~ V(A, A . . . A A , ) .  Let xl . . . .  , xm be all distinct variables 
in G, and let 0 = { x t / a i , . . . ,  x ,~/am} be a Skolem substitution for G with 
respect to H. (A1A...AAn)O is ground and we have that II ~ (A1A...AA~)O. 
Then II U {GO} is unsatisfiable, hence by Theorem 7.8 there exists an SLD- 
refutation of 11 U {GO}. We may assume this refutation satisfies Condition * 
(if not, renaming some input clauses will do). 

Suppose the sequence of mgu's in this SLD-refutation is 01,. �9 0~. Let 
O" = 01 . . .  O k .  Then the computed answer for IItJ {GO} of this SLD-refutation 
is the restriction of ~r to the variables in GO. Since GO contains no variables, it 
follows that  this computed answer is e. We assume without loss of generality 
that none of the variables x l , . . . ,  x~ appears in this SLD-refutation. Then 
replacing each ai by xi (1 < i < m) in this SLD-refutation yields an SLD- 
refutation of H U {G} with e as the computed answer. [] 

Now we can prove the completeness of computed answers: 3 

T h e o r e m  7.26 ( C o m p l e t e n e s s  o f  c o m p u t e d  answer s )  Let II be a defi- 
nite program, and G be a definite goal. I f  0 is a correct answer for 11 U {G}, 
then there exist a computed answer ~r for II U {G} and a substitution 7, such 
that 0 equals the restriction of ~7 to the variables in G. 

3 In  T h e o r e m  8.6 of  [L1o87], i t  is s t a t e d  t h a t  if  0 is a c o r r e c t  a n s w e r ,  t h e n  t h e r e  a r e  a 
c o m p u t e d  a n s w e r  ~r a n d  a s u b s t i t u t i o n  ~ / s u c h  t h a t  0 = r T h i s  is n o t  q u i t e  c o r r e c t .  T a k e  
for  i n s t a n c e  YI = { P ( f ( y , z ) ) } ,  G =~- P(x) .  T h e n  8 = { x / f ( a , a ) }  is a c o r r e c t  a n s w e r  for  
F [ u  {G} .  S i n c e  a l l  v a r i a n t s  of P ( f ( y ,  z ) )  a r e  of  t h e  f o r m  P ( / ( u ,  v ) ) ,  w h e r e  u a n d  v a r e  d i s -  
t i n c t  v a r i a b l e s ,  e v e r y  c o m p u t e d  a n s w e r  for  F I n { G }  is of  t h e  f o r m  cr = { x / / ( u , v ) } .  H o w e v e r ,  
t h e r e  is no  "y s u c h  t h a t  0 = cr'y. I n  p a r t i c u l a r ,  cr{u/ct,v/a} = {x / ] (c t ,a ) ,u /a ,v /a}  :/: O. 
T h i s  e x a m p l e  was  r e p o r t e d  in  [She94]; see a l so  [Apt97 ,  pp .  100-101] .  
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P r o o f  Suppose G =+-- A1,. . . ,A~.  Then since 0 is a correct answer, we 
have that  II ~ V((A1 A . . .  A AN)0). So by Lemma 7.25, there exists an SLD- 
refutation of II U {Gfl} with 6 as computed answer. Suppose the sequence of 
mgu's in this SLD-refutation is 01 , . . . ,  Ok. Then since the computed answer 
of this SLD-refutation is c, we have G001 . . .  0k = GO. 

Now by Lemma 7.24, there exists an SLD-refutation of H U {G} with 
mgu's 0~, . . . ,0~ and there exists a substitution 7 such that G001. . .0k = 
G0~. . .  0~7. Let cr be the restriction of 0~. . .  0~ to the variables in G. Then G 
is a computed answer, and 0 equals the restriction of G7 to the variables in 
G, because GO = Go" 7. [] 

7.6 Computat ion Rules 

In this section, we will explain the role of the selected atom in an SLD- 
derivation. This selected atom can be selected by a computation rule. The 
concept of an SLD-refutation can be refined by specifying that the selected 
atoms in that  refutation should be selected according to some particular 
computat ion rule 7~. The refutation is then called a refutation via 7r 

E x a m p l e  7.27 Consider the program H: 

1. P(x, z) +-- Q(x, y), P(y, z) 
2. P(z, z) 
3. Q(a, b) 

Suppose G =6-- P(x, b). Figure 7.4 showed an SLD-refutation of H U {G}, 
with computed answer {x/a}, using a computation rule which always selects 
the leftmost atom in a goal. Now let 7~ be the computation rule which always 
selects the rightmost atom in a goal. Figure 7.7 shows an SLD-refutation of 
1] U {G} via T~, also with {x/a} as computed answer. <~ 

A computat ion rule is often (for instance in [Llo87]) defined as a function 
from the set of goals to atoms in those goals. For example, the computation 
rule in the above example always simply selects the rightmost atom in a goal 
in a derivation, without taking into account the "history" of the derivation 
(i.e., the earlier steps in the derivation). However, it is sometimes useful to 
be able to take this history into account. This would enable us for instance to 
define a kind of "first in, first out" computation rule, which will be useful in 
the next chapter. Such a rule always selects one of the "oldest" atoms, i.e., one 
of the atoms in the last goal that  have been present in center clauses at least 
as long as other atoms. For instance, consider a derivation 191 with only two 
center clauses (e-- P, Q), (+-- P, R), and input clause Q e-- R, and a derivation 
~92 with center clauses (+-- Q, R), (+-- P, R), and input clause Q e-- P.  Both 
derivations have the same final goal, so if we define a computation rule as 
a function from goals to atoms, a computation rule has to select the same 
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Ro = G =r p(x ,  b) C1 = P(v, z) +- Q(v, y)~ P(y, z), 01 ~- {v /x ,  z/b} 

R2 me-  Q(~:,b) Ca :- Q(a,b),Oa = {~/a} 

R3 =Q 

Figure 7.7: An SLD-refutation of II u {G} via 

atom in the last goal of ~?1 and in the last goal of 112. On the other hand, 
the "first in, first out" rule would select P in the last goal of :Dr and R in 
the last goal of :D~. 

In order to allow computation rules which take into account the whole 
derivation, we %llow AI~t [Apt971 in defining a computation ruie as a func- 
tion which takes as input a derivation (with a non-empty conclusion), and 
selects an atom in the last goal in this derivation (Apt actually uses the term 

'selection rule'). 

D e f i n i t i o n  7,28 Let S be the set of all SLD-derivations (with an arbitrary 
definite goal as top clause and arbitrary definite progre~m clauses as i~xput 
clauses) that  end in a non-empty definite goal, A computation rule ~ is a 
function from S to the set of atoms, such that if 7) is a derivation in $, then 
~(T~) is an atom (the selected atom) in the last goal of Z~. O 

D e f i n i t i o n  7.29 Let H be a definite program, G a definite goal, and T/ a 
computation rule. An SLD-refutation ofII U {G} via T~ is an SLD-refutation 
of II U {G}, in which the selected atoms are selected by using 7U 0 

D e f i n i t i o n  7.30 Let II be a definite program, G a definite goal, and Tr  
computat ion rule. An TO.computed answer for II U {G} is a computed answer 
for H U {G} which is ohta,i~ed from an SLD-refutatioa of H U {G} via ~ ,  @ 

Notice that  the two SLD-refutations in figures 7,4 and 7.7 yield the same 
computed answer {x/a}, even though they use different computation rules. 
This independence of the computation rule holds in general. The proof is 
based on the following rather elaborate lemma, which shows that it is possible 
to "switch" the selected atoms between two consecutive center clauses. 

Lemma 7.31 (Switching L e m r n a )  Let II be a definite program, and G a 

definite goal. Suppose that II U {G} has an SLD-refutation Ro = G, R1, . . . ,  
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Rq-l,  Rq, Rq+l, . . ., Rk =- [2] with input clauses C1, . . . ,Ck and with mgu's 
01,.. . ,  Ok. Suppose that 

Rq-1 =+- A 1 , . . . , A i - l , A i  ..... , A j _ I , A j , . . . , A n  
R~ =+--  ( A 1 , .  . . ,  A~_I,  C ~ ,  . . . , A ~ _ I , A j , .  . ., A~)O~ 

//q+l =+-- (&, . . . ,  A~_~, C~-,..., &-l ,  C~-+~,..., A~)OqOq+~ 

Then there exists an SLD-refutation of HU {G} of the same length, in which 
Aj is selected in the (q -  1)-th goal instead of Ai, and Ai is selected in the q-th 
goal instead of Aj, and the q-th and (q + 1)-th input clauses of the original 
refutation are interchanged. Furthermore, if 0 is the computed answer for 
H O {G} in the original refutation and 8' is the computed answer for 1FI tO {G} 
in the new refutation, then GO and GO ~ are variants. 

P r o o f  We assume without loss of generality that  Rq-1, Cq and Cq+l are 
standardized apart .  Since AjOqOq+] = C++10q+1 = C++lOqOq+l, Aj and C++I 

can be unified. Let O~ be an mgu for Aj and Cq++l. Since OqOq+l is a unifier 

for Aj and C++t, there exists a cr such that  OqOq+l = O'qO. 
Since C + r  = C+O'q~ = C+OqOq+x -- AiOqOq+i = AiOq~r, C + and Ai0q can 

! 
be unified. Let 0q+ i be an mgu for C + and AiO'q. We have that  ~r is a unifier 

! / for C + and &O'q, so there exists a o" such that  c~ = Oq+lc~. This means that  
OqOq+x = vqvq+ic~.~P a, ' Now we can select Aj in the (q - 1)-th goal instead of Ai, 
and A~ in the q-th goal instead of Aj, by interchanging the q-th and (q + 1)-th 
input clauses of the original refutation. This gives us the following (the goals 

. . . ,  Rq_ 1 in this new refutation are the same as R0 , . . . , /~q -1  in the old 
refutation): 

R I =+- A1, . ,A i - l ,A i ,  A j - I , A j  Ak q - 1  . . . . .  ~ , ' ' ' ~  

R'q =6-- (Ai , . . . ,A i - i ,A i , . . . ,A j_ i ,Cq+i , . . . ,Ak)O'q  

/ ~ ; + 1  : + ' - "  ( A I , . . . , A i _ I , C i , . . . , A j _ I , % I , . . . , A k ) 8 ; 8 ; +  1 

Now we will show that  -Rq+X and /t{q+ 1 '  are variants. Since AiOqOq+ll I _- 
C+OqO'q+i, and 0q is an mgu for Ai and C +, there exists a "y such that  

OqOv+l = 0q7. Also, AjOq7 = Aj0q0q+ 1 = .~q+xvq,q+l = C++10q7 = C++17, 
so "y is a unifier for AjOq and C++1 . Since 0q+l is an mgu for AjO v and C++1, 
there exists a substitution ~r" such that  7 = 0q+l er". 

/ I I / / So 0q0q+ 1 = 0qOq+l~r". We have already shown that  OqOq+l = 0q0q+l~r, 
so/gq+l and R'  q+l are variants. Now the rest of the new refutation after R '  q+l 
can be the same as the original one, modulo variants. Here we may assume 
without loss of generality that  the new refutation satisfies Condition *. Hence 
if 0 is the computed answer for II  tO {G} in the original refutation and 0' is 
the computed  answer for II  tO {G} in the new refutation, then GO and GO' 
are variants. [] 
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T h e o r e m  7.32 ( I n d e p e n d e n c e  o f  t h e  c o m p u t a t i o n  ru l e )  Let 1I be a 
definite program, G a definite goal, and 7r a computation rule. If  there is 
an SLD-refutation of I1 L) {G} with computed answer O, then there is an 
$LD-refutation of II U {G} via Td with computed answer 0', such that GO and 
GO' are variants. 

P r o o f  Let R0 = G, 1:~1, ' '  .1 ]~k be an SLD-refutation of II U {G} with mgu's 
01,. �9 0k and computed answer 0. G itself is an SLD-derivation in S. Suppose 
Tg(G) = A,. If As is not the selected atom in G in this refutation, then for 
some 1 <_ j <_ k, A,01 . . .  Oj is the selected atom in Ry. Hence by repeatedly 
applying the Switching lemma we can move the selection of A, "upward" in 
the refutation, obtaining an alternative SLD-refutation R~ = G, R~ , . . . ,  R~ = 
[] of 11 U {G}, with computed answer ~r, such that G0 and G~r are variants, 
and such that  As is the selected atom in R~, in accordance with R.. 

Repeating this procedure k -  1 times, we can also bring the selected atoms 
in later goals in accordance with g ,  eventually obtaining an SLD-refutation 
R~' = G, R ~ ' , . . . , / ~  = [] of II U {G}, with computed answer 0', such that GO 
and G0' are variants, and such that all selected atoms are selected according 
to  T4. [] 

This result shows that it does not really matter,  in terms of completeness, 
which computation rule we use. Thus when searching for an SLD-refutation, 
we only need to consider the derivations via one particular 7r which greatly 
reduces the search space of all possible SLD-derivations. Combining the pre- 
vious theorem with Theorems 7.8 and 7.26, we also immediately have the 
following: 

T h e o r e m  7.33 Let II be a definite program, G a definite goal, and Tr a 
computation rule. Then II U {G} is unsatisfiable iff there exists an SLD- 
refutation of II U {G} via T4. 

T h e o r e m  7.34 Let 17I be a definite program, G a definite goal, and T~ a 
computation rule. I f  0 is a correct answer for II U {G}, then there exist an 
Tg-computed answer r for II tO {G} and a substitution 7, such that 0 equals 
the restriction of cr.y to the variables in G. 

The latter result is sometimes called the strong completeness of SLD-resolu- 

tion. 

7.7 SLD-Trees 

The previous sections showed that  if 0 is a correct answer for IIU {G} and T4 is 
a computation rule, then there exists an SLD-refutation via T4 corresponding 
to a computed answer r of which 8 is (roughly) an instance. But how do we 
find such a refutation? This is done by constructing and searching (parts of) 
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an ~LD-tree. Such a tree essentially contains all possible SLD-derivations via 
some computa t ion  rule 7~, thus also all possible SLD-refutations via 7~. In 
order to be able to conveniently denote the input clauses used in refutations 
in this tree, we assign a unique number to each of the clauses in the program 
H. Here we also make the convention that  SLD-derivations need not be finite: 
they can go on indefinitely long. We will see an example of such an infinite 
SLD-derivation later in this section. 

D e f i n i t i o n  7.35 Let H be a definite program, and G a definite goal. An 
SLD-tree for II U {G} is a tree satisfying the following: 

1. Each node of the tree is a (possibly empty) definite goal. 
2. The root node is G. 
3. Let N =+-- A 1 , . . . , A s , . . . , A k  (k > 1) be a node in the tree, with As 

as selected atom. Then, for each clause C in II such that  As and (a 
variant of) C + are unifiable, the node N has exactly one resolvent of 
G and C, resolved upon Bs, as a child. The edge between the node and 
the child is labeled with the number of the input clause C. The node 
has no other children. 

4. Nodes which are the empty clause [] have no children. <5 

D e f i n i t i o n  7.36 Let H be a definite program, G a definite goal, and 7~ a 
computat ion rule. The SLD-tree for HU{G} via Tt is the SLD-tree for HU{G} 
in which the selected a toms are selected by T/. <5 

An SLD-tree for H O {G} may contain three kinds of branches. First, 
branches which are a path  from the root to a leaf having [] as its goal. Such 
a branch corresponds to a refutation of II  U {G}, and a computed answer for 
H O {G} can be obtained from the branch. Since such a refutation is exactly 
what  we are looking for, these branches are called success branches. 

Second, branches which are a path  from the root to some leaf having a 
non-empty goal. This non-empty goal is a leaf because no further derivation 
steps are possible from this goal. Thus this branch does not lead us to a 
refutation. Hence these branches are called failure branches. 

Third, infinite branches. These correpond to infinite SLD-derivations. We 
cannot get much useful information from such an infinite branch (in fact, 
infinite branches are nothing but trouble). 

E x a m p l e  7.37 Suppose we have the following program H: 

1. y), z) 

3. Q(a, b) 

Suppose also that  our goal G is +-- P(x, b) (that is, we want to find out for 
which x the formula P(x, b) is a logical consequence of H). If we use the 
computa t ion  rule Tr which always selects the leftmost a tom in a goal, we can 
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~- Q ( a , y ) ,  P(y, b) 

+- P(b, b) 

9(b, ~), P(~, b) o 
f a i l ed  s u c c e s s ,  {x/a} 

Figure  7.8: An SLD-tree 

rn 

success, {z/b} 

visualize the SLD-tree for 1-IU {G} via ;g as in Figure 7,8, Here the computed 
answer for a success branch is shmvn below the O-leaf in which this branch 
ends. 

The tree contains two success branches: one having the substitution {x/a} 
as its computed answer, and one having {x/b} as its computed answer. Note 
that the success branch with {x/a} as computed a•swer corresponds to the 
refutation shown in Figure 7.4, <a 

Changing the computation rule may radically alter the structure of the 
SLD-tree, as the next example (adapted from [Llo87]) shows. 

E x a m p l e  7.38 Consider the same H and G as in the previous example, but 
now with a computation rule g* which selects the rightraost atom in each 
goal. The SLD-tree for II U {G} via g '  is shown in Figure 7.9. Like the tree 
in Figure 7.8, this tree contains two success branches, corresponding to the 
computed answers {x/a} and {x/b}. However, the change of computation rule 
from tg to ~ '  has resulted in the change from a finite to an infinite SLD-tree! 
Here the Ieftmost branch corresponds to an infinite SLD-derivation. <a 

Constructing the SLD-tree for H U {G} via some T4 can be regarded as 
a refinement of the level-saturation method we described earlier for uncon- 
strained resolution. Roughly, the n-th level in the SLD-tree (where G is the 
0-~h level) contains all clauses which can be derived from HU{G} by an SLD- 
derivation of length n, in which the selected atoms are selected by g .  Since 
the SLD-tree for H tO {G} via g thus contains all possible SLD-refutations 
of II tO {G} via T4, our completeness theorems can also be translated to the 
SLD-tree: 
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4- P ( x ,  b) 

4- Q(x , y ) ,  P(y ,  b) 

/ ",,, 
4- Q(x , y ) ,  Q ( y , u ) , P ( u , b )  4- Q(~:,b) 

4- Q ( x , y ) , Q ( y , u ) , Q ( u , v ) , P ( v , b )  4- Q ( x , y ) , Q ( y , b )  [] 

, /  ".., 

0 

success, {x /b}  

3i 
4- Q(x, a) 

failed 

Figure 7.9: An infinite SLD-tree 

T h e o r e m  7.39 Let II be a definite program, G a definite goal, and 7~ a 
computation rule. Then H U {G} is unsatisfiable iff  the SLD-tree for  II U {G} 
via Tl contains at least one success branch. 

T h e o r e m  7.40 Let H be a definite program, G a definite goal, and 7t a 
computation rule. I f  O is a correct answer for IIU {G}, then the SLD-tree for 
HU {G} via Tt contains a success branch corresponding to a computed answer 
c 5 such that for  some % 0 equals the restriction of  ~7 to the variables in G. 

7.8 Undecidability 

In this section we state, without proof, two important undecidability results 
for Horn clauses. Firstly, implication between two Horn clauses is undecidable 
(Theorem 4.5 of [MP92]). 

T h e o r e m  7.41 (Marcinkowski $z Pacholski) It is undecidable whether 
a definite program clause that contains at least two negative literals, logically 
implies another definite program clause. 

Consequently, {C} t-~d D is undecidable as well. 
The second result, proved in [HW93], states that satisfiability of a set of 

only 3 Horn clauses is already undecidable. 
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T h e o r e m  7.42 ( H a n s c h k e  &: W f i r t z )  It is undecidable whether a set con- 
sisting of an atom, a definite program clause with one negative literal, and a 
definite goat with one negative literal, is satisfiable. 

From Theorem 7.39, we know that  IIU{G} is unsatisfiable iff the SLD-tree 
for I l  (J {G} via some 7~ contains at least one success branch (i.e., an SLD- 
refutation via 7~). It  follows tha t  there is no algorithm for deciding whether 
such an SLD-tree actually contains a success branch. 

7.9 Summary 

Horn clauses are clauses with at most one positive literal, definite program 
clauses are clauses with exactly one positive literal, definite goals are clauses 
without positive titerals, and a definite program is a finite set of definite 
program clauses. In ILP, attention is often restricted to a language of Horn 
clauses instead of a full clausal language. 

For Horn clauses we can define SLD-resotution, a restricted form of in- 
put resolution. We proved various different forms of completeness of SLD- 
resolution: the Subsumption Theorem and the refutation completeness, from 
which it follows that  the success set of a definite program equals the unique 
least Herbrand model of that  program, and also completeness in terms of 
computed answers. The latter form of completeness is independent of the 
computation rule that  is used. 

An SLD-tree is a tree containing all possible derivations from a program II 
and a goal G, via some computat ion rule. Such a tree contains all computed 
answers for H U {G}. Implication between two Horn clauses is undecidable, 
and so is the satisfiability of sets of Horn clauses. 



Chapter 8 

S L D N F - R e s o l u t i o n  

8.1 Introduct ion  

Suppose we are given some definite program II. If  a particular ground a tom 
A is implied by II, we can say on the basis of II  that  A is true. But what 
about  an a tom A such that  II  g: A? If  II ~: A, then A is not a member  of 
the least Herbrand model Mrf, so we cannot conclude on the basis of this 
program that  A is true. On the other hand, there are models of II which 
make A true as well, so it seems we cannot conclude that  A is false either. 
Given only this program, we do not know whether A is true or false. 

At first sight, it may  seem we should treat  the t ruth value of such an 
a tom as unknown. However, there are often quite good reasons to treat  such 
an a tom as false. For example, consider a definite program H which describes 
a t ime-table  for the times of departure of trains from some particular fixed 
station to various destinations. The program consists of ground atoms such 
as To(amsterdam, 12:00), meaning that  the train to Amste rdam will leave at 
12 o'clock. Now suppose II  does not contain the a tom To(rotterdam, 12:00). 
Then, strictly speaking, the program does not tell us whether or not a train 
to Rot te rdam will depart  at 12 o'clock, since II ~= To(rotterdam, 12:00) and 
II ~= -,To(rotterdam, 12:00). However, when dealing with a t ime-table,  we 
natural ly assume the table is complete: every departure is explicitly stated 
in the table. This means that  in our case we can assume that  no train to 
Rot te rdam departs  at 12 o'clock, so To(rotterdam, 12:00) is taken to be false. 
And more generally, we can consider as false each instance of To(x, y) that  
is not implied by the program. 

The assumption that  a t ime-table is complete, is an instance of the Closed 
World Assumption (CWA), which is often applicable when we are dealing 
with some piece of knowledge. The CWA, introduced by Reiter [Rei78], is 
the assumption that  the given description of the world of interest is not only 
true, but complete as well: it contains all information concerning the world. 
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In the case of some given definite program II which purports  to describe 
this world, this means that  we assume that  all and only ground atoms that  
describes true "facts about  the world", are implied by H. 1 Consequently, for 
us the CWA amounts  to the following: 

1. If  A is a ground a tom and 1I ~ A, then A is taken to be true. 
2. If A is a ground a tom and H ~ A, then A is taken to be false. 

Let us consider how the CWA might be implemented for some given 
definite program II. For the first part ,  this is conceptually quite simple: if 
we want to infer some a tom A that  is implied by II, we can find an SLD- 
deduction of A from II  (or an SLD-refutation of II  U {e- A}). 

Since rl ~ A iff HU {+-- A} has an SLD-refutation, the second part  of the 
CWA can be translated to the following negation as failure rule: 

if we fail to find an SLD-refutation of r Iu{+-  A}, we can infer -~A. 

The name 'negation as failure' was introduced by Clark [Cla78], who studied 
the logical properties of this rule in detail. Note that  the above rule is not 
sound, in the strict sense of Chapter  4: in the case of the t ime-table we 
inferred -,To(rotterdam, 12:00), even though H ~= -~To(rotterdam, 12:00). 

There exists an SLD-refutation of HU {<-- A} iff any SLD-tree for 11U {+-- 
A} contains a success branch. Hence negation as failure can be effected by 
searching some particular SLD-tree for H U {+-- A}: we can infer ~A if we 
do not find a success branch in this tree. However, as we have already noted 
in Section 7.8, in general it is undecidable whether an SLD-tree actually 
contains a success branch, because such a tree may contain branches of infinite 
length. Thus the negation as failure rule is rather hard to implement  for the 
general situation where trees may be infinite. If, on the other hand, we only 
consider fir, ite trees, we can find out after a finite number of steps whether 
a tree contains a success branch or not. For this reason, the application 
of negation as failure is usually restricted to finite SLD-trees. An SLD-tree 
whose branches are all finite and which contains no success branches is called 
finitely failed. Thus 'negation as failure' is restricted to 'negation as finite 
failure': 

if some SLD-tree for I1 '.3 { +-- A} is finitely failed, we can infer -~A. 

This derivation rule is actually a nonmonotonic rule. A derivation rule is said 
to be monotonic if formulas which can be derived from a set E of premises 
(clauses, in our ease) are still derivable if we add new premises to E; it is said 
to be nonmonotonic otherwise. The proof procedures we have introduced 
up till now, unconstrained deduction, linear deduction, input deduction and 
SLD-deduction are all monotonic. For example, if 11 [-,d A, then I I '  [-,d A for 
every I I '  D II. 

On the other hand, negation as finite failure is aonmonotonic.  Consider 
again t he  t ime-table II. Since To(rotterdam, 12:00) r  negation as finite 

1Why we restrict attention to gro,tnd atoms will be explained in Sect.ion 8.4. 
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failure allowed us to derive -,To(rotterdam, 12:00) from II. But now suppose 
we extend the t ime-table to II '  = II  U {To(rotterdam, 12:00)}. Since now 
To(rotterdam, 12:00) is implied by the program, our derivation rule is no 
longer applicable in this case. Thus -~To(rotterdam, 12:00), which could be 
derived from H, can no longer be derived from its superset II ' .  The nonmono- 
tonic property of negation as finite failure can also be seen by considering 
SLD-trees. I f  we have a finitely failed SLD-tree for I I  tJ {+- A}, we can infer 
~A. But if we extend II  to H',  the SLD-tree is extended as well, and if a 
success branch or an infinite branch is added, the tree is no longer finitely 
failed. 

Let Bn be the Herbrand base of some program II. When considering 
negation as finite failure, we can take Bn to consist of three disjoint subsets: 

1. The set of a toms A that  are logically implied by H. This is the familiar 
least Herbrand model Mr[. 

2. The set of a toms A such that  there is a finitely failed SLD-tree for 
II  U { ~  A}. This set is called the finite failure set, denoted by FH. 

3. The remainder: the set of a toms A such that  every SLD-tree for IIU {e-- 
A} is infinite, but contains no success branch. 

This division of Bn is illustratred on the left of Figure 8.1. The inner circle 
is Mri, the outward rim is Fn, and the area between Mn and Fn represents 
the third set. 

F igure  S .h  The division of B~ (left) and B~, (tight) 

Given l-I, we can infer the atoms in Mn using ordinary SLD-resolution, 
and the negations of the a toms in Yr~ using negation as finite failure. However, 
we can infer neither A nor -~A if A ~ Mn and A ~ Fn. 

To illustrate again the nonmonotonici ty of negation as failure, suppose 
some clauses are added to H, yielding II/. Suppose this enlarges the least 
Herbrand model: MII C Mn,.  Assuming the new clauses do not contain new 
symbols, we have Bn = BII,. This means that  the union of the second and 
third sets will have to "shrink" in order to make room for the larger Mr[,, as 
illustrated on the right of Figure 8.1. In particular, Frp will be a subset of 
Fn,  and if A E Fri\Fn,, then -,A can no longer be inferred. 

Since negation as failure can be used to derive negative literals from a 
program, it can also be employed to support  the use of negative literals in 
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the body of a clause. Consider for instance a murder case. In most judicial 
systems, one is innocent until proven guilty. This could be formalized by the 
implication C = Innocent(x) +-- -~Guilty(x). When we use negation as finite 
failure, C does not simply express the obvious t ruth that  someone who is 
not guilty is innocent. It expresses something stronger: if we cannot prove 
that someone is guilty, we take him to be innocent--which is just what we 
want in a legal context, hnplications of this form are often very useful. Since 
definite program clauses are not sufficiently expressive for such implications, 
we generalize them to program clauses, which do allow both positive and 
negative literals to appear in their body. A normal program is then a finite 
set of such program clauses. Suppose we have some normal program II, with 
C E 1I, which describes the evidence against some suspect a. If we fail finitely 
to prove Guilty(a), negation as finite failure allows us to infer -~Guilty(a). 
Using clause C, we then conclude Innocent(a). 

Actually, the above program clause C is logically equivalent to the non- 
Horn clause Innocent(x) V auiZty(x). However, in order to be able to gener- 
alize SLD-resolution to normal programs, normal clauses are given the same 
structure as definite program clauses (i.e., one atom in the head, and the other 
literals in the body). Moreover, the choice of which atom to put in the head of 
a program clause also gives certain predicates a kind of precedence over other 
predicates. For instance, the program clause D = Guilty(x) +- -,Innocent(x) 
is logically equivalent to C, but negation as finite failure treats these two log- 
ically equivalent clauses quite differently, and different conclusions may be 
drawn from C than from D. C corresponds to the assumption that if we can- 
not prove someone's guilt, then that  person is innocent. Clause D reverses 
the burden of proof: if we cannot prove someone's innocence, he is taken to 
be guilty. 

In order to derive information from a normal program, we can apply SLD- 
resolution to program clauses, resolving the heads of input clauses with atoms 
in the body of a goal. But SLD-resolution by itself is clearly not enough, since 
it has no means for handling negative literals in a goal. Therefore we combine 
SLI)-resolution with negation as finite failure to handle such negative literals. 
This combination is called SLDNF-resolution, and will be discussed in later 
sections of this chapter. In the final secLion of this chapter we discuss some 
properties of the programming language PROLOG, which implements SLDNF- 
resolution. 

8.2 N e g a t i o n  as Failure 

In Chapter 7 we defined SLD-resolution, which could be used to infer an 
atom A from II whenever II ~ A. In this section we will define negation as 
(finite) failure for definite programs. As explained above, our main interest 
is in the set of ground atoms A such that H U {<-- A} has a finitely failed 
SLD-tree. For such atoms, we can infer -~A from II. In the next section we 
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will extend negation as failure in order to be able to deal with clauses having 
negated literals in their body, 

D e f i n i t i o n  8.1 Let H be a definite program, and G a definite goal. An SLD- 
tree for II U {G} is called finitely failed if it is finite and contains no success 
branches. �9 

D e f i n i t i o n  8.2 Let II be a definite program and Bn be the Herbrand base 
of II. The SLD finite failure set of H is Fn = {A E BII] there exists a finitely 
failed SLD-tree for H tJ {+-- A}}. <~ 

E x a m p l e  8.3 Consider the definite program H consisting of the following 
clauses: 

1. Pe t (x)  +-- Small(x), Dog(z) 
2. Pet(x) +- Cat(x) 
3. Small(a) 
4. Spider(a) 

Figure 8.2 shows a finitely failed SLD-tree for II t2 {e- Pet(a)}, so Pet(a) is 
in the SLD finite failure set Fn of II. Hence we can infer that a is not a pet, 
even though II ~: ~Pet(a), <~ 

4-- Small(a), Dog(a) 4-- Cat(a) 

failed 

3 i  

e- Dog(a) 
failed 

Figure  8.2: A finitely failed SLD-tree for II U {+-- Pet(a)) 

In order to show that some ground atom A is in Fn, we need to find 
at least one finitely failed SLD-tree for II U {+-- A}. However, it might be 
that  some SLD-trees for II U {+-- A} are finitely failed, while some others are 
infinite. For example, suppose II consists of the clause P(x)  +-- P(f(x)), Q(a). 
Then the SLD-tree for II U {e-- P(a)}  via the computation rule which always 
selects the rightmost atom in a goal is finitely failed. On the other hand, the 
computation rule which always selects the leftmost atom in a goal yields an 
infinite SLD-tree for II U {+-- P(a)). 
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Searching all SLD-trees for II t2 {+-- A} in order to check whether one 
of them is finitely failed, is rather cumbersome. Thus we would like to find 
some restrictions on SLD-trees for II U {6- A}, such that  if one of them is 
finitely failed, then they all are. This would allow us to restrict attention to 
one particular SLD-tree. In the remainder of this section, we will show that 
the following fairness restriction on SLD-trees is sufficient for our purposes. 

D e f i n i t i o n  8.4 Let 17[ be a definite program, and G be a definite goal. An 
SLD-derivation from II t2 {G} with G as top clause is called fair if one of the 
following holds: 

1. The derivation is finite. 
2. The derivation is infinite, and for every atom A appearing in some goal 

in the derivation, (some further instantiated version of) A is the selected 
atom in a later goal in the derivation. 

An SLD-tree for Fl U {G} is fair if every branch of the tree is a fair SLD- 
derivation. O 

Note that a finitely failed SLD-tree is fair. 
Given a definite program [[ and a definite goal G, a fair SLD-tree for 

1-i U {G} can always be constructed. We might for instance apply a "first in, 
first out"-computat ion rule, which in a goal in a derivation always selects one 
of the atoms that  have been present in earlier goals in the derivation at least 
as long as other atoms. Using such a computation rule ensures that,  even in 
an infinite derivation, each atom eventually gets selected. 

The next theorem shows that  if A is in the SLD finite failure set, of II, 
then the SLD-tree via any fair computation rule will be finitely failed. 

T h e o r e m  8.5 Let H be a definite program and A E BI]. Then A E FH iff 
every fair SLD-tree for II U {+-- A} is finitely failed. 

P r o o f  
~ :  If every fair SLD-tree for H U {6- A} is finitely failed~ there is at least 

one finitely failed SLD-tree for H U {+-- A}, hence A E FH. 
--~: Suppose A E Fn. Then there is at least one finitely failed SLD-tree 

T for II U {6- A}. Let d be the length of the longest derivation in T.  Now 
suppose there is a fair SLD-tree T ~ for II U {+-- A} that  is not finitely failed. 
Then T t must contain an infinite fair SLD-derivation �9 with goals G0(--e-  
A), G1, G2, �9 �9 

Note that  since A in 6- A must be selected in the root of T ,  T must 
contain an SLD-derivation starting with Go, G1. It need not contain an SLD- 
derivation starting with Go, G1, G2, because the atom selected in G1 in 7" 
may be different from the atom selected in G1 i n / )  in Tq  However, since :D 
is fair, (an instance of) the atom selected in G1 in 7- must also be selected in 
some later goal in D in Tq  Thus by applying the Switching Lemma several 
times to ~ ,  we can transform it into another infinite fair SLD-derivation, 
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with goals G0(=e-- A), G1, G'2, G'3, G~4, . . ., such that  Go, GI, G' 2 must be (the 
first goals in) an SLD-derivation in 7-. 

Repeating this procedure a number of times, we obtain an infinite fair 
SLD-derivation Ho(=e-  A), H 1 , . . . ,  Hd, Hd+l, . . . ,  such that  Ho, . . . ,  H~+I 
must  be (the first goals in) an SLD-derivation (of length d + 1) in 7-. But T 
only contains SLD-derivations of length _< d. Thus we have a contradiction, 
which shows that  every fair SLD-tree for H U {+-- A} is finitely failed. 

8.3 SLDNF-Trees  for Normal  Programs 

Suppose II is a definite program and G a definite goal. In the previous chapter, 
we have seen that  we can construct an SLD-tree for II U {G}, which will 
contains a success branch iff PI U {G} is unsatisfiable. In the last section, 
we saw how negation as finite failure can be used to derive negative ground 
literals from a definite program. Using this, we are now able to generalize our 
notion of a goal, by allowing negative as well as positive literals in its body. 

D e f i n i t i o n  8.6 A normal goal is of the form t-- L1 , . . . ,  Ln, n >_ O, where 
each Li is a literal. �9 

When we have a definite program II and a normal goal G, we need to gen- 
eralize the SLD-tree to an SLDNF-tree. We adapt  the definition of SLDNF- 
trees given by Apt and Doets [AD94, Doe94], which is slightly more general 
than the definition of [Llo87]. An SLDNF-tree combines SLD-resolution with 
so-called subsidiary trees. Such subsidiary trees are invoked whenever a neg- 
ative ground literal is selected. An example will make this clearer. 

E x a m p l e  8.7 Let us continue Example  8.3. Suppose we have the normal  
goal G =+-- -~Pet(a). Figure 8.3 shows an SLDNF-tree for H U {G}. This tree 
consists of two distinct trees. On the left we have the main tree, containing 
two nodes, with G as root. The fact that  a negative ground literal is selected 
in G leads us to construct a subsidiary tree for II  U {e- Pet(a)}  (on the 
right of the picture). Since this subsidiary tree is finitely failed, we can infer 
-~Pet(a). This in turn allows us to delete -~Pet(a) from the body of G in 
the main tree. 2 Thus we end up with the empty  clause in the main tree. As 
in the case of SLD-trees, a branch which ends in the empty  clause is called 
a success branch, and an SLDNF-tree whose main tree contains a success 
branch is called successful. <3 

Given a definite program II and a normal goal G, an SLDNF-tree for 
II U {G} is actually a set of trees~ organized around a main tree, which has 

2Deleting a selected negative literal -~Pct(a) from the body of a normal goal after having 
inferred "~Pet(a) is analogous to deleting a selected atom P(a) from the body of a goal by 
resolving with an input clause P(a). 
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subsidiary 

G =e-  -~Pet(a) . . . . . . . .  4- P e t ( a )  

[ 

O e- S m a l l ( a ) ,  Dog(a)  +- Ca t (a )  

success 3 t failed 

e-. Dog(a)  

failed 

Figure  8.3: A successful SLDNF-tree for H U { ~  -Pet(a)} 

G as root. This main tree is similar to an SLD-tree. When a positive literal 
is selected in some goal G ~ in the main tree, we add the binary resolvents 
of G'  and clauses in 1I as children to G', just  as in SLD-trees. Additionally, 
whenever a negative ground literal -,A in the body of some goal G r in the 
main tree is selected, a new subsidiary SLDNF-tree for G ' is constructed, 
with +- A as root. Note that  we cannot treat  a selected negative literal in the 
same way as a positive literal, since a negative literal cannot be unified with 
an a tom in the head of a clause in II. Applying negation as finite failure, 
we delete --,A from the body of G ~ just in case the subsidiary tree for G t 
finitely fails. If  the subsidiary tree is successful, we cannot apply negation as 
finite failure, so then the node G I is marked failed. We should not construct 
a subsidiary tree in case a non-ground negative literal is selected in G ~. In 
fact, if a non-ground negative literal is selected, we cannot continue with G I. 
This is the problem of floundering, which will be dealt with in Section 8.4 

When we start  with a definite program II and a normal goal G, the only 
negative literals in the bodies of goals in the tree stem from G. However, 
now that  we are able to handle negative literals in the initial goal, there 
is no reason to stop here: we may as well allow the clauses in II  to contain 
negative literals in their body. In this case, resolving a goal with a clause from 
the program may introduce new negative literals in the goal. For instance, 
resolving +- P(x) with P(a) +- -~Q(a) yields the goal +-- -,Q(a). Such new 
negative literals can be handled by subsidiary trees, in the same way as 
we handled negative literals from the original goal G. For example, if H = 
{Innocent(x) +- ~Guilty(x)} and G =4-- Innocent(a), then resolving G with 
the clause in 1I yields G1 = + -  -,Guilty(a). Since the tree for +- Guilty(a) 
will fail immediately, G1 has the empty clause as only child. Thus we have 
an SLDNF-refutat ion of II  U {G}, and we may conclude Innocent(a) from 
II. On the other hand, i f I I '  = {Guilty(x) +~ -,Innocent(x)}, then we cannot 
find an SLDNF-refutat ion of II  U {G}, and we cannot infer Innocent(a) from 
IY. In this case we can infer Guilty(a) from 111. 

In general, we can generalize definite program clauses to program clauses: 
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D e f i n i t i o n  8.8 A program clause is of the form A +-- L I , . . . , L n ,  n >_ 0, 
where A is an a tom and each Li is a literal. s 

D e f i n i t i o n  8.9 A normal program is a finite set of program clauses. 

Normal  programs are also sometimes called general programs in the lit- 
erature. In a program clause A +-- L1, �9 �9 L~, the a tom A will be called the 
head, and L 1 , . . . ,  L,~ the body of the clause. The head of a program clause C 
is sometimes denoted by C +, the body by C - .  If each Li in a program clause 
is positive, the program clause is simply a definite program clause. 

A program clause C = A e- L I , . . . ,  Ln is the following implication: 
V((L1A. . .AL~)  ~ A). This is logically equivalent to V(-~L1V . . . .  V~LnVA).  
For each negative literal L~ = -~Bi, we can replace -~Li by the logically equiv- 
alent positive literal B~, thus obtaining a disjunction of literals, with pos- 
sibly more than one positive literal. Hence a non-definite program clause 
C is actually logically equivalent to a non-Horn clause. Similarly, normal 
goals may  also be logically equivalent to non-Horn clauses, for instance 
+-- -~P(a),-~P(b) is equivalent to P(a) V P(b). However, as we noted in the 
introduction, there is more to SLDNF-resolution than just logical implica- 
tion and logical equivalence. For example, the two logically equivalent clauses 
Innocent(x) +-- -~Guilty(x) and Guilty(x) ~- -~Innocent(x) are treated quite 
differently by SLDNF-resolution, as we saw above. 

Contrary to definite programs, normal programs need not have a least 
Herbrand model. Consider the normal program H = {Male(peter) +- 
-~Female(peter)}. Both {Male(peter)} and {Female(peter)} are Herbrand 
models of H, yet their intersection (the empty  set) is not. 

Now let us get back to SLDNF-trees. Suppose H is a normal program and 
G is a normal  goal. Constructing an SLDNF-tree for H O {G} is similar to 
the case of the definite program. The main tree starts with G as initial goal. 
Whenever a positive literal is selected in some goal G ~, G t has the binary 
resolvents of G ~ and clauses in FI as children, as before. Whenever a ground 
negative literal -~A is selected in G ~, we construct a new subsidiary tree with 
+- A as root. If  this new tree has been completely constructed and turns out 
to be finitely failed, we add the goal obtained by deleting ~A from the body 
of G ~ as a child to G ~. If, on the other hand, the subsidiary tree contains a 
success branch, the goal G ~ fails. 

Given a normal  goal, one important  distinction between the cases of a 
definite program and a normal program should be noted. In the definite case, 
a subsidiary tree starts with a definite goal +-- A, and resolving goals with 
definite program clauses does not introduce new negative literals in the body 
of a goal. Hence each node in the subsidiary tree is a definite goal, and the 
subsidiary tree is an ordinary SLD-tree. However, as we have seen, resolving 
a goal with a program clause whose body contains negative literals adds 
those negative literals to the goal. This implies that  in the case of a normal 
program, a subsidiary tree may contain goals in which a ground negative 
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literal is selected, which requires constructing another subsidiary tree. Hence 
subsidiary trees may need their own subsidiary trees, something which does 
not occur when we are dealing with a definite program. 

The actual definition of an SLDNF-tree will be given below. It is based on 
the notion of a pre-SLDNF-tree. This is a finite set of finite trees, containing 
a main tree and a number of subsidiary trees. An initial pre-SLDNF-tree 
only contains a main tree, consisting of the root G. This initial tree can be 
extended to another pre-SLDNF-tree, which can in turn be extended to a 
further pre-SLDNF-tree, and so on. Before we give the formal definition, let 
us first give an example. 

E x a m p l e  8.10 Let G =+- P(x), and H be the following normal program: 

1. P(v) +- O(v) 
P(y) , -  n(y), 

a. O(v) +- s(a) 
4. 0(a) 
5. R(b) 
6. s(b) +- 
r. S(b) 
8. 

Figure 8.4 shows the construction of an SLDNF-tree for H U {G}. Here we 
select the leftmost literal in each goal. 

Initially, we start with only G, which is pre-SLDNF-tree (1) in the figure. 
In order to extend it, we select P(x) in G, and the first extension (pre-SLDNF- 
tree (2)) is obtained by adding as children to G the resolvents of G and 
clauses in H. On the edges between nodes, we add the mgu and the number 
of the input clause used. A further extension yields the pre-SLDNF-tree (3). 
Note that  both leaves of (2) are expanded to get (3). When extending (3) 
to (4),  we select the atom S(a) in the leftmost leaf. This atom cannot be 
unified with the head of any clause in H, so in. extension (4),  we mark this 
leaf as failed. Since the second leaf of (3) is empty, it is marked success 
in (4).  In the rightmost leaf of (3) we select the negative ground literal 
~S(b), so we construct a subsidiary tree with ~- S(b) as root in (4). In 
extension (5),  two children are added to this subsidiary tree. A number of 
further extensions (omitted from the figure) finally yield pre-SLDNF-tree (6) 
in Figure 8.5. Since all leaves in the main tree (as well as in all subsidiary 
trees) are marked, it is a complete SLDNF4ree.  In the extensions that led 
to this tree, the success of the second subsidiary tree (for +-- -~S(c)) caused 
the goal +-- -,S(c) to be marked failed. This in turn made the first subsidiary 
tree (for +- -~S(b)) finitely failed, which allowed us to delete -,S(b) fi'om the 
goal 4-- -,S(b), leading to a success branch. <1 

Note that if a subsidiary tree is constructed for some node N, then adding 
a child to N or marking N as failedcan only take place afterfurther extensions 
have made the subsidiary tree finitely failed or successful. For instance, tree 
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(1) a=<-- P(=) ( 2 )  G = , -  P(~__2 1,{v/~}/~v/=} 
~- q (=)  *-  R ( ~ ) , - s ( = )  

( 3 )  v =~ P(=) 

1 , { y / ~ # / = }  

O(:~) ~- R(~),-,s(~) 

a , { v l ~ ~ l ~ }  ] 5,{=tb} 

( 4 )  a =~- e (x}  

1 ,{y/~y/x} 

3,{y/~/a} 5,{~/b} 

subsid ~- s(~) [] ,-- ~s(b) . . . . . .  
failed success 

-,+- s(b) 

(5) a :~- e(~). 

1 , { v / ~ } / ~ , { y / ~ }  

3 , { y / ~ / a }  5,{~/~} 

+- s(~) D +- -s(b) - -- 

failed success 

subsid . . . .  ~- S(b) 

~- s(a) ~- ~s(~) 

Figure  8.4: A sequence of pre-SLDNF-trees. 
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(6) a =~  P(y) 

,-- Q(~) ~ R(~__2), ~s(~) 

3 4 v l ~ ~ / a }  15,{~/b} 

fai led s u c c e s s  
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subsid 
+- ~s(b) . . . . . . .  ~- s(_~) 

subsid n +- s(~) e- -S(c) . . . . . .  +- s(~) 
success failed failed 

8~S 

[] 

SUCCESS 

Figure  8.5: A successful SLDNF-tree for II U {G} 

(4) is an extension of (3) in Figure 8.4, which adds a subsidiary tree for +-- 
-,S(b). Tha t  this subsidiary tree is finitely failed only becomes apparent after 
some further extensions have been constructed, so only after those extensions 
can we add the empty  clause as a child to +-- -,S(b). 

This process of starting with an initial tree and then constructing exten- 
sions, is formally defined below. 

Definition 8.11 A tree is called successful if it contains a leaf marked as 
success, and is called finitely failed if it is finite and all its leaves are marked 

failed. <~ 

Definition 8.12 Let TI be a normal program and G a normal goal. A pre- 
SLDNF-tree T for II O {G} is a finite non-empty set of finite trees, such 
that  one element in T is called the main tree, each node in each tree in 7- 
is a normal  goal, and some nodes N in some trees in T may be assigned a 
subsidiary tree subsid(N) ~ T. The leaves in trees in T may be marked. The 
possible markings for leaves are failed, success, and floundered. 

Such pre-SLDNF-trees are inductively defined as follows: 

1. An initial pre-SLDNF-tree % for II  U {G} contains only a main tree, 
which has G as single node. 

2. If T~ is a pre-SLDNF-tree for IIU {G}, then any extension T~+I of'F~ is 
a pre-SLDNF-tree for II U {G} as well. The extension of.a pre-SLDNF- 
tree is defined below. 

Extension of T~: 
Let T~ be a pre-SLDNF-tree for 11 U {G}. If all leaves of the main tree of T~ 
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are marked, then Tn has no extension. Otherwise, an extension T~+I of T~ 
is obtained by applying the following procedure E x t e n d  to the main tree of 
Tn. This recursive procedure may change the main tree, as well as subsidiary 
trees. 
P r o c e d u r e  E x t e n d  ( e x t e n d s  a t r e e  T):  
For each non-marked leaf G f of T, from left to right (the left-right order is 
induced by the numbers of the input clauses used), do the following: 
If G ~ = o,  mark it with success. 
Otherwise, if no literal in G t has yet been selected (which is the case if thus 
far no subsidiary tree has been assigned to G~), then select one. If the selected 
literal L is positive, then: 

1. If there is no (variant of) C E II whose head can be unified with L, 
then mark G ~ as failed. 

2. Otherwise, for every input clause C C II such that R is a binary resol- 
vent of G' and (a variant of) C, with L and (a variant of) C + as literals 
resolved upon and mgu 0, add R as a child to G'. Here we require that  
the variant of C that is used, neither shares variables with the root of 
T, nor with other input clauses or mgu's used in the branch leading to 
G ~ (this is similar to Condition * of the previous chapter). Mark the 
edge from G ~ to R with the mgu 0 and the number of the input clause 
used. 

If L = -~A is negative, then: 

1. If A is not ground, then G ~ is marked as floundered, and will have no 
children. 

2. If A is ground and subsid(G ~) is undefined, then add to the set of trees 
a new tree, with +-- A as single node, and define subsid(G ~) to be this 
newly added tree. 

3. If A is ground and subsid(G ~) is defined and successful, then mark G ~ 
as failed. 

4. If A is ground and subsid(G') is defined and its leaves are all marked 
floundered, then mark G t as floundered. 

5. If A is ground and subsid(G ~) is defined and finitely failed, then add 
/~ = G ~ - -,L (i.e., G' after L has been deleted from its body) as only 
child to G ~. Mark the edge from G ~ to R with the empty substitution. 

6. Otherwise, i.e., if none of the previous four items could be applied, 
apply the E x t e n d  procedure to subsid(G~). <) 

The main tree of a pre-SLDNF-tree T for II U {G} is the tree in T which 
has G as root, the other trees in T are the subsidiary trees. Though we 
defined a pre-SLDNP-tree as a set of trees, it is often convenient to regard 
it as a single tree, with two kinds of edges: ordinary edges between nodes, 
and special edges from a node to the root of its subsidiary tree (in Figure 8.4 
and 8.5, these special edges were dashed). 

Let us now explain how we can get from a sequence of pre-SLDNF-trees to 
an actual SLDNF-tree. Starting with an initial pre-SLDNF-tree 7~ containing 
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only G, we can construct a sequence of extensions To, Ti, 7~, . . . .  Each 7i+i 
in this sequence has its predecessor 7} as a subtree. If the sequence reaches 
some pre-SLDNF-tree Tn which has no further extension, then this T,  is an 
SLDNF-tree for II tJ {G}. Otherwise, if the sequence is infinite, then the union 
of all pre-SLDNF-trees in the sequence is an SLDNF-tree. This is formally 
defined as follows: 

D e f i n i t i o n  8.13 Let H be a normal program, and G be a normal goal. A 
set of trees T is called an SLDNF-tree for I1 W {G} if there exists a (possibly 
infinite) sequence TO,T i , . . . ,  7~,. . .  of pre-SLDNF-trees, with the following 
properties: 

1. To is the initial pre-SLDNF-tree for IIU {G} (i.e., only a main tree with 
G as only node). 

2. Each 7~+i is an extension of T-  
3. If the sequence is finite and T~ is the last pre-SLDNF-tree in the se- 

quence, then T~ has no extension and T = Tn. 
4. Otherwise, T is the smallest tree (including subsidiary trees) which has 

each T /as  a subtree. 

The main tree o f t  is the tree in T which has G as root, without its subsidiary 
trees. 

T is called successful (resp. finitely failed) if its main tree is successful 
(resp. finitely failed). We say II U {G} succeeds (resp. finitely fails) if there is 
a successful (resp. finitely failed) SLDNF-tree for II U {G}. C> 

The SLDNF-tree can be constructed by starting with G, and then con- 
structing an extension of G, an extension of an extension of G, etc. Note that 
in an infinite sequence of extensions each pre-SLDNF-tree is finite, while the 
actual SLDNF-tree obtained from this sequence may be infinite. Nevertheless, 
if the main tree in an infinite SLDNF-tree T is successful or finitely failed, 
then we will get to know this after a finite number of extensions (though note 
that  a successful main tree may grow in further extensions, even if it already 
contains a success branch). Similarly, each success branch in the main tree 
will be finished after a finite number of extensions. 

In an SLDNF-tree, we are particularly interested in the properties of the 
main tree. Each branch in the main tree represents an SLDNF-derivation, 
and each SLDNF-derivation of the empty clause is an SLDNF-refutation. 
The subs%itrLtions em.plo?red in such ~ refutatioia can be used to obtain a 
computed answer. 

D e f i n i t i o n  8.14 Let H be a normal program, and G a normal goal. An 
SLDNF-derivation from II U {G} is a branch in the main tree of an SLDNF- 
tree T for 17[ U {G}, together with the subsidiary trees in T whose roots can 
be ree~ched from this branch. 

If such an SLDNF-derivation ends with the empty clause in the branch 
of the main tree, it is called an SLDNF-refutatio~ of II O {G}. <> 
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D e f i n i t i o n  8.15 Let II be a normal program, and G =+-- L z , . . . ,  L~ a nor- 
mal goal. Let 01, �9 �9 Ok be the sequence of substitutions on the edges of some 
SLDNF-refutation of IIU {G}. A computed answer 0 for HU {G} is the restric- 
tion of 01 . . .  Ok to the variables in G. If 0 is a computed answer for II U {G}, 
we write II F-~f ( L I , . . . , L ~ ) 0  �9 

Note that  the particular mgu's used in the subsidiary trees do not affect 
the computed answer: the only thing we are interested in, regarding subsidiary 
trees, is whether they are successful or finitely failed (or neither). Also note 
the nonmonotonicity: {P(a)} F-~f -~P(b), while {P(a) ,  P(b)} ~/s~y -,P(b). 

E x a m p l e  8.16 For the II U {G} from Example 8.10, we can extract two 
computed answers from the main tree: 01 = {x/a} and 0~ = {x/b}. Note 
that  II ~ P(x)01, while II ~ P(x)O~. < 

It is not very difficult to see that SLDNF-derivations generalize SLD-de- 
rivations. In particular, if H is a definite program and G is a definite goal, 
then an SLDNF-tree for H U {G} is simply an SLD-tree for II U {G}. We can 
also easily generalize the definition of fairness to SLDNF-trees, though we 
will not need this in the sequel. 

We end this section by defining the notion of a computation rule for 
SLDNF-resolution. In ordinary SLD-resolution, we use a computation rule 
to select the atom that will be resolved upon in the next resolution step 
in a derivation. As this may have to do with the history of the derivation, 
we defined a computation rule as a function that took an SLD-derivation as 
input, and returned an atom in the last goal of the derivation. Since SLDNF- 
derivations are defined in terms of SLDNF-trees, and we already need to select 
literals when constructing an SLDNF-tree, we cannot simply generalize the 
definition from the previous chapter, taking an SLDNF-derivation as input to 
the rule. Instead, in SLDNF-resolution a computation rule takes a complete 
pre-SLDNF-tree T as input, together with a leaf G in T,  and outputs a literal 
in G. 

Definition 8.17 Let ~ be the set of all pre-SLDNF-trees, and G the set of 
all normal goals. A computation rule T~ is a function from ;o x ~ to the set 
of literals, such that  if T is a pre-SLDNF-tree and G is a non-empty, non- 
marked leaf in T,  then :~(T, G) is a literal (the selected literal) in the body 
of G. �9 

A pre-SLDNF-tree, SLDNF-tree, SLDNF-derivation, or -refutation is said 
to be via Tr if T~ is used for selecting the selected literal in each node. Simi- 
larly, we can define an 7C-computed answer. 

8.4 Floundering,  and How to Avoid It 

Let us now explain floundering. Why do we only construct a subsidiary tree 
if a ground negative literal is selected, and mark a node as floundered if a 



142 CHAPTER 8. SLDNF-RESOLUTION 

non-ground negative literal is selected? Why not select a non-ground literal 
and construct a finitely failed tree, just as we do for ground negative literals? 
As the next example shows, dropping the restriction to ground iiterMs may 
cause unsoundness. 

E x a m p l e  8.18 Let H = {(P(f(z))  +-- ~Q(x)), Q(a)}. Then H U {~- Q(x)} 
succeeds, and hence, if we allow a subsidiary tree for +- '~Q(x) to be con- 
structed, IIU{+- ~Q(a:)} finitely fails. Consequently, 11u{+- P(f(x))} finitely 
fails as well, so ii  u {e- -~P(f(x))} succeeds, with computed answer e. Thus 
I1 b,~f -,P(f(x)). 

On the other hand, H U {+- Q(f(a))} finitely fails. Therefore II U {+- 
-~Q(f(a))} succeeds, and H U {+-- P(f(a))} succeeds as well. Thus allowing 
the selection of non-ground negative literMs les.ds to the unsound result that  
both H P~4 "P(f(x))  and I-[ ~-~,~j P(f(a)). <a 

Given this unsoundness, we should avoid the selection of non-ground neg- 
alive literals as much as possible: we need a computation rule which does not 
select a non-ground negative literal if other (positive and/or ground) literals 
can be selected. Such a computation rule is cMled safe. 

D e f i n i t i o n  8.19 h computation ruie is safe if it selects a non-ground nega- 
tive literal in the body of a goal G only if the body of G consists exclusively 
of non-ground negative literals. (> 

In other words, a safe computation rule only selects a non-ground negative 
literal if it has no alternative. For example, if 52 is a safe computation rule, 
then 5c~(T; (+-- Q(a:, y),-~P(;e))) = (~(x, y) for any pre-gLDNF-tree T. On t~he 
other hand, if G =e -  -~P(x),-~R(x), then even a safe computation rule can 
only select a non-ground negative literal. Thus we should avoid goals which 
oilly contain non-ground negative literals in their body. Such goals are called 
blocked, and cause floundering: 

De f in i t i on  8.20 Let 1I be ~ normal program, and G be a normal goal. We 
say G is blocked if its body consists exclusively of non-ground negative literals. 
11 O {G} flounders if some SLDNF-tree for I1 U {G} via a safe computation 
rule 7?~ contains a blocked node. <> 

Note carefully that  being blocked is a property of a goal G, while floun- 
dering is a property of II U {G}. 

In order to avoid floundering, we might allow only a restricted kind of 
programs and goals. The definition of allowedness we adopt here, taken 
from lAB94], is slightly less general, but perhaps more readable than the 
one given in [Llo87]. 

De f in i t i on  8,21 A normal goal G is allowed if every variable that  occurs in 
a negative literal in the body of G also occurs in a positive literal in the body 
of G. A program clause C = A ~ C -  is allowed if the normal goal +- -~A, C -  
is allowed. A normal program is allowed if each of its clauses is allowed. <5 
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Observing that  negative literals in the body of a clause are actually pos- 
itive literals in the clause, the above condition can be restated more simply 
as follows: a normal  clause or goal is allowed if each variable that  appears in 
a positive literal also appears in a negative literal. 

E x a m p l e  8.22 4- --,P(a, x), Q(f(x)) and P(a, y) 4- -,Q(a), P(x, y) are al- 
lowed. P(x, y) 4- Q(x, z) is not allowed. <1 

Note that  a blocked goal is not allowed, while every definite goal is allowed. 
Furthermore,  an a tom is allowed iff it is ground, which is rather restrictive. 
Thus not every definite program is allowed. However, in case of a definite 
program and a definite goal, we need not worry about allowedness, because 
floundering will not happen anyway due to the absence of negative literals 
from the bodies of clauses and goals. In case of normal programs and normal 
goals, Proposit ion 8.25 shows that  allowedness, together with the use of a 
safe computa t ion  rule, is sufficient to avoid floundering. 

L e m m a  8.23 Let G be an allowed normal goal, and C an allowed normal 
clause. Then any binary resolvent of G and C is allowed. 

P r o o f  We assume G and C are standardized apart ,  G = 4 -  L1, . . . ,Ln ,  
C = A 4- C - ,  and G'  = 4 -  (L1, . . . ,L ,_I ,C- ,L ,+I , . . . ,L ,~)O is a binary 
resolvent of G and C. Note that  Ls must be positive. Let x be a variable 
occurring in a negative literal in the body of G'.  Due to the allowedness of 
C, if x occurs in C-O, then x must also occur in a positive literal in C-O. 
Since G is allowed, GO is allowed as well. Then if z occurs in a negative LiO 
and does not occur in any positive LjO (j # s) in G ~, it must  occur in L~O. 
LsO = AO and every variable in AO occurs somewhere in a positive literal in 
C-O, so x must  occur in a positive literal in C-O. [] 

Before proving the next proposition, we first illustrate its second part  with 
an example. 

E x a m p l e  8.24 Suppose H = {Q(a), (P(y) 4- ~R(a),Q(y))} and G = 4 -  
P(x). Both H and G are allowed. Figure 8.6 shows an SLDNF-refutat ion of 
H U {G}. The computed answer is {x/a}, which is a ground substitution for 
G. <1 

P r o p o s i t i o n  8.25 Let H be an allowed normal program, and G an allowed 
normal goal. Then: 

I. II  U {G} does not flounder. 
2. Every computed answer for H U {G} is a ground substitution for G. 

P r o o f  
1. Let 7~ be an arbi trary safe computat ion rule, and T be an SLDNF-tree 

for II  U {G} via 7~. The initial pre-SLDNF-tree from which T is constructed 
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Figure  8.6: An SLDNF-refutation with allowed program and goal 

only contains the allowed goal G. Moreover, using Lemma 8.25 it can easily 
be shown that  any further extension adds only allowed goals to the tree. Thus 
every node in T is allowed, so not blocked. Hence 11 U {G} does not flounder. 

2. Let 01 , . . . ,  Ok be the sequence of substitutions on the edges of some 
SLDNF-refutat ion of 1I U {G}. We will show by induction on k that  if x is a 
variable in G, then x01 . . .  ~h is ground. 

. 

. 

Suppose k = 1, then G contains only one literal. If  this literal is positive, 
the result follows immediately from the fact that  the only input clause 
must  be an a tom A, which is allowed and hence ground. Then GO1 = A 
will be ground. If the only literaI in G is negative, it must  be ground 
because of the atlowedness of G, so any substitution will be a ground 
substitution for G. 
Suppose the result holds for k <_ m, let 01 , . . . ,  Om+l be the sequence of 
substitutions on the edges of some SLDNF-refutation of II  U {G}, x be 
a variable in G, and G~ be the next goal. 
If  a positive literal L was selected in the body of G, then G1 is a binary 
resolvent of  G and some input clause C E H, which we assume to be 
standardized apart .  If  x occurs in some literal in G other than L, then 
x01 occurs in G1. Since L01 = C+01, any variable in L01 also occurs 
in C+01. Furthermore, since C is allowed~ any variable in C+01 also 
occurs in C-01, and hence in G1. Thus if x occurs in L, then any 
variable in xOa occurs in G1. Therefore any variable in x01 occurs in 
G1. By the induction hypothesis, for any variable y in G1, we have that  
yO~ ... Om+l is ground. Hence x0i . . .  Om+l is ground as well. 
If  a ground negative literal L was selected in the body of G, then G1 
is G without L, so then x occurs in G1 and 0a = e. The result follows 
again f rom the induction hypothesis. [] 
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8.5 The  Complet ion  of  a Normal  Program 

We have already noticed that  negation as (finite) failure is not sound: if 
II is a definite program and A ~ Fn then we can derive -~A from II, even 
though II ~ ~A. This unsoundness carries over to SLDNF-derivations for 
normal programs. Still we can prove a form of soundness, by comparing our 
derivation rules with what is logically implied by the completion of a normal 
program, rather than by the program itself. The completion of a program is 
intended to make explicit the "negative information" in a program, based on 
the Closed World Assumption. 

How does this work? Let us start with an example. Consider a time-table 
program 11, consisting of the following: 

To(amsterdam~ 12:00) 
To(maastrieht, 13:30) 

This program states that  To(x, y) is true if (1) x = amsterdam and y = 
12:00, or (2) x = maastricht and y = 13:30. Now under the Closed World 
Assumption, we can assume this is a complete description of To(x, y): there 
are no train departures other than ~hose explicitly mentioned here. In other 
words: To(x, Y) is true if and only if (1) or (2) hold. The program itself only 
states the if part, but thanks to the added only/]part, we can now say that  
To(rotterdam, 12:00) is false. 

Suppose we have in our language a predicate symbol '= ' ,  which captures 
our intuitive notion of equality. It is written in infix notation, so we write 't = 
s' instead of '=  (t, s)', and we use t r s to denote the negated atom --,(t = s). 
Using this predicate, we can make explicit the assumption of completeness, 
by strengthening 11 to the following formula II/: 

VxVy (To(x, y) ~ (((x = amsterdam) A (y = 12:00))V 
((x = maastricht) A (y = 13:30)))). 

If the predicate symbol ' = '  correctly formalizes equality, then we have 
rotterdam r amsterdam and rotterdam # maastricht. Together with II / 
this implies -,To(rotterdam, 12:00). Thus the atom -~To(rotterdam, 12:00) is 
a logical consequence of the completed program. 

Before we can define the completion in general, something needs to be said 
about the predicate symbol '= ' .  In first-order logic, predicates by themseb~es 
have no meaning. For instance, without constraints on the interpretation of 
~=', amsterdam = rotterdam might be either true or false, just as P(a, b) 
is true in some interpretations, and false in others. Similarly, amsterdam = 
amsterdam might be false, just as P(a, a) may be false. So in order to make 
'=~ conform to our intuitions about equality, we need to put some restrictions 
on its interpretation~ This is done by including the following egvatity theory 
in the completion of the program, which states the properties that '= '  should 
have. 
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D e f i n i t i o n  8.26 The equality theory EQ for some alphabet consists of the 
following formulas (called equalitg a~ioms): 

1. V ( I ( z l , . . . ,  x~) • 9(y l , . . . ,  Y•)), for every pair f ,  9 of distinct func- 
tion symbols. Here n, m > 0, so the inequality of distinct constants is 
included in this case. 

2. Y(t[x] r x), where t[x] is any term containing the variable x, but not 
the same as x. 

3. V((x 1 7s Yt) V ... V (x,, ~: Yn) -~ ( f ( x l , . . . , x n )  • I(Yl~.. ,Yn))), for 
each function symbol f .  

4, v ( x  = x). 
5. V((x 1 --= Yl) A . . .  A (xn ---- yn) --+ ( f ( x x , . . . ,  Xn) -= f (Y l , . .  , Yn))), for 

each function symbol f .  
6. Y((xl = y l )  A . . . A ( x ~  =y~)-+ ( P ( x l , . . . , x ~ ) - + P ( y l , . .  ,Yn))),for 

each predicate symbol P (including '= '  itself). �9 

These axioms are intended to capture syntactical identity in the Herbrand 
universe (i.e., the set of ground terms). We will later be interested in Herbrand 
models of the axioms. Note that a term is always equal to itself, by the 
fourth axiom. If s and t are distinct ground terms, then EQ ~ (s 5s t). 
For example, EQ ~ VxVy (f(x) ?A g(y)) by the first equality axiom, so 
EQ ~ (f(a) 7 s y(f(a))). ~rhe equality axioms do not completeiy specify the 
equality relation for non-ground terms. For instance, EQ ~ V(x = f(y)) and 
EQ V:: V(x r f(y)), since EQ ~ if(a) = f(a)) and EQ ~ (a ~- f(a)). 

Before formally defining the completion, let us give another example, 
slightly more complex than the time-table. Suppose we want to write a 
program describing some university records. Only two kinds of persons are 
present at this very simple university: professors and students. Everyone is 
either a student or a professor. There are only two professors, Confucius and 
Socrates, and everyone else is a student. In a normal program H, this would 
look as follows: 

Pro f ( eon f ucius) 
Prof(socrates) 
Student(y) +--,Prof(y) 

However, these clauses do not tell us that if someone (for instance Plato) is a 
student, then that person is not a professor. To make explicit that  a student 
is not a professor, we need to complete the program. 

Let us first consider the clauses witk Prof  in their head. The program 
itself only states that  if x = confucius or x = socrates, then Prof(x)  is true. 
Similar to the ease of the time-table, we assume this is a complete description 
of the set of professors. Hence we add the only @side to the above statement, 
obtaining that  x is a professor if, and only if~ x = confucius or x ~ socrates. 
We can do something similar with the clause having Student in its head: the 
completion states that r is a student if, and only if, x is not a professor. Thus 
the completion of II makes explicit that  Confucius and Socrates are the only 
professors (and not students), and that everyone else is a student: 
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gx (Prof(a:) e+ ((z = confucius) V (x = socrates))) 
Vx (Student(x) ~ By ((x = y) i - ,Pro f (y ) ) )  

The somewhat complex form of the body of the second formula will be ex- 
plained in a moment. Apart from these two formulas, the completion cornp(II) 
of II also contains the equality theory. 

Note that by the first equality axiom we have plato r confucius and 
plato r socrates, assuming plato to be a constant in the alphabet. Thus 
comp(II) ~ -,Prof(plato) by the first formula in the completion, and 
consequently comp(II) ~ Student(plato) by the second formula. Neither 
-,Prof(plato) nor Studant(ptato) are logical consequences of II itself. Nev- 
ertheless, the CWA allows us to infer these two literals, and the completion 
makes this explicit by logically implying them. 

The general way to transform a program into its completion is as follows. 

Def in i t ion  8.27 Let II be a normal program, and P be a predicate symbol. 
Then the definition of P in II is the set of clauses in II which have P in their 
head. O 

Suppose the definition of some m-ary predicate symbol P in II consists 
of k program clauses. We want to turn this definition into something of the 
form 

VXl.-.VXrn (P(xl,. . . ,~rn) ~ Z), 

where x l , . . . ,  xm are new variables not appearing in the definition of P, and 
E is roughly the disjunction of the bodies of the clauses in the definition. The 
first thing we must do in order to achieve this, is give each of the k clauses 
in the definition the same head P ( x l , . . . ,  Xm). Let 

C1 = P( t l , . . . , tm )  +-- L1 , . . . ,L~  

be the first of the clauses in the definition of P, and suppose the variables in 
C1 are y ] , . . . ,  Yd. The first step in the transformation turns this clause into 
the clause 

C~ = P ( x l , . . . , x ~ )  +- (xl = t l ) , . . . ,  (xm = t m ) , L 1 , . . . , L , .  

Let us call E-Herbrand interpretations all those Herbrand interpretations 
which satisfy the equality theory. Since C~ together with the fourth equality 
axiom logically implies C1, any E-Herbrand model of C~ is also an E-Herbrand 
model of C1. Conversely, it is not very difficult to see that any E-Herbrand 
model of C1 is also an E-Herbrand model of C~, using axiom 6. Since C1 and 
C~ have exactly the same E-Herbrand models, we may say that the above 
transformation from C1 to C~ has preserved equivalence with respect to E- 
Herbrand interpretations. 

To motivate the second step that we want to take for the transformation, 
note that the body of the clause C~ contains y l , . . . ,  Yd, which are universally 
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quantified. This universal quantification may cause problems. Consider for 
instance H = {P ~ Q(y)}, where P is a Gary predicate symbol meaning 
that  Ho~and is inhabited, ~ d  Q(y) means that  y lives in Holt~nd. P +-- Q[y) 
thus means that  if some y lives in Holland, then Holland is inhabited. If we 
simply added the "only if"-side, we obtain Vy (P ++ Q(y)). But this implies 
that if P is true, then Q(y) is true for every y. In other words, if Holland 
is inhabited, then every person lives in Holland. This is clearly too strong, 
considering that  Holland is a rather small country. What  we would like to 
have as a completion, is something like "Holland is inhabited iff there is at 
least one person y living in Holland." Therefore the second step turns the 
universal quantifiers for Yl, �9 �9 Ye into existential quantifiers in the body of 
the formula itself: 

P ( x ~ , . . , , . ~ )  ~ ? w . .  o3y~ ((~., = tl)  f . . .  A (~,,  = t,~.) A L1 A . . .  A L~), 

which may be abbreviated to 

Note that  C~ and C~' are logically equivalent, For instance, Very (P(x) +-- 
(x = y),Q(y)) @ Vz (P(~) <-- 3y ((x = y) A Q(y))). This implies that C1, 
C~, and C[ / all have the same E-tterbrand models. 

Suppose the above transformation is made for each of the k clauses in the 
definition of P,  so we have 

P(r '-,Xm) <-- Ek, 

Together these k formulas imply 

The completed definition of the predicate symbol P is the closed formula 

w ~ . . . w m  (P(~ , . . . ,  ~,~) ~ (E~ v . . .  v E~)). 

In case Q is an m-sty predicate symbol in H that does not occur in the head 
of a c~ause in rf, we take every instance of Q to be false, So in this case the 
completed definition of Q is Vxl , . .  gx,~ -~Q(xl,.-.,  z,~). 

The completed definition of some predicate is not itself a set of clauses, 
nor can it always be transformed into an equivalent set of clauses, due to the 
presence of existential quantifiers. For instance, if II = {P +- Q(y)}, then the 
completed defirdtion of P is P ++ 3y Q(y), which cannot be transformed to 
an equivalent set of clauses. 

The completion of a normal program combines the completed definitions 
with the equality theory: 
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D e f i n i t i o n  8.28 Let II be a normal program. The completion of II, denoted 
by comp(II), is the set of the completed definitions of the predicate symbols 
in 1I, together with the equality theory. <) 

The completion of a program is sometimes unsatisfiable. Consider H = 
{P(a)  <-- -,P(a)}, which itself is satisfiable, since it has {P(a)} as a model. 
However, comp(H) combines Vx ( P(x) ~ ( (x = a)A-~P(a) ) ) with the equality 
theory, which is unsatisfiable. It is not very difficult to show that if II is 
a definite program, then comp(H) is satisfiable. For restrictions on (non- 
definite) normal programs which ensure a satisfiable completion, we refer 
to [Llo87, AB94] and the references therein. 

Note the following relation between a program and its completion: 

P r o p o s i t i o n  8.29 If  II is a normal program, then comp(H) D H. 

P r o o f  Let C = P ( t l , . . . ,  t,~) +-- L1, . . . ,  L~ C l-t, and 

D = gx l . . .Vx ,~  ( P ( x l , . . . ,  xm) ++ (El V.. .  V/~k)) 

be the completed definition of P.  Suppose Ei was obtained from C: 

& = 3 v l . . . ? y d  ((-1 = t l )  A . . .  A (xm = A L1 A . . .  A 

D implies Vzl . . .  Vxm (P(x~, . . . ,  x,~) ~- E~), which is equivalent to the clause 

P(x l , . . . ,* ,~)  +-- (xl = t l ) , . . . ,  (x,~ = t , ~ ) ,L1 , . . . ,L~ .  

This clause has the following instance (substituting tj for xj): 

: : 

This instance, together with the 4th equality axiom, implies C. Hence 
comp(II) ~ C. [] 

It follows from this proposition that if L is a literal and H ~ V(L), then 
co~,p(n) ~ V(L). 

It should be noted that  the completion, though motivated by and based 
upon the Closed World Assumption, is actually weaker than the CWA. Con- 
sider the definite program FI = {P(y) +-- P(f(y))}.  Then H ~: P(a), so the 
OWn would justify inferring -,P(a). Nevertheless, comp(H) = {Vx (P(x)  ++ 
((x = y)A P(f(y))))} V EQ does not imply - ,P(a) ,  because an interpretation 
that  satisfies the equality axioms and makes true P(fn(a)) for every n > 0 
would be a model of comp(H) but not of -,P(a). Thus the completion makes 
explicit only part of the CWA, just as negation as finite failure is only a 
partial implementation of "full" negation as failure. 

As mentioned at the beginning of this section, in order to be able to 
prove soundness results we should compare SLDNF-derivations with what is 
implied by the completion, not with what is implied by the program itself. 
Thus we define the notion of a correct answer, the semantical counterpart to 
the computed answer, as follows: 
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Definition 8.30 Let II be a normal program, G =+-- L1 , . . . ,  Lk a normal  
goal, and 0 be a substitution for variables of G. We say that  0 is a correct 
answer for comp(II) O {G} if comp(II) ~ v( (n l  A. . .  A Lk)O). 

To end this section, let us compare the previous definition with the def- 
inition of a correct answer for definite programs, given in the last chapter. 
Suppose 1I is a definite program and G a definite goal. It follows from Propo- 
sition 8.29 that  a correct answer for II U {G} in the old sense is also a correct 
answer for comp(H) O {G} in the sense of this chapter. It  can be shown that  
the converse holds as well (see Proposition 14.5 of [Llo87]). So in the def- 
inite case, 0 is a correct answer for II U {G} iff it is a correct answer for 
eomp(II) U {G}. 

8.6 Soundnes s  w i th  R es pec t  to the  Comple-  
t ion 

In this section we prove two important  soundness results: the first for finitely 
failed SLDNP-trees, the second for successful ones. Suppose H is a normal  
program, and G --=e- L ~ , . . . ,  L~ a normal  goal. Firstly, if eomp(II) O {G} has 
a finitely failed SLDNF-tree, then comp(H) ~ V(-,(L1 A . . .  A n , ) ) ,  which is 
the same as eomp(II) ~ V(G). Secondly, if some success branch in an SLDNF- 
tree for comp(II) U {G} yields a computed answer 0, then this is also a correct 
answer: comp(ri) ~ V((L1 A , . .  A Ln)O), 

The basis of the proof is the next lemma. Rather than including the very 
technical proof of this l emma  (Lemma 15.3 of [Llo87]; a similar result is given 
in Section 5.7 of [Apt90]), we illustrate it with an example. 

L e m m a  8.31 Let H be a normal program, G a normal goal, and L~ a positive 
literal in the body of G. 

I. If there is no (variant of) C E I I  whose head can be unified with L~, 
then comp(II) ~ G. 

2. If the set {GI , . . . ,  Gr} of all binary resolvents of G and clauses in II 
(resolved upon L~) is non-empty, then comp(II) ~ G ++ G~ i .  . . i G~. 

E x a m p l e  8.32 Let II = {P(a), (p(f2(y)) e-- P(y))}.  Then cornp(II) = 
{vx (P (x )  = a) v = A u E Q  

Let G =+-- P(f(a)).  Since P(f(a)) cannot be unified with any a tom in 
the head of a clause in II, there are no resolvents from G and II. Thus II  U 
{G} finitely fails, and we infer -~P(f(a)). This is sound with respect to the 
completion, since comp(II) ~ -~P(f(a)) .  

If  G = + -  P(f2(a)), then the only resolvent of G and clauses in n is 
G1 =+- P(a). Now it easy to see that  through substituting f2 (a) for x in the 
formula in the completion, we have comp(II) ~ p( f2  (a)) ++ P(a), hence also 
eo p(n) > < 
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T h e o r e m  8.33 ( S o u n d n e s s  o f  n e g a t i o n  as f in i t e  f a i l u r e )  Let II be a 
normal program, and G a normal goal. IfIIU{G} has a finitely failed SLDNF- 
tree, then comp(H) ~ G, 

P r o o f  Let G =+-- L 1 , . . . , L n ,  and T be a finitely failed SLDNF-tree for 
H U {G}. Then G must be non-empty. The main tree of T is finitely failed, 
so there exists a finite number k > t,  such that  this main tree is complete 
after k extensions of the initial tree G. The proof is by induction on k. 

1. If k = 1, then G =+-- L1. L1 cannot be negative, since constructing a 
subsidiary tree (which must first finitely fail or become successful before 
the main tree can be further extended) would involve at least two more 
extensions. Hence Lt is an atom, and there is no (variant of) C E H 
whose head can be unified with L1. Then comp(II) ~ G by the first 
part of Lemma 8.31. 

2. Suppose the theorem holds for k _< m, the main tree of T is complete 
after m +  1 extensions, and L~ is selected in G in the initial pre-SLDNF- 
tree. 

1. 

. 

Suppose Ls is positive. Let G 1 , . . . ,  G.  (r > 1) be the children of 
G in the main tree of T.  For each 1 < i < r, the subtree initiating 
in Gi is itself a finitely failed SLDNF-tree, so by the induction 
hypothesis we have that eomp(II) ~ Gi. Then comp(H) ~ G1 A 
. .. A G~, and comp(H) ~ G from Lemma 8.31, part 2. 
If Ls = ~A is negative, then A is ground. Because the main tree 
of T is finitely failed, the subsidiary SLDNF-tree subsid(G) for 
11 U {+-- A} is either successful or finitely failed. 
Case  1. First suppose subsid(G) is successful. Then this sub- 
sidiary tree contains a success branch (i.e., an SLDNF-refutation 
ofHU{+-- A}). Let the length of this success branch be I. Now it can 
be proved by induction oil t that  comp(H) U {+-- A} ~ [2, using (1) 
the soundness of resolution steps, and (2) the fact that  each sub- 
sidiary tree used on this success branch must be finitely failed after 
m or less extensions (so the induction hypothesis can be applied). 
Therefore comp(H)U{+- A} is unsatisfiable, and comp(H) ~ A by 
Proposition 2.37. Then also comp(H) ~ -~L~, and since -~L~ ~ G 
(i.e., L~ E G - ) ,  it follows that  comp(lI) ~ G. 
Case  2. Now suppose subsid(G) is finitely failed. Then the only 
child of G is G'  =+-- Lt, . . . ,  L~-I, L~+I,..., L~, and the tree with 
this G' as root is finitely failed after m or less extensions. Hence by 
the induction hypothesis we have comp(II) ~ G'. Since G' C G, 
the result follows. [] 

In particular, if A is a ground atom and II U {+-- A} has a finitely failed 
SLDNF-tree, then comp(II) ~ ~A. Using this result, we can prove the sound- 
ness of answers computed by SLDNF-refutations in the next theorem. 
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E x a m p l e  8.34 In Example 8.16 we noted that  the SLDNF-tree of Exam- 
ple 8.10 contained two computed answers, 01 = {x/a} and 02 = {x/b}, and 
that  H ~ P(x)01 but II ~ P(x)02. Thus computed answers are not sound 
with respect to the program 1] itself. On the other hand, the next theorem 
guarantees us the soundness of computed answers with respect to the com- 
pletion: we have comp(II) ~ P(x)01 as well as comp(II) ~ P(x)02. <1 

T h e o r e m  8.35 ( S o u n d n e s s  o f  S L D N F - r e s o l u t i o n )  Let 17 be a normal 
program, and G a normal goal. Then every computed answer for II U {G} is 
a correct answer  for  co p(II) u {G}. 

P r o o f  Suppose G =+-- LI, . . . ,L~,  and Go = G, G1,...,G~ = [] be the 
main branch of an SLDNF-refutation of H • {G} with computed answer 8. 
Let 0i, �9 �9 Ok be the substitutions used. We will prove by induction on k that  
comp(II) b V((L1 A . . . A  Ln)01... Ok), thus showing that  0 is a correct answer 
for comp(II) U {G}. 

1. If  k = 1, then G =<-- L1. 
1. tf  L1 is positive, then there is an a tom B ~ II such that  B01 = 

L101. Hence B ~ V(LI01). Now eornp(H) ~ B by Proposi- 
tion 8.29, and the result follows. 

2. If  L1 = "~A is negative, then A is ground, and there is a finitely 
failed SLDNF-tree for II U {§ A}. The computer  answer is just  
here. By Theorem 8.33 we have comp(H) ~+- A. Since +-- A ca -~A 
and -~A = L1, we have comp(H) ~ L1, so e is a correct answer. 

2. Suppose the result holds for k < m, and let Go = G, G l , . . . ,  G,~+I = [] 
be the main branch of an SLDNF-refutation of H U {G} with substi- 
tutions 0 1 , . . .  , 0m-l-1 and computed answer 8. Let L8 be the selected 
literal in G. 

t. Suppose Ls is positive~ and the first input clause is C = B +- 
C - .  Then the second goal in the refutation is G1 =+-- (L1 , . . . ,  
L ~ _ I , C - ,  L~+I,..., Ln)01. By the induction hypothesis we have 

V((L  A...AL _I AC- AL,+I 
Furthermore, note that  C U V(C--01 ...0,~+1) ~ B0t ...0,~+1. 
Then we have comp(II) U V(C-01 . . .  0~+~) ~ B01... 0~+~, since 
comp(II) ~ C by Proposition 8.29. Therefore also camp(H) 
V((L1 A . . .  A Ls-~ A B A Ls+ l / \  . . . .  ~, L,~)01 . . .  0~+1 ). Finally, since 
B01 = Ls01 we can replace B by L~ in the previous formula, thus 
obtaining cornp(H) ~ V((L1 A . . .  A Ln)01... Ore+l). 

2. If Ls = -~A is negative, then A is ground and there is a finitely 
failed SLDNF-tree for I IO{+-  A}. We have comp(H) ~ Ls by The- 
orem 8.33. Combining this with comp(II): ~= V((L~ A . . .  A L~- t  A 
L~+~ A. . . / \  Lr~)O~ ... Orn+~) (induction hypothesis), the result fol- 
lows. [] 
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8.7 Completeness 

In this section we will devote some attention to the completeness and incom- 
pleteness of SLDNF-resolution. First, consider a definite program II and a 
definite goal G. At the end of Section 8.5, we mentioned that  a substitution 
0 is a correct answer for H U {G} iff it is a correct answer for comp(II) U {G}, 
so the set of correct answers remains the same when we consider the com- 
pletion of II. Since, furthermore~ an SLDNF-tree for II t_J (G} is simply an 
SLD-tree for II U {G}, the set of computed answers remains the same as 
well. Hence, for definite H and G, the completeness of computed answers for 
SLDNF-resolution follows from the completeness of computed answers for 
SLD-resolution (Theorem 7.26 of the last chapter). 

Computed answers stem from trees with success branches. What  about 
trees without success branches? We would like these to be finitely failed, so we 
won't  get stuck in infinite branches. The next result says that  if eomp(H) 
G, then every fair SLD-tree for Ht2 {G} is indeed finitely failed. In particular, 
if A is a ground atom and eomp(II) ~ -~A, then every fair SLD-tree for 
I/t2 {+- A} will be finitely failed, hence A E Fn. We will not prove this result 
here, which is originally due to Jaffar, Lassez, and Lloyd [JLL83] (for a proof, 
see [Llo87, Theorem 16.1] or [Apt90, Theorem 5.30]). 3 

Theorem 8.36 (Completeness of negation as finite failure) Let II be 
a definite program, and G a definite goal. If comp(II) ~ G, then every fair 
SLD-tree for II U {G} is finitely failed. 

The previous result on negation as failure for definite programs, as well 
as the results on SLD-resolution of the previous chapter, are quite strong. 
Unfortunately, equally strong results are missing for SLDNF-resolution for 
normal programs. In fact, SLDNF-resolution is not complete, not even in 
case of a definite programs combined with a normal goal. For example, let 
II = {Q(a, b)} and G =+-- -~Q(x, a) (note that G is not allowed according to 
Definition 8.21). Then comp(Fl) ~ -~Q(b, a), so {x/b} is a correct answer for 
H U {G}. However, no SLDNF-tree for H U {G) contains a success branch, 
since ~Q(x, a) cannot be selected due to floundering. 

Thus in order to obtain completeness results, we have to put some con- 
straints on the programs and goals we use. Theorem 16.3 of [Llo87] gives a 
completeness result for so-called allowed hierarchical normal programs and 
allowed normal goals. A normal program II is hierarchical if there is an as- 
signment of natural numbers to each of the predicates in II, such that  for 
every C E H, the number assigned to the predicate in C + is greater than 
the numbers assigned to the predicates in C - .  Unfortunately, the restric- 
tion to hierarchical programs rules out any recursion: for instance, a program 
containing P(f(x)) e- P(x) is not hierarchical. 

3 For a different completeness  result  for SLDNF-resolut ion,  see Theorem 8.52 of [Doe94]. 
This  result  employs a 3-valued semantics,  where the possible t ru th  values are ' t rue ' ,  ~false ~, 
and 'undefined' ,  r a the r  than  only ' t rue ~ and 'false'. 
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8.8 Prolog 

The use of normal programs as a means for knowledge representation and 
computat ion has been implemented in several practical programming lan- 
guages. In this section, we will briefly give an overview of the best-known 
of these languages, the language PROLOG (short for Programming in logic). 
PROLOG was introduced in the early 1970s by Colmerauer and his co-workers, 
and its subsequent development influenced, and was itself influenced by, the 
development of logic programming. Many ILP systems are implemented in 
PROLOG, and many examples in the ILP literature are given in terms of 
PROLOG. We will here mainly discuss some of the logical aspects of PROLOG. 
For a more extensive introduction to PROLOG as a practical programming 
language, we refer to [CM87, Bra90, SS94, Apt97]. 

8 . 8 . 1  S y n t a x  

In PaOLOG, names of predicates are strings of symbols starting with a lower 
case letter. Names of variables start with an upper case letter or an under- 
score, and names of constants and function symbols start with a lower case 
letter. We will here denote PROLOO clauses and terms in a typewriter-style 
font. The implication sign %-' of a Horn clause is in most PROLOS-systems 
written as ' : - ' ,  and a negative literal -~A in the body of a program clause is 
usually written as not  A. 

An important  feature of PROLOG is its ability to handle lists of terms. Lists 
can be implemented using a special binary function symbol '.' and a special 
constant nil (which denotes the empty list), so they can be incorporated 
within first-order logic without any additional concepts. The first element of 
the list is placed at the first argument place of the '. '-function, the remainder 
of the list is put at the second place. For instance, the list [ a , b , c ]  can be 
represented by the term .(a, .(b, .(c, nil))). The empty list [] is represented 
by nil. [X~L] denotes a list with X as first element, and list L as remainder, 
and [X,YIL] is a list which has X as first element, and g as second element, 
followed by the list L. 

E x a m p l e  8.37 The familiar operations on lists can easily be formalized in 
PROLOG. 4 For instance, the following program describes when object X is a 
member of the list at the second argument place: 

I. member(X, IX [L]) 
2. member(X,[Y[L]) :- member(X~L) 

Appending two lists Lt and L2 to get a third list L3 can be done by the 
following program: 

1. a ppe nd ( l ]  ,L2,L2) 

4ILP systems are often tested by making them learn definitions of these list-operations 
from a few examples. 
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9. append([X[L1] ,L2, [X[L3] ) : -  append(L1,L2,L3)  
<1 

PROLOG also provides operators like +, *, etc., for doing relatively simple 
arithmetic, such as addition, multiplication, etc. Here '+' is a binary function 
symbol, written in infix notation. To assign some value to a variable in the 
body of a clause, the operator i s  is used. Comparison of values is done by 
operators like =:=, >, >=, etc. '>' is a binary predicate symbol, again written 
in infix-notation. For a more complete overview over these operators, and 
also for the operators for reading, writing, etc., we refer the reader again 
to [CM87, Bra90, SS94, Apt97]. 

E x a m p l e  8.38 Consider the following recursive algorithm for computing the 
greatest common divisor (gcd) d of two positive integers x and y: 

1. I f x = y ,  t h e n d = z .  
2. I f x < y ,  t h e n d i s t h e g c d o f x a n d y - x .  

Otherwise, d is the gcd of x - y and y. 

This algorithm can be translated into PROLOG using operators for subtrac- 
tion and comparison, as follows: 

1. gcd(X,X,X) 
2. gcd(X,Y,D) : -  X<Y, Y1 i s  Y-X, gcd(X,Y1,D) 
3. gcd(X,Y,D) :- X>Y, Xl is X-Y, gcd(Xl,Y,D) 

8.8.2 Prolog and SLDNF-Trees 

There are two sides to each PROLOG program: a declarative side and a pro- 
cedural side. The declarative side concerns the content of a normal program 
(what the program says), while the procedural side concerns how PROLOG 
extracts this content from the program. One of the ideas behind PROLOG is 
that a programmer only needs to worry about the declarative side. He can re- 
strict himself to describing the problem he wants to solve, without bothering 
how it will be solved: the procedural side is left to the system. 

Let us assume some normal program II is given to a PROLOG system. The 
procedural side is invoked when a question is posed to the system. Questions 
(often called queries) are put to a PROLOG system in the form of a conjunc- 
tion of literals L 1 , . . . , L n .  This question can be seen as the question "for 
which substitutions 0 is V((LI A . . .  h L~)O) a logical consequence of the com- 
pletion of the program?", or in other words: "what are the correct answers 
for II U {+-- L 1 , . . . ,  L~]?" 

PROLOG answers this question by constructing computed answers, which 
are the counterpart  of the correct answers. It does this by searching an 
SLDNF-tree for IIU{+- L 1 , . . . ,  L~}, using the computation rule which always 
selects the leftmost literal in a goal. The system searches this tree in a depth- 
first fashion, printing out every computed answer it finds in the main tree. 
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This depth-first search can be described by the following recursive procedure, 
which is initially called with G =+- L 1 , . . . ,  L,~. 

Search(G): 
If G = D, construct the computed answer I%r this leaf. 
If the leftmost literal L in G is positive, then 

Construct the resolvents G 1 , . . . ,  G~ of G and clauses in II. 
Search(G1). 

Search(G~). 
If L = -~A is negative, then Search(+- A). (Note that if this call to Search 
returns, then the SLDNF-tree for +- A is finite.) If this call to Search found 
no success branches, then Seareh(G - -,L). 

Though the way PROLOG works can more or less be equated with the 
search of SLDNF-trees, a number of difficulties arise as a consequence of 
some subtle differences between PROLOG and "proper" SLDNF-trees. 

Firstly, as can be seen from the Search procedure described above, PRO- 
LOt ignores floundering. When a negative literal -,A is selected, PROLOG does 
not distinguish between ground and non-ground literals. In both cases, the 
system tries to construct a finitely failed SLDNF-tree for II U {+. A}. This 
may lead to the unsoundness exhibited in Example 8.18. Moreover, PRO- 
LOt'S computation rule is not safe: it always selects the leftmost literal in a 
goal, even when this literal is negative and non-ground~ and other positive or 
ground negative literals are available in the goal. 

Secondly, a PROLOG program is an ordered list of clauses, not a set of 
clauses. Combined with the depth-first search, completeness now depends on 
the order of clauses in the program: 

E x a m p l e  8.39 Consider the infinite SLDNF-tree (actually, just an SLD- 
tree) that PROLOG would have to search given a goal : -  p(X) and a program 
II consisting of 

1. p (a )  
2. p ( f ( x ) )  : -  p (x)  

The SLD-tree for HU{G} is shown on the left of Figure 8.7. PROLOG'S depth- 
first search will not terminate due to the presence of an infinite branch, but 
the system will eventually find and print out each computed answer. 

However, now suppose we would reverse the order of clauses in II: 1 be- 
comes 2, and 2 becomes 1: 

1. p(~(X))  : -  p(X) 
2. p (a )  

This gives the SLD-tree shown on the right of Figure 8.7. Now PROLOG's 
depth-first search will find no computed answer at all because it gets stuck 
in the leftmost branch, which stretches downward without end. <1 
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:- p(x) ' -  p(X) 

[] : -  p(X) : -  p(X) [] 

success, {X/~} Jl / / ~ 2 \  ~ s~ccess, {X/a} 

[] [] 

success, {X/f  (a )}  : : success, { X / f ( a ) }  

Figure  8.7: The effect of reversing the order of clauses in H 

The most  impor tant  distinction between PROLOG and SLDNF-trees is 
the use of the cut operator,  which is the topic of the next subsection. 

8.8.3 The Cut Operator 
The cut operator is incorporated in PROLOG for reasons of efficiency. By 
inserting this opera tor - -usual ly  denoted by a ' ! ' - s y m b o l - - i n  the body of 
some clauses in the program, the programmer  can control the search. The 
effect of the cut operator is that  certain parts of the SLDNF-tree are pruned 
from the tree and hence will not be searched. 

How does this work? Consider the Search procedure described on p. 156. 
Suppose G is resolved with C 1 , . . . ,  C~ E I I ,  yielding, respectively, the new 
normal  goals G1, �9 �9 G,~. Moreover, suppose 6 ' /contains the cut operator ! as 
an a tom (with arity 0) in its body 5, then Gi contains this cut as well. Now if 
this cut becomes the leftmost literal in a goal at some moment  during the call 
of Search(Gi),  then it is selected, and resolved away immedia te ly- -we may  
assume any program contains ! as a "hidden" atomic clause. However, after 
this call to Search(Gi) returns, the calls to Search(Gi+l),  . . . ,  Search(G~) 
are not executed. In this way, the cut operator prunes the subtrees which 
have, respectively, Gi+l, . . . ,  G~ as root: these subtrees are not searched, 
and any computed answer in them is ignored. If the cut was not selected at 
some moment  during the call of Search(Gi), the calls to Search(Gi+l) , . . .  are 
made as if Gi did not contain a cut. 

Example 8.40 Suppose we want to compute the sign function: 
-1, ifx<O; 

f ( x )  = 0, if x = 0 ;  
1, i f x  > 0. 

5Though  it is convenient to describe ! as an a tom,  the cut does not have any logical 
significance: it is only used to control the search th rough  the SLDNF-tree.  As argued 
in [L1o87], it does not  affect the semantics  of the program.  If we view the cut as "always 
t rue" ,  then  for instance A :-  B,C r A : -  B, ! ,C. 
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This function can be formalized by the following PROLOG program II, the 
first two clauses of which contain a cut: 

1. s i g n ( X , - 1 )  : -  X<0,! 
2. sign(X,O) :- X=O,! 
3. sign(X,i) :- X>O 

Suppose G = : -  s i g n ( - 2 , Y ) .  The tree for II U {G} is shown in Figure 8.8. 
PROLOO evaluates the a tom -2<0 as true when selected, and -2=0 and -2>0 
as false. The root G contains three children, one for each of the clauses in II. 
The first input clause adds a cut operator to the body of the leftmost child. 
Since this cut is selected after two steps on the leftmost branch, the subtrees 
initiating in the other two children of G are not searched. Thus the framed 
part  of the tree is discarded. 

' -  s i g n ( - 2 , u  

Y 
�9 - -2<0, ! - -2=._...O0, ! : -  - 2 > 0  

fa i led  fa i led  

p a r t  of  t h e  t r e e  p r u n e d  b y  c u t  
/ 

D 

success, {Y/-1} 

Figure  8.8: The effect of a cut 

In this case, the pruning is beneficial: since Y in sign can have only one 
value, it is no use to search the other two subtrees, given that  the value of 
Y has already been found in the leftmost subtree. Note that  if the goal had 
been s i g n ( 0 , Y ) ,  then the leftmost branch would have immediately led to 
failure, hence ! would not be selected in the leftmost branch. In this case, 
the cut in the center branch would be selected, leading to the discarding of 
only the rightmost subtree. <1 

In the previous example, the pruned parts of the tree did not contain any 
success branches. However, if these pruned parts contained success branches, 
then the computed answers corresponding to these branches would not be 
found. This leads to a form of incompleteness. Moreover, when combined 
with negation as finite failure, use of the cut may even cause unsoundness, 
as the next example (adapted from [Llo87]) shows: 
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E x a m p l e  8.41 Suppose we want to write a program for the subset-relation. 
Here sets are represented as lists, and subse t  (L 1, L2) should succeed just in 
case there is no X which is a member of L1 but not of L2. Let H consist of 
the following clauses: 

i. subset(LI,L2) :- not p(LI,L2) 
2. p(LI,L2) :- member(X~L1), not member(X,L2) 
3. member(X,[XIL]) :- ' 

4. member(X,[YJL]) :- member(X,L) 

At first sight, it seems a good idea to use a cut in the first clause of the 
definition of member, because if this clause applies (i.e., if its head can be 
unified with the selected atom in some goal), we already know X is a member 
of the list at the second argument place, so the second clause of the definition 
will not be needed. However, because of this cut, PROLOG'S SLDNF-tree for 
the goal : -  p( [ 1 , 2 ] ,  [1] ) is (incorrectly) finitely failed. But then the query 
s u b s e t (  [ 1 , 2 ] ,  [1] ) succeeds, even though {1, 2} % {1}. <~ 

The moral of examples like this, is that the cut must be used very carefully. 
It is often very difficult to see, especially in large programs, whether it will 
have any undesirable effects. Moreover, to see the effects of a cut, a PROLOG- 
programmer should have a thorough knowledge of the procedural side of a 
program. This impairs the idea that a programmer only needs to concern 
himself with the declarative side of the programming task at hand. 

For a more extensive analysis of the peculiarities of cut and negation in 
PaOLOC, we refer to [SS94, AT95, Apt97]. 

8.9 Summary 

Negation as finite failure, based on the Closed World Assumption, is the 
derivation rule which states that if H U {+-- A} finitely fails, then we can 
derive the ground atom ~A from H. The possibility of deriving negative 
literals from a definite program allowed us to generalize definite program 
clauses to program clauses, which may contain negative literals in their body. 
A normal program is a finite set of program clauses. 

Combining SLD-resolution and negation as finite failure yields SLDNF-re- 
solution, which handles negative literals in a goal by negation as finite failure. 
Negation as failure should only be applied to ground negative literals (i.e., 
no floundering), in order to avoid unsoundness. We proved the soundness 
of SLDNF-resolution in terms of the completion of normal programs, and 
stated a completeness result. Finally, we discussed the language PROLOG 
and some of its difficulties, in particular the potentially adverse effects of the 
cut operator. 
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Chapter 9 

What Is Inductive Logic 
Programming? 

9.1 Introduct ion  

Learning a general theory from specific examples, commonly called induction, 
has been a topic of inquiry for centuries. It is often seen as a main source of 
scientific knowledge. Suppose we are given a large number of pat ient 's  records 
from a hospital, consisting of properties of each patient, including symptoms  
and diseases. We want to find some general rules, concerning which symptoms  
indicate which diseases. The hospital 's  records provide examples from which 
we can find clues as to what those rules are. Consider measles, a virus disease. 
If  every patient  in the hospital who has a fever and has red spots suffers from 
measles, we could infer the general rule 

1. "If someone has a fever and red spots, he or she has measles." 

Moreover, if each patient with measles also has red spots, we can infer 

2. "If someone has measles, he or she will get red spots." 

These inferences are cases of induction. Note that  these rules not only tell us 
something about  the people in the hospital 's  records, but are in fact about 
everyone. Accordingly, they have predictive power: they can be used to make 
predictions about  future patients with the same symptoms.  

Usually when we want to learn something, we do not start  from scratch: 
most  often we already have some background knowledge relevant to the learn- 
ing task. For instance, in the hospital records we might find that  patients 
suffer from measles if they are infected by virus a or by virus b, and patients 
not infected by a or b are not bothered by measles. Now suppose the back- 
ground knowledge tells us that  both a and b belong to a virus family c, which 
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consists of viruses with a similar structure. In this case, we may induce the 
role 

3. "If someone is infected by a virus x from family c, he or she 
has measles" 

assuming, of course, that this rule is not contradicted by other patients in the 
records. If we had ignored this background knowledge, it would have been 
sensible to induce the following two much weaker rules: 

4. "If someone is infected by virus a, he or she has measles." 
5. "If someone is infected by virus b, he or she has measles." 

Rule 3, together with the background knowledge, implies rules 4 and 5, and 
has more predictive power than 4 and 5 taken together. 

The study of induction can be approached from many angles. It used to 
be mainly an issue for philosophy of science (see Section 9.5), but is nowa- 
days also often studied in relation to computer algorithms, within the field 
of artificial intelligence (AI, see [RN95] for a general introduction). As Mar- 
vin Minsky, one of the founders of AI, wrote: "Artificial Intelligence is the 
science of making machines do things that would require intelligence if done 
by man" IMin68, p. v]. Given this view, the study of induction is indeed part 
of AI, since learning from examples certainly requires intelligence if done by 
mail .  

The branch of AI which studies learning is called machine learning. Some 
of the main approaches in machine learning are learning in neural networks, 
decision trees, genetic algorithms, and finally logic. The latter approach 
is nowadays called inductive logic programming (ILP). Stephen Muggleton, 
when introducing the name inductive logic programming, defined this field as 
the intersection of machine learning and logic programming. Thus ILP stud- 
ies learning from examples, within the framework provided by clausal logic. 
Here the examples and background knowledge are given as clauses, and the 
theory ~hat is to be induced from these, is also to consist of clauses. Using 
logic has some important advantages over other approaches used in machine 
learning: 

| Logic in general, and first-order logic in particular, is a very well de- 
veloped mathematical field, providing ILP with a large stock of well 
understood concepts, techniques, and results. 

�9 Logic provides a uniform and very expressive means of representation: 
the background knowledge and the examples, as well as she induced 
theory, can all be represented as formulas in a clausal language. In 
particular, due to this uniform representation, the use of background 
knowledge fits very naturally within a logical approach towards machine 
learning. Theory and background knowledge are of the same form, they 
just derive from different sources: theory comes from inductive learning, 
while background knowledge is provided by the user of the system. 
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�9 Knowledge represented as rules and facts over certain predicates comes 
much closer to natural language than any of the other approaches in 
machine learning. Hence the set of clauses that an ILP system induces 
is often much easier to interpret for us humans than, for instance, a 
neural network. 

In the next section, we will define the normal problem setting of induction 
in the precise terms of clausal logic, and introduce some terminology. In 
Sections 9.3 and 9.4 we discuss some alternatives to this setting. We end the 
chapter by giving a brief survey of the history of induction in general, and 
ILP in particular. 

9.2 The Normal  Problem Sett ing for ILP 

Inductive logic programming concerns learning a general theory from given 
examples of the predicates that we want to learn, possibly taking background 
knowledge into account. We can distinguish between two kinds of examples: 
positive examples, which are true, and negative examples, which are false. 
Usually, the positive and negative examples are given as sets E + and E - ,  
respectively, of ground atoms. However, ground clauses are also sometimes 
used as examples, for instance in a least generalization approach. In fact, 
there is no theoretical reason against using non-ground clauses as examples, 
though this is rather unusual. 

In ILP, both background knowledge and the induced theory are repre- 
sented as finite sets of clauses. In the ordinary setting, after the learning is 
done, the theory together with the background knowledge should imply all 
given positive examples in E + (completeness), and should not contradict the 
given negative examples in E -  (consistency). Completeness and consistency 
together form correctness. 

Before going into the formal definitions, let us look at a simple example. 
Suppose E + = {P(0), p(s4(0)), p(sS(0))}, E -  = {P(s(0)), p(sa(0))}, and 
the background knowledge is empty. Then a program containing the following 
clauses 

1. P(s2(x)) 4-- P(x) 
2. P(O) 

will imply all positive examples (completeness) and no negative ones (consis- 
tency), and hence is correct. 

If we consider only definite programs as theories, it suffices for consistency 
to require that no negative examples are implied. However, this need not be 
the case if we allow arbitrary clauses. For instance, let E = {P(a)V P(b)} and 
E -  = {P(a), P(b)}. Then E does not imply any of the negative examples, 
yet it still contradicts the negative examples: E -  tells us that P(a) and P(b) 
are both false, so the clause P(a) V P(b) from E cannot be true. In other 
words, the set {(P(a)V P(b)),-~P(a),-,P(b)} is unsatisfiable. In order to rule 
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out cases like this, we have to complicate the definition of consistency a bit, 
requiring that  E, together with the negations of the negative examples, is 
consistent (satisfiable). This is formally defined below. 

Def in i t i on  9.1 A theory is a finite set of clauses. 0 

Def in i t i on  9.2 If E = { C 1 ,  C 2 , . . . }  is  a (possibly infinite) set of clauses, 
then we use E to denote {--C1, -~C2,.. o}. �9 

Def in i t i on  9.3 Let E be a theory, and E + and E -  be sets of clauses. E 
is complete with respect to E +, if E ~ E +. E is consistent with respect to 
E - ,  if E U E -  is satisfiable. E is correct with respect to E + and E - ,  if E is 
complete with respect to E + and consistent with respect to E- .1  <> 

E x a m p l e  9.4 Suppose we are given E + = {P(0), p(s4(0)), P(sS(0))}, and 
E -  = {p(s2(0)), p(sa(0))}. Thela a theory E that consists of 

1. +-  

2. P(0) 

is complete with respect to E +, because it implies every positive example. 
On the other hand, we have N ~ P(s2(O)). Hence E tO E -  is unsatisfiable, 
which means that E is not consistent with respect to E - .  <~ 

Note the following property of consistency: 

P r o p o s i t i o n  9.5 Let E be a theory, and E -  = {el ,e2, . . .}  be a set of 
clauses. Then E is not consistent with respect to E -  iff there are i l , . . . , i n  
such that E ~ ei~ V . . .  V ei~ 2 

P r o o f  E is not consistent with respect to E -  = {el, e~,.. .} iff 
E U {-~el, ~e2, .. .} is unsatisfiable iff (using Theorem 2.42) 
there are i i , . . . ,  in such that E U {-~eil, . . . ,  ~ei,} is unsatisfiable iff 
there are i l , . . . ,  i,, such that  E U {--,(% V . . .  V e~,.)} is unsatisfiable iff (by 
Proposition 2.37) there are i i , . . . ,  in such that E ~ ell V . . .  V ei, .  [] 

By the previous proposition it is necessary for the consistency of E with re- 
spect to E -  that  E does ~ot imply one of ~,he clauses in E - ,  As we saw above, 
in the general case of arbitrary clauses this is not sufficient for consistency: 

l I f  we are  working  wi th  n o r m a l  p r o g r a m s  as theor ies  and  backg round  knowledge,  t hese  
def in i t ions  m a y  be  changed  s o m e w h a t  to take  into accoun t  the  completion of t he  p r o g r a m .  
If gl is a n o r m a l  p r o g r a m ,  we can  say YI is complete with  respec t  to E + if camp(H) ~ E +,  

a n d  consistent with  respec t  to E "  if camp(H) U E -  is sat isf iable.  
aNote  t h a t  eq v . . .  v ei,~ need  not. 5e  a claus% for i n s t ance  if ez = Vx P(x)  a n d  

e2 = Vy Q(y). However,  if t h e  e i l , . . . ,  ei~ are s t anda rd i zed  apa r t  (in par t icu la r ,  if each  ei9 
is g round) ,  t h e n  ei 1 v , . .  v e ~  is logically equiva lent  to the  c lause  cons i s t ing  of all l i terals  
in t he  ei.i 's. For ins tance ,  Yx P(x)  v Vy Q(y) is equiva lent  to the  c lause  P(x)  v Q(y). 
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E = {P(a )V P(b)} is not consistent with respect to E -  = {P(a),  P(b)}, even 
though E ~= P(a) and E ~ P(b). However, in the quite common case where 
the possible theories are restricted to definite programs and the examples to 
ground atoms, it is sufficient: 

Proposition 9.6 Let II be a definite program, and E -  be a set of ground 
atoms. Then II is consistent with respect to E -  iff II ~ e, for every e E E - .  

Proof II is consistent with respect to E -  = {el, e2, . . .}  iff 
II U {'~el,-~e2,.. .} is satisfiable iff (by Proposition 3.30) 
II U {-~el, -~e2,...} has a Herbrand model iff 
MH does not contain any e E E -  iff (by Theorem 7.16) 
H ~ e, for every e E E - .  [] 

Several deviations from correctness are the following: 

Definition 9.7 Let E be a theory, and E + and E -  be sets of clauses. E is 
too strong with respect to E - ,  if E is not consistent with respect to E - .  E 
is too weak with respect to E +, if E is not complete with respect to E +. 

E is overly general with respect to E + and E - ,  if E is complete with 
respect to E + but not consistent with respect to E - .  E is overly specific with 
respect to E + and E - ,  if E is consistent with respect to E -  but not complete 
with respect to E +. 

Note that  E is correct iff it is neither too strong nor too weak. 

Example 9.8 Suppose we are given E + = {P(s(0)),  P(s3(O)),p(sh(O)), 
p(s7(0))},  and E -  = {P(0), P(s2(0)), p(s4(0))}. Then a theory E 

1. P(s2(x)) 4- P(x) 
2. P(s(O)) 

is correct with respect to E + and E - .  Note that  N can be viewed as charac- 
terizing the odd numbers. 

N' = {P(s2(x))} is both too strong with respect to E -  and too weak with 
respect to E +. It is too strong because it implies some negative examples, 
and it is too weak because it does not imply the positive example P(s(O)). 

E " =  {P(s(x))} is overly general with respect to E + and E - .  <3 

Now the learning problem for ILP can be formally defined: 

Inductive Logic Programming: Normal problem setting 

Given: A finite set of clauses B (background knowledge), and sets 
of clauses E + and E -  (positive and negative examples). 
Find: A theory E, such that E U B is correct with respect to E + 
and E - .  
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Apart from being called the normal setting, this setting also sometimes 
goes under the name of explanatory setting, since the theory should, in a 
sense, be an explanation of the examples. As we have emphasized above, E + 
and E -  are most often restricted to ground atoms. We may sometimes be 
learning from scratch. In this case, no background knowledge is present, and 
B (the empty set) can be dropped from the problem setting. 

Note that  a solution E does not always exist. The first reason for this 
is rather trivial: B U E + may be inconsistent with respect to the negative 
examples, for instance if P(a) is both a positive and a negative example at 
the same time. To solve this~ we have to require that B t2 E + is consistent 
with respect to E - .  

The second reason for the non-existence of a solution is more profound. 
Note that  our problem setting allows infinite sets of examples, One instance 
of this is Shapiro's setting for model inference, the topic of the next chapter. 
Here the examples are given in an enumeration, which may be infinite. Al- 
lowing an infinite number of examples implies, roughly, that there are "more" 
possible sets of examples than there are theories. Hence a correct theory does 
not always exist, even when the examples can only be ground atoms and 
background knowledge is not used, as proved in the next theorem. 

The proof of this theorem employs two different "kinds of infinity". The 
first kind concerns sets containing the same number of elements as the set 
of natural numbers. Such sets are called enumerably infinite, or denumerable. 
The second kind of infinite set is Called uncountable. An example of an un- 
countable set is the set of real numbers. It is well known that  the power set of 
an enumerably infinite set S (the set of all subsets of S) is uncountable, and 
that the latter is "larger" than the former. A more extensive introduction into 
these matters  can be found in many mathematics books, for instance [BJ89]: 

T h e o r e m  9.9 There exist sets E + and E-  of ground atoms, such that there 
is no theory which is correct with respect to E + and E - .  

P r o o f  Consider a clausal language C containing (possibly among others) a 
function symbol of arity > 1 and a constant a. Let A be the set of ground 
atoms in C. If E C C is a theory, let As  = {A E A I E ~ A}. 

The number of clauses in C is enurnerably infinite. Then because a theory 
is a finite set of clauses, the number of theories is also enumerably infinite. 
Thus the number of d~fferent A~'s induced by all possible theories, is also 
only enumerably infinite. 

The power set of .A is uncountable. Since an uncountable set is much 
larger than an enumerably infinite one, there must be a set E + _C A, such 
that  there is no finite E for which A~ = E +. Define E -  = A \ E  +. Note that  
for every theory E, we have E + ~ As  or A~ ~ E +. If E + q: N~, then E is 
not correct with respect to E +. On the other hand, if.A~ ~ E +, then there 
is a ground atom A such that  A E As  but A ~ E +, hence A E E -  and E 
is not consistent with respect to E'- .  Therefore a theory E is correct with 
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respect to E + and E -  only if .d~ = E +. Hence there is no such correct ~. [] 

If E + is finite, then E = E -e will be a correct theory, but a rather unin- 
teresting one. In this case, we would not have learned anything beyond the 
given examples: the induced theory has no predictive power. To avoid this, 
we can put  some constraints on the theory. For instance, we might demand 
that E contains less clauses than the number of given positive examples. In 
that  case, E = E + is ruled out. Since constraints like these mainly depend 
on the particular application at hand, we will not devote much attention to 
them. 

In any case, if one or more correct theories do exist, then they are "hidden" 
somewhere in the set of clauses in the language we use. Accordingly, finding 
a satisfactory theory means that we have to search among the permit ted 
clauses: learning is searching for a correct theory [Mit82]. Hence the set of 
clauses that  may be included in the theory is called the search space. 

The two basic steps in the search for a correct theory are specialization and 
generalization. If the current theory together with the background knowledge 
contradicts the negative examples, it is too strong. Accordingly, it needs to 
be weakened. That  is, we need to find a more specific theory, such that  the 
new theory and the background knowledge are consistent with respect to 
the negative examples. This is called specialization. On the other hand, if 
the current theory together with the background knowledge does not imply 
all positive examples, we need to strengthen the theory: we need to find 
a more general theory such that  all positive examples are implied. This is 
generalization. Note that a theory may be both too strong and too weak at 
the same time, witness G / in Example 9.8. In this case, both specialization and 
generalization are called for. In general, finding a correct theory amounts to 
repeatedly adjusting the theory to the examples by means of specialization 
and generalization steps. Whether a particular theory is too weak or too 
strong, can be tested using one of the proof procedures we introduced in the 
previous chapters. 

In general, most ILP systems conform roughly to the following scheme: 

I n p u t :  B, E + and E - .  
O u t p u t :  A theory E, such that E U B  is correct with respect to ti7+ and E:-. 

Start with some initial (possibly empty 3) theory E. 
Repeat 

1. If E tO/3 is too strong, specialize E. 
2. If E U/3 is too weak, generalize E. 

until E U B is correct with respect to E + and E - .  
Output  E. 

3If we start with a non-empty theory E, the learning task is sometimes called theory 
revision. 
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Thus the main operations an ILP system should perform, are special- 
ization and generalization. The following chapters can be considered as an 
investigation into the properties of a number of different approaches towards 
specialization and generalization. Each of these can be used when searching 
for a correct theory. 

Flanking the repeat-until-correct cycle of the search for a correct theory, 
often a learner starts with an initial pre-processing phase and ends with a 
post-processing phase. In the pre-processing phase, we may for instance try 
to detect and eliminate errors in the given examples (noise, see Section 19.5 
for more on this). The post-processing phase is mainly used to "clean up" the 
learned theory E, for instance by successively removing redundant clauses C 
for which E U B ca (E\{C}) U B, or by restructuring E in order to improve 
its comprehensibility or efficiency. 

We will now introduce some terminology often used in ILP: 

T o p - d o w n  a n d  b o t t o m - u p  
One useful distinction among ILP systems concerns the direction in which a 
system searches. First~ there is the top-down approach, which starts with a E 
such that  E U/~ is overly general, and specializes this. Secondly, there is the 
bottom-up approach which starts with a E such that E U B is overly specific, 
and generalizes this. Admittedly, a top-down system may sometimes locally 
adapt itself to the examples by a generalization step. Such a generalization 
step may be needed to correct a (large) earlier specialization step, which 
made the theory too weak. After the correction, the system continues its 
generM top-down search. Analogously, a bottom-up system may sometimes 
make a specialization step. Nevertheless, a system can usually be classified in 
a natural way as top-down or bottom-up, depending on the general direction 
of its search. 

Example 9.10 Consider the sets E + and E -  of Example 9.8, Assume the 
background knowledge is empty. A top-down approach may take the following 
steps to reach a correct theory. 

1. Start with E = {P(z)}. 
2. This is clearly overly general, since it implies all negative examples. 

Specialize it to E = {P(s(x)), P(0)}. 
3, E is still too general, for instance, it implies P(0) ~ E - .  Specialize it 

to Z = {P(s2(z)), P(s(0))}. 
4. Now E no longer implies P(0), but it is still overly general. When we 

specialize further to E = {(P(s2(x)) +- P(x)),P(s(O))}, we end up 
with a theory that is correct with respect to E + and E - .  <~ 

Single- and multiple-predicate learning 
We can also distinguish between single-predicate learning and multiple- 
predicate learning. In the former case, all given examples are instances of 
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only one predicate P,  and the aim of the learning task is to find a set of 
clauses which implies P ( x l , . . . ,  x,~) just for those tuples ( x l , . . . ,  x~} whose 
denotation "belongs" to the concept denoted by P.  In other words, the set of 
clauses should "recognize" the instances of P.  Though all examples have the 
same predicate P,  other predicate symbols (pre-defined in the background 
knowledge) may be used to construct a correct theory. 

In multiple-predicate learning, the examples are instances of more than 
one predicate. Note that  multiple-predicate learning cannot always be split 
into several single-predicate problems, because the different predicates in a 
multiple-predicate learning task may be related. 

B a t c h  l e a r n i n g  a n d  i n c r e m e n t a l  l e a r n i n g  
The distinction between batch learning and incremental learning concerns 
the way the examples are given. In batch learning, we are given all examples 
E + and E -  right at the outset. This has the advantage that errors in the 
given examples (noise) can be measured and dealt with by applying statistical 
techniques to the set of all examples. 

On the other hand, in incremental learning the examples are given one 
by one, and the system each time adjusts its theory to the examples given so 
far, before obtaining the next example. 

I n t e r a c t i v e  a n d  n o n - i n t e r a c t l v e  
Interactive systems can interact with their user in order to obtain some addi- 
tional information. For instance, they can ask the user whether some partic- 
ular ground atom is true or not. In this way, an interactive system generates 
some of its own examples during the search. A non-interactive system does 
not have the possibility to interact with the user. 

Bias 
Bias concerns anything which constrains the search for theories [UM82]. FoP 
lowing [NRA + 96], we will distinguish three kinds of bias: language bias, search 
bias, and validation bias. 

Language bias has to do with constraints on the clauses in the search space. 
These may for instance be a restriction to Horn clauses, to clauses without 
function symbols, to clauses with at most n literals, etc. The more restrictions 
we put on clauses, the smaller the search space, and hence the faster a system 
will finish its search. On the other hand, restrictions on the permit ted clauses 
may cause many good theories to be overlooked. For example, we may restrict 
the search space to clauses of at most 5 literals, but if all correct theories 
contain clauses of 6 or more literals, no solution will be found. Thus there is 
in general a trade-offbetween the efficiency of an ILP system, and the quality 
of the theory it comes up with. 

One important  issue concerning language bias is the capability of a system 
to introduce new predicates when needed. A restriction of the language to 
the predicates already in use in the background theory and the examples may 
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sometimes be too strict. In that case predicate invention (the automatic intro- 
duction of new useful predicates) is called for. For example, if we are learning 
about family relations, and neither the examples nor the background knowl- 
edge contain a predicate for parenthood, it would be nice if the system could 
introduce such a useful predicate itself. Some more on language restrictions 
and predicate invention may be found in Sections 19.2 and 19.3, respectively. 

Search bias has to do with the way a system searches its space of permitted 
clauses. One extreme is exhaustive search, which searches the search space 
completely. However, usually exhaustive search would take far too much time, 
so the search has to be guided by certain heuristics. These indicate which 
parts of the space are searched, and which are ignored. Again, this may cause 
the system to overlook some good theories, so here we see another trade-off 
between efficiency and the quality of the final theory. 

[f a system has found that  a correct theory is not available using its present 
language and search bias, it can try again using a more general language 
and/or  a more thorough search procedure. This is called a bias shift. 

Finally, validation bias concerns the stopping criterion of the learner: when 
should we stop the search? One obvious criterion would be to stop as soon as 
we have found a correct theory. However, it may be worthwhile to search a 
little further. For instance, if we have found a correct theory containing 100 
clauses, but we have reason to believe that there also exist correct theories 
with only 10 clauses, we may not be satisfied with the first correct theory. On 
the other hand, it may sometimes also be worthwhile to stop the search when 
the theory is not yet quite correct--for instance, when a few positive examples 
are not implied and/or  a few negative negative examples are implie& This 
has to do with noise handling, for which see Section 19.5. 

9.3 The Nonmonotonic  Problem Setting 

The normM problem setting that, we introduced above is used in some form 
or other by the majority of ILP researchers. However, in recent years a family 
of other problem settings has appeared. These settings have in common that  
the induced theory should no longer imply the positive examples, but should 
be a set of general relations that are true for the examples. Examples are 
Helft's nonmonotonic setting for induction [He189, DD94, D~e95b], Flach's 
weak conf~rmation fFla921 and confirmatory induction [Fla94, Fla95]. These 
settings are well suited for the problem of data mining or knowledge discovery: 
given a large amount of data, find "interesting" regularities among the data. 

We will describe a simple variant of the nonmonotonic setting, which we 
adapt from [D~e95b]. Here the examples are not clauses, but Herbrand inter- 
pretations. Given is a set Z + of Herbrand interpretations which are positive 
examples, and a set 37- of Herbrand interpretations whidh are negative exam- 
ples. The aim of the learning task is simply to find a set of clauses that is true 
under every positive example, and false under every negative one. Each of 
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those interpretation may be seen as a kind of "description" of a situation, and 
the induced theory expresses regularities that hold in the positive examples 
and not in the negative ones. 

Inductive Logic Programming: Nonmonotonie problem setting 

Given: Two sets Z + and Z -  of Herbrand interpretations (positive 
and negative examples). 
Find: A theory P, which is true under each I E Z + and false 
under each I E Z - .  

Quite often, only positive examples are used. As a further requirement to 
this setting, we may demand that  if C E P, is one of the induced clauses, then 
it should be "most general" in the sense that any clause more general than 
C is false under at least one of the positive examples. There is one major 
problem with this setting, namely that we cannot handle infinite Herbrand 
interpretations very well as examples. A possible solution for this is to restrict 
attention to languages with only a finite number of constants, and no function 
symbols of arity > 1. In this case, the Herbrand base will be finite, and each 
Herbrand interpretation will be a finite set of ground atoms. 

In the following chapters, we will usually assume we are working in the 
normal problem setting. However, in both the normal and the nonmonotonic 
settings the main activity of a learning system is a search for appropriate 
clauses, and specialization or generalization of clausal theories are the main 
operations in this search. This means that the techniques of the next chapters 
are applicable within the nonmonotonic setting as well. 

9.4 A b d u c t i o n  

One further setting has to be mentioned, because it has strong links with 
induction. This is the setting for abduction, which was first introduced by the 
philosopher Charles Sanders Peirce [Pei58]. The logical form of abduction is 
roughly the same as for induction [KKT93, DK96], and indeed the distinc- 
tions between induction and abduction are somewhat blurry. Both proceed 
from given examples and some background knowledge, and the aim is to find 
a theory that,  together with the background knowledge, "explains" the ex- 
amples. However, the theory that abduction produces should be a particular 
fact, which together with the background knowledge explains the examples. 
This is different from induction, which should produce a general theory. 

As an informal example, suppose you are Robinson Crusoe on his island, 
and you see a strange human footprint in the sand. Since you know that hu- 
man footprints are produced by human beings, and the footprint is not your 
own, you can conclude on the basis of your background knowledge that some- 
one else has visited your island. The hypothesis that  someone else has visited 
the island explains the presence of the footprint (the example). Inferring this 
particular explanation is a case of abduction. 
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9.5 A Brie f  His tory  of  the  Field 

Like most other scientific disciplines, the study of induction started out as 
a part of philosophy. Philosophers particularly focused on the role induction 
plays in the empirical sciences. For instance, the Greek philosopher Aristotle 
characterized science roughly as deduction from first principles, which were 
to be obtained by induction from experience [Ari60].4 

After the Middle Ages, the philosopher Francis Bacon [Bac94] again 
stressed the importance of induction (in the modern sense) from experience 
as the main scientific activity. In later centuries, induction was taken up by 
many philosophers. David Hume [Hum56, Hum61] formulated what is nowa- 
days called the problem of induction, or Hume's problem: how can induction 
from a finite number of cases result in knowledge about the infinity of cases 
to which an induced general rule applies? What  justifies inferring a general 
rule (or !'law of nature") from a finite number of cases? Surprisingly, Hume's 
answer was that  there is no such justification. In his view, it is simply a psy- 
chological fact about humans beings that when we observe some particular 
pattern recur in different cases (without observing counterexamples to the 
pattern), we tend to expect this pattern to appear in all similar cases. In 
Hume's view, this inductive expectation is a habit, analogous to the habit 
of a dog who runs to the door after hearing his master call, expecting to be 
let out. Later philosphers such as John Stuart Mill [Mi158] tried to answer 
Hume's problem by stating conditions under which an inductive inference is 
justified. Other philosophers who made important comments on induction 
were Stanley Jevons [Jev741 and Charles Sanders Peirce [Pei58]. 

In our century, induction was mainly taken up by philosophers and math- 
ematicians who were also involved in the development and application of 
formal logic. Their treatment of induction was often in terms of the prob- 
ability or the "degree of confirmation" that a particular theory or hypoth- 
esis receives from available empirical data. Some of the main contributors 
are Bertrand Russell [Rus80, Rus48], Rudolf Carnap [Car52, Car50], Carl 
Hempel [Hem45a, Hem45b, Hem66], Hans Reichenbach [Rei49], and Nelson 
Goodman [Goo83]. Particularly in Goodman's work, an increasing number 
of unexpected conceptual problems appeared for induction. 

In the 1950s and 1960s, induction was sworn off by philosophers of science 
such as Karl Popper [Pop59]. However, in roughly those same years it was 
recognized in the rapidly expanding field of artificial intelligence that  the 
knowledge an AI system needs to perform its tasks, should not all be hand- 
coded into the system beforehand. Instead, it is much more efficient to provide 
the system with a relatively small amount of knowledge, and with the ability 
to adapt itself to the situations it encounters--to learn from its experience. 
Thus the study of induction switched from philosophy to artificial intelligence. 

4Though it should be noted that Aristotle's concept of induction was rather different 
from the modern one, involving the "seeing" of the "essential forms" of examples. 
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In AI, many different approaches towards inductive learning exist, for 
instance using neural networks or genetic algorithms. Two approaches which 
pre-date ILP and which greatly influenced its development, are attribute-value 
learning and inductive inference. In attribute-value learning, an example is 
an object whose attributes have certain values. For example, an example 
'flipper' might be described by "color = grey, length = 3m, swims = yes, 
mammal = yes, species = dolphin", and the goal of the induction might be 
to find rules that describe when an object belongs to a certain class (for 
instance the class of dolphins). A prime example of attribute-value learning 
is J. R. Quinlan's work on the induction of decision trees for classifying given 
examples [Qui86, Qui93]. 

While attribute-value learning is a very experimental and application- 
oriented area, the field of inductive inference is much more abstract and 
theoretical in nature. The issue here is in which cases an unknown target set 
can be identified after reading only a finite number of examples for this set. 
Gold's fundamental paper [Go167] may be regarded as its birth; an overview 
of results can be found in [AS83]. Most work in inductive inference has dealt 
with learning formal languages and automata, though it has also been applied 
to clausal logic [ASY92]. 

In the last 10 or so years, inductive logic programming has grown to be- 
come one of the most prominent approaches in machine learning, particularly 
among European researchers. ILP may be seen as lying somewhere in between 
attribute-value learning and inductive inference. It is more theoretical in na- 
ture than attribute-value learning, and its representational formalism (clausal 
logic) has greater expressive power than the attribute-value framework. On 
the other hand, ILP is more practical and more concerned with considerations 
of efficiency and applicability than inductive inference. 5 

Claude Sammut [Sam93] starts his article on the (ancient) history of ILP 
with the work of Brunet, Goodnow, and Austin [BGA56] in cognitive psy- 
chology. They analyzed the way human beings learn concepts from positive 
and negative instances (examples) of that concept. In the early 1960s, Ranan 
Banerji [Ban64] used first-order logic as a representational tool for such con- 
cept learning. 

Around 1970, Gordon Plotkin [Plo70, Plo71a, Plo71b] was probably the 
first to formalize induction in terms of clausal logic. His idea was to gen- 
eralize given ground clauses (positive examples) by computing their least 
generalization. This generalization could be relative to background knowl- 
edge consisting of ground literals. Plotkin's work, which is related to that 
of John Reynolds [ReyT0], is still quite prominent within ILP. Clauses are 
still used by virtually everyone for expressing theory, examples and back- 
ground knowledge, and Plotkin's use of subsumption as a notion of generality 
is also widespread. During the 1970s, Plotkin's work was continued by Steven 

5 We can also discern traces of the influence of philosophy of science in ILP. For example, 
Plotkin 's  work was influenced by Hempel, and Shapiro's by Popper. See also [Fla94]. 
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Vere [Ver75, Ver77], while Brian Cohen's incremental system CONFUCIUS was 
inspired by Banerji. 

In the early 1980s, Sammut's MARVIN [Sam81, SB86] was a direct de- 
scendant of CONFUCIUS. MARVIN is an interactive concept learner, which 
employs both generalization and specialization. At around the same time, 
Ehud Shapiro [Sha81b, Sha81a] defined his setting for model inference, and 
contructed his model inference algorithm. This is a lop-down algorithm 
aimed at finding complete a.r.iomatizations of given enumerations of exam- 
ples. Shapiro's work was greatly influenced by work in the field of inductive 
inference. His framework contains many seminal ideas, in particular the use 
of the Backtracing Algorithm for finding false clauses in the theory, and the 
concept of a refinement operator, used for specializing a theory. Shapiro im- 
plemented his algorithm, though only for Horn clauses, in his model inference 
system MIs. He later incorporated this work in his PhD thesis [Sha83], as 
part of a system for debugging definite programs. 

Then in the second half of the 1980s--no doubt partly as a consequence 
of the growing popularity of logic programming and PROLOG--research con- 
cerning machine learning within a clausal framework increased rapidly. Wray 
Buntine [Bun86, Bun88] generalized subsumption, in order to overcome some 
of its limitations. Stephen Muggleton built his system DCCE [Mug87], aimed 
at generalizing given propositional clauses. It became clear that Ducg's gen- 
eralization operators could be seen as inversions of resolution steps. Thus 
in [MB88] Muggleton, together with Buntine, introduced inverse resolution. 
They implemented inverse resolution, both as an operator for making gen- 
eralization steps and as a tool for predicate invention in CmOL. In the next 
years, inverse resolution drew a lot of attention and sparked off much new 
research. 

Some early alternatives to inverse resolution were implemented in FOIL, 
LINUS, and GOLEM. FOIL is based on a downward refinement operator guided 
by information-based search heuristics, in which Quinlan upgraded his ear- 
lier work on decision trees to Horn clauses. LINUS was developed by Nada 
Lavrae and Sago D~eroski. It solves ILP problems by transforming them to 
an attribute-value representation, and then applying one of several possible 
attribute-value learners to learn a general theory from this simpler repre- 
sentation. Muggleton and Feng's GOLEM WaS in a way a return to Plotkin: 
it is based on Plotkin's relative least, generalization, though with additional 
restrictions for the sake of efficiency. These systems, as well as others, are 
described in some more detail in Section 19.6, at the end of this book. 

In 1990, Stephen Muggleton introduced the name inductive logic pro- 
gramming, and defined this field as the intersection of machine lea.rning and 
logic programming [Mug90, Mug91a]. In the next year he organized, together 
with Pavel Brazdil, the first International Workshop on Inductive Logic Pro- 
gramming, bringing together a number of researchers involved in learning 
from examples in a clausal framework. Since 1991 these international work- 
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shops have been repeated every year, establishing ILP as a flourishing field 
of inquiry. Literally dozens of systems have been implemented since, and 
have been applied quite successfully in various fields. Among the more the- 
oretical topics, formal learnability theory, predicate invention, data  mining 
in the nonmonotonic setting, handling real numbers, and handling of noisy 
examples have gained an increasing amount of attention in recent years. 

9.6 Summary 

Induction (learning from examples) used to be mainly a subject for philoso- 
phy, but is nowadays also studied within machine learning, a branch of arti- 
ficial intelligence. Inductive logic programming is the intersection of machine 
learning and logic programming. Accordingly, ILP is concerned with learning 
from examples within a framework of formal--usually clausal--logic. 

In the normal problem setting, we have a finite set of clauses 13 (back- 
ground knowledge), and sets E + and E -  of positive and negative examples. 
A finite set of clauses is called a theory. A theory E is complete if E implies 
all positive examples, and consistent if E does not contradict the negative ex- 
amples. E is correct if it is both complete and consistent; too strong if it is not 
consistent; too weak if it is not complete; overly general if it is complete but 
not consistent; and overly specific if it is consistent but not complete. In the 
normal problem setting, our aim is to find a theory E, such that E U B  is cor- 
rect with respect to E + and E - .  To find such a E, we have to search through 
the set of clauses. The two main operations in the search are specialization 
(weakening the theory) and generalization (strengthening the theory). 

In the alternative, nonmonotonic problem setting, each example is a Her- 
brand interpretation. We are given a set Z + of positive examples and a set 
Z -  of negative examples. Our aim now is to find a theory which is true under 
every positive example and false under every negative one. Search by means 
of specialization and generalization is the main activity in this setting as well. 



Chapter 10 

T h e  F r a m e w o r k  for M o d e l  
Inference  

10.1 Introduct ion  

One of the most prominent problems in ILP is the model inference problem, 
introduced by Ehud Shapiro in his seminal paper [ShaSlb]. Some parts of 
his framework, particularly admissibility and the Backtracing Algorithm, will 
be discussed extensively in this chapter. Other parts will be described in 
less detail, either because they are mainly of historical interest, or because 
they serve as a motivation for more formal analysis in later chapters (see 
particularly the discussion of refinement operators in Chapter 17). 

The model inference problem is concerned with characterizing certain con- 
cepts in some domain. Given a domain, a concept is a particular relation that 
holds between some elements in the domain. Such a relation can be expressed 
in two ways: either by giving all instances of the relation explicitly, or by giv- 
ing the rules which characterize those instances. The former is usually called 
the extension of a relation, the latter the intension. 

Expressing a relation in these two ways is similar to expressing a set in 
two ways. For example, consider the domain D = {0, 1, 2, 3,4}. The relation 
R = {(0, 1), (1, 2), (2, 3), (3,4)} can also be expressed as R = {(x, y) E D x 
D ] y = x + 1}. In the first representation, the set of all 4 instances of the 
relation R is given explicitly, while in the second representation we only give 
the rule y = x + 1 which characterizes R. Particularly in a large domain, 
where we have relations with many instances, the second representation is 
much more compact and useful than the first. 

The model inference problem is the problem of discovering the charac- 
terizing rules for certain concepts from given instances of those concepts, in 
the context of logic. Suppose we have a first-order language with a binary 
predicate symbol P,  successor function s, and constant 0. Translating the 
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previous relation R to this language, the instances of the concept are rep- 
resented by the ground atoms P(0, s(0)), P(s(0),  s2(0)), P(s2(O), sa(0)), and 
p(s3(0),  s4(0)). Making the link with the normal problem setting of the previ- 
ous chapter, these instances are positive examples for the concept. As negative 
examples, we have for instance P(s2(O), sl(0)), P(s3(O), sS(0)), which are not 
in the concept. Given these examples, we could use {P(x, s(x))} as a set of 
rules which characterizes the concept R in the domain {0, 1, 2, 3, 4}, thereby 
solving this particular model inference problem. 

10.2 Formalizing the Problem 

In this section we will formalize the model inference problem. It will turn out 
to be a special case of the normal problem setting for ILP that we defined in 
the last chapter. The characterizing rules will be formalized as a "complete 
axiomatization". To find such an axiomatization, we will need an enumeration 
or an oracle to obtain the t ruth values of the examples. 

1 0 . 2 . 1  E n u m e r a t i o n s  a n d  t h e  O r a c l e  

Let us consider a clausal language C with finitely many constants, function 
and predicate symbols~ We distinguish two subsets of C, namely Co and Ch, 
such that  go C Ch C_ C. Co, the observational language, is the language in 
which the positive and negative examples are formulated. Usually, this will 
be the set of ground atoms or the set of ground literals. Ch, the hypothe- 
sis language, is the language we use to formulate our theory. For technical 
reasons, we assume the empty clause [] is a member of Ch. 

As we explained informally above, we want to learn the rules in Ch that  
characterize concepts, each of which is represented by a set of ground atoms. 
More precisely, suppose we have some domain D, and several concepts over 
this domain. Also suppose g contains a predicate symbol for each of the 
concepts over the domain, if  we can pair up each element in the domain 
with a ground term in the language, then we can represent each concept by 
giving all its instances as ground atoms in the language. Doing this for each 
of the concepts, we obtain a (possibly infinite) Herbrand interpretation I of 
the language, in which each concept is represented by its instances as ground 
atoms. Our task is to learn the characterizing rules from this interpretation. 

All information about I that  is available for our learning task is given by 
examples from go. Since it would be rather hard to swallow the complete set 
of examples from Co at once, it is assumed that the examples are given one 
by one, as a sequence of facts. This is called an enumeration of Co. 

D e f i n i t i o n  10.1 Let C be a clausal language, Co C g, and I a Herbrand 
interpretation. If c~ C s and V is the truth value of c~ under I, then the pair 
(a, V) is called a fact of I. If V = T, then c~ is called a positive example of 
I. If V = F,  a is a negative example of I. 0 
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D e f i n i t i o n  10.2 Let C be a clausal language, Co C_ C, and I a Herbrand 
interpretation. An enumeration of Co under I is a sequence F1, F2 , . . .  of 
facts of I ,  such tha t  each ~ C Co occurs in at least one fact Fi = (o~, V). 

Note that  in Shapiro's sense of the word, every fact in the enumeration 
constitutes an 'example ' ,  not just  the ones that  a learner has already seen. 
Thus an enumerat ion contains all there is to know about Co. A device like 
this should be given as input to an algorithm for solving model inference 
problems, for without sufficient knowledge of Co the algorithm would not 
always be able to find adequate theories. 

Another device that  is useful in model inference is an oracle, which an- 
swers questions about  the concepts in the domain. For any formula a E Co, it 
can return a ' s  t ru th  value under I.  Thus the oracle has to have "knowledge" 
about  the par t  of the interpretation I that  pertains to Co. Two justifications 
for assuming an oracle can be given: 

. Compare  model inference with the work of a scientist. The scientist 
may  not know the general rules that  characterize the concepts over his 
domain of inquiry, but he can obtain knowledge about  certain specific, 
observable instances of those concepts by doing experiments. Posing a 
question to an oracle in model inference is similar to doing an experi- 
ment  in science, which is like "posing a question to nature".  

. When learning, a student may have a teacher who can answer questions 
on particular instances of the concepts. It  need not be the case here 
chat the student only learns what the teacher already knows. We only 
assume the teacher has sufficient knowledge of the instances of the 
concepts. The teacher may know all about the particular instances of 
the concepts, and yet be pleasantly surprised by the characterizing rules 
that  a smar t  student comes up with. Translating this analogy to model 
inference, the oracle acts as the teacher, while the learning algorithm 
is the student. 

If  we assume the set Co can be summed up, then an enumeration can be 
constructed from an oracle, and vice versa. Suppose we have an oracle. Then 
we can obtain an enumeration of Co under I by just  enumerating the formulas 
in Co one by one, adding on their t ru th  values which can be obtained by posing 
questions to the oracle. 

Conversely, if we have an enumeration of facts, we can construct an oracle, 
as follows. Suppose the question "is c~ true under I"  is put to the oracle, where 

C Co. We can just  sum up all the facts in the enumeration until we come to 
(a, V). V is then the answer to the question posed to the oracle. So we need 
not give both  an enumeration and an oracle as input to a model inference 
algorithm: the one can be constructed from the other. 
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10.2.2 Comple te  Axiomat izat ions  and Admiss ibi l i ty  

Given an enumeration and/or  an oracle for I, we want to find a theory con- 
taining a finite number of rules that characterize the concepts represented in 
I. We will now define what constitutes a "good" theory: a finite subset of Ch 
is a good theory if it is both true under I, and implies exactly those formulas 
from the observational language Co that are true under I. Such a theory is 
called a Co-complete axiomatization of I; the model inference problem is the 
problem of finding such an axiomatization. 

D e f i n i t i o n  10.3 Let C be a clausal language, Co C_ C, and [ a Herbrand 
interpretation. Then we use Co I to denote the true members of Co: Co x = {a C 
Co t a is true under [}. s 

D e f i n i t i o n  10.4 Let C be a clausal language, Co C_ Ch C_ C, and I a Herbrand 
interpretation. A theory E C Ch is called a Co-complete axiomatization of [ 
if E is true under I, and E ~ Co I. <) 

A theory ~ which implies all positive and no negative examples may still 
be false under t .  For instance, suppose Ch = { P ( x ) , P ( a ) , P ( b ) , P ( c ) , O } ,  
Co = {P(a),  P(b)}, and [ = {P(a),  P(b)}. Then the only information the 
examples can give us, is that P(a) and P(b) are true under I. We do not 
consider P(c) as an example, since P(c) ~_ Co. In the light of these two 
examples from Co, E = {P(x)} would be a correct theory. Nevertheless, P (x)  
is false under I because P(c) is false under [. The problem here is that  Co 
is not "rich" enough, compared to Ch. Knowing all there is to know about 
Co is not enough in this case to know whether clauses in E are true under I. 
Clearly this situation is undesirable. To solve it, we lay down an admissibility 
requirement for the relation between Co and Ch: 

D e f i n i t i o n  10.5 Let Co and Ch be sets of clauses, such that Co C_ Ch. We 
say the pair (Co, Ch) is admissible, if for every Herbrand interpretation I and 
every satisfiable theory E C_ Ch, {~ E Co I E ~ a} = Co x implies that E is 
true under I. <5 

The pair (Co,Ch) is admissible if a satisfiable theory which implies all 
positive and no negative examples, is also true. In other words, if a clause 
in the theory is false under I, then this can be detected from the examples; 
any false but satisfiable theory should be refutable by facts. Note that  if 
Co = Ch, then the pair (Co, Ch) is surely admissible. As we have seen, letting 
Co = {P(a ) ,P(b)}  and Ch = { P ( z ) , P ( a ) , P ( b ) , P ( c ) , [ ] } ,  the pair (Co,Oh) 
is not admissible. The following theorems provide two important  admissible 
pairs. 

T h e o r e m  10.6 Let C be a clausal language, Co the set of ground atoms in 
C, and Ch the set of Horn clauses in C. Then the pair (Co, Ch) is admissible. 
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P r o o f  Let I be a Herbrand interpretation, and E C_ CA a satisfiable theory 
such that  {a E Co I E ~ a} = CO~. We have to prove that E is true under 
I. Suppose E is not true under I. Then there exists a Horn clause C E E 
which is false under I. Since [ is a Herbrand interpretation, there is a ground 
instance C ~ of C which is false under I. C ~ is either a definite program clause, 
or a definite goal. 

Suppose C t = A +-- B1 , . . . ,B~  (n > 0). Then A is false under I, and 
each Bi is true under I. So A ~ Co/, while Bi E Co / for every i. Then because 
{a E Co ]E ~ a} = Co/, we have E ~ B/ for every i. However, since also 
E ~ C' and C ' U  { B 1 , . . . , B ~ }  ~ A, we must have that E ~ A. Then 
A E Co z, which contradicts the assumption that A ~ Co/. Therefore E must be 
true under I. 

Suppose C I =+-  B1,.  �9 B~. C / is false under I, so every B / i s  true under 
I, hence Bi E Co/, for every 1 < i < n. Then also E ~ B~, for every i. 
B1 A . . .  A Bn and -~C ~ are logically equivalent, hence E ~ -~C ~. But on the 
other hand C E E, so also E ~ CC This contradicts the satisfiability of E. 
Thus E must be true under I. [] 

It is important  to note that  the definition of 'admissible' only states a 
requirement for satisfiable theories E. Suppose we let CA be the set of Horn 
clauses, and Co the set of ground atoms. Recall that we assume [] E Ch. Now 
let E = {[]}, and I be a Herbrand interpretation which makes all ground 
atoms in the language--hence every formula in Co--true. Then {a E Co ] E 
a} = Co = CO/, but nevertheless E is not true under I, because [] E E. So 
the requirement of admissibility says nothing about unsatisfiable sets such as 
{[]} or {P(z) ,  +-- P(x)}.  

The previous theorem tells us that (ground atoms, Horn clauses) is ad- 
missible. However, if we extend the hypothesis language to the set of general 
clauses, the pair (ground atoms, general clauses) is not admissible. A proposi- 
tional example suffices to show this. Suppose the language contains the atoms 
P, Q, and R, and Co = {P,Q,R} .  Let I = {R} and E = {R, (P V  Q)}. Then 
{a E Co ] E ~ a} = {R} -- go/. E ~: P and E ~: Q. Nevertheless, E is false 
under I, because P V Q is false under I. So in this case Co is not sufficiently 
expressive to detect the falsity of E. 

This means that  if we want to use the set of general clauses as hypothesis 
language, we must make the observational language more expressive than 
the set of ground atoms. The following theorem tells us that using the set of 
ground literals as observational language will do. 

T h e o r e m  10.7 Let C be a clausal language, Co the set of ground literals in 
C, and Ch the set of clauses in C. Then the pair (Co,C~) is admissible. 

P r o o f  Let I be a Herbrand interpretation, and E C CA a satisfiable theory 
such that  {c~ E Co I E ~ ~} = C~. We have to prove that E is true under [. 
Suppose E is not true under I. Then there exists a clause C E E which is 



184 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE 

false under [. Since I is a Herbrand interpretation, there is a ground instance 
C'  of C which is false under I. 

Suppose C'  = A1 , . . . ,  Ak +-- B 1 , . . . ,  Bn. Then each Ai is false under I, 
each Bj is true. This means that for every i, -~Ai E go z, and for every j, 
Bj E do. Thus E ~ -~Ai, for each i, and E ~ Bj, for each j.  This means that 
E ~ -~C'. But since also E ~ C ~, that would contradict the consistency of 
E. Hence E must be true under I. [] 

When we use the admissible pair gh = clauses and Co = ground literals, 
then we should make sure that our theory E not only implies all atoms which 
are true under I, but also all true negative literals. Thus in the example before 
the theorem, E = {R, +- P, +- Q} would be a go-complete axiomatization of 
I = {R} (though a rather trivial one). 

Let us briefly consider the definition of a correct theory that  we gave in 
Chapter 9. E is correct with respect to a set of positive examples E + and a set 
of negative examples E - ,  if E ~ E + (completeness) and E O E -  is satisfiable 
(consistency). In the setting of the present chapter, we have E + = go "r and 
E -  = Co\Co/. Note that if E is a Co-complete axiomatization of I, then it 
is correct with respect to E + and E - :  we have that ~ ~ E +, and E U E -  
is satisfiable, because it has I as a model. Recall from the previous chapter 
that it is not sufficient for consistency to have that E ~ e for all e E E - .  
For instance, suppose gh is a clausal language, go is the set of ground atoms 
in gh, and E -  = go\do = {P(a),  P(b)}. 'Then a theory E = {P(a)  V P(b)} 
does not imply any member of E - ,  yet still E is not consistent with respect 
to E - ,  hence false under I, and not. a Co-complete axiomatization of t .  This 
corresponds to the fact that  the pair (ground atoms, general clauses) is not 
admissible. 

1 0 . 2 . 3  F o r m a l  S t a t e m e n t  o f  t h e  P r o b l e m  

Using the concepts we have introduced so far, the model inference problem 
can now be stated more precisely: 

G iven :  A clausal language C, an observational language Co, and 
a hypothesis language gh, such that Co C gh me g and the pair 
(Co, Ch) is admissible. In addition there is an enumeration and/or  
an oracle for the clauses in Co under some Herbrand interpretation 
I of C. 
Find ;  A Co-complete axiomatization of I. 

Clearly, this problem is a special case of the normal problem setting of the 
last chapter. In that  setting, the examples were given as sets E + and E - .  
In the present setting for model inference, those examples are given as an 
enumeration and/or  an oracle. Note that the background knowledge B of the 
general setting is not mentioned in the present setting. Shapiro himself did 
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not use background knowledge, but it can be included quite easily in the 
model inference problem, and also in the Model Inference Algorithm which 
we will see later on in this chapter. 

E x a m p l e  10.8 This example of a model inference problem in the field of 
elementary arithmetic was given by Shapiro. It has the set of natural numbers 
as domain, and deals with the concepts of addition and multiplication. The 
domain is the set of natural numbers, formalized as the ground terms 0, s(0), 
s2(0), s3(0), etc. The language C contains the 3-ary predicates Plus and 
Times, and I is the obvious intended interpretation of these two predicates. 
Co is the set of ground atoms, and Ch is the set of definite program clauses 
in C. The enumeration of I might start as follows: 

(Plus(s(0), 0, s(0)), T) 
(Plus(s ~(o), s ~(o), s 5(o)),T) 
(Times(O, O, s(O)), F)  
(Tirnes(s 2 (0), s2 (0), s4(0)), T) 
(Plus(O, s(O), s2 (0)), F) 

Our aim in solving this model inference problem is to find, after reading a 
limited number of examples, a theory which implies Plus(t1, t2, t3) iff tl  +t2 = 
t3, and implies Times(tl,t2,t3) iff iff tl  * t2 = t3. Such a theory might for 
instance be a set E consisting of the following Horn clauses: 

1. Plus(x, O, x) 
2. Plus(x, s(y), s(z)) +- Plus(x, y, z) 
3. Times(x, O, O) 
4. Times(x, s(y), z) Times(x, w), Plus(w, x, z) 

The reader may wish to verify that indeed E ~ Plus(t1, t2,t3) just in case 
tl + t2 = t3, and E ~ Times(t1, ~2, t3) just in case tl * t2 = t3. Hence this is 
a Co-complete axiomatization of I. Or in other words, these clauses are the 
rules that characterize the concepts Plus and Times. <1 

Our hope is that  we can construct methods or algorithms which are able 
to find a Co-complete axiomatization after reading only a limited number of 
examples. Shapiro takes the following general incremental top-down approach 
towards solving model inference problems: 

1. Start with a very general theory. It should imply anything. 
2. Read .a new example from the enumeration. 
3. Repeat the following: 

If the theory is too strong (w.r.t. the examples read so far), weaken it. 
If the theory is too weak, strengthen it. 
until the theory is correct with respect to the examples read so far. 

4. Goto step 2. 

Several questions are raised by this approach: 



186 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE 

| If the theory is too strong, which clauses should be weakened, and how? 
| If the theory is too weak, how can it be made stronger? 
| How do we know when we are finished? Or in other words: when should 

we stop repeating steps 2-4? 

These questions will be addressed in the next sections. 

10.3 Finding a False Clause by Backtracing 

In this section, we will discuss the question of how to weaken a theory which 
is too strong. If the hypothesis language and the observational language are 
admissible, then a theory E is too strong just in case it implies a negative 
example, i.e., a member of Co that is false under I. Now if all the clauses in 
the theory were true under I, E would not imply a false formula. Hence if the 
theory is too strong, at least one of the clauses in E is false under I. Clearly, 
if we have a false clause in E, then deleting this clause from E is an obvious 
way to weaken the theory as a whole. 

So it would be very convenient if we had an algorithm which could 
find a false clause in a too strong theory. Shapiro gives such an algorithm 
in [Sha81b], called the Backtracing Algorithm. The algorithm uses an oracle 
extensively. It is assumed here that Co contains the set of ground atoms, so 
the oracle "knows" the truth value under I of each ground atom. In Shapiro's 
original formulation, the algorithm is only applied to refutations. We gener- 
alize it here to arbitrary deductions. The algorithm works by inspecting a 
deduction of a negative example. If Ch is the set of general clauses, then this 
deduction could be an unconstrained or a linear deduction. If Ch contains 
only Horn clauses, we only need to investigate SLD-deductions. Note that  if 
the languages Co and Ch become less expressive, then we can also settle for a 
less powerful proof procedure. For instance, if Co is the set of ground atoms 
and Ch is the set of atoms, then subsumption by itself is already a complete 
proof procedure. In this case, an atom in E should be deleted iff it subsumes 
a negative example. 

Suppose E ~ C, where C is a clause which is false under I. Then there 
exists a derivation from E of a clause D which subsumes C. Since C is false 
and D subsumes C, D itself is also false under I. The Backtracing Algorithm 
takes as input a tree representing a derivation of such a clause D which is 
false under I. For convenience, we assume that the tree is such that if C1 is 
the left parent and C2 the right parent of some clause in the tree, then the 
literal resolved upon in C1 is negative, and the literal resolved upon in C2 is 
positive. Clearly, we can do this without loss of generality. 

We will now explain how the algorithm searches through the tree. Let us 
first suppose all clauses in the derivation are ground, and N0 = D1 V D2 is 
the root of the tree, with parent clauses C1 = -,A V D1 and C2 = A V D2. 
Since the root N0 is false under [~ at least one of its parent clauses is false 
under I. Because No is false, both D1 and D2 are false. If A is true, then the 
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left parent C1 is false, since it is the disjunction of -,A and D1, which are 
both  false. On the other hand, if A is false, then the right parent C2 is false. 
Since the t ru th  value of A can be obtained from the oracle, we can find a 
false parent clause of No. Let us call this parent N1. By the same method,  we 
can find a false parent N2 of N1, etc. This way we can work our way upward 
in the tree, tracing back the false clauses that  led to the derivation of the 
false root No. Eventually, we reach a false leaf of the derivation tree: this is 
a clause in E which is false under I .  

E x a m p l e  10.9 We give an example from propositional logic to show the idea 
behind the algorithm. Let E = {(R +- P, Q), (P +-- Q), Q}, and I = {P, Q}. 
Figure 10.1 shows a derivation of the clause R from E. However, since R is 
false under I,  at least one of the leaves of the tree must be false under I .  We 
will now systematical ly trace back the false clauses, start ing from the root 
(the upward arrows show the path  along which we proceed): 

1. No = R. No has R +-- P and P as parent clauses. One of them must  
be false under I.  We already know R is false. -~P and P are the literals 
resolved upon, so we ask the oracle about  the t ruth value of P.  The 
oracle answers that  P is true. Hence the algorithm selects the false left 
parent as N1. 

2. N1 = R +-- P .  We ask the oracle about the t ruth value of Q. It is true, 
so the left parent is chosen as N2. 

3. N2 = R 4-- P, Q. This is a leaf of the tree, hence we have found that  
N~ is a member  of E which is false under I.  <~ 

N2 =R+--P ,Q  Q Pe--Q 

N I = R + - P  P 

N o = R  

Q 

Figure  10.1: Backtracing the derivation of the false clause R 

In case of first-order logic, the situation is more complex. Since the oracle 
only answers questions about  ground atoms, we have to apply some ground 
substi tution to the a tom that  is resolved upon before we can give it to the 
oracle. Suppose we have a non-ground No, with parents C1 = -,A1 V D1 and 
C2 = A2 V D2. For convenience, let us momentari ly  ignore the use of factors. 
Since No is false under I,  there is a false ground instance D[ V D~ of No, 
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and ground instances --A V D~ of C1 and A V D~ of C2, where --A and A are 
instances of the respective literals in C1 and C2 that were resolved upon in 
deriving No. See Figure 10.2. 

C1 = -~At v D1 C2 = A2 v D2 

No 

".A ~ V D 2 

D;  V D~ 

Figure  10.2: Backtracing of non-gTound clauses, using ground instances 

Now we can apply the same method as before: if the oracle tells us that 
A is true, then -,A V D~ is false. This is an instance of 6'1, so we can take 
N1 = C1 as a false parent of No. Otherwise, A V D~ is a false ground instance 
of C~, so then C2 is selected as N1. In the same way, we can find a false 
parent N2 of N1, etc. 

Before giving an example for the first-order logic, we first formally present 
the Backtracing Algorithm. The algorithm takes a tree T as input, represent- 
ing a derivation from E of a clause that is false under I, and returns a false 
leaf of T (i.e., a false clause from E). This algorithm works for unconstrained 
resolution, for input resolution, and for SLD-resolution. In the latter case, we 
can ignore the factors, so then o-1 = or2 = e. 

A l g o r i t h m  10.1 ( B a c k t r a c i n g  A l g o r i t h m )  
I n p u t :  A derivation T of a clause which is false under I. 
O u t p u t :  A leaf N~ of T and a ground substitution Ok for Nk (i.e., Nk0k is 
ground), such that NkOk is false under I. 

1. Set k = 0, No is the root of T,  and 00 is a ground substitution for No 
such that NoOo is false under I (if No = D, then set 00 = r 

2. While Nk is not a leaf of T 
1. Let C1 be the left a.nd C2 the right parent clause of Ark- Let --,A1 V 

D1 and A2 V D2 be the factors of C1 and C2 that are used here, 
and c%, or2 be the substitutions used in obtaining these factors, 
respectively. Let -,A1 and A2 be the literals resolved upon, with 
mgu 0. See the figure below for illustration. 

2. Let 0' be a substitution such that Pk+l = A200k0' is ground. 
3. If Oracle(P~+l) = T then set Nk+l = C1 and 0k+l = ~rl00k0' 

else set N~+I = C2 and 0k+l = c~200~0'. 
4. Set k t o k + l .  
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c1 c2 

factor [ [ factor 
(71 IO'2 

"~Ai V D i  A2 V D2 

Nk = (D1 V D2)O 
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If T represents a linear derivation, a small modification of the algorithm 
is called for. Namely, if we come to a false side clause which equals a previ- 
ous center clause, Nk+l should become this false center clause where it first 
appears as resolvent, not the side clause. The side clause is a leaf of T, but 
we are only interested in finding false leaves that are members of T ,  hence 
we cannot terminate the algorithm when we reach such a side clause that 
equals a previous center clause. Since the side clause may be a variant of the 
corresponding center clause, it is sometimes necessary to rename some of the 
variables in Ok+i, such that  they apply to the variables in the center clause 

gk+l. 

E x a m p l e  10.10 We will illustrate the algorithm on the refutation tree T 
shown in Figure 10.3, which is also given in [Sha81b]. Here the domain is the 
set of natural  numbers, denoted by 0, s(0), s2(0) , . . ,  as usual. The language 
contains only one binary predicate < (written in infix notation), and the 
interpretation I makes t l  _< t2 true iff the number denoted by tl  is smaller 
than or equal to the number denoted by t2. Let Y. consist of the following: 

1. +-- s(z) < 0 ("no successor is less than or equal to 0") 
2. s(x) < y e - - x _ < y ( " i f x _ C y ,  t h e n x + l _ < y " )  
3. 0 < w ("every natural number is greater than or equal to 0") 

T shows an SLD-refutation of E. Let us see how the algorithm would work 
through this tree: 

e-- s ( z )  < 0 N2 = s (x )  < y +-- x < y 

N1 =+-- x < 0 0 < w 

No = Q 

Figure  10.3: Backtracing the refutation of E 
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1. k = O ,  N o = n ,  Oo=e.  
2. We are dealing with SLD-resolution here, so we can ignore (rl and (r~ (no 

factors are used here). No has two parent clauses. The titerals resolved 
upon are -,(x _< 0) in the left parent, and 0 < w in the right parent. 
The mgu is 0 = {m/0, w/O}. Since (0 _< w)O0o is already ground, o '  = e 
in this step, and Pi = 0 _< 0. Oracle(Pi) = T, so the algorithm selects 
the left parent: N1 --+-- x _< 0. Set 01 = 00o0' = {x/0, w/O}, and k = 1. 

3. Ni has two parents. The literal resolved upon in the left parent is 
-~(s(z) <_ 0), on the right it. is s(x) <_ y, and the mgu is 0 = {z /x ,  y/O}. 
(s(x) <_ y)OOm = s(0) _< 0 is already ground, so 0' = ~ again, and 
P2 = s(O) < O. Oracle(P2) = F, so the algorithm selects the right 
parent: N~ = s(x) <_ y +-- x < y. Set 02 = 0010t = {x/O,y/O,z/O,w/O}, 
and k = 2. 

4. N2 is a leaf of T,  so the algorithm terminates. 
<3 

We now prove that the algorithm indeed works: if T represents a deriva- 
tion of a false clause, then the algorithm finds a false leaf Nk of T,  that is, a 
false clause from E. 

T h e o r e m  10.11 ( C o r r e c t n e s s  o f  t h e  B a c k t r a e i n g  A l g o r i t h m )  
Let ~ be a set of clauses, I a Herbrand interpretation, and 7- a tree repre- 
senting a derivation from ~ of a clause which is false under I. Then Algo- 
rithm I0.1 with "-fl as input returns a leaf Nk of T~ and a ground substitution 
Ok for Nk, such that NkOk is false under I. 

P r o o f  In order to avoid notational overload, we ignore the substitutions (ri 
and or2 in this proof. However, the idea should be clear, and the factors can 
easily be incorporated in the proof. Let k" be the number of ground atoms 
tested by the oracle. We prove the theorem by induction on k. 

1. Suppose k = 0. Then T contains only the false root No, hence No E E. 
The while-loop of the algorithm is never entered. The first step of the 
algorithm sets 00 to a ground substitution such that NoOo is false under 
I. 

2. Suppose the theorem holds for k < n. Let P i , - - . ,  P~+I be the ground 
atoms tested by the oracle during the process. By the induction hy- 
pothesis, we can assume the algorithm has "traced back" from No to 
N,~, and N,~ 0" is ground and false under [, where N,~ is a node in T 
having the leaves Ci and C2 as parents. See the figure for illustration. 

N ~ + i  = C i  --- " ,A i  V D1 C2 --- A z  v D2 

N~ = (DI  V D2)O 
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Let ~' be such that  Pn+l = A2~0n0 ' is ground. We only prove the 
situation where Oracte(P~+l) = T. If P~+I is false, the proof is similar. 
If Pn+I is true, then N,,+I = C1 and ~ + l  = t~t~,~t~'. We need to prove 
that  ~9,,+1 is a ground substitution for Nn+l, and Nr~+l~n+l is false 
under I. 
Firstly, since N , ~  is ground and false under I, and N#9,~ = (D1 V 
D=)ee,  = (D1 v D,)ee , ,e '  = (D,  v D18,~+L is ground and 
false under I. Secondly, A10,~+l = A100,~0' = AuO~nO' = P,~+I is 
ground and true under I, so ~Alt)~+l is ground and false under I. 
Then N~+10~+1 = --'Al{~rz+l V Dl~n+l is ground and false under I. [] 

10.4 Introduct ion to Ref inement  Operators 

The previous section has shown a way to weaken a theory which is too strong: 
find a false member of the theory E by the Backtracing Algorithm, and delete 
this clause from the theory. However, deleting a clause might make the theory 
in turn too weak. A way to strengthen the theory again, is to add weaker 
versions of previously deleted clauses. For instance, suppose the clause P(x) 
is false under I, and has been deleted from E. It might be that P(f(x)), 
which is a "refinement" of P(x) ,  is true under I. Thus the theory might be 
strengthened by adding P(f(x)) to it. 

A systematic way to find refinements of clauses, is by using a refinement 
operator. Because a full discussion of refinement operators presupposes the re- 
sults of Chapters 13 through 16, we postpone the full t reatment of refinement 
operators to Chapter 17. In this section we will only give a brief introduction. 

There are two kinds of refinement operators: upward and downward ones. 
An upward refinement operator computes a set of generalizations of a given 
clause, a downward refinement operator computes a set of specializations. 
What  constitutes a 'specialization' or 'generalization' of a clause, is deter- 
mined by a generality order on clauses. Such an order on clauses can for 
example be denoted by >-. Then we can say that C is a generalization of D 
(dually: C is a specialization of D), if C _ D holds. Many different generality 
orders are possible, some of the most important  are subsumption and logical 
implication. In each of these orders, the empty clause [] is the most general 
clause. 

We assume Ch is ordered by such a generality order >-. Shapiro's top-down 
approach only employs a downward refinement operator p, so p(C) is a set 
of specializations of a given clause C. We start with E = {[]}. This is clearly 
too strong, since it implies any clause. Hence we want to find specializations 
of [::]. We use the set p([]) for this. If p([]) is still too strong, its false members 
can in turn be replaced by their refinements, and so on. 

This allows us to search stepwisely through the generality order. This 
stepwise approach will only work if there is a path (a number of refinement 
steps) from [] to every clause in at least one correct theory. For instance, 
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suppose E = {D2, D3, D4} is a correct theory. Let the refinement operator 
p be such, that  p(c~) = {C1,C=}, p(Ct) = {Ca, C4}, p(C2) = {Da, D4}, 
p(Ca) = {D1}, and p(C4) = {D2, Da}. Starting from rn, we can reach E by 
considering p(D), p(C1), p(C2), p(C4). See Figure 10.4. 

D1 

C3 

Y 

[] 

C1 C2 

/ Q ,  
D2 Da 

D4 

Figure 10.4- Paths through t he  refi_nement operator p 

10.5 The Model  Inference Algorithm 

Recall that  at the end of Subsection 10.2.3, we mentioned three questions 
with respect to model inference. The first two questions have been dealt with 
in the previous sections. A short summary: 

�9 If the theory is too strong, it contains at least one clause which is false 
under the Herbrand interpretation I. This clause can be found by the 
Backtracing Algorithm, and the theory can be weakened by deleting 
the false clause 

| If the theory is too weak, it can be made stronger by adding refinements 
of a previously deleted clause to the theory, The refinements of the 
deleted clause are obtained by applying a refinement operator to it. 

Using the tools developed in the previous sections, an outline for an algorithm 
for solving model inference problems can now be given. Shapiro implemented 
this algorithm for Horn clauses, in his Model Inference System MIs. 



10.5. THE MODEL INFERENCE ALGORITHM 193 

A l g o r i t h m  10.2 ( O u t l i n e  o f  a M o d e l  I n f e r e n c e  A l g o r i t h m )  

Set ~ to {c?}. 
Repeat forever 1 : 

Read the next fact from she enumeration 
Repeat 

While ~ is too strong with respect to the facts read so far, apply 
the Backtracing Algorithm to find a false clause, and delete 
this clause from ~. 

While N is too weak with respect to the facts read so far, add to 
refinements of previously deleted clauses. 

until ~ is correct with respect to the facts read so far. 

This algorithm is top-down and incremental. It is also interactive, because 
of the use of an oracle in the Backtraeing Algorithm. Since the language may 
contain more than one predicate, the algorithm is fit for multiple-predicate 
learning. 

There is an important  technical problem here. Namely, testing whether 
the current theory E is too strong or too weak means determining whether 
E ~ a holds for certain a. This is usually undecidable (see Theorem 7.41), 
because we do not know in advance how many resolution steps we need to 
deduce a. Hence a procedure that should test if E ~ a is the case need 
not terminate, and hence is not an algorithm. Shapiro used an idea called 
h-easiness to deal with this problem, which he adapted from [BB75]. Here h 
is some computable function that  assigns a natural number to each formula 
in Co. A theory E is h-easy if, for every C such that  E ~ C and C E Co, we 
have that C can be deduced from E using at most h(C) resolution steps. Thus 
h-easiness bounds the maximal number of proof-steps that have to be taken 
to deduce C, which makes implication decidable (given h). An interpretation 
I is h-easy if an h-easy Co-complete axiomatization of I exists. Shapiro then 
restricts the allowed interpretations I (from which the examples come) to 
the h-easy ones, where h is some fixed function provided by the user of his 
system. We will not go further into h-easiness. 

Another problem is when to stop reading facts. This was the third and 
last question that  we listed in Subsection 10.2.3. When do you know that E is 
a Co-complete axiomatization of I? First of all, it should be noted that  such 
a Co-complete axiomatization need not exist at all. This is a consequence of 
Theorem 9.9. So in this case, the algorithm will never reach a final theory. But 
even when we are dealing with an I for which a Co-complete axiomatization 
does exist, for an infinite Co there is no way of knowing whether you have 
found it. The reason for this is that you cannot determine if your current 
theory is correct for all examples in the enumeration that  have not been read 
so far. 

1 Of  cou r se ,  i f  t h e  e n u m e r a t i o n  is f in i te ,  we c a n  s t o p  o n c e  a l l  f a c t s  h a v e  b e e n  r e a d .  
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What  the algorithm can do, is output its theory-so-far after each time 
it has digested a new fact. Once it has found a E which is a Co-complete 
axiomatization of I,  it will never change its theory anymore, and output  the 
same E after each new fact. If the algorithm eventually finds a Co-complete 
axiomatization of I (though without being aware of this), the algorithm is said 
to have identified I in the limit, in accordance with Gold's paradigm [Go167]. 
In general, this is the best a model inference algorithm can do. 

E x a m p l e  10.12 Let g be a language that contains only one predicate sym- 
bol, P,  one constant 0, and one function symbol s. Ch is the set of all definite 
program clauses with at most one negative literal, plus the empty clause. 
Thus apart from [], Ch contains only atoms and clauses of the form A e- B, 
where A and B are atoms. Let Co be the set of ground atoms. Since Ch is in 
this case a subset of the set of Horn clauses, it follows from Theorem 10.6 
that  the pair (Co, Ch) is admissible. Suppose we are given the following enu- 
meration of I, which makes P(t) true iff t denotes an even number: 

(P(O),T) 
(P(s(O)), F)  
(P(s2(0)),  T) 
(P(s3(O)), F)  
(p(si(O)),T) 

We want to find a Co-complete axiomatization of I - - o r  in other words, an 
axiomatization of the set of even numbers--using the following refinement 
operator: 

{P(x)}  if C = [ ] ;  
{P(sn+l(x)), (P(sn(x)) ,= P(x)), 

p ( c )  = i f c  = p ( , - ( x ) ) ;  

0 otherwise. 

The algorithm takes the following steps: 

1. Set E to {~}. 
2. Read (P(O),T). 
3. E is neither too strong nor too weak for the facts read so far. 
4. Read (P(s(O)), F).  
5. E is too strong, since the false example P(s(O)) can be deduced from 

it. The false clause [] is deleted, so now E = (~. 
6. E is now too weak, because the positive example P(0) cannot be de- 

duced from it. Add p(a)  = {P(x)} to E. 
7. E is now too strong. Delete the false clause P(x). E = ~ again. 
8. E is too weak. Add p(P(x)) = {P(s(x)) ,  (P(x) e- P(x)), P(0)} to E. 
9. E is too strong. Delete the false clause P(s(x))  and the superfluous 

tautology P(x) +-- P(x). Then E = {P(0)} is neither too strong nor 
too weak with respect to the facts read so far. 
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10. Read T). 
11. E is too weak. Add p(P(s(x))) = {p(s2(x)), (P(s(x)) +-- P(x)), P(s(0))} 

to E. 
12. E is too strong. Delete P(s(x)) e-- P(x) and P(s(O)). Then X = 

{P(s2(x)), P(0)} is neither too strong nor too weak. 
la. Read F). 
14. E is too strong. Delete P(sU(x)). 
15. E = {P(0)} is too weak. Add p(P(s2(x))) = {p(s3(x)), (P(s2(x)) +-- 

P(,=(o))}. 
16. E is too strong. Delete P(sa(x)). 
17. E = {P(0), P(s2(O)), (P(s2(x)) +-- P(x))},  this is correct for all the 

facts in the enumeration. So the theory will not change hereafter when 
we continue to read new facts. 

The final theory E is a go-complete axiomatization of I. Note that  P(s ~ (0)) is 
superfluous, because it is implied by the other two clauses in E. Also, the spe- 
cific refinement operator p that we use here, need not work for certain other 
Herbrand interpretations I of gh, in other words, it need not be complete. 
The completeness of refinement operators will be treated in Chapter 17. <a 

1 0 . 6  S u m m a r y  

The model inference is concerned with fnding clausal rules that characterize 
certain concepts represented in a Herbrand interpretation. The problem can 
be stated as follows: 

G iven :  A clausal language C, an observational language Co, and 
a hypothesis language Ch, such that  Co _ Ch C_ C and the pair 
(Co, Ch) is admissible. In addition there is an enumeration and/or  
an oracle for the clauses in Co under some Herbrand interpretation 
I o fg .  
F i n d :  A go-complete axiomatization of I (a true theory which 
implies all true members of Co). 

Shapiro's Model Inference Algorithm takes a top-down approach towards 
solving model inference problems. It starts with the most general theory 
E = {O}, and succesively reads new examples from the enumeration. If after 
reading an example the theory is too strong, it is weakened by deleting false 
clauses from it. These false clauses can be found by the Backtracing Algo- 
rithm. If the theory is too weak, it is strengthened by the addition of special- 
izations of previously deleted clauses. These specializations are constructed 
by a downward refinement operator, which will be dealt with extensively in 
Chapter 17. 



Chapter 11 

Inverse  Reso lu t ion  

11.1  I n t r o d u c t i o n  

Induction can be seen as the inverse of deduction. Deduction moves from the 
general rules to the special case, while induction intends to find the general 
rules from special cases (examples). As we have seen in previous chapters, 
one of our main tools for deduction is resolution. This led Muggleton and 
Buntine [MB88] to introduce inverse  resolut ion as a tool for induction. Their 
paper was followed by a wave of interest and research into the properties of 
inverse resolution [Wir89, HS91, Mug91b, Mug92b, Mug92c, RP89, RPg0, 
Rou92, NF91, Ide93c, Ide92, Ide93b, Ide93a, LN92, SADB92, Tay93, SA93, 
BG93]. Inverting resolution is nowadays still a prominent generalization op- 
erator for bot tom-up approaches to ILP. 

In this chapter, we will give the main ideas behind inverse resolution. It 
is an interesting idea which has been very influential. However, we feel the 
theoretical foundation of this idea needs much more investigation. Moreover, 
in the application of inverse resolution, many indeterminacies arise: many 
different choices of literals, clauses and substitutions lay open. Accordingly, 
inverse resolution generates a very large search space of possibilities. 1 There- 
fore we will here only give the intuition behind it. Though the chapter serves 
as a motivation for some concepts introduced later on, the contents of this 
chapter are not required for an understanding of the later chapters. 

In their article, Muggleton and Buntine described two operators based 
on inverting resolution steps: the V- and the W-operator. Given C1 and R, 
the V-operator finds C2 such that R is an instance of a resolvent of C1 and 
C2. Thus the V-operator generalizes {C1, R} to {C~, C2}. The W-operator 
combines two V-operators, and generalizes {R1, R2} to {C1, C2, C3}, such 
that R1 is an instance of a resotvent of C1 and C2, and R2 is an instance of 

1 Unfolding, the dual to inverse resolution which we introduce in the next chapter, seems 
t o  have relatively less indeterminacy, and hence may be more useful. 
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a resolvent of 6'2 and Ca. In addition, the W-operator  is able to invent new 
predicates. Using V- and W-operators,  Muggleton and Buntine implemented 
an interactive bo t tom-up  system called CmOL (the name is the inverse of 
'logic'). 

11.2 The V-Operator 

Suppose we have a language containing the predicates Swims, Animal and 
Fish. Suppose we are learning from examples, and our theory solar is a definite 
program H, which as yet only contains the following clauses: 

Animal(sharky) 
Swims(sharky) 

Here sharky is a constant. 
Suppose we get a new positive example Fish(sharky). This example is 

not implied by II, so we should adjust our theory. The adjusted theory ought 
to imply the example Fish(sharky). This means that  a proper way to ad- 
just  the theory, is to add clauses that  are needed for an SLD-deduction of 
Fish(sharky). Usually when we apply SLD-resolution, we have a set of Horn 
clauses, and we want to see what can be deduced from it. This case is just  
the opposite: we already know what we want to deduce--namely  the clause 
Fish(sharky)--and we want to find clauses from which this can be deduced. 

Since the only thing we know about the SLD-derivation that  we want to 
construct is its conclusion Fish(sharky), we start  with the bo t tom of the 
derivation: the final resolvent should be Fish(sharky) (see Figure 11.1). We 
now want to find two parent clauses which have Fish(sharky) as a resol- 
vent. Or rather, we want to find two clauses that  have a resolvent of which 
Fish(sharky) is an instance, which is sufficient for our purposes. This ap- 
proach yields an instance of an SLD-derivation, where the unifiers are not al- 
ways most general. When we lift this to an SLD-derivation (i.e., when we make 
the unifiers mgu's) ,  we obtain a derivation of a clause of which Fish(sharky) 
is an instance. Thus we want to find a center clause and an input clause, 
which have a resolvent of which Fish(sharky) is an instance. Clearly, a huge 
number  of possible choices for these two clauses lays open. Let us say we 
use Swims(sharky), which is already in H, as input clause. Then there are 
several possibilities for the other parent, the center clause. Here we adopt the 
least general possibility, which is Fish(sharky) +-- Swims(sharky). Then 
Fish(sharky) is a resolvent of these two parent clauses. 

We might stop here, and add Fish(sharky) +-- Swims(sharky) to II. But 
suppose we choose to invert another resolution step. We now want to find 
two parent clauses for Fish(sharky) +-- Swims(sharky). We decide to use 
Animal(sharky) as input clause. Again, there are several possibilities for the 
other parent clause. Let us say we choose Fish(x) +-- Animal(x), Swims(x). 
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In the intended interpretation, this clause states that swimming animals are 
fish. 2 Adding this clause to II, we get 1-I': 

Animal(sharky) 
Swims(sharky) 
Fish(x) +- Animal(x), Swims(x) 

Figure 11.1 shows the derivation we have inverted. Thus invert ing--more 
precisely: constructing in a bot tom-up fashion--the derivation yields a can- 
didate which can be added to our theory in such a way that the new positive 
example is implied by the theory. 

Fish(x) +-- Animal(x), Swims(x) Anirnal(sharky) 

Fish(sharky) ~ Swims(sharky) Swims(sharky) 

Fish(sharky) 

Figure  11.1: Inverting this SLD-derivation yields a clause for the theory 

A nice feature of inverse resolution is that the clauses of the "old" (too 
weak) theory can be used in inverting the derivation. In the previous simple 
example, we could use the two atoms in II as input clauses in the derivation. 
Furthermore, if we had some background knowledge B at our disposal, we 
could also use clauses from B as input clauses. This allows an interesting 
interplay between the old theory and the background knowledge on the one 
hand, and the newly induced clauses on the other. However, it should be 
noted that  using clauses from the original II or B as input clauses is fairly 
arbitrary. It artificially restricts the range of choices for one of the parent 
clauses. It may seem that we ought to try all possible C1, 6"2 such that  R is 
an instance of a resolvent of C1 and C2, rather than only considering C1 E H 
or C1 E B. However, to reduce the number of possibilities, we assume that  C1 
(the input clause) is part of the old II or in B, and we only consider finding 
possible C2's. 

The resolution rule takes two parent clauses, and derives a resolvent. 
Inverse resolution essentially faces the following "inverse" problem: given a 
clause R and a parent clause C1, find a second parent clause 6'2 such that  
R is an instance of a resolvent of C1 and C2. A V-operator is an algorithm 

2Of course ,  th is  is biologically incorrect :  a whale is a s w i m m i n g  an imal ,  bu t  not  a fish. 
Hence  ifrnoby deno t e s  some  pa r t i cu la r  whale,  t h e n  the  s y s t e m  will have  to ad jus t  i ts  t heo ry  
af te r  it  h a s  seen  t he  posi t ive  e x a m p l e s  AnimaI(moby) a n d  Swims(moby), a n d  the  nega t ive  
e x a m p l e  Fish(raoby). 
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which can find solutions for this problem. The name of the operator derives 
from the V-shape of resolution steps. Usually, many alternatives for C2 are 
possible, and we should perhaps try out different possibilities. Note that  to 
invert a resolution step for arbitary clauses, we should also have a mechanism 
to invert factors, something which is ignored in [MB88]. For simplicity, we 
will restrict our discussion in this chapter to definite program clauses, for 
which factors are not needed. Hence we are here only concerned with finding 
Ca such that  R is an instance of a binary resolvent of Ci and Ca. In the 
remainder of this chapter, we will abbreviate 'binary resolvent' to 'resolvent'. 

Let two Horn clauses Ci = Li V C[ and R be given. We assume here 
for notational convenience that  L~ is the leftmost literal in Ci, this is of 
course not necessary. Our V-opera~cor should find C2 = L2 V C~, such that  
R is an instance of a resolvent of Ci and C2. We assume C1 and Ca are 
standardized apart,  and L1 and L~ are the literats resolved upon. Thus we 
want to find C2 = L2 V C~, such that for some 0 which unifies Li and 
~L2, R = C~O V C~O. a Since C1 and C2 are standardized apart, the unifier 

can be divided in two disjoint substitutions, namely 0 = 01 U 02, where 
0i only acts on variables in Ci, and 02 only acts on variables in C2, and 
LlO1 = -,L20~. Using separate 01 and 02 rather than a single substitution 0 
facilitates independent manipulation of C{ and C~. Let # be an mgu for L1 
and -,L2. Then R t = C~# V C~# is a resolvent of Ci and C2. Since 0i U 02 is 
a unifier for Li and -,L2, there is a 7 such that #3' = 01 U02. Thus R = R'7, 
which shows that  R is an instance of a resolvent of Ci and C2. This analysis 
gives Figure 11.2. 

C~ =L~vCl C2=L2VC~ 

R' = c;~  v c;~  

!, 
R = C~Oi v C~ 

Figure  11.2: The setting for the V-operator 

The simplest situation is where C1 = L1, so where C[ is empty. Then for 
a given 01, any C2 and 02 with C202 = -~LlO1 V R will do. Since -~LlO1 V R 
is an instance of any of these possible Ca's, it is dear  that  Ca = ~LiO1 V R 
is the "minimal" of all possible C2's, for a fixed ~?l. 

E x a m p l e  l l . 1  Suppose C1 = P(x , f (x ) )  and R = p(y, f2(y)). We want 
to find the minimal generalization as described above, for 0i = {x/ f (y)} .  

alf some L - -,A is a negative literal, we use -~L to denote the atom A. 
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Here L1 = P(x ,  f ( x ) ) ,  so the minimal C2 is ',L101 V R = -~P(f(y),  f2(y))  V 

p(y ,  f2(y))  = p(y ,  f2(y))  <__ p ( f ( y ) ,  f2(y)) .  <l 

Usually the situation is not as simple, and C1 will contain more than one 
literal. How can we find an adequate C2 in this case? Let us first assume C~01 
and ' C202 do not overlap. Tha t  is, C[01 and C~02 have no laterals in common.  
Clearly, if we assume the setting of Figure 11.2, then R can be split into two 
parts: C[O1 derives from C1, and C~O~ derives from C2. We have to find a 0a 
such tha t  C~01 C_ R. Once we know C[O1, we also know C;02, because this is 
the remaining part  of R: C~02 = _R - C'101. 

However, C~ itself, L2 and 02 are still unknown, and allow many  different 
choices. Any choice for L2 and C~ will do, as long as it satisfies L101 = -~L~02 
and ' = - C202 R C[01, for some 02. In this case, choosing L2 = -~L101 and 
C~ = R - C[01 yields the minimal  choice for C2. Tha t  is, since C202 = 
-,L~O~ V (R - C[O1), the clause -~L101 V (R - C[01) is an instance of each of 
the possible C2. Thus choosing this clause itself as 6"2 (i.e., 0~. = e), is the 
minimal  choice. 

The non-deterministic algorithm 4 given below, incorporates this analysis, 
and constructs all possible C2's. 

A l g o r i t h m  11.1 ( V - o p e r a t o r )  
I n p u t :  Horn clauses C1 = L1 V C~ and/~,  where C~O1 C_ R for some 01. 
O u t p u t :  A Horn clause C2, such that  R is an instance of a resolvent of C1 
and C2. 

1. Choose a substitution 01 such that  C{01 C_C_ R. 
2. Choose an L2 and C~ such that  LIO1 = ~L202 and C~02 = R -  C[O1, 

for some 02. 
3. Let 6'2 = L2 V C;. 

E x a m p l e  11.2 Let C1 -- P(x)  V ~ Q ( f ( x ) ) ,  L1 =- P(x) ,  and R = Q(g(y)) v 
- ,Q(f(g(y))) .  We assume G01 and C202 do not overlap. 

1. Here only one 01 is possible, namely 01 = {x/g(y)} .  
2. L2 and C~ should be such that,  for some 02, L101 = P(g(y))  = ~L20B 

and R - C~01 = Q(g(y)) = C~02. Figure 11.3 shows all possible C2 = 
LB V C~ (unique up to renaming of variables) of two laterals, from top 
to bo t tom in decreasing order of generality. C2 -= ~L101 V ( R - C [ 0 1 )  = 
-~P(g(y)) V Q(g(y)) is the minimal choice. 

Note tha t  for some C2, R itself is not a resolvent of C1 and C2. For 
instance, if we let C2 = ~P(z )  V Q(y), then the resolvent of C1 and C2 is 
- ,Q( f ( z ) )  v V(y), of which R is an instance. <1 

4The algorithm is 'non-deterministic' because its output is not determined by its input. 
For instance in step 1, the algorithm has to choose one among many different possible 01 's, 
which all satisfy C~O1 C_ R. 
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.p(~) v Q(y) 

i f \ \  
-,e(g(z)) v p(y) -P(~) v p(g(y)) 

~p(g(z)) v QO(~)) 

~P(9(y)) v Q(g(y)) 

Figure 11.3: The possible C~ 

Thus far we have assumed that  C[01 and C~02 do not overlap. But now 
consider R = P(a) e-- Q(a), Ct = P(a) +-- Q(a),R(a) and C~ = R(x) +- 
Q(z).  Then R' = P(a) +- Q(a),Q(a) is a resolvent of Ca and C2- Ct and 
C2 both contribute a literal Q(a) to the body of R ~. The V-operator given 
above is able to find C2 from C1 and R ~. Since the only difference between 
/~ and R' is the extra copy of Q(a) in the body of R ~, and an example will 
usually be given without duplicated literals (i.e., in the form of R rather than 
/~'), we would like the V-operator to be able to find C2 from C1 and R as 
welI. Itowever, since ClOt and C202 overlap in the literal Q(a) in the body 
of R, the V-operator is not capable of doing this. Given CI and R as input, 
it can only find R(x) and R(a) as C2. Thus we sometimes have to duplicate 
some literals in R before applying the V-operator, in order to be able to find 
the desired parent clauses. In this example, we have to duplicate Q(a ) - - in  
other words, change R into R~--to be able to find C; using the V-operator. In 
general, which literals in R we should duplicate depends on the application. 
We will not go into details here. 

Our goal in inverse resolution is to construct a derivation of a positive 
example A (usually a ground atom) which hitherto was not implied by the 
theory. Using the algori~hrn for the V-operator, we can invert one resolution 
step, for given C1 and R. By repeatedly applying the V-operator, we are able 
to invert any SLD-derivation. However, there are many indeterminacies here, 
which make an unrestricted search through all possible invertible derivations 
very inefficient. Within the V-operator itself, many different choices for 0z, 
L2 and C;  are possible. And even before we can use the V-operator, we have 
to decide which clause from the old theory or the background knowledge to 
use as C1, and which literals to duplicate in R. Thus the total number of 
possibilities may become very large sometimes~ which can make application 
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of inverse resolution very inefficient. We will not go into those issues here, 
which would require much more detailed research. 

11.3 The W-Operator 

One of the problems inductive learning algorithms have to face, is the fact 
that  it is sometimes necessary to invent new predicates. For instance, suppose 
we want our algorithm to induce clauses from examples about family life. It 
would be very unfortunate if the system did not possess a predicate for the 
concept of 'parent ' .  If we have not given such a predicate to the system in 
advance, the system should be able to invent this predicate for itself. If we 
examine the V-operator carefully, it is clear that  this operator cannot invent 
new predicates: all predicates appearing in any of the possible C2 that  we 
might construct already appear in C1 or R. However, by putting two V- 
settings side-by-side, we get a W-shape. The W-operator, which is based on 
this new setting, is indeed able to invent new predicates. 

We will first give an example which shows the idea behind the W- 
operator. Suppose we have two Horn clauses R1 = Grandfather(x, y) +-- 
Father(x,z), Father(z, y) and R2 = Grandfather(a, b) +- Father(a, c), 
Mother(e,b), and suppose we want to generalize these clauses. The W- 
operator constructs clauses CI, C2, C3, such that R1 is an instance of a resol- 
vent of C1 and C2, and R2 is an instance of a resolvent of C2 and C3. Thus 
the W-operator generalizes {R1, R2} to {CI, C2, C3}. In Figure 11.4, we give 
possible C1, C2, C3 which can serve this purpose. 

C1 : Paren t ( z , y )  +-- C~ : Grandfather(x ,y)  +-- C3 --- Parent(c ,b)  C- 
Father(z ,  y) Father(s ,  z ) ,Paren t ( z ,  y) Mother(c,b)  

R1 = Grand fa ther (x , y )  ~ R~ = Grandfather(x,  b) ~ 
Father(~,  z), Father(z ,  g) Father(x ,  e), Mother(c,  b) 

l {~/a} 

t ~  = Grand/ather(a,  b) +-- 
Father(a, c), Mother(c,  b) 

Figure 11.4: Generalization of {R1, R~} to {C1, C2, Cz} by the W-operator 

The important  point to notice about Figure 11.4 is that the predicate 
Parent, which appears in C1, C~ and C3, did not appear in the clauses R1 
and R2 we started with. Thus in generalizing {R1, R2} to {C1, C2, C3}, the 
W-operator has itself introduced a new predicate. The invention of this new 
predicate is quite useful, since it allows us to write out the definition of a 
'Grandfather '  in a very succint way in C2: x is the grandfather of y, if x 
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is the father of some z, and z is a parent of y.5 Note that any predicate 
name may be assigned the role of Parent here, including "old" names such 
as Grandfather or Mother, since this predicate is resolved away in the two 
resolution steps anyway. 

The general setting for the W-operator is pictured in Figure 11.5. Given 
R1 and R2, the W-operator constructs Ci, C2, Ca, with the property that  R1 
is an instance of a resolvent of Ci and C2, and R2 is an instance of a resolvent 
of C2 and Ca. What  we want to find, are Ci = La V Ctl, C2 : L2 V Ci, 
Ca = L3 V Ci, 01, 02, c'i and c~a, such that  LiOi = -,L202, L2c'l = "~LJ2, 
R~ = C[O1 V C;O~ and R2 = C~cq V C~er2. Thus L1 and L2 are resolved upon 
in deriving R'i, while L2 and L3 are resolved upon in deriving B~. // is an 
mgu for Li and -,L~, and u is an mgu for -~L2 and La. Hence Li and La must 
either be both positive, or both negative. Note that L1, L2, L3 do not appear 
in R1 and R2, which gives the opportunity for inventing a new predicate. 

C~ = L1 V C~1 

ltl = c',~ v c ; .  

R~ = C[el v C;Oa 

C ~ = L 2 v C ~  C3 = L ~ v C ~  

//; : c ; .  v c ; .  

R2 = C~i v C;e~ 

Figure  11.5: The setting for the W-operator 

We will here only sketch the idea behind the construction of C1, C2 and C3. 

1. Given R1 and R~, we first try to find a C~ such that C~6~ C R1 and 
C ~ h  C R2~ for some 02 and zl .  If such a C~ cannot be found--which 
means, intuitively, that t~1 and R~ have "nothing in eommon"- -we  
should let C~ be empty. 

2. If we have chosen an appropriate C6, we can complete C2 by choosing 
also L2. In principle, any L~ will do. 

3. Once we have decided which clause to take as C2, then a C1 and Ca 
can be found independently. Ct can be constructed by the V-operator 
from C2 and R1, and Ca can be constructed by the V-operator from C~ 

and/g2- 

Consider Figure 11.4 again. Given Ri and R2, how did we find C1, C2 
and Ca? First we note that  (Grandfather(x,y)V-,Father(x, z))e C_ t:il, 

5The  fact; t h a t  we have  n a m e d  the new predica te  Parent, is only i n t ended  to serve our 
in tu i t ion .  Of  course ,  the  W - o p e r a t o r  i tself  does  not  ~know" t h a t  th is  new pred ica te  deno te s  
t he  concep t  of ' pa r en t ' .  As  far  as the  W - o p e r a t o r  is concerned,  the  new p r e d i c a t e - - a n d  
also t he  old p red ica tes  Grandfather, Father, and  Mother, raight  have  any  n a m e .  
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and (Grandfather(x, y) V -~Father(x, z)){x/a, y/b, z/c} C R2. Hence C~ = 
Grandfather(x, y) V -~Father(x, z) is an appropriate choice. 

Secondly, we have to choose L2. Let us say we take L2 = -~Parent(z, y). 
This gives C2 = Grandfather(x, y) +-- Father(x, z), Parent(z, y). 

Thirdly, the V-operator can find C~ = Parent(z, y) +- Father(z, y) from 
C2 and R1. Similarly, it can construct the clause C3 = Parent(c,b) +-- 
Mother(c,b) from C2 and R2. Thus the W-operator generalizes {R~, R2} 
to C2, C3}. 

11.4 Mot ivat ion  for Studying General i ty  Or- 
ders 

Let us consider the W-operator. We want to find C;, 02 and r such that 
C~02 C_ RI and C~r~ C R2. Let D~ = C~02 and D2 = C~ch. Clearly, many 
different C~'s can give the same D1 and D2. These C~'s can be considered as 
generalizations of {D1, D2}. We would like to begin with a minimal C~. This 
motivates our investigation of the notion of a 'least generalization' of clauses 
in Chapters 13-16. If we have found a minimal C~, the other possible C~'s 
can be found by taking small generalization steps, starting from the minimal 
C~. This motivates our study of 'covers' of a clause, which can be seen as 
minimal generalizations or specializations of that  clause. 

Small generalization and specialization steps are also relevant for the V- 
operator. There we are often interested in finding a "minimal" C2, as in 
Figure 11.3, where -~P(g(y)) V Q(g(y)) is the minimal choice. The other Cz's 
can then be found by taking small generalization steps starting from the 
minimal C~. 

Similarly, such small steps are also crucial for Shapiro's downward refine- 
ment operator. If his refinement operator takes too large specialization steps, 
it may skip over the right clauses. On the other hand, if it takes steps which 
are too small, it may take too long before the operator reaches an appropriate 
clause, or it may even never get there. Again, there is a relation with covers. 

To be able to speak about relations of generality between clauses, the set of 
clauses must somehow be structured by some generality order. The arguments 
given above motivate our study of generality orders, least generalizations, 
covers, etc. in Chapters 13-16. 

11.5 Summary  

Since induction can be seen as the inverse of deduction, and resolution is 
our main tool for deduction, using inverse resolution for induction seems a 
sensible idea. Muggleton and Buntine introduced two operators for this. The 
V-operator generalizes two given clauses {C1, R} to {C1, C2}, such that  R 
is an instance of a resolvent of C1 and C2. The W-operator combines two 
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V-operators: it generalizes two given clauses {R1, R2} to {C1, C2, C3}, such 
that  R1 is an instance of a resolvent of C1 and C2, and R2 is an instance of 
a resolvent of C2 and C3, In addition, the W-operator is also able to invent 
new predicates. 



Chapter 12 

Unfolding 

12.1 Introduct ion  

In an ILP problem, it is sometimes the case that  we initially start  with a 
theory that  is overly general: it is complete, but not consistent. The prob- 
lem of finding a correct theory then becomes the problem of specializing the 
initial theory to a correct one. In this chapter we will investigate how such 
specialization can be done using unfolding, which can be viewed as the dual 
of inverse resolution. 1 While inverse resolution is a generalization operator 
based on constructing a parent clause from a resolvent and another parent 
clause, unfolding is a specialization operator which constructs resolvents from 
given parent clauses. As in the previous chapter on inverse resolution, we will 
restrict at tention to definite program clauses, so the theories should be defi- 
nite programs.  Furthermore, we will also assume that  the given examples E + 
and E -  consist of ground atoms (ground instances of one or more predicates). 

Let us first formally define the specialization problem: 

G i v e n :  A definite program H and two disjoint sets of ground 
atoms E + and E - ,  such that  H is overly general with respect to 
E + and E - ,  and suppose there exists a definite program H / such 
that  H ~ YI / and II / is correct with respect to E + and E - .  
Find: One such a W. 

Clearly, this is a special case of the normal problem setting of Chapter  9. We 
need to presuppose the existence of a correct specialization H r of II, because 
a correct program does not always exist, as proved in Theorem 9.9. Hence 
trying to solve a specialization problem only makes sense when a correct 
specialization exists. Note that  background knowledge can be included in II, 
so we will not mention background knowledge separately in this chapter. 

1Apar t  f rom p r o g r a m  specia l iza t ion,  unfo ld ing  can also be used  for p r o g r a m  transyor- 
ruction, which  a ims  at  i m p r o v i n g  p rog rams ,  for i n s t ance  by m a k i n g  t h e m  more  efficient or  
readable .  For th is ,  see [PP94], and the  references there in .  
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A natural way to specialize H is, first, to replace a clause in 1l by all its 
resotvents upon some body-atom in this clause. Constructing these resolvents 
is called unfolding. The new program obtained in this way after ~nfolding a 
clause in II, is clearly implied by 11. The function of the replaced clause 
is taken over by the set of resolvents produced by unfolding. We can then, 
secondly, delete some new clauses from the program that have to do with the 
negative examples, thus specializing the program. Hopefully, after repeating 
these two steps a number of times, we can get rid of all negative e• 
This method was introduced in [B194]. 

For simplicity, let all examples be ground instances of P ( x l , . . . ,  x~), for 
some predicate P.  The motivation for the method described above is the 
fact that it can be used to prune negative examples from the SLD-tree for 
H O {+- P ( x ~ , . . . ,  x,~)}. We will illustrate this by an example. 

Consider the program I1, consisting of the following c~auses: 

c l  = p(x,  v) +- Q(x, v) 
c= = Q(b, b) +- O(. ,  a) 

a~d ~+ = {e(<b)},  S -  = { P ( < 4 } .  The SLD-t~ee for n u { , -  e ( , , v ) }  
is shown on the left of Figure 12.1. The success branches corresponding to 
positive examples are marked with. a %' ,  for negative examples with a ' - ' .  

~- p(~., ,j) 

,1 
~.- Q(~, y) 

Q(~, ~) o 

{z/b,y/b},+ 

~1~,~I~},- 

+- P(~, ~) 

Q 
{z/< v/b}, + 

,'-- P(~, v) 

1,2 i 

0 
{xt<vla},-  {~tb, v/b},+ 

Figure 12.1: The SLD-trees for II~ H', and H" 

P(a, a) is a negative example, so we would like to remove this by weaken- 
ing the program. This could be done by deleting Ca or Ca from II. However, 
this would also make the positive example P(b, b) no longer derivable, thus 
rendering the program too weak. Another way to specialize is, first, to unfold 
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C~ upon Q(x, y). The following C1,2 and Ct,a are the two clauses produced 
by unfolding C1. 

C1,2 = P(b, b) +-- Q(a, a) (resolvent of C1 and C2) 
C1,3 = P(a, a) (resolvent of C1 and Ca) 

Now we replace the unfolded clause C1 by its resolvents C1,2 and C1,3. This 
results in H' = {C2, C3, C1,2, C1,3}. The SLD-tree for H' U {(-- P(x, y)} is 
shown in the middle of Figure 12.1. In this tree, the negative example is 
directly connected to the root, via the branch that uses C1,3. Now the negative 
example can be pruned from the tree by deleting Cl,a from II r, which does 
not affect the positive example. Then we obtain II" = {C2, C3, C1,2}, which 
is correct with respect to E + and E- .  The SLD-tree for H 'r U { ~  P(x, y)} is 
simply the tree for H r, after the rightmost branch has been pruned (right of 
Figure 12.1). 

The idea behind this method is the following: 

1. Unfolding removes some internal nodes from the SLD-tree, for instance, 
the internal node +-- Q(x, y) in the tree on the left of Figure 12.1. This 
tends to separate the positive from the negative examples, and also 
brings them closer to the root of the tree. 

2. If a negative example hangs directly from the root, and its input clause 
C is not used elsewhere in the tree for a positive example, then the 
program can be specialized by deleting C. 

In other words: unfolding can transform the SLD-tree in such a way that neg- 
ative examples can be pruned by deleting clauses from the program, without 
also pruning positive examples. Thus the use of unfolding as a specialization 
tool can be motivated by looking at SLD-trees, and the SLD-refutations those 
trees contain. 

It can be seen from some examples that we give later on, that unfolding 
and clause deletion by itself is not sufficient for a complete specialization 
method--some specialization problems cannot be solved in this way. How- 
ever, if we look at program specialization through the perspective of SLD- 
derivations rather than refutation, then we can see from the Subsumption 
Theorem for SLD-resolution that subsumption is what we need to make our 
specialization technique complete. Thus we define UDS specialization here, 
which is a specialization technique based on Unfolding, clause Deletion, and 
Subsumption. We prove that UDS specialization is complete: every special- 
ization problem has a UDS specialization as a solution. This chapter is mainly 
based on [NW96a]. 

12.2 Unfolding 

In this section we will define unfolding, in the next section we will use it to 
solve specialization problems. 
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D e f i n i t i o n  12.1 Let II be a definite program, C = A +-- B1, . . . ,B ,~  a def- 
inite program clause in II, and Bi the i-th atom in the body of C. Let 
{C1 , . . . ,  C,~} be the set of clauses in II whose head can be unified with 

Bi. 
Then unfolding C upon Bi in II means constructing the set Uc,i = 

{ D z , . . . ,  Din}, where each Dj is the resolvent of Cj and C, using Bi and 
the head of Cj as the literals resolved upon. 

E x a m p l e  12.2 Let II consist of the following clauses: 

C, = P(f(x))  +- P(x), Q(x) 
C2 : Q(x) +- R(x, a) 
C3 = P(f(a)) 
c4 : Q(b) 

Suppose we want to unfold CI upon Q(x) in the program II. {C~,C4} is 
the set of clauses in II whose head can be unified with Q(x), so Ucl,2 = 
{(P(f(x))  +-- P(x), R(x, a)), (P(f(b)) e- P(b))}. <~ 

Note that Uc,i may be the empty set. This is the case if there is no 
program clause whose head unifies with the i-th atom in the body of C. Note 
also that an atom cannot be unfolded, since it has no body-atoms. 

Using the set Uc,i, we can construct a new program from II in two ways. 
The first way, used in [BI94], replaces C by Uc,i, thus obtaining the pro- 
gram (H\{C}) O Uc,i. This is how unfolding was originally considered by 
Komorowski [Kom82] and formally studied by Tamaki and Sato [TS84]. The 
second way to obtain a new program adds Uc,{ to H, without deleting the 
unfolded clause C from the program. 

D e f i n i t i o n  12.3 Let II be a definite program, and Uc,i the set of clauses 
constructed by unfolding C upon Bi in II. Then II,~,c,~ = (H\{C}) O Uc,~ is 
called the type 1 program resulting from unfolding C upon Bi in II. 

II,2,c,i = II U Uc,~ is called the type 2 program resulting from unfolding 
C upon Bi in H. O 

We will show that constructing the type 1 program preserves the least 
Herbrand model, while constructing the type 2 program preserves logical 
equivalence, which is stronger. 

P r o p o s i t i o n  12.4 Let rl be a definite program, G a definite goal, and lI~l,c,i 
the type i program resulting from unfolding C upon Bi in H. Then HU{G} i-st 

P r o o f  
r Suppose II~l,c,i O {G] t-8~ []. Then by the soundness of resolution, 

H~<c,iU{G] is unsatisfiable. It is easy to see that II ~ II~l,c,i. Hence HU{G} 
is unsatisfiable, and by Theorem 7.8 we have II U {G} ~-,~ []. 
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=~: Suppose II U {G} ~-sr ~, and suppose C (the unfolded clause), is 
A +- B1 , . . . ,  B i , . . . ,  Bn, which we abbreviate to A +-- Bi, Bi, B2, where 
B1 = B i , . . . , B i - 1  and B~ = B~+i,...,B,~, and Bi is the atom unfolded 
upon. If there is an SLD-refutation of II U {G} in which C isn't used as an 
input clause, then this is also an SLD-refutation of H~l,c,iU{G}. But suppose 
C is used as input clause in all SLD-refutations of II t2 {G}. We will prove 
that from such a refutation, a refutation of II~l,c,i U {G} can be constructed. 

Suppose we have a refutation of H U {G} with goals Go , . . . ,  Gn and in- 
put clauses C1 , . . . ,  C~, which uses C at least once as input clause. By the 
independence of the computation rule (Theorem 7.32), we can assume that 
for any j ,  if C is the input clause in the step leading from Gj-1 to Gj, then 
the instance of Bi that  is inserted in Gj by C, is the selected atom in Gj. 

Suppose the j - th  input clause is C. We picture this part of the refutation 
on the left of Figure 12.2. For this picture, we make the following notational 
conventions: 

�9 Gj-1,  the ( j -  1)-th goal, is the goal e-- A i , . . . , A k , . . . , A m ,  which we 
abbreviate to +-- Ai,  Ak, A~. 

| The input clause used in the (j + 1)-th step is Cj+i = A' +-- B', where 
B'  is an abbreviation of B [ , . . . ,  B'~. 

�9 Oj is an mgu for Ak and A (used in the j - th  resolution step). 
�9 Oj+~ is an mgu for B~Oj and A' (used in the (j + 1)-th resolution step). 

C j  = C =  C / = 

G j _  1 =+-" A 1 , A k , A  2 A +-- B 1 , B ~ , B 2 , 8  ] G j - -  1 =+- A 1 , A k , A 2  ( A  +.- B I ,  B I , B 2 ) o - , c r  I 

Gj =+- (AI,BI, Bi,B2,A2)O j A I +- BI,83~I GI 

Gj.[. 1 =+- (AI, B 1 , B I, B2, A2)O]Oj~- 1 

Figure 12.2: Using input clause C' instead of Cj and Cj+i 

Since the (j + 1)-th step of the tree on the left of Figure 12.2 shows that Bi 
and A' can be unified (say, with mgu ~r), the clause C' = (A +-- Bi, B', B2)o 
(the result of resolving C with Cj+l = A' e- B') must be in Uc,i. We assume 
without loss of generality that  Gj- i ,  Cj = C, Cj+i, and C' are standardized 
apart. 

What  we want is to construct a tree which, instead of using C in the j - th  
step, uses C'. For this, we will show that Gj+i is a variant of the goal G~+I, 
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which can be derived from Gj_l and C ~. Then we can replace the j - th  step 
(which uses C) and the (j + 1)-th step by one single step which does not need 
C anymore, but instead uses C' .  See the right of the figure. 

Because Oj+l is an mgu for A ~ and BiOj and WOj = A' (due to the 
standardizing apart),  OjOj+l is a unifier for A' and Bi. Since ~ is an mgu 
for A' and Bi, there exists a substitution 7 such that  c, 7 = OjOj+l. Art7 = 
AOjOj+l = AkOjOj+l = AkO'7 = AkT, so 7 is a unifier for Act and Ak. This 
shows that  Ac~ and Ak can be unified. Let er' be an mgu for A~ and Ak. Let 
G}+I =+- (A1, (B1, B', B2)~,A2)~r' be the goal derived from Gj -1  and C' .  

l We will show that  Gj+I  and Gj+ 1 are variants. 

1. We have already shown that  7 is a unifier for A# and Ak. Further- 
more, # is an mgu for Act and Ak, so there exists a substitution 5 
such that  # 5  = 7. Now Gj+I =4-- (AI,B1,B',B2,A2)OjOj+I =e- 

N>'a = a1+ a. 

2. # is an mgu for Ak and AcT, and A~r  = Ak (because of the standardiz- 
ing apart) ,  so c,# is a unifier for Ak and A. Furthermore, Oj is an mgu 
for Ak and A, so there exists a substitution 7' such that  OjT' -= cro a. 

X 7' = ' , A Oj7 = A'(rer' = Bio'# = BiOjW l, SO ,~1 is a unifier for A e and 
BiOj. Oj+l is an mgu for A' and BiOj, so there exists a substitution 
5' such that  0j+15' = 7'. Now G'j+I =+-- (A--7, (B1, B' ,  B2)a, A2---)cr' =+-  

(A1, B1, B t, B2, A2)~o "t ---<-- (A1, B1, B',-~2, AB)OjT' =<-- (A1, B1, B' ,  

B2, A2)OjOj+IS' = Gj+15'. 

t G ~ We have shown that  Gj+I  = Gj+I~ and j+ l  = Gj+I~ ' ,  so by Proposi- 
tion 4.16, Gj+I and G'  j+ t  are variants. 

] Since Gj+t and Gj+ 1 are variants, we have shown that  the two resolution 
steps leading from Gj-1 to Gj+I can be replaced by a single resolution step, 
which uses C ~ as input clause. In the same way, we can eliminate all other 
uses of C as input clause in the rest of the tree, by constructing a refutation 
which uses some clause in Uc,i to replace a usage of C, each t ime replacing 
two resolution steps by one single resolution step. Finally we get an SLD- 
refutation of 11 O Uc,i O {G} which doesn't  use C at all. This means that  we 
have in fact found an SLD-refutation of II~l,c,~ O {G}. [] 

A direct consequence o f the  proof given above is the following: 

C o r o l l a r y  12.5 Let 1I be a definite program, G a definite goal, and II~l,c,i 
the type t program resulting from unfolding C upon Bi in II. Suppose there 
exists an SLD-refutation of length n of HU{G}, which uses C r times as input 
clause. Then there exists an SLD-refutation of length n -  r of H~l,c,i U {G}. 

Intuitively, this eorolla,ry shows that unfolding makes refutations shorter. 
So unfolding has the potential of improving the efficiency of an SLD-based 
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theorem prover. Especially unfolding often-used clauses is worthwhile, since 
then the value r mentioned in the corollary is highest. On the other hand, 
unfolding usually increases the number of clauses. So what we see here is an 
interesting trade-off between the number of clauses and the average length of 
a refutation: unfolding usually decreases the average length of a refutation, 
but also usually increases the number of clauses in the program. 

We now proceed to prove that constructing the type 1 program preserves 
the least Herbrand model Mn of the program. This is also proved in [TS84], 
though differently from our proof. 

T h e o r e m  12.6 Let II be a d@'nite program, C EII ,  and II~Lc,~ the type 1 
program resulting from unfolding C upon Bi in II. Then Mn = Mn~,c,~. 

P r o o f  Let A be some ground atom. Then: 
A E Mri iff (by Theorem 7.16) 
II ~ A iff (by Proposition 2.37) 
H U {+-- A} is unsatisfiable iff (by Theorem 7.8) 
II U {+- A} t-s~ [] iff (by Proposition 12.4) 
II~l,c,i U {+-- A} Vs~ [] iff (by Theorem 7.8) 
II~l,c,~ U {+-- A} is unsatisfiable iff (by Proposition 2.37) 
H~l,c,i ~ A iff (by Theorem 7.16) 
A E MrI~l,c,~. 
Hence Mn = Mn~,c,~. [] 

Thus constructing the type 1 program preserves the least Herbrand model. 
However, it does not preserve logical equivalence. Take for instance H = 
{C = P ( f ( x ) )  +-- P(x)}.  Then H~I,c,1 = {P( f2 (x ) )  +- P(x)}.  Now Mn = 
Mn,l,c,1 = ~, but II ~z IIul,c,1 since IIul,C,1 ~: YI. Note that this means that 
a specialization of II need not be a specialization of H,l,c,i .  This is actually 
one of the reasons for the fact that type 1 unfolding and clause deletion 
cannot solve all specialization problems (see Section 12.3). 

On the other hand, constructing the type 2 program does preserve logical 
equivalence. Since II C_ II~2,c,~ we have II,~,c,i ~ 11; and because II~2,cj \II  
is a set of resolvents of clauses in II, we also have II ~ IIu2,c,i. 

Prop os i t i on  12.7 Let II be a definite program, C E H, and [I~2,c,i the 
type 2 program resulting from unfolding C upon Bi in II. Then H ~:~ IIu2,c,i. 

12.3 UDS Specialization 

As the example in the introduction to this chapter showed, the combina- 
tion of constructing the type t program and clause deletion can be used 
to specialize overly general definite programs. This combination is not com- 
plete: it cannot solve all specialization problems. Consider II = { (P( f (x ) )  ~- 
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P(~) [] 

p(~) r~ 
1 / / ~ 2  {~'/](~)}' + 

/ \ 
P(~) 

I"1 

: {x/ i f (a)} ,  + 

Figure 12.3: The SLD-tree of H U { e  P(x)} 

P(x)), P(a)}.  Then MH = {P(a),  P(f(a)), P(f2(a)), P(fa(a)) . . .} .  Let E + = 
Mn\{P( f ; (a) )}  and E -  = {P(f2(a))}. See Figure 12.3. 

Let IIz = II. The only clause which can be unfolded is P(f(x))  +-- P(x). 
Unfolding this results in the following type 1 program: 

II2 = {(P(f2(x)) +-- P(x)), P(f(a)), P(a)}.  

Then unfolding P(f~(*)) ~- P(,)  gives 

113 = {(P(f4(x)) +- P(x)), P(fa(a)), P(f2(a)), P(f(a)), P(a)}.  

Notice that MH1 = !V/II2 ----- ~IIIa, but unfolding has nevertheless weakened 
the program: II1 ~ H2 ~ 113, but H2 ~= H1 and Ha ~= H~. In Ha, p(f4(x))  +__ 
P(x) can be unfolded, etc. It is not difficult to see that in general, any program 
which can be constructed from H by type 1 unfolding and clause deletion, is 
a subset of 

{P(fU'~(x)) +- P(x)), P(f2'~-l(a)), P(f2'~-2(a)),.. . ,  P(f(a)), P(a)},  

for some n. To specialize this program such that P(f2(a)) is no longer deriv- 
able, we must in any case remove P(f2(a)). However, this would also prune 
some of the positive examples (such as P(f2~+2(a))) from the program via 
the clause P ( f  2~ (x)) +- P(x). Thus type 1 unfolding and clause deletion are 
not sufficient for this particular specialization problem. 

But suppose we use the type 2 program instead of the type 1 program. 
That  is, suppose we do not immediately delete the unfolded clause from the 
program. In this case, we can find a correct specialization with respect to 
the examples given above, as follows. We start with H~ = H, and unfold 
P(f(x))  +- P(x) without removing the unfolded clause. This gives 11~: 

H i = {(P(f~(x)) +- P(x)), (P(f(r +- P(x)), e( f(a)) ,  P(a)}.  
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Now we unfold P(fU(x)) +-- P(x),  again without removing the unfolded 
clause. This gives II~: 

HI 3 = {(P( f4(x))  +- P(x ) ) , (P( f3 (x ) )  +- P(x ) ) , (P( f2 (x ) )  +- P(x)),  
(P( f (x ) )  +--- P(x)),  P(f3(a)),  P(f2(a)),  P( f (a)) ,  P(a)}.  

If  we delete some clauses from II~, we obtain II":  

II" = {(P( f4(x) )  +- P(x)),  (P(fa(x))  +- P(x)),  P( f (a)) ,  P(a)}.  

This is a correct specialization of II with respect to E + and E - :  I I"  ~ E +, 
and H" ~= P(Z2(a)). 

Yet the combination of type 2 unfolding and clause deletion is still not suf- 
ficient. Consider II  = {P(x)},  E + = {P(f (a)) ,  P ( F ( a ) ) }  and E -  = {P(a)}.  
II '  = { P ( f ( x ) ) }  is a solution for this specialization problem. But since [I 
contains only a single atom, no unfolding can take place here. Thus the only 
two programs which can be obtained by type 2 unfolding and clause dele- 
tion, are II  itself and the empty  set, neither of which is correct. In order to 
solve this specialization problem, we have to allow the possibility of taking a 
subsumption step. In general, we can define UDS specialization (Unfolding, 
clause Deletion, Subsumption)  as follows: 

D e f i n i t i o n  12.8 Let II and H ~ be definite programs. We say H ~ is a UDS 
specialization of II, if there exists a sequence II1 = II, I I 2 , . . . ,  II~ = IIt (n > 1) 
of definite programs,  such that  for each j = 1 , . . . ,  n -  1, one of the following 
holds: 

1. I I j +  1 -~ IIj~2,c, i. 

2. I I j+ l  = I I j \ { C }  for some C E IIj .  
3. I I j+ l  = IIj U {C} for a C that  is subsumed by a clause in II j .  <> 

UDS specialization is indeed complete: any specialization problem has a 
UDS specialization as solution. For the proof of completeness, we use the 
Subsumption Theorem for SLD-resolution (Theorem 7.10). 

T h e o r e m  12.9  Let II and IY be definite programs, such that II' contains no 
tautologies. Then II ~ II ~ iff II ~ is a UDS specialization of II. 

P r o o f  
~ :  By the soundness of resolution and subsumption. 
==~: Suppose II ~ II  ~. Then for every C E II  ~, we have H ~ C. Let C 

be some particular clause in H ~ that  is not in H. Then by the Subsumption 
Theorem for SLD-resolution, there exists an SLD-derivation from II  of a 
clause D which subsumes C, as shown in Figure 12.4. 

Since R1 is a resolvent of R0 and C1 (upon the selected a tom Bi in R0), 
if we unfold R0 in H upon Bi we get the program II,2,Ro,i which contains 
/~1. Now when we unfold R1 in IIu2,Ro,i, we get a program which contains 
R2, etc. Thus after n applications of (type 2) unfolding, we can produce a 
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Figure 12.4: An SLD-deduction ,of C from H 

UDS specialization (a superset of H) containing the clause R~ = D. Since D 
subsumes C, we can add C to the program, by the third item in the definition 
of UDS specialization. 

If we do this for every C EI I '  that is not in I], we get a program II" which 
contains every clause in HI. Since II" is obtained from H by a finite number of 
applications of unfolding and subsumption, 1I" is a UDS specialization of II. 
Now delete from II" all those clauses that are not in IY. Then we obtain II' 
as a UDS specialization of H. Thus if II ~ IY, then H' is a UDS specialization 
of II. [] 

Now suppose we have H, H e, E + and E - ,  such that Pf ~ II' and II' is cor- 
rect with respect to E + and E-o  We can assume H ~ contains no tautologies. 
Then it follows from the previous theorem that II' is a UDS specialization of 
II. This shows that  UDS specialization is complete: 

C o r o l l a r y  12.10 ( C o m p l e t e n e s s  o f  U D S  spec i a l i z a t i on )  Every special- 
ization problem with II as initial program has a UDS specialization of II as 
solution. 

Eff ic iency  
Note that if we want to unfold some particular clause C, we actually only 
need to consider the resolvents of C and clauses from the original II. This is 
clear from Figure 12.4, because in order to produce R~+I, we only need to 
resolve /?4 with Ci+i, which is a member of the original II. In other words, 
we only need to add a subset of Ucj  to the program. We might define U~:,~ as 
the set of resolvents upon B~ of C and clauses from the original H, and then 
use IIj+l = IIjUU~, i instead of IIj+l = IIj,2,c, , = I I j U U c , i .  This reduces the 
number of clauses that unfolding produces, and hence improves efficiency. 
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12.4 Summary 

The specialization problem, a special case of the normal problem setting for 
ILP, can be stated as follows: 

G iven :  A definite program H and two disjoint sets of ground 
atoms E + and E - ,  such that  II is overly general with respect to 
E + and E - ,  and suppose there exists a definite program H / such 
that  H ~ H' and H/ i s  correct with respect to E + and E - .  
F ind :  One such a III. 

Unfolding, constructing the set Uc,i of resolvents of a clause C E II with 
clauses in II, can be used as a tool for solving such problems. The type 1 
program is obtained by replacing C in II by Uc,i, while the type 2 program 
is II U Uc,i. Constructing the type 1 program preserves the least Herband 
model, while the type 2 program preserves logical equivalence with the orig- 
inal program. 

A UDS specialization of II is a definite program obtained from II by 
a finite number of applications of unfolding (type 2), clause deletion, and 
subsumption. UDS specialization is a complete specialization method: every 
specialization problem with II as initial program has a UDS specialization of 
lI as solution. 



Chapter 13 

The  Latt ice  and Cover 
Structure  of A t o m s  

13.1 Introduct ion  

As we have explained earlier, the normal problem of inductive logic pro- 
gramming is to find a correct theory, a set of clauses which implies all given 
positive examples and which is consistent with respect to the given nega- 
tive examples. Usually, it is not immediately obvious which set of clauses we 
should pick as our theory. Rather, we will have to search among the permit ted 
clauses for a set of clauses with the right properties. If a positive example is 
not implied by the theory, we should search for a more general theory. On the 
other hand, if the theory is not consistent with respect to the negative exam- 
ples, we should search for a more specific theory--for  instance, by replacing a 
clause in the theory by more specific clauses--such that  the theory becomes 
consistent. Thus, as mentioned before, the two most important  operations 
in ILP are generalization and specialization. Repeated application of such 
generalization and specialization steps may finally yield a correct theory. 

To systematically facilitate this search, it would be very handy if the set 
of clauses that  has to be searched, is somehow structured. In this and the 
following chapters, we will structure the set of clauses by imposing a generality 
order upon it. Tha t  is, we will describe several alternatives for what it means 
for some clause to be more general than another clause. Since generalization 
(or dually, specialization) can proceed along the lines of such a generality 
order, using such an order can direct the search for a correct theory. 

In this chapter we will be concerned with ordering what is urguably the 
simplest set of clauses, namely the set of atoms. It is based on the work 
of John Reynolds [ReyT0] and Gordon Plotkin [PloT0]. In particular, we will 
here discuss covers, least generalizations, and greatest specializations of atoms. 
Covers form the basis of most refinement operators, for instance those de- 
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fined by Shapiro [ShaSlb], Laird [Lai88], and Van der Laag and Nienhuys- 
Cheng [LN93]. Least generalizations can be used to generalize given finite 
sets of examples. 1 

13.2 Quasi-Ordered Sets 

All generality orders which we will define, are so-called quasi-orders. We 
first introduce quasi-orders in a very abstract way, as a relation with certain 
properties. In later sections, we will apply this concept to the set of atoms. 

A relation R is defined on a set G, and can be seen as a subset of G x G, 
the set of all ordered pairs of elements from G. If the pair (a, b) E R C_ G x G, 
then we write aRb. For example, if G is the set of clauses and ~ denotes the 
usual 'logical implication' relation, then this relation is the set of all pairs 
(C, D) of clauses where C ~ D. So then we can write (P(x), P(a)) ~ ,  or 
equivalently P(x) ~ P(a). 

D e f i n i t i o n  13.1 Let R be a relation on a set G. 

1. R is reflexive if for all x E G, xRx holds. 
2. R is symmetric if for all x, y E G, xl:ty implies that also yRx. 
3. /~ is transitive if for all x, y, z ~ G, xRy and yRz implies xt:tz. 
4. R is antisymmetrie if for all x, y E G, xRy and yRx implies x = y. 

D e f i n i t i o n  13.2 Let ~ be a relation on a set G. 

1. /~ is called a quasi-order on G, if R is reflexive and transitive. The pair 
{G, R} is then called a quasi-ordered set. 

2. R is called a partial order on G, if R is reflexive, transitive and anti- 
symmetric. The pair {G, R} is then called a partially ordered set. 

3. R is called an equivalence relation on G, if R is reflexive, symmetric 
and transitive. <5 

A well known result from mathematics is the fact that  an equivalence 
relation on G partitions G into disjoint equivalence classes. Note that  a partial 
order is also a quasi-order. We will usually denote quasi-orders or partial 
orders by >_ or __., rather than by R. 

E x a m p l e  13.3 Let G = R x R be the set of all ordered pairs of real numbers, 
which can be seen as representing the plane. We can define a relation _> on 
G, as follows: (a,b) >_ (c, d) iff ~ + b 2 >_ v ~  + d ~. That  is, (a, b) _> (c,d) 
iff the euclidean distance in the plane from the origin (0, 0) to (a, b) is greater 
than or equal to the distance from (0, 0) to (c, d). 

1There is also a, relation between least generalizations and inverse resolution, 
s e e  [Mug92b]. 
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For any (a, b) E G, we have (a, b) _> (a, b), so _> is reflexive. Also, if 
(a, b) _> (c, d) and (c, d) _> (e, f ) ,  then (a, b) _> (e, f ) ,  which shows tha t  > is 
also a t ransi t ive relation, hence (G, _>} is a quasi-order.  

We can define an equivalence relation ,~ on G, by defining (a, b) ~ (c, d) iff 
(a, b) >_ (c, d) and (c, d) _> (a, b). Then  the equivalence class [(a, b)] of (a, b), 
which is the set {(c, d) E G I (a, b) ~ (c, d)}, is the set of all points in the 
plane with equal distance to the origin as (a, b). T h a t  is, [(a, b)] is the circle 
in the plane with the origin as centre, and ~ as radius. <1 

If (G, _>) is a quasi-ordered set, then we will write x > y iff bo th  x > y 
and y ~r x. If bo th  x ~ y and y ~ x, we say tha t  x and y are incomparable in 
this quasi-order.  

We will now show how, given a quasi-order >_ on some set G, we can turn  
this into a par t ia l  order > on the set of equivalence classes of G. First  we 
define the following equivalence relation ~ on G: for all x, y E G, we write 
x ~ y iff x _> y and y _> x. This relat ion ~ is an equivalence relation, because: 

1. x ~ x for all x E G (~  is reflexive). 
2. If x ~, y, then x _> y and y _> x, so then y ~ x (~  is symmetr ic) .  
3. Suppose x ~ y and y ~, z, then x _> y, y >_ x, y >_ z and z > y. Hence, 

by the t rans i t iv i ty  of >_, we know x ~ z (~  is transit ive).  

Thus  we can say tha t  x and y are equivalent if x ~ y. Now let [x] be 
the equivalence class of x E G. Tha t  is, Ix] = {y I x  ~ y}. The  equivalence 
relat ion z par t i t ions the set G into a number  of disjoint equivalence classes. 
Next  we construct  a relat ion ~ on the set of these equivalence classes, by 
defining [x]>_[y] if x k Y. This  can be shown to be well-defined: if x ~ x' and 
y ~ y' then we have x >_ y iff x'  >_ y',  so it does not ma t t e r  whether  we use 
x >_ y o1" x' >_ y' to define Ix] = [x']~[y] = [y']. It is easy to see tha t  the 
relat ion ~ forms a part ial  order. For instance an t i symmetry :  if [x]~[y] and 
[y]_[x], then x _> y a n d  y > x, so x ~ y and hence [x] = [y]. 

Thus  we can use a quasi-order _> on G to define a partial order ~ on the 
set of the equivalence classes of G, via the equivalence relation ~,. This  par t ia l  
order  is said to be induced by the quasi-order on which it is based. 

We now turn  to defining upper  and lower bounds on quasi-ordered sets. 

D e f i n i t i o n  13 .4  Let (G, >} be a quasi-ordered set, and S C_ G. An element 
x E G is called an upper bound of S if x >_ y for all y E S. An upper  bound 
x of S is called a least upper bound (lub) of S, if z > x for all upper  bounds 
z of S. 

Dually, an element x E G is called a lower bound of S if y _> x for all 
y E S. A lower bound x of S is called a greatest lower bound (glb) of S, if 
x > z for all lower bounds z of S. 

E x a m p l e  13.5  Consider (R,  _,,>\ the set of real numbers  quasi-ordered by 
the usual 'greater  than  or equal to '  relation, and let S be the open interval 
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(0, 1) C_ R.  Then  any x E R with x _> 1 is an upper  bound  of S, and 1 E R 
is the least upper  bound.  Also, any x < 0 is a lower bound  of S, and 0 is the 
greates t  lower bound.  <1 

Notice t ha t  if x and y are bo th  lab ' s  of some set S C_ G, then y > x and 
x >_ y, so then  x ~ y. This  means  tha t  all lub 's  of S are equivalent.  Dually, 
if x and y are glb 's  of some S, then also x ~ y. 

E x a m p l e  13 .6  In a quasi-ordered set, a subset  need not  have a lub or glb. 
Consider  (Q,_>}, where Q is the set of  ra t ional  numbers ,  and S = {q E 
Q I q2 < 2} c Q. Since v/2 ~ Q, S has no lub in Q. Also, - v ~  ~. Q, which 
implies tha t  S has no glb either. <3 

E x a m p l e  13 .7  Let  G = { a , b , c , d } ,  and let >_ be defined as c > a, c _> b, 
d > a and d >_ b. Then  since c and d are incomparable ,  the set {a, b} has no 
lub in this quasi-order.  See Figure 13.1. <3 

c d 

F i g u r e  13.1: {a, b} has no lub here 

D e f i n i t i o n  13 .8  Let (G, >_} be a quasi-ordered set. If  for every x, y E G, a 
lub of {x, y} and a glb of {x, y} exist, then (G, _>} is called a lattice. 

In m a t h e m a t i c s ,  the concept  of a latt ice is often defined on a par t ia l  order,  
ra ther  t han  on a quasi-order.  The  previous definition is more  convenient  for 
us, because in ILP  we usually have to do with  a quasi-order  on clauses, even 
when we are interested in propert ies  of equivalence classes of clauses. But  
anyhow, if we have a lat t ice on a quasi-order,  we also have a lat t ice on the 
par t ia l  order  on the equivalence classes induced by the quasi-order.  

I f  some x, y E G have more  than  one lub, we let x t_l y denote  an a rb i t ra ry  
lub. Since all lub ' s  are equivalent  under  ~ ,  for any given x, y, one x t_l y is then 
equivalent  to all o ther  lub 's  of {x, y}. Moreover,  i f  x ~ x '  and y ~ y' ,  then  
xUy ~ x 'UJ.  I t  is easy to see tha t  in a lat t ice (G, >) ,  any finite non -empty  set 
S _C G has  a lub. For if S = { x a , . . . ,  x~}, then ( ( . . .  ((xl  t.J x2) t_l x a ) . . . )  kl xn) 
is a lub of S. Since (x I_1 y) kJ z ~ x II (y U z), we m a y  use xl  l_J x2 kJ . . .  I_1 x~ to 
denote  an a rb i t r a ry  lub of S. 

Analogously,  we let x ~ y denote  an a rb i t ra ry  glb. 
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E x a m p l e  13.9 Let G be the power set of {a, b, c}, i.e., G is the set of all 
subsets of {a, b, e}, and let _D be the usual superset relation between sets. It  
is easy to see that  (G, __D} is a partially ordered set. In fact, {G, D) is a lattice. 
To see this, it is sufficient to note that  for all x, y E G, x U y = x U y, and 
x M y = x A y, so the lub and glb of any two elements exist. The lattice (G, _D} 
is pictured in Figure 13.2. <~ 

{a,b,c} 

{a,b) {a,c} {b,c) 

{a} {b} {c) 

{} 

Figure  13.2: The lattice-structure of {G, D) 

Now we define upward and downward covers, which can be seen as the 
smallest possible non-trivial upward or downward steps in the quasi-order. 

D e f i n i t i o n  13.10 Let (G, ___) be a quasi-ordered set, and let x, y E G. If 
x > y and there is no z E G such that  x > z > y, then x is an upward cover 
of y, and y is a downward cover of x. (> 

E x a m p l e  13.11 In the previous example, the set {a, b} E G has one upward 
cover, namely {a, b, c}, and two different downward covers, namely {a} and 
{b}, < 

As we have seen, a set in a quasi-order need not have a tub or glb. We can 
weaken the requirement of a least upper bound (resp. greatest lower bound) 
somewhat,  by considering some minimal upper bounds (resp. maximal lower 
bounds). Consider Example 13.7. There the set S = {a, b} has no lub. How- 
ever, there is no element "between" c and {a,b}, nor is there an element 
between d and {a, b}. Thus c and d are minimal upper bounds of S. 

D e f i n i t i o n  13.12 Let (G, >} be a quasi-ordered set, and let S C_ G. I f x  E G 
is an upper bound of S, and if for any upper bound y E G of S we have that  
x > y implies x ~ y, then x is called a minimal upper bound (mub) of S. 

Dually, if x E G is a lower bound of S, and if for any lower bound y E G 
of S we have that  y > x implies x ~ y, then x is called a maximal lower 
bound (mlb) of S. 
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The differences and similarities between the concepts of an upward cover, 
a least upper bound, and a minimal upper bound are important in ILP, and 
are sometimes confused. These differences are similar in the "downward" case. 

The main difference between an upward cover on the one hand, and a 
lub or a mub on the other, is that a lub or a mub is "above" a subset of G~ 
whereas an upward cover is "above" a single element in G. This difference 
does not disappear in case the subset contains only a single element. That  
is, if S = {y}, then any lub and any mub of S is equivalent to y, whereas an 
upward cover of y must always be some other element, not equivalent to y. 

The main difference between a lub and a mub is that  a lub of a set S (if 
such a lub exists) is unique up to equivalence. On the other hand, a set S 
may have more than one distinct, incomparable mub's, a lub is a "smallest" 
upper bound of S, while z is a mub if there are no "smaller" upper bounds 
than x. If a lab of S exists, it is also a. mub of S, and any other mub of S 

will be equivalent to the lub. 
We have already seen that a set need not have a lub or glb. Neither need 

it have a mub or an mlb, nor upward or downward covers. For instance, let G 
be the infinite set {y, xl, x2, xa, . . .} ,  and let _> be a quasi-order on G, defined 
as xl > x2 > . . .  > xn > x~+l > . . .  > y. Then there is no upward cover of 
y: for every xn, there always is an x,~+l such that z~ > x~+l > y. This is a 
situation where y has no complete set of upward covers. 

D e f i n i t i o n  13.13 Let (G, ~} be a quasi-ordered set, y E G, S~ a set of 
upward covers of y in G, and Sd a set of downward covers of y in G. We say 
S~, is complete for y, if for all z E G, z > y implies there is an x E S~, such 
that  z "__ x > y. If there exists a finite set of upward covers of y which is 
complete for y, we say y has a finite complete set of upward covers'. 

Similarly, Sd is complete for y, if for all z E G, y > z implies there is an 
x E Sd such that y > x >_ z. If there exists a finite set of downward covers 
of y which is complete for y, we say y has a finite complete set of downward 
eove?~8. (~ 

Note that a complete set of upward covers for y need not contain all 
upward covers of y. However, in order to be complete, it should contain 
at least one element from each equivalence class of upward covers. On the 
other hand, even the set of all upward covers of y need not be complete for 
y. Witness the example given before the last definition: here the set of all 
upward covers of y is empty, but obviously not complete. 

An analogous definition can be given for sets of mub's  and mlb's: 

D e f i n i t i o n  13.14 Let (G ,>)  be a quasi-ordered set, S C_ G, Su a set of 
mub's of S, and Sd a set of mlb's of S. We say S~, is complete for S, if for 
all upper bounds z E G of S, there is an x E St, such that  z ~ x. tf there 
exists a finite set of mub's of S which is complete for S, we say S has a finite 
complete set of mub's. 
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Similarly, Sd is complete for S, if for all lower bounds z E G of 5, there 
is an x E Sd such that  x > z. If  there exists a finite set of mlb 's  of S which 
is complete for 5, we say S has a finite complete set of mlb's. <) 

13.3 Quas i -Ordered  Sets  o f  Clauses  

All particular quasi-orders we will be interested in in this work, are quasi- 
orders on sets of clauses. The most important  quasi-orders we will discuss~ 
are the subsumption order and the implication order. The terminology in 
the previous sections most ly  follows mathemat ica l  conventions, but the ILP 
communi ty  has its own terminology regarding quasi-orders on sets of clauses, 
which is not always uniformly defined. Let g be a set of clauses, S C g, and 
> a quasi-order on g. Then we use the following definitions in ILP: 

�9 If  C , D  E g and C > D, then C is called a generalization of D (or C 
is more general than D), and D is a specialization of C (or D is more 
specific than C). 

�9 Covers are used as defined in the last section. 
�9 An upper bound C C g of S is called a generalization of 5. 
�9 A lub C E g of S is called a least generalization (LG) of S. 
�9 A mub C C g of S is called a minimal generalization (MG) of S. 
�9 A lower bound C E g of S is called a specialization of 5. 
�9 A glb C E g of S is called a greatest specialization (GS) of S. 
�9 An mlb C E g of S is called a maximal specialization (MS) of 5. 

The idea behind this is that  generalization corresponds to an "upward" step 
in the quasi-ordered set, while specialization corresponds to a "downward" 
step. Upward and downward covers generalize or specialize individual clauses 
to other individual clauses; least or minimal generalizations generalize a set 
of clauses to an individual clause; and greatest or maximal  specializations 
specialize a set of clauses to an individual clause. 2 

Generality orders are usually defined in a way that  is correlated with 
logical implication. For example, the quasi-order subsumption, the topic of 
this and the next chapter, is consistent with logical implication: if C subsumes 
D, then C ~ D. 

13.4 A t o m s  as a Quas i -Ordered  Set 

In this section, we assume a language with a finite, non-empty set of predi- 
cate symbols, a finite set of function symbols and a finite, non-empty set of 
constants. We will consider the set .4 of all a toms in this language. In this 
chapter, we assume A includes the special elements T (the top element) and 

2 Some work has also been done on minimally generalizing or specializing sets of clauses 
to other sets of clauses, though we will not discuss this work here. See [AISO94] for gen- 
eralization and [Wro93] for specialization. 
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• (the bottom element). Atoms of the ordinary form P ( t l , . . . , t n )  will be 
referred to as conventional atoms. We will here show how A can be seen as 
a lattice. 

D e f i n i t i o n  13.15 We define a quasi-order __ on the set A of all a toms in 
some language as follows. If A, B E A, then: 

| T _ A ,  f o r e v e r y A E A .  
* A _ l ,  f o r e v e r y A E A .  
| A ~ B, if A, B are conventional atoms and there is a substitution 0, 

such that  AO = B, so A subsumes B. 

Right from the very first applications of the subsumption relation in ILP, 
there has been some controversy about  the symbol used for denoting this 
relation: Plotkin [PloT0] used '_<', while Reynolds [Rey70] used '_>'. We use 
'~-' here, similar to Reynolds'  ' > '  because we feel it serves the intuition to 
view A as somehow "greater" or "stronger" than B, if A _. B holds. 

Notice tha t  if the empty  clause [] is added to the set of atoms, [] can 
be used as the top element T, since it subsumes any atom. Actually, in 
computat ional  logic tile symbols ' T '  and ' •  are often used to denote "true" 
and "false", respectively. Common  usage in ILP is just the reverse: now T = [] 
denotes a clause which is always false. 

As we explained earlier, A and B are defined equivalent (written as A 
B) if A ~ B and B ~ A. Using this equivalence relation we have the following 
lemma,  which shows that  the equivalence class of some a tom A is exactly the 
set of variants of A. 

L e m m a  13.16 Let A, B E A.  Then A ~ B iff one of the following holds: 

| A = B = T  o r A = B = i .  
* A and 13 are conventional atoms which are variants. 

P r o o f  
~ :  Suppose A ~ B. If A = T, then by Definition 13.15 also B = T. 

Similarly for A = •  If A and B are both conventional, then there are substi- 
tutions 0 and ~r such that  AO = B and B e  = A. Hence by Proposition 4.16, 
A and B are variants. 

r Follows immediately from the definition of ~. [] 

The ~_-relation orders the set of atoms according to subsumption. One 
might think that  ordering them according to logical implication would be 
more natural.  As the following l emma shows, the ~_-relation does in fact also 
order the a toms according to implication, because with respect to conven- 
tional atoms, implication and subsumption come to the same. 

L e m m a  13.17 For conventional atoms A and B, A ~ B iff A ~- B. 
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P r o o f  
=~: A cannot be resolved with itself and B is not a tautology, hence it 

follows from the Subsumption Theorem (Theorem 5.17) that A _~ B. 
~ :  If A __ B, then A subsumes B, hence A ~ B. [] 

1 3 . 4 . 1  G r e a t e s t  S p e c i a l i z a t i o n s  

We now proceed to show that (A, ;:-_> is a lattice. In order to do this, we have 
to establish that for any A, B E A, both an LG (lnb) A U B and a GS (glb) 
A ~ B exist. We start with the GS. 

T h e o r e m  13.18 Let Ji be the set of atoms. Then for all A, B E ,4, a greatest 
specialization A [7 B exists. 

P r o o f  By the remark following Definition 13.8, we can assume A and B are 
standardized apart. We divide the proof in the following cases: 

�9 I f A = _ l _ o r B = - l - , t h e n A r T B = •  
B = T, then A[7 B = A. 

�9 Suppose A and B are conventional atoms which are not unifiable. Since 
A and B are not unifiable, there is no conventional atom C such that 
A ~ C a n d B ~ ' - C .  Hence A ~ B = - k .  

�9 Suppose A and B are unifiable conventional atoms. Then there is an 
mgu 0 for {A, B}. We will show A r7 B = AO = BO. 
Let C E A such that A >'- C and B ~- C, then we need to show 
AO • C. If C = _l_, this is obvious. If C is conventional, then there are 
substitutions 0.1 and 0,2 such that A0,1 = C = Bo-2. Here we can assume 
o"1 only acts on variables in A, and 0"2 only acts on variables in B. Let 
0, = 0"1 U 0"2. Notice that 0" is a unifier for {A, B}. Since 0 is an mgu for 
{A, B}, there is a 7 such that 0 7 = 0". Now AO 7 = Ao" = A0"1 = C, so 
AO >- C. [] 

E x a m p l e  13.19 Let A = P(x, f(y), a) and B = P(u, f(a), v). The substitu- 
tion {u/x, y/a, v/a} is an mgu for A and B. Therefore A Yl B = AO = BO = 
P(x, f(a), a). Notice that all variants of P(x, f(a), a) are also GSs of A and 
B. Thus A and B have more than one GS, but they are all equivalent. <3 

1 3 . 4 . 2  L e a s t  G e n e r a l i z a t i o n s  

If A and B are conventional, then A [7 B can be constructed by applying 
the Unification Algorithm to variants of A and B which are standardized 
apart. To construct an LG A t2 B of A and B, we need to do more or less 
the opposite. Rather than finding a most general instance, as the Unification 
Algorithm does, we now need to find a least generalization. Since doing this 
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is more or less the opposite of unification, the algorithm which constructs an 
LG of A and B is called the Anti-Unification Algorithm. It is given in different 
forms both in [Rey70] and in [PloT0]. We adapt Reynolds' algorithm and his 
correctness proof here. 

This algorithm uses term occurrences. Suppose we have the atom A = 
P(f(g(y), x),g(y)). We can identify a term occurrence with its position in 
the atom. The first term f(g(y), z) has position (1) in A, the first occurrence 
ofg(y)  has position (1, 1} (the first position within the term that has position 
(1) in A), the occurrence of x has position (1, 2}, and the rightmost occurrence 
of g(y) in. A has position (2) in A. 

Definit ion 13.20 Let A = P ( t l , . . . , t n )  be a conventional atom. Then ti 
has position (i} in A. If the term f ( s l , . . . ,  s,~) has position ( P l , . . .  ,Pk) in A, 
then sj within this term has position (Pl, . . . ,  Pk, j} in A. 

If some term t has position p in A~ then the pair (t,p) is called a term 
occurrence in A. �9 

Positions are also sometimes called places by others. Now the two oc- 
currences of g(y) in A = P(f(g(y), z),g(y)) can be written as (g(y), (1, 1}) 
and (g(y), (2}). Notice that  the fact that the first occurrence of g(y) in A 
is to the left of the second occurrence of g(y), corresponds to the fact that 
the position (1, 1) comes before (2) in a lexieographical ordering of positions. 
Suppose B = P(f(h(a), y), b). We can say that the first position where A and 
B differ, is (1, 1}. A has g(y) at position (1, 1}, B has h(a) at (1, 1}. 

Now we can give the Anti-Unification Algorithm, which can be used to 
find A U B for conventional atoms A and B. If A and B do not have the 
same predicate symbol, then their LG is T. So for the following algorithm, 
we assume A and B have the same predicate symbol. 

Algorithm 13.1 (Anti-Unification Algorithm) 
I n p u t :  Conventional atoms A, B, with the same predicate symbol. 
Output: A tJ B. 

1. Set A ' = A , B  r = B , 0 = r 1 6 2  
Let zl, z2, �9 �9 be a sequence of variables not appearing in A or B. 

2. If A t = B ~, then output .A ~ and stop. 
3. Let p be the leftmost symbol position where A ~ and B ~ differ. Let s and 

t be the terms occurring at this position in A ~ and B ~, respectively. 
4. If, for some j with 1 < j <_ i, zjO = s and zjcr - t, then replace s at 

position p in A r by zj, replace t at position p in B ~ by zj, and goto 2. 
5. Otherwise set i to i + i, replace s at position p in A ~ by zi, and replace 

t at position p in B ~ by zi. Set 0 to 0 U {zi/s}, ~r to ~r U {zi/t}, and goto 
2. 

E x a m p l e  13.21 Let A = P(f(g(x),  a), g(x)) and B = P(f(h(y),  x), h(y)). 
We can use Algorithm 13.1 to find A W B, as follows: 
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A' = P( f (g (x ) ,a ) ,g (x ) ) ,  B ' =  P( f (h (y ) , x ) , h (y ) ) ,  0 = e, ~r = e, and 
i = O .  
p = (1, t} is the leftmost  symbol  posit ion where A t and B ~ differ, s = 
g(x) and t = h(y). Set i = 1, and replace s and t at posit ion (1, 1} by 
Zl. 

2. d '  = P ( f ( q , a ) , g ( x ) ) ,  B' = P ( f ( z l , x ) , h ( y ) ) ,  0 = {z l /g(x)} ,  c~ = 
{z~lh(~)}, and i =  1. 
p = (1, 2) is the leftmost  symbol  posit ion where A ~ and B ~ differ, s = a 
and t = x. Set i = 2, and replace s and t at posit ion (1,2) by zB. 

3. A t =  P ( f ( z l , z ; ) , g ( x ) ) ,  B'  = P( f ( z l , z2 ) ,h (y ) ) ,  0 = {z l /g (x ) , z2 /a} ,  
= a n d  i - -  2 

p = (2} is the leftmost  symbol  position where A'  and B '  differ, s = g(x) 
and t = h(y). Note tha t  qO = s and z~r  = t, so s and t at posit ion (2} 

are replaced by zl.  
4. Now A '  = P( f ( z l , z~ ) ,  zl) = B', so the a lgor i thm stops and returns 

A' = A U B .  <a 

Note tha t  if two a toms  A = P ( s l , . . . , s ~ )  and B = P ( t l , . . . , t ~ )  are 
generalized to A U B = P ( r l , . . . , r ~ )  by Algor i thm 13.1, and if si = sj 
and ti = t j ,  then ri = rj. For instance, i f A  = P ( a , f ( a , x ) , a )  and B = 
P(x,  f ( x ,  y), x), then ALI B = P(z~, f ( z l ,  z2), Zl), in which the terms at the 
first and third a rgument  place are equal. 

We will now prove tha t  the Anti-Unificat ion Algor i thm does what  it is 
supposed to do. The t ru th  of  the next l emma  is easy to see: 

L e m m a  13 .22  After each iteration of the Anti-Unification Algorithm, there 
are terms s l , . . . , s i  a n d t l , . . . , t i  such that: 

1. 0 -~- {Z l /81 , . . .  ,z i /8i} and  o :  { z l / t l , . . . , z i / t i } .  
2. AIO = A and B'c ~ = B. 
3. For every 1 < j < i, sj and tj differ in their first symbol. 
3- There are no 1 < j , k  << i such that j 7k k, sj = sk and tj = tk. 

P r o p o s i t i o n  13 .23  Let A and t? be two atoms with the same predicate sym- 
bol. Then the Anti- Unification Algorithm with A and B as input returns AI IB. 

P r o o f  It  is easy to see tha t  the a lgor i thm terminates  after a finite number  
of  steps, for any A, B. Let C be the a tom tha t  the a lgor i thm returns, and let 
0 = { z l / s l , . . . , z i / s i }  and cr = { z l / t l , . . . , z i / t i }  be the final values of  0 and 
cr in the compu ta t i on  of  C (so C equals the final values of  A '  and B '  in the 
execution of the algori thm).  Then  CO = A and C a  = B by L e m m a  13.22, 
par t  2. Suppose D is an a t o m  such tha t  D ~ A and D ~ B. In order to show 
tha t  C = A U B, we have to prove D ~ C. 

Let E = CV1D, which exists by Theorem 13.18. Then  C __ E and D _ E.  
Since E is a GS of  { C , D )  and C ~- A and D ~_ A, we must  have E _ A. 
Similarly E _ B. Thus  there are subst i tut ions 7 , # ,  u, such tha t  C 7 = E,  
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c 

A B 

Figu re  13.3: Illustration of~he proof 

A = E # = C T # , a n d B = E v = C T u .  T h e n C 0 = A = C T # a n d C a = B =  
CTu (see Figure 13.3 for illustration). Hence if x is a variable occurr ing in C, 
then x.O = xT# and x~r = XTU. 

We will now show tha t  C and E = C7  are variants,  by showing tha t  7 is 
a renaming  subst i tu t ion for C. Suppose it is not.  Then 7 maps  some variable 
x in C to a term tha t  is not  a variable, or 7 unifies two distinct variables x, y 
in C. 

Suppose x is a variable in C, such tha t  x7 = t, where t is a term tha t  is not  
a variable. If  x is not  one of the zj 's ,  then xTg = xO = x, contradict ing the 
assumpt ion  tha t  x 7 = t is not  a variable. But  on the other hand, if x equals 
some zj,  then t#  = xT#  = xO = sj and tv  = xTu = xer = t j .  Then sj and 
t j  would both  start  with the first symbol  of t, contradict ing L e m m a  13.22, 
par t  3. So this case leads to a contradict ion.  

Suppose x, y are dist inct  variables in C such tha t  3, unifies x and y. (1) 
If  neither x nor y is one of the zj 's,  then xT# = x0 = x r y = gO = YTP, 
contradic t ing x~, = YT. (2) If  x equals some zj and y does not,  then xT# = 
xO = sj and x'yu = x(r = t j ,  so z'yp r x3'~' by L e m m a  13.22, par t  3. But  
YT# = yO = y = yc, = YT~', contradict ing x~/ = y% (3) Similarly for the 
case where y equals some zj and x does not.  (4) If  x = zj and y = z~., 
then j :fi k, since x 7~ y. Furthermore~ sj = xO = x~/# = YT# = yO = sk 
and tj  = x~r = ~Tu = yTu --- yo- = tk. But  this contradicts  L e m m a  13.22, 
par t  4. So the assumpt ion  tha t  7 unifies two variables in C also leads to a 
contradict ion.  

Thus  7 is a renaming subst i tut ion for C, and hence C and E are variants.  
Finally, since D _ E,  we have D ~ C. [] 

Using this proposit ion,  we can now establish the existence of a least gen- 
eralization A U B of  any A, B C A. Notice tha t  A k.l B is the only (up to 
equivalence) min imal  generalization of  {A, B} in A, and A N B is the only 
max ima l  specialization of {A,  B }  in A. 

T h e o r e m  13 .24  Let A be the set of  atoms. Then for  all A, B G A ,  a least 
generalization A I I  B exists. 

P r o o f  We divide the proof  in the following cases: 
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�9 If A =  T o r B  = T, then A U B  = T. I f A = _ l _ , t h e n A U B  = B. If 
B = .1_, then A U B = A. 

�9 If A and B are conventional a toms with the same predicate symbol, 
A U B is given by the Anti-Unification Algorithm. 

�9 If A and B are conventional a toms with different predicate symbols, 
then A U B = T. [] 

E x a m p l e  13.25 Let A = P(a, x, f (x ) )  and B = P(y, f(b), f ( f (b))) .  Then 
A I-7 B = P(a, f(b), I ( f (b)))  is obtained from the Unification Algorithm. On 
the other hand, A U B = P(zl ,  z2, f(z2)) can be obtained by applying the 
Anti-Unification Algori thm to A and B. See Figure 13.4. <~ 

A U B  = P(Zl,Z~,f(z2)) 

A = P(< ~, f(~:)) B = P(y, ](b),/(f(b))) 

A • 13 = P(a ,  f ( b ) , f ( f ( b ) ) )  

Figure  13.4: An LG and a GS of atoms A and B 

Now that  we have established the existence of an LG and GS of any 
A, B C ,4, we have shown that  the set of a toms ordered by subsumption,  is 
a lattice. 

T h e o r e m  13.26 Let ,4 be the set of atoms. Then (AM, ~} is a lattice. 

Notice that  the partial  order on the equivalence classes (the sets of vari- 
ants) of .4 induced by >-, also forms a lattice. In this lattice, the lub and glb 
of [x] and [y] are Ix U y] and [x ~ y]. Other than in the quasi-order, the lub 
and glb are unique here. 

The result that  (,4, _>-) is a lattice shows that  the set of a toms is wen- 
structured. The more structured a set is, the better  it is suited to be searched 
for candidates to include in a theory. This search usually procedes by small 
upward steps (generalization) or downward steps (specialization) in the lat- 
tice. If  we want to generalize or specialize a set of a toms to a single atom, 
we can use a least generalization or greatest specialization of this set. On the 
other hand, we may  also want to generalize or specialize an individual a tom 
to another individual a tom.  The next section discusses covers, which are the 
smallest non-trivial steps between individual a toms that  we can take in the 
AM-lattice. 
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13.5 Covers  

In this section we will discuss the different sorts of  covers of atoms.  Since B 
is a downward  cover of  A iff A is an upward cover of B, we will first restrict 
a t tent ion to downward covers. Afterwards, we extend our results to upward 
covers. 

1 3 . 5 . 1  D o w n w a r d  C o v e r s  

The next example gives the first type  of downward covers. 

E x a m p l e  13 .27  Suppose A = P(x,  z). We can prove tha t  B = P(x,  f (y) )  is 
a downward covet" of A. On the other hand  B '  = P(x,  f (x ) )  is not  a downward  
cover of A, since we have A >- B > B ~. <~ 

L e m m a  13 .28  ( D o w n w a r d  c o v e r  t y p e  1) Let A be a conventional atom, 
f an n-ary function symbol, z a variable in A, and x l , .  �9 x~ distinct vari- 
ables not appearing in A. Let 0 = { z / f ( x l , . . . , x n ) } .  Then B = AO is a 
downward cover of A.  

P r o o f  It  is clear tha t  A and B are not  variants,  so A >- B. Suppose there 
is a C such tha t  A >- C ~- B. Then  there are r # such tha t  A~r = C and 
C/-t = B, hence AG# = B = AO. Here cr only acts on variables in A, and # 

only acts on variables in C. 
Let (x, p) be a te rm occurrence in A, where x is a variable. Suppose x :fi z, 

then xO = x, so (x,p) must  also be a term occurrence in B. Hence xc~ must  be 
a variable, for otherwise (xcr#, p) in B would contain a constant  or a function. 
Thus  cr mus t  m a p  all variables other  than  z to variables. Furthermore,  cr 
cannot  unify two distinct variables in A, for then 0 would also have to unify 
these two variables, which is not  the case. 

If  zc~ is also a variable, then c~ would m a p  all variables to variables, and 
since r cannot  unify distinct variables, it would map  all distinct variables 
in A to distinct variables. But  then r would be a renaming subst i tu t ion for 
A, contradict ing A >- C. Hence r mus t  m a p  z to some term containing a 

funct ion symbol .  
Now the only way we can have Ar = B, is if zo" = f ( Y l , - . . ,  Yn) for 

dist inct  yi not  appear ing in A, and no variable in A is mapped  to some yi 
by cr. But  then A(r and B would be variants, contradict ing A r  = C >- B. 
Therefore such a C does not  exist, and B is a downward cover of A. [] 

The  next l emma  gives another  type of cover, which can be obtained by 
subs t i tu t ing  a constant  for a variable in A. Since a constant  can be seen as a 
funct ion symbol  of arity O, this type of cover can be seen as a subtype of the 
previous type.  Thus  we do not  need to prove the next lemma.  
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L e m m a  13.29 ( D o w n w a r d  cover  t y p e  2) Let A be a conventional atom, 
z a variable in A, and let a be a constant. Let 0 = {z /a} .  Then B = AO is a 
downward cover of A. 

E x a m p l e  13.30 P(a, z, f(a)) ,  P(x,  a, f(a)) and P(x,  b, f(a)) are downward 
covers of type 2 of A = P(x,  z, f(a)).  <1 

E x a m p l e  13.31 The third type of cover of downward atoms can be obtained 
by unifying two variables in A. So if A = P(x,  y, f ( z ) ) ,  then P(x,  x, f ( z ) ) ,  
P(x ,  y, f ( x ) )  and P(x,  y, f (y))  are downward covers of type 3 of A. <1 

L e m m a  13.32 ( D o w n w a r d  cover  t y p e  3) Let A be a conventional atom, 
and x , z  two distinct variables in A. Let 0 = { z / x } .  Then B = AO is a 
downward cover of A. 

P r o o f  It is clear that A ~- B. Suppose there is a C such that A ~- C ~- B. 
Then there are ~, # such that Ac~ = C and C# = B, hence Ac~# = B = AO. 
Here r only acts on variables in A, and # only on variables in C. Note that 
~r and # can only map variables to variables, since otherwise Ar  = B would 
contain more occurrences of functions or constants than A, contradicting 
AO = B, since 0 does not add any occurrences of function symbols to A. 

If c~ does not unify" any variables in A, then A and C would be variants, 
contradicting A ~- C. If y unifies any other variables than z and x, then we 
could not have Ar  = B. Hence ~r must unify z and x, and cannot unify 
any other variables. But then Ar and B would be variants, contradicting 
Ac~ = C ~ B. Therefore such a C does not exist, and B is a downward cover 
of A. [] 

In Corollary 13.40, we will show that every downward cover of an atom A 
is a variant of one of the three types of downward covers we discussed above. 
Thus a variant of each downward cover can be obtained by applying one of 
the following elementary substitutions: 

D e f i n i t i o n  13.33 Let C be a clause. An elementary substitution for C is 
one of the following: 

�9 { z / f ( x l , . . . ,  x~)), where z is a variable occurring in C, and x l , . . . ,  xn 
do not appear in C. 

�9 { z /a ) ,  where z is a variable occurring in C. 
�9 { z / x ) ,  where z and x are distinct variables occurring in C. 

It is easy to see that if A = T, then the set of downward covers of A is 
exactly the set of most general atoms, defined as follows: 

D e f i n i t i o n  13.34 Let P be an n-ary predicate symbol, and x l , . . . ,  xn dis- 
tinct variables. Then P ( x l , . . . ,  xn) is a most general atom. �9 
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L e m m a  13.35 Every most general atom is a downward cover of T. 

E x a m p l e  13.36 P(x),  P(y) and Q(x, y) are downward covers of T. <1 

Every most general atom is a downward cover of T, and the three types 
mentioned above together form all downward covers of a conventional atom 
A. Since it is clear that • does not have any specializations, it does not have 
any downward covers. So now we have completely specified all downward 
covers in the set A of atoms. 

1 3 . 5 . 2  U p w a r d  C o v e r s  

Dually, B is an upward cover of A iff A is a downward cover of B. Thus the 
upward covers of some conventional atom A are also of three types, which 
can be constructed by inverting the three elementary substitutions: 

| Type 1: Let t = f ( x l , .  �9 x~) occur in A, where all xi are distinct, and 
each occurrence of xi in A is within an occurrence of t. Then replacing 
all occurrences of t in A by some new variable z not in A yields an 
upward cover of A. 

| Type 2: Replacing some occurrences of a constant a by a new variable 
z gives another upward cover of A. 

�9 Type 3: Replacing some (but not all) occurrences of a variable x by a 
new variable z also yields an upward cover of A. 

The next lemma is obvious: 

L e m m a  13.37 Every ground atom is an upward cover of -k. 

Note that if we have a finite number of predicate symbols in the language, 
then the set of downward covers of T (i.e., the set of all most general atoms), 
is finite up to variants. On the other hand, if the language contains a function 
symbol of arity 1 or more, then the set of upward covers of • is infinite. For 
instance, the ground atoms P(a), P( f (a) ) ,  P(Z2(a)) , . . .  are all upward covers 
of _1_. 

Since the top element T has no generalizations, we have hereby exhausted 
all upward covers within the set of atoms. 

13.6 Finite  Chains of Downward  Covers 

In this section, we will show that given two atoms A and B such that A ~- B, 
there is a finite sequence of downward covers from A to a variant of B. This 
means that if we want to get from A to B, we only need to consider downward 
covers of A, downward covers of downward covers of A, etc. First we give an 
example: 
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Example 13.38 Let A = P(x,  y) and B = P( f (g(z ) ,g (z ) ) ,  a). Letting 0 = 
{x / f ( g ( z ) ,  g(z)), y/a},  we have A0 = B. By decomposing 0 into elementary 
substitutions, we can find the following chain of downward covers from A to 
a variant of B: 

1. Let A 0 = A .  
2. Let o'0 = { x / f ( z l ,  z2)} and A1 = A0(r0 = P ( f ( z l ,  z2), y). 
3. Let ch = {zl /g(z3)} and A2 = A1ch = P(f(g(z3),  z2), y). 
4. Let ~r2 = {z2/g(z4)} and A3 = A2~2 = P(f(g(z3),g(z4)) ,  y). 
5. Let r = {y/a} and A4 = A3cr3 = P(f(g(z3),  g(z4)), a). 
6. Let ~4 = {z3/z4} and A5 = A4cr4 = P(f(g(z4),g(z4)) ,  a). 

Thus we have constructed the chain Ao = A ~- A1 ~- A2 ~- A3 ~- A4 ~- A5 w~ 
B, where each Ai+l is a downward cover of Ai. The composition ~rochcr2c'3cr4, 
restricted to the variables in A, equals 0. <l 

Note that it is not always possible to get from A to B itself using only 
elementary substitutions. For instance, we cannot get from A = P(x)  to 
B = P(Z(x)) .  But we can get to ]3' = P( f (y ) ) ,  which is a variant of B. Given 
A ~ B, the following algorithm is able to find a finite chain of downward 
covers from A to a variant of B. 

Algorithm 13.2 (Finite Downward Cover Chain Algorithm) 
I n p u t :  Conventional atoms A, B, such that A ~- B. 
O u t p u t :  A finite chain A = A0 ~- A1 ~ . . .  ~- A~-I  ~- An ~ B, where each 
Ai+l is a downward cover of Ai. 

1. Set A0 = A and i = 0, let 00 be such that AOo -= B. 
2. If no term in 0i contains a function or a constant, then goto 3. 

If x / f ( t l , . . . , t ~ )  is a binding in 0i (n _> 0), then choose new distinct 
variables zl, �9 �9 �9 zn. 
Set Ai+l = A i { x / f ( z l , . . . , z ~ ) } .  
Set Oi-F1 : (0 i \{x / f ( t l , . . . , t n )} )  [-J {z l / t l , . . - ,Zn/ tn} .  
Set i to i +  1 and goto 2. 

3. If  there are distinct variables x, y in Ai, such that xOi = yOi, then: 
Set Ai+l = A i { x / y } .  
Set 0~+~ = 0A{x/x0 d .  
Set i to i +  1 and goto 3. 
Otherwise (if such x, y do not exist), set n = i and stop. 

Intuitively, step 2 of the algorithm first instantiates the appropriate vari- 
ables to functions and constants, and afterwards step 3 unifies appropriate 
variables to obtain a variant of B. The next lemma shows the Finite Down- 
ward Cover Chain Algorithm to be correct. 

Lemma 13.39 Let A and B be conventional atoms such that A ~- B. Then 
there is an n > 0 such that Algorithm 13.2 with A and B as input terminates. 
The chain A = Ao ~ A1 ~- . . .  ~- An-1 >- An constructed by the algorithm 
has the properties that each Ai+l is a downward cover oral ,  and An ~ B. 
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P r o o f  Step 2 of the algorithm cannot be repeated indefinitely long, since 
Oi+, contains one occurrence of a function symbol less than 0i after one 
application of this step. Similarly, step 3 cannot be repeated without end, 
since 0i+i acts on fewer distinct variables than 0i after this step. This shows 
that  the algori thm must  terminate,  for some i = n > 0. 

It  is clear from the algorithm that  Ai+i is a downward cover (of one of 
the three types) of Ai. It  remains to show that  An ~ B. For this, we prove 
the invariant AiOi = B, by induction on i. From this invariant, we know the 
sequence of covers has the following structure: 

A =  A0 -+ Ai -+ " . - +  Ai -% B. 

1. AoOo = B,  from the first line of the algorithm. 
2. Suppose AiOi = B.  

If step 2 of the algorithm is applied, then: 
Ai+l = A i { x / f ( z l  . . . .  , zn)}, Ai+l is a type 1 or 2 (if n = 0) downward 
cover of Ai, 
e i + t  = . .  n/tn}. 

Now we have B = AiOi = A i { x / f ( z l , . . . ,  zn)}Oi+z = Ai+zOi+z. 
If step 3 of the algorithm is applied, then: 
Ai+i = A i { x / y } ,  Ai+l is a type 3 downward cover of Ai, 
Oi+l = 0 A { , / x 0 i } .  
Now B = AiOi = Ai{x/y}Oi+l = Ai+lOi+l. 

Since step 2 of the algorithm was no longer applicable to On (otherwise the 
algorithm would not have terminated with i = n), 0n cannot map  variables to 
terms containing functions or constants. Also, since step 3 was not applicable 
to On, Or~ does not unify any variables in An. This means that  On is a renaming 
substitution for An. Now from the invariant, we know An ~ AnOn = B.  [] 

In other words, i fA > B, then there is a sequence Yl, �9 �9 Cn of elementary 
substitutions such that  B ~ A r 1 6 2  Note that  the atoms in the chain 
constructed above, are all downward covers of one of the three types defined 
above. Thus if B is a downward cover of A, there is a downward cover Az of 
one of the three types, such that  A = A0 ~- Ai ~ B. 

C o r o l l a r y  13.40 Every downward cover of a conventional atom A is a vari- 
ant of a downward cover of A of one of the three types defined above, 

T h e o r e m  13.41 Let A and B be atoms such that A >- B,  Then there is a 
finite chain A = Ao >- Ai  >- . , .  >~ .An-i >- An ~ B~ where n > 1 and each 
Ai+l is a downward cover of Ar 

P r o o f  We distinguish the following four cases: 

| A and B are conventional: this case is Lemma 13.39. 
. A = T and B is conventional: suppose B has predicate P, of arity n. 

Then A1 = P ( x z , . . . , a n )  is a downward cover of A, and A1 _ B. If 



13.7. F INITE  CHAINS OF U P W A R D  COVERS  237 

A1 ~ B, we are done. Otherwise, by the previous case there is a finite 
downward cover chain from A1 to B. 

�9 A is conventional and B = L: if A is ground, B is a downward cover 
of A. Otherwise, let B '  be a ground instance of A (since we assumed 
our language has a non-empty set of constants, such a ground instance 
always exists). By the first case of the proof, there is a finite downward 
cover chain from A to B' .  B is a downward cover of B ' ,  hence there is 
a finite downward cover chain from A to B. 

�9 A = T and B = _1_: let A' = P ( x l , . . . ,  x,~) be a most general a tom, and 
B '  a ground instance of A'.  By the first case, there is a finite downward 
cover chain from A' to Bq A' is a downward cover of A and B is a 
downward cover of B ~, hence the result follows. [] 

It  ibllows from the previous theorem that  if A >- B, then there is a 
downward cover C of A, such that  A 5- C _ B. This shows as a corollary 
that  the set of downward covers of a conventional a tom is complete for that  
a tom. 

Given that  the language contains a finite number of function symbols, the 
set of non-equivalent (non-variant) type 1 downward covers of a conventional 
a tom is finite. Also, if the number  of constants is finite, the number  of type 2 
covers is finite. Since the set of non-equivalent type 3 covers is also finite, it 
is possible to construct a finite complete set of downward covers of any con- 
ventional a tom. Furthermore,  since we assume a language with only finitely 
many  predicate symbols, the number of non-equivalent most  general a toms 
is also finite, so the set of non-equivalent downward covers of T is finite. The 
set of downward covers of _1_ is of course empty, and the empty  set is a finite 
complete set of downward covers of _L. This gives the following corollary: 

Corollary 13.42 Every atom has a finite complete set of downward covers. 

13.7 Finite Chains of  Upward Covers 

Algori thm 13.2 is given A >- B, and starts from A, working downward to a 
variant of B. We might want to reverse the algorithm, to start  from B instead 
of A, conducting an upward search towards a variant of A. We will not go 
into details here, but just  give some examples to indicate the differences with 
the downward algorithm. 

E x a m p l e  13.43 Let A = P ( f ( x , y ) , z )  and B = P( f (g(v) ,g(v) ) ,b) .  The 
following is one possible chain of upward covers from B to a variant of A: 

1. Bo = B = P( f (g(v) ,g(v) ) ,b ) .  
2. B1 = p ( / ( g ( v ) ,  g(zl)) ,  b). 
3. B2 = P( f ( z2 ,g ( z l ) ) ,  b). 
4. B3 = P( f ( z2 ,  z3), b). 
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5. B4 = P( f ( z2 ,  z3), z4) ~-, A. 

Note that  while Algorithm 13.2 first instantiates variables to functions and 
constants, and then unifies some variables, in this example we do the reverse: 
first the step from Bo to B1 "undoes" the unification of v and zl, and then 
the steps from 81 to 84 "undo" some instantiations of variables. <1 

If we want to describe this reversed algorithm in a way symmetr ical  to 
Algorithm 13.2, then we should use inverse substitutions, instead of the sub- 
stitutions 00 , . . . ,  0N used in Algorithm 13.2. However, like the inverse of a 
function, the inverse of a substitution need not be a function itself, because a 
substitution may map  occurrences of distinct variables to the same term. In 
order to be able to invert substitutions, we need positions of term occurrences 
again. 

For example, let A = P(x , y )  and B = P(g(b),g(b)).  Letting 0 = 
{z/g(b),  y/g(b)}, we have AO = B. If we want to establish an inverse substi- 
tution 0 -1 from B to A, we need to map  the first occurrence o f t (b )  in B to 
the variable x, but the second occurrence to y. Thus, whereas a substitution 
is a function from variables to terms, an inverse substitution such as 0 -1 
cannot be a function from terms to variables. 

However, since every term occurrence in B has a unique position, 0 -1 
can be regarded as a function from term occurrences to variables. Thus we 
can write 0 - I  = {(g(b)/x,  (1)), (9(b)/y, (2))}, denoting that  g(b) at position 
(1} should be mapped  to x, and g(b) at position (2} should be mapped  to y. 
Using this notation, we have BO -1 = A. 

Notice that  this notation can also be used to describe the application 
of the ordinary substitution 0 to A. Then 0 = {(x/g(b),  (1)), (y/9(b), (2))}. 
See [NF91] for a more detailed discussion of inverse substitutions. 

E x a m p l e  13.44 Let A = P ( f ( x ,  y), z) and B = P( f (g(v ) ,g (v ) ) ,  b) again, 
as in Example  13.43. Then dO = B, where 0 = {x/g(v) ,  y/g(v),  z/b},  and 
BO - t  = A, where 0 -1 = {(g(v) /x ,  (1, 1}), (g(v) /y , (1,2}) ,  (b/z, (2>)}. Now 
the following steps give us the chain of upward covers: 

1. Bo = B = P( f (g (v ) ,g (v ) ) ,b ) .  
2. B1 = Boo'o = P( f (g (v ) , g ( z l ) ) ,  b), for ~0 = { (v / z l ,  (1, 2, 1))}. 
3. B2 = 8 1 o " 1  : P( f ( z2 ,g ( z l ) ) ,  b), for (rl = {(9(v)/z2, (1, 1>)}. 
4. Ba = B2(r2 = P(f(z21 za), b), for (r 2 = {(g(zl) /za,  (1, 2})}. 
5. B~ = Bac~a --- P ( f (z2 ,  za), z4) ~ A, for o-3 - {(b/z4, (2})}. <1 

As we have seen on p. 234, there are three standard types of upward 
covers. If we work out the details of the inverse of the Finite Downward 
Cover Chain Algorithm, the following results immediately follow, analogous 
to the downward case: 

C o r o l l a r y  13.45 Every upward cover of a conventional atom A is a variant 
of an upward cover of A of one of the three standard types. 
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T h e o r e m  13.46 Let A and 13 be atoms such that A >- B. Then there is a 
finite chain A ~ Bn ~- Bn-1 ~- ,., ~- B1 ~ Bo = B, where n > 1 and each 
Bi+ 1 i8 an upward cover of Bi. 

One asymmet ry  of the downward and upward cases concerns the upward 
covers of •  We have shown that  every atom, including V and •  has a finite 
complete set of downward covers. However, in case of a language without 
constants but with at least one function symbol of arity _> 1, the bo t tom 
element _1_ has no upward covers at all, let alone a finite complete set of 
upward covers. In case of a language with at least one constant and at least 
one function symbol of arity > 1, there are an infinite number  of conventional 
ground atoms,  each of which is an upward cover of •  Together these ground 
a toms comprise a complete set of upward covers of •  but again _1_ has no 
finite complete set of upward covers in this case. However, each conventional 
a tom does have a finite complete set of upward covers. The top element T 
does not have any upward covers at all, but it has the empty  set as a finite 
complete set of upward covers, since no element lies "above" T. 

C o r o l l a r y  13.47 Every atom other than • has a finite complete set of up- 
ward covers. 

E x a m p l e  13.48 Let A = P(x, f(y), a), and suppose the language contains 
no other function symbols than f ,  and two constants a and b. The set of 
non-equivalent downward covers of A consists of the following: 

1. Type 1: P(f(z) ,  f(y), a), P(x, f ( f (z)) ,  a). 
2. Type 2: P(a, f(y), a), P(b, f(y), a), P(x, f(a), a), P(x, f(b), a). 
3. Type 3: P(x, f(x),  a). 

The set of non-equivalent upward covers of A consists of: 

1. Type 1: P(x,  z, a). 
2. Type 2: p ( , ,  f(y), z). 
3. Type 3: none. <a 

W h y  do  we c o n s i d e r  u p w a r d  a n d  d o w n w a r d  cove r s  s e p a r a t e l y ?  

The reader may wonder why we take all this trouble about  inverse sub- 
sti tutions to find chains of upward covers. As we have seen before, if 
A0 = A ~- A1 ~ . . .  ~- An ~ B is a chain of downward covers from A to 
B, then this chain in opposite order is also a chain of upward covers from (a 
variant of) B to A. So, why bother with two different ways (one downward, 
one upward) of constructing such a chain? 

The reason for this is the general direction of search in an application. 
In top-down search, we want to find some unknown specialization B of A. 
Then we should use substitutions to try and find a chain of downward covers 
s tar t ing from A, as in Algori thm 13.2. Since such finite chains always exist for 
atoms, we can restrict at tention to downward covers of A, downward covers 
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of downward covers of A, etc. On the other hand, in bot tom-up search we 
want to find some unknown generalization A of B. In that case, we should 
use inverse substitutions to find a chain of upward covers from B to A, as in 
Example 13.44. 

13.8 Size 

The generality relation ~ on atoms was defined by sabs*;itution. Is there a 
quantitative way to express the complexity of an atom, which coincides with 
the generality relation __? For instance, A = P(x,  y) > P( f ( x ) ,  f(y)) = B, 
which coincides with the fact that  B contains more occurrences of symbols 
than A. On the other hand A = P(x,  y) >- P(x,  x) = C, which coincides 
with the fact that  A contains more distinct variables than C. Roughly, we 
would expect that  a more general atom contains fewer symbols, but more 
distinct variables than a more specific atom. Based on this intuition, we 
can define the following size to measure the complexity of an atom. This 
measure was introduced by Reynolds in [Rey70], where it was used to prove 
Theorems 13.41 and 13.46. We proved these results directly, bat  size is still 
an interesting measure for expressing the complexity of atoms. 

D e f i n i t i o n  13.49 The size of an atom is defined as follows: 

| s i z e ( T )  = O. 

| size(L) = ~ .  
* if A is a conventional atom, then 

size(A) = the number of symbol occurrences in A 
- the number of distinct variables in A. <> 

By 'symbol occurrences', we mean occurrences of predicates symbols, function 
symbols, constants, and variables. 

E x a m p l e  13.50 The atom A = P(x,  g(x, y)) contains 5 symbol occurrences: 
P, x, g, x, and y. It contains two distinct variables, so size(A) = 5 - 2 = 3. 
Similarly, size(P(z ,  y)) = 3 - 2  = 1 and size(Q(x, f (x) ,g(a,  f(a)))) = 8 - 1  = 

7. <~ 

Note that if A ~ B, then size(A) = size(B). The converse does not hold. 
For instance, A = P(a, ae) and B = P(aa, a) have the same size, but are not 
variants of each other. 

L e m m a  13.51 Let A and B be atoms. If  B is a downward cover of A, then 
size(A) <  ize(B) 

P r o o f  We distinguish the following cases: 

| A = T. Then size(A) = 0, and B must be a most general atom 
P ( x l , . . . , x , . ) .  Hence size(B) = (n + 1) - n = 1 > 0 = size(A). 
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�9 A is ground and B = _t_. Then size(A) < c~ = size(B).  
�9 A is conventional and B is a type 1 or type 2 cover. 

B = AO, where 0 = { z / f ( z l , . . . , x , ~ ) }  and x l , . . . , x n  are new distinct 
variables (n = 0 in case of a type 2 cover). For every occurrence of z in 
A, there are n + 1 new symbol occurrences, namely f ,  xl ,  �9 �9 x~, in B. 
Let k be the number  of occurrences o fz  in A. Then k > 1 and size(B) = 
(number of symbol occurrences in A - k  + k ,  (n + 1)) - (number of 
distinct variables in A - 1  + n) = size(A) + n ,  k - n + 1 > size(A).  

�9 A is conventional and B is a type 3 cover. 
B = AO, where t9 = { z / x } .  A and B contain the same number  of 
symbol occurrences, but B contains one distinct variable less than A. 
Hence size(B) = size(A) + 1. [] 

The size-complexity coincides with the >- order in the following way: 

Proposition 13.52 Let A and B be atoms. I f  A ~- B, then size(A) < 
size(B).  

Proof  By Theorem 13.41, there is a finite chain A = A0 >- A1 >- . . .  >-- 
A,~-I >- An ~ B, where n > 1 and each Ai+l is a downward cover ofA~. Using 
the previous lemma, we have size(A) < size(A1) < . . .  < s ize(A~_l)  < 
size(An) = size(B) (the final equality holds because variants have equal 
size). [] 

The converse of this result does not hold. For example, if we put A = 
P(a, b) and B = P(a, f(b)),  then size(A) = 3 < 4 = size(B),  but A ~ B. 

13.9 Summary 

In this chapter, we started by defining the notions of a quasi-order, a par- 
tial order, and an equivalence relation. Some important  concepts defined for 
quasi-ordered sets, are the least upper bound (in ILP terminology: least gen- 
eralization) and the greatest lower bound (greatest specialization) of a finite 
subset of the ordered set. These notions may be relaxed to minimal upper 
bound (minimal generalization) and maximal lower bound (maximal  special- 
ization), respectively. A lattice is a quasi-ordered set in which any two ele- 
ments  have a least upper bound and a greatest lower bound. Downward and 
upward covers of an element in the quasi-ordered set can be seen as the max-  
imal non-trivial specializations and the minimal  non-trivial generalizations 
of that  element, according to this order. 

We used these concepts in an analysis of the set of a toms quasi-ordered by 
subsumption.  Here .A denotes the set of all conventional a toms in a language, 
with additional top and bo t tom elements T, _l_. The outcome of this analysis 
can be summed up in the following points: 
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| Every finite set of atoms has a greatest specialization (obtainable from 
the Unification Algorithm) and a least generalization (obtainable from 
the Anti-Unification Algorithm). Thus (A, h)  is ~ lattice. 

. Every conventional atom has a finite complete set of upward and down- 
ward covers. The downward covers of a conventional atom A are ob- 
tained by applying each of the three kinds of elementary substitutions 
to it, the upward covers are obtained by inverting those substitutions. 
The downward covers of T are the most general atoms. The upward 
covers of _t_ are the ground atoms. 

| If  A ~- B, then there is a finite chain of downward covers from A to a 
variant of B, and a finite chain of upward covers from B to a variant 
of A. 

The chapter ended by defining size, which is a measure for the complexity of 
atoms. This measure is consistent with ~.  Tha t  is, if A ~- B, then size(A) < 
size(B). 



Chapter 15 

The Implication Order 

15.1 Introduct ion  

Subsumption is the generality order that is used most often in ILP. It is 
used much more than logical implication. 1 The reasons for this are mainly 
practical: subsumption is more tractable and more efficiently implementable 
than implication. For instance, subsumption between clauses is decidable 
(Section 14.3), while implication is not (Section 7.8). However, a clause C 
which implies another clause D, need not subsume this D. For instance, take 

C = P(f(x))  +-- P(x) 
D ---- P(f2(x)) +-- P(x) 

Then C ~ D, but C ~ D. Subsumption is too weak in this case. A further 
sign of this weakness is the fact that two tautologies need not be subsume- 
equivalent, even though they are logically equivalent. 

For the construction of least generalizations, subsumption is again not 
fully satisfactory. For example, if S consists of the clauses D1 = P(f2(a)) +-- 
P(a) and 02 = P(f(b)) +-- P(b), then the LGS of S is P(f(y))  +-- P(x). 
On the other hand, the clause P(f(x))  +-- P(x) seems more appropriate 
as a least generalization of S, since it implies D1 and D2, and is implied 
by the LGS. However, it does not subsume D1. Even for clauses without 
function symbols, the subsumption order may still be unsatisfactory. Consider 
D1 = P(x, y, z) +-- P(y, z, x) and 92 = P(x, y, z) +- P(z, x, y). The clause 
D1 is a resolvent of D2 with D2, and D2 is a resolvent of D1 with D1, so D1 
and D2 are logically equivalent. This means that  D1 is a least generalization 
under implication (LGI) of the set {D~, D2 }. Yet the LGS of these two clauses 
is P(x, y, z) +- P(u, v, w), which is clearly an over-generalization. As these 
examples also show, the subsumption order is particularly unsatisfactory if 

:tit  is  e a s y  t o  see t h a t  l o g i c a l  i m p l i c a t i o n  is r e f l ex ive  a n d  t r a n s i t i v e ,  a n d  h e n c e  a q u a s i -  
o r d e r  on  c l a u s e s .  
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we consider recursive clauses: clauses where the same predicate symbol occurs 
both in a positive and a negative literal. Thus it is desirable to make the step 
from the subsumption order to the more powerful implication order. 

A further advantage of the implication order is that one can easily com- 
pare a set of clauses (a theory) with another theory or clause. For example, 
if E = {(P +-- Q), (Q +- R)} and C = P +- R, then we have E ~ C. On the 
other hand, subsumption cannot be used here to compare the generality of 
E and C, because neither member of E subsumes C. 

In this chapter we discuss some of the properties of the implication order. 
Firstly, we show that if S is a finite set of clauses containing at least one 
non-tautologous function-free clause (apart from this clause, S may contain 
a finite number of arbitrary other clauses, including clauses which contain 
function symbols), then there exists a computable least generalization (LGI) 
of S under implication. Secondly, every finite set of clauses has a greatest spe- 
cialization (GSI) under implication. These results are drawn from [NW96b]. 
The proof of the LGI result makes use of the Subsumption 'Theorem, of some 
ideas from [Ide93a, Ide95] concerning a restricted form of implication called 
T-implication, and of an important lemma due to Gottlob [Got87]. 

This LGI result does not solve the general question concerning the exis- 
tence of LGIs, but it does provide a positive answer tbr a large class of cases. 
These cases may be of great practical significance, since the presence of only 
one non-tautologous function-free clause in a finite S already guarantees the 
existence and computability of an LGI of S, no matter what other clauses S 
additionally contains. Particularly in implementations, the language is often 
required to be function-free, as can for instance be seen from the systems we 
survey in Section 19.6. 

The third property of the implication order that we discuss concerns cov- 
ers. Here the negative results from the subsumption order carry over to the 
implication order. This result stems from [LN94b]. 

15.2 Least General izat ions  

The question whether every finite set of clauses has a least generalization 
under implication (LGI), has been devoted quite a lot of attention. For Horn 
clauses, this question has already been answered negatively. The following 
example is taken from [MD94]. 

Let D1 = P(f~(x)) +--- P(x), D2 = P(f3(x)) +- P(x), C1 ---- P(f(x))  ~-- 
P(x), and 62 = P(f~(y)) +- P(x). Then we have both C1 ~ {D1,D2} 
and C2 ~ {D1, D~}. It is not very difficult to see that a Horn clause which is 
more specific than either C1 or C2, cannot imply both D1 and D2. For C1: no 
resolvent of C1 with itself implies D2, and no clause that is properly subsumed 
by C1 still implies D1 and D2. Hence, by the Subsumption Theorem, there 
is no proper specialization of C1 that implies D1 and Dg. For C~: every 
resolvent of C2 with itself is a variant of C2, and no clause that is properly 



15.2. L E A S T  G E N E R A L I Z A T I O N S  267 

subsumed by C2 still implies D~ and D2. Thus C1 and C2 are both minimal 
generalizations under implication (MGIs) of {D1, D2}. Since C1 and C2 are 
themselves incomparable under implication, there is no LGI of {D1, D2} in 
7/. Whether  any two Horn clauses have a finite complete set of MGIs in 7-t, 
is at present an open question. 

However, the fact that  there is no LGI of {D1, D2} in 7-/, does not mean 
that  D1 and D2 have no LGI in C, since a Horn language is a more restricted 
space than a clausal language. In fact, it is shown in [MP94b] that C = 
P ( f ( x ) )  V p ( f2 (y ) )  V - ,P(x)  is an LGI of D1 and D2 in C. For this reason, 
it may be worthwhile for the LGI to consider a clausal language instead of 
only Horn clauses. 

In the next subsection, we show that any finite set of clauses which con- 
tains at least one non-tautologous function-free clause, has an LGI in C. An 
immediate corollary of this result is the existence of an LGI of any finite 
set of function-free clauses. In our usage of the word, a 'function-free' clause 
may contain constants, even though constants are sometimes seen as function 
symbols of arity 0. 

D e f i n i t i o n  15.1 A clause is function-free if it does not contain function 
symbols of arity 1 or more. A set of clauses is function-free if all its members 
are function-free. <5 

1 5 . 2 . 1  A S u f f i c i e n t  C o n d i t i o n  for  t h e  E x i s t e n c e  o f  an  
L G I  

In this subsection, we show that any finite set S of clauses containing at least 
one non-tautologous function-free clause, has an LGI in C. We start with 
some lemmas, the first of which was originally proved by Gottlob in [Got87]. 
It is in fact an immediate corollary of the Subsumption Theorem: 

L e m m a  15.2 ( G o t t l o b )  Let C and D be non-tautologous clauses, C p~ and 
C ~ g  be the sets of positive and negative literals in C, respectively, and D p~ 
and D ~ g  be the sets of positive and negative literals in D. I f  C ~ D, then 
C p~ ~ D p~ and C '~g ~-- D ~g .  

Proof  Suppose C ~ D. Then since C v~ ~ C, we have C p~ ~ D. C p~ 
contains only positive literals, so it cannot be resolved with itself. Then it 
follows from Theorem 5.17 that C; ~ ~ D. But then C p~ must subsume the 
positive literals in D, hence C p~ ~ D TM. Similarly C ~g  • D ~g.  [] 

An important  consequence of this lemma concerns the depth of clauses, 
defined as follows: 

D e f i n i t i o n  15.3 Let t be a term. If t is a variable or constant, then the 
depth o f t  is 1. I f t  = f ( t l , . . . , t ~ ) ,  n > 1, then the depth o f t  is 1 plus the 
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depth of the ti with largest depth. The depth of a clause C is the depth of 
the term with largest depth in C. O 

Note that  a clause is function-free iff it has depth 1. 

E x a m p l e  15.4 The term t = f(a, x) has depth 2. The clause C = P(f(x))  e- 
-P(g(I(a), a)) has depth 5, since 9(f(x) ,  a) has depth 3. <1 

It follows from Gottlob's lemma that if C ~ D, then the depth of C is 
smaller than or equal to the depth of D--otherwise the positive part  of C 
could not subsume the positive part of D, or the negative part of C could not 
subsume the negative part of D. For instance, take D = P(x, f(x,g(y))) +-- 
P(y(a), b), which has depth 3. Then a clause C containing a term f (x ,  g2 (y)) 
(depth 4) cannot imply D. 

L e m m a  15.5 Let E be a set of clauses, C be a clause, and o" be a Skdera 
substitution for C with respect to E. Then E ~ C iff E ~ Ca. 

P r o o f  
:~: Obvious. 
~ :  Suppose C is not a tautology, and let o" = { a l / a l , , , .  ,an~an}. If 

E ~ Ca, it follows from the Subsumption Theorem (Theorem 5.i7} that 
there is a D such that  E br D, and D _ C~r. All constants in D also appear 
in clauses in E, so c, is a Skolem substitution for C with respect ~o D. Then 
by Lemma 5.16 we have D _. C, hence E ~ C. [] 

The proof in this section can be divided in two steps. First, we use the Sub- 
sumption Theorem to adapt Theorem 5.9. That  is, if C ~ D, C is function- 
free and cr is a Skolem substitution for D with respect to C, then we can 
effectively determine which ground instances of C are needed for a deduction 
of De.  Secondly, we can then use the finiteness of the number of these ground 
instances to establish the existence of an LGI. 

D e f i n i t i o n  15.6 Let C be a clause, xl, �9 �9 x~ all distinct variables in C, and 
T a set of terms. Then the instance set of C with respect to T is 27(C, T) = 
{CO t 0 = { x l / t l , . . . , a n / t n } ,  where t~ E T, for every 1 < i < n}. If E = 
{ C , , . . . ,  Ck} is a set of clauses, then the instance set of E with respect to T 
is ~(S, T) = Z(C1, T) U , . .  U Z(Ck, T). 0 

E x a m p l e  15.7 If C = P(x) V Q(y) and T = {a,y(z)}, then Z(C,T)  = 
{(P(a)  V Q(a)), (e(a) v Q(/(z))), (P(f(z)) v e (a ) ) ,  (P(f(z)) v O(f(z)))}. <1 

A term set of a set S of clauses by some Skolem substitution cr is a finite 
set of ground terms, defined as follows: 

D e f i n i t i o n  15.8 Let S be a finite set of clauses, and c~ be a Skotem substi- 
tution for S. Then the term set of S by cr is the set of all terms (including 
subterms) occurring in Sea. �9 
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E x a m p l e  15.9 The term set of D = P(p(x ) ,  y, z) +- P(y, z, f~(x)) by o- = 
{x/a, y/b, z/c} is T = {a, f(a), f2(a), b, c}. <3 

Consider C = P(x, y, z) +- P(z, x, y), and D, cr and T as defined in the 
above example.  Then C ~ D, and also Z(C, T) ~ Do-, since Do- is a resolvent 
of P(f2(a), b, c) +-- P(c, f2(a) ,  b) and P(c, f2(a) ,  b) +-- P(b, c, f2(a)), which 
are in :Z(C, T). As we will show in the next lemma, this holds in general: if 
C ~ D and C is function-free, then we can restrict attention to the ground 
instances of C instantiated to terms in the term set of D by some o-. 

The proof of Lemma  15.10 uses the following idea. Consider a derivation 
of a clause E from a set E of ground clauses. Suppose some of the clauses 
in E contain terms not appearing in E. Then any literals containing these 
terms in E must  be resolved away in the derivation. This means that  if we 
replace all the terms in the derivation that  are not in E, by some other term 
t, then the result will be another derivation of E. For example, the left of 
Figure 15.1 shows a derivation of length 1 of E. The term f2 (b) in the parent 
clauses does not appear  in E. If  we replace this term by the constant a, the 
result is another derivation of E (right of the figure). 

P(b) ~-- P(f2(b)) P(f2(b)) 4- Q(a,f(a)) 

E = P(b) +- Q(a, f(a)) 

P(b) 4-- P(a) P(a) ~ Q(a, ](a)) 

E = P(b) ~ Q(a,J(a)) 

F igure  15.1: Transforming the left derivation yields the right derivation 

L e m m a  15.10 
substitution for 
C ~ D iffZ(C, 

P r o o f  
~=: Suppose 

Now C ~ D by 

Let C be a function-free clause, D be a clause, o- be a Skolem 
D with respect to {C}, and T be the term set olD by or. Then 
T) Do-. 

Z(C, T) ~ Do-. Since C ~ Z(C, T), it follows that  C ~ Do-. 
Lemma  15.5. 

~ :  Suppose C ~ D. If  D is a tautology, then Do" is a tautology, so this 
case is obvious. Suppose D is not a tautology, then Do" is not a tautology. 
Since C ~ Do-, it follows from Theorem 5.9 that  there exists a finite set E 
of ground instances of C, such that  E ~ Do-. By the Subsumption Theorem, 
there exists a derivation from E of a clause E, such that  E _ Do'. Since E 
is ground, E must  also be ground, so we have E C Do-. This implies that  E 
only contains terms from T. 

Let t be an arbi trary term in T, and let E ~ be obtained from E by replacing 
every te rm in clauses in E which is not in T, by t. Note that  since each clause 
in E is a ground instance of the function-free clause C, every clause in E ~ is 
also a ground instance of C. Now it is easy to see that  the same replacement 
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of terms in the derivation of E from E results in a derivation of E from E~: 
(1) each resolution step in the derivation from E can also be carried out in 
the derivation from E ~, since the same terms in E are replaced by the same 
terms in E ~, and (2) the terms in E that are not in T (and hence are replaced 
by t), do not appear in the conclusion E of the derivation. 

Since there is a derivation of E from E ~, we have E ~ ~ E, and hence 
E ~ ~= Do.. E ~ is a set of ground instances of C and all terms in E ~ are terms 
in T, so E' C_ Z(C, T). Hence Z(C, T) ~ Do'. [] 

Lemma 15.10 cannot be generalized to the case where C contains function 
symbols of arity > !, take C = P( f ( x ) ,  y) +-- P(z ,  x) and D = P( f (a) ,  a) +- 
P(a, f(a)) .  Then T = {a, f (a)}  is the term set of D, and we have C ~ D, 
yet it can be seen that  Z(C, T) ~= D. The argument used in the previous 
lemma does not work here, because different terms in some ground instance 
need not relate to different variables. For example, in the ground instance 
P(f2(a) ,  a) +- P(a, f(a)) of C, we cannot just replace f~(a) by some other 
term, for then the resulting clause would not be an instance of C. 

On the other hand, Lemma 15.10 can be generalized to a set of clauses 
instead of a single clause. If E is a finite set of function-free clauses, C is an 
arbitrary clause, and o. is a Skolem substitution for C with respect to E, then 
we have that E ~ C iff I ( E ,  T) ~ Ccr. The proof is almost literally the same 
as above. 

This result implies that E ~ C is reducible to an implication Z(E, T) 
Co. between ground clauses. Since, by the next lemma, implication between 
ground clauses is decidable, it follows that  E ~ C is decidable in case E is 
function-free. 

L e m m a  15.11 The problem whether E ~ C, where E is a finite set of 
ground clauses and C is a ground clause, is decidable. 

P r o o f  Let C = L1 V . . .  V Ln, and A be the finite set of all ground atoms 
occurring in E and C. Now: 
2 ~ C iff (by Proposition 2.37) 
E U { - ,L1 , . . . , - ,L~}  is unsatisfiable iff (by Proposition 3.30) 
E U {-~Lt , . . . , - - ,L ,}  has no Herbrand model iff 
no subset of A is a Herbrand model of E U {-~L1,... ,-~L~}. 
Since .4 is finite, the last statement is decidable. [] 

C o r o l l a r y  15.12 The problem whether E ~ C, where E is a finite set of 
function-free clauses and C is a clause, is decidable. 

The next sequence of lemmas leads to our LGI result. 

L e m m a  15.13 Let S be a finite set of non-tautologous clauses, V = {xl ,  . . . , 
Xm} be a set of variables, and let G = {C1, C2, . . . }  be a (possibly infinite) 
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set of generalizations of S under implication. Then the set G ~ = Z(C1, V) U 
Z(Cs, V) U . .. is a finite set of clauses. 

P r o o f  Let d be the maximal depth of the terms in clauses in S. It follows 
from Lemma 15.2 that  G (and hence also G 0 cannot contain terms of depth 
greater than d, nor predicate symbols, function symbols or constants other 
than those in S. The set of literals which can be constructed from predicate 
symbols in S, and from terms of depth at most d consisting of function 
symbols and constants in S and variables in V, is finite. Hence the set of 
clauses which can be constructed from those literals is also finite. G ~ is a 
subset of this set, so G ~ is a finite set of clauses. [] 

L e m m a  15.14 Let C be a function-free clause, D be a clause, and o- be 
a Skolem substitution for D with respect to {C}. Suppose C ~ D, and let 
T = { t l , . . . , t ~ }  be the term set of D by cr, V = { x l , . . . , x , ~ }  be a set of 
variables, andre >_ n. If E is an LGS of Z(C, V), then E ~ D. 

P r o o f  Let 7 = {x l / t l , . . . , x~ / t n , x~+l / t n , . . . ,Xm/ t~}  (it does not mat- 
ter to which terms the variables x~+l, . . . ,  x~ are mapped by 7, as long as 
they are mapped to terms in T). Suppose Z(C, V) = {Cpl , . . . ,  Cpk}. Then 
Z(C, T) = {Cp17 , . . . ,  Cpk7}. Let E be an LGS of Z(C, V) (note that E must 
be function-free). Then for every 1 < i < k, there are 0i such that EO{ C_ Cpi. 
This means that EOi7 C Cpi7 and hence EOi7 ~ CpiT, for every 1 < i < k. 
Therefore E ~ Z(C, T). 

Since C ~ D, we know from Lemma 15.10 that  Z(C, T) ~ Do., hence 
E ~ Do-. Furthermore, since E is an LGS of Z(C, V), all constants in E 
also appear in C, hence all constants in E must appear in D. Thus o- is also 
a Skolem substitution for D with respect to {E}, and we have E ~ D by 
Lemma 15.5. [] 

Consider C = P(x, y, z) +- P(y, z, x) and D =+-- Q(w). Both C and D 
imply the clause E = P(x, y, z) +- P(z, x, y), Q(b). Now note that C U D = 
P(x, y, z) +- P(y, z, x), Q(w) also implies E. This holds for clauses in general: 

L e m m a  15.15 Let C, D, and E be clauses such that C and D are standard- 
ized apart. I f  C ~ E and D ~ E, then C U D  ~ E. 

P r o o f  Suppose C ~ E and D ~ E, and let M be a model of C U D .  Since C 
and D are standardized apart, the clause C U D is equivalent to the formula 
V(C) V V(D) (where V(C) denotes the universally quantified clause C). This 
means that  M is a model of C or a model of D. Now it follows from C ~ E 
or D ~ E that M is also a model of E.  Therefore C U D ~ E. [] 

Now we can prove the existence of an LGI of any finite set S of clauses 
which contains at least one non-tautologous and function-free clause. In fact 
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we can prove something stronger, namely that  this LGI is a special LGI, 
defined as follows: 

D e f i n i t i o n  15.16 Let C be a clausal language, and S be a finite subset of 
C. An LGI C of S in C is called a special LGI of S in C, if C' __ C for every 
generalization C ~ C C of S under implication. 

Note that  if D is an LGI of a set containing at least one non-tautologous 
function-free clause, then by Lemma 15.2 D is itself function-free, because it 
should imply the function-free clause(s) in S. For instance, C = P(x, y, z) +- 
P(y, z, x), Q(w) is an LGI of D1 = P(x, y, z) +- P(y, z, x), Q(f(a) ) and D2 = 
P(x, y, z) +- P(z, x, y), Q(b). Note that  this LGI is properly subsumed by 
the LGS of {D1, Dy}, which is P(x,  y, z) +-- P(x ' ,  ~' z "  y ,  ),Q(w). An LGI may 
sometimes be the empty clause [], for example if S = {P(a) ,  Q(a)}. 

T h e o r e m  15.17 ( E x i s t e n c e  o f  spec ia l  L G I  in C) Let C be a clausal lan- 
guage. If S is a finite set of clauses from g, and S contains at least one 
non-tautologous function-free clause, then there exists a special LGI of S in 
C. 

P r o o f  Let S = { D 1 , . . . , D . }  be a finite set of clauses from C, such that 
S contains at least one non-tautologous function-free clause. We can as- 
sume without loss of generality that S contains no tautologies. Let cr be 
a Skolem substitution for S, T = { t l , . . . , t r n}  be the term set of S by ~, 
V = {x l , . . . ,Xm }  be a set of variables, and G = {C1,C2,. . .}  be the set of 
all generalizations of S under implication in C. Note that [] E G, so G is 
not empty. Since each clause in G must imply the function-free clause(s) in 
S, it follows from Lemma 15.2 that all members of G are function-free. By 
Lemma 15.13, the set G' = Z(CI, V) UZ(Cy, V) U. . .  is a finite set of clauses. 
Since G t is finite, the set of distinct Z(Ci, V)s is also finite. For simplicity, let 
{Z(C1, l f ) , . . .  ,Z(Ck, V)} be the set of all distinct Z(Ci, V)s. 

Let Ei be an LGS ofZ(Ci,  V), for every 1 _< i _< k, such that E 1 , . . . , E k  
are standardized apart. For every 1 < j <_ n, the term set of Dj by r is 
some set { t j1 , . . . , t j~}  C_ T, such that m > j , .  From Lemma 15.14, we have 
that Ei ~ Dj, for every 1 < i < k and 1 _< j < n, hence Ei ~ S. Now let 
F = E1 O . . .  U Ek, then we have F ~ S from Lemma 15.15. 

To prove that F is a special LGI of S, it remains to show that  Cj ~ F, for 
every j _> 1. For every j > 1, there is an i (1 < i < k), such that  :T.(Cj, V) = 
Z(C/, V). So for this i, Ei is an LGS ofZ(Cj, V). Since every clause in Z(Cj, V) 
is an instance of C~, we have that  Cj is itself also a generalization of I ( C j ,  V) 
under subsumption, hence Cj ~ Ei. Then finally Cj ~ F, since Ei C_ F.  [] 

As a consequence of this result, every finite set S in which all clauses are 
function-free, has an LGI in C. 

C o r o l l a r y  15.18 Let C be a clausal language. Then for every finite set of 
function-free clauses S C C, there exists an LGI of S in C. 
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P r o o f  Let S be a finite set of function-free clauses in C. If S only contains 
tautologies, any tautology will be an LGI of S. If S contains some non- 
tautologous clauses, then by the previous theorem, there is a special LGI of 
S. [] 

This corollary is not trivial, since even though the number of Herbrand 
interpretations of a language without function symbols is finite (due to the 
fact that the number of all possible ground atoms is finite in this case), S 
may nevertheless be implied by an infinite number of non-equivalent clauses. 
This may seem like a paradox, since there are only finitely many categories 
of clauses that can "behave differently" in a finite number of finite Her- 
brand interpretations. Thus it would seem that the number of non-equivalent 
function-free clauses should also be finite. This is a misunderstanding, since 
logical implication (and hence also logical equivalence) is defined in terms 
of all interpretations, not just Herbrand interpretations. For instance, define 
D1 -= P(a, a) and D2 = P(b, b), C,~ = {P(xi ,  xj)  I i r j, 1 <_ i, j <_ n}. Then 
we have C~ ~ {Di, D2}, C, ~ (7,~+i and Cn+i ~ Cn, for every n > 1 (see 
the proof of Proposition 14.32). 

The general question concerning the existence of an LGI in clausal lan- 
guages remains open. We will briefly mention here another attempt to answer 
this question, using self-saturated clauses [MP94b]. A clause is self-saturated 
if it is subsumed by any clause which logically implies it. A clause D is a self- 
saturation of C, if C and D are logically equivalent and D is self-saturated. 
Note that if C is a function-free non-tautologous clause, and D is a special 
LGI of the set {C}, then D is logically equivalent to C and is subsumed by 
any clause which logically implies C. Thus every such C has a self-saturation 
D. Now, if two clauses C1 and C2 have self-saturations D1 and D2, respec- 
tively, then an LGS of D1 and D2 is also an LGI of C1 and C2. This solves 
our question concerning the existence of LGIs for clauses which have a self- 
saturation. However, it is also shown in [MP94b] that there exist clauses 
which have no self-saturation, so the concept of self-saturation cannot solve 
our question in general. 

Though the general question remains open for clausal languages, we do 
have the following result, which says that if a set S has a minimal generaliza- 
tion under implication (MGI), then this is also a least generalization under 
implication (LGI). 

P ropos i t ion  15.19 Let C be a clausal language, and S be a finite subset of 
C. I f  C E C is an MGI  of S in C, then C is an LGI  of S in C. 

P r o o f  Suppose some C E  Cis an M G I o f S i n C ,  but not an L G I o f S  in 
C. Then C N S, but there also is a D E C, such that D ~ S and D ~= C. 
We can assume C and D are standardized apart. Then by Lemma 15.15, we 
have C U D  ~ S. Since C C CU D, we also have C ~ CUD.  On the other 
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hand, since D ~ C U D and D ~= C, we must have C U D ~ C. Thus we have 
C ~ (C U D) ~ S, and C and C U D are not equivalent. But this contradicts 
the assumption that  C is an MGI of S in C. [] 

15.2 .2  T h e  LGI  is C o m p u t a b l e  

In the previous subsection we proved the existence of an LGI in C of every 
finite set S of clauses containing at least one non-tautologous function-free 
clause. In this subsection, we will establish the computability of such an LGI. 
The next algorithm, extracted from the proof of the previous section, com- 
putes this LGI of S. 

A l g o r i t h m  15.1 ( L G I  A l g o r i t h m )  
I n p u t :  A finite set S of clauses, containing at least one non-tautologous 
function-free clause. 
O u t p u t :  An LGI of S in C. 

1. Remove all tautologies from S, call the remaining set S ~. 
2. Let m be the number of distinct terms (including subterms) in S',  

let V = {x . l , . . . ,  x,~}. (Notice that this m is the same number as the 
number of terms in the term set T used in the proof of Theorem 15.17.) 

3. Let G be the (finite) set of all clauses which can be constructed from 
predicate symbols and constants in S' and variables in V. 

4. Let {UI , . . . , /2~} be the set of all subsets of G. 
5. Let Hi be an LGS of Ui, for every t < i < n (these Hi can be computed 

by the LGS Algorithm of Section 14.7). 
6. Remove from {H1, . . . ,  H,~} all clauses which do not imply S ~ (since each 

Hi is function-free, by Corollary 15.12 this implication is decidable), 
and standardize the remaining clauses { H 1 , . . . ,  Hq} apart. 

7. P~eturn the clause H = H1 U . . .  U Hq. 

The correctness of this algorithm follows from the proof of Theorem 15.17. 
First notice that  H ~ S by Lemma 15.15. Furthermore, note that  all 
Z(C~, V)s mentioned in the proof of Theorem 15.17 are elements of the set 
{U1 . . . .  , Un}. This means that for every Ei in the set { E l , . . . ,  Ek} mentioned 
in that proof, there is a clause Hj in { H i , . . . ,  Hq} such that Ei and Hj are 
subsume-equivalent. Then it follows that  the LGI F = E1 U . . .  U Ek of that  
proof subsumes the clause H = H1 U . . .  U Hq that  our algorithm returns. On 
the other hand, F is a special LGI, so F and H must be subsume-equivalent. 

Suppose the number of distinct constants in S' is c, and the number 
of distinct variables in step 2 of the algorithm is m. Furthermore, suppose 
there are p distinct predicate symbols in S',  with respective arities al,  . . . ,  a v. 
Then the number of distinct atoms that  can be formed from these constants, 

= ~ = l ( ~  + variables and predicate symbols, is 1 ~ rn) ~ and the number of 
distinct literals that  can be ibrmed, is 2.t. The set G of distinct clauses which 
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can be formed from these literals is the power set of this set of literals, so 
= ., 2 2~~ IG[ 2 2l. Then the set {Ui , . .  U~} of all subsets of G contains 2 IGj = 

members. 
Thus the algorithm outlined above is not very efficient (to say the least). 

A more efficient algorithm may exist, but since implication is harder than 
subsumption and the computation of an LGS is already quite expensive, we 
should not put our hopes too high. Nevertheless, the existence of the LGI 
algorithm does establish the theoretical point that  the LGI of any finite set 
of clauses containing at least one non-tautologous function-free clause, is 
effectively computable. 

Theorem 15.20 (Computability of LGI) Let C be a clausal language. [f  
S is a finite set of clauses from C, and S contains at least one non-tautologous 
function-free clause, then the LGI o r s  in C is computable. 

15.3 Greatest  Specializations 

Now we turn from least generalizations under implication to greatest special- 
izations. Finding least generalizations of sets of clauses is common practice 
in ILK On the other hand, the greatest specialization, which is the dual of 
the least generalization, is used hardly ever. Nevertheless, the GSI of two 
clauses Di and DB might be useful. For example, suppose we have one pos- 
itive example e +, and two negative examples e~- and e~-, 'and suppose that 
Di implies e + and e~-, while D2 implies e + and e~. Then it might very well 
be that  the GSI of D1 and D2 still implies e +, but is consistent with respect 
to {e 7 , e~ }. Thus we could obtain a correct specialization by taking the GSI 
of Di and D2. 

It is obvious from the previous sections that the existence of an LGI of S 
is quite hard to establish. For clauses which all contain function symbols, the 
existence of an LGI is still an open question, and even for the case where S 
contains at least one non-tautologous function-free clause, the proof was far 
from trivial. However, the existence of a GSI in C is much easier to prove. In 
fact, a GSI of a finite set S is the same as the GSS of S, namely the union 
of the clauses in S after these are standardized apart. 

To see the reason for this asymmetry, let us take a step back from the 
clausal framework, and consider full first-order logic for a moment.  If r and 
r are two arbitrary first-order formulas, then it can be easily shown that  
their least generalization is just 4i A r and their greatest specialization is 
just r V r See Figure 15.2. 

Now suppose r and 42 are clauses. Then why do we have a problem 
in finding the LGI of 4i and 427 The reason for this is that r A 52 is not 
a clause. Instead of using r A r we have to find some least clause which 
implies both clauses 4i and 4B. Such a clause appears quite hard to find 
sometimes. 
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Figure  15.2: Least generalization and greatest specialization in first-order logic 

On the other hand, in case of specialization there is no problem. Here 
we can take r V r as GSI, since r V r is equivalent to a clause, if we 
handle the universal quantifiers in front of a clause properly. If r and r are 
standardized apart, then the formula r V r is equivalent to the clause which 
is the union of r and r This fact was used in the proof of Lemma 15.15. 

Suppose S = {D1,.o., D,~}, and D i , . . . ,  D~ are variants of these clauses 
which are standardized apart. Then clearly D = D~ U . . .  U D~ is a GSI 
of S, since it follows from Lemma 15.15 that any specialization of S under 
implication is implied by D. Thus we have the following result: 

Theorem 15.21 (Existence of GSI in C) Let d be a clausal language. 
Then for every finite non-empty S C C, there exists a GSI of S in C~ 

The previous theorem holds for clauses in general, so in particular also 
for function-free clauses. Furthermore, Corollary 15.18 guarantees us that in 
a function-free clausal language, an LGI of every finite S exists. This means 
that  the set of function-free clauses quasi-ordered by logical implication, is 
in fact a lattice. 

C o r o l l a r y  15.22 Let C be a function-free clausal language. Then (C, ~} is 
a lattice. 

In case of a Horn language 7/, we cannot apply the same proof method 
as in the case of a clausal language, since the union of two Horn clauses need 
not be a Horn clause itself. In fact, we can show that not every finite set 
of Horn clauses has a GSI in ~ .  Here we can use the same clauses that we 
used to show that  sets of Horn clauses need not have an LGI in 7-/, this time 
taking the perspective of specialization instead of generalization. 

Again, let D1 : P(f2(x)) +-- P(x), D2 = P(f3(x)) +- P(x), C1 = 
P(f(x))  +- P(x), and 62 = P(f~(y)) e-- P(x). Then Cl ~ {D1,D2} and 
C~ ~ {D1, D2}, and there is no Horn clause D such that  D ~ 91,  D ~ D2, 
C1 ~ D and C2 ~ D. Hence there is no GSI of {C1, C2} in 7~. Whether any 
two Horn clauses have a finite complete set of maximal specializations (MSI) 
under implication in// /  is an open question. 
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15.4 Covers in the Implication Order 

In this section, we will extend the negative results of the previous chapter 
concerning upward and downward covers co the case of implication. This 
extension is based on the fact that the clauses used there were non-recursive. 

Definit ion 15.23 A clause is recursive if it contains a positive literal and 
a negative literal with the same predicate symbol. Otherwise the clause is 
called non-recursive. 

E x a m p l e  15.24 The clauses P( f (x ) )  +-- P(x) and {P(a), Q(x),-~P(f(y))} 
are recursive, {P(a),--,Q(x, a)} and {P(x, y), P(y, x)} are non-recursive. 

Note that  not every recursive clause can be resolved with itself, for in- 
stance P(x,  a) 4-- P(x, b). <~ 

It can be shown that  for non-recursive clauses, subsumption and impli- 
cation coincide. For instance, if D = {P(xl ,  x2), P(x2, Xl)}, then C ~ D iff 
C _ D. This result follows from the Subsumption Theorem, and the fact that  
a non-recursive clause cannot be resolved with itself. 

L e m m a  15.25 Let C and D be non-recursive clauses. Then C ~ D iff C ~- 
D. 

P r o o f  
~ :  Obvious. 
~ :  Suppose C ~ D. Then by the Subsumption Theorem (Theorem 5.17), 

there is a clause E such that C ~-~ E and E _ D. But since C is non-recursive, 
the only clause that  can be derived from C, is C itself. It follows that E = C, 
and hence C ~ D. [] 

Let us denote the case where C properly implies D (i.e., C ~ D and 
D ~ C) by C >i D. Then we also have the next lemma: 

L e m m a  15.26 Let C and D be non-recursive clauses. Then C >i D iff 
C>.-D. 

P r o o f  C >i D iff 
C ~ D and D ~ C iff (by the previous lemma) 
C ~- D and D ;~ C iff 
C ~ - D .  

Using this result, we can extend Proposition 14.32 to the implication 
order: 

Propos i t ion  15.27 Let C be a clausal language containing a binary predicate 
symbol P. Then C = {P(xl ,  xl)} has no upward cover in (C, ~) .  
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P r o o f  Suppose D is an upward cover of C in {C, ~).  Then D >i C, so it 
follows from Gottlob's Lemma that  D only contains positive literals, hence 
D is non-recursive. Now by the previous lemma we have D ~ C. By Proposi- 
tion 14.32, D cannot be an upward cover of C in (C, ___}, so there must be an E 
such that  D ~- E ~ C. Because C is non-recursive, E must be non-recursive 
as well. But then by the previous lemma, we must also have D >i E >i C, 
contradicting the assumption that D is an upward cover of C in (C, ~}. [] 

Proposition 14.40 can be extended analogously to the implication order: 

P r o p o s i t i o n  15,28 Let C be a clausal language containing a binary predicate 
symbol P, Then C -7- {P(•l, x2), P(x2, xx)} has no finite complete set of 
downward co~e~'s in (C, ~). 

As in the case of subsumption, these results can be translated to the case 
where C only contains unary predicate symbols and a binary function symbol 
f ,  by replacing every P(x ,  y) by Q(f(x, y)). Also, the negative results of this 
section can be translated to Horn clauses. 

15.5 Summary 

This chapter discussed the implication order on a clausal language. Impli- 
cation between (Horn) clauses is undecidable, but using implication as a 
generality order is more desirable than using subsumption~ since it is better 
able to deal with recursive clauses. The main results on the implication order 
can be summed up as follows: 

| Every finite set of clauses which contains at least one function-free non- 
tautologous clause, has a computable least generalization (LGI) under 
implication in C. Every finite set of clauses has a greatest specialization 
(GSI) under implication in C. As a corollary, if C is a function-free 
clausal language, then (C, ~ )  is a lattice. 

| There exist pairs of Horn clauses which do not have an LGI in 7/. 
Similarly, there exist pairs of Horn clauses which do not have a GSI in 
7t. 

| For general clauses which all contain function symbols, the LGI-question 
is still open. 

| Some clauses, such as {P(x l ,  xt)}, have no upward covers. 
Some clauses, such as {P(xl,  x2), P(x~, xl)}, have no finite complete 
set of downward covers. 



Chapter 16 

Background Knowledge 

16.1  I n t r o d u c t i o n  

The generality orders of the previous two chapters, subsumption and logical 
implication, were treated as relations between two individual clauses. The 
background knowledge that  figured prominently in our problem setting of 
Chapter  9 was left out of consideration. In this chapter, we will see how we 
can incorporate background knowledge into our generality orders. 

Why does background knowledge matter?  The answer is that  combining 
the examples with what we already know often allows for the construction 
of a more satisfactory theory than can be glanced from the examples by 
themselves. To illustrate this, we consider the following two clauses as positive 
examples (not just ground atoms as examples, this time): 1 

D1 = CuddlyPet(x) +- Small(x), Fluffy(x), Dog(x) 
D2 = CuddlyPet(x) +-- Fluffy(x), Cat(x) 

Given only these clauses, the most obvious way to generalize them is to take 
their LGS or LGI, which is the rather general clause 

C = CuddIyPet(x) +- Fluffy(x) 

However, suppose we have the following definite program B which expresses 
our background knowledge. 

Pet(x) ~- Cat(x) 
Pet(x) +- Dog(x) 
Small(x) ~- Cat(x) 

Given B, we may also use the following clause as generalization: 

1 Th i s  e x a m p l e  a n d  the  re la ted  E x a m p l e s  16.2, 16.19, 16.33 are s imi la r  to e x a m p l e s  g iven 
in [BunS8]. 
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D = CuddIyPet(x) 4-- Small(x), Fluffy(x), Pet(x), 

since D together with B implies both examples. 2 Note that without the back- 
ground knowledge B, our clause D neither subsumes nor implies the examples. 
If we interpret this example in human terms, the generalization D is much 
more satisfactory than C. After all, not every fluffy object is a cuddly pet--  
consider teddy bears. Thus the use of background knowledge allows us to find 
a better theory. 

Given the usefulness of background knowledge, we should find a formal- 
ized way to reckon with it in our generality order. In this chapter we will dis- 
cuss three such ways: Plotkin's relative subsumption [Plo71a, Plo71b], relative 
implication, and finally Buntine's generalized subsumption [Bun86, Bun88]. 
Relative subsumption and relative implication apply to arbitrary clauses and 
the background knowledge may be an arbitary finite set of clauses. General- 
ized subsumption only applies to definite program clauses and the background 
knowledge should be a definite program. 

Of these three orders, the discussion of generalized subsumption will be 
the most technical. In order not to put off the reader, we save it for last, 
discussing relative subsumption and relative implication first. Each of the 
three orders will be related to some form of deduction. We can use these 
three forms of deduction to show that generalized subsumption is a weaker 
quasi-order than relative subsumption, and relative subsumption is in turn a 
weaker order than relative implication. In other words, if C is more general 
than D with respect to some definite program B according to generalized sub- 
sumption~ it is also more general according to relative snbsumption, while the 
converse need not hold. And similarly, if C is more general than D relative 
to some set of clauses B according to relative subsumption, it is also more 
general according to relative implication, while the converse need not hold. 
We will show that both relative and generalized subsumption reduce to ordi- 
nary subsumption in case of non-tautologous clauses and empty background 
knowledge. Similarly, with empty background knowledge relative implication 
is simply logical implication. 

Implication relative to background knowledge B is defined as follows: C 
logically implies D relative to B if {C} t5 B ~ D. The link between relative 
implication and the normal problem setting of Chapter 9 is obvious: if E + 
is a set of positive examples and C is a least generalization under relative 
implication (relative to B), then we have {C}UB D E+. Thus such least gen- 
eralizations may be used to generalize examples while taking into account the 
background knowledge. The definitions of relative and generalized subsump- 
tion are somewhat more complicated, but since each of these orders implies 
relative implication, we also have {C} U 8 ~ E + if C is a least generalization 
under relative or generalized subsumption. 

~Actually, it can be shown that  this D is a least generalization under generalized sub- 
sumption (LGGS) with respect to/3 of these two examples. See Example 16.33. 
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Since empty background knowledge reduces relative and generalized sub- 
sumption to ordinary subsumption, and relative implication to ordinary im- 
plication, the negative results on covers that  we proved in the last two chap- 
ters for subsumption and implication, carry over to the three orders of this 
chapter: some clauses do not have finite complete sets of upward or down- 
ward covers in these orders. As to the existence and non-existence of least 
generalizations or greatest specializations in the three orders, we will only 
pay attention to least generalizations, since these are used much more often 
than their dual. In general, whichever of the three orders we use, least gen- 
eralizations do not always exist in the presence of background knowledge. 
However, for each of these orders we will prove that  certain restrictions on 
the background knowledge guarantee the existence of a least generalization. 

16.2 Relative Subsumption 

This section discusses Plotkin's relative subsumption [Plo71a, Plo71b]. 

1 6 . 2 . 1  D e f i n i t i o n  a n d  S o m e  P r o p e r t i e s  

If C is more general than D, under ordinary subsumption, then we have Ct~ C 
D for some tL This means that  V(C0 --+ D) is a tautology: ~ V(C~ -~ D). We 
can take background knowledge into account by making V(C0 --+ D) relative 
to the background knowledge. That  is, C subsumes D, relative to background 
knowledge ~, if/~ ~ Y(C0 --+ D)3  

D e f i n i t i o n  16.1 Let C and D be clauses, and/~ be a set of clauses. We say 
C subsumes D relative to B, denoted by C }-s D, if there is a substitution 
such that  B ~ V(CO -+ D). The ks-order  is called relative subsumption, and 
B is the background knowledge of this order. <5 

In this chapter, both '+-' and :--+' are used to denote the implication- 
connective. The former is only used in Horn clauses, the latter everywhere 
else. Note that  Y(C0 --+ D) will usually not be a clause. 

E x a m p l e  16.2 Let C and D be as follows: 

C = Small(x) +-- Cat(x) 
D = CuddlyPet(x) +- Fluffy(x), Cat(x) 

and let B consist of the following two clauses: 

Pet(x) +-- Cat(x) 
CuddlyPet(x) Small( )  Flu# (x), Pet(x) 

3In his PhD thesis, Plotkin also gave an alternative definition of subsumption relative 
to background knowledge B: C ___g Dig  there is a clause E such that g ~ V(E ++ D) and 
C ~ E. He showed this definition to be equivalent to the one we adopt here [Plo71a, p. 49]. 
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C subsumes D relative to B. Informally, this can be seen as follows: suppose 
for every x it holds that if x is a cat, then x is small (i.e., C is true). Using 
the first clause of B, we also have that if x is a cat, then x is a pet. Thus if x 
is a fluffy cat, then x is small, fluffy, and a pet, and by the second clause of 
B, x is a cuddly pet (i.e., D is true). 

More formally, we have C ~ D because B ~ V(Ce -+ D). <~ 

Reflexivity and transitivity are easily proved, so relative subsumption is 
a quasi-order on clauses. Note that each set of clauses B induces its own 
quasi-order: the quasi-orders induced by B = {P(a)} and 13 = {P(a),  P(b)} 
are different. Note also that if D is a tautology, then C >_is D for any C 
and B. Furthermore, it is also easy to see that if C ___e D and B C_ B', then 
C h i s '  D. 

We will now show that relative subsumption is stronger than subsumption. 
Firstly, it is easy to see that subsumption implies relative subsumption. If 
C _ D, then CO C_ D, for some 0. But then V(C0 -+ D) is a tautology, and 
13 ~ V(CO --+ D) for any B. Hence if C ' D, then C ___~ D. 

Now consider propositional atoms P,  Q, and /~. Let C = P,  D = Q, 
and B = {Q +-- P}.  Then B ~ (C -~ D), so C >-~ D. Since C ~ D, we 
see that  relative subsumption does not imply subsumption. This even holds 
for the case where B is empty and D is a tautology: if B = t~, C = Q, and 
D = P <-- P,  then C __.s D, but C ~ D. Thus relative subsumption is a 
strictly stronger quasi-order than ordinary subsumption. 

The next proposition establishes a relationship between subsumption and 
relative subsumption in the case where B consists of ground literals. We first 
illustrate with an example. (Recall from Chapter 9 that if E = {C1, C2,. �9 .} 
is a set of clauses, then E denotes the set {-,C~,-,C~,.. .}.) 

E x a m p l e  16.3 Let C = Q(x) +- P(x),  D = Q(a), and 13 = {P(a)}.  Note 
that  if O = {x/a} ,  then B ~ ( c o  --~ D), so C >-is D. Nov+ suppose we add 
the negation of the atom in 13 to D, obtaining the clause D' = (D t2 B) = 
Q(a) e--P(a). Then we have that C >- D'. < 

P r o p o s i t i o n  16.4 Let C and D be non-tautologous clauses, and I3 be a finite 
set of ground literals such that 13 N D = ~J. Then C >-~ D iff C >- ( D U 13). 

P r o o f  
=>: Suppose C ___~ D, so 13 ~ V(C0 -+ D) for some 8. Assume CO ~= DUTY, 

Then there is an L E CO such that L d D and L E B. Since, furthermore, 
B N D = ~, we can find an interpretation I which makes every literal in B 
true (so I is a model of B), and a variable assignment V, such that  L (and 
hence CO) is true under I and V, while no literal in D is true under 1 and 
V. But then CO -+ D is false under I and V, contradicting/3 ~ V(C0 -+ D). 
Thus we must have CO C D U B. 

~ :  Suppose C _ ( D U B ) ,  so CO C D U B  for some 0. We want to prove 
B ~ V(C8 --+ D). Let M be a model of B, and V be a variable assignment 
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such that  CO is true under M and V. We need to show that  D is also true 
under M and V. At least one L E CO is true under M and V. Since also 
L C D U B and each literal in B is false under M, it follows that L E D, so 
D is true under M and V. Hence B ~ V(CO -+ D). [] 

In general, as we have seen, relative subsumption is a stronger quasi-order 
than subsumption. However, relative subsumption coincides with ordinary 
subsumption for non-tautologous clauses and empty background knowledge. 
This is an immediate corollary of the last proposition. 

C o r o l l a r y  16.5 If C and D are non-tautologous clauses, then C ~_r D iff 
C subsumes D (C ~_ D). 

Each of the three orders that we discuss in this chapter, relative sub- 
sumption, relative implication, and generalized subsumption, can be related 
to some kind of deduction. The relation between relative subsumption and 
deductions is expressed by the following theorem, due to Plotkin [Plo71a]. 

T h e o r e m  16.6 Let C and D be clauses, and 13 be a set of clauses. Then 
C ~_~ D iff there exists a deduction of D from {C} U 13 in which C occurs at 
most once as a leaf. 

P r o o f  
=5: Suppose C ___t3 D. If C ~_ D, or if D is a tautology, then the theorem 

is obvious (recall that  we included the tautology-case in the definition of a 
deduction). Suppose that  C ~ D and D is not a tautology. There is a 0 such 
that I3 ~ V(CO ~ D). Let C = L1V. . .VL~.  Note the following equivalences: 

v(co D) 
V((L10 V . . .  V LnO) -+ D) r 
V(n(LIO V . . .  V LnO) V D) 
V((~LIO A . . .  A "nLnO) V D) 9:>" 

v D) A . . .  A V D)) 
V(nL10 V D) A . . .  A V(~L,~O V D). 

Since 13 ~ V(CO -+ D), we also have 13 ~ V(-~LiO V D), for every 1 < i < n. 
We may assume without loss of generality that there is a j such that  LiO ~ D 
just in case 1 < i < j (i.e., LIO V . . .  V L 9 is the part of CO that  does not 
"overlap" with D). Because C ~ D, we must have j _> I. Since D is not a 
tautology, the clause -~LiO V D is not a tautology either, for every 1 < i < j .  

By the Subsumption Theorem, for every i with 1 < i _< j there is a 
derivation from B of a clause Ei such that Eio'i C -nLiO V D for some o'i. If 
-~LiO ~ EiGi for some i, then Eio'i C_ D, so then there is a deduction of D 
from B itself. Hence the result follows if -,LiO ~ ]~io'i for some i. 

Now suppose --,LiO E Ei(ri for every 1 _< i _< j.  Then we can write 
EiGi = -~LiO V Di, where Di C D. Since CO = LIO V . . .  V L,~O, there exists 
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an input derivation of the clause E = Lj+IO V . . .  V L,~O V D1 V . . .  V Dj, with 
CO as top clause and El~r~,..., Ej~rj as input clauses. See Figure 16.1 for 
illustration. Since LiO ~ D for j + 1 < i < n and Di C_ D for 1 < i < j ,  we 
have E C_ D. 

We can lift the derivation of Figure 16.1 to an input derivation of a clause 
E ~ which subsumes D, using C as top clause and E l , . . . ,  Ej as input clauses. 
Note that  C occurs only once as a leaf in this input derivation. Moreover, 
each Ei is derived f rom/3  alone, so we can construct the required deduction 
of D from {C} U 13, in which C occurs only once as a leaf. 

CO = LIO V ... V L=8 EIc~I = -~L18 V DI 

L ~ O  v . . ,  v L ~ O  V D I  E 2 G 2  = " , L 2 0  v 192 

L a P  V . . . v L ,~O v D I  v D 2  

L j O  v . . .  q L ,~O v D 1  v . . .  v D j - 1  E j a j  = - , L j O  v D j  

E -m L j . + z ~  V . . .  V L n O  V D 1  V . . .  V D j  

D 

Figure  16.1: An input deduction of' D from C8 and E1~1, ...~ Ejai  

~ :  If D is a tautology, the theorem is obvious, so suppose D is not a 
tautology. Let R 1 , . . . ,  R~ be a derivation from {C} U 13 in which C occurs at 
most  once as a leaf, such that  R,~ subsumes D. If C is not used at all in this 
derivation, then B ~ D, so C ___u D in this case. Suppose C occurs once as 
a leaf in the derivation. We wilt prove by induction on n that  C ___u D. 

1. If n = 1, then C ~ D, and hence C ___~ D. 
2. Suppose the result holds for n < m, and R 1 , . . . ,  Rm+l be a derivation 

from {C}U13 in which C occurs once as a leaf, such that  R,~+I subsumes 
D. Thus C is used exactly once as a parent clause in a resolution step 
in the tree representing the deduction. Let /~j be the second parent 
clause, then 13 ~ Rj, because C cannot be used in the derivation of Rj 
from {C} U 13. Let Rk be the resolvent of C and Rj. 
If/~k also occurs somewhere else in the tree, then there exists a deriva- 
tion of/~k from B alone, since C cannot be used in the derivation of 
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this second occurrence of Rk as well. But if Rk can be derived without 
C, we do not need C to derive D. Therefore, if Rk occurs more than 
once in the tree, then B ~ D and hence C ___u D. 
Now we may assume Rk occurs only once in the tree. Remove C and 
the derivation of Rj (including Rj itself) from the tree. Then we obtain 
a deduction, of length < m, of D from {Rk} U B in which Rk occurs 
once as a leaf. By the induction hypothesis, there is a substitution 7 
such that  B ~ V(Rk7 -4 D). 
We know that  Rk is a resotvent of C and Rj, so there exists a factor 
C#1 of C and a factor Rip2 of Rj, such that R~ is a binary resolvent of 
Cpl  and Rj#2. Let 5 be the mgu in this resolution step, then C#15 = 
C' V A and Rj#25 = R'j V -,A, for some atom A, and Rk = C' V R~. 
Define 0 = #157 and cr = #257, then Rk7 = C'7 V RaT is a binary 
resolvent of CO = C'7 V A 7 and Rj~ = R}7 V -~A 7. We will show 
that  Rj~r ~ V(CO ~ RkT). Suppose M is a model of Rjc~, and V is a 
variable assignment such that  CO is true under M and V. Then C '7  
or R~-7 is true under M and V, so Rk7 is true under M and V. Hence 
Rj~ ~ V(CO -4 RkT). Combining B ~ Rj and Rj~ ~ V(CO -4 RkT) 
with B ~ V(/~k7 -4 D), it follows that 13 ~ V(CO -4 D), [] 

1 6 . 2 . 2  L e a s t  G e n e r a l i z a t i o n s  

Let us now turn to the existence and non-existence of least generalizations un- 
der relative subsumption (abbreviated to LGRSs). Such least generalizations 
need not exist in the general case. The following counterexample is adapted 
from Niblett [Nib88]. It shows the non-existence of LGRSs both for the case 
of a clausal language C, and for a Horn language 7/. 

E x a m p l e  16.7 Let 

01 --- Q(a) 
D2 = Q(b) 
13 = {P(a, y), P(b, y)} 

We will show there is no LGRS of {D1,D2} relative to B. Consider the 
following infinite sequence of clauses: 

61 = Q(x) +-- P(x, f(x)) 
C2 = Q(x) +-- P(x, f(x)), P(x., f2(x)) 
C3 = Q(x) +- P(x, f (x) ) ,  P(x ,  f2(x)), P(x, fa(x))  

It is easy to see that  6"/~-s Ci+l for every i > 1. We also have Ci ~-8 D1 and 
Ci ~-~ D2, for every i > 1. 

Suppose some clause D is an LGRS of {D1, D2} relative to B, then we 
should have Ci ___~ D, for every i >_ 1. Then by Theorem 16.6, for every i > 1 
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there exists a deduction of D from {Ci} U 13, in which Ci occurs at most once 
as a leaf. Ci cannot occur zero times as a leaf, because then a clause from 13 
would simply subsume D, which is impossible. Thus for every i > 1, there 
exists a deduction of D from {Ci} U 13, in which Ci occurs once as a leaf. It 
cannot be that  every Ci subsumes D, for then D would contain an instance 
of the term f i (x) ,  for every i > 1. 

Thus for some j ,  the deduction of D from {CN} U 13 involves at least one 
resolution step. Since the members of 13 are atoms and CN only occurs once 
as a leaf, the parent clauses in the first resolution step must be Cj and a 
member of 13. Suppose this member of 13 is P(a, y). Then P(a, y) must be 
unified with an atom of the form P(x, f'~(x)) in the body of Cj. Then the 
head of the clause Cj is instantiated to Q(a). This head will not be changed 
anymore in later resolution steps, so D would have Q(a) as head- -bu t  then 
there is no deduction of D2 : Q(b) from {D} U 13. 

Similarly, if the member of 13 in the resolution step had been P(b,y) 
instead of P(a, y), D would have had Q(b) as head, and there would be no 
deduction of D1 = Q(a) from {D} U 13. Either way, the assumption that  D 
is an LGRS of {D1, D2} relative to 13 leads to a contradiction. <~ 

Despite this negative result, we cart identify a restriction on the back- 
ground knowledge which guarantees existence (and computability) of an 
LGRS of any finite set of clauses. This result has been exploited in the GOLEM 
system, for which see Section 19.6. 

T h e o r e m  16.8 ( E x i s t e n c e  o f  L G R S  in g) Let d be a clausal language 
and 13 C_ g be a finite set of ground literals. Then every finite non-empty 
set S C_ C of clauses has an LGRS in g. 

P r o o f  If a clause D is a tautology or B C/D # ~, then 13 ~ D, hence for 
any clause C we have C h~ D. Remove from S all tautologies and all D for 
which 13 N D r ~, call the remaining set S ~, If S' is empty, any tautology is 
an LGRS of S. If $'  = {D1 , . . . ,  D~} is non-empty, then it follows easily from 
Proposition 16.4 that  an LGS of {(D~ O R ) , . . . ,  (D~ UB)} in C is an LGRS 
of S' in C, and hence also of S. The existence of such an LGS follows from 
Theorem 14.27. [] 

Thus if the background knowledge B is a finite set of ground literals, then 
we can construct an LGRS of a set S = {D1 , . . . ,  Dn} simply by constructing 
an LGS o f T  = {(D1 O B ) , . . . ,  (Dn UB)] .  

Note that  if all clauses in S are Horn clauses and each literal in /3 is a 
ground atom, then each Di O ~ in T is also a Horn clause. In this case, the 
LGS of T (and hence the LGRS of S) will be a Horn clause as well. If all 
clauses in S are definite program clauses having the same predicate symbol 
in their head, this LGS will be a definite program clause as well. Otherwise, 
this LGS will be a Horn clause without positive literals (i.e., a definite goal). 
Hence we also have the following result: 
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Theorem 16.9 (Existence of LGRS in ?/) Let  ?t be a Horn language 
and B C_ 7{ be a finite set of ground atoms. Then every finite non-empty 
set S C_ 7i of Horn clauses has an LGRS in 7-l. 

16.3 Relative Implication 

In this section we discuss the most general quasi-order on clauses: relative 
implication. 

16.3 .1  D e f i n i t i o n  a n d  S o m e  P r o p e r t i e s  

Relative implication is perhaps the most obvious way to take background 
knowledge into account. It takes roughly the same form as our problem setting 
in Chapter 9, and is defined as follows: 

Definition 16.10 Let C and D be clauses, and B be a set of clauses. C 
(logically) implies D relative to B, denoted C ~ D, if {C} U B ~ D. The 
~ - o r d e r  is called relative implication, and B is the background knowledge of 
this order. �9 

Obviously relative implication is reflexive and transitive, so it can serve 
as a quasi-order on a set of clauses. It is equally obvious that if C ~ D, 
then C ~ s  D. The converse need not hold. Consider C = P(a) +- P(b), 
D = P(a), and B = {P(b)}: then C ~ s  D, but C ~ D. 

It is important to be precise about the position of the universal quantifiers 
for C and D when distinguishing between relative subsumption and relative 
implication. If C ~-s D, then B ~ g(CO ~ D) (for some 0). If C ~ s  D, then 
{C} U B ~ D, which is equivalent to B ~ V(C) -~ V(D) by the Deduction 
Theorem (Theorem 2.36). Relative subsumption implies relative implication, 
but not conversely: 

E x a m p l e  16.11 Let B = {P(a)}, C = P(f(x))  +-- P(x) and D = P(f2(a)). 
Then C ~ s  D, because there is a deduction of D from {C} U/3. However, 
we have C ~ D, because C has to be used more than once in the deduction 
of D. < 

Theorem 16.6 characterized relative subsumption by a restricted form of 
deduction: 

C ~u D iff there exists a deduction of D from {C} U B in which 
C occurs at most once as a !eaf. 

The requirement that C be used at most once means that C cannot be 
resolved with itself in deductions for relative subsumption. This constraint 
is lifted for relative implication, as the relation between relative implication 
and deduction is given by the Subsumption Theorem: 
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C ~ s  D iff there exists a deduction of D from {C} U B. 

Thus the fact that  relative implication is a strictly stronger quasi-order than 
relative subsumption can also be seen as follows: the restriction on relative 
subsumption that  C be used at most once in a deduction of D (Theorem 16.6), 
does not hold for relative implication. 

1 6 . 3 . 2  L e a s t  G e n e r a l i z a t i o n s  

Here we discuss least generalizations" under relative implication (LGRIs). 
Firstly, in case of Horn clauses we have already shown in Section 15.2 that  the 
two definite program clauses D1 = P(f2(x)) +-- P(z) and D2 = P(fa(x)) +- 
P(x)  do not have an LGI in 7t. This negative result carries over to relative 
implication, since ordinary logical implication is just a special case of relative 
implication. 

For general clauses, we have seen in the last chapter that  a set S has 
an LGI if it contains at least one non-tautologous function-free clause. At 
present, it is not known whether sets of clauses which all contain function 
symbols always have an LGI. Nevertheless, for relative implication, we have a 
negative result. The next, example shows that even if S and B are both finite 
sets of function-free clauses, an LGRI of S relative to B need not exist. 

E x a m p l e  16.12 Consider 

D1 = 
z)2 = p(b)  

B = {(P(a)  V -~Q(~)), (P(b) V -~Q(x))} 

We will show that  the set S = {D1, D~} has no LGRI relative to B in C. 
Suppose D is an LGRI of S relative to B. Note that  if D contains the 

literal P(a), then the Herbrand interpretation which makes P(a) true, and 
which makes all other ground atoms false, would be a model of B t2 {D} but 
not of D2, so then we would have D ~ D2. Simitarly~ if D contains P(b) 
then D ~:t~ D1. Hence D cannot contain P(a) or P(b). 

Now let d be a constant not appearing in D. Let C = P(x)  V Q(d), then 
C ~t~ S. By the definition of an LGRI, we should have C ~ D. Then by the 
Subsurnption Theorem, there must be a derivation from BU {C} of a clause E, 
which subsumes D. The set of all clauses which can be derived (in 0 or more 
resolution steps} from BU{C} is ~U{C}U{(P(a}\/P(r (P(b)VP(x))}. But 
none of these clauses subsumes D, because D does not contain the constant 
d, nor the literals P(a) or P(b). Hence C ~ D, contradicting the assumption 
that  D is an LGRI of S relative to B in C. <~ 

Thus in general an LGRI of S relative to B need not exist. But again we 
can identify a special case in which the existence of an LGRI is guaranteed. 

P r o p o s i t i o n  16.13 Let C and D be clauses, and B be a finite set of 
function-free ground literals. Then C ~ D iff C ~ (D O B). 
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P r o o f  
~ :  Suppose C ~ s  D, i.e., {C} U13 ~ D. Let M be a model of C, then we 

need to show that  M is also a model of D U B. If M is not a model of 13, then 
it is a model of at least one literal in B, and hence of the clause D U B. If, 
on the other hand, M is a model of 13, then it is also a model of D, because 
{C} U 13 ~ D. Then M is also a model of D U B. 

4=: Suppose C ~ (D U B). Leg M be a model of {C} U 13, then we need 
to show M is also a model of D. M is a model of C, and hence of the clause 
D U 13. But M is also a model of 13, and hence not a model of 13. Therefore 
M must be a model of D. [] 

T h e o r e m  16.14 ( E x i s t e n c e  o f  L G R I  in C) Let C be a clausal language 
and 13 C C be a finite set of function-free ground literals. I f  S C. C is a finite 
set of clauses, containing at least one D for which D U 13 is non-tautologous 
and function-free, then S has an LGRI in C. 

P r o o f  Let S = {Di,  . . . ,  D~}. It follows easily from the previous proposition 
that  an LGI in B o f t  = { ( D 1 U B ) , . . . ,  (D~ UB)} is also an LGRI of S in C. 
The existence of such an LGI of T follows from Theorem 15.17. [] 

Note the following special case of this result: 

C o r o l l a r y  16.15 Let C be a function-free clausal language and 13 C_ C be a 
finite set of ground literals. If S C_ C is a finite set of clauses, then S has an 
LGRI  in C. 

P r o o f  Let S' be obtained by deleting from S all clauses which are implied by 
B. If S j is empty, any tautology is an LGRI of S. If D E S/, then B ~= D, so 
D cannot contain any of the literats in B. Then D U B is non-tautologous and 
function-free. Hence if S' is non-empty, it has an LGRI in C by the previous 
theorem. Clearly, this is also an LGRI of S itself. 

16.4 Generalized Subsumption 

In this section we introduce the third quasi-order on clauses with background 
knowledge, Buntine's generalized subsumption [Bun86, Bun88], and prove 
some of its properties. It applies only to definite program clauses. 

16.4.1 Definit ion and Some Properties  

Suppose we are given some particular definite program /3 as background 
knowledge. Buntine's definition of generalized subsumption can be motivated 
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as follows: a definite clause C may be said to be more general than another 
definite program clause D, if in any situation consistent with what we already 
know, C can be used to prove at least as many results as D. Here "a situation 
consistent with what we already know" can be formalized as "a Herbrand 
model of the background knowledge 8 2  Furthermore "C can be used to prove 
at least as many  results as D" is formalized as "the set of a toms covered by 
C is a superset of the set of a toms covered by D." The notion of 'covering' 
(not to be confused with the notion of an upward or downward 'cover' defined 
in Chapter  13) is defined below. Recall from earlier chapters that  if C is a 
definite program clause, then C + denotes the head of C, and C -  denotes the 
conjunction of the atoms in the body of C. 

D e f i n i t i o n  16.16 Let C be a definite program clause, A a ground atom, 
and I a Herbrand interpretation. We say C covers A under ! if there is a 
ground substitution 0 for C (i.e., CO is ground), such that  C-O is true under 
I ,  and C+O = A. 

E x a m p l e  16.17 Let C = P(f(x))  +- P(x) and A = P(f(a)).  Then C 
covers A under I = {P(a)},  because if O = {x/a}, then C-O = P(a) is true 
under I ,  and C+O = A. Note that  A itself need not be true under I for the 
definition of covering to apply. On the other hand, C does not cover A under 
I = {P(f(a))},  even though A is true under this [. 

C = P(x) covers A = P(a) under any Herbrand interpretation. <~ 

Put t ing the pieces together, generalized subsumption (or g-subsumption) 
is defined as follows: 

D e f i n i t i o n  16.18 Let C and D be definite program clauses and B be a 
definite program. We say C g-subsumes D with respect to B, denoted by 
C >_s D, if for every Herbrand model M of B and every ground a tom A such 
that  D covers A under M, we have that  C covers A under M.  The >B-order 
is called generalized subsumption, or g-subsumption, and B is the background 
knowledge of this order. (> 

E x a m p l e  16.19 Let B consist of the following clauses: 

Pet(x) +- Cat(x) 
Pet(x) +- Dog(x) 
Small(x) e- Cat(x) 

And suppose 

C = CuddlyPet(x) +-- Small(x), Pet(x) 
D = CuddlyPet(x) +-- Cat(x) 
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Then we can show that C _>0 D. For suppose M is a Herbrand model of 
B, and D covers some ground atom A = CuddlyPet(t) under M. Then for 
0 = {x/ t} ,  D-O = Cat(t) is true under M. Since M is a model of/~, in 
particular of the first and third clause of B, Pet(t) and Small(t) must be 
true under M as well. Then C-O = Small(t) A Pet(t) is true under M, and 
C+O = A, so C also covers A under M. Hence C g-subsumes D with respect 
to B. Rephrased in natural language: if small pets are cuddly pets, then cats 
are cuddly pets, since we already know that cats are small pets. < 

It is not very difficult to show that subsumption implies g-subsumption. 
To see this, suppose C __ D. Then CO C D, so C+O = D + and C-O C_ D-O 
for some 0. If D covers some A under some I, there is a 7 such that D -  7 is 
true under I and D+'y = A. But then C+07 = D+7  = A, and C-O"/C_ D-"/ 
is true under I, so C covers A under I as well. Hence if C _ D, then C _>~ D. 
The converse need not hold: if/3 = {P(a)}, C = Q(a) +-- P(a) and D = Q(a), 
then C_>ts D but C ~z D. 

From the definition it is clear that g-subsumption with respect to some 
particular definite program B is reflexive and transitive, so it imposes a quasi- 
order on the set of definite program clauses. Note that a clause C need not 
g-subsume every tautology with respect to any B. For instance, consider the 
empty program B = ~ as background knowledge, C = P(a), and D = Q(a) +-- 
Q(a). Because B is empty, any Herbrand interpretation is a model of B (no 
members of B can be false under I, since B has no members). If we take 
I = {O(a)}, then D covers Q(a) under I, while C does not. So C does not 
g-subsume the tautology D with respect to the empty program. Finally, note 
that if C _>8 D, then C and D must have the same predicate symbol in their 
head. 

Buntine himself extended this order on clauses to an order on finite sets 
of clauses (i.e., definite programs), but we will not go into that here. 

The next two lemmas, which we illustrate with an example, show the def- 
inition of g-subsumption to be equivalent to another formulation, which will 
be more convenient in later proofs than the definition based on covering. First 
a notational remark: if D is a definite program clause and (r a substitution, 
then D - r  is a conjunction of atoms, so we can use B U D-o" to denote the 
definite program consisting of the clauses in B and the atoms in D-o-. 

E x a m p l e  16.20 Consider 

c = Q(x, y) , -  P(x),  Q(y, x) 
D = Q(a, y) e-- Q(y, a) 

= { P ( x ) }  

then C _>~ D. Let o- = {y/b} be a Skolem substitution for D. If 0 = 
{x/a, y/b}, then C+0 = Q(a, b) = D+o ", so D+(r is an instance of C +. Now 
/3 together with D-cr  = Q(b, a) logically implies C - 0  = P(a) A Q(b, a). <~ 
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L e m m a  16.21 Let C and D be definite program clauses, 13 be a definite 
program, and o- be a Skolem substitution for D with respect to {C} U B. Then 
C >~ D iffthere exists a ground substitution 0 for C, such that C+O = D+cr 
and B U  D-~r ~ C-O. 

P r o o f  
~ :  Suppose C > s  D. Let M be the least Herbrand model of B U D - r  

The substitution (r is a ground substitution for D, and D-o-  is true under 
M,  so D covers D+o- under M.  Then C must  also cover D+o- under M.  Thus 
there is a ground substitution 0 for C, such that  C+O = D+o-, and C-O is 
true under M,  i.e., C-O C M,  so M ~ C-O. It  follows from Theorem 7.16 
that  BUD- O-  ~ M,  hence BU D-~r ~ C-O. 

~ :  Suppose there is a ground substitution 0 for C, such that  C+O = D+o- 
and B U D - ~  ~ C - 0 .  Let A be some ground a tom and M some Herbrand 
model of B, such that  D covers A under M. To prove that  C _>~ D, we need 
to show that  C covers A under M. 

Construct  a substitution 0' from 0 as follows: for every binding x /a  E o-, 
replace a in bindings in 0 by x. Then we have CO~o- = CO, and none of the 
Skolem constants of c~ occurs in 0 s. Then C+0%r = C+O = D+o-, so C+O ' = 
D +. Since D covers A under M,  there is a ground substitution 7 for D, such 
that  D - 7  is true under M, and D+7  = A. This implies C+0'7 = D+7  = A. 

It  remains to show that  C-O'? is true under M. Because B U D-o-  
C - O ' a ,  it follows from the Subsumption Theorem for SLD-resolution that ,  
for every a tom B in C - ,  there is an SLD-deduction of BO'~ from B U D - ~ .  
We want to turn these into SLD-deductions of BO' 7 from B U D - 7 ,  thus 
proving tha t  B U D -  7 ~ C-O~7. Let x i , . . . , x ~  be the variables in D - ,  
{ x i / a i , . . . , x n / a ~ ]  C o-, and { x l / t i  . . . .  , x ~ / t , ]  C 7. If  we replace each 
Skolem constant ai in the SLD-deductions by ti (1 < i < n), we obtain SLD- 
deductions of BO'7 from B U D - 7 ,  for every B in C - .  Hence B U D - 7  
C-O' 7. Since M is a model of B U D -  7, it is also a model of C-O' 7. [] 

L e m m a  16.22 Let C and D be definite program clauses, B be a definite 
program, and o- be a Skolem substitution for D with respect to {C} U B. 
Then C >~ D iff there exists a substitution ~, such that C+~ = D + and 
;3 U D -  z ~ C -  0o', where C -  Oct is ground. 

P r o o f  By the previous lemma,  we have C >_s D iff there exists a ground 
substi tution 0' for C, such that  C+O ' = D+o- and BU D-~r ~ C-O r. Since cr 
is a Skolem substitution, we can define a 0 such that  COO- = CO j and none of 
the Skolem constants of o- occurs in 0. Then C+O = D + and C-O r = C-Oo-, 
so the result follows. [] 

The relation between g-subsumption and deductions is given below by 
Theorem 16.25. First note that  a binary resolvent of two clauses is g-subsumed 
by one of its parent clauses with respect to the other parent clause: 
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E x a m p l e  16.23 Consider the following clauses: 

C = CuddlyPet(x) +- Cute(x), Cat(x) 
D : CuddlyPet(x) +- Small(x), Pet(x), Cat(x) 
E = Cute(x)  +-- Small(x),  Pet(x)  

Then D is a binary resolvent of C and E, and C _>{E} D. 

L e m m a  16.24 If  D is a binary resolvent of definite program clauses C and 
E, resolved upon the head of E, then C _>{E} D. 

P r o o f  We may  assume that  C and E are standardized apart .  Let C = B +- 
B1, �9 �9 Bs, �9  B,~, where Bs is the a tom resolved upon, and p is the mgu of 
Bs and E + tha t  is used. Then D = (B +- B 1 , . . . , B s - I , E - , B ~ + ] , . . . , B ~ ) p .  
Let M be a Herbrand model of {E},  and A be a ground a tom such that  D 
covers A under M.  We need to prove that  C covers A under M.  

D covers A under M,  so there is a ground substitution 0 for D, such that  
D+O = B#O = A, and D-O = ( B 1 , . . . , B ~ - I , E - , B ~ + I , . . . , B n ) p O  is true 
under M.  Let 7 be a ground substitution for B,#O, and define 0' = p07. Then 
C+Y = Bp07 = A 7 = A. Since D-O is ground and true under M, the atoms 
(B1, �9 . . ,  B , - I ,  B ,+I ,  �9 . . ,  B~)0 ~ are ground and true under M. Furthermore, 
M is a model of E and thus also of E0' ,  and E - 0  ~ = E-I~O 7 = E-pO C_ D-O 
is ground and true under M,  hence E+~ ' = E+#07  = B8#07 = B,O ~ is 
ground and true under M.  Thus every a tom in C-0 '  is ground and true 
under M,  which means that  C covers A under M. t2 

T h e o r e m  16.25 Let C and D be definite program clauses and B be a definite 
program. Then C >_~ D iff there exists an SLD-deduction of D, with C as 
top clause and members of B as input clauses. 

P r o o f  
~ :  Suppose C _>s D. Let (r be a Skolem substitution for D with respect 

to {C} UB. Then by Lemma  16.22, there is a substitution 0 such that  C+0 = 
D +, and 13 U D-o-  ~ C-0c~, where C-0o" is ground. By Proposition 2.37, 
13 U D-o" U {+- C-0~}  is nnsatisfiable. 

By the refutation completeness of SLD-resolution, there is an SLD-refu- 
ration of B U D - e r a  {+- C-0~} ,  with goals Go(=+-  C-0~r), G 1 , . . . ,  G,~ = n,  
input clauses E l , . . . ,  E,~, and mgu 's  01 , . . . ,  0,~ (here n = 0 if C is an atom, 
and n _> 1 otherwise). Each input clause is either a member  of B, or an a tom 
from D-c~. By the Switching Lemma,  we can assume there is an i > 0 such 
tha t  E l , . . . ,  Ei are members  of B, and E i + l , . . . ,  E,~ are the input clauses 
(atoms) that  come from D-c~. Note that  then G~-0i+l . . .  ~n _C D - ~ .  

For every 0 _< j < n, define G~ = C+0c ~ +- G j .  Tha t  is, add the ground 

a tom C+0~r as head to each goal in the refutation. Then G ~ , . . . ,  G~ is an 
SLD-derivation of G~, with top clause G~ = COc~ and input clauses from 
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B. Furthermore, we have G}Oi+l...O, = C+Oo " +- G~Oi+z...O~ = D+c~ +- 
Gi-Oi+l...On C_ D~r, so G~ subsumes Dc~. Now by the Lifting Lemma for 
SLD-resolution (Lemma 7.7), we can find an SLD-derivation of a clause F 
which subsumes D~, with C as top clause and members of B as input clauses. 
By Lemma 5.16, F also subsumes D itself, so we have found the required 
SLD-deduction. 

~ :  Suppose Co(= C), C1 , . . . ,  C .  is an SLD-derivation (n _> 0), with C 
as top clause and members of B as input clauses, and C~ subsumes D. We 
will prove by induction on n that C >_u D. 

1. If n = 0, then C _  D, and hence C k s  D. 
2. Suppose the result holds for n < m, and Co(= C), C1, . . . ,C ,~+l  be 

an SLD-derivation, with C as top clause and members of B as input 
clauses, and Cm+l subsumes D. C1 is a binary resolvent of C and 
some E C B, so we have C >_{E} C1 by Lemma 16.24, and hence also 
C >_s C1, since E E B. By the induction hypothesis we have Cz _>s D. 
Now C >_u D follows from the transitivity of >_~. [] 

It follows from this that  g-subsumption reduces to ordinary subsumption 
in the presence of empty background knowledge, as was the case for relative 
subsumption. 

C o r o l l a r y  16.26 If C and D are definite program clauses, then C >_r D iff 
C ~ - D .  

Finally, let us take a look at the relation between relative subsumption and 
generalized subsumption. Comparing the restrictions on deductions stated in 
Theorems 16.25 and 16.6, the next corollary follows immediately: 

C o r o l l a r y  16.27 Let C and D be definite program clauses, and I3 be a def- 
inite program. If  C >_s D, then C h s  D. 

The converse does not hold, because g-subsumption requires that C and D 
have the same predicate symbol in their head, while relative subsumption does 
not (see Example 16.2). Hence Plotkin's relative subsumption is a strictly 
stronger quasi-order than Buntine's g-subsumption. 

1 6 . 4 . 2  L e a s t  G e n e r a l i z a t i o n s  

In this subsection we will investigate the existence and non-existence of least 
generalizations under g-subsumption, which we abbreviate to LGGSs. Exam- 
ple 16.7, which showed that least, generalizations need not exist under relative 
subsumption, may serve as well to show that LGGSs need not exist. We leave 
the details to the reader. 

However, again some important  special cases can be identified in which 
the existence of an LGGS is guaranteed. Buntine himself identified two such 
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cases in which an LGGS of a finite set S (of definite program clauses which 
all have the same predicate symbol in their respective heads) always exists: 
(1) if all clauses in S are atoms, and the background knowledge B implies 
only a finite number of ground atoms (i.e., Ms is finite); and (2) if S and B 
are all function-free (see Corollaries 7.2 and 7.3 of [Bun88]). We add here a 
third case, namely (3) if B is ground. Note that case (3) differs from case (1), 
because B may imply only a finite number of ground examples, and still be 
non-ground itself. For example, B = {P(a),  (Q(x) +- P(x))} .  

Actually, these three cases are special cases of Theorem 16.29, proved 
below. Our proof differs slightly from Buntine's. The next lemma is the key 
to the result. Note that  if D is a definite program clause and E is a finite set 
of ground atoms, then D U E is also a definite program clause. 

L e m m a  16.28 Let C and D be definite program clauses, B a definite pro- 
gram, ~r be a Skolem substitution for D with respect to {C} UB, and M be the 
least IIerbrand model of B U  D-cr. Then C >_is D iff there is a substitution 0 
such that CO C_ {D+c~} U M. 

P r o o f  
~ :  Suppose C _>6 D. By Lemma 16.21, there is a ground substitution 0 

for C, such that C+O = D+~ and B U D-cr ~ C-O. Because M is the least 
Herbrand model of/3 U D-cr,  we have C-O C_ M from Theorem 7.16. Since 
also C+O = D+cr, we have CO C_ {D+0 "} U M. 

r Suppose there is a substitution 0 such that CO C {D+c ,} U M. Then 
C+O = D+c~ and C-O C_ M.  This means that we have M ~ C-O, hence also 
/3U D-or ~ C - O .  Therefore C >~ D by Lemma 16.21. [] 

Note that  if the least Herbrand model M of B t2 D -  ~ is finite, then this 
lemma becomes: C _>B D iff C ~- {D+~} U M. Thus we have a means to 
translate g-subsumption to ordinary subsumption. 

T h e o r e m  16.29 ( E x i s t e n c e  o f  L G G S )  Let 7{ be a Horn language and B 
be a definite program. Let S = {D1, . . . ,  Dry} C 7/ be a finite non-empty set of 
definite program clauses, such that all Di have the same predicate symbol in 
their head. Furthermore, for every 1 < i < n, let ~r i be a Skolem substitution 
for Di with respect to BUS,  and Mi be the least Herbrand model of BU D-~ cri. 
I f  every Mi is finite, then there exists an LGGS of S in 7/. 

P r o o f  By Theorem 14.27, there exists an LGS in 7/ of the set of clauses 
T = {({D+c,,} U M1) , . . . ,  ({D+r U M~)}. Since each Di E S has the same 
predicate in its head, this LGS of T will be a definite program clause which 
also has this predicate in its head. Now it follows easily from the previous 
lemma that this LGS of T in 7/ is an LGGS of S in 7/. [] 

Thus if the least Herbrand models mentioned in the theorem are indeed 
finite, then we can find an LGGS of a set {D1, �9  D~} simply by constructing 



296 CHAPTER 16. BACKGROUND KNOWLEDGE 

an L GS of { ({D + (rl } U M1) , . . . ,  ({D+~n } kJ Mn)}. The three special cases we 
mentioned, will be shown to be immediate corollaries of this result. 

Firstly, if S is a finite set of atoms, then for each i, D [ e  will be empty 
and Mi = Ms.  If B implies only a finite number of ground atoms (i.e., if M~ 
is finite), then the theorem can be applied. 

C o r o l l a r y  16.30 Let 7t be a Horn language and B be a definite program 
such that M~ is finite. If S is a finite set of atoms which all have the same 
predicate symbol, then there exists an LGGS of S in 71. 

Secondly, if S and B are function-free, the set of ground atoms in the 
Herbrand base BBos is finite, so the least Herbrand models M1, �9 . . ,  Mn will 
be finite as well. 

C o r o l l a r y  16.31 Let 71 be a Horn language and B be a function-free definite 
program. If S is a finite set of function-free definite program clauses which 
all have the same predicate symbol in their head, then there exists an LGGS 
of S in71. 

Thirdly and finally, if B is ground, then each Mi will again be finite. 

C o r o l l a r y  16.32 Let 71 be a Horn language and B be a ground definite pro- 
gram. If S is a finite set of definite program clauses which all have the same 
predicate symbol in their head, then there exists an LGGS of S in 71. 

E x a m p l e  16.33 Consider the clauses from the introduction: 

D1 = CuddlyPet(x) +- Small(x), Fluffy(x), Dog(x) 
D2 = CuddlyPet(x) +- Fluffy(x), Cat(x) 

And background knowledge B: 

Pet(x) +- Cat(x) 
Pet(x) +-- Dog(x) 
Small(x) Cat(x) 

Let us take ~1 = {x/a} and cr2 : {x/b} as Skolem substitutions for D1 and 
D2, respectively. Then 

M1 : {Small(a), Fluffy(a), Dog(a), Pet(a)} 
M2 = {Small(b), Fluffy(b), Cat(b), Pet(b)} 

The following clause is an LGS of {({D+cq} U M-l[), ({D+cr2} U M-7)}, and 
hence also an LGGS of D1 and D2: 

CuddlyPet(x) 4-- Small(x), Fluffy(x), Pet(x) < 

Though these existence results are fairly strong, it should be noted that  
the LGGS obtained from the LGS algorithm may have a huge number of 
literMs. Thus for efficient use of LGGSs, additional constraints may be needed 
in practice. 
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16.5 Summary 

This chapter discussed three generality orders which are able to take back- 
ground knowledge into account: Plotkin's relative subsumption (~-~), relative 
implication ( ~ s ) ,  and finally Buntine's generalized subsumption (_>s). Rela- 
tive subsumption and relative implication apply to arbitrary clauses and the 
background knowledge B may be an arbitary finite set of clauses. General- 
ized subsumption only applies to definite program clauses and the background 
knowledge should be a definite program. The relations between these three 
orders and deductions are as follows: 

1. C ___s D iff there exists a deduction of D from {C} U B in which C 
occurs at most once as a leaf. 

2. C ~ s  D iff there exists a deduction of D from {C} U B. 
3. C _>s D iff there exists an SLD-deduction of D, with C as top clause 

and members of B as input clauses. 

We investigated the existence of least generalizations in each of these 
orders, both in case we are dealing with a Horn language 7-/, and for a general 
clausal language g. The results are given in the following table, where '+' 
signifies a positive answer, and ' - '  means a negative answer. In order to get 
the total picture, we also include our results on least generalizations under 
ordinary subsumption and implication from the last two chapters. In case of 
a ' - '  for the general case, we include a reference to a theorem describing a 
special case in which least generalizations are guaranteed to exist. The '?' in 
the second row indicates that the general question concerning the existence 
of an LGI for general clauses is still open. 

Horn clauses General clauses 
Subsumption (__) + + 
Implication (~)  - ? (+ Th 15.17) 
Relative subsumption (___~) - (+ Th 16.9) - (+ Th 16.8) 
Relative implication ( ~ )  - - (+ Th 16.14) 
Generalized subsumption (>_e) - (+ Th 16.29) undefined 

Table 16.1: Existence of least generalizations 

Note the trade-off between the strength of the generality order and the 
existence of least generalizations: in the weakest order (subsumption) least 
generalizations always exist, while in the strongest order (relative implication) 
the existence of least generalizations can only be guaranteed in very restricted 
c a s e s .  



Chapter 17 

Refinement Operators 

17.1 Introduct ion  

In the chapter on Shapiro's model inference technique, we deferred the dis- 
cussion of refinement operators to this chapter. The reason for this is that 
refinement operators can be defined for different quasi-ordered sets of clauses. 
Hence the discussion in this chapter presupposes the investigation of the prop- 
erties of the various quasi-orders given in the last chapters. In this chapter, we 
will apply the results of those chapters to the topic of refinement operators. 

In Shapiro's sense, a refinement operator is a function which computes a 
set of specializations of a clause. Specialization is the direction suited for his 
top-down approach. His kind of refinement operator will therefore be called a 
downward refinement operator. Dually, we might also define operators which 
compute generalizations of clauses. These can be applied in a bot tom-up 
search, so we will call them upward refinement operators. 

A "good" downward refinement operator should satisfy certain desirable 
properties. Ideally, it should compute only a finite set of specializations of each 
clause--otherwise it will be of limited use in practice. This condition is called 
locally finiteness. Furthermore, it should be complete: every specialization 
should be reachable by a finite number of applications of the operator. And 
finally, it is better only to compute proper generalizations of a clause, for 
otherwise repeated application of the operator might get stuck in a sequence 
of equivalent clauses, without ever achieving any real specialization. We would 
also like three analogous conditions to hold for upward refinement operators 
as well. 

We will show in the next section that ideal upward and downward refine- 
ment operators exist for the simplest of our quasi-orders: the set of atoms 
ordered by subsumption. Unfortunately, these ideal conditions cannot all be 
met at the same time for more complex orders. In Section 17.3, we will prove 
that  ideal refinement operators do not exist for full clausal languages or Horn 
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languages ordered by subsumption or by the stronger orders. This negative 
result is a concequence of the fact that finite complete sets of covers do not 
always exist. 

In order to define a refinement operator for full clausal languages, we have 
to drop one of the three properties of idealness. We consider locally finiteness 
and completeness to be the two most important properties, so we will drop 
the 'properness'. Accordingly, in Section 17.4 we define locally finite and 
complete, but improper refinement operators for full clausal languages. On 
the other hand, if we want to retain all three ideal properties, it seems that  
the only possibility is to restrict the search space. This is done in Section 17.5, 
where we define ideal refinement operators for clausal languages bounded by 
a newsize restriction. After that,  we go into optimal refinement operators, 
and refinement operators for theories (rather than individual clauses) under 
logical implication. 

Refinement operators are used very often in ILP systems, for instance in 
MIS [Sha81b], SIM [LD90, Lin92], FOIL [Qni90, QC93], CLAUDIEN [DB93], 
LINUS [LD94], and PROGOL [Mug95]. For reasons of efficiency, those operators 
are usually less general than the ones we discuss here, and often incomplete. 
Nevertheless~ we feel the complete operators we define here form a good 
starting point for the construction of practical refinement operators. The 
material in this chapter is mainly drawn from [LN93, NLT93, LN94a, LN94b, 
LN97], and is collected in [Laa95]. 

17.2 Ideal Refinement Operators for Atoms 

In this section, we will define the concept of a refinement operator for a 
quasi-ordered set. As an example, we will then define downward and upward 
refinement operators which are ideal for the set of atoms. 

Definit ion 17.1 Let (G, >) be a quasi-ordered set. A downward refinement 
operator for (G, >} is a function p, such that p(C) C_ {D I C >_ D}, for every 
C c G .  

An upward refinement operatorfor (G, >} is a function 5, such that  5(C) C_ 
{D I D _> C}, for every C E G. O 

Usually in this chapter, G will be a clausal language C. In that case, R(C) 
is a set of specializations of a clause C, while 6(C) is a set of generalizations 
of C. However, in Section 17.7 we take G to be the set of finite subsets of C, 
and we define an operator which specializes sets of clauses. 

Several properties of refinement operators are defined as follows: 

Definit ion 17.2 Let (G, >} be a quasi-ordered set, and p be a downward 
refinement operator for (G, _>). 

| The sets of one-step refinements, n-step refinements, and refinements 
of some C E G are respectively: 
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pl (c) = p(c), 
p~(C) = {D  [there is an E E p'-l(C) such that D E p(E)} ,  n > 2, 
p*(C) = p~(c )u  p~(C)u p3(c) .... 

�9 A p-chain from C to D is a sequence C = C0, C 1 , . . . , C ~  = D, such 
tha t  Ci E p(Ci-1) for every 1 < i < n. 

�9 p is locally finite if for every C E G, p(C) is finite and computable.  

p is complete if for every C , D  E G such that  C > D, there is an 
E E p*(C) such that  D ~ E (i.e., D and E are equivalent in the 
___-order). 

�9 p is proper if for every C C G, p(C) C_ {D [ C > D}. 

�9 p is ideal if it is locally finite, complete, and proper. 

We can define analogous concepts for the dual case of an upward refinement 
operator 5. <5 

A refinement operator induces a refinement graph. This is a directed graph 
which has the members  of G as nodes (here variant clauses in G can be viewed 
as the same node), and which contains an edge from C to D just in case 
D C p(C). This refinement graph is the space that  is searched for candidates 
to include in the theory. An ideal refinement operator induces a refinement 
graph in which only a finite number  of edges start  f rom each node (locally 
finiteness), in which there exists a path  of finite length from C to a member  
of the equivalence class of D whenever C > D (completeness), and which 
contains no cycles (by properness). 

Suppose (G, >} is a quasi-ordered set of clauses, such that  every C E G has 
a finite complete set of downward covers. Then a natural  approach towards 
ideal refinement operators,  is by defining p(C) as such a finite complete set 
of downward covers of C. As an example, we will show in this section how 
we can define an ideal downward refinement operator for the set of atoms. 
In Chapter  13, we have already proved that  every a tom has a finite complete 
set of downward covers. 

D e f i n i t i o n  17.3 Let .4 be the set of a toms in a language. The downward 
refinement operator  PA for A is defined as follows: 

1. For every variable z in A and every n-ary function symbol f in the 
language, let X l , . . . ,  x~ be distinct variables not appearing in A. Let 
p.4 (A) contain A{z / f ( x l , . . . ,  x~)}. 

2. For every variable z in A and every constant a in the language, let 
p• (d) contain d{z/a}. 

3. For every two distinct variables x and z in A, let p.4 (A) contain A{z/x}. 
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Note that  pA(A) may still contain variants. For instance, pA(P(x,y)) 
contains both P(x, x) and P(y, y). Clearly, in a practical application we can 
ignore any redundant variants. 

The three different kinds of atoms in p(A) correspond exactly to the three 
kinds of downward covers that  we discussed in Chapter  13. The fact that  pA 
is ideal follows easily from the properties of sets of covers of a toms that  were 
given in that  chapter. 

T h e o r e m  17.4 Let A be the set of atoms in a language containing only a 
finite number of constants, function symbols, and predicate symbols. Then p.4 
is an ideal downward refinement operator for (A, ~). 

P r o o f  By the definition of p.4, p.4 is locally finite. The completeness of 
PA follows from the fact that  there exists a finite chain of downward covers 
between any two atoms A, B E ,4 for which A >- B (Theorem 13.41). Finally, 
pA is proper since every a tom in p(A) is a downward cover of A, and hence 
a proper specialization of A. [] 

E x a m p l e  17.5 Suppose we have a language containing one binary pred- 
icate G, and two unary functions f and m. Suppose G(x ,y)  is inter- 
preted as "x is the grandfather of y", f(x) is "the father of x", and re(x) 
is "the mother  of x". Given the positive examples G(f(m(mary)), mary) 
and G(/(f(john)), john), and the negative examples G(f(mary), john) and 
G(m(f(john)),john), a good theory would be "x is the grandfather of all 
those y for which x is the father of the father or mother  of y". Or in atoms: 
G(f(f(x)),  x) and G( f (m(x ) ) ,  x). 

Starting from the most general a tom G(x, y), we can use our downward 
refinement operator  p~ to find a variant of G(f(f(x)), x): 

1. a( f(z) ,  y) y)) 
2. G(f(f(zl)) ,  y) E pA (G(f(z), y)) 
3. G(f(f(y)), y) E p.a (G(f(f(zl)),  y)) 

Similarly, there is a pA-chain from G(x, y) to a variant of G(f(m(x)), x). <~ 

Let us now consider the dual case of an upward refinement operator for 
the set of atoms.  Since we already know what a complete set of upward covers 
of an a tom is, an operator 5A can be defined straightforwardly as follows: 

D e f i n i t i o n  17.6 Let .4 be the set of a toms in a language. The upward re- 
finement operator 5~ for ,4 is defined as follows: 

1. For every t = f (xl , . . . ,z ,~)  in A, for which z l , . . . , x ~  are distinct 
variables and each occurrence of some zl in A is within an occurrence 
of t, 5.4 (A) contains an a tom obtained by replacing all occurrences of t 
in A by some new variable z not in A. 
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For every constant a in A and every non-empty subset of the set of 
occurrences of a in A, ~ t (A)  contains an a tom obtained by replacing 
those occurrences of a in A by some new variable z not in A. 
For every variable x in A and every non-empty proper subset of the set 
of occurrences of x in A, 5r (A) contains an a tom obtained by replacing 
those occurrences of x in A by some new variable z not in A. 

Note that  in the last item, we cannot replace all occurrences of x by a 
new variable z, for then we would get a variant of A. For instance, P(z,  a, z) 
is a variant of A = P(x ,  a, x). 

As in the case of p~t, it easily follows that  5r is locally finite, complete 
and proper. We do not even have to presuppose a finite number of constants, 
function and predicate symbols for this, because when constructing 5.4 (A) we 
only have to deal with the finite number of symbols in A- - the re  is no need 
to introduce new constants, functions or predicates. 

T h e o r e m  17.7 Let ,4 be the set of atoms in a language. Then 5~t is an ideal 
upward refinement operator for (r ~}. 

17.3 N o n - E x i s t e n c e  of  Ideal Ref inement  Oper- 
ators 

The previous section defined an ideal refinement operator for the set of a toms 
ordered by subsumption.  In this section, we will show that  for the most 
interesting quasi-orders on a clausal language, ideal refinement operators do 
not exist. 

L e m m a  17.8 Let (G, >_} be a quasi-ordered set. I f  there exists an ideal down- 
ward refinement operator for (G, >_), then every C E G has a finite complete 
set of downward covers. 

P r o o f  Suppose p is an ideal downward refinement operator for (G, _>), and 
let C E G. Construct  the set dc from p(C), as follows: 

dc := p(C) 
while there are D, E E dc such that  D ~ E and D > E,  

do dc := dc \{E}  

Since p is ideal, p(C) is finite, so the previous construction terminates and 
yields a finite set dc. By construction we have the following property: 

(1) There are no D , E  E dc such that  D 5~ E and D > E.  

Furthermore,  by construction and by the completeness and properness of p, 
we have the following: 

(2) For every E E G: if C > E then there is a D E dc such that  C > D > E. 
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We will show that  every member of dc is a downward cover of C. Suppose 
some E E dc is not. Then there is an F E G such that C > F > E, and 
by (2) there is a D such that  C > D >_ F > E. But then D , E  E dc with 
D > E, which contradicts (1). Hence dc is a finite set of downward covers of 
C. Furthermore, by (2) dc is complete. [] 

The dual lemma can be proved analogously: 

L e m m a  17.9 Let {G, >_) be a quasi-ordered set. t f  there exists an ideal up- 
ward refinement operator for (G, >_), then every C E G has a finite complete 
set of upward covers. 

Since we have already proved for the subsumption order and the impli- 
cation order that  there are clauses which do not have a finite complete set 
of downward covers (Propositions 14.40 and 15.28), and clauses that  have no 
finite complete set of upward covers (Propositions 14.32 and 15.27), the non- 
existence of ideal refinement operators for these orders follows immediately. 

C o r o l l a r y  17.10 Let C be a clausal language containing at least one predi- 
cate or function symbol of arity > 2. 'Then there do not exist ideal downward 
or ideal upward refinement operators for {C, ~}. 

C o r o l l a r y  17.11 Let C be a clausal 
care or function symbol of arity > 2. 
or ideal upward refinement operators 

language containing at least one predi. 
Then there do not exist ideal downward 
for (C, ~). 

These negative results still hold when we replace C by a Horn language 
7/. Of course, they also remain valid when we consider one of the orders with 
background knowledge of Chapter 16. 

However, even in a situation where every clause does have a finite complete 
set of downward covers, defining p(C) as a finite complete set of downward 
covers need not give an ideal downward refinement operator. Consider the 
infinite chain 6'2 >- Ca >- . . .  >- C~ >- ..~ >~ C that we used in the proof of 
Proposition 14.32. Let G = {C, C2, Ca,...}. Then the set of all downward 
covers of Ci in G is {C~+.~}, and the set of downward covers of C is empty. 
However, due to the infinite length of the chain, C cannot be reached from 
some Cr by only considering downward covers. So a refinement operator de- 
fined as p(Ci) = {C/+1} is not complete, and hence not ideal. On the other 
hand, if we define p(C~) -= {6'~+1, C}, then p is ideal for (G, ___>. 

As is often the case, we cannot have it all: finiteness, completeness and 
properness cannot all be achieved at the same time. Hence in order to define 
a complete refinement operator, we have to give something up. Either we can 
drop one of the conditions of locally finiteness, completeness, and properness, 
or we have to restrict the language. The first approach is pursued in the 
next section, the second approach in the section after that.  The refinement 
operators in the next sections are defined for general clausal languages, but 
they can easily be restricted to Horn clauses. 
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17.4 Complete Operators for Subsumption 

Of the three conditions of locally finiteness, completeness and properness, 
finiteness seems indispensable: an infinite set p(C) of refinements of a clause 
C cannot be handled well, because it would then be impossible to test all 
members of p(C) in finite time. Furthermore, it is obvious that complete- 
ness is also a very valuable property, if you want to be able to guarantee 
that  a solution will always be found whenever one exists. Of the three ideal 
properties, properness seems the least important.  Therefore we will drop this 
requirement, and discuss the case of refinement operators that are locally fi- 
nite and complete, but improper. For subsumption, such refinement operators 
exist, both for the downward and for the upward case. 

1 7 . 4 . 1  D o w n w a r d  

If C subsumes D, then C0 c_ D %r some substitution t~. Thus specialization 
under subsumption can be achieved by applying (elementary) substitutions 
and adding literals. In fact, when adding literals it is sufficient to add only 
most general literals, since these can always be instantiated by a substitution 
later on to get the right literals. 

D e f i n i t i o n  17.12 A literal P(xl,. . . ,  x~) or -~P(xl,..., x~) is most general 
with respect to a clause C, if xi, . . . ,  xn are distinct variables not appearing 
in C. 0 

E x a m p l e  17.13 If C = {P(x, f (x))},  D = {P(a,  f(a)), Q(a, y),-~P(y, y)}, 
then a variant of D can be constructed from C by the following operations: 

1. Add the literal Q(xl, x2) (which is most general with respect to C) to 
C, then we get {P(x, f (x)) ,  Q(xl, x2)}. 

2. Add the most general literal -~P(Yl, Y2), then we obtain {P(x, f(x)), 
Q(xi, x2), v2)) 

3. Apply 01 = {x/a} to get {P(a, f(a)), Q(xl, x2),-~P(y,, y2)}- 
4. Apply 02 = {xl/a} to get {P(a, f(a)), Q(a, x2), -~P(yz, y~)}. 
5. Apply 0a = {yz/x2} to get {P(a, f(a)), Q(a, x=),-~P(x2, y2)}. 
6. Apply 04 = {y2/x2} to get {P(a, f (a)) ,  Q(a, x2),-~P(x2, x2)}, which is 

a variant of D. <~ 

This idea is the basis for our complete downward refinement operator. It 
was first defined by Laird in [Lai88], hence we call it PL. 

D e f i n i t i o n  17.14 Let C be a clausal language. The downward refinement 
operator PL for (C, ~> is defined as follows: 

1. For every variable z in C and every n-ary function symbol f in the 
language, let xI,... ,  x~ be distinct variables not appearing in C. Let 
PL (C) contain C{z/f(xl , . . . ,  x,~)}. 
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2. For every variable z in C and every constant a in the language, let 
pr. (C) contain C{z/a}.  

3. For every two distinct variables x and z in C, let PL (C) contain C{z/x} .  
4. For every n-dry predicate symbol P in the language, let x l , . . . , x .  

be distinct variables not appearing in C. Then pL(C) contains both 
c u and C u <> 

Note that  the literals P ( x l , . . . ,  x,~) and - - ,P(x l , . . . ,  x~) that  are added 
to C by the fourth item in the definition are most general with respect to C. 
The proof of locally finiteness and completeness is straightforward: 

T h e o r e m  17.15 Let 6 be a clausal language, containing only a finite number 
of constants, function symbols, and predicate symbols. Then ])L is a locally 
finite and complete downward refinement operator for (C, ~}. 

P r o o f  Locally finiteness follows immediately from the definition of PL and 
the assumption of only a finite number of constants, function and predicate 
symbols. 

For the completeness, let C , D  C C such that C ~ D. Then there is 
a substitution 0 such that CO C_ D, where 0 only acts on variables in C. 
Consider D\CO = { M ~ , . . . , M s }  (n > 0). For every Mi, there is a most 
general literal Li, of which Mi is an instance. We can assume that  for every 
1 _< i < n -  1, the variables in Li+l do not appear in C U  { L 1 , . . . , L i } .  
Then by the fourth item in the definition of PL we have a finite pL-chain 
C, CU {L1}, C IJ {L1, L~}, . . . ,  C U {L1,. . . ,  L~}. 

Furthermore, there is a substitution 0' such that ( C U { L t , . . . ,  Ln })0' : _D, 
where 0 C 0 r. It is easy to see that there exist elementary substitutions 
01 , . . . ,  0k, such that  (CU{L~, . . . ,  L~})O' = D and (CU{L~ . . . .  , L~})O~ . . .  ~ 
are variants (this is a simple generalization of the same result for atoms). The 
three kinds of elementary substitutions correspond to the first three items 
in the definition of PL. Hence there is a finite pL-ehain (of length k) from 
C U i l l ,  . . . ,  L~} to a variant of D, and hence there exists a finite pL-chain 
from C to a variant of D. [] 

Since we already know that no ideal operators exist for this case, PL 
cannot be proper. For instance, if C =- {P(x)} and D = iF (x ) ,  P(y)},  then 
D E fin (C) and C ~ D. However, this D is needed in a pz-chain from C to 
iF (a ) ,  P(b)}, as follows: {e(x)} ,  {P(x) ,  P(y)},  {P(a),  P(y)},  {P(a), P(b)}. 

Notice that  for every o r C E d, we have [] > C, so p~(Cb) contains a 
clause which is subsume-equivalent to C. In other words: if we start with the 
empty clause (as Shapiro's Model Inference Algorithm does), then for every 
C E C, a clause C p such that  C ~ C ' can be reached by means of pL. 

1 7 . 4 . 2  U p w a r d  

In this subsection, we will define an upward refinement operator 5~ which is 
the dual of PL. (The 'u'  abbreviates ~unreduced', to distinguish the operator 
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of this section from the operator 5~ for reduced clauses in the next section.) 
At first sight, it appears that  inverting the four items in the definition of 
PL suffices for the definition of 5~. Tha t  is, given the four operations of (1) 
replacing f ( x l , . . . ,  xn) by a new variable, (2) replacing some occurrences of 
a constant by a new variable, (3) replacing some (not all) occurrences of a 
variable by a new variable, and (4) removing a most  general literal, we expect 
to be able to derive from C, after some refinement steps, a clause E ,-~ D 
whenever D ~-- C. 

However, it is not quite as simple as that.  As the next examples show, 
it is sometimes necessary to duplicate literals before inverting one of the 
elementary substitutions. 

E x a m p l e  17.16 Let C = Even(x+x) +-- Even(x) and D = Even(x+y) e-- 
Even(x), Even(y), where ' + '  is a binary function symbol,  written in infix 
notation. Note that  D{y/x} = C. However, we cannot reconstruct D from 
C simply by replacing some occurrences of x in C by y. The reason for this 
is that  the substi tution {y/x} has decreased the number of literals in D: 
it has unified the literals Even(x) and Even(y) in the body of D. Thus in 
order to reconstruct D from C (i.e., to invert the elementary substitution 
{y/x}), we should first duplicate the literal Even(x) in C. Doing this, we get 
C' = Even(x + x) +-- Even(x), Even(x). Now we can get from C'  to D by 
replacing the 2nd and 4th occurrence of x in C ~ by y. <~ 

E x a m p l e  17.17 Something similar holds when we want to invert an ele- 
mentary  substitution of the kind {x/a}.  Let C = Even(a + a) +- Even(a) 
and D = Even(x + a) +- Even(a), Even(x). Then D{x/a} = C. Again, the 
substi tution has decreased the number of literals in D. Thus in order to invert 
the elementary substitution {x/a} correctly, we again should first duplicate 
literals. Doing this, we get C' = Even(a + a) +-- Even(a), Even(a). Now we 
can get from C ~ to D by replacing the 1st and 4th occurrence of a in C ~ by 
X. <3 

In our upward refinement operator,  5(C) should contain a variant of every 
D for which DO = C, where 0 is an elementary substitution. As can be seen 
from the above examples, it is sometimes necessary to duplicate literals in 
order to correctly invert an elementary substitution. Since duplication of 
literals is not allowed for clauses in set-notation, we will temporari ly  adopt 
ordered notation, treating clauses as disjunctions of not necessarily distinct 
literals. Actually, the particular order of literals in the clause is not important ;  
we only use ordered notat ion here to enable a clause to contain literals more 
than once. We use C to denote such an ordered clause, and C to denote the 
set of literals in C. Thus if C = P(x) V P(x)  V -~Q(x), which may also be 
written as C = P(x), P(x) +- Q(x), then C = {P(x),--,Q(x)}. 

Now the problem is: which literals should we duplicate, and how many  
times should we duplicate them? First, let us consider an elementary sub- 
st i tution of the kind 0 = {z / f (x l , . . . ,x~)} ,  such that  DO = C. Note that  
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such a substi tution cannot unify literals in D, and hence cannot decrease 
the number  of literal% because the variables xl . . . .  , x,~ are required to be 
new variables. Thus to invert a substitution of this kind, we do not need 
to duplicate any literals. Here it suffices to simply replace all occurrences of 
f ( x l ,  0.., x~) in C itself by a new variable z to obtain D. 

For the second kind of elementary substitution, 0 = {z/a}, things are 
different. As the last two examples showed, it is sometimes necessary to du- 
plicate literals in order to be able to invert a substitution of this kind. Suppose 
we have the literal L = P(a, x, a) E C. Then D contains literals L 1 , . . . ,  L~ 
(n _> 1), which are all mapped  to L by this elementary substitution 0. Now 
the impor tan t  point is that  there is a finite upper bound on n. Tha t  is, only 
a limited number  of distinct literals in D can be mapped to L by such an 
elementary substitution 0. In this particular case, n is at most  4: only the 
literals L~ = P(z ,x , z ) ,  L2 = P(z,x ,a) ,  L~ = P(a,x ,z)  and L4 = P(a,x,a)  
are such tha t  LiO = L. This means that  we need 4 copies of L in order to be 
able to invert any possible substitution 0 = {z/a}. 

More generally, if some literal L E C contains the constant a k times, 
then there are 2 z ways in which we can replace some of these k occurrences 
by z. This means that  we need at most  2 k copies of this literal before we 
apply the inverse substitution: given 2 k copies of L, we can invert the effects 
of any substitution {z/a}. Thus, if the literals L 1 , . . . ,  L,~ E C contain the 

constant a respectively k l , . . . ,  k~ times, then an ordered clause C obtained 
from C by duplicating L1 2 kl times, . . . ,  and duplicating L,~ 2 k~ times wilt 
be sufficient to invert any 0 = {z/a} such that  D~ = C. 

A similar argument, holds when we want to invert an elementary substitu- 
tion of the form {z/a}. For instance, in Example 17.16 we needed two copies 
of the literal Even(x) E C. This is in accordance with our upper bound, since 
the literal contains x once, and 21 = 2. 

The following function dup computes the required ordered clauses, with 
the right number of duplications. The first argument of dup is the clause (set 
of literals) which has to be transformed, and the second argument  is the t e rm 
that  is to be replaced by a new variable. The function dup returns a clause 

with a sufficient number of duplications of literals. 

D e f i n i t i o n  17.18 Let C = {L1 , . . . ,  L,~} be a clause, and t be a term oc- 
curring in C. Suppose t occurs kl times in Lt, J~2 times in L~, etc. Then 
dup(,C,t) = C is an ordered clause condsting of 2 kt copies of LI,  2 k~ copies 
of L~ . . . .  , 2 k~ copies of Ln. <~ 

Note that  if some L E C does not contain the term t, then C contains L 
2 0 = 1 times, as it should. 

E x a m p l e  17,19 Let C = Q(~) e-  e(x,  x), P(f(x) ,a) ,  P(u, v). Then we 
have dup(C, x) = Q(x), Q(x) e-- P(x, re), P(x, x), p(x,  x), P(x, x), P(f(:v), a), 
P( f (x) ,  a), P(u, v), and we have dup(C, a) = Q(x) +-- P(x, x), P( f (x) ,  a), 

p(,, ,  v). < 
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Using the function dup to duplicate literals, we can now define our upward 
refinement operator 5~: 

D e f i n i t i o n  17.20 Let g be a clausal language. The upward refinement op- 
erator 5u for (g, _)  is defined as follows: 

1. For every t = f ( x l , . . . ,  x,~) in C, for which all xl are distinct variables 
and each occurrence of x~ in C is within an occurrence of t, 5~(C) 
contains the clause obtained by replacing all occurrences of t in C by 
some new variable z not previously in C. 

2. For every constant a in C and every non-empty subset of the set of 
occurrences of a in C = dup(C, a), i f / )  is the ordered clause obtained 

by replacing those occurrences of a in C by the new variable z, then 
5u (C) contains D (D is the set of literals in the ordered clause D). 

3. For every variable x in C and every non-empty proper subset of the 
set of occurrences of x in C = dup(C, x), if D is the ordered clause 

obtained by replacing those occurrences of x in C by the new variable 
z, then 5~(C) contains D. 

4. If C = D U {L} and L is a most general literal with respect to D, then 
~u (C) contains D. 

E x a m p l e  17.21 Let C = Q(x) +-- P(x, z), P(f(x), a), P(u,v). The four 
items in the definition of ~ (C) generate the following: 

1. Since x in f(x) also appears outside of occurrences of f(x), this item 
cannot be applied. 

2. C = dup(V,a) = Q(z) +-- P(x,x) ,P(f(x) ,a) ,P(f(x) ,a) ,P(u,v) .  The 
following members of ~ (C) can be obtained from this: 

= Q(x) e-- P(x, x), P(f(x), z), P(f(x), z), P(u, v) can be obtained 
from C by replacing both occurrences of a by z, so D = Q(x) +- 
P(x, x), P ( / ( x ) ,  z), P(u, v) (which i s / )  without duplicate li terals)is a 
member of ~ (C). 

= Q(z) +-- P(x, x), P(f(x), z), P(f(x), a), P(u, v) can be obtained 
from C by replacing the first occurrence of a by z, D = Q(x) +-- 
P(x, x), P(f(x),  z), P(f(x)~ a), P(u, v). 
Note that  the latter D can also be obtained from C by replacing the 
second occurrence of a by z. 

3. dup(C, x) = Q(x), Q(x) +-- P(x, x), P(x, x), P(x, x), P(x, x), p ( f ( x ) ,  a), 
P(f(x),  a), P(u, v). This generates (among others) the following mem- 
bers of 5u (C): 

Q(x) +- P(x, x), P(x, z), P(z, x), P(z, z), P(f(x), a), P(f(z), a), P(u, v). 
Q(x), Q(z) +-- P(x, z), P(f(x), a), P(u,v). 

dup(C, u) and dup(C, v) yield only clauses of ~ (C) that are subsume- 
equivalent to C. 
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4. Since -,P(u, v) is most general with respect to D = Q(x) +-- P(x, x), 
P(f(x),  a), we have D C < 

The proof of locally finiteness and completeness is analogous to the proof 
of Theorem 17.15. 

T h e o r e m  17.22 Let C be a clausal language. Then 54 is a locally finite and 
complete upward refinement operator for (C, ~}. 

We already know that 54 cannot be proper. For instance, if we let C = 
{ P ( x ) , P ( y ) }  and D = {P(x)},  then D E 5~(C) and C ~ D. 

1 7 . 5  I d e a l  O p e r a t o r s  f o r  F i n i t e  S e t s  

Dropping the condition of properness allows us to define locally finite and 
complete refinement operators for infinite languages. Alternatively, we could 
stick to all three requirements of an ideal operator, and restrict the language 
to a finite set. This approach is discussed in the present section. 

In fact, if (G, >_} is a quasi-order, G is finite and >_ is decidable, then 
there always exists an ideal refinement operator for (G, _>). It is easy to show 
that every C E G has a finite complete set de(C) of downward covers, and 
a finite complete set uc(C) of upward covers in G. These can be found by 
exhaustively searching the whole quasi-order. If we define p(C) = de(C) and 
5(C) = uc(C), then by definition p and 5 are locally finite and proper. To 
show the completeness of p, let C, D E G such that  C > D. Then either 
D is a downward cover of C, in which ease there is an E E p(C) such that 
D "~ E, or there is an E E p(C) such that C > E > D. In the latter ease, we 
can find an F E p(E) such that  C > E > F >: D, etc. Since G is finite and 
p is proper, we must eventually find a p-chain from C to a member of the 
equivalence cia, s of D, so p is complete, and hence ideal. The idealness of 5 

is shown similarly. 
'The fact that  there always exists an ideal refinement operator for finite 

sets is mainly of theoretical interest, because in practice it will often be very 
inefficient to find the sets dc(C) and uc(C) for every C E G. Thus in practice, 
we usually prefer more constructive--though possibly improper--refinement 
operatars ever such very elaborate ideM operators. 

In this section we will define ideal downward and upward refinement op- 
erators for the set of reduced clauses bounded by a size-restriction. These 
operators take reduced clauses as input, and return sets of reduced clauses. 
The definitions are constructive, in the sense that they are based on elemen- 
tary substitutions, as were the operators we saw in earlier sections. However, 
the operators still involve some subsurnption tests. Shapiro defined a down- 
ward refinement operator P0 for reduced clauses bounded by size in [Sha81b], 
and included a completeness proof. Unfortunately, this proof contains some 
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errors, and his operator  is actually incomplete. For a detailed discussion of 
this incompleteness, we refer to [LN93] and [Nib93]. 

Instead of a size-bound, we will here use newsize. We assume some 
newsize-bound (k, m) is given. The set of all reduced clauses in the lan- 
guage is denoted by TO, we use 7E . . . .  iz~ to denote the set of reduced clauses 
bounded by (k, m), and C '~'~z~ for the set of all (possibly non-reduced) 
clauses bounded by (k, rn). The sets 5g ~ z e  and C ~ i z ~  are finite up 
to variants, as we showed in Proposition 14.44. This guarantees that  ideal 
downward and upward refinement operators exist for ~ i z ~ .  The main 
difficulty for completeness proofs for the particular operators defined below, 
is to show that  all clauses in a refinement chain from some C E ~ .. . .  iz~ to 
some D E Tr ~ ' ~ i ~  are themselves also members  of 5g ~ i ~ .  

1 7 . 5 . 1  D o w n w a r d  

Here we will define an ideal downward refinement operator p~ for 7~ ~*i~ '~  
(the ' r '  subscript abbreviates 'reduced').  One of the main problems in defining 
an ideal downward refinement operator  for reduced clauses, is the fact that  
addition of more than one literal in one step is sometimes needed to get from 
one reduced clause to another, as described in the next example. 

E x a m p l e  17.23 Consider the following reduced clauses: 

c = Q(~) ~ P(~, . )  
D = Q(x) +-- P(x, a), P(y, z), P(z, v) 

We can prove that  there is no E such that  C ~- E ~- D. Thus for an ideal 
refinement operator p for reduced clauses, we must have D E p(C). However, 
D contains two more literals than C. This means that  a single application of 
one of the four items in the definition of PL is not sufficient to get us from C 
to D. <~ 

To overcome the problem of this example, we will use non-reduced mem- 
bers of the subsume-equivalence classes of C and D to form a bridge between 
the reduced clause C and its reduced proper refinements D. For this we 
make use of the Inverse Reduction Algorithm, which computes the (usually 
non-reduced) members  of the equivalence class of C of at most m literals. 
Let eq ra (C) denote the set of clauses that  the algorithm returns. We assume 
this set does not contain any variants, which implies that  it is finite. The 
next example shows how these non-reduced clauses can solve the problem of 
Example  17.23: 

E x a m p l e  17.24 Consider C and D of the previous example. If  m > 4, then 
we have the clauses C '  = Q(x) +-- P ( x , a ) , P ( y , z ) , P ( u , v )  E eqm(C) and 
D' = Q(x) +-- P ( x , a ) , P ( y , z ) , P ( z , v )  E eq'~(D) (in fact, D '  = D). Since 
C'{u /z}  = D' and C ~- D' ,  we can make the reduction of D'  (which is D 
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itself in this example) a member of p(C). Thus by applying an elementary 
substitution to a non-reduced member of the equivalence class of C, we can 
get to D. <1 

Recall from Chapter 14 that  two literals are compatible if they have the 
same predicate symbol and sign, and incompatible otherwise. The fourth item 
of the definition of p~ below adds a most general literal L = P ( X l , . . . ,  Xn) 
or L = - , P ( x l , . . . ,  x~) to the reduced clause C, which is incompatible with 
every literal in C. It is easy to see that D = C U {L} is reduced as well. 
Furthermore, the next ]emma guarantees that C properly subsumes this D. 

L e m m a  17.25 Let C be a clause, and L be a most general literal with respect 
to C. Then C ~- C U {L} iff L is incompatible with every literal M E C. 

P r o o f  
~ :  Suppose C ~- C U {L} and L is compatible with some M E C. Let 

be defined on variables in L only, such that L6 = M. Then (C U {L})fl = C, 
contradicting C U {L} ~ C. 

~ :  Suppose L is incompatible with every literal M E C and C ;r CU {L}. 
Since C __ C U {L} and C )Z C U {L}, we have C --~ C t2 {L}. Then there 
must be a 0 such that  (C U {L})0 C C. But then L0 E C, contradicting the 
assumption that L is incompatible with every M E C. [] 

Using the set eq "~ (C) for the first three items and incompatible literMs for 
the fourth item, we will now define our ideal downward refinement operator 

fir. 

D e f i n i t i o n  17.26 Let (k, m) be a pair of natural numbers, and 7~ "*~ize be 
a language of reduced clauses bounded by (k, rn). For a given C E 7~ n*~*ize, 
let pr (C) contain all D E 7~ n ~ i z *  that  satisfy one of the following conditions: 

1. C ~ D, and there are C' E eqm(C) and D ~ E eqm(D) such that  
C ' { z / f ( x l , . . . ,  an)} = D', where x l , . . . ,  an are distinct variables not 
appearing in C. 

2. C >- D, and there are C' E eq'~(C) and D ~ E eq~(D) such that 
c ' { z / a }  = D'. 

3. C ~- D, and there are C' E eqm(C) and D' E earn(D) such that 

C ' { z / x }  = D'. 
4. IC[ < m~ and x l , . . , , X n  are distinct variables not appearing in C, 

L = ( ' - , )P(x l , . . . ,  xn) is a most general literal with respect to C that 
is incompatible with every literal in C, and D = C tJ {L}. <> 

Refinement operators as above can easily be adapted for Horn clauses, by 
restricting T~ ne~ize to the set of reduced Horn clauses bounded by (k, m). 
In that  case, the only D's in the above definition that we need to consider, 
are Horn clauses. 
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E x a m p l e  17.27 Consider the following clauses: 

C = Q(x) ~- P(x,  a) 
D = Q(x) +- P(x, a), P(y, z), P(z, y) 

Let T~ ~e~size be bounded by (3, 4), and suppose the language contains only 
the predicates P and Q, the constant a, and the unary function f .  The set 
eq4(C) contains, among others, the following clauses: 

1. Q(x) +-- P(x, a) (C itself) 
2. Q(x), Q(y) +-- P(x, a), P(y, a) 
3. Q(x) +-- P(x, a), P(y, z), P(u, v) 

From these respective clauses, we can derive for example the following reduced 
clauses in pr (C): 

1. Q(f(z)) +-- P(f(z),  a) (by the first item in the definition) 
2. Q(a) +-- P(a, a) (by the second item: {y/a} and reduction) 
3. Q(r +-- P(x, a), P(y, z), P(z, v) (by the third item) 

From the last of these three clauses, we can then derive D in one further 
refinement step, so D e p~ (C). <~ 

We will first prove the properness of p~, then its locally finiteness, and 
then its completeness. 

P r o p o s i t i o n  17.28 p~ is proper" for {T~ ~e~iz~, ~}. 

P r o o f  Let C E T~ . . . .  iz% If D E pr(C) is generated by one of the first three 
items, then by definition C ~- D. If D is generated by the fourth item, then 
C ~- D by the previous Lemma. [] 

Locally finiteness is easy to prove. The set of clauses generated by the first 
three items in the definition of Pr (C) is obtained as follows. (1) Construct the 
set eq "~ (C); (2) apply the three kinds of elementary substitutions to all clauses 
in this set; (3) reduce the resulting clauses; (4) remove from the resulting 
reduced clauses all those that  are not properly subsumed by C or that  are 
not bounded by (k, m). Since eq m (C) is finite, the number of elementary 
substitutions is finite. Moreover, reduction is computable and subsumption 
is decidable, so these 4 instructions can be completed in a finite number of 
steps. Finally, since the number of predicate symbols that can be used for 
the fourth item of the definition is finite, pr (C) is finite and computable. 

P r o p o s i t i o n  17.29 Given a finite number of constants, function and pred- 
icate symbols, Pr is locally finite for (TI new~ize, ~). 

For the completeness, we need the following lemmas, the proofs of which 
are illustrated by some examples. 
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L e m m a  17.30 Let C, D C Td ne~*~ze be reduced clauses such that C >- D, 
and let C ~ E eq'~(C) and D' C eqm(O) satisfy C'O = O', for some 9. Then 
there is an E E p~(C) such that E >_ D. 

P r o o f  For simplicity, we identify variant clauses in this proof. Since C'O = 
/3', there is a chain of clauses C' = Co, C~, . . . ,Cn = D' for which Ci = 
Ci-10i, where 0~ is an elementary substitution as used in the first three items 
of the definition of pr. Note that  these Ci are bounded by (k, m), and are 
not necessarily reduced. Let (Tj be the first Ci for which C >- Ci. Such a Cj 
exists, since C >- D ~ D ~. Let E7 be a reduction of Cj. We have C ~ Cj-1,  so 
Cj-1 C eq~(C). Then since Cj_~Oi = Cj and E is a reduction of Cj, p~(C) 
contains E.  Finally E _ D, because E ~ Cj and CjOj+I ... On = D' ..~ D. [] 

E x a m p l e  IZ .aa  Let C = let D = 
{P(a,b),P(c,b) ,P(c,d) ,P(a,d)) .  If we let C' = C, D' = D, and 0 = 
{w/b, x/e, y/d, z/a}, then C'O = D'. The substitution 0 can be decomposed 
into the elementary substitutions 01 - {w/b}, 07 = {z/e}, Oa = {y/d}, and 
84 = {z/a}. This gives the following chain of clauses: 

C' = Co = {P(a, w), P(x, b), P(c, y), P(z, d)) 
Cl = CoO1 = {P(a, b), P(x, 19), P(c, y), P(z, d)} 
C2 : C102 ~- {P(a, b), P(c, b), P(e, y), P(z, d)} 
Ca = C20a = {P(a, b), P(c, b), P(c, d), P(z, d)} 
C4 = cue4 = {P(a, b), P(c, b), P(c, d), P(a, d)} = D'. 

C~ is properly subsumed by Co, so Pr (C) contains the clause E = {P(a, b), 
P(c, y), P(z, d)} (the reduction of C1), which subsumes D. 

L e m m a  17.32 Let C, D ~ T~ ~e~~ be reduced clauses such that C ~- D and 
C C D. Then there {s an E E p~(C) such that E ~ D. 

P r o o f  Let F be a maximal subset of D~\C, such that  (C t2 F)  ~ C. That  
is, for every literal M E D\(C U F),  we have C >- (C tO F tO {M}). Let L 
be a most genera! literal with respect to C U F such that LO = M for some 
M E D\ (C  U F) and some 0. 

If (C U F U { L}) @ (C U f ) ,  then by Lemma 17.25, L is incompatible with 
every ~itere~t in (C U F),  so L is incompatible with every ~iteral in C. Hence 
by the fourth item in the definition o fp r ,  we have E = (C O {L}) ~ pr(C). 
Furthermore, we have E _> D since E = C U {L} ~ C U {M} C D. 

Otherwise, C ' =  CU F U  {L} and D' = C tO FU {M} satisfy C' >- D' and 
C~O = D f. Then by Lemma 17.30, there is an E E P~ (C) such that E >_ D. a 

E x a m p l e  17.33 Let C = {P(x)} and D = {_?(x),-~Q(a, x)}. The only sub- 
set F of D \ C  such that (C U F)  ~ C, is the empty set. m = ~Q(a, x) is 
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the only literal in D\C,  and L = -,Q(y, z) is a most  general literal such that  
MO = L, where 0 = {y /a , z / x} .  Now E = C U  {L} is reduced, E E p~(C), 
and E ~- D. <l 

E x a m p l e  17.34 Let C = {P(x) ,~Q(x,a)}  and D = {P(x),-~Q(x,a), 
-~Q(y, z),-,Q(z, y)}. Now F = {-~Q(y, z)} is a maximal  subset of D \ C  such 
tha t  (CUF) ~ C. Taking M = -~Q(z, y), we get L = -~Q(u, v) as a most  gen- 
eral literal with respect to CUF. If we let C' = CUFU{L}, D' = CUFU{M},  
then C' E eq "~ (C) and D' E eq "~(D) (assuming m _> 4). Moreover, C'O = D j 
for 0 = {u/z ,  v/y}. Hence by Lemma  17.30, there is an E E p~(C) such that  
E ~ D, for instance E = {P(x ) , - ,Q(x ,  a), ~Q(y, z),-~Q(z, v)}. < 

P r o p o s i t i o n  17.35 p~ is complete for (Ti ~ i ~ ,  ~ ). 

P r o o f  Let C, D E ~,~ew~iz~ be reduced clauses such that  C ~- D. Then there 
is a 0 such that  CO C_ D. Let F be a reduction of CO. Then either C ~- F or 
C ,-~ F.  If C ~- F,  then C and F satisfy the conditions of Lemma  17.30. If, 
on the other hand, C ,-~ F,  then by Proposition 14.11, F is a variant of C, 
we have F C D, and F and D satisfy the conditions of Lemma  17.32. 

In either case, there is a C1 E p~ (C) such that  C ~- C1 ~_ D. If C1 "~ D, 
we have found a p<chain from C to C1 "~ D. Otherwise, we can again find a 
C2 E p~(C1) such that  C ~ C1 >- C2 ~- D, etc. Since 7~ . . . .  i~  is finite up to 
variants and p~ is proper, this chain C = Co, C1, C2 , . . .  cannot go on without 
end. Thus eventually we must  find a finite p~-chain C = Co, C1,. �9 C~ = E,  
such that  D ~ E.  [] 

C o r o l l a r y  17.36 Let (k, m) be a pair of natural numbers, and Tt ~r be 
a language of reduced clauses bounded by (k, m), containing only a finite 
number of constants , function symbols, and predicate symbols. Then Pr is an 
ideal downward refinement operator for (Tt ~ i z ~ ,  ~-}. 

The refinement operator  Pr for Tt newsiz~ can easily be changed to an ideal 
refinement operator  Pc for C ~ s i z ~ ,  by defining pc(C) = p~(D), where D is 
a reduction of C. 

1 7 . 5 . 2  U p w a r d  

Analogously, we can define an ideal upward refinement operator 5r for a finite 
quasi-ordered set (T~ newsize, ___). As in the upward refinement operator 5~, we 
sometimes have to duplicate literals. But here the ordered clauses obtained 
after duplication of some literats need at most  have m literals, because of the 
(k, m)-bound.  Thus we can use a set eq '~(C), which contains every ordered 
clause of at most  rn literals that  is subsume-equivalent to C. This set can 
be computed using an algorithm similar to the Inverse Reduction Algorithm. 
We will just  define ~ here, leaving the proof of idealness to the reader. 
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Definition 17.37 Let (k, m) be a pair of natural numbers, and 74 ~ i z ~  be 
a language of reduced clauses bounded by (k, m). For a given C E 74 ~ i ~ ,  
let & (C) contain all D E 74 " ~ i z ~  that  satisfy one of the following conditions: 

1. D ~- C, and there are O E eq~'~(C) and /i~' E eq'~(D) such that 
19~{z/Z(xl,..., x,~)} = &,  where x~ , . . . ,  x~ are distinct variables not 
appearing in/9~. 

2. D ~- C, and there are O E eq~(C) and ii~ ~ E eqm(D) such that 

= d ' .  

3. D ~- C, and there are d E eq'~(C) and /) '  E eqm(D) such that  
= d , .  

4. C = D U {L} and L is a most general literal with respect to D, incom- 
patible with every literal in D. �9 

17.6 Optimal Refinement Operators 

Apart from the concept of an ideal refinement operator, one can also define op- 
timal refinement operators, which feature a different combination of desirable 
properties. Optimal refinement operators are studied in [DB93, Gro92, VL93!. 
In a quasi-ordered set of clauses {G, _>}, where G contains a top element U, 
De Raedt and Brnynooghe [DB93] discuss downward refinement operators p 
satisfying the following properties: 

1. For every C G G, p(C) is a set of maximal specializations (downward 
covers, in our terms) of C. 

2. = a .  

Let us call such an operator p a cover-refinement operator, since it only 
employs downward covers. By definition, p is proper. 

D e f i n i t i o n  17.38 Let p be a cover-refinement opera~or for a quasi-order 
{G, k}. P is called optimaIiffor every C, D, E E G, E E p*(C) and E E p*(D) 
implies C ~ p= (D) or D E p* (C). (> 

In an optimal cover-refinement operator p, there is exactly one p-chain 
from C to D if C > D. Translated to the refinement graph, there is exactly 
one path in the graph from such a C to D. This means that  the refinement 
graph becomes a tree, with [] as root. Optimality is clearly desirable for 
efficiency reasons. 

Unfortunately, optimal cover-refinement operators do not exist for most 
quasi-ordered languages. In fact, cover-refinement operators do not exist at all 
for most quasi-ordered languages of interest. Since we have already proved in 
Proposition 14.32 that  the clause C = P(xl, xl) has no upward covers under 
subsumption, there is no D for which C is a downward cover. Thus there is 
no D for which C @ p(D), and consequently C ~ p*(D). 
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Proposition 17.39 Let C be a clausal language containing at least one pred- 
icate or function symbol of arity > 2. Then there does not exist a cover- 
refinement operator for (C, >-}. 

The same result of course also holds for (C, ~}, for the orders with back- 
ground knowledge from Chapter 16, and for Horn languages 7-/. 

17.7 Refinement Operators for Theories 

For a clausal language ordered by logical implication, it is much less obvious 
how we could define a locally finite and complete (but improper) refinement 
operator than for languages ordered by subsumption. Since the Subsumption 
Theorem tells us that  implication is equivalent to a combination of resolution 
and subsumption, a first suggestion for the downward case might be to just 
add the set of self-resolvents of C to PL (C). That  is, we could define Px (C) = 
pL(C) U {D [ D is a resolvent of C and C}. 

However, this approach does not yield a complete refinement operator. 
For instance, suppose C = P ( f ( x ) )  +- P(x)  and D = P( fS (x ) )  ~-- P(x) ,  
then C ~ D. We have pz(C) = pL(C) U {P( f2 (x ) )  ~ P(x)}.  Unfortunately, 
the only clauses in pI(C) that imply D, are subsume-equivalent to C. It can 
be shown that  there is no clause E E p*I(C) such that  D r E. 

The problem here is that  in the SLD-derivation of D from C, D is a 
resolvent of two different clauses: P( f2 (x ) )  +- P(x) ,  and C itself. Therefore it 
is rather difficult to define a refinement operator for implication as a function 
from a single clause to a set of clauses. 

However, a refinement operator can be defined for arbitrary quasi-ordered 
sets. For the operators of previous sections, we took this set to consist of 
individual clauses, ordered by subsumption. But we can also consider the set 
of all theories, ordered by logical implication. In other words, we can take the 
set G of Definitions 17.1 and 1'7.2 to consist of finite sets of clauses, rather 
than individual clauses. P1 then becomes a function from a theory to a set of 
theories. 

Suppose S is the set of theories in a clausal language C. The negative 
result on downward covers from Chapter 15 carries over to S ordered by 
implication: 

Proposition 17.40 Let ~ be a clausal language containing a binary predicate 
P, S be the set of theories in C, and C = {P(x l ,  x2), P(x2, z l )} .  Then {C} E 
S has no finite complete set of downward covers in IS, ~}.  

P r o o f  Suppose F = { E l , . . . ,  E~} C S is a finite complete set of downward 
covers of {C} in (S, ~) .  We can assume none of the Ei contains any tautolo- 
gies. Note that  since {C} ~ Ei and C contains only positive literals, it follows 
from the Subsumption Theorem that C ~ D p~ for every D E E i  (here Dpo* 
denotes the set of positive literals in D). This means that F would remain 
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a finite complete set of downward covers of {C} in @q, ~)  if we remove all 
negative literals from the clauses in the 2i's. Thus we can assume each clause 
in each Ei contains only positive literals. 

Let E be the union of all Ei's. We will show that E contains a finite 
complete set of downward covers of C in (C, ~) ,  yielding a contradiction 
with Proposition 15.28. Firstly, let D E C be such that C ~ D, then we have 
to show that there is an E E E such that C ~ E ~ D. Since {C} ~ {D} 
and F is a finite complete set of downward covers of {C} in ($, ~}, there 
is a Ei E F such that Ei ~ {D}. But since each clause in Ei only contains 
positive literals, this means that some E E E i  subsumes D. Hence there is 
an E E E such that  C ~ E ~ D. Secondly, for every D E E there is an 
i such that  D E E i .  Hence C ~ D because C ~ Ei, and D ~= C because 
Ei ~: C. Thus each D E E is a proper specialization of C. Then it follows 
that E contains a finite complete set of downward covers of C in (C, ~}. But 
this is not possible. [] 

Thus by Lemma 17.8, there is no ideal downward refinement operator 
for (S, ~) .  As before, we drop the condition of properness, and we try to 
construct a locally finite and complete, but improper operator for (S, ~) .  
This operator Pl (the 'I' stands for 'implication') employs three operations: 
(1) add to E all resolvents of clauses in E; (2) add to E some clauses subsumed 
by a G E E (using PL); (3) delete a clause from E. 

Def in i t i on  17.41 Let C be a clausal language, containing only a finite num- 
ber of constants, function symbols, and predicate symbols. Let S be the set 
of finite subsets of C. The downward refinement operator P1 for (S, ~ )  is 
defined as follows: 

1. (E U {R I R is a resolvent of C1,C2 E E}) E pI(E). 
2. If E = { C I , . . . , C n } ,  then (E UpL(Ci)) E pt(E), for each 1 < i < n. 
3. If E = {C1, . . . ,C~},  then (E\{Ci}) E px(E), tbr each 1 < i < n. <5 

Note that every theory in pI(E) that is specified by one of the first two 
items in the definition of Pz is logically equivalent to E. This shows that  ps 
is not proper. 

The completeness of Px follows from the Subsumption Theorem, which 
tells us that logical implication can be implemented by a combination of 
resolution and subsumption: 

T h e o r e m  17.42 Let C be a clausal language, containing only a finite number 
of constants, function symbols, and predicate symbols. Let S be the set of finite 
subsets of C. Then Pl is a locally finite and complete downward refinement 
operator for ($, ~>. 

P r o o f  Locally finiteness follows from the definition of P1 and the locally 
finiteness of PL. 
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For the completeness of pl, suppose E ,F  E S, such that  E ~ F and 
F ~: E. Let {C1, . . . ,  C~} be the set of non-tautologous clauses in F. Since 
E ~ F, we have E ~ C~, for every i < i < n. 6'/ is not a tautology, so by 
the Subsumption Theorem there is a derivation R~, R ~ = Di (ki > 1) 

�9 �9 " 1  k i 

from E, where Di subsumes C~. Let k = m a x { k l , . . . ,  k,}.  From the first 
i tem in the definition of PI, there is a p• E1 = E, E 2 , . . . ,  Ek, such that  
Ej+I = Ej U {R [ R is a resolvent ofC1,C2 E Ej}, for each 1 _ j < k - 1. 
Then { D 1 , . . . , D ~ }  C_ Ek. 

Now since D1 ~- C1, it follows from the completeness of PL that  by the 
second item in the definition, there is a pi-chain from Ek to a set A1, such 
that E C_ A 1 and there is a C{ E Z~l which is subsume-equivalent to C1. By 
the same reasoning, there is a pi-chain from A1 to a set A2, such that  A 1 C_ 
A2 and there is a C~ E A2 which is subsume-equivMent to C~. Repeating 
this argument a few times, there is a pi-ehain from E to a set A,~, such 
that { e l , . . . ,  CA} _C A,~, and C~ and C[ are subsume-equivalent for each 
l < i < n .  

Now by the third item in the definition of PI, we can remove from AN 
all clauses except for these C[. Thus there is a p/-chain from E to a set 
{C~, . . . ,  CA}, which is logically equivalent to F. [] 

It is instructive to compare Px with the UDS specialization of Chapter 12. 
In fact, if we restrict S to the set of definite programs in some language, and 
we use only binary resolvents, then PI is almost the same as UDS specializa- 
tion. There are two differences. Firstly, the first item in the definition of P1 
adds all resolvent of clauses in E, while UDS specialization would only add 
the set of all resolvents of some clause C and other members of E, resolved 
upon some atom in the body of C. Secondly, while UDS specialization simply 
adds a clause that  is subsumed by a member of the original set, the second 
item of PI implements this subsumption stepwisely via PL. 

Our downward refinement operator P1 combines resolution, subsumption 
(via PL), and clause deletion. Dually, it may be possible to define an upward 
refinement operator for ($, ~}, in terms of inverse resolution, inverse sub- 
sumption (via 5u), and, if necessary, clause addition. However, as we have 
seen in Chapter 11, inverse resolution faces many indeterminacies. Therefore 
we will not pursue definining an upward refinement operator for ($, ~} here. 

17.8 Summary 

Downward refinement operators compute sets of specializations of a clause, 
upward ones compute sets of generalizations. A refinement operator is ideal 
if it is locally finite, complete, and proper. We defined pat and 5.4, which are 
ideal downward and upward refinement operators for atoms. 

For clausal languages ordered by subsumption or stronger orders, ideal 
refinement operators do not exist. They can be approximated by dropping 
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the requirement of properness, or by bounding the language. PL and ~u a r e  

locally finite and complete, but improper downward and upward refinement 
operators for clausal languages ordered by subsumption. Furthermore, pr and 
5~ are ideal downward and upward refinement operators for reduced clausal 
languages ordered by subsumption and bounded by some newsize-bound. 

(Optimal) cover-refinement operators do not exist for clausal languages 
ordered by subsumption. For the set of theories ordered by logical implication, 
we defined the locally finite and complete, but improper downward refinement 
operator PI. 



Chapter 18 

PAC Learning 

18.1 Introduct ion  

The theory of learnability concerns the questions of what can or cannot be 
learned, and, in particular, what can be learned efficiently. Initial analysis of 
learnability in machine learning was mainly done in terms of Gold's paradigm 
of identification in the limit [Go167], which we already saw in Chapter 10. 
The idea here is that  a learning algorithm is given an infinite sequence of 
examples for some unknown target set. Each example is an object x of the 
domain, together with a label indicating whether or not x is an element of 
the target set. The learning algorithm reads examples one by one, and after 
each new example it constructs a theory for the examples read so far. The 
algorithm is said to identify the target set in the limit, if the sequence of 
theories that  it constructs, "converges" to the target set after only a finite 
number of examples have been read. The major disadvantage of identification 
in the limit is that,  even though you can prove in some cases that  there exists 
an n such that  a correct theory will be identified after n examples, you usually 
do not know what this n is, so you cannot know for sure when you may end 
the learning. 

Nowadays, Valiant's paradigm of PAC tearnability [Va184] is usually con- 
sidered to provide a better model of learnability. While identification in the 
limit is concerned with exactly identifying the target in a finite number of 
steps, the aim of PAC learning is to find a good approximation to the tar- 
get in a small (polynomially-bounded) number of steps. A PAC algorithm 
is an algorithm that  takes examples concerning some unknown target con- 
cept, and learns a concept which is probably approximately correct. That  is, 
a PAC algorithm will, with high probability, learn a concept which diverges 
only slightly from the target concept. (The relation between 'concept'  and 
our earlier notion of a ' theory'  will be explained below, at the beginning of 
Section 18.6.) 
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In this chapter we give an overview of PAC-learnability settings and re- 
sults relevant for ILP. These learnability results complement the learning 
operators of the previous chapters. PAC learnability is concerned with two 
major complexity issues: how many examples do we need to ensure that  we 
will probably find an approximately correct concept (sample complexity), and 
how many steps do we need to take to find such a concept (time complexity)? 
We consider the study of learnability theory to be both highly interesting, 
and very important  for ILP. Unfortunately, this theory presupposes quite a 
lot of other theory, including Turing machines, NP-completeness, statistics, 
etc. A fully self-contained treatment of learnability theory would require an 
introduction into these topics as well, which would take us far beyond the 
scope of the present book. Therefore we have co settle for a much more sketchy 
treatment.  In particular, we will leave out all proofs of results here, refering 
instead to the original papers where those results were reported. 

The chapter is organized as follows. In the next section we motivate and 
define the standard setting for PAC learning. In Sections 18.3 and 18.4 we 
go into sample complexity and time complexity, respectively. Our defini- 
tions in Sections 18.2-18.4 follow those of Natarajan [Nat91] quite closely. 
Section 18.5 discusses a number of related learning settings. Sections 18.6 
and 18.7 are the main sections of this chapter. Here we show how the PAC 
setting applies to ILP, and we give an overview of the main results that have 
been reported for the normal and nonmonotonic problem settings, respec- 
tively. 

18,,2 PAC Algorithms 

Before formally introducing the PAC setting, let us first illustrate and moti- 
vate it by means of a metaphorical example. Suppose some biology student 
wants to learn from examples to distinguish insects from other animals. That  
is, he or she wants to learn the concept of an 'insect' within the domain of 
all animals. A teacher gives the student examples: a positive example is an 
insect, a negative example is some other animal. The student has to develop 
his or her own concept of what an insect is on the basis of these examples. 
Now~ the student will be said to have learned the concept approximately cor- 
rectly, if; when afterwards tested, he or she classifies only a small percentage 
of given test animals incorrectly as insect or non-insect. In other words, his or 
her own developed concept should not diverge too far from the real concept 
of an 'insect'. 

In the interest of fairness, we require that the animals given as examples 
during the learning phase, and the animals given afterwards as test, are all 
selected by the same teacher (or at least by teachers with the same incli- 
nations). For suppose the student learns from a teacher with a particular 
interest in European insects, whose examples are mainly European animals. 
Then it would be somewhat unfair if the animals that were given afterwards 
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to test the student, were selected by a different teacher having a decisive in- 
terest in the very different set of African insects. In other words: the student 
should be taught  and tested by the same teacher. 

Let us now formalize this setting: 

D e f i n i t i o n  18.1 A domain X is a set of strings over some finite alphabet  
E. The length of some x E X is the string length of x. X In] denotes the set 
of all strings in X of length at most  n. 

A concept f is a subset of X, a concept class Y is a set of concepts. An 
example for f is a pair (x, y), where x C X, y is called the label of the example, 
y = 1 if x C f and y = 0 otherwise. If  y = 1 then the example is positive, if 
y = 0 it is negative. 

If  f and g are two concepts, then f a g  denotes the symmetric difference 
of f and g: f A g  = ( f \g)  U (g\f) .  

In our metaphor ,  X would be the set of descriptions of all animals, the 
target  concept f _C X would be the set of descriptions of all insects, and 
the student would develop his or her own concept g __ X on the basis of a 
number  of positive and negative examples (i.e., insects and non-insects). The 
symmetr ic  difference f a g  would be the set of all animals which the student 
classifies incorrectly: all insects that  he or she takes to be non-insects and all 
non-insects he or she takes to be insects. 

For technical reasons, we restrict the examples to those of length at most  
some number  n, so all examples are drawn from X [~]. Note that  X ['q is a 
finite set. We assume these examples are given according to some unknown 
probabil i ty distribution P on X['q, which reflects the particular interests of 
the teacher. If  S C_ X[n], we let P(S)  denote the probabili ty that  a member  of 
X M  that  is drawn according to P, is a member  of S (i.e., P (S)  = ~ s e s  P(s)) .  
Now suppose the student has developed a certain concept g. Then in the test 
phase, he will misclassify some object x E X M  iff x E fAg .  Thus we can 
say that  g is approximately correct if the probabili ty that  such a misclassified 
object is given during the test phase, is small: 

P ( f A g )  5 e, 

where c E (0, 1] is called the error parameter .  For instance, if e = 0.05, then 
there is a chance of at most  5% that  an arbitrary given test object from 
X [~] will be classified incorrectly. Note that  the set of examples that  is given, 
as well as the evaluation of approximate  correctness of the learned concept 
g, depends on the same probabil i ty distribution P.  This formally reflects 
the fairness requirement that  the student is taught and tested by the same 
teacher. 

After all these preliminaries, we can now define a PAC algorithm as an 
algori thm which, under some unknown distribution P and target concept f ,  
learns a concept g which is probably approximately correct. 'P robably '  here 
means with probabil i ty at least 1 - 5 ,  where 5 E (0, 1] is called the confidence 
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parameter. For instance, if (~ = 0.1 and the algorithm is run an infinite number 
of times, at least 90% of these runs would output an approximately correct 
concept. The constants c, 5, and n are given by the user as input to the 
algorithm. 

D e f i n i t i o n  18.2 A learning algorithm L is a PAC algorithm for a concept 
class j r  over domain X if 

1. L takes as input real numbers 0 < ~, 5 ~ 1 and a natural number n E N, 
where e is the error parameter, ~ is the confidence parameter, and n is 
the length parameter. 

2. L may call the procedure EXAMPLE, each call of which returns an ex- 
ample for some concept f E j r  according to an arbitrary and unknown 
probability distribution P on X ['1, 

3. For all concepts f E j r  and all probability distributions P on X [~], L 
outputs a concept 9, such that with probability at least 1 -~ ,  P ( f A g )  _< 

A technicality: a PAC algorithm should be admissible, meaning that  for 
any input e, 5, n, for any sequence of examples that EXAMPLE may return, 
and for any concept g, the probability that L outputs 9 should be well defined. 

18.3 Sample Complexity 
Having a PAC algorithm for a concept class Y is nice, but having an efficient 
PAC algorithm for ~ is even nicer. In this section we analyze this efficiency in 
terms of the number of examples the algorithm needs (the sample complexity), 
while in the next section we treat the number of steps the algorithm needs 
to take (time complexity). 

The sample complexity of a learning algorithm can be seen as a func- 
tion from its inputs e, 5, and n, to the maximum number of examples that  
the algorithm reads when learning an unknown target concept under an un- 
known probability distribution. Since the examples are drawn according to a 
probability distribution, different runs of the same algorithm with the same 
input and the same target concept and distribution may still read different 
examples. 'Thus different runs of the same algorithm with the same input may 
need a different number of examples in order to find a satisfactory concept. 
Therefore, the sample complexity as defined below relates to the maximum 
number of examples over all runs of the algorithm with the same input. 

Definition 18.3 Let L be a learning algorithm for concept class J=. The 
sample complexity of L is a function s, with parameters z, 5 and n. It returns 
the maximum number of calls of EXAMPLE made by L, for all runs of L with 
inputs e, 5, n, for all f E j r  and all P on X In]. If no finite maximum exists, 
we let s(e, 5, n) = ~ .  <5 



18.3. S A M P L E  C O M P L E X I T Y  325 

Of course, for the sake of efficiency we want this complexity to be as 
small as possible. A concept class is usually considered to be efficiently PAC 
learnable--as far as the required number of examples is concerned--if  there 
is a PAC algorithm for this class for which the sample complexity is bounded 
from above by a polynomial function in l /e ,  1/5, and n. Of course, even 
polynomials may grow rather fast (consider nl~176 but still their growth rate 
is much more moderate than, for instance, exponential functions. 

D e f i n i t i o n  18.4 A concept class F is called polynomial sample PAC learna- 
ble, if a PAC algorithm exists for f ,  which has a sample complexity bounded 
from above by a polynomial in l /e ,  1/5, and n. 

Note that  polynomial sample PAC learnability has to do with the worst 
case: if the worst case cannot be bounded by a polynomial, a concept class is 
not polynomial sample PAC learnable, even though there may be PAC algo- 
ri thms which take only a small polynomial number of examples on average. 1 

A crucial notion in the study of sample complexity is the dimension named 
after Vapnik and Chervonenkis [VC71]. 

D e f i n i t i o n  18.5 Let .T be a concept class on domain X. We say that  F 
shatters a set S C_ X, if {S N S t f E F}  = 2 s, i.e., if for every subset S' of 
S, there is an f E F such that f N S = S'.  

Note that  if F C_ G and F shatters S, then ~ shatters S as well. Also note 
that  if T C_ g and .g shatters S, then ~" shatters T as well. In particular, 
T = ~ is shattered by any non-empty F .  The Vapnik-Chervonenkis dimension 
of ~" depends on the largest sets that are shattered by F .  

D e f i n i t i o n  18.6 Let F be a concept class on domain X. The Vapnik- 
Chervonenkis dimension (VC dimension) of jr, denoted by D y e ( F ) ,  is the 
greatest integer d such that  there exists a set S C_ X with [SI = d that is 
shattered by jr. D v c ( F )  = oo if no greatest d exists. 

Note that  if F = 2 s, then j r  shatters S. Thus if ~" = 2 s for some finite 
set S, then F has ISI as VC dimension. 

E x a m p l e  18.7 Let X = {1,2,3,4} and Y = {{1}, {2},{3},{4},{1,2},  
{ 2 , 3 } , { 1 , 3 , 4 } , { 1 , 2 , 3 , 4 } }  be a concept class. Then Jr shatters the set 
S = {1,2}, because { f N S I /  E 2-} = {~, {1}, {2}, {1, 2}} = 2 s. Thus 
jr 's  "shattering" of S intuitively means that  j r  "breaks" S into all possible 
pieces. 

2" also shatters S' = {1, 2, 3}, because { f  n S' I f S 9 t'} = {0, {1}, {2}, 
{3}, {1, 2}, {2, 3}, {1, 3}, {1,2, 3}} = 2 s. F does not shatter S" = {1, 2, 3, 4}, 
since there is for instance no f C j r  with f N S I' = {1,4}. In general, there is 
no set of four or more elements shattered by jr,  so D v c ( F )  = IS'l = 3. <~ 

1Muggleton and Page's model of U-leachability provides a framework which is better 
suited for average case analysis [MP94a]. However, thus far much more research has gone 
into PAC learning than U-learning. 
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Some related dimensions are discussed in [Nat91, NP93]. 
Since we are actually dealing with XM rather than with X itself, we need 

the following definitions, which "project" the VC dimension on XM.  

Definition 18.8 The projection of a concept f on X [~] is f i l l  = f ~ XM.  
The projection of a concept class f on XM is iT[~] = {f['q I f E iT). <5 

Definition 18.9 Let f be a concept class on domain X. iT is of polynomial 
VC dimension if D v c ( F  In]) is bounded from above by some polynomial in 
n. 

The following fundamental result, due to [BEHW89], states the relation 
between polynomial sample PAC learnability and the VC dimension. For a 
proof we refer to Theorem 2.3 of [Nat91]. 

Theorem 18.10 Let iT be a concept class on domain X .  Then f is polyno- 
mial sample PA C learnable iff iT is of polynomial VC dimension. 

Thus if we are able to show that some concept class is of polynomial VC 
dimension, we have thereby shown it to be polynomial sample PAC learnable. 

18.4 Time Complexity 

In outline, the analysis of time complexity is similar to the analysis of sample 
complexity: the time complexity of a learning algorithm is a function from 
its inputs to the maximum number of computational steps the algorithm 
takes on those inputs. Here we assume that the procedure EXAMPLE takes at 
most some fixed constant number of steps. Again, we are mainly interested 
in the existence of learning algorithms which have a polynomially-bounded 
time complexity. (Actually, the work on computationally efficient learning 
algorithms is just a special case of work on efficient algorithms in general, for 
which see for instance [G J79, CLR90].) 

18.4.1 R e p r e s e n t a t i o n s  

Unfortunately, things are somewhat more complicated than in the last sec- 
tion: the "number of examples" that an algorithm needs is unambiguous, but 
what about the "number of computational steps"? What  counts as a com- 
putational step? In order to make this notion precise, we have to turn to 
some precise model of computation, where it is clear what a single step is. 
Usually Turing machines are used for thisfl We will not go into details, but 
will just note here that  a Turing machine programmed to learn some con- 
cept will often not be able to output the learned concept g itself efficiently, 

2Since Turing machines cannot represent arbitrary real numbers, we have to restrict 
the  parameters 5 and ~ somewhat, for instance by only allowing them to be the inverses 
of integers. 
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for instance because ]g[ can be very large or even infinite. Therefore, instead 
of  the concept  g itself, the Tnring machine will have to ou tpu t  some finite 
representat ion of  g, which we call a name of  g. Abstract ly,  a representation 
specifies the relat ion between concepts and their names:  

D e f i n i t i o n  18 .11  Let .T be a concept class, and E a set of  symbols.  E* 
denotes the set of  all finite strings over E. A representation of Y" is a funct ion 
R :  ~ -+ 2 ~'' , where we require tha t  for each f E 3 v, t / ( f )  # ~ and for every 
dist inct  f, g E Y~, R(f)  n R(g) = ~. For each f E 3% R(f)  is the set of names 
of f in R. 

The  length of a name  r E R ( f )  is s imply the string length of  r, i.e., the 
number  of  symbols  in r. The  size of f i n /~  is the length of  the shortest  name  
in R(f) ,  denoted by Imin (f,  R). <~ 

The  set of  symbols  E tha t  is used here, need not be the same as the alpha- 
bet  used for the strings in the domain  X in Definition 18.1. The  requirement  
tha t  R(f)  • ~ for each f E ~c means tha t  each concept  in Y has at least one 
name,  while R(f)  M R(g) = ~ for every distinct f ,  g means tha t  no two distinct 
concepts share the same name.  Note the difference between the string length 
of  a str ing x E X and the size of  a concept  f E 3 c in R: the lat ter  depends 
on R, the former  does not.  3 

The  aim of  the analysis of t ime complexi ty  is to be able to bound  by 
a po lynomia l  funct ion the number  of  steps needed for learning. However, if 
a learning a lgor i thm provides us with a name of an approximate ly  correct 
concept  in a po lynomia l  number  of steps, but  we are still not  able to decide 
in po lynomiM t ime whether tha t  concept  actual ly contains a given x E X,  
we would still have a computa t iona l  problem. Therefore, a representat ion R 
should be polynomially evaluable: given an x E X and a name r of  a concept  
f ,  we should be able to find out,  in polynomial  time, whether x G f ,  using 
r. This is defined as follows. 

D e f i n i t i o n  18 .12  Let R be a representat ion of a concept  class F over do- 
main  X.  We say tha t  R is evaluable if there exists an a lgor i thm which, for 
any f E 9 r ,  takes any x E X and any name r E R(f)  as input ,  and decides in 
a finite number  of  steps whether  x E f .  R is polynomially evaluable if there is 
such an algori thm,  which has running t ime bounded by a polynomial  in the 
lengths of  x and r. C> 

In the sequel, whenever we write ' representat ion '  we actual ly mean  a 
polynomially evatuable representation. 

3To give the reader of flavour of what these definitions will be used for: in Section 18.6 
we will formMize the normal ILP setting in these terms. Since examples are usually ground 
atoms, the domain X will consist of all ground atoms in some language, and a concept 
will be a set of ground atoms. A definite program FI will represent, or be a name of, the 
concept which equals its least Herbrand model MII. 
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18.4.2 Polynomial  Time PAC Learnabil ity 

In order to be able to study t ime complexity, we need to change the definition 
of a PAC learning algorithm somewhat to incorporate the representation: a 
PAC algorithm for a concept class ~ in representation R should output  a 
name of a concept g, rather than g itself. 

Now t ime complexity can be defined as follows, where we introduce a new 
parameter  1 that  bounds the size of the concepts considered: 

D e f i n i t i o n  18.13 Let L be a learning algorithm for concept class P in rep- 
resentation R. The time complexity of L is a function t, with parameters  c, 5, 
n, and l. It returns the m ax i m um  number of computat ional  steps made by L, 
for all runs of L with inputs e, ~, n, l, for all f E ; r  such that  l,~i,~(f, R) <_ l, 
and all P on X N .  If no finite m ax i m um  exists, we define t(e, ~, n, l) = co. 0 

Definition 18.14 A concept class $" is called polynomial time PAC learna- 
ble in a representation R, if a PAC algorithm exists for f in R, which has a 
t ime complexity bounded by a polynomial  in l /e ,  1/5, n, and I. O 

Let us suppose we have some concept class jc of polynomial  VC dimen- 
sion. Then ~c is polynomial  sample PAC learnable, so we know we only need 
a polynomial  number of examples. Now to achieve polynomial  t ime PAC 
learnability, it is sufficient to have an algorithm that  finds, in a polynomial  
number  of steps, a concept that  is correct with respect to these examples. 
The following definition of correctness is similar in spirit to the one we gave 
in Chapter  9: a concept, is correct if it contains all positive examples and no 
negative ones. 4 

D e f i n i t i o n  18.15 Let g be a concept and S be a set of examples. We say g 
is correct with respect to S, if x E g for every (x, 1) E S and x ~ g for every 
(x, 0) e s .  o 

An algorithm which returns a name of a concept that  is correct with 
respect to a set of examples S is called a fitting, since it finds a concept that  
"fits" the given examples. As always~ we want a fitting to work efficiently. 
The running t ime of the fitting should be bounded by a polynomial in two 
variables. The first is the length of S, which we define as the sum of the 
lengths of the various x E X that  S contains. The second is the size of the 
shortest correct concept, For this, we will extend the l,~i~ notation as follows. 
If  S is a set of examples, then lmin (S, R) is the size of the concept f E $" 
with smallest size that  is correct with respect to S. If no such correct f E o ~c 
exists, then lmi~ (S, R) = oo. 

Definition 18.16 An algorithm Q is said to be a fitting for a concept class 
5 c in representation R if 

4In the  l i t e ra tu re  on c o m p u t a t i o n a l  l ea rn ing  theory,  usua l ly  the  t e rm  ~consistenC is used  
i n s t ead  of ' cor rec t ' .  We use  ' correc t '  here  in accordance  wi th  our  earlier def ini t ions.  
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1. Q takes as input a set S of examples. 
2. If there exists a concept in J: that is correct with respect to S, then Q 

outputs a name of such a concept. 

If Q is a deterministic algorithm such that the number of computational 
steps of Q is bounded from above by a polynomial in the length of S and 
lmi~ (S, R), then Q is called a polynomial time fitting. <~ 

As the next theorem (Theorem 3.1 of [Nat91]) shows, the existence of 
such a fitting is indeed sufficient for the polynomial time PAC learnability of 
a concept class of polynomial VC dimension. 

T h e o r e m  18.17 Let jc be a concept class of polynomial VC dimension, and 
R be a representation of jz. If there exists a polynomial time fitting for ~ in 
R, then jz is polynomial time PA C learnable in R. 

Conversely, it is also possible to give a necessary condition for polynomial 
time PAC learnability in terms of so-called randomized polynomial time fit- 
tings. We will not go into that here (see Theorem 3.2 of [Nat91]), but just 
mention that it can be used to establish negative results: if no such fitting 
for 5 r in /~  exists, then ~ is not polynomial time PAC learnable in R. 

18.5 Some Related Settings 

The standard PAC setting of the previous sections may be varied somewhat. 
In this section, we will mention some alternatives. 

18.5.1 Polynomial Time PAC Predictability 

In the ordinary PAC setting~ a PAC algorithm for a concept class .T reads 
examples from an unknown target concept f from iT, and has to construct a 
concept g, also from .T, which is approximately correct. This may lead to a 
seemingly paradoxical situation: we would expect that learning a superset of 
.T is at least as hard as learning F itself, but this need not be the case in the 
ordinary PAC setting. Namely, it may be that there is no polynomial time 
PAC algorithm for some concept class .T in some representation R, while 
for some larger concept class ~ D .T there is such a polynomial time PAC 
algorithm. The latter algorithm, when given examples for some target concept 
f E .T, always constructs a name of a probably approximately correct concept 
g E ~ in polynomial time. Still, iT itself may be hard to learn, because the 
requirement that  the output  concept should be a member of .T may be very 
hard to meet. 

We can take this into account by loosening the requirement on g some- 
what, and allow it to be a member of a broader concept class ~, of which 
~" is a subset. This gives the learning algorithm more freedom, which may 
facilitate the learning task. Suppose we have a concept class 9 v, a broader 
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concept class G _D jr, and a representation R of G (which is of course also a 
representation of Jr). Suppose, furthermore, that  there exists a learning al- 
gorithm L for Jr in R, which is just like a PAC algorithm for .T in R, except 
that it outputs a name of a concept g such that g E G but not necessarily 
9 E .T. In this case, we say that S is PACpredictable in R in terms ofF. If, 
furthermore, the time complexity of algorithm L is bounded by a polynomial 
in l /e ,  1/(~, n, and l, we say that  :P is polynomial time PAC predictable in 
/~ in terms of ~. If some G exists such that ~" is polynomial time PAC pre- 
dictable in R in terms of ~, we will simply say that :T is polynomial time 
PAC predictable in R. 

Clearly, if some concept class Jr is polynomial time PAC learnable in some 
R, it is also polynomial time PAC predictable in/~: simply put G = Jr. Hence 
the setting of polynomial time PAC predictability may be used to establish 
negative results: if we can prove that  some concept class Jr is not polynomial 
time PAC predictable in R in terms of any 6, we have thereby also shown 
that  :T--as well as any superset of j r - - i s  not polynomial time PAC learnable 
in R. Some results listed below in Section 18.6 actually take this form. The 
converse need not hold: some classes are polynomial time PAC predictable, 
but not polynomial time PAC learnable (see Sections 1.4 and 1.5 of [KV94] 
for an example). Hence polynomial time PAC predictability is strictly weaker 
than polynomial time PAC learnability. 

1 8 . 5 . 2  M e m b e r s h i p  Q u e r i e s  

We may facilitate the learning task by allowing a PAC algorithm to make use 
of various kinds of oracles. As explained in Chapter 10, an oracle is a device 
which returns answers to certain questions (queries). The most straightfor- 
ward kind are the membership queries. Here the oracle takes some x E X 
as input, and returns 'yes' if x is a member of the target concept, and 'no' 
if not. For the PAC algorithm that  uses an oracle, the oracle is like a black 
box: you pose a question and get an answer, but do not know how the oracle 
constructs it answer. Like the EXAMPLE procedure, oracles are assumed to 
run in at most some fixed constant number of steps. 

If a concept class jc is polynomial time PAC learnable in some R by an 
algorithm which makes membership queries, we will say that j r  is polynomial 
time PAC learnable in R with membership queries. Analogously, we can define 
PAC predictability with membership queries. Note that  if a.n algorithm makes 
membership queries, it in a way "creates its own examples." Note also that  a 
polynomial time algorithm can make at most a polynomial number of queries, 
since each query counts for at least one computational step. 

18.5.3 Identification from Equivalence Queries 
While polynomial time PAC predictability is strictly weaker than polyno- 
mial t ime PAC learnability, polynomial time identification from equivalence 
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queries, introduced by Angluin [Ang87], is strictly stronger. In this setting, 
we have an oracle which takes a name of a concept g as input, and answers 
'yes' if 9 equals the target concept f ,  and 'no' otherwise. In case of a 'no', it 
also returns a randomly chosen counterexample x E fag .  There is no need 
for the oracle to provide the correct label of the counterexample x, because 
the algorithm can find this out for itself: if x E g then x ~ f ,  and if x ~ g 
then x E f .  When equivalence queries are available, the requirement that  an 
algorithm outputs a name of an approximately correct concept is replaced 
by the requirement that the target concept is identified exactly: an algorithm 
that  is allowed to make equivalence queries should output a name of the 
target concept. 

Consider a concept class ~" and a representation R of.T. Let L be an algo- 
r i thm which uses equivalence queries in order to learn some unknown concept 
f C .T under some unknown probability distribution P,  and which takes as 
input an upper bound 1 on lmin (f, R) and an upper bound n on the length 
of the counterexamples from the oracle. If this algorithm always outputs a 
name of the target concept, we say 3 c is identifiable from equivalence queries 
in/~.  If the running time of the algorithm L is bounded by a polynomial in 
its inputs 1 and n, then .T is polynomial time identifiable from equivalence 
queries in R. As in the case of membership queries, an algorithm with a 
polynomially-bounded running time can make only a polynomially-bounded 
number of equivalence queries. 

It is shown in Section 2.4 of [Ang88] that if a concept class is polynomial 
time identifiable from equivalence queries in some R, then it is also poly- 
nomial time PAC learnable in R. The converse does not hold. Thus, while 
PAC predictability can be used to establish negative results, identification 
from equivalence queries may be used for positive results: if we can prove 
that  some concept class .T is polynomial time identifiable from equivalence 
queries, we have thereby also shown that ~ ,  as well as any subset of $', is 
polynomial time PAC learnable in R. 

If polynomial time identification of .T from equivalence queries is done by 
an algorithm which makes use of equivalence queries as well as membership 
queries, then we say ~ is polynomial time identifiable from equivalence and 
membership queries in R. This implies polynomial time PAC learnability with 
membership queries. 

For an overview of other kinds of queries, we refer to [Ang88]. 

18.5.4 Learning with Noise 

In many learning tasks that involve real-world data, the examples may con- 
tain errors (noise). There are various ways in which the analysis of noise may 
be modelled in the theoretical setting for PAC learnability. We will discuss 
only two kinds of noise here: Valiant's malicious noise [Va185], which is also 
sometimes called adversarial noise, and Angluin and Laird's random classi- 
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fication noise [AL88]. For other kinds of noise, see [Lai88, Slo95]. (The way 
noise may be treated in practice will be further discussed in Section 19.5.) 

Firstly, in the malicious noise model, a malicious adversary of the learn- 
ing algorithm tinkers with the examples: for each example that the learning 
algorithm reads, there is a fixed, unknown probability 0 < r / tha t  the adver- 
sary has changed the original, correct example (x, y) to any other (x', y')-pair 
he chooses. Since y~ may not be the correct label for x ~, the adversary may 
introduce noise in this way. The adversary is assumed to be omnipotent and 
omniscient--in particular, he has knowledge of the learning algorithm he is 
trying to deceive. This means that the learning algorithm should be able to 
cope even with the worst possible changes in the examples. 

Secondly, in the random classification noise model, the EXAMPLE proce- 
dure is replaced by a procedure EXAMPLE ~, and there is a fixed, unknown 
probability 0 _< r / <  0.5 that  the label of an example provided by this pro- 
cedure is incorrect. For instance, suppose r~ = 0.1. If a learning algorithm 
receives an example (x, y) from EXAMPLE rT, then there is a probability of 
10% that y is incorrect. 

In both models, the actual noise rate r/is unknown to the learning algo- 
rithm. However, an upper bound r/b on the noise rate is given as an additional 
input parameter to a PAC algorithm, where 0 _< ~ < r/b < 0.5. This ~/b is 
added as a parameter to the time complexity function as well. If there is a 
PAC algorithm for a concept class 5 r in some representation R, working in 
the presence of malicious (resp. random classification) noise, with time corn- 
plexity bounded by a polynomial in l /e ,  1/5, n, I, and 1/(1 - 2r/b), then f 
is said to be polynomial time PAC learnable in R with malicious (resp. ran- 
dom classification) noise, a Similarly, we can define PAC predictability with 
malicious or random classification noise. 

18.6 Results  in the Normal  ILP Sett ing 

Most research in PAC learning has focused on learning various classes of 
formulas in propositional logic. Here the domain X consists of strings of bits 
(zeros and ones), so a concept is a set of such strings. Each string of length n 
is an assigment of t ruth values to the n propositional atoms P l , . . . , P n .  For 
instance, the string 101 makes Pl true, p~ false, and Pa true. Thus a string 
of length n may be seen as an interpretation of a propositional language 
with atoms P l , . . . , P ~ ,  in the sense of Chapter 1. A propositional formula 
containing Pl, �9 . . ,  Pn represents (or is a name of) the concept which consists 
of all strings of length n that make r true. In other words, r represents 
the set of its models. For an overview of results in this setting, we refer 
to [Nat91, AB92, KV94]. 

5Kearns' statistical query method [Kea93, KV94] provides a way to establish positive 
learnabillty results in the presence of random classification noise. Kearns also showed that  
the  assumption that  the learning algorithm is given ~?b is not necessary. 
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Below, we will tune the PAC setting to the normal ILP problem setting, 
which is rather different from the propositional case, and give an overview of 
the main results that  have been obtained here. In Section 18.7, we tune the 
PAC setting to the nonmonotonic ILP problem setting, which may be seen 
as a generalization of the propositional case. 

1 8 . 6 . 1  T h e  N o r m a l  I L P  S e t t i n g  i n  P A C  T e r m s  

We will here restrict attention to learning definite programs from positive and 
negative examples which are ground atoms, labeled with their t ruth value. 
Because each example is a ground atom, it is natural to take the set of ground 
atoms in some language as our domain X. The alphabet E used for this is 
simply the alphabet of the underlying first-order language. Every concept is 
then a subset of X, i.e., a set of ground atoms, and every concept class is a 
set of sets of ground atoms. 

Now the important  thing is to recognise that definite programs can be 
used to represent such concepts: the definite program II represents its least 
Herbrand model Mri. That  is, the least Herbrand model Mn of a definite 
program H is a concept, and II can be seen as a name of this concept. Let us 
call this representation 1) (for Definite programs). Here we take the length 
of a clause to be its string length (including the '+--', ', ', '( ', and ')' symbols), 
and the length of a program to be the sum of the lengths of its members. For 
instance, the length of a program containing P(a) and P ( f ( x ) )  +- P(x) ,  Q(x) 
is 4+  17 = 21. Using this representation, a PAC algorithm takes ground atoms 
with their t ruth values as examples, and should return a definite program II 
such that  II has a probably approximately correct least Herbrand model: if 
f is the target concept, then, with probability at least 1 - 5, we should have 
P ( f A M r I )  _< e. Since distinct programs may have the same least Herbrand 
model, some concepts will have more than one name in l). On the other hand, 
however, note that  there are also concepts without a name in this represen- 
tation: for some concepts f ,  there is no II with MII = f (see Theorem 9.9). 
Therefore we can only consider the learnability of concept classes in which 
each concept is represented by at least one definite program. 

One further issue has to be raised: is l) polgnomially evaluable? Or in 
other words: can II ~ A be decided in polynomial time for arbitrary definite 
programs II and ground atoms A? The answer is clearly negative: in general 
II ~ A is not even decidable, let alone decidable in polynomial time. In order 
to ensure polynomial evaluability, we have to restrict the kinds of programs 
we use. Most results given below are actually restricted to function-free lan- 
guages. In the appendix to this chapter, we show implication to be decidable 
in polynomial time in function-free languages, so :D is polynomially evaluable 
in this case. For the other kinds of programs mentioned in results below, 
polynomial evaluability can also be proved. We will leave this to the reader. 

One important  feature of ILP is the use of background knowledge, which 
usually forms one of the inputs of the learning task. The ordinary PAC setting 
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does not mention background knowledge, so we have to make an emandation 
to this setting. Let us assume we have some set K;, which contains every defi- 
nite program that  we allow as background knowledge. For instance, K; might 
contain all finite sets of ground atoms in some language. Now, apart from c, 5, 
n, and l, a PAC algorithm for ILP purposes also receives one member B E K; 
as input. B may not be changed during the run of the algorithm. The algo- 
ri thm should return a definite program II such that  the concept represented 
by II U B (i.e., Mr~uu) is probably approximately correct. 

Since B is an additional input to the learning algorithm, it should be re- 
flected in the time complexity. This is done by adding an upper bound b on the 
length of B as a fifth parameter to the time complexity function, in addition 
to the ordinary parameters e, 5, n, and / that we saw earlier. For polynomial 
time PAC learnability, we require the time complexity t(e, 5, n, l, b) of the 
algorithm to be bounded by a polynomia.1 in 1/r 1/5, n, I, a.nd b. If such 
an algorithm exists, we wilt say that • is polynomial time PAC learnable 
in /? with background knowledge from tC. Analogously~ we can incorporate 
the use of background knowledge in PAC predictability, identification from 
equivalence queries, etc~ 

One further remark involving background knowledge: many results below 
concern only single-predicate learning, where there is a single target predicate 
symbol P.  In this case, all we need to know about other predicates should 
already be contained in the input B, only atoms with predicate P are given 
as examples, and each clause in H should have P in its head. 

In order to avoid too much notation, we will use the following abbreviation 
(where K1 and K~ denote some restrictive property of programs): "definite 
programs of kind K1 are polynomial sample/polynomiM time PAC learn- 
able with background knowledge of kind K2" means that the set of concepts 
representable by a definite program of kind Kt together with background 
knowledge of kind K2 is polynomial sample/polynomial time PAC learnable 
in representation/9, with background knowledge from the set of all programs 
of kind Ka. Quite a lot of the results we give below are actually restricted 
to programs of a single clause only. In this case, we say "clauses of kind 
K1 are polynomial sample/polynomial time PAC learnable with background 
knowledge of kind K2." 

With all this notation in place~ we are now in a position to give an overview 
of PAC-learnability results that have been reported tbr the normal setting. 
For e~se of presentation, -are split-them into two groups: (1) results on lea~l- 
ing non-recursive programs, and (2) results on learning recnrsive programs. 
We will only give here the most important results which can be stated with- 
out introducing too much additional notation. Other recent overviews may 
be found in [KD94, CP95]; some further PAC-learnability results, which we 
do not include below, are given in [Lin92, FP93a, FP93b, Coh93a, Coh93b, 
Coh94b, Coh95b, Coh95c, Coh95a, Yarn95, D~e95b]. 
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18.6.2 Learning Non-recursive Programs 

Before we can state the main resclts for non-recursive clauses and programs, 
we need to define some restricted kinds of clauses (repeating some notions 
here that  were already defined in earlier chapters). 

* A definite program in which each clause has the same predicate symbol 
P in the head, is called a definition of P.  

. A k-literal definite program clause contains at most  k literals in its 
body. A k-literal definite program contains only k-literal clauses. 

. A k-clause definite program contains at most  k clauses. 

. A clause or set of clauses is function-free if it does not contain function 
symbols of ari ty > 1. 

. A definite program clause is non-recursive if the predicate in its head 
does not occur in its body. A definite program is non-recursive if all its 
members  are non-recursive. 

�9 A clause C is allowed if all variables occuring in positive literals in 
C also occur in negative literals in C. (In ILP, such clauses are also 
sometimes called generative, range restricted, or connected.) A set of 
clauses is allowed if all its members  are allowed. 

�9 A clause C is constrained if all variables occurring in negative literals 
in C also occur in positive literals in C. A set of clauses is constrained 
if all its members  are constrained. 

�9 A constrained atom is a constrained non-recursive definite program 
clause. The predicate symbols in its body are called constraint pred- 
icates. 

�9 An ordered definite program clause A +-- B 1 , . . . ,  Bn is determinate 
with respect to a definite program B, if for every 1 < i < n and every 
substi tut ion 0 such that  (A +- B 1 , . . . ,  B~_I)0 is ground and B ~ (B1 A 
. . .  A Bi-1)0,  there is at most one substitution ~r for the variables in Bi0 
such that  BiOcr is ground and B ~ BiO~. 

Suppose x l , . . . ,  xn are the variables in Bi that  already occurred in 
(A +-- B 1 , . . . ,  Bi-1)O, and Yl, . . . ,Y,~ are the other variables in Bi. 
The idea behind determinacy is that  B specifies a partial  function 
from X l , . . . ,  Xn to Yl, . . . ,  Ym: given ground instantiations of x l , . . . ,  x,~, 
the background knowledge allows at most  one ground instantiation of 

Yl , . �9 Ym. 

For example,  suppose we use F(x ,y )  to denote that  y is the father 
of x, and G(x,y)  to denote that  y is the grandfather of x. Then 
the clause G(x, y) +-- F(x ,  z), F(z,  y) is determinate with respect to 
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B = {F(a, c), F(b, e), r(c, e), F(d, e), F(e, f)}.  Informally, determinacy 
follows from the fact that any x has only one father z. 

| The variable-depth of a variable x in an ordered definite program clause 
A <-- B1, . . . ,  B~ is defined as follows. I fx  occurs in A, then its variable- 
depth is 0. Suppose x first occurs in Bi. If none of the other variables 
in Bi already occurred in A <-- B 1 , . . . , B ~ - I ,  then x has variable- 
depth co. Otherwise, the variable-depth of x is 1 plus the variable- 
depth of the variable in Bi with greatest variable-depth occurring in 
A <-- B , , . . . ,  Bi-1. The variable-depth of an ordered definite program 
clause is the largest variable-depth of its variables. Note that  such a 
clause is constrained iff it has variable-depth 0. 
If a definite program clause is determinate with respect to some definite 
program B, its variable-depth is at most i and the arity of its predicate 
symbols is at most j ,  then it is called ij-determinate with respect to 
Bfi A definite program is / j-determinate with respect to B if all its 
members are. 

The clause from the last item has variable-depth 1 (because of z), so 
this clause is (1, 2)-determinate with respect to B. 

* Let C be a definite program clause. A term t in some literal L E C is 
linked with linking-chain of length 0, if t occurs in C +, and is linked 
with linking-chain of length d +  1~ if some other term in .5 is linked with 
linking-chain of length d. The link-depth of a term t in some L E C is 
the length of the shortest linking-chain of t. A literal L E C is linked if 
at least one of the terms it contains is linked. C itself is linked if each 
literal L E C is linked. 

For example, the clause P(x) <-- Q(x, y, z), Q(x, y, w) is linked. The 
term x has link-depth 0, while y, z, and w have link-depth t. Note that 
w is linked with two linking-chains: one of length 1 (via x) and one of 
length 2 (via 9 and a). Also note that the variable-depth of w is 2. The 
clause P(x) +- Q(x, y), P(z) is not linked, because z is not linked. 

. If a definite program clause is not determinate with respect to some 
definite program B, the link-depth of its terms is at most i, and the 
arity of its predicate symbols is at most j ,  then the clause is called 
ij.~nondeterminate with respect to B. 

For instance, P(x) +-- Q(x, y, z),Q(x,y, w) is (1, 3)-nondeterminate 
with respect to • = {Q(a, b, b), Q(a, b, c)}. 

* A definite program /3 is efficient if the set of computed answers for 
B U {~-- A}, for arbitrary atoms A, can be computed by an algorithm 

6Various non-equivalent definitions of i j-determinacy have appeared in the literature. 
The one we give here is slightly different from the original definition given in [MF92], but 
the details are not important for our purposes. 
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with running time polynomial in the length of A. In the appendix of this 
chapter, it is shown that  any function-free definite program is efficient. 

�9 A definite program B is ffga if it consists of function-free ground atoms. 

Consider an ffga definite program B, in which all atoms have the same 
binary predicate symbol R. We can take /~(a, b) E B as denoting an 
edge from a to b. If B represents a set of trees with edges directed 
towards the roots, it is called a forest. If B represents a disjoint union 
of directed cycles, it is called cyclical. 

For example, B = {R(a,c),R(b,c),R(c,d)] U {R(e,f),_R(f,g)} is a 
forest (with two trees, respectively having d and g as root), and 
B = {R(a, b), R(b, e), R(c, a)} U {R(d, e), R(e, d)} is cyclical (with two 
cycles). 

In terms of these restrictions, we have the results listed below. For re- 
sults involving/j-determinacy, k-literal clauses or k-clause programs, etc., 
we assume some fixed i, j ,  and k are given. Furthermore, instead of "ij- 
(non)determinate with respect to the background knowledge" we will simply 
write ij-(non)determinate. Many results given below presuppose a fixed up- 
per bound on the arities of predicate symbols. Note, however, that such a 
bound (for instance the j in i j-determinacy), together with a restriction to 
function-free clauses, implies a fixed upper bound on the length of the exam- 
ples, rendering the length parameter n irrelevant. Therefore, some of the more 
recent results do not presuppose a bound on the arity of predicate symbols, 
but let this vary with the length parameter. 

Constrained atoms are polynomial time PAC learnable with efficient 
background knowledge which uses only constraint predicates [PF92, 
Theorem 7]. 

Finite sets of atoms are polynomial time identifiable from equivalence 
and membership queries [AIS97, Theorem 13]. (Background knowledge 
is not considered here.) 

k-literal constrained function-free non-recursive definitions of the target 
predicate are polynomial time PAC learnable with efficient background 
knowledge [DMR93, Theorem 2]. This also holds with r /<  0.5 random 
classification noise [D~e95a, Theorem 4] and with a "small" amount of 
malicious noise [D~e95b, Theorem 3.5]. 

k-literal function-free non-recursive definitions of the target predi- 
cate are polynomial time PAC learnable with ffga background knowl- 
edge [Coh93b, Theorem 8]. This also holds with r I < 0.5 random classi- 
fication noise [D~e95a, Theorem 4]. 
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�9 k-clause /j-determinate function-free non-recursive definitions of the 
target predicate are polynomial time PAC predictable with efficient 
background knowledge ID~e95b, Theorem 3.4]. This also holds with 
r /< 0.5 random classification noise [D~e95a, Theorem 4]. 

In [DMR92, Theorem 2], the same class had earlier been shown to 
be polynomial time PAC learnable under simple distributions. In the 
"simple distributions" setting, examples are drawn according to the 
so-called universal distribution. See [LV9t] for details. 

| If the widely assumed RP r PSPACE conjecture r is true, then deter- 
minate linked function-free non-recursive definite program clauses are 
not polynomial time PAC learnable with ffga background knowledge 
[Kie93, Corollary 15]. 
If the widely assumed RP r NP conjecture is true, then (1, 2)-honda- 
terminate function-free non-recursive definite program clauses are not 
polynomial time PAC learnable with ffga background knowledge [Kie93, 
Corollary 19]. 

| Function-free non-recursive definite program clauses with the target 
predicate in the head and only atoms with binary predicate symbol R 
in the body, are polynomial time PAC learnable with forest background 
knowledge [HT96, Theorem 21]. This also holds with ~ < 0.5 random 
classification noise [HST96, Theorem 4]. 
The same clauses are polynomial time PAC learnable with cyclical back- 
ground knowledge if we use a non-standard representation [HT96, Sec- 
tion 7,21. 

1 8 .6 .3  L e a r n i n g  R e c u r s i v e  P r o g r a m s  

Here we will give an overview of PAC-learnability results for programs in- 
volving recursion, Quite a lot of these results are negative, because learning 
recursive clauses is in generM more difficult than learning non-recursive ones. 
In addition to the concepts of the last subsection, we also need the following: 

| Let C be an ordered definite program clause with predicate symbol P 
in its head. An atom in C-  with predicate P is called recursive. C is 
linearly recursive if it contains exactly one recursive atom, and k-ary 
recursive if it contains k such atorn~. A recursive atom A in C-  is closed 
if each variable it contains already occurs in the literals to the left of 
A. C is closed if all its recursive atoms are closed. 

7Very briefly and informally, the complexity classes mentioned here are the following: 
P is the class of problems solvable in polynomial time by a deterministic algorithm; RP 
is the class of problems solvable in polynomial time by a randomized algorithm; NP is 
the class of salvable problems for which the correcCness of a solution can be verified in 
polynomial time by a deterministic algorithm; PSPAUE is the class of problems solvable 
by a deterministic algorithm using a polynomially-bonnded amount of storage space. See 
[HU79, G J79, CLRg0] for more details. 



18.6. RESULTS IN THE NORMAL ILP SETTING 339 

�9 A definite program clause C is term-related if it is an atom, or if any 
term occuring in C -  also occurs (possibly within another term) in C +. 
A definite program is term-related if all its members are. Note that  a 
term-related clause is constrained. 

Before we can state the main PAC-learnability results involving recursive 
clauses, two additional kinds of queries have to be mentioned. These are not 
applicable in the general PAC setting, but are useful in this particular ILP 
formalization. The first concerns existential queries. Here we have an oracle 
that  takes a (possibly non-ground) atom A as input, and returns all ground 
instances of A which are members of the target concept. The use of such an 
oracle presupposes that  any A has only a finite number of ground instances 
which are members of the target concept. Existential queries can be seen as 
a generalization of membership queries. 

The second kind are the basecase queries [Coh95b]. Here the target con- 
cept is represented by a particular definite program H containing two kinds 
of clauses, recursive and non-recursive ones. The oracle takes a ground atom 
A as input, and returns whether A is a member of the concept represented 
by the non-recursive clauses of the target program H together with the back- 
ground knowledge B (this concept is of course a subset of the target concept). 

k-clause i j -determinate function-free definitions of the target predicate 
are polynomial time PAC learnable under simple distributions with 
existential and membership queries about the target predicate, and 
with efficient background knowledge [DMR92, Theorem 3]. 

k-clause /-literal term-related definite programs are polynomial sam- 
ple PAC learnable [NP94, Theorem 3]. (Background knowledge is not 
considered here.) 

Closed k-ary recursive i j-determinate function-free definite program 
clauses are polynomial time identifiable from equivalence queries with 
ffga background knowledge [Coh95b, Theorem 7]. (Cohen's use of i j- 
determinateness involves so-cMled mode declarations. This is slightly 
different from the definition we gave above. Furthermore, his t reatment 
of examples is somewhat more general than ours. For the details, we 
refer to his paper.) 
Definite programs consisting of two/ j -determinate  function-free clauses 
of which the first is closed k-ary recursive and the second is non- 
recursive, are polynomial time identifiable from equivalence and base- 
case queries with ffga background knowledge [Coh95b, Proposition 9]. 
For k = 1, the latter result also holds with q < 0.5 random classification 
noise [HST96, Theorem 7]. 

�9 Under certain plausible cryptographic assumptions (similar to the 
P ~ N P  assumption), definite programs consisting of an arbitrary 
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finite number of closed linearly recursive /j-determinate function-free 
clauses are not polynomial time PAC predictable with ffga background 
knowledge [Coh95c, Theorem 2]. 
Under the same assumptions, and if the arity of the target predicate 
is at least 3 and i _> 3, ij-determinate function-free definite program 
clauses containing an arbitrary number of closed recursive atoms are 
not polynomial time PAC predictable with ffga background knowledge 
[Coh95c, Theorem 3]. 

18.7 Results in the Nonmonotonic  Setting 

The PAC formalization of the nonmonotonic ILP setting is somewhat differ- 
ent from the normal setting, but is a generalization of the setting for learning 
propositional formulas with which we started the previous section. Let us con- 
sider a function-free clausal language C with only a finite number of ground 
atoms. Then any Herbrand interpretation of C is finite, and there are only 
finitely many distinct Herbrand interpretations of C. Let the domain X be 
a set of such Herbrand interpretations. Since a concept is a subset of the 
domain, a concept is a finite set of Herbrand interpretations. 

We use the following representation: a theory (finite set of clauses) T 
represents the set of its models in X. That  is, T is a name of {[ E 
X t I is a model of T}. Let us see if this representation is polynomially evalu- 
able. Consider a function-free theory T and a Herbrand interpretation 1 E X. 
Then we need to be able to determine whether T is true under I in time poly- 
nomial in the lengths of T and I. T is true under I iff all ground instances of 
clauses in T are true under L The number of such ground instances is easily 
seen to be bounded by a polynomial (analogous to step 1 of the appendix). 
Furthermore, a ground clause is true under I iff at least one of its literals is 
true under I, which obviously can be decided in polynomial time. In sum, 
our representation is polynomially evaluable. 

Furthermore, it can be proved that in this representation, any set Z _C X 
of Herbrand interpretations has a name. That is, for any set Z C_ X, there 
exists a theory T such that Z is the set of Herbrand models of T. Given a 
Herbrand interpretation I E X, we define r to be a conjunction of ground 
literals, with the following property: A E r iff A E I, and -~A C r iff 
A ~ L Then it is easy to see that the set of Herbrand models of Cx is 
exactly {I}. For instance, if P(a), P(b), P(c) are the only ground atoms in 
C, and I = {P(a), P(c)}, then ~I = (P(a) A -~P(b) A P(c)). Clearly, I is the 
only Herbrand model of Cx. Now suppose Z = {I1 , . . . ,  In} C_ X is a set of 
Herbrand interpretations. We define ~bz = Ch V . . .  V r  Note that I is 
a Herbrand model of r iff I E Z. Thus Z is exactly the set of Herbrand 
models of r By the construction in the proof of Theorem 3.8, we can find a 
conjunction (or set) T of ground clauses which is logically equivalent to ~z. 
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Since 5[ is exactly the set of Herbrand models of T, the theory T is a name 
of :/: in our representation. 

The main result in this setting is: 

�9 A jk-clausat theory is a set of allowed clauses such that  each clause 
contains at most k literals, and the length of each literal is at most j .  
Function-free jk-clausal ~heories are polynomial time PAC learnable in 
the nonmonotonic setting [DD94, Theorem 9]. 
This result remains valid with a "small" amount of malicious noise, and 
with r~ < 0.5 random classification noise [D~e95a, Theorems 2 and 3, 
respectively]. 

18.8 Summary 

A concept is a subset of a domain X, and a concept class is a set of concepts. 
A PAC algorithm takes examples for an unknown target concept, drawn ac- 
cording to an unknown probability distribution, and learns, with tunably 
high probability, a tunably good approximation of the target concept. A con- 
cept class i f  is polynomial sample PAC learnable if a PAC algorithm exists 
for 9 c that  uses only a polynomially-bounded number of examples, and is 
polynomial time PAC learnable if the algorithm uses only a polynomially- 
bounded number of steps. In the latter case, the algorithm should output  a 
name of the learned concept in some polynomially evaluable representation. 
Polynomial time PAC predictability is weaker than polynomial time PAC 
learnability, while polynomial time identification from equivalence queries is 
stronger. When noise is involved, the examples may sometimes be incorrect. 

In the normal ILP problem setting, a concept is a set of ground atoms, 
and our aim is to find a definite program whose least Herbrand model proba- 
bly approximates the target concept. In the nonmonotonic setting, concepts 
are sets of Herbrand interpretations, and our aim is to find a theory whose 
set of Herbrand models probably approximates the target concept. We gave 
overviews of the main results reported for both settings. 
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18.A A Polynomial Time Decision Procedure 

In this appendix, we will show that there is an algorithm which, when given 
an arbitrary function-free definite program H and an arbitrary function-free 
ground atom A, decides whether H ~ A in time polynomial in the length 
/(H) of H and the length I(A) of A. We do not claim that the method outlined 
below is the most efficient there is, but merely give it in order to establish 
polynomial time decidability. 

The construction is divided in two steps. First we show that H @ A iff 
IIg ~ A, where IIg is a set of ground instances of clauses from 11, and the 
length/(Hg) of II is bounded by a polynomial in/(11) and I(A); then we show 
that Hg ~ A can be decided in time polynomial in/(IIg). Together these 
steps enable us to decide II ~ A in time polynomial in I(H) and l(A). 

Step 1: Reduct ion to ground case 

Let H be a function-free definite program and A be a function-free ground 
atom. Recall from Chapter 15 that if E is a set of clauses and T is a set of 
ground terms, then Z(E, T) denotes the set of all ground instances of clauses 
in E, instantiated with terms from T. Let T be the set of constants occurring 
in A, and define YIg = Z(II, T). 

Let us see how many clauses Hg contains. If a clause contains v distinct 
variables, it has v .  ]T I < v .  l(A) ground instances over T. Furthermore, 
IH] < I(H) and each clause in H contains less than t(H) distinct variables. 
Hence the total number of ground clauses in Hg is bounded by a polynomial 
in l(II) and l(A). Since the length of each clause in Hg is at most I(H), it 
follows that the length/(II9) of Hg is bounded by a polynomial in I(H) and 

From the remarks following the proof of Lemma 15.10, we have H ~ A 
iff Hg ~ A. Thus if we can decide Hg ~ A in polynomial time, we are done. 

Step 2: Deciding t h e  g r o u n d  case 

Here we will show that given a ground definite program H and a ground 
atom A, it can be decided in time polynomial in /(II) whether H ~ A. 
H ~ A iff A E MH (Theorem 7.16), so it will be sufficient to construct the 
least Herbrand model MH in polynomial time, since A E Mn can clearly be 
decided in polynomial time. We will show that the following algorithm does 
just that. 

A lgo r i t hm 18.1 (Algor i thm for cons t ruc t ing  Mn) 
Inpu t :  A ground definite program H. 
Output: The least Herbrand model Mw 

1. Set M = 0  andH ~=H.  
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2. If there is a C E I I  ~ such that C -  C_ M, 
then set M = M t5 {C +} and II' = I I ' \{C},  
else output  M and stop. 

3. Goto 2. 

We will informally show that  the running time of this algorithm is 
bounded by a polynomial in I(H). Each execution of step 2 adds one atom 
to M and deletes one clause from III. Hence step 2 can only be executed 
]H[ < I(H) times and we have ]M I < IHI < I(H) at each step. Each execution 
of step 2 has to examine at most IH'I _< IIII _</(II) clauses C. Furthermore, 
for a given C E II and M we have ICl < l(II) and [MI < I(H), so the number 
of steps required to test whether C -  C M is bounded by a polynomial in 
l(II). It follows that  the algorithm works in polynomial time. 

It remains to show that  the algorithm does indeed construct Mn when 
given H as input: 

P r o p o s i t i o n  18.18 Let II be a ground definite program, and M be the set 
that the previous algorithm outputs when given II as input. Then M = MH. 

P r o o f  It is easy to see that i f A  E M,  then II ~ A. Hence M C_ Mn. 
To show that  also Mn C M, suppose some A E Mn, so II ~ A. Since II is 
ground and A is a ground atom, it follows from the Subsumption Theorem for 
SLD-resolution that  there is an SLD-derivation of A from II, of some length 
n (i.e., involving n resolution steps). We will prove A C M by induction on 
n .  

1. If n = 0, then A C II, and step 2 of the algorithm will clearly add A to 
M before it terminates. 

2. Suppose the statement holds for n < m, and consider an SLD-derivation 
of A from II of length m + 1, with top clause A +-- B1, . . . ,  Bk. Then 
for each 1 < i < k, there is an SLD-derivation of length < m of Bi 
from H, hence Bi C M by the induction hypothesis. This means that  
after a finite number of executions of step 2 of the algorithm, we have 
C -  C_ M. Therefore step 2 of the algorithm must also add A to M 
before termination. [:] 



Chapter 18 

PAC Learning 

18.1 Introduct ion  

The theory of learnability concerns the questions of what can or cannot be 
learned, and, in particular, what can be learned efficiently. Initial analysis of 
learnability in machine learning was mainly done in terms of Gold's paradigm 
of identification in the limit [Go167], which we already saw in Chapter 10. 
The idea here is that  a learning algorithm is given an infinite sequence of 
examples for some unknown target set. Each example is an object x of the 
domain, together with a label indicating whether or not x is an element of 
the target set. The learning algorithm reads examples one by one, and after 
each new example it constructs a theory for the examples read so far. The 
algorithm is said to identify the target set in the limit, if the sequence of 
theories that  it constructs, "converges" to the target set after only a finite 
number of examples have been read. The major disadvantage of identification 
in the limit is that,  even though you can prove in some cases that  there exists 
an n such that  a correct theory will be identified after n examples, you usually 
do not know what this n is, so you cannot know for sure when you may end 
the learning. 

Nowadays, Valiant's paradigm of PAC tearnability [Va184] is usually con- 
sidered to provide a better model of learnability. While identification in the 
limit is concerned with exactly identifying the target in a finite number of 
steps, the aim of PAC learning is to find a good approximation to the tar- 
get in a small (polynomially-bounded) number of steps. A PAC algorithm 
is an algorithm that  takes examples concerning some unknown target con- 
cept, and learns a concept which is probably approximately correct. That  is, 
a PAC algorithm will, with high probability, learn a concept which diverges 
only slightly from the target concept. (The relation between 'concept'  and 
our earlier notion of a ' theory'  will be explained below, at the beginning of 
Section 18.6.) 
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In this chapter we give an overview of PAC-learnability settings and re- 
sults relevant for ILP. These learnability results complement the learning 
operators of the previous chapters. PAC learnability is concerned with two 
major complexity issues: how many examples do we need to ensure that  we 
will probably find an approximately correct concept (sample complexity), and 
how many steps do we need to take to find such a concept (time complexity)? 
We consider the study of learnability theory to be both highly interesting, 
and very important  for ILP. Unfortunately, this theory presupposes quite a 
lot of other theory, including Turing machines, NP-completeness, statistics, 
etc. A fully self-contained treatment of learnability theory would require an 
introduction into these topics as well, which would take us far beyond the 
scope of the present book. Therefore we have co settle for a much more sketchy 
treatment.  In particular, we will leave out all proofs of results here, refering 
instead to the original papers where those results were reported. 

The chapter is organized as follows. In the next section we motivate and 
define the standard setting for PAC learning. In Sections 18.3 and 18.4 we 
go into sample complexity and time complexity, respectively. Our defini- 
tions in Sections 18.2-18.4 follow those of Natarajan [Nat91] quite closely. 
Section 18.5 discusses a number of related learning settings. Sections 18.6 
and 18.7 are the main sections of this chapter. Here we show how the PAC 
setting applies to ILP, and we give an overview of the main results that have 
been reported for the normal and nonmonotonic problem settings, respec- 
tively. 

18,,2 PAC Algorithms 

Before formally introducing the PAC setting, let us first illustrate and moti- 
vate it by means of a metaphorical example. Suppose some biology student 
wants to learn from examples to distinguish insects from other animals. That  
is, he or she wants to learn the concept of an 'insect' within the domain of 
all animals. A teacher gives the student examples: a positive example is an 
insect, a negative example is some other animal. The student has to develop 
his or her own concept of what an insect is on the basis of these examples. 
Now~ the student will be said to have learned the concept approximately cor- 
rectly, if; when afterwards tested, he or she classifies only a small percentage 
of given test animals incorrectly as insect or non-insect. In other words, his or 
her own developed concept should not diverge too far from the real concept 
of an 'insect'. 

In the interest of fairness, we require that the animals given as examples 
during the learning phase, and the animals given afterwards as test, are all 
selected by the same teacher (or at least by teachers with the same incli- 
nations). For suppose the student learns from a teacher with a particular 
interest in European insects, whose examples are mainly European animals. 
Then it would be somewhat unfair if the animals that were given afterwards 
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to test the student, were selected by a different teacher having a decisive in- 
terest in the very different set of African insects. In other words: the student 
should be taught  and tested by the same teacher. 

Let us now formalize this setting: 

D e f i n i t i o n  18.1 A domain X is a set of strings over some finite alphabet  
E. The length of some x E X is the string length of x. X In] denotes the set 
of all strings in X of length at most  n. 

A concept f is a subset of X, a concept class Y is a set of concepts. An 
example for f is a pair (x, y), where x C X, y is called the label of the example, 
y = 1 if x C f and y = 0 otherwise. If  y = 1 then the example is positive, if 
y = 0 it is negative. 

If  f and g are two concepts, then f a g  denotes the symmetric difference 
of f and g: f A g  = ( f \g)  U (g\f) .  

In our metaphor ,  X would be the set of descriptions of all animals, the 
target  concept f _C X would be the set of descriptions of all insects, and 
the student would develop his or her own concept g __ X on the basis of a 
number  of positive and negative examples (i.e., insects and non-insects). The 
symmetr ic  difference f a g  would be the set of all animals which the student 
classifies incorrectly: all insects that  he or she takes to be non-insects and all 
non-insects he or she takes to be insects. 

For technical reasons, we restrict the examples to those of length at most  
some number  n, so all examples are drawn from X [~]. Note that  X ['q is a 
finite set. We assume these examples are given according to some unknown 
probabil i ty distribution P on X['q, which reflects the particular interests of 
the teacher. If  S C_ X[n], we let P(S)  denote the probabili ty that  a member  of 
X M  that  is drawn according to P, is a member  of S (i.e., P (S)  = ~ s e s  P(s)) .  
Now suppose the student has developed a certain concept g. Then in the test 
phase, he will misclassify some object x E X M  iff x E fAg .  Thus we can 
say that  g is approximately correct if the probabili ty that  such a misclassified 
object is given during the test phase, is small: 

P ( f A g )  5 e, 

where c E (0, 1] is called the error parameter .  For instance, if e = 0.05, then 
there is a chance of at most  5% that  an arbitrary given test object from 
X [~] will be classified incorrectly. Note that  the set of examples that  is given, 
as well as the evaluation of approximate  correctness of the learned concept 
g, depends on the same probabil i ty distribution P.  This formally reflects 
the fairness requirement that  the student is taught and tested by the same 
teacher. 

After all these preliminaries, we can now define a PAC algorithm as an 
algori thm which, under some unknown distribution P and target concept f ,  
learns a concept g which is probably approximately correct. 'P robably '  here 
means with probabil i ty at least 1 - 5 ,  where 5 E (0, 1] is called the confidence 
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parameter. For instance, if (~ = 0.1 and the algorithm is run an infinite number 
of times, at least 90% of these runs would output an approximately correct 
concept. The constants c, 5, and n are given by the user as input to the 
algorithm. 

D e f i n i t i o n  18.2 A learning algorithm L is a PAC algorithm for a concept 
class j r  over domain X if 

1. L takes as input real numbers 0 < ~, 5 ~ 1 and a natural number n E N, 
where e is the error parameter, ~ is the confidence parameter, and n is 
the length parameter. 

2. L may call the procedure EXAMPLE, each call of which returns an ex- 
ample for some concept f E j r  according to an arbitrary and unknown 
probability distribution P on X ['1, 

3. For all concepts f E j r  and all probability distributions P on X [~], L 
outputs a concept 9, such that with probability at least 1 -~ ,  P ( f A g )  _< 

A technicality: a PAC algorithm should be admissible, meaning that  for 
any input e, 5, n, for any sequence of examples that EXAMPLE may return, 
and for any concept g, the probability that L outputs 9 should be well defined. 

18.3 Sample Complexity 
Having a PAC algorithm for a concept class Y is nice, but having an efficient 
PAC algorithm for ~ is even nicer. In this section we analyze this efficiency in 
terms of the number of examples the algorithm needs (the sample complexity), 
while in the next section we treat the number of steps the algorithm needs 
to take (time complexity). 

The sample complexity of a learning algorithm can be seen as a func- 
tion from its inputs e, 5, and n, to the maximum number of examples that  
the algorithm reads when learning an unknown target concept under an un- 
known probability distribution. Since the examples are drawn according to a 
probability distribution, different runs of the same algorithm with the same 
input and the same target concept and distribution may still read different 
examples. 'Thus different runs of the same algorithm with the same input may 
need a different number of examples in order to find a satisfactory concept. 
Therefore, the sample complexity as defined below relates to the maximum 
number of examples over all runs of the algorithm with the same input. 

Definition 18.3 Let L be a learning algorithm for concept class J=. The 
sample complexity of L is a function s, with parameters z, 5 and n. It returns 
the maximum number of calls of EXAMPLE made by L, for all runs of L with 
inputs e, 5, n, for all f E j r  and all P on X In]. If no finite maximum exists, 
we let s(e, 5, n) = ~ .  <5 
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Of course, for the sake of efficiency we want this complexity to be as 
small as possible. A concept class is usually considered to be efficiently PAC 
learnable--as far as the required number of examples is concerned--if  there 
is a PAC algorithm for this class for which the sample complexity is bounded 
from above by a polynomial function in l /e ,  1/5, and n. Of course, even 
polynomials may grow rather fast (consider nl~176 but still their growth rate 
is much more moderate than, for instance, exponential functions. 

D e f i n i t i o n  18.4 A concept class F is called polynomial sample PAC learna- 
ble, if a PAC algorithm exists for f ,  which has a sample complexity bounded 
from above by a polynomial in l /e ,  1/5, and n. 

Note that  polynomial sample PAC learnability has to do with the worst 
case: if the worst case cannot be bounded by a polynomial, a concept class is 
not polynomial sample PAC learnable, even though there may be PAC algo- 
ri thms which take only a small polynomial number of examples on average. 1 

A crucial notion in the study of sample complexity is the dimension named 
after Vapnik and Chervonenkis [VC71]. 

D e f i n i t i o n  18.5 Let .T be a concept class on domain X. We say that  F 
shatters a set S C_ X, if {S N S t f E F}  = 2 s, i.e., if for every subset S' of 
S, there is an f E F such that f N S = S'.  

Note that  if F C_ G and F shatters S, then ~ shatters S as well. Also note 
that  if T C_ g and .g shatters S, then ~" shatters T as well. In particular, 
T = ~ is shattered by any non-empty F .  The Vapnik-Chervonenkis dimension 
of ~" depends on the largest sets that are shattered by F .  

D e f i n i t i o n  18.6 Let F be a concept class on domain X. The Vapnik- 
Chervonenkis dimension (VC dimension) of jr, denoted by D y e ( F ) ,  is the 
greatest integer d such that  there exists a set S C_ X with [SI = d that is 
shattered by jr. D v c ( F )  = oo if no greatest d exists. 

Note that  if F = 2 s, then j r  shatters S. Thus if ~" = 2 s for some finite 
set S, then F has ISI as VC dimension. 

E x a m p l e  18.7 Let X = {1,2,3,4} and Y = {{1}, {2},{3},{4},{1,2},  
{ 2 , 3 } , { 1 , 3 , 4 } , { 1 , 2 , 3 , 4 } }  be a concept class. Then Jr shatters the set 
S = {1,2}, because { f N S I /  E 2-} = {~, {1}, {2}, {1, 2}} = 2 s. Thus 
jr 's  "shattering" of S intuitively means that  j r  "breaks" S into all possible 
pieces. 

2" also shatters S' = {1, 2, 3}, because { f  n S' I f S 9 t'} = {0, {1}, {2}, 
{3}, {1, 2}, {2, 3}, {1, 3}, {1,2, 3}} = 2 s. F does not shatter S" = {1, 2, 3, 4}, 
since there is for instance no f C j r  with f N S I' = {1,4}. In general, there is 
no set of four or more elements shattered by jr,  so D v c ( F )  = IS'l = 3. <~ 

1Muggleton and Page's model of U-leachability provides a framework which is better 
suited for average case analysis [MP94a]. However, thus far much more research has gone 
into PAC learning than U-learning. 
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Some related dimensions are discussed in [Nat91, NP93]. 
Since we are actually dealing with XM rather than with X itself, we need 

the following definitions, which "project" the VC dimension on XM.  

Definition 18.8 The projection of a concept f on X [~] is f i l l  = f ~ XM.  
The projection of a concept class f on XM is iT[~] = {f['q I f E iT). <5 

Definition 18.9 Let f be a concept class on domain X. iT is of polynomial 
VC dimension if D v c ( F  In]) is bounded from above by some polynomial in 
n. 

The following fundamental result, due to [BEHW89], states the relation 
between polynomial sample PAC learnability and the VC dimension. For a 
proof we refer to Theorem 2.3 of [Nat91]. 

Theorem 18.10 Let iT be a concept class on domain X .  Then f is polyno- 
mial sample PA C learnable iff iT is of polynomial VC dimension. 

Thus if we are able to show that some concept class is of polynomial VC 
dimension, we have thereby shown it to be polynomial sample PAC learnable. 

18.4 Time Complexity 

In outline, the analysis of time complexity is similar to the analysis of sample 
complexity: the time complexity of a learning algorithm is a function from 
its inputs to the maximum number of computational steps the algorithm 
takes on those inputs. Here we assume that the procedure EXAMPLE takes at 
most some fixed constant number of steps. Again, we are mainly interested 
in the existence of learning algorithms which have a polynomially-bounded 
time complexity. (Actually, the work on computationally efficient learning 
algorithms is just a special case of work on efficient algorithms in general, for 
which see for instance [G J79, CLR90].) 

18.4.1 R e p r e s e n t a t i o n s  

Unfortunately, things are somewhat more complicated than in the last sec- 
tion: the "number of examples" that an algorithm needs is unambiguous, but 
what about the "number of computational steps"? What  counts as a com- 
putational step? In order to make this notion precise, we have to turn to 
some precise model of computation, where it is clear what a single step is. 
Usually Turing machines are used for thisfl We will not go into details, but 
will just note here that  a Turing machine programmed to learn some con- 
cept will often not be able to output the learned concept g itself efficiently, 

2Since Turing machines cannot represent arbitrary real numbers, we have to restrict 
the  parameters 5 and ~ somewhat, for instance by only allowing them to be the inverses 
of integers. 
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for instance because ]g[ can be very large or even infinite. Therefore, instead 
of  the concept  g itself, the Tnring machine will have to ou tpu t  some finite 
representat ion of  g, which we call a name of  g. Abstract ly,  a representation 
specifies the relat ion between concepts and their names:  

D e f i n i t i o n  18 .11  Let .T be a concept class, and E a set of  symbols.  E* 
denotes the set of  all finite strings over E. A representation of Y" is a funct ion 
R :  ~ -+ 2 ~'' , where we require tha t  for each f E 3 v, t / ( f )  # ~ and for every 
dist inct  f, g E Y~, R(f)  n R(g) = ~. For each f E 3% R(f)  is the set of names 
of f in R. 

The  length of a name  r E R ( f )  is s imply the string length of  r, i.e., the 
number  of  symbols  in r. The  size of f i n /~  is the length of  the shortest  name  
in R(f) ,  denoted by Imin (f,  R). <~ 

The  set of  symbols  E tha t  is used here, need not be the same as the alpha- 
bet  used for the strings in the domain  X in Definition 18.1. The  requirement  
tha t  R(f)  • ~ for each f E ~c means tha t  each concept  in Y has at least one 
name,  while R(f)  M R(g) = ~ for every distinct f ,  g means tha t  no two distinct 
concepts share the same name.  Note the difference between the string length 
of  a str ing x E X and the size of  a concept  f E 3 c in R: the lat ter  depends 
on R, the former  does not.  3 

The  aim of  the analysis of t ime complexi ty  is to be able to bound  by 
a po lynomia l  funct ion the number  of  steps needed for learning. However, if 
a learning a lgor i thm provides us with a name of an approximate ly  correct 
concept  in a po lynomia l  number  of steps, but  we are still not  able to decide 
in po lynomiM t ime whether tha t  concept  actual ly contains a given x E X,  
we would still have a computa t iona l  problem. Therefore, a representat ion R 
should be polynomially evaluable: given an x E X and a name r of  a concept  
f ,  we should be able to find out,  in polynomial  time, whether x G f ,  using 
r. This is defined as follows. 

D e f i n i t i o n  18 .12  Let R be a representat ion of a concept  class F over do- 
main  X.  We say tha t  R is evaluable if there exists an a lgor i thm which, for 
any f E 9 r ,  takes any x E X and any name r E R(f)  as input ,  and decides in 
a finite number  of  steps whether  x E f .  R is polynomially evaluable if there is 
such an algori thm,  which has running t ime bounded by a polynomial  in the 
lengths of  x and r. C> 

In the sequel, whenever we write ' representat ion '  we actual ly mean  a 
polynomially evatuable representation. 

3To give the reader of flavour of what these definitions will be used for: in Section 18.6 
we will formMize the normal ILP setting in these terms. Since examples are usually ground 
atoms, the domain X will consist of all ground atoms in some language, and a concept 
will be a set of ground atoms. A definite program FI will represent, or be a name of, the 
concept which equals its least Herbrand model MII. 
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18.4.2 Polynomial  Time PAC Learnabil ity 

In order to be able to study t ime complexity, we need to change the definition 
of a PAC learning algorithm somewhat to incorporate the representation: a 
PAC algorithm for a concept class ~ in representation R should output  a 
name of a concept g, rather than g itself. 

Now t ime complexity can be defined as follows, where we introduce a new 
parameter  1 that  bounds the size of the concepts considered: 

D e f i n i t i o n  18.13 Let L be a learning algorithm for concept class P in rep- 
resentation R. The time complexity of L is a function t, with parameters  c, 5, 
n, and l. It returns the m ax i m um  number of computat ional  steps made by L, 
for all runs of L with inputs e, ~, n, l, for all f E ; r  such that  l,~i,~(f, R) <_ l, 
and all P on X N .  If no finite m ax i m um  exists, we define t(e, ~, n, l) = co. 0 

Definition 18.14 A concept class $" is called polynomial time PAC learna- 
ble in a representation R, if a PAC algorithm exists for f in R, which has a 
t ime complexity bounded by a polynomial  in l /e ,  1/5, n, and I. O 

Let us suppose we have some concept class jc of polynomial  VC dimen- 
sion. Then ~c is polynomial  sample PAC learnable, so we know we only need 
a polynomial  number of examples. Now to achieve polynomial  t ime PAC 
learnability, it is sufficient to have an algorithm that  finds, in a polynomial  
number  of steps, a concept that  is correct with respect to these examples. 
The following definition of correctness is similar in spirit to the one we gave 
in Chapter  9: a concept, is correct if it contains all positive examples and no 
negative ones. 4 

D e f i n i t i o n  18.15 Let g be a concept and S be a set of examples. We say g 
is correct with respect to S, if x E g for every (x, 1) E S and x ~ g for every 
(x, 0) e s .  o 

An algorithm which returns a name of a concept that  is correct with 
respect to a set of examples S is called a fitting, since it finds a concept that  
"fits" the given examples. As always~ we want a fitting to work efficiently. 
The running t ime of the fitting should be bounded by a polynomial in two 
variables. The first is the length of S, which we define as the sum of the 
lengths of the various x E X that  S contains. The second is the size of the 
shortest correct concept, For this, we will extend the l,~i~ notation as follows. 
If  S is a set of examples, then lmin (S, R) is the size of the concept f E $" 
with smallest size that  is correct with respect to S. If no such correct f E o ~c 
exists, then lmi~ (S, R) = oo. 

Definition 18.16 An algorithm Q is said to be a fitting for a concept class 
5 c in representation R if 

4In the  l i t e ra tu re  on c o m p u t a t i o n a l  l ea rn ing  theory,  usua l ly  the  t e rm  ~consistenC is used  
i n s t ead  of ' cor rec t ' .  We use  ' correc t '  here  in accordance  wi th  our  earlier def ini t ions.  
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1. Q takes as input a set S of examples. 
2. If there exists a concept in J: that is correct with respect to S, then Q 

outputs a name of such a concept. 

If Q is a deterministic algorithm such that the number of computational 
steps of Q is bounded from above by a polynomial in the length of S and 
lmi~ (S, R), then Q is called a polynomial time fitting. <~ 

As the next theorem (Theorem 3.1 of [Nat91]) shows, the existence of 
such a fitting is indeed sufficient for the polynomial time PAC learnability of 
a concept class of polynomial VC dimension. 

T h e o r e m  18.17 Let jc be a concept class of polynomial VC dimension, and 
R be a representation of jz. If there exists a polynomial time fitting for ~ in 
R, then jz is polynomial time PA C learnable in R. 

Conversely, it is also possible to give a necessary condition for polynomial 
time PAC learnability in terms of so-called randomized polynomial time fit- 
tings. We will not go into that here (see Theorem 3.2 of [Nat91]), but just 
mention that it can be used to establish negative results: if no such fitting 
for 5 r in /~  exists, then ~ is not polynomial time PAC learnable in R. 

18.5 Some Related Settings 

The standard PAC setting of the previous sections may be varied somewhat. 
In this section, we will mention some alternatives. 

18.5.1 Polynomial Time PAC Predictability 

In the ordinary PAC setting~ a PAC algorithm for a concept class .T reads 
examples from an unknown target concept f from iT, and has to construct a 
concept g, also from .T, which is approximately correct. This may lead to a 
seemingly paradoxical situation: we would expect that learning a superset of 
.T is at least as hard as learning F itself, but this need not be the case in the 
ordinary PAC setting. Namely, it may be that there is no polynomial time 
PAC algorithm for some concept class .T in some representation R, while 
for some larger concept class ~ D .T there is such a polynomial time PAC 
algorithm. The latter algorithm, when given examples for some target concept 
f E .T, always constructs a name of a probably approximately correct concept 
g E ~ in polynomial time. Still, iT itself may be hard to learn, because the 
requirement that  the output  concept should be a member of .T may be very 
hard to meet. 

We can take this into account by loosening the requirement on g some- 
what, and allow it to be a member of a broader concept class ~, of which 
~" is a subset. This gives the learning algorithm more freedom, which may 
facilitate the learning task. Suppose we have a concept class 9 v, a broader 
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concept class G _D jr, and a representation R of G (which is of course also a 
representation of Jr). Suppose, furthermore, that  there exists a learning al- 
gorithm L for Jr in R, which is just like a PAC algorithm for .T in R, except 
that it outputs a name of a concept g such that g E G but not necessarily 
9 E .T. In this case, we say that S is PACpredictable in R in terms ofF. If, 
furthermore, the time complexity of algorithm L is bounded by a polynomial 
in l /e ,  1/(~, n, and l, we say that  :P is polynomial time PAC predictable in 
/~ in terms of ~. If some G exists such that ~" is polynomial time PAC pre- 
dictable in R in terms of ~, we will simply say that :T is polynomial time 
PAC predictable in R. 

Clearly, if some concept class Jr is polynomial time PAC learnable in some 
R, it is also polynomial time PAC predictable in/~: simply put G = Jr. Hence 
the setting of polynomial time PAC predictability may be used to establish 
negative results: if we can prove that  some concept class Jr is not polynomial 
time PAC predictable in R in terms of any 6, we have thereby also shown 
that  :T--as well as any superset of j r - - i s  not polynomial time PAC learnable 
in R. Some results listed below in Section 18.6 actually take this form. The 
converse need not hold: some classes are polynomial time PAC predictable, 
but not polynomial time PAC learnable (see Sections 1.4 and 1.5 of [KV94] 
for an example). Hence polynomial time PAC predictability is strictly weaker 
than polynomial time PAC learnability. 

1 8 . 5 . 2  M e m b e r s h i p  Q u e r i e s  

We may facilitate the learning task by allowing a PAC algorithm to make use 
of various kinds of oracles. As explained in Chapter 10, an oracle is a device 
which returns answers to certain questions (queries). The most straightfor- 
ward kind are the membership queries. Here the oracle takes some x E X 
as input, and returns 'yes' if x is a member of the target concept, and 'no' 
if not. For the PAC algorithm that  uses an oracle, the oracle is like a black 
box: you pose a question and get an answer, but do not know how the oracle 
constructs it answer. Like the EXAMPLE procedure, oracles are assumed to 
run in at most some fixed constant number of steps. 

If a concept class jc is polynomial time PAC learnable in some R by an 
algorithm which makes membership queries, we will say that j r  is polynomial 
time PAC learnable in R with membership queries. Analogously, we can define 
PAC predictability with membership queries. Note that  if a.n algorithm makes 
membership queries, it in a way "creates its own examples." Note also that  a 
polynomial time algorithm can make at most a polynomial number of queries, 
since each query counts for at least one computational step. 

18.5.3 Identification from Equivalence Queries 
While polynomial time PAC predictability is strictly weaker than polyno- 
mial t ime PAC learnability, polynomial time identification from equivalence 



18.5. SOME RELATED SETTINGS 331 

queries, introduced by Angluin [Ang87], is strictly stronger. In this setting, 
we have an oracle which takes a name of a concept g as input, and answers 
'yes' if 9 equals the target concept f ,  and 'no' otherwise. In case of a 'no', it 
also returns a randomly chosen counterexample x E fag .  There is no need 
for the oracle to provide the correct label of the counterexample x, because 
the algorithm can find this out for itself: if x E g then x ~ f ,  and if x ~ g 
then x E f .  When equivalence queries are available, the requirement that  an 
algorithm outputs a name of an approximately correct concept is replaced 
by the requirement that the target concept is identified exactly: an algorithm 
that  is allowed to make equivalence queries should output a name of the 
target concept. 

Consider a concept class ~" and a representation R of.T. Let L be an algo- 
r i thm which uses equivalence queries in order to learn some unknown concept 
f C .T under some unknown probability distribution P,  and which takes as 
input an upper bound 1 on lmin (f, R) and an upper bound n on the length 
of the counterexamples from the oracle. If this algorithm always outputs a 
name of the target concept, we say 3 c is identifiable from equivalence queries 
in/~.  If the running time of the algorithm L is bounded by a polynomial in 
its inputs 1 and n, then .T is polynomial time identifiable from equivalence 
queries in R. As in the case of membership queries, an algorithm with a 
polynomially-bounded running time can make only a polynomially-bounded 
number of equivalence queries. 

It is shown in Section 2.4 of [Ang88] that if a concept class is polynomial 
time identifiable from equivalence queries in some R, then it is also poly- 
nomial time PAC learnable in R. The converse does not hold. Thus, while 
PAC predictability can be used to establish negative results, identification 
from equivalence queries may be used for positive results: if we can prove 
that  some concept class .T is polynomial time identifiable from equivalence 
queries, we have thereby also shown that ~ ,  as well as any subset of $', is 
polynomial time PAC learnable in R. 

If polynomial time identification of .T from equivalence queries is done by 
an algorithm which makes use of equivalence queries as well as membership 
queries, then we say ~ is polynomial time identifiable from equivalence and 
membership queries in R. This implies polynomial time PAC learnability with 
membership queries. 

For an overview of other kinds of queries, we refer to [Ang88]. 

18.5.4 Learning with Noise 

In many learning tasks that involve real-world data, the examples may con- 
tain errors (noise). There are various ways in which the analysis of noise may 
be modelled in the theoretical setting for PAC learnability. We will discuss 
only two kinds of noise here: Valiant's malicious noise [Va185], which is also 
sometimes called adversarial noise, and Angluin and Laird's random classi- 
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fication noise [AL88]. For other kinds of noise, see [Lai88, Slo95]. (The way 
noise may be treated in practice will be further discussed in Section 19.5.) 

Firstly, in the malicious noise model, a malicious adversary of the learn- 
ing algorithm tinkers with the examples: for each example that the learning 
algorithm reads, there is a fixed, unknown probability 0 < r / tha t  the adver- 
sary has changed the original, correct example (x, y) to any other (x', y')-pair 
he chooses. Since y~ may not be the correct label for x ~, the adversary may 
introduce noise in this way. The adversary is assumed to be omnipotent and 
omniscient--in particular, he has knowledge of the learning algorithm he is 
trying to deceive. This means that the learning algorithm should be able to 
cope even with the worst possible changes in the examples. 

Secondly, in the random classification noise model, the EXAMPLE proce- 
dure is replaced by a procedure EXAMPLE ~, and there is a fixed, unknown 
probability 0 _< r / <  0.5 that  the label of an example provided by this pro- 
cedure is incorrect. For instance, suppose r~ = 0.1. If a learning algorithm 
receives an example (x, y) from EXAMPLE rT, then there is a probability of 
10% that y is incorrect. 

In both models, the actual noise rate r/is unknown to the learning algo- 
rithm. However, an upper bound r/b on the noise rate is given as an additional 
input parameter to a PAC algorithm, where 0 _< ~ < r/b < 0.5. This ~/b is 
added as a parameter to the time complexity function as well. If there is a 
PAC algorithm for a concept class 5 r in some representation R, working in 
the presence of malicious (resp. random classification) noise, with time corn- 
plexity bounded by a polynomial in l /e ,  1/5, n, I, and 1/(1 - 2r/b), then f 
is said to be polynomial time PAC learnable in R with malicious (resp. ran- 
dom classification) noise, a Similarly, we can define PAC predictability with 
malicious or random classification noise. 

18.6 Results  in the Normal  ILP Sett ing 

Most research in PAC learning has focused on learning various classes of 
formulas in propositional logic. Here the domain X consists of strings of bits 
(zeros and ones), so a concept is a set of such strings. Each string of length n 
is an assigment of t ruth values to the n propositional atoms P l , . . . , P n .  For 
instance, the string 101 makes Pl true, p~ false, and Pa true. Thus a string 
of length n may be seen as an interpretation of a propositional language 
with atoms P l , . . . , P ~ ,  in the sense of Chapter 1. A propositional formula 
containing Pl, �9 . . ,  Pn represents (or is a name of) the concept which consists 
of all strings of length n that make r true. In other words, r represents 
the set of its models. For an overview of results in this setting, we refer 
to [Nat91, AB92, KV94]. 

5Kearns' statistical query method [Kea93, KV94] provides a way to establish positive 
learnabillty results in the presence of random classification noise. Kearns also showed that  
the  assumption that  the learning algorithm is given ~?b is not necessary. 
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Below, we will tune the PAC setting to the normal ILP problem setting, 
which is rather different from the propositional case, and give an overview of 
the main results that  have been obtained here. In Section 18.7, we tune the 
PAC setting to the nonmonotonic ILP problem setting, which may be seen 
as a generalization of the propositional case. 

1 8 . 6 . 1  T h e  N o r m a l  I L P  S e t t i n g  i n  P A C  T e r m s  

We will here restrict attention to learning definite programs from positive and 
negative examples which are ground atoms, labeled with their t ruth value. 
Because each example is a ground atom, it is natural to take the set of ground 
atoms in some language as our domain X. The alphabet E used for this is 
simply the alphabet of the underlying first-order language. Every concept is 
then a subset of X, i.e., a set of ground atoms, and every concept class is a 
set of sets of ground atoms. 

Now the important  thing is to recognise that definite programs can be 
used to represent such concepts: the definite program II represents its least 
Herbrand model Mri. That  is, the least Herbrand model Mn of a definite 
program H is a concept, and II can be seen as a name of this concept. Let us 
call this representation 1) (for Definite programs). Here we take the length 
of a clause to be its string length (including the '+--', ', ', '( ', and ')' symbols), 
and the length of a program to be the sum of the lengths of its members. For 
instance, the length of a program containing P(a) and P ( f ( x ) )  +- P(x) ,  Q(x) 
is 4+  17 = 21. Using this representation, a PAC algorithm takes ground atoms 
with their t ruth values as examples, and should return a definite program II 
such that  II has a probably approximately correct least Herbrand model: if 
f is the target concept, then, with probability at least 1 - 5, we should have 
P ( f A M r I )  _< e. Since distinct programs may have the same least Herbrand 
model, some concepts will have more than one name in l). On the other hand, 
however, note that  there are also concepts without a name in this represen- 
tation: for some concepts f ,  there is no II with MII = f (see Theorem 9.9). 
Therefore we can only consider the learnability of concept classes in which 
each concept is represented by at least one definite program. 

One further issue has to be raised: is l) polgnomially evaluable? Or in 
other words: can II ~ A be decided in polynomial time for arbitrary definite 
programs II and ground atoms A? The answer is clearly negative: in general 
II ~ A is not even decidable, let alone decidable in polynomial time. In order 
to ensure polynomial evaluability, we have to restrict the kinds of programs 
we use. Most results given below are actually restricted to function-free lan- 
guages. In the appendix to this chapter, we show implication to be decidable 
in polynomial time in function-free languages, so :D is polynomially evaluable 
in this case. For the other kinds of programs mentioned in results below, 
polynomial evaluability can also be proved. We will leave this to the reader. 

One important  feature of ILP is the use of background knowledge, which 
usually forms one of the inputs of the learning task. The ordinary PAC setting 
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does not mention background knowledge, so we have to make an emandation 
to this setting. Let us assume we have some set K;, which contains every defi- 
nite program that  we allow as background knowledge. For instance, K; might 
contain all finite sets of ground atoms in some language. Now, apart from c, 5, 
n, and l, a PAC algorithm for ILP purposes also receives one member B E K; 
as input. B may not be changed during the run of the algorithm. The algo- 
ri thm should return a definite program II such that  the concept represented 
by II U B (i.e., Mr~uu) is probably approximately correct. 

Since B is an additional input to the learning algorithm, it should be re- 
flected in the time complexity. This is done by adding an upper bound b on the 
length of B as a fifth parameter to the time complexity function, in addition 
to the ordinary parameters e, 5, n, and / that we saw earlier. For polynomial 
time PAC learnability, we require the time complexity t(e, 5, n, l, b) of the 
algorithm to be bounded by a polynomia.1 in 1/r 1/5, n, I, a.nd b. If such 
an algorithm exists, we wilt say that • is polynomial time PAC learnable 
in /? with background knowledge from tC. Analogously~ we can incorporate 
the use of background knowledge in PAC predictability, identification from 
equivalence queries, etc~ 

One further remark involving background knowledge: many results below 
concern only single-predicate learning, where there is a single target predicate 
symbol P.  In this case, all we need to know about other predicates should 
already be contained in the input B, only atoms with predicate P are given 
as examples, and each clause in H should have P in its head. 

In order to avoid too much notation, we will use the following abbreviation 
(where K1 and K~ denote some restrictive property of programs): "definite 
programs of kind K1 are polynomial sample/polynomiM time PAC learn- 
able with background knowledge of kind K2" means that the set of concepts 
representable by a definite program of kind Kt together with background 
knowledge of kind K2 is polynomial sample/polynomial time PAC learnable 
in representation/9, with background knowledge from the set of all programs 
of kind Ka. Quite a lot of the results we give below are actually restricted 
to programs of a single clause only. In this case, we say "clauses of kind 
K1 are polynomial sample/polynomial time PAC learnable with background 
knowledge of kind K2." 

With all this notation in place~ we are now in a position to give an overview 
of PAC-learnability results that have been reported tbr the normal setting. 
For e~se of presentation, -are split-them into two groups: (1) results on lea~l- 
ing non-recursive programs, and (2) results on learning recnrsive programs. 
We will only give here the most important results which can be stated with- 
out introducing too much additional notation. Other recent overviews may 
be found in [KD94, CP95]; some further PAC-learnability results, which we 
do not include below, are given in [Lin92, FP93a, FP93b, Coh93a, Coh93b, 
Coh94b, Coh95b, Coh95c, Coh95a, Yarn95, D~e95b]. 
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18.6.2 Learning Non-recursive Programs 

Before we can state the main resclts for non-recursive clauses and programs, 
we need to define some restricted kinds of clauses (repeating some notions 
here that  were already defined in earlier chapters). 

* A definite program in which each clause has the same predicate symbol 
P in the head, is called a definition of P.  

. A k-literal definite program clause contains at most  k literals in its 
body. A k-literal definite program contains only k-literal clauses. 

. A k-clause definite program contains at most  k clauses. 

. A clause or set of clauses is function-free if it does not contain function 
symbols of ari ty > 1. 

. A definite program clause is non-recursive if the predicate in its head 
does not occur in its body. A definite program is non-recursive if all its 
members  are non-recursive. 

�9 A clause C is allowed if all variables occuring in positive literals in 
C also occur in negative literals in C. (In ILP, such clauses are also 
sometimes called generative, range restricted, or connected.) A set of 
clauses is allowed if all its members  are allowed. 

�9 A clause C is constrained if all variables occurring in negative literals 
in C also occur in positive literals in C. A set of clauses is constrained 
if all its members  are constrained. 

�9 A constrained atom is a constrained non-recursive definite program 
clause. The predicate symbols in its body are called constraint pred- 
icates. 

�9 An ordered definite program clause A +-- B 1 , . . . ,  Bn is determinate 
with respect to a definite program B, if for every 1 < i < n and every 
substi tut ion 0 such that  (A +- B 1 , . . . ,  B~_I)0 is ground and B ~ (B1 A 
. . .  A Bi-1)0,  there is at most one substitution ~r for the variables in Bi0 
such that  BiOcr is ground and B ~ BiO~. 

Suppose x l , . . . ,  xn are the variables in Bi that  already occurred in 
(A +-- B 1 , . . . ,  Bi-1)O, and Yl, . . . ,Y,~ are the other variables in Bi. 
The idea behind determinacy is that  B specifies a partial  function 
from X l , . . . ,  Xn to Yl, . . . ,  Ym: given ground instantiations of x l , . . . ,  x,~, 
the background knowledge allows at most  one ground instantiation of 

Yl , . �9 Ym. 

For example,  suppose we use F(x ,y )  to denote that  y is the father 
of x, and G(x,y)  to denote that  y is the grandfather of x. Then 
the clause G(x, y) +-- F(x ,  z), F(z,  y) is determinate with respect to 
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B = {F(a, c), F(b, e), r(c, e), F(d, e), F(e, f)}.  Informally, determinacy 
follows from the fact that any x has only one father z. 

| The variable-depth of a variable x in an ordered definite program clause 
A <-- B1, . . . ,  B~ is defined as follows. I fx  occurs in A, then its variable- 
depth is 0. Suppose x first occurs in Bi. If none of the other variables 
in Bi already occurred in A <-- B 1 , . . . , B ~ - I ,  then x has variable- 
depth co. Otherwise, the variable-depth of x is 1 plus the variable- 
depth of the variable in Bi with greatest variable-depth occurring in 
A <-- B , , . . . ,  Bi-1. The variable-depth of an ordered definite program 
clause is the largest variable-depth of its variables. Note that  such a 
clause is constrained iff it has variable-depth 0. 
If a definite program clause is determinate with respect to some definite 
program B, its variable-depth is at most i and the arity of its predicate 
symbols is at most j ,  then it is called ij-determinate with respect to 
Bfi A definite program is / j-determinate with respect to B if all its 
members are. 

The clause from the last item has variable-depth 1 (because of z), so 
this clause is (1, 2)-determinate with respect to B. 

* Let C be a definite program clause. A term t in some literal L E C is 
linked with linking-chain of length 0, if t occurs in C +, and is linked 
with linking-chain of length d +  1~ if some other term in .5 is linked with 
linking-chain of length d. The link-depth of a term t in some L E C is 
the length of the shortest linking-chain of t. A literal L E C is linked if 
at least one of the terms it contains is linked. C itself is linked if each 
literal L E C is linked. 

For example, the clause P(x) <-- Q(x, y, z), Q(x, y, w) is linked. The 
term x has link-depth 0, while y, z, and w have link-depth t. Note that 
w is linked with two linking-chains: one of length 1 (via x) and one of 
length 2 (via 9 and a). Also note that the variable-depth of w is 2. The 
clause P(x) +- Q(x, y), P(z) is not linked, because z is not linked. 

. If a definite program clause is not determinate with respect to some 
definite program B, the link-depth of its terms is at most i, and the 
arity of its predicate symbols is at most j ,  then the clause is called 
ij.~nondeterminate with respect to B. 

For instance, P(x) +-- Q(x, y, z),Q(x,y, w) is (1, 3)-nondeterminate 
with respect to • = {Q(a, b, b), Q(a, b, c)}. 

* A definite program /3 is efficient if the set of computed answers for 
B U {~-- A}, for arbitrary atoms A, can be computed by an algorithm 

6Various non-equivalent definitions of i j-determinacy have appeared in the literature. 
The one we give here is slightly different from the original definition given in [MF92], but 
the details are not important for our purposes. 
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with running time polynomial in the length of A. In the appendix of this 
chapter, it is shown that  any function-free definite program is efficient. 

�9 A definite program B is ffga if it consists of function-free ground atoms. 

Consider an ffga definite program B, in which all atoms have the same 
binary predicate symbol R. We can take /~(a, b) E B as denoting an 
edge from a to b. If B represents a set of trees with edges directed 
towards the roots, it is called a forest. If B represents a disjoint union 
of directed cycles, it is called cyclical. 

For example, B = {R(a,c),R(b,c),R(c,d)] U {R(e,f),_R(f,g)} is a 
forest (with two trees, respectively having d and g as root), and 
B = {R(a, b), R(b, e), R(c, a)} U {R(d, e), R(e, d)} is cyclical (with two 
cycles). 

In terms of these restrictions, we have the results listed below. For re- 
sults involving/j-determinacy, k-literal clauses or k-clause programs, etc., 
we assume some fixed i, j ,  and k are given. Furthermore, instead of "ij- 
(non)determinate with respect to the background knowledge" we will simply 
write ij-(non)determinate. Many results given below presuppose a fixed up- 
per bound on the arities of predicate symbols. Note, however, that such a 
bound (for instance the j in i j-determinacy), together with a restriction to 
function-free clauses, implies a fixed upper bound on the length of the exam- 
ples, rendering the length parameter n irrelevant. Therefore, some of the more 
recent results do not presuppose a bound on the arity of predicate symbols, 
but let this vary with the length parameter. 

Constrained atoms are polynomial time PAC learnable with efficient 
background knowledge which uses only constraint predicates [PF92, 
Theorem 7]. 

Finite sets of atoms are polynomial time identifiable from equivalence 
and membership queries [AIS97, Theorem 13]. (Background knowledge 
is not considered here.) 

k-literal constrained function-free non-recursive definitions of the target 
predicate are polynomial time PAC learnable with efficient background 
knowledge [DMR93, Theorem 2]. This also holds with r /<  0.5 random 
classification noise [D~e95a, Theorem 4] and with a "small" amount of 
malicious noise [D~e95b, Theorem 3.5]. 

k-literal function-free non-recursive definitions of the target predi- 
cate are polynomial time PAC learnable with ffga background knowl- 
edge [Coh93b, Theorem 8]. This also holds with r I < 0.5 random classi- 
fication noise [D~e95a, Theorem 4]. 
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�9 k-clause /j-determinate function-free non-recursive definitions of the 
target predicate are polynomial time PAC predictable with efficient 
background knowledge ID~e95b, Theorem 3.4]. This also holds with 
r /< 0.5 random classification noise [D~e95a, Theorem 4]. 

In [DMR92, Theorem 2], the same class had earlier been shown to 
be polynomial time PAC learnable under simple distributions. In the 
"simple distributions" setting, examples are drawn according to the 
so-called universal distribution. See [LV9t] for details. 

| If the widely assumed RP r PSPACE conjecture r is true, then deter- 
minate linked function-free non-recursive definite program clauses are 
not polynomial time PAC learnable with ffga background knowledge 
[Kie93, Corollary 15]. 
If the widely assumed RP r NP conjecture is true, then (1, 2)-honda- 
terminate function-free non-recursive definite program clauses are not 
polynomial time PAC learnable with ffga background knowledge [Kie93, 
Corollary 19]. 

| Function-free non-recursive definite program clauses with the target 
predicate in the head and only atoms with binary predicate symbol R 
in the body, are polynomial time PAC learnable with forest background 
knowledge [HT96, Theorem 21]. This also holds with ~ < 0.5 random 
classification noise [HST96, Theorem 4]. 
The same clauses are polynomial time PAC learnable with cyclical back- 
ground knowledge if we use a non-standard representation [HT96, Sec- 
tion 7,21. 

1 8 .6 .3  L e a r n i n g  R e c u r s i v e  P r o g r a m s  

Here we will give an overview of PAC-learnability results for programs in- 
volving recursion, Quite a lot of these results are negative, because learning 
recursive clauses is in generM more difficult than learning non-recursive ones. 
In addition to the concepts of the last subsection, we also need the following: 

| Let C be an ordered definite program clause with predicate symbol P 
in its head. An atom in C-  with predicate P is called recursive. C is 
linearly recursive if it contains exactly one recursive atom, and k-ary 
recursive if it contains k such atorn~. A recursive atom A in C-  is closed 
if each variable it contains already occurs in the literals to the left of 
A. C is closed if all its recursive atoms are closed. 

7Very briefly and informally, the complexity classes mentioned here are the following: 
P is the class of problems solvable in polynomial time by a deterministic algorithm; RP 
is the class of problems solvable in polynomial time by a randomized algorithm; NP is 
the class of salvable problems for which the correcCness of a solution can be verified in 
polynomial time by a deterministic algorithm; PSPAUE is the class of problems solvable 
by a deterministic algorithm using a polynomially-bonnded amount of storage space. See 
[HU79, G J79, CLRg0] for more details. 
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�9 A definite program clause C is term-related if it is an atom, or if any 
term occuring in C -  also occurs (possibly within another term) in C +. 
A definite program is term-related if all its members are. Note that  a 
term-related clause is constrained. 

Before we can state the main PAC-learnability results involving recursive 
clauses, two additional kinds of queries have to be mentioned. These are not 
applicable in the general PAC setting, but are useful in this particular ILP 
formalization. The first concerns existential queries. Here we have an oracle 
that  takes a (possibly non-ground) atom A as input, and returns all ground 
instances of A which are members of the target concept. The use of such an 
oracle presupposes that  any A has only a finite number of ground instances 
which are members of the target concept. Existential queries can be seen as 
a generalization of membership queries. 

The second kind are the basecase queries [Coh95b]. Here the target con- 
cept is represented by a particular definite program H containing two kinds 
of clauses, recursive and non-recursive ones. The oracle takes a ground atom 
A as input, and returns whether A is a member of the concept represented 
by the non-recursive clauses of the target program H together with the back- 
ground knowledge B (this concept is of course a subset of the target concept). 

k-clause i j -determinate function-free definitions of the target predicate 
are polynomial time PAC learnable under simple distributions with 
existential and membership queries about the target predicate, and 
with efficient background knowledge [DMR92, Theorem 3]. 

k-clause /-literal term-related definite programs are polynomial sam- 
ple PAC learnable [NP94, Theorem 3]. (Background knowledge is not 
considered here.) 

Closed k-ary recursive i j-determinate function-free definite program 
clauses are polynomial time identifiable from equivalence queries with 
ffga background knowledge [Coh95b, Theorem 7]. (Cohen's use of i j- 
determinateness involves so-cMled mode declarations. This is slightly 
different from the definition we gave above. Furthermore, his t reatment 
of examples is somewhat more general than ours. For the details, we 
refer to his paper.) 
Definite programs consisting of two/ j -determinate  function-free clauses 
of which the first is closed k-ary recursive and the second is non- 
recursive, are polynomial time identifiable from equivalence and base- 
case queries with ffga background knowledge [Coh95b, Proposition 9]. 
For k = 1, the latter result also holds with q < 0.5 random classification 
noise [HST96, Theorem 7]. 

�9 Under certain plausible cryptographic assumptions (similar to the 
P ~ N P  assumption), definite programs consisting of an arbitrary 
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finite number of closed linearly recursive /j-determinate function-free 
clauses are not polynomial time PAC predictable with ffga background 
knowledge [Coh95c, Theorem 2]. 
Under the same assumptions, and if the arity of the target predicate 
is at least 3 and i _> 3, ij-determinate function-free definite program 
clauses containing an arbitrary number of closed recursive atoms are 
not polynomial time PAC predictable with ffga background knowledge 
[Coh95c, Theorem 3]. 

18.7 Results in the Nonmonotonic  Setting 

The PAC formalization of the nonmonotonic ILP setting is somewhat differ- 
ent from the normal setting, but is a generalization of the setting for learning 
propositional formulas with which we started the previous section. Let us con- 
sider a function-free clausal language C with only a finite number of ground 
atoms. Then any Herbrand interpretation of C is finite, and there are only 
finitely many distinct Herbrand interpretations of C. Let the domain X be 
a set of such Herbrand interpretations. Since a concept is a subset of the 
domain, a concept is a finite set of Herbrand interpretations. 

We use the following representation: a theory (finite set of clauses) T 
represents the set of its models in X. That  is, T is a name of {[ E 
X t I is a model of T}. Let us see if this representation is polynomially evalu- 
able. Consider a function-free theory T and a Herbrand interpretation 1 E X. 
Then we need to be able to determine whether T is true under I in time poly- 
nomial in the lengths of T and I. T is true under I iff all ground instances of 
clauses in T are true under L The number of such ground instances is easily 
seen to be bounded by a polynomial (analogous to step 1 of the appendix). 
Furthermore, a ground clause is true under I iff at least one of its literals is 
true under I, which obviously can be decided in polynomial time. In sum, 
our representation is polynomially evaluable. 

Furthermore, it can be proved that in this representation, any set Z _C X 
of Herbrand interpretations has a name. That is, for any set Z C_ X, there 
exists a theory T such that Z is the set of Herbrand models of T. Given a 
Herbrand interpretation I E X, we define r to be a conjunction of ground 
literals, with the following property: A E r iff A E I, and -~A C r iff 
A ~ L Then it is easy to see that the set of Herbrand models of Cx is 
exactly {I}. For instance, if P(a), P(b), P(c) are the only ground atoms in 
C, and I = {P(a), P(c)}, then ~I = (P(a) A -~P(b) A P(c)). Clearly, I is the 
only Herbrand model of Cx. Now suppose Z = {I1 , . . . ,  In} C_ X is a set of 
Herbrand interpretations. We define ~bz = Ch V . . .  V r  Note that I is 
a Herbrand model of r iff I E Z. Thus Z is exactly the set of Herbrand 
models of r By the construction in the proof of Theorem 3.8, we can find a 
conjunction (or set) T of ground clauses which is logically equivalent to ~z. 
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Since 5[ is exactly the set of Herbrand models of T, the theory T is a name 
of :/: in our representation. 

The main result in this setting is: 

�9 A jk-clausat theory is a set of allowed clauses such that  each clause 
contains at most k literals, and the length of each literal is at most j .  
Function-free jk-clausal ~heories are polynomial time PAC learnable in 
the nonmonotonic setting [DD94, Theorem 9]. 
This result remains valid with a "small" amount of malicious noise, and 
with r~ < 0.5 random classification noise [D~e95a, Theorems 2 and 3, 
respectively]. 

18.8 Summary 

A concept is a subset of a domain X, and a concept class is a set of concepts. 
A PAC algorithm takes examples for an unknown target concept, drawn ac- 
cording to an unknown probability distribution, and learns, with tunably 
high probability, a tunably good approximation of the target concept. A con- 
cept class i f  is polynomial sample PAC learnable if a PAC algorithm exists 
for 9 c that  uses only a polynomially-bounded number of examples, and is 
polynomial time PAC learnable if the algorithm uses only a polynomially- 
bounded number of steps. In the latter case, the algorithm should output  a 
name of the learned concept in some polynomially evaluable representation. 
Polynomial time PAC predictability is weaker than polynomial time PAC 
learnability, while polynomial time identification from equivalence queries is 
stronger. When noise is involved, the examples may sometimes be incorrect. 

In the normal ILP problem setting, a concept is a set of ground atoms, 
and our aim is to find a definite program whose least Herbrand model proba- 
bly approximates the target concept. In the nonmonotonic setting, concepts 
are sets of Herbrand interpretations, and our aim is to find a theory whose 
set of Herbrand models probably approximates the target concept. We gave 
overviews of the main results reported for both settings. 
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18.A A Polynomial Time Decision Procedure 

In this appendix, we will show that there is an algorithm which, when given 
an arbitrary function-free definite program H and an arbitrary function-free 
ground atom A, decides whether H ~ A in time polynomial in the length 
/(H) of H and the length I(A) of A. We do not claim that the method outlined 
below is the most efficient there is, but merely give it in order to establish 
polynomial time decidability. 

The construction is divided in two steps. First we show that H @ A iff 
IIg ~ A, where IIg is a set of ground instances of clauses from 11, and the 
length/(Hg) of II is bounded by a polynomial in/(11) and I(A); then we show 
that Hg ~ A can be decided in time polynomial in/(IIg). Together these 
steps enable us to decide II ~ A in time polynomial in I(H) and l(A). 

Step 1: Reduct ion to ground case 

Let H be a function-free definite program and A be a function-free ground 
atom. Recall from Chapter 15 that if E is a set of clauses and T is a set of 
ground terms, then Z(E, T) denotes the set of all ground instances of clauses 
in E, instantiated with terms from T. Let T be the set of constants occurring 
in A, and define YIg = Z(II, T). 

Let us see how many clauses Hg contains. If a clause contains v distinct 
variables, it has v .  ]T I < v .  l(A) ground instances over T. Furthermore, 
IH] < I(H) and each clause in H contains less than t(H) distinct variables. 
Hence the total number of ground clauses in Hg is bounded by a polynomial 
in l(II) and l(A). Since the length of each clause in Hg is at most I(H), it 
follows that the length/(II9) of Hg is bounded by a polynomial in I(H) and 

From the remarks following the proof of Lemma 15.10, we have H ~ A 
iff Hg ~ A. Thus if we can decide Hg ~ A in polynomial time, we are done. 

Step 2: Deciding t h e  g r o u n d  case 

Here we will show that given a ground definite program H and a ground 
atom A, it can be decided in time polynomial in /(II) whether H ~ A. 
H ~ A iff A E MH (Theorem 7.16), so it will be sufficient to construct the 
least Herbrand model MH in polynomial time, since A E Mn can clearly be 
decided in polynomial time. We will show that the following algorithm does 
just that. 

A lgo r i t hm 18.1 (Algor i thm for cons t ruc t ing  Mn) 
Inpu t :  A ground definite program H. 
Output: The least Herbrand model Mw 

1. Set M = 0  andH ~=H.  
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2. If there is a C E I I  ~ such that C -  C_ M, 
then set M = M t5 {C +} and II' = I I ' \{C},  
else output  M and stop. 

3. Goto 2. 

We will informally show that  the running time of this algorithm is 
bounded by a polynomial in I(H). Each execution of step 2 adds one atom 
to M and deletes one clause from III. Hence step 2 can only be executed 
]H[ < I(H) times and we have ]M I < IHI < I(H) at each step. Each execution 
of step 2 has to examine at most IH'I _< IIII _</(II) clauses C. Furthermore, 
for a given C E II and M we have ICl < l(II) and [MI < I(H), so the number 
of steps required to test whether C -  C M is bounded by a polynomial in 
l(II). It follows that  the algorithm works in polynomial time. 

It remains to show that  the algorithm does indeed construct Mn when 
given H as input: 

P r o p o s i t i o n  18.18 Let II be a ground definite program, and M be the set 
that the previous algorithm outputs when given II as input. Then M = MH. 

P r o o f  It is easy to see that i f A  E M,  then II ~ A. Hence M C_ Mn. 
To show that  also Mn C M, suppose some A E Mn, so II ~ A. Since II is 
ground and A is a ground atom, it follows from the Subsumption Theorem for 
SLD-resolution that  there is an SLD-derivation of A from II, of some length 
n (i.e., involving n resolution steps). We will prove A C M by induction on 
n .  

1. If n = 0, then A C II, and step 2 of the algorithm will clearly add A to 
M before it terminates. 

2. Suppose the statement holds for n < m, and consider an SLD-derivation 
of A from II of length m + 1, with top clause A +-- B1, . . . ,  Bk. Then 
for each 1 < i < k, there is an SLD-derivation of length < m of Bi 
from H, hence Bi C M by the induction hypothesis. This means that  
after a finite number of executions of step 2 of the algorithm, we have 
C -  C_ M. Therefore step 2 of the algorithm must also add A to M 
before termination. [:] 
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The Subsumption Order 

14.1  I n t r o d u c t i o n  

We have met with the subsumption relation a few times before in this book, 
for example in the subsumption theorems and in the generality order on 
atoms of the previous chapter. We will extend the subsumption order on 
atoms in two different ways to an order on clauses. The first is a rather strict 
generality order, called the atomic order. We introduce this mainly as a tool 
for studying the second extension, the subsumption order on clauses. 

We show here that  clausal languages and Horn languages are lattices 
under subsumption: each finite set of clauses has a least generalization (LGS) 
and a greatest specialization (GSS) under subsumption. On the other hand, 
the positive results on finite complete sets of covers of atoms do not carry over 
to arbitrary clauses. We prove that  some clauses do not have finite complete 
sets of downward or upward covers. This chapter is mainly based on the 
articles [Plo70, NLT93, LN93, LN94a, NW96b]. 

14 .2  C l a u s e s  C o n s i d e r e d  as A t o m s  

In this section, we will show how clauses can be treated as single atoms. For 
this, we will introduce a very strict order on clauses, the atomic order ~a. 
It provides a bridge between the ~-order on atoms of the previous chapter, 
and the subsumption order on clauses we will discuss in the next sections. 
The subsumption order for clauses and the existence of least generalizations 
therein can be introduced without this intermediate order ~-a, as for instance 
Plotkin does in [Plo70]. However, we feel that  the _a-order is useful for 
understanding subsumption, hence we discuss it here. 
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D e f i n i t i o n  14.1 Let C = Li V . . .VLn  and D = Mi V . . .VMm be clauses. If 
n = m and for every i = 1 , . . . ,  n, Li and Mi have the same sign and predicate 
symbol, we say C and D are compatible. If not, they are incompatible. 

C is an atomic generalization of D, denoted by C ->~ D, if C and D are 
compatible and there exists a substitution 0, such that LiO = Mi for every 
i = 1 , . . . , n .  0 

Example 14.2 P(a)VQ(z) P(a)vQ(a), but P(a)VQ(z) Q(a)VP(a) 
and P(a) P(a) V P(a). < 

If C >-~ D, then C and D must be compatible, so incompatible clauses 
are incomparable in this order. For atoms A and B, A >2_ B iff A >_.~ B, so the 
>-a-order is an extension of the ,---order on atoms of the previous chapter. 
We will prove in this section that  any two clauses C and D have a least 
generalization in the set of clauses ordered by ->~, which we will denote by 
LGA(C, D). Since for atoms A and B the two orders >.a and _ coincide, it 
follows that LGA(A,  B) = A tl B, where A U B is an LG of {A, B} under >., 
as defined in the previous chapter. 

The reason why the >a-relation is called the atomic order, is that clauses 
are compared as single atoms in this quasi-order. Let C = P(a )vQ(y ,  f ( x ) ) v  
-~P(x). C can be viewed as an atom A = V(P(a),  Q(y, f (x ) ) ,  "~P(x)), where 
V now acts as a 3-dry predicate symbol, and P,  Q, and -~P are treated as 
function symbols of arities 1, 2, and 1, respectively. Since we have already 
established the existence of a least generalization of two atoms, the existence 
of a least generalization of two compatible clauses in (C, ->~} follows easily, 
by considering such atomic representations: 

T h e o r e m  14.3 Let g be a clausal language, and C = Li V . . .  V Ln and 
D = M1V...VMn two compatible clauses in C. Then there is an LGA(C, D) = 
N1 V . . .  V Nn. Moreover, for any 1 < k < n, if C' = L1 V . . .  V Lk and 
D' = M1 V . . .  V Mk, the~ L G A ( C ,  D') = Ni V . . .  V N~. 

P r o o f  Let A = V(L1 , . . . ,  L~) and B = V(M1 , . . . ,Mn )  be the atomic repre- 
sentations of C and D, respectively. Let V ( N i , . . . ,  5~)  be the LGS of A and 
B obtained from Algorithm 13.1 (the Anti-Unification Algorithm). Then it 
is easy to see that  E = Ni V . . .  V ~u is an LGA(C, D). 

For the second part  of the theorem, let C'  = Li  V . . .  V Lk and D e = 
Ml V . . .  V Mk, and let A' and B' be the atomic representations of C'  and D', 
respectively. Let LGS(A' ,  B e) denote the atom obtained by applying Algo- 
r i thm 13.1 to A' and B', and let E '  be the clause represented by this atom. 
Then E' is an LGA(C' ,  D'). 

Now note how the algorithm operates. The algorithm works from left to 
right, arid when it anti-unifies the terms at some position of the two atoms, it 
does not take the terms to the right of this position into account. Moreover, 
the result, of anti-unifying the terms at this position is not changed anymore 
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when the algorithm continues with the terms to the right of the position. This 
means that  the k arguments in the atom L G S ( X ,  B I) are exactly the first 
k arguments in LGS(A, B), since the k arguments of A ~ and B ~ are exactly 
the first k arguments in A and B, respectively. This in turn implies that E I 
equals the first k literals of E. [] 

E x a m p l e  14.4 Let 

C = P(x, g(x)) V-~P(a, b) V Q(x, g(f(x)) 
D = p(x, g(y)) v  P(a, x) v Q(y, g(y)) 

The atomic representations of these two clauses are, respectively: 

d = V(P(x,  g(x)), -,P(a, b), Q(x, g(f(x))) 
B = v(P(x, a(y)),  P(a, x), Q(y, a(y))) 

Algorithm 13.1 yields LGA(A, B) = V(P(x,  g(zt)) ,-~P(a,  z2), Q(zi, g(za))), 
so we have that  E = P(x, g(zl) )V-~P(a,  z2)V Q(zl, g(z3)) is an LGA(C, D). 

Note that  P(x, g(zz)) V-~P(a, z2) (the disjunction of the first two literals 
of E) is an LGA of P(x,g(x)) V -,P(a,b) and P(x,g(y)) V -~P(a,x) (the 
disjunction of the first two literals of C and D, respectively). <~ 

As we have seen, an LGA of C and D can be obtained by turning to atomic 
representation and then applying the Anti-Unification Algorithm. Similarly 
we could obtain a greatest specialization from the Unification Algorithm, 
which shows that if C is a clausal language including artificial top and bot tom 
elements T and 3_, then (C, ~ }  is a lattice. We will not discuss this any 
further, since we have mainly introduced the ___~-order as a toot for the study 
of the more important  subsumption order. 

It follows from the remark following Example 13.21 in the last chapter 
that  if the terms at the # th  and j - th  argument place of an atom A are 
equal, and if the terms at the i-th and j - th  argument place in an atom B 
are equal, then the terms at the i-th and j - th  argument place of LGA(A, B) 
are equal. This extends to the LGA of compatible clauses C and D: For 
instance, if C = P(a) V Q(a, x) v P(a) and D = P(x) V Q(x, y) v P(x), then 
LGA(C, D) = P(zl) V Q(zl, z2) v P(zl),  where the first and third literal are 
equal. Thus we have the following lemma, which will be used in the proof of 
Theorem 14.27: 

L e m m a  14.5 Let C = L1 V . . . V L~ and D = M1 V . . .  V Mn be compatible 
clauses, with LGA(C,D) = N1 V . . .  V N~. If  for some 1 <__ i , j  < n we have 
Li = Lj and Mi = Mj, then N~ = 51~. 

1 4 . 3  S u b s u m p t i o n  

The general subsumption order on clauses is defined as follows: 
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D e f i n i t i o n  14.6 Let C and D be clauses. We say C subsumes D, denoted 
by C ~ D, if there exists a substitution 0 such that CO C_ D (i.e., every literal 
in CO is also a literal in D). C properly subsumes D, denoted by C ~ D, if 
C ~- D and D ~ C. Furthermore, C and D are subsume-equivalent, denoted 
b y C , - , D ,  i f C _ ~ D a n d D ~ C .  <5 

Clearly, the subsumption relation on clauses is reflexive and transitive. 
Thus it imposes a quasi-order on the set of clauses. Note that if C ___a D, 
then C ~ D, but not necessarily the other way around. 

We will now informally show that it is decidable whether a clause C 
subsumes a clause D. If C _ D, then there is a substitution 0 which maps 
each Li E C to some Mj E D. If C contains n literals, and D contains m 
literals, then there are m ~ ways in which the literals in C can be paired up 
with literals in D. Then we can decide C ~ D by checking whether for at 
least one of those m '~ ways of pairing the n literals in C to some of the m 
!iterals in D, there is a 0 such that  LiO = Mj, for each (L~, Mj) in the pairing. 
If so, there is a 0 such that  CO C D, and hence C ~_ D. If not, then there is 
no such 0, and C ~ D. 1 

A clause is always subsume-equivalent with a clause that  does not contain 
literals more than once. So for example P(z) V Q(a) V P(x)  is obviously 
subsume-equivalent with P(x)  V Q(a). Similarly, the order of literals in a 
clause does not mat ter  much. For instance, P(a) V P(b) ,,~ P(b) V P(a). It will 
often be convenient to ignore duplicate literals and the order of literals in a 
clause, which are not important  for the properties we are interested in. For 
us, the only thing that really matters in a clause, is which distinct literals it 
contains. This amounts to treating a clause as a set of literals, instead of a 
disjunction of literals. For convenience, we will also adopt this representation 
from now on. Thus we may use the set {P(a),  Q(a)} to represent the clauses 
Q(x)VP(a), P(a)VQ(x)VP(a), Q(x)VP(a)VQ(x), etc. For most parts of this 
book, the distinction between on the one hand ordered notation, which does 
not ignore the order and duplication of literals, and set notation of clauses on 
the other, is just a mat ter  of convenience. The only part where the distinction 
is crucial is Section 14.7, where we take the step from the atomic order to the 
subsumption order, using ordered notation for the former and set notation 
for the latter. 

Two atoms are subsume-equivalent iff they are variants. This is not true 
for clauses in general. For instance, C = {P(x, x)} ~ {P(x,  x), P (x ,y )}  = 
D, since C C D and D{y/x) G C, yet C and D are not variants. In 
fact, the subsume-equivalence class of this C contains an infinite num- 
ber of clauses which are not variants. For example, for each n, the clause 
D~ = {P(x, x), P(x, xl), P(xl, x2),..., P(x,~-I, xr~)} is subsume-equivalent 

1 Though subsumpt ion is decidable, ectually deciding it is ra ther  expensive: subsumption 
is an NP-complete problem [G J79, p. 264]. Kietz and Lfibbe [KL94] describe some special 
cases where subsumpt ion is more efficiently decidable. 
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with C = {P(x, x)}. Often, we are interested in properties of arbi trary mem-  
bers of these subsume-equivalence classes. In this case, we can use one par- 
ticular member  of an equivalence class to represent that  class, for instance 
a reduced member  of that  equivalence class, as we will discuss in the next 
section. 

14.4 Reduct ion  

A reduced clause is in a way a "smallest" member  of its equivalence class. 
For instance, the smallest members  of the equivalence class of {P(x, x)} are 
{P(x, x)} and its variants, which are reduced. Reducing a clause makes the 
clause more tractable.  {P(x, x)} is often easier to handle than other members  
of its subsume-equivalence class, such as {P(x, x), P(x, xl), P(xl, x2)}. 

D e f i n i t i o n  14.7 A clause C is said to be reduced if there is no proper subset 
D of C (D C C) such that  C ,-~ D. A reduced clause D such that  C --~ D and 
D C_ C is called a reduction of C. 0 

E x a m p l e  14.8 C = {P(x, y), P(y, x)} is reduced. D = {P(x, x), P(x,y), 
P(y, x)} is not reduced, since D f = {P(x,  x)} is a proper subset of D and 
D ,-~ D' .  D '  is a reduction of D. <1 

A clause C is reduced if there is no substitution 0 such that  CO is a 
proper subset of C. Although for C ,-~ C'  and D ,-- D '  we have that  C __ D 
iff C '  ~ D/, subsume-equivalent clauses need not behave the same with 
respect to other operations. Firstly, applying the same substitution 0 to 
two subsume-equivalent clauses may yield two clauses which are no longer 
subsume-equivalent: 

E x a m p l e  14.9 Let C = {P(x, y), P(z, u)} and D = {P(x, y)}, then C ,-- 
D. Let 0 = {y/f(z) ,  z/ f(x) ,  u/x}. Then CO = {P(x, f(x)), P(f(x),  x)} and 
DO = {P(x, f (x) )} ,  which are no longer equivalent. <~ 

A second perhaps surprising property, is the fact that  a subset of a reduced 
clause need not be reduced itself: 

E x a m p l e  14.10 Let C = {-~Q(x, a),-,Q(y, a)} and D = {P(x, y),-~Q(x, a), 
-~Q(y, a)}. Then D is reduced. However, C is a subset of D which is not 
reduced, since C{x/y} is a proper subset of C. <1 

Subsume-equivalent clauses need not be variants, but reduced subsume- 
equivalent clauses, such as for example C = {P(x,y), P(y, x)} and D = 
{P(z, x), P(x, z)}, are variants: 

P r o p o s i t i o n  14.11 Let C and D be reduced clauses. If C ~ D, then C and 
D are variants. 
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P r o o f  Since C ~ D, there are 0 and c~ such that  CO C_ D and D(r C_ C. 
Since C and D are reduced, we must have COr = C and DcrO = C. If  0 maps 
some x in C to a term containing a function symbol or constant, then we 
would not have COc~ = C, so 0 (and likewise o') can only map  variables to 
variables. If 0 unifies two or more variables in C, then the total  number of 
variables in COr C) would be less than the number of variables in C, which 
is impossible. Hence 0, and similarly or, must be a renaming substitution, 
which shows that  C and D are variants. [] 

In [Plo70], Plotkin gave an algorithm to compute a reduction of a clause. 
The following l emma is the basis of his algorithm: 

L e m m a  14.12 Let C be a clause. If for some O, CO C_ C, then there is a 
reduced clause D C CO such that C ,'~ D. 

P r o o f  Let C1 : CO. Clearly C ,-~ C1. If Ct is reduced, then let D = C1, and 
we are done. Otherwise, there is a substitution 01 such that  C2 : C101 C C1. 
So C2 is a proper subset of C1 which is subsume-equivalent to C1. Since 
C1 ~ C, we also have C2 "~ C, in fact C001 = C2 C C. If C2 is still not 
reduced, we can go on defining Ca = C202 C C2, etc. Since C only contains a 
finite number of literals, this cannot go on indefinitely. Hence we must  arrive 
at a D = Cn such that  D is reduced and C ,,~ D. [] 

A l g o r i t h m  14.1 ( R e d u c t i o n  A l g o r i t h m )  

I n p u t :  A clause C. 
O u t p u t :  A reduction D of C. 

1. Set D = C. 
2. Find a literal L C D and a substitution 0 such that  DO C D\{L} .  If 

this is impossible, then return D and stop. 
3. Set D to DO and goto 2. 

The previous algorithm gives Plotkin's  approach to computing reductions 
of clauses. A somewhat more sophisticated approach is given in [GF93]. 

We will now describe an alternative approach, which uses the basic rela- 
tion between a clause and its reduction expressed in Lemma 14.15. First we 
give an example. 

E x a m p l e  14.13 Let C = {P(x , x ) ,P (x ,  x l ) ,P(z ,y )} .  Let 0 = { x l / x , z / x ,  
y/x},  then D = CO = {P(x,  x)} C C is reduced. Notice that  0 does not act 
on any variables in D. 

Now let C --=- {Q(y, f (x)) ,  P(x) ,  Q(y, f (z)) ,  Q(a, f (x))} ,  O = {y/a, z /x} ,  
then D = CO = {P(x),  Q(a, f (x) )}  c_ C is reduced. Notice again that  0 does 
not act on any variables in D. <~ 
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The previous examples suggest that a reduction of C may be obtained by 
mapping  some literals to a subset D of C, without affecting D. This turns 
out to be true in general. 

L e m m a  14.14 Let  C be a clause and 0 a substitution. I f  CO = C, then there 
is a k >_ 1, such that LO k = L for  every L C C. 

P r o o f  First note that  0 is injective: for all L1, L2 E C, if L~ 7~ L2, then 
LIO ~- L~O, for otherwise ICO[ < ICI. Hence if L~O = L20, then L~ = L2. For 
each L E C, consider the following infinite sequence 

L, LO, LO 2 , L0 3, . . .  

Since CO = C, each literal in this sequence is a member  of C. C contains 
only a finite number  of literals, so for some i < j we must have LO ~ = LoJ. 
Then from the injeetivity, also L = LO j-~.  For this L, define n(L)  = j - i. 
Notice tha t  L = LOm if m is a multiple of n(L) .  Let k be the least common 
multiple of all n(L) .  Then LO k = L for every L E C. [] 

L e m m a  14.15 Let C and D be clauses. I f  D is a reduction of  C,  then there 
is a substitution 0 such that CO = D and LO = L for  every L ~ D. 

P r o o f  Suppose D is a reduction of C, then there is a o- such that  C a  _C D. 
Then also Do- C C a  _C D, since D _C C. If Do- ~ D, then D would not be 
reduced, hence Do- = Co- = D. By the previous lemma, there is a k > 1 such 
that  Lo- k = L for every L E D. Now define 0 = o-k. Then since Co- = D and 
Do" = D, we have CO = D. [] 

Thus an alternative for Plotkin 's  approach is to take a proper subset D of 
C, and see if all other literals in C can be mapped onto D by some 0 which 
does not affect the variables in D. If such a D cannot be found, C is reduced. 
I f  D can be found but is still not reduced, then we can take a proper subset 
of D again, etc. Eventually, we will reach D which is reduced. 

14.5 Inverse R e d u c t i o n  

Plotkin 's  reduction algorithm finds a reduction D of C. In this section we de- 
velop an algori thm which does the inverse: given a reduced clause D, the 
algori thm constructs (possibly non-reduced) members  C of the subsume- 
equivalence class of D. This will be useful in the chapter on refinement oper- 
ators. Since the subsume-equivalence class of D is infinite, we have to limit 
the scope of the algorithm. This is done by restricting the number  of literals 
in C. 

Given a reduced clause D, we know from Lemma 14.15 that  for every 
non-reduced C such that  D C C and D ,-, C, we can find a 0 such that  
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CO = D, and 0 only acts on variables not appearing in D. Thus C can be 
reduced by mapping  E = C\D to literals in D. In the inverse direction, we 
can find C by adding a set E to D, such that  EO C_ D, where 0 does not act 
on variables in D. This is the idea used in the algorithm. If D is a reduced 
clause and m is some positive integer, then our algorithm finds a variant of 
every non-reduced C with rn or less literals in the subsume-equivalence class 
of D. 

Algorithm 14.2 (Inverse Reduction Algorithm) 
I n p u t :  A reduced clause D and an integer m. 
O u t p u t :  Variants of every C such that  D ~ C and ICI < m. 

1. / = 0 .  
2. If IDI _< m, then output  D. 
3. While I < (m - I D ] )  do 

1. Set l to l + 1. 
2. For every sequence L 1 , . . . ,  Ll such that  each Li E D, but the Li's 

are not necessarily distinct: 
Find every (up to variants) set E = { M 1 , . . . , M  i} such that  
(1) every Mi contains at least one new variable not in D, and 
(2) if X l , . . . , x n  are all those new variables, then there is a 
0 = {zl/ t l , . . . ,x ,~/t ,~},  such that  MiO = Li for i = 1 , . . . , I .  
For every such E,  output  D W E. 

E x a m p l e  14.16 Let D = {P(x,x)} .  For m = 2, literals M1 that  can be 
added to D are P(x, y), _P(y, x), P(y, y), or P(y, z). For m = 3, some of the 
possible Ml'S and M2's and corresponding 0's are: 

M---7-- 

P(*, ~) 
P(~, y) 
P(~, y) 
P (y, Y_.__.__~) 

'M2 0 
P(v, z) 
P(x,z) 
P(z, w) 
P(v, ~) 
P(z,~) 

{v/~,z/~) 
{v/~,z/~) 
{v/x,z/~,~/~} 
{v/~) 
{v/~,~/~} 

<1 

The algorithm does not find every non-reduced equivalent clause with rn 
or less literals, but it does find a variant of every such clause. For instance, 
given D = P(x) +- Q(x, x), it finds P(x) +-- Q(x, x), Q(x, y), but not P(z) +- 
Q(z, z), Q(z, ~). 
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14.6 Greatest Specializations 

We will now investigate the lattice-structure of a clausal language C ordered 
by the subsumption relation ~-. In this section we will prove that  every finite 
set S of clauses has a greatest specialization under subsumption (GSS), in the 
next section we show that  it also has a least generalization under subsumption 
(LGS). This holds both for clausal languages C, and for Horn languages 7/. 
It  is straightforward to show that  the GSS of some finite set S of clauses in 
C is s imply the union of all clauses in S after they are standardized apart:  

Theorem 14.17 (Existence  of  GSS in C) Let C be a clausal language. 
Then for every finite non-empty S C_ C, there exists a GSS of S in C. 

P r o o f  Suppose S = { D 1 , . . . ,  D~ } C_ C. Without  loss of generality, we assume 
the clauses in S are standardized apart .  Let D = D1U...UDn, then Di __ D, 
for every 1 < i < n. Now let C E C be such that  Di _ C, for every 1 < i < n. 
Then for every 1 < i < n, there is a 01 such that  DiOi C C, and 0i only acts on 
variables in Di. If  we let 0 = 01U.. .U0,~,  then DO = D101 U...UD~O~ C_ C. 
Hence D __ C, so D is a GSS of S in C. [] 

Proving the existence of a GSS of every finite set of Horn clauses in 7t 
requires a little more work, but here also the result is positive. For example, 
D = P(a) +-- P(f(a)) ,Q(y)  is a GSS of D1 = P(x) +-- P( f (x))  and D2 = 
P(a) e-- Q(y). Note that  D can be obtained by applying cr = {x/a} (the mgu 
for the heads of D1 and D2) to D1UD2, the GSS of D1 and D2 in C. This idea 
will be used in the following proof. Here we assume 7/ contains an artificial 
bo t tom element _1_, such that  C _ _l_ for every C C 7/, and I ~z C for every 
C # _1_. Note that  _1_ is not subsume-equivalent with other tautologies. Two 
tautologies need not be subsume-equivalent either. 

T h e o r e m  14.18 ( E x i s t e n c e  o f  GSS in 7{) Let 7/ be a Horn language, 
with an additional bottom element • E 7{. Then for every finite non-empty 
S C 7/, there exists a GSS of S in 7{. 

P r o o f  Suppose S = { D 1 , . . . ,  Dn} C_ 7/. Without  loss of generality we 
assume the clauses in S are standardized apart ,  D 1 , . . . ,  Dk are the definite 
program clauses in S, and Dk+l, . . . ,  D~ are the definite goals in S. If k = 0 
(i.e., if S only contains goals), then it is easy to show that  D1U . . .  U D~ is 
a GSS of S in 7/. If  k _> 1 and the set { D I + , . . . , D  +} (the set of heads of 
clauses in S), is not unifiable, then _1_ is a GSS of S in 7{. Otherwise, let o- be 
an mgu for {D + + , . . . , D  k }, and let D = D l o ' U . . . U D ~ ( r  (note that  actually 
D i c r =  Di for k + 1 < i < n, since the clauses in S are standardized apart) .  
Since D has exactly one literal in its head, it is a definite program clause. 
Furthermore,  we have Di _ D for every 1 < i < n, since Dic~ _C D. 

To show that  D is a GSS of S in 7/, suppose C E 7/ is some clause such 
that  Di ~- C for every 1 < i < n. For every 1 < i < n, let Oi be such that  
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D#~i C_ C, and 0i only acts on variables in Di. Let 0 = 01 tO . . .  tO 0,~. For 
every 1 < i < k, D+O . . . . .  D+0~ C +, so 0 is a unifier for {D +, ,D  k+}. 
But 0. is an mgu for this set, so there is a 7 such that  0 = 0" 7. Now D7 = 
Dlo7  U . . .  tO D,~0. 7 = D10 tO . . .  12 D,~O = D101 U . . .  U D,O,~ C C. Hence 
D >__ C, so D is a GSS of S in 7-/. See Figure 14.1_ for illustration of the case 
where n = 2. D 

Di D~ 

c 

Figure  14.1: D is a GSS of D1 and D2 

14.7 Least General izat ions  

The previous section easily established the existence of the greatest special- 
ization under subsumption. In this section we want to prove the existence 
of the least generalization, which will be a little harder. We start  with an 
example of least generalization under subsumption. 

E x a m p l e  14.19 Suppose we are given the following two ground clauses as 
positive examples: 

Tiger(a) +-- Mammal (a) ,  Striped(a)~ Orange(a) 
Tiger(b) <--- Mammal(b) ,  Striped(b), Yellow(b) 

These two clauses can be generalized to the following clause, which is their 
LGS: 

Tiger(x)  +- Mammal (x ) ,  Striped(x) 
<3 

Plotkin was the first to establish the result that  any finite set of clauses 
has an LGS. We will here give a proof which differs somewhat from Plotkin's,  
using the ~_a-order. We use the LGA as a bridge to find the LGS. 

Definit ion 14.20 Let C and D be clauses. A selection of C and D is a pair 
of compatible literals (L, M), such that  L E C, M E D. O 

E x a m p l e  14.21 C = {P(x) ,  P(y) ,-~P(a)} and D = {Q(b), P(a),-~P(b)} 
have three selections: (P(x) ,  P(a)),  (P(y),  P(a)),  and (-~P(a),-~P(b)). <~ 
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Given two clauses C and D, there is only a finite number of selections. 
Suppose C and D have a total  of n selections. Then we can order these in a 
sequence 

(L~, M~), (L2, M e ) , . . . ,  (L~, M,~), 

and construct two compatible ordered clauses C ~ = L1 V . . .  V L~ and D ~ = 
M1 V . . .  V M~. We will show that  an LGA of C ~ and D ~ is also an LGS of C 
and D. 

Example 14.22 Let 

C = {L1,L2,La},  for L1 = P(f(a) , f (x) ) ,  L2 = P(f(x),g(a)),  L3 = Q(a).  
D = {M1, M2}, for M~ = P(f(b),x)),  M2 = P(y,g(b)). 

The set of all selections of C and D can be ordered in the following sequence: 

S -- (L1, M1), (L1, M2), (L2, M1), (L2, M2). 

From this sequence we can construct the following clauses: 

C ~ = L1 V L1 V L~ V L2. 
D'=MIVM2VM~VM~. 

Note that  the order and duplication of literals is not ignored in the atomic 
order. The clauses C ~ and D ~ are compatible, and have the following LGA: 

E' = P( f (z l ) ,  z2) V P(z3, z4) V P(f(zh), zs) V P(z7, g(zl)).  

This LGA can be shown to be also an LGS of C and D. Tha t  is, if we turn to 
set notat ion we have E = {P(f (z l ) ,  z2), P(z3, z4), P(f(zh), ze), P(zT,y(zl))}, 
which can be reduced to {P(f (z l ) ,  z;),P(zr, y(z,))}. This is an LGS of C 
and D. Note that  the predicate Q does not appear in the LGA or LGS. <] 

We will now prove that  the approach of the previous example always 
yields an LGS of C and D. 

D e f i n i t i o n  14.23 Let C and D be clauses, and S = (L1, M 1 ) , . . . ,  (Ln, M~) 
a sequence of (not necessarily all) selections of C and D. Then we let Cs = 
L1 V . . .  V L,~, Ds = M1 V . . .  V Mn, and we use LGA(Cs,Ds)  to denote the 
least generalization of {Cs, Ds} under __a. 

From the last example,  it can easily be seen that  if S ~ is a sequence of 
selections obtained by reordering a sequence S, or by adding or deleting 
duplicate selections to S, then the LGA(Cs, Ds) obtained from S, and the 
LGA(Cs,, Ds,) obtained from S ~ will be subsume-equivalent. Thus we have 
the following lemma: 

L e m m a  14.24 Let C and D be clauses, and S and S I be sequences of (not 
necessarily all) selections of C and D, such that S and S ~ contain exactly the 
same selections. Then LGA(Cs, Ds) ~ LGA(Cs,, Ds,). 
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Furthermore, we also have the following lemmas: 

L e m m a  14.25 Let C and D be clauses, and S and S' be sequences of (not 
necessarily all) selections of C and D, such that every selection in S' also 
occurs in S. Then LGA(Cs,,  Ds,) >_ LGA(Cs,  Ds). 

P r o o f  Let T '  be obtained by deleting all duplicate selections from S' ,  and 
T be a permutat ion of S such that  T '  is a prefix of T. So for some m _< n, 
we have 

CT, = L1 V . . .  V L,,~, DT, = M1 V . . . V  Mm. 
CT = LI V . . .  V Lm V . . .  V Ln, DT = M~ V . . .  v Mm v . . .  V M,~. 

Let LGA(CT, DT) = N1 V ...  V Nm V ... V Nn. Then it follows from The- 
orem 14.3 tha t  LGA(CT, ,DT, )  = N1 V . . .  V N~,  so LGA(CT, ,DT, )  >_ 
LGA(CT,Dr) ,  because (N1 V . . .  V N m ) e  C_ N1 V .. .  V Nm V . . .  V N,~. 
The selections occuring in S are the same as those in T, and the selec- 
tions in S ' are the same as those in T ' ,  so by the previous l emma we 
have LGA(Cs,  Ds) ~ LGA(CT, DT) and LGA(Cs,,  Ds,) ~ LGA(CT,, DT,). 
Hence LGA(Cs,,  Ds,)  h LGA(Cs,  Ds). [] 

L e m m a  14.26 Let C and D be clauses, and S a sequence of (not necessarily 
all) selections of C and D. Then LGA(Cs,  Ds) ~ C and LGA(Cs,  Ds) ~ D. 

P r o o f  Let E =  LGA(Cs, Ds). Then E h a  Cs, so E h Cs. But Cs h C, 
since the literals in Cs form a subset of C. Hence E h C, by the transit ivity 
of >__. Similarly E h D. [] 

Now we are able to establish the existence of a least generalization under 
subsumption: 

T h e o r e m  14.27 ( E x i s t e n c e  o f  L G S  in C) Let C be a clausal language. 
Let C ,D E C be clauses, and S be a sequence of all selections of C and 
D. Then an LGA(Cs,  Ds) is an LGS of {C, D}. 

P r o o f  Let E = LGA(Cs ,Ds) .  By L e m m a ! 4 . 2 6 ,  E h  C a n d  E h D. Let 
F = { N 1 , . . . , N , ~ }  be a clause such that  F h C and F ~- D. In order to 
establish that  E is an LGS of {C, D}, we need to prove F h E. 

Since F ~ C and F ~ D, there are 01 and 02, and L I , . . . , L m  E C and 
M 1 , . . . , M ~  E D, such that  Ni01 = Li and Ni02 = Mi, for every 1 < i < m. 
Then S ~ = (L1, M 1 ) , . . . ,  (L,~, M ,  0 is a sequence of selections of C and D. 
Let Cs, = L1 V . . . V L m ,  Ds~ = M1 V . . . V M m ,  let G =  A'I V . . . V K m  be 
an LGA(Cs,,  Ds,) ,  and ~rl and ~2 be such that  G~rl = Cs, and Gcr2 = Ds,. 
Since (N1 V . . .  V Nm)O1 = Cs' and (N1 V . . .  V Nm)02 = CO', there must be 
a ~, such that  (N1 V . . .  V N , 0 7  = K1 V . . .  V Kin. Thus we have the situation 
given in Figure 14.2. 
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N1 V . V N m  

~ 1  (resp. 02) 
x 

G = K 1  V . . . V K ~  or1 (resp, a 2 )  CsJ  = L1  V . . .  V L ~  
(resp. Ds~ = MI V .. .  V M m )  

Figure  14.2: Illustration of the proof 
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( N 1 V . . .  VN,~)7 = G, so we have F ~- G. Since every selection in S ~ also 
occurs in S, we have G • E from Lemma 14.25. Hence F ~ E. [] 

Thus the LGS of any two clauses exists, and can be computed by the 
method explained in Example !4.22. This method is made explicit in the 
following algorithm: 

A l g o r i t h m  14.3 ( L G S  A l g o r i t h m )  
I n p u t :  Two clauses C and D. 
O u t p u t :  An LGS of {C, D}. 

1. Let (L1, M1),. . . ,  (n,, M~) be a sequence of all selections of C and D. 
2. Obtain LGS(V(L1,. . . ,  L,), V(M1, . . . ,  M~)) = V(N1, . . . ,  Nn) from the 

Anti-Unification Algorithm. 
3. Return {N1, . . . ,Nn}.  

The LGS of any finite set of clauses can be computed by repeatedly apply- 
ing this algorithm. Notice that if two clauses C and D have no selections--for 
instance, when they have no predicates in common-- then  their LGS is the 
empty clause D. Thus [] can play the role of top element here, which means 
that  we do not need to add an artificial top element 7 to the language C. 

Note that  if all literals in C and D have the same sign and predicate 
symbol, then C and D have ]C] �9 IDI selections. Accordingly, the LGS of C 
and D that  can be obtained from these selections may also contain [C I �9 ID[ 
distinct literals. Thus the number of literals in an LGS may increase quite 
rapidly. 

Since we have now proved the existence of a GSS and LGS of every two 
clauses, it follows that a clausal language ordered by subsumption has a 
lattice-structure (we do not need an artificial bot tom element • for this). 

C o r o l l a r y  14.28 Let C be a clausal language. Then (C, ~-) is a lattice. 

Since there is at most one selection possible from the heads of a set of 
Horn clauses, the LGS of a set of Horn clauses has at most one positive 
literal, and hence is itself also a Horn clause. Therefore (7/, ~)  is a lattice. 
Here we need the bot tom element _L to guarantee the existence of a GSS of 
two definite program clauses with different predicate symbols in their head. 
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C o r o l l a r y  14.29 Let 7t be a Horn language, with an additional bottom ele- 
ment -1_ E ~ .  Then (~,  ~)  is a lattice. 

14.8 Covers in the  Subsume Order 

The least generalization and the greatest specialization respectively concern 
generalizing or specializing a set of clauses to a single clause�9 In this section 
we will turn to generalizing and specializing single clauses, by investigating 
covers of clauses in the subsumption order. 

Here we will show that there exist clauses which have no complete set 
of upward covers in the subsumption order. In fact, there are clauses which 
have no upward covers at all. Dually, for the downward cover we will give 
a clause which has no finite complete set of downward covers. Whether all 
clauses have a (sometimes infinite) complete set of downward covers remains 
an open question. 

1 4 . 8 . 1  U p w a r d  C o v e r s  

In this section we will prove that the clause C = {P(x l ,  Xl)} has no upward 
covers. For this we use an infinite chain of clauses C2 >- C3 >- . . .  >- C~ >- 
Cn+l >- . . .  ;"- C, defined as: 

C~ = { P ( x i , x j )  I i # j and i < i , j  < n} ,n  >_ 2. 

So, for instance: 

C3 = IF(x1, x2), P(x2, xl) ,  P(x l ,  x3), P(x3, xl),  P(x2, xa), P(x3, x2)} 

Concerning these clauses, we can prove the following: 

L e m m a  14.30 For all n >_ 2, Cn is reduced. 

P r o o f  Suppose that for some n >_ 2, Cn is not reduced. Then there is a 
substitution 0 such that  C,~O C C,~. Thus there are two literals P(xi,  xj) r 
P(xk,  Xm) in C,~, which are both mapped by 0 to the same literal P(x , ,  xt) E 
C,.  Since x~ r xk or xj r xm, P(xi ,  x~) or P(xj ,x ,~)  is in C~. But then 
P(xi ,  xk)O = P(xs,  xs) or P(xj ,  Xm)O = P(xt ,  xt) is in CnO and hence also in 
C,~. This is impossible. [] 

Furthermore, each Cn properly subsumes C~+l and C: 

L e m m a  14.31 C~ >- C3 >- . . . ~- Cn ~ .. . ~- C. 
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P r o o f  First we prove that  Cn ~- C, for every n ~ 2. Since Cn{x2/x l , . . . ,  
x,~/xi} = C, we have CA ___ C. On the other hand, i f C  _ C~, then Cn would 
contain an instance of P(xl,  xl), which is impossible, so C ~ C~. 

Secondly we show that  for every n > 2, C,~ ~- Cn+l. Since C~ C C,~+1, 
we have C,~ ~ Cn+l. On the other hand, C~ is a proper subset of C~+1 and 
by the previous l emma C~+I is reduced, so C,~+I ~ C,~. [] 

Using these properties of the clauses C2, C3,..., we can now establish that  
C has no upward cover in the subsumption order. 

P r o p o s i t i o n  14.32 Let C be a clausal language containing a binary predicate 
symbol P. Then C = {P(xl,  Xl)} ha8 no upward cover in (C, ~) .  

P r o o f  Suppose some clause D E C is an upward cover of C. Then D ~ C, 
so there is a 0 such that  DO C C. If  D contains negative literals, or another 
predicate than P,  or a function symbol or constant, then DO would contain 
these too, which is impossible since DO C C. Also, D cannot contain a literal 
of the form P(x, x), for then we would have C ,-- D. 

Hence D can only contain literals of the form P(x, y), where x # y. Let 
n be the number  of distinct variables in D. Then there is a variant D ~ of D, 
such that  D I C Cn, hence D ~- C,~. But then D ~ C,~ >- Cn+l >- C, which 
contradicts the assumption that  D is an upward cover of C. Therefore such 
an upward cover D does not exist. [] 

From this result, we know that  C has no complete set of upward covers. 

14.8 .2  D o w n w a r d  Covers  

Now we turn to downward covers. It is not known whether a clause always 
has a complete set of downward covers. However, we can show that  there is 
a clause C which has no finite complete set of downward covers. So if this 
particular C does have a complete set of downward covers, this set must  be 
infinite. This result is sufficient to prove in Chapter  17 the negative result that  
an ideal downward refinement operator does not exist for the subsumption 
order. We use the following clauses (where all x~ and yj are distinct): 

C = {P(x l ,  x2), P(x2, xl)} 
D, = {P(yl, y2), P(y2, y3) , . . . ,  P(y,-1,  y~), P(y~, yl)}, n _> 2 
C~ = CU D~,n >__ 3 

We will show that  this C has no finite complete set of downward covers, 
using a similar technique as in the previous subsection. The clauses D,~ have 
a special form, called a cycle: 

D e f i n i t i o n  14.33 Let C be a clause. A cycle of length n >_ 2 in C is a set 
of literals in C which can be arranged in a sequence of the form 
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P(w, P(w, us),..., P(yn, 

where y , , . . . ,  y,~ are distinct variables. A clause of the form P(Yl,  Yl) is called 
a cycle of length 1. <5 

Notice that  a cycle can begin with any variable: P(y2, Ya), P(ya, Y4) , . . . ,  
P(Y,~, Yl), P(Yl, Y2) is also a cycle. The following results give properties of the 
clauses C, D ,  and Cn listed above. 

L e m m a  14.34 For all n > 2, if~ is a substitution which only maps variables 
to variables, and which unifies at least two variables in Dn, then DnO contains 
a cycle of length less than n. 

P r o o f  Let i and j be such that l < i < j < n ,  y i 0 = y j 0 ,  and there are no 
k ,m such that  i < k < m < j ,  and ykt~ = yraO. Then yiO, y i+lO, . . . , y j -10  
are distinct variables, and P(y~, yi+l)O, P(yi+l ,  yi+2)0, . . . ,  P(y j - I ,  yj)O is a 
cycle of length j - i < n, which is contained in D,~O. E1 

L e m m a  14.35 For all n >> 2, D,~ is reduced. 

P r o o f  Suppose that  for some n >_ 2, Dn is not reduced. Then there is a 
substitution 0 such that Dn~ is a proper subset of D~. This 0 can only map 
variables to variables, and must unify at least two variables. Then by the 
previous Iemma, DnO contains a cycle of length less than n. But then D~ 
must also contain this cycle, which is impossible. [] 

L e m m a  14.36 [f n = m .  k for some k > 1, then Dn >- Din. 

P r o o f  Let Yl,--.,Y.~ be the m variables in Dry, and x l , . . . ,x**  be the n 
variables in D~. Define 0 in the following way: if for some p >__ 0 and 1 _< j _< m 
we have i = m -p + j ,  then xiE) = yj. Then P(x,~, xl)0 = P(y,~, Yl), and in 
general Dn ~ = Dra, hence Dn > D,~. 

On the other hand, if for some o', D,~o" C D,~, then this a can only map 
variables to variables, and must unify at least two variables in D,~, because 
no variant of Dm is a subset of Dn. Then by Lemma 14.34 Dmo', and hence 
also D~, must contain a cycle of length less than m. This is impossible, so 
Dm ~ Dn. [] 

L e m m a  14.37 For any n = 3 k (k > 1), we have that Cn is reduced. 

P r o o f  Let n = 3 k , f o r s o m e  k > 1. Suppose Cn = C t 0 D n  is not reduced, 
then there is a ~) such that C~,g is a proper subset of C,~. Since C and D,~ 
are reduced, ~ must map a literal in C to a literal in Dn, or vice versa. The 
former is impossible, since {P(yi, Yi+l), P(Yi+I, Yi)} ~ Dn. 
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Now suppose 0 maps some Iiteral in D,~ to a literal in C. Without loss 
of generality, we assume P(yl ,  y~)O = P(x l ,  x~). Then y20 = x2, so P(p2, Ya) 
must also be mapped to a literal in C, for otherwise P(Y2, ya)O = P(x2, t) q~ 
C,~. But then yaO = a:1, so P(Ya, Y4) must also be mapped to a literal in C, 
etc. Hence if 0 maps some literal in D~ to a literal in C, it should map every 
literal in D ,  to a literal in C. That  is, in this case we have D~O C_ C. 

Now D~O C_ C can only hold when n is even, for otherwise we would have 
that P(y~, Yl) would be mapped by 0 to P(x l ,  xl), which is not in DnO. But 
n cannot be even, since 3 ~ is odd. [] 

L e m m a  14.38 For any n = 3 k (k > 1), we have that C ~ Cn. 

P r o o f  Since C C C~, we have C ~ Cn. On the other hand, Cn is reduced 
and C is a proper subset of Cn, so Cn ~ C. [] 

Now we let 

Ek = C~, where n = 3 k, k > 1. 

It follows from Lemma 14.36 that Dak+l >- D3 k , hence Ek+l = Ca~+~ >- Cak = 
Ek, for every k _> 1. Then we have a chain C ~- . . .  >- Ek+l ~- Ek >- . . .  
E2 >-- El .  To prove that C has no finite complete set of downward covers, we 
now need to show that there is no downward cover of C "between" C and 
this Ek-chain. 

L e m m a  14 .39  
every k > 1. 

There is no downward cover E of C, such that E ~ Ek, for 

P r o o f  Suppose such an E does exist. Consider a k such that Ek contains 
more distinct variables than E. Since C >- E >- Ek, E must contain a cycle 
of length 2, as image of C. Let EO C_ Ek, then EO contains a cycle of length 
2 in Ek. This cycle must be C. That  implies EO = C U D'k, where D~ is a 
subset of the cycle Dk. 

Since Ek contains more variables than E, we know there is a variable in 
Ek which is not in EO. Without  loss of generality we can assume Yl is such a 
variable. This means that P(yl ,  Y2) and P(y~, yl) are not in D; .  Now define 
o" as yio = X 1 i f /  is odd, and yi~r = x~ i f i  is even. Then EOa = C. But then 
we have E ~ C, which contradicts the assumption that E is a downward 
cover of C. [] 

P r o p o s i t i o n  14.40 Let C be a clausal language containing a binary predicate 
symbol P.  Then C = {P(x l ,x2) ,P(x2 ,  Xl)} has no finite complete set of 
downward covers in (C, ~-}. 
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P r o o f  Suppose C does have a finite complete set S = {F1 , . . . ,  Fro} of down- 
ward covers. Consider the Ek-chain mentioned above. Since S is complete, 
for every Ei there is an Fj such that  C ~- Fj K Ei. There are infinitely many 
Ei, and only finitely many Fj. Thus there must be a particular Fj and an 
infinite set T = { E i l , . . . , E i , , . . . } ,  such that Fj >'- Ei., for every Ei. E T. 
Now for every Ek (k _>. 1), we can find an Ei .  E T such that  Ei, ~ Ek. But 
then Fj _ Ek for every k >_ 1, which contradicts the previous lemma. [] 

The negative results of this section imply that the existence of finite chains 
of upward or downward covers cannot be generalized from the subsumption 
order on atoms to the subsumption order on general clauses. 

These results can be extended to the case where C only contains unary 
predicate symbols and a binary function symbol f .  For then we can replace 
every P(x, y) by Q(f(x,y)) in C, D~, Cn, and Ek, and repeat the same 
argument as above to show that  {Q(f(xl, x2)), Q(f(x~, xl)} has no finite 
complete set of downward covers in (C, ~).  The same holds for the negative 
result on upward covers. 

Moreover, the negative results of this section also hold when we restrict to 
Horn clauses. We can transform the clauses and chains we used into definite 
goals, by turning all positive literals into negative literals. The above proofs 
are not affected by this change. Furthermore, when we add some ground atom 
A as head to each of those goals, we obtain definite program clauses for which 
the negative results also hold. Thus A +- P(xl, xl) has no upward covers in 
(7-t, ~_}, and A +- P (x l ,  x2), .P(x=, xl) has no finite complete set of downward 
covers in (7/, ~}. 

14.9 A Complex i ty  Measure for Clauses 

If a language contains at least one function symbol of arity _> 1, the set of 
atoms in this language is infinite, even if we identify variants. Thus to limit 
the search space, we need a complexity measure, for instance size as defined 
by Reynolds (see the last chapter). By bounding the size of atoms to some 
number, the search space becomes finite and thus can be searched completely. 

The set of clauses in a language with at least one predicate symbol of arity 
> 1 is of course Mso infinite, and in this case even the subsume-equivalence 
class of a clause contains an infinite number of clauses which are not variants. 
So also in this case, we need a complexity measure to restrict the search space 
of clauses to a finite set. 

1 4 . 9 . 1  Size a s  D e f i n e d  b y  R e y n o l d s  

As we have seen earlier~ Reynolds [Rey70] defined the size of an atom A in 
the following way: 
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size(A) = the number  of symbol occurrences in A 
- the number  of distinct variables in A. 

Shapiro adapted this definition in his work on model inference [Sha81b]. How- 
ever, some questions arise with respect to this measure which Shapiro did not 
observe, and which renders his refinement operator Po, used for searching a 
clausal language ordered by subsumption, incomplete [LN93, Nib93]. We will 
not discuss his refinement operator,  but only mention some of the difficulties 
which appear  in the application of size to clauses. 

In the simple case of a toms A and B, we have shown that  if A0 = B, then 
size(A) < size(B).  Furthermore, if also B e  = A, then we have size(A) = 
size(B).  Hence ifAt~ = B and size(A) < size(B), then A >-- B. Thus we can 
use size to help determine whether A properly subsumes B. 

However, when applied to clauses, size no longer indicates whether some 
clause C properly subsumes a clause D. For example, let 

C1 = {P(x,  y), P(y, x)}, C2 -- {P(x ,  x)}, C3 = {P(a ,a)}  

Then C1 _ C2 and C2 __ C3. But on the other hand, size(C1) = 6 - 2 = 4, 
size(C2) = 3 - 1 = 2, and size(C3) = 3 - 0 = 3. There appears to be no 
coherent relation between subsumption among clauses, and the respective 
sizes of those clauses. A second difficulty is that  subsume-equivalent clauses 
need not have the same size. For example, D = {P(a, a), P(x ,  x)} ,.~ C3, but 
D h a s s i z e  6 - 1 - - 5 .  

14.9.2 A N e w  Complex i ty  Measure  

To a certain extent, Reynolds's size of an a tom reflects the complexity of an 
atom. But it is only a number which does not really tell us very much about  
the internal structure of the atom. When applied to clauses, it becomes even 
less informative. 

The reason why size does not work for clauses, is that  the size of a clause 
is influenced by the number  of literals in the clauses. If  a clause C subsumes 
a clause D, then C may  still have larger size than D just  because C contains 
more literals. On the other hand~ if C C D, then size(C) <_ size(D). The 
number  of literals in a clause C is an important  structural property of C. 
Accordingly, it should be taken into account by a complexity measure on 
clauses, independently of the sizes of the particular literals in C. 

This induces a new complexity measure newsize of a clause C, as a pair of 
two different coordinates: the first coordinate is the size of the biggest literal 
in C, while the second coordinate is the number  of literals in C. Thus we 
define: 

D e f i n i t i o n  14.41 Let C be a clause. Then 

newsize(C) = (maxsize(C),  ICI), 
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where maxsize(C) is the maximum of {size(L) I L E C}, and IC[ is the 
number of literals in C, 

Note that  this definition ignores the negation connective: both {P(a)} and 
{-~P(a)} have newsize (2, 1). 

E x a m p l e  14.42 Let C = {-,P(a, x), Q(f(y)), P(f(x) ,  f(a))}.  Here we have 
size(-~P(a,x)) = 2, size(Q(f(y))) = 2, and size(P(f(x) , f (a)))  = 4, so 
maxsize(C) = 4, and newsize(C) = (4, 3). <~ 

It is easy to show that  if C >_. D, then maxsize(C) <_" maxsize(D). Hence 
if C ,-~ D, then maxsize(C) = maxsize(D). However, other than in the 
case of size applied to atoms, a clause C may properly subsume D while 
still maxsize(C) = maxsize(D). For example, let C = {P(x),Q(y)} and 
D = {P(z), Q(z)}. Then C >- D, but m a . s i z e ( C )  = 1 = maxsize(D). 

It is often important  to limit the number of clauses in the search space. 
Our new complexity measure newsize can be used to achieve this. That  is, 
given numbers k and m, the set of clauses bounded by a newsize of (k, rn) is 
finite when we identify variants. 

D e f i n i t i o n  14.43 Let C be a clause, and (k, m) be a pair of natural num- 
bers. We say C is bounded by (k, m) if maxsize(C) <_ k and [C[ _< m. 

P r o p o s i t i o n  14.44 Let g be a clausal language with finitely many con- 
stants, function and predicate symbols. Then for given k ,m  > O, the set 
{C E C [ C is bounded by (k, m)} is finite up to variants. 

We will only sketch the idea behind this. Let C be a clausal language with 
finitely many constants, function and predicate symbols, and suppose we are 
given (k, m). It is not very difficult to see that the set of atoms with size <_ k 
is finite up to variants~ Let v be the max imumof  the set {r~ I there is an atom 
A 6 g with size < k that  contains n distinct variables}. Because a clause 
bounded by (k, m) can contain at most m distinct literals, each of which can 
contain at most v distinct variables, a clause bounded by (k, m) can contain 
at most my distinct variables. Let us fix distinct variables x l , . . . ,  Xmv. Now 
let tC be the finite set of all atoms of size < k that can be constructed from 
the predicate symbols, function symbols and constants in g, and variables 
x l , . . . ,  xm~. Since each clause that is bounded by (k, m) must be (a variant 
of) a subset of/C, there are only finitely many such clauses, up to variants. 

1 4 . 1 0  Summary 
This chapter discussed the subsumption order on a clausal language, which 
is used very often in ILP. We first defined the atomic order >__a, which treats 
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clauses as atoms. It can be used as a bridge between the subsumption or- 
der for atoms and the subsumption order for clauses. Subsumption between 
clauses is a decidable relation. Equivalence classes under subsumption can be 
represented by a single reduced clause. Reduction can be undone by inverse 
reduction. The main properties of the subsumption order are the following: 

�9 Every finite set of clauses has a least generalization (LGS) and greatest 
specialization (GSS) under subsumption in C. Hence (C, ~ / i s  a lattice. 

�9 Every finite set of Horn clauses has a least generalization (LGS) and 
greatest specialization (GSS) under subsumption in 7/. Hence (7/, h} is 
a lattice. 

�9 Some clauses, such as {P(x l ,  xl)},  have no upward covers. 
Some clauses, such as {P(xl, x2), P(x2, xl)}, have no finite complete 
set of downward covers. 

Finally, since size is not very well-suited as a complexity measure on clauses, 
we defined newsize. 



List of Symbols 

S e t s  

E element 
C subset 
C proper subset 
_D superset 
D proper superset 
U union 
n intersection 
\ set difference 
A symmetric difference 

empty set 
IS[ cardinality of set S 
2 s power set (set of all subsets) of set S 
S • T Cartesian product of sets S and T 
S ~ n-fold Cartesian product of set S 
N the set of natural numbers 
Q the set of rational numbers 
R the set of real numbers 

Log ic  

A conjunction (and) 
V disjunction (or) 
-7 negation 
-+ implication 
+- implication (in program clauses) 

equivalence 
V universal quantifier 
3 existential quantifier 
T true 
F false 
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6 

]v/ii 
Fn 
comp(II) 
br 

be 
~-zr 
[-~d 
I-it 
t-id 
~-sr 
~-sd 
b ~ f  

logical implication 
logical equivalence 
empty substitution 
set of negations of formulas in set S 
least Herbrand model of definite program rI 
SLD finite failure set of definite program II 
completion of normal program H 
(unconstrained) derivation 
(unconstrained) deduction 
linear derivation 
linear deduction 
input derivation 
input deduction 
SLD-derivation 
SLD-deduction 
SLDNF-resolution 
computation rule 

LIST OF SYMBOLS 

Languages and quasl-orders 
A 
7/ 
C 

C ~ e Z U S / Z ~  

Ch 

Co 
do 
7% 

S 
Cpos 
cneg 

C + 
C -  
T 
• 
I-1 
> 

(s, >_> 
A r n B  
A U B  

e ~  

set of all atoms in a language 
Horn language 
clausal language 
C bounded by newsize 
hypothesis language in model inference 
observational language in model inference 
part of Co that is true under interpretation [ 
set of all reduced clauses in C 
7r bounded by newsize 
set of all theories from C 
clause consisting of all positive literals in clause C 
clause consisting of all negative literals in clause C 
head of program clause C 
body of program clause C 
top element in lattice 
bottom element in lattice 
empty clause 
arbitrary quasi-order 
set S quasi-ordered by > 
greatest lower bound of {A, B} 
least upper bound of {A, B} 
subsumption 
equivalence relation induced by quasi-order (for atoms: variants) 
subsume-equivalence 
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13 

~B 
~>13 

LIST OF SYMBOLS 

atomic order 
background knowledge 
relative subsumption 
relative implication 
generalized subsumption 
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Ref inemen t  o p e r a t o r s  

PA 
PL 

P~ 
P1 

su 
s~ 

downward refinement operator for atoms 
downward refinement operator under subsumption 
downward refinement operator for reduced clauses 
downward refinement operator under implication 
upward refinement operator for atoms 
upward refinement operator under subsumption 
upward refinement operator for reduced clauses 

PAC learning 

X[~] 
9c 

fM 
F['q 

P 
Dvc 

~b 
lrnin ( f  , R) 

set of all finite strings over alphabet E 
set of all strings of length at most n in domain X 
concept class 
projection of concept f on X [~] 
projection of concept class F on X [~] 
probability distribution 
Vapnik-Chervonenkis dimension 
confidence parameter 
error parameter 
rate of malicious or random classification noise 
upper bound on Zl 
size (shortest name) of concept f in representation _R 
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tautology, 12, 31, 45, 77 
term, 19 
term assignment, 22, 25 
term occurrence, 228 
term set, 268 
term-related clause, 339 
test set, 357 
theorem proving, ix, 58n 
theory, 166 
theory revision, 169n 
time complexity, 322, 326,328 

with background knowledge, 
334 

too strong (with respect to exam- 
ples), 167 

too weak (with respect to exam- 
ples), 167 

top clause, 94, 107 
top element (T), 226 
top-down approach to ILP, xii, 170, 

354, 356, 357 
TRACY, x, 357 
training set, 357 
transitive relation, 220 
true, 9, 29 
truth table, 8, 13 
truth value, 7, 9, 27, 29, 127, 153n 
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Turing machine, 326 
type, 358 
type 1 program (unfolding), 210 

preserves MH, 213 
type 2 program (unfolding), 210 

preserves equivalence, 213 

U-learning, 325n 
UDS specialization, xii, 209, 215, 

319 
uncountable set, 168 
undecidable, 56, see also decidable 

clausal implication, 88 
Horn clause implication, 125 
language bias shift problem, 

349 
logical implication, 56 
satisfiability of set of Horn clauses, 

125 
unfolding, xii, 197n, 208,210, 357 
unifiable, 63 
Unification Algorithm, 64, 227 

Unification Theorem, 65 
unifier, 63 
universal distribution, 338 
universal quantification, 39 
universal quantifier, 18, 23, 287 

interpretation of, 27 
unsatisflable, 12, 3i, 43, 45 
unsoundness 

of cut, 158 
of floundering, 142 
of PROLOG, 156 

upper bound, 221, 225 
upward cover, xii, 223 

complete set of, 224 
finite chain of, 239 
of atom, 234, 239, 240 
under implication, 277 
under subsumption, 257 
with background knowledge, 

281 
upward refinement operator, xii, 

300 
5.4,302 

5r, 316 
5u, 309 
complete, 300 
for finite set, 310 
for Horn clauses, 304 
ideal, 300 

does not exist, 304 
locally finite, 300 
proper, 300 

V-operator, 200, 201,205 
valid, 12, 31 
validation bias, 171,346 
Vapnik-Chervonenkis dimension, see 

VC dimension 
variable, 18 
variable assignment, 25, 28 
variable-depth, 336 
variant, 62 
VC dimension, 325,328 

W-operator, 203, 205, 349, 354 
weak confirmation, 172 
well-formed formula, xi, 4, 20 
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