
Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science

Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1228

Springer
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Santa Clara
Singapore
Tokyo

Shan-Hwei Nienhuys-Cheng Ronald de Wolf

Foundations
of Inductive
Logic Programming

~ Springer

Series Editors
Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
J6rg Siekmann, University of Saarland, Saarbrticken, Germany

Authors

Shan-Hwei Nienhuys-Cheng
Ronald de Wolf
Erasmus University of Rotterdam, Department of Computer Science
P.O. Box 1738, 3000 DR Rotterdam,The Netherlands
E-mail: cheng @cs.few.eur.nl

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Nienhuys-Cheng, Shan-Hwei:
Foundations of inductive logic programming / S.-H. Nienhuys-Cheng
; R. de Wolf. - Berlin ; Heidelberg ; New York ; Barcelona ;
Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ;
Singapore ; Tokyo : Springer, 1997

(Lecture notes in computer science ; 1228 : Lecture notes in artificial
intelligence)
ISBN 3-540-62927-0 kart.

CR Subject Classification (1991): 1.2,F.4.1, D.1.6

ISBN 3-540-62927-0 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
coneerned~ specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1997
Printed in Germany

Typesetting: Camera ready by author
SPIN 10549682 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Foreword

One of the most interesting recent developments within the field of auto-
mated deduction is inductive logic programming, an area that combines logic
programming with machine learning. Within a short time this area has grown
to an impressive field, rich in spectacular applications and full of techniques
calling for new theoretical insights.

This is the first book that provides a systematic introduction to the theo-
retical foundations of this area. It is a most welcome addition to the literature
concerning learning, resolution, and logic programming.

The authors offer in this book a solid, scholarly presentation of the sub-
ject. By starting their presentation with a self-contained account of the res-
olution method and of the foundations of logic programming they enable
the reader to place the theory of inductive logic programming in the right
historical and mathematical perspective. By presenting in detail the theoret-
ical aspects of all components of inductive logic programming they make it
clear that this field has grown into an important area of theoretical computer
science.

The presentation given by the authors also allows us to reevaluate the
role of some, until now, isolated results in the field of resolution and yields
an interesting novel framework that sheds new light on the use of first-order
logic in computer science.

I would like to take this opportunity to congratulate the authors on the
outcome of their work. I am sure this book will have an impact on the future
of inductive logic programming.

March 1997
Krzysztof R. Apt

CWI and University of Amsterdam
The Netherlands

Content s

A b o u t t h e B o o k •

I Logic

1

2

3

1

Propositional Logic 3
1.1 I n t r o d u c t i o n . 3

1.2 S y n t a x . 4

1.3 S e m a n t i c s . 5

1.3.1 I n f o r m a l l y . 5

1.3.2 I n t e r p r e t a t i o n s . 7

1.3.3 M o d e l s . 9

1.4 C o n v e n t i o n s to S i m p l i f y N o t a t i o n 15

1.5 S u m m a r y . 15

F i r s t - O r d e r Logic
2.1

2.2

2.3

2 .4

2.5

1 7

I n t r o d u c t i o n . 17

S y n t a x . 18

S e m a n t i c s . 22

2.3.1 I n f o r m a l l y . 22

2 .3 .2 I n t e r p r e t a t i o n s . 24

2.3.3 M o d e l s . 29

C o n v e n t i o n s to Simplify" N o t a t i o n 33

S u m m a r y . 34

N o r m a l F o r m s a n d H e r b r a n d M o d e l s

3.1

3.2

3.3

3 .4

3.5

35
I n t r o d u c t i o n . 35

P r e n e x C o n j u n c t i v e N o r m a l F o r m 36

S k o l e m S t a n d a r d F o r m . 39

3.3.1 C l a u s e s a n d U n i v e r s a l Q u a n t i f i c a t i o n 39

3.3.2 S t a n d a r d F o r m . 40

H e r b r a n d M o d e l s . 45

R e s u l t s C o n c e r n i n g H e r b r a n d M o d e l s 48

vlll C O N T E N T S

3.6 S u m m a r y . 50

3.A Al te rna t ive Nota t ion for S tandard Forms 51

4 Reso lut ion
4.1

4.2

4.3

4.4

4.5

4.6

55
In t roduc t ion . 55

W h a t Is a P roof Procedure? 57

Subs t i tu t ion and Unif icat ion 59

4.3.1 Subs t i tu t ion . 59

4.3.2 Unif icat ion . 63

An Informal In t roduc t ion to Resolut ion 65

A Formal T r e a t m e n t of Resolut ion 68

S u m m a r y . 73

Subsumpt ion Theorem and Refutat ion Completeness
5.1

5.2

5.3

75

In t roduc t ion . 75

Deduct ions . 77

The Subsumpt ion T h e o r e m 78

5.3.1 The Subsumpt ion Theo rem for Ground 2 and C . . . 78

5.3.2 The Subsumpt ion Theo rem when C is Ground 79

5.3.8 The Subsumpt ion Theo rem (General Case) 82

5.4 Refu ta t ion Comple teness . 84

5.4.1 F rom the Subsumpt ion Theo rem to Refu ta t ion Com-

pleteness . 84

5.4.2 From Refu ta t ion Comple teness to the Subsumpt ion

T h e o r e m . 84

5.5 Proving Non-Clausa l Logical Impl ica t ion 87

5.6 How to Find a Deduct ion . 87

5.7 S u m m a r y . 90

5.A Al te rna t ive Definit ions of Resolut ion 91

Linear and Input Resolut ion
6.1

6.2

6.3

6.4

6.5

6.6

93
In t roduc t ion . 93

Linear Resolut ion . 94

Refu ta t ion Comple teness . 95

The Subsumpt ion Theo rem 98

The Incomple teness of Input Resolut ion 100

S u m m a r y . 103

SLD-Reso!ut ion
7.1

7.2

7.3

7.4

105
In t roduc t ion . 105

SLD-Reso lu t ion . 106

Soundness and Comple teness 108

7.3.1 Refu ta t ion Comple teness 108
7.3.2 The Subsumpt ion Theo rem 109

Definite P rograms and Least Herbrand Models 111

C O N T E N T S Ix

7.5 Correct Answers and Compu ted Answers 1!3

7.6 C o m p u t a t i o n Rules . 119

7.7 SLD-Trees . 122

7.8 Undec idabi l i ty . 125

7.9 S u m m a r y . 126

8 S L D N F - R e s o l u t i o n 127
8.1 In t roduc t ion . 127

8.2 Negat ion as Failure . 130

8.3 SLDNF-Trees for Normal Programs 133

8.4 F lounder ing , and How to Avoid It 141

8.5 The Comple t ion of a Normal Program 145

8.6 Soundness with Respect to the Comple t ion 150

8.7 Completeness . 153

8.8 Prolog . 154

8.8.1 Syntax . 154

8.8.2 Prolog and SLDNF-Trees 155

8.8.3 The Cut Operator . 157

8.9 S u m m a r y . 159

I I I n d u c t i v e L o g i c P r o g r a m m i n g 1 6 1

W h a t Is I n d u c t i v e L o g i c P r o g r a m m i n g ?

9.1

9.2

9.3

9.4

9.5

9.6

163
In t roduc t ion . 163

The Normal P rob lem Sett ing for ILP 165

The Nonmono ton ic Prob lem Sett ing 172

Abduc t i on . 173

A Brief History of the Field 174

S u m m a r y . 177

10 T h e

10.1

10.2

10.3

10.4

10.5

10.6

F r a m e w o r k fo r M o d e l I n f e r e n c e 179

In t roduc t ion . 179

Formal iz ing the Prob lem . 180

10.2.1 Enumera t ions and the Oracle 180

10.2.2 Complete Axiomat iza t ions and Admiss ib i l i ty 182

10.2.3 Formal S ta tement of the Prob lem 184

F ind ing a False Clause by Backtracing 186

In t roduc t ion to Ref inement Operators 191

The Model Inference Algor i thm 192

S u m m a r y . 195

X C O N T E N T S

11 Inverse R e s o l u t i o n 197
11.1 In t roduc t ion . 197

11.2 The V-Opera tor . 198

11.3 The W-Opera to r . 203

11.4 Mot iva t ion for S tudying General i ty Orders 205

11.5 S u m m a r y . 205

12 Unfo ld ing 207
12.1 In t roduc t ion . 207

12.2 Unfolding . 209

12.3 UDS Specialization . 213

12.4 S u m m a r y . 217

13 T h e

13.1

13.2

13.3

13.4

13.5

13.6

13.7

13.8

13.9

Latt ice and Cover Structure of A t o m s 219

In t roduc t ion . 219

Quasi-Ordered Sets . 220

Quasi-Ordered Sets of Clauses 225

Atoms as a Quasi-Ordered Set 225

13.4.1 Greatest Specializations 227

13.4.2 Least General izat ions 2 2 7

Covers . 232

13.5.1 Downward Covers . 232

13.5.2 Upward Covers . 234

Fin i te Chains of Downward Covers 234

Fin i te Chains of Upward Covers 237

Size . 240

S u m m a r y . 241

14 T h e

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10 S u m m a r y .

S u b s u m p t i o n O r d e r 243

In t roduc t ion . 243

Clauses Considered as Atoms 243

S u b s u m p t i o n . 245

Reduct ion . 247

Inverse Reduct ion . 249

Greates t Specializations . 251

Least General iza t ions . 252

Covers in the Subsume Order 256

14.8.1 Upward Covers . 256

14.8.2 Downward Covers . 257

A Complexi ty Measure for Clauses 260

14.9.1 S i z e as Defined by Reynolds 260

14.9.2 A New Complexi ty Measure 261
262

C O N T E N T S x~

15 T h e

15.1

15.2

15.3

15.4

15.5

I m p l i c a t i o n O r d e r 265

In t roduc t ion . 265

Least Generalizations 266

15.2.1 A Sufficient Condi t ion for the Existence of an LGI . . 267

15.2.2 The LGI is Compu tab l e 274

Greates t Special izat ions . 275
Covers in the Impl ica t ion Order 277

S u m m a r y . 278

16 B a c k g r o u n d K n o w l e d g e 279
16.1 In t roduc t ion . 279

16.2 Relat ive S u b s u m p t i o n . 281
16.2.1 Definit ion and Some Propert ies 281

16.2.2 Least Genera l iza t ions 285

16.3 Relat ive Impl ica t ion . 287
16.3.1 Definit ion and Some Propert ies 287

16.3.2 Least General iza t ions 288

16.4 General ized Subsumpt ion . 289
16.4.1 Definit ion and Some Propert ies 289

16.4.2 Least General iza t ions 294

16.5 S u m m a r y . 297

17 R e f i n e m e n t O p e r a t o r s 299
17.1 In t roduc t ion . 299

17.2 Ideal Refinement Operators for Atoms 300

17.3 Non-Exis tence of Ideal Refinement Operators 303

17.4 Comple te Operators for Subsumpt ion 305

17.4.1 Downward . 305

17.4.2 Upward . 306

17.5 Ideal Operators for F in i te Sets 310

17.5.1 Downward . 311

17.5.2 Upward . 315
17.6 Op t ima l Ref inement Operators 316

17.7 Ref inement Operators for Theories 317

17.8 S u m m a r y . 319

18 P A C L e a r n i n g
18.1 In t roduc t ion .

18.2
18.3
18.4

18.5

321
321

PAC Algor i thms . 322
Sample Complexi ty . 324

T i m e Complex i ty . 326
18.4.1 Representa t ions . 326
18.4.2 Po lynomia l T i m e PAC Learnabi l i ty 328
Some Related Set t ings . 329
18.5.1 Po lynomia l T i m e PAC Predic tabi l i ty 329

xll C O N T E N T S

18.6

18.7
18.8
18.A

18.5.2 Member sh ip Queries 330
18.5.3 Ident i f ica t ion f rom Equivalence Queries 330
18.5.4 Learn ing wi th Noise 331
Resul t s in the N o r m a l ILP Se t t ing 332
18.6.1 The N o r m a l ILP Se t t ing in PAC Terms 333
18.6.2 Learn ing Non-recurs ive P r o g r a m s 335
18.6.3 Learn ing Recursive P r o g r a m s 338
Resul t s in the Nonmono ton i c Se t t ing 340
S u m m a r y . 341
A Po lynomia l T i m e Decision Procedure 342

19 Further Topics
19.1
19.2

19.3
19.4
19.5
19.6
19.7
19.8
19.A

345
I n t r o d u c t i o n . 345
Language Bias . 346

P red ica t e Invent ion . 347
F l a t t e n i n g . 350
Imper fec t D a t a . 352
I m p l e m e n t a t i o n and App l i ca t i on 354
W h a t Has Not Been Covered 358

S u m m a r y . 359
Resul t s for F l a t t e n i n g . 360

L i s t o f S y m b o l s 365

B i b l i o g r a p h y 369

A u t h o r I n d e x 391

S u b j e c t I n d e x 395

A b o u t the B o o k

Inductive logic programming (ILP) is a relatively young branch of machine
learning. It is concerned with learning from examples, commonly called induc-
tion. The possible learning tasks include learning concept descriptions from
instances of those concepts, finding regularities among large amounts of data,
etc. The feature of ILP that distinguishes it from other branches of machine
learning is its use of the framework provided by formal (clausal) logic. On the
one hand, the use of logic in knowledge-based systems and problem solving
has already been prominent in artificial intelligence (AI) for a long time. On
the other hand, machine learning has also been recognized as a key subfield
of AI. It seems only natural to combine these two, and to study learning in a
logical framework. Hence ILP can be defined as the intersection of machine
learning and logic programming.

Although inductive logic programming can be traced back to the work
of Plotkin and Reynolds around 1970 and the work of Shapiro in the early
1980s, many researchers have only turned to ILP in the last 5 to 10 years.
In these years, the operational side of ILP has been well served: many ILP
systems have been implemented and applied quite succesfully to various real-
world learning tasks. However, the theoretical side of much work in ILP is
sometimes less than optimal. As with many other young fields of research,
many of the main concepts and results of ILP are only available in research
papers, widely scattered over numerous journals, conference proceedings, and
technical reports. As a consequence, concepts are not always uniformly de-
fined, definitions are sometimes imprecise or unclear, and results and proofs
are not always correct.

Hence we feel that a unified, rigorous, self-contained book which gives the
theoretical basis of ILP is needed. We have written this book to fill that need.

Some existing books on logic could partly serve as a theoretical basis for
the logical component of ILP, in particular the book by Chang and Lee [CL73]
on theorem proving for general clauses, and the books by Lloyd [Llo87],
Doets [Doe94], and Apt [Apt97] on logic programming. However, both Horn
clauses and general clauses are sometimes used in ILP~ so both should be
covered. Existing logic books usually address only one of these, instead of
giving a unified treatment of both. Moreover, those books discuss resolution-

XlV ABOUT THE BOOK

based theorem proving only in relation to the refutation completeness, which
is a completeness result for proof by contradiction. Actually, a different com-
pleteness result, called the Subsumption Theorem, provides a much more "di-
rect" form of completeness than refutation completeness. The Subsumption
Theorem gives us a more clear view of the structure of logical implication,
which makes it a very powerful and important tool for theoretical analysis
in clausal logic in general, and ILP in particular. It is used in many articles
on ILP (though not always correctly). Therefore, Part I of the present book,
which covers both general clauses and Horn clauses, and includes proofs of
several versions of the Subsumption Theorem, is better suited as a basis for
the logical component of ILP than existing books. In fact, this first part of
the book can be seen as a basis for clausal logic in general.

In Part II of the book, we consider the "learning" component of ILP:
induction. This is not discussed in the logic books mentioned above. A number
of books related to this learning component have appeared in recent years, but
these are generally more oriented towards practice than theory, and typically
focus, after a brief general introduction, on one or more particular systems
implemented by their authors: [BGS91] focuses on ML-SMART, [DR92] is
about CLINT, [MWKE93] is about a series of related systems (particularly
MOBAL), [LD94] devotes most attention to LINUS, and [BG96a] is largely
devoted to FILP and TRACY. There also exist two collections of ILP papers
[Mug92a, DR96]. Though these contain some important papers, they do not
provide a unified and self-contained introduction to the field.

Other than earlier books on ILP, the present work neither contains de-
tailed descriptions of existing implemented systems nor case studies of appli-
cations. Instead, we intend to explicate here what we regard as the founda-
tions of the field. We give a unified treatment of the main concepts of ILP,
illustrated by many examples, and prove the main theoretical results. The
book is intended both as a reference book for researchers and as an introduc-
tion to ILP from the theoretical perspective. We hope in this work to provide
the reader with a sound and sufficiently broad theoretical basis for future
research, as well as implementation and application of ILP.

Before giving a quick overview of the book in the following pages, we want
to express our gratitude to Krzysztof Apt, who wrote the foreword and gave
some very helpful comments concerning the logic programming part of the
book. Furthermore, we would iike to thank Akihiro Yamamoto and Tam~s
Horvg~th, who each read parts of the manuscript and gave many valuable
comments. Finally, thanks should go to Springer and its editors Alfred Hof-
mann and Andrew Ross, for their co-operation and help in publishing this
book.

March 1997
Shan-Hwei Nienhuys-Cheng and Ronald de Wolf

Rotterdam
The Netherlands

ABO U T THE BOOK xv

An Overview of the Book

ILP is concerned with learning a general theory from examples, within a
logical framework. Accordingly, its foundations are twofold: one component
concerns logic (deduction), the other concerns learning (induction). This is
reflected in the structure of the book. In the first part, Chapters 1-8, we
introduce the logical framework that we need. This part is not concerned
with induction, so it can be seen as a self-contained introduction to logic
programming. The second part of the book, Chapters 9-19, discusses various
concepts and techniques that form the fundamentals of learning within logic.
Below we give a brief overview of these two parts.

Logic
Chapte r s 1 and 2 introduce propositional logic and first-order logic. In par-
ticular, these chapters define the concepts of a well-formed formula, an inter-
pretation of a language, and logical implication. In ILP, most often we use
only a special kind of formula, called a clause, and a special kind of interpre-
tation, called a Herbrand interpretation. These are introduced in Chap te r 3.

Then in Chap te r s 4-8, we turn to several ways in which logical implica-
tion between clauses can be characterized. We define various proof procedures
for this: "unconstrained" resolution (Chapters 4 and 5) and linear and in-
put resolution (Chapte r 6) for general clauses, and SLD-resolution for Horn
clauses (Chap te r 7).

For each of these forms of resolution, we prove two completeness results:
the Subsumption Theorem and refutation completeness. In the standard lit-
erature on resolution, only the latter is given. Though the two results can
be proved from each other for the forms of resolution we consider, the Sub-
sumption Theorem is a more direct form of completeness than refutation
completeness, and hence sometimes more useful for theoretical analysis.

The f~rst part of the book ends with Chap t e r 8, where we discuss
SLDNF-resolution. This is SLD-resolution augmented with a technique for
handling negative information, tt forms the basis of the logic programming
language PROLOG.

Inductive Logic Programming
The introductory Chap te r 9 characterizes ILP by means of two different
problem settings. In the normal setting, we have to find a theory (a finite set
of clauses) that is correct with respect to given example-clauses, taking any
given background knowledge into account. In the nonmonotonic setting, par-
ticularly suited for the task of data mining, the examples are interpretations,
and we have to find a theory that conforms to those interpretations. In either
setting, we have to search for an appropriate theory, using generalization and
specialization steps to adjust a theory to fit the examples. If some particular

Part I

Logic

Chapter 1

Propositional Logic

1.1 Introduct ion

Propositional logic is a formalization of some simple forms of reasoning. For
example, suppose we know the following sentences (the premises) to be true:

"If I swim, then I will get wet."
"If I take a shower, then I will get wet."

From these sentences, we are justified to conclude:

"If I swim or I take a shower, then I will get wet."

Propositional logic is able to capture the form of this argument. Let P rep-
resent "I swim", let Q represent "I take a shower", and let R stand for "I
will get wet". Each of these sentences may be either true or false. Then the
premises can be rephrased to:

If P, then R.
If Q, then R.

and the conclusion becomes:

If P or Q, then R.

That this is indeed a valid argument (i.e., if the premises are true, the con-
clusion must also be true), can be explained in propositional logic.

George Boole [Boo58] is usually regarded as the founder of propositional
logic, though traces of it can already be found in the stoic philosophers of
Greek antiquity. In this chapter we will introduce those parts of proposi-
tional logic which are necessary for a thorough understanding of the rest of
this work. We discuss propositional logic for two reasons. First, to facilitate
the introduction of first-order logic in the next chapter. Propositional logic
resembles first-order logic in a number of ways, but is much simpler. It is in

4 CHAPTER I. PROPOSITIONAL LOGIC

fact embedded in first-order logic. Accordingly, an introduction to proposi-
tional logic will facilitate understanding first-order logic. The second reason
for this introduction is the fact that many concepts of the later chapters can
be better illustrated by examples using propositional logic, than by exam-
ples in first-order logic. If the concepts of propositional logic are sufficient
to express something, it is preferable to avoid using the more complex fea-
tures of first-order logic. Hence we will use propositional logic where possible,
avoiding unnecessary complexity.

There are two sides to propositional logic: on the one hand we have syntax
(or grammar), which specifies which sequences of symbols are considered well-
formed. On the other hand stands semantics, which specifics the relations
between those well-formed sequences, and their truth or falsity.

1.2 Syntax

Every formal language has a syntax: an exact specification of which sequences
of which symbols are allowed (considered well-formed), and which are not.
Thus syntax starts with a specification of the alphabet of the language: the
set of symbols from which well-formed sequences are constructed. Here is the
definition for the propositional logic.

D e f i n i t i o n 1.1 An alphabet of the propositional logic consists of the follow-
ing symbols:

1. A non-empty set of atoms: P, Q, etc. These may be subscripted, so P1,
P2, etc. are also allowed as atoms.

2. The following five connectives: -7, A, V, -+, and ~ .
3. Two punctuation symbols: '(' and ')'.

With every possible set of atoms corresponds a different alphabet, but
each alphabet has the same five connectives, and the same two punctuation
symbols. Using the symbols from the alphabet, we can form sequences of
symbols. The set of well-formed sequences (formulas) is defined as follows.

D e f i n i t i o n 1.2 Well-formed formulas (usually just called formulas) are de-
fined as follows:

1. An atom is a formula.
2. If r is a formula, then -7r is a formula.
3. If r and r are formulas, then (r A ~p), (4 V r (r --+ r and (r ++ r

are formulas.

The simplest kind of formula is an atom. A formula which is not an atom,
for example - ,P, or (P V Q), is called a composite formula.

E x a m p l e 1.3 The following sequences of symbols are all examples of for-
mulas, assuming that the atoms used here are all in the alphabet:

1.3. S E M A N T I C S 5

. P
�9 (P v n)
�9 A Q) v Q))
�9 A (0 v R)) (P1 (Q v R2)))

The following sequences are not formulas, since they cannot be "generated"
by applying the rules of Definition 1.2:

�9 (P), the parentheses should be left out.
| P V Q, this is no formula because, strictly speaking, it should be sur-

rounded by parentheses according to rule no. 2 of Definition 1.2. How-
ever, in Section 1.4 we will loosen this restriction somewhat.

�9 (P V Q v R) is not a formula, since the placing of parentheses is not in
accordance with Definition 1.2 (though see Section 1.4).

�9 (P V (QA -+ R)), the sequence 'A --+' cannot be generated by the three
rules in our syntax definition.

�9 ((P V Q) ++ -~-,P --+ Q), some parentheses are left out. There are
several places where pairs of parentheses can be inserted in this sequence
to turn it into a formula. For instance, ((P V Q) ++ (-~-~P --+ Q)),
((P V Q) +-~ -~(-~P --+ Q)) and (((P V Q) ++ -~-~P) --+ Q) are formulas.

<

D e f i n i t i o n 1.4 The propositional language given by an alphabet is the set
of all (well-formed) formulas which can be constructed from the symbols of
the alphabet.

If alphabet ,41 and alphabet A2 are different--that is, if the set of atoms
belonging to ~41 is different from the set of atoms belonging to A~-- then
the propositional language given by ,41 is different from the propositional
language given by ~42. Note that a propositional language is always an infinite
set, even if the set of atoms in the alphabet contains only one atom.

1 . 3 S e m a n t i c s

In the last section, we gave a specification of the concept of a propositional
language: the set of (well-formed) formulas which can be constructed from
some alphabet. In this section we define the semantics of this set. This is
where a formula acquires its meaning. A formula can be either true or false,
depending on the truth or falsity of the simpler formulas which are its compo-
nents. For instance, the truth or falsity of (PVQ) depends on its components
P and Q. Thus we can trace the truth or falsity of some formula all the way
back to its smallest elements. These smallest elements are the atoms, which
are simply given a value ' true' or 'false' according to some interpretation.

1 . 3 . 1 I n f o r m a l l y

Before giving the formal semantics for the propositional logic, let us explain
roughly how the meaning of a formula depends on the simpler formulas and

6 CHAPTER 1. PROPOSITIONAL LOGIC

connectives it contains. Since five connectives can be used to construct com-
posite formulas, we can consider five different kinds of composite formulas.
Below we will discuss each of these in turn, informally explaining what they
m e a n ,

1. First, formulas of the form --r where r is an arbitrary formula. The
connective used here ('-,') is called negation. We say the formula --r is
true if the formula r is false, and we say -,r is false if r is true. From
this, we see that the connective '-~' can be used to model the way the
word 'not ' is used in English: "-~r is true if, and only if, r is not true".
Thus the formula --r is pronounced as "not r

2. Second, formulas of the form (05 A r where r and r are arbitrary
formulas. A formula of this form is called a conjunction. We say that
the formula (r A r is true if and only if both components of the formula
(i.e., r and ~) are true. This is similar to the way the word 'and' is
used in English: we can say that the sentence "John is 25 years old and
John is married" is true if, and only if, the components "John is 25
years old" and "John is married" are both true. Accordingly, (r A ~) is
pronounced as "r and ~".

3. Third, formulas of the form (05 V r A formula of this form is called a
disjunction. We say that the formula (05 V ~b) is true if and only if at
least one of the components of the formula (i.e., 05 or V)) is true. This
is similar to the way the word 'or' is used in English. Thus (05 A ~b)
is pronounced as "05 or ~". Note that by 'or', we mean 'and/or ' here:
(05 V r is true if r is true, if ~b is true, or if 05 and r are both true.

4. Fourth, formulas of the form (05 -+ ~b). Such a formula is called an
implication. By this connective, we want to model the way ' if . . . then'
is used in English. Therefore, (r --+ ~b) is pronounced as "if 05 then ~b",
or as "r implies ~b". We model ' if . . . then' by saying that (05 -+ ~) is
false just in case 05 is true and r is false (i.e., in English we cannot call
"if 05 is true, then ~/~ is true" a true sentence if we observe that r is true,
but r is false), and true otherwise.

Note that we say (05 --> ~b) is true in case r is false, no matter what V~
is. This may seem strange at first: why would "if 05, then ~b" be true
if ~ is false? But in fact this way of using the symbol :-+' is not so
remote from the way we sometimes use ' if . . . then' in natural language.
Consider for example the case where person A is extremely angry at
person B. A might then say for instance to B "If you beg me ten billion
times to calm down, I will forgive you". Obviously, the 'if' condition
is not true, because B won't beg ten billion times. Yet this ' if . . . then'
sentence certainly makes sense, and it can in a way be said that the
sentence is true, independently of the fact whether or not A actually
will forgive B.

1.3. SEMANTICS 7

5. Fifth, formulas of the form (0 ++ r Such a formula is called an equiva-
lence. The formula (r ~ 3) is similar to the combination of the formulas
(r --+ ~) and (~ -+ 6). The connective ' ~ ' is used to model the English
words 'if, and only if'. Thus the formula is pronounced as "r if, and
only if, r or as "r is equivalent to r We say (r ++ r is true if 6
and r are both true, or both false, and (6 ++ ~) is false otherwise.

E x a m p l e 1.5 Let L be the propositional language which has {P, Q, R} as
its set of atoms. Using the concepts defined so far, we can formalize--in terms
of the language L - - t he example given in the introduction to this chapter. Let
P represent "I swim", let Q represent "I take a shower", and let R stand for
"I will get wet". Then the premises of the example can be represented by:

(P --~ R), or "If I swim, then I will get wet".
(Q -+ R), or "If I take a shower, then I will get wet".

and the conclusion becomes:

((PVQ) ~ R), or "If I swim or I take a shower, then I will get wet".
<1

1 . 3 . 2 I n t e r p r e t a t i o n s

We will now formalize the informal meaning explained in the previous sec-
tion. A key concept in formal semantics is the interpretation of a language.
The interpretation defines which atoms of the language are true, and which
are false. An interpretation "sets the stage" for determining whether or not
some complex formula is true or false. For example, if we use atoms P and Q
to denote the sentences "My dog is outside" and "My cat is outside", respec-
tively, then we need to know the truth or falsity of these atoms to be able
to determine the truth or falsity of the more complex sentence "My dog is
outside and my cat is outside". So knowledge of the truth or falsity of atoms
(that is, knowledge of the interpretation), is the first step to determining the
truth or falsity of arbitrary complex formulas.

D e f i n i t i o n 1.6 Let L be a propositional language. Let A be the set of atoms
of L. Then an interpretation of L is a mapping from A to {T, F}. T and F
are called truth values.

An interpretation I can be efficiently expressed as a subset of the atom-
set ,4, namely I = {A E A I I(A) = T}. So in this representation, I is the
set of all atoms in .4 that are assigned T by t .

E x a m p l e 1.7 Let .4, the set of all atoms of the language, be {P, Q, R}. Then
an example of an interpretation t is:

I (P) = T,
I(Q) = F,
I(R) = T.

8 CHAPTER1. P R O P O ~ O N A L LOGIC

In the "subset representation", ! = {P,/~}.
Another possible interpretation I ~, is the following:

i ' (P) = T,
I ' (Q) = T,
I ' (R) = r .

Which can be represented as I r = {P, Q}.

Note that if the set of all atoms contains n atoms, then 2" different inter-
pretations are possible, since each of the n atoms can be assigned T or F in-
dependently of the assignment to the other atoms. Thus in Example 1.7, the
set of possible interpretations is {{}, {P}, {O}, {R}, {P, Q}, {P, R], {Q, R},
{P, Q, R}}, which contains 8 = 2 a possible interpretations.

Usually we assume that the language L is fixed. When we give an example,
we assume implicitly that the set of atoms of the language is the set of atoms
used in the example, unless we state otherwise explicitly. In this case, we will
just talk about interpretations, instead of interpretations of L.

The t ruth value of the atoms does not depend on other a toms- -an atom is
just defined to have some truth value by the interpretation [. The t ruth value
of a composite formula, however, depends completely on the connectives and
the t ruth values of the atoms it contains. For instance, the composite formula
(P v Q) has t ruth value T under I if, and only if, P and/or Q have truth value
T under I. The way that the t ruth value of a composite formula depends on
its components and connectives is laid out in so-called truth tables, one for
each connective. These truth tables are combined in Table 1.1.

T F F .F T F
F T T F T T
F F T T

Table 1.1: The truth table for the five connectives

The truth table should be read row-wise: each row specifies the truth
value of a composite formula containing r and r (or just r in case of the
negation) in regard of the truth values bestowed on r and V) in the first two
columns of that row. Thus if r has t ruth value T and ~ has t ruth value F,
then we can see from the second row that (r -~ r has truth value F.

E x a m p l e 1.8 Let I be the interpretation {P}, and let r be the formula ((PA
Q) --~ Q). Working "bottom-up", we can use the truth table to determine
the t ruth value of r

1. P has t ruth value T under I, Q has t ruth value F.

1.3. SEMANTICS 9

2. (P A Q) has t ruth value F.
3. r has t ruth value T. <3

Reasoning in the manner of the previous example, we can--given an in-
terpretation / - -de te rmine the truth value of any formula, no mat ter how
complex. Instead of the rather unintuitive "truth value", we can also use the
following terminology:

D e f i n i t i o n 1.9 Let r be a formula, and f an interpretation. r is said to be
true under I if its t ruth value under I is T. I is then said to satisfy r or to
make r true.

r is said to be false under I if its truth value is F under I. I is then said
to falsify 6, or to make r false. �9

1 . 3 . 3 M o d e l s

The t ruth value of a formula usually 1 depends on the interpretation; under
some interpretations the formula is true, under others it is false. If some
formula r is true under a particular interpretation I, then I is called a model
of r

D e f i n i t i o n 1.10 Let r be a formula, and f an interpretation. I is said to be
a model of r if I satisfies r r is then said to have I as a model.

E x a m p l e 1.11 Let {P, Q, R} be the set of all atoms in the language, and r
be the formula ((P A Q) ++ (R -~ Q)). Let I be the interpretation that makes
P and R true, and Q false (so I = {P, R}). We determine whether r is true
or false under I as follows:

1. P is true under I, and Q is false under I, so (P A Q) is false under I.
2. R is true under I, Q is false under I, so (R -+ Q) is false under I.
3. (P A Q) and (R --~ Q) are both false under f, so r is true under I.

Since r is true under I, I is a model of r
Let I ' = {P}. Then (P A Q) is false, and (R ~ Q) is true under I ' . Thus

r is false under 1/, and Y is not a model of r <~

The definitions solar only dealt with single formulas. In logic, one often
has to deal with sets of formulas. The definition of a model can easily be
generalized to this case.

D e f i n i t i o n 1.12 Let E be a set of formulas, and 1 an interpretation, f is
said to be a model of E if I is a model of all formulas r E E. E is then said
to have I as a model.

1The only exceptions are tautologies and contradictions, see below.

10 C H A P T E R 1. PROPOSITIONAL LOGIC

E x a m p l e 1.13 Let E = {P, (Q v R), (Q -4/~)}, and let I = {P,R}, I ' =
{P, Q, R}, and [" = {P, Q} be interpretations. I and I ' satisfy all formulas
in E, so [and I ' are models of E. On the other hand, I" falsifies (Q --4 R),
so I" is not a model of E. <1

A very important concept is the concept of 'logical consequence'. Roughly,
some formula r is a logical consequence of some set of formulas, if the t ruth
of all formulas in the set implies the truth of r This concept is defined as
follows.

D e f i n i t i o n 1.14 Let E be a set of formulas, and r a formula. Then r is said
to be a logical consequence of E (written as E ~ r if every model of E is a
model of r If E ~ r we also sometimes say that E logically implies (or just
implies) 4. If E = {•}, this can be written as • ~ r �9

D e f i n i t i o n 1.15 Let E and P be sets of formulas. Then F is said to be a
logical consequence of E (written as E ~ r) , if E ~ r for every formula
r E F. We also sometimes say E (logically) implies F.

If r is not a logical consequence of E, we write E ~= r and similarly E ~= F
if not E ~ P.

E x a m p l e 1.16 Let P stand for "I am outside", let Q represent "It rains",
and let R represent "I will get wet". Suppose we know the following sentences
a r e t r u e :

"If I am outside and it rains, then I will get wet.:', or in formulas:
((P A Q) -+ n).
"It rains.", or represented as a formula: Q.

From these sentences, we want to conclude:

"If I am outside, I will get wet.", or the formula (P -4 R).

We can prove that this conclusion is correct by proving that (P -4 /7) is a
logical consequence of the set E = { ((PAQ) --4 R), Q}. We will use Table 1.2
for this.

Each row represents a possible interpretation of the atom-set {P, Q, R}.
The only rows which are models of E are the first, fifth and sixth row, since
these are the only rows in which both ((P A Q) -+ R) and Q are true (see
the underlined t ruth values). In these three rows (P -4 R) is also true, hence
every model of E is also a model of (P -+ R). Therefore E ~ (P -4 R), so
we have proved that our conclusion is correct. <~

E x a m p l e 1.17 The set E = {(P A Q), (P -+ R)} logically implies the set
r = {P, Q, R).

We now have three related concepts, all called 'implication':

1.3. SEMANTICS

e I Q I R li ((PA

T T I T T T F
T F T
T F F
F T T
F ~ F

F - f i T
F I F F

Q) -~ R) (P-~
T T
F F
T T
T F
T_ T_
T T,
T T
T T

R)

Table 1.2: The truth table for E and (P -+ R)

11

1. The connective '--+': a syntactical symbol called 'if. . . then' or 'implica-
tion'.

2. The concept of 'logical consequence' or '(logical) implication', denoted
by ' ~ ' .

3. The phrase ' if . . . then', which is used when stating, for example, propo-
sitions or theorems.

In order to avoid confusion, we will here briefly emphasise the differences
between these concepts. First, "~-+'. This is a syntactical symbol, appearing
within formulas. The truth value of the formula (r --~ r depends on the
particular interpretation I we happen to be considering: according to the
truth table, (r --4 r is true under I if r is false under I and/or ~ is true
under I; (r --4 r is false otherwise.

Second, the concept of '(logical) implication'. This concept describes a
semantical relation between formulas. It is defined in terms of all interpreta-
tions: 'r ~ ~' is true if every interpretation that is a model of r is also a
model of *p.

Third, ' if . . . then', also sometimes called 'implication'. This describes a
relation between assertions which are phrased in (more or less) natural lan-
guage. It is used for instance in proofs of theorems, when we state that some
assertion implies another assertion. Sometimes we use the symbols '::~' or
' ~ ' for this. If assertion A implies assertion B, we say that B is a necessary
condition for A (i.e., if A is true, B must necessarily be true), and A is a
sufficient condition for B (i.e., the truth of B is sufficient to make A true). In
case A implies B, and B implies A, we write "A iff B", where tiff' abbreviates
'if, and only if'.

The following Deduction Theorem describes a relation between these no-
tions:

T h e o r e m 1.18 (D e d u c t i o n T h e o r e m) Let E be a set of formulas, and r
and ~ be formulas. Then r U {*} ~ r (f i e ~ (r --+ r

Proof Z U {~) ~ ~ iff
All models of E U {r are models of ~p iff

12 CHAPTER 1. PROPOSITIONAL LOGIC

All models of E are models of -7r or of r iff
All models of E are models of (r -+ ~b) iff

> (r []

Next we will define the concept of equivalence between formulas or sets
of formulas.

D e f i n i t i o n 1.19 Two formulas r and ~ are said to be (logically) equivalent
(denoted by r r r if both r ~ r and r ~ r (so r arid r have exactly
the same models). Similarly, two sets of formulas E and F are said to be
(logically) equivalent, if both E ~ F and F ~ E. �9

E x a m p l e 1.20 The sets E = {P,-~Q, (P v R)} and P = {(R V P), (-~R V
-~Q), P, (P --+ -~Q)} are equivalent. <~

The distinctions between '<-~', 'r and 'iff' are analogous to the distinctions
between '--+', ' ~ ' and ' if . . . then' explained above.

Formulas can be divided in the following categories:

D e f i n i t i o n 1.21 Let r be a formula. Then:

1. r is called valid, or a tautology, if every interpretation is a model of r
This can be written as ~ r r is called invalid otherwise.

2. r is called satisfiable, or consistent, if some interpretation is a model of
(~.

3. r is called inconsistent, or unsatisfiable, or a contradiction, if no inter-
pretation is a model of r In other words, r is inconsistent if it has no
models.

4. r is called contingent if it is satisfiable, but invalid. O

Intuitively, a tautology is "always true" and a contradiction is "always
false". An invalid formula is "not always true" and a satisfiable formula is
"sometimes true". A contingent formula is "sometimes true, and sometimes
false". Note that some formula r is a tautology if, and only if, -~r is a con-
tradiction. Also note that because a contradiction has no models, it logically
implies any formula. The way these definitions subdivide the class of all for-
mulas is graphically illustrated in figure 1.1.

These concepts can be defined similarly for a set E of formulas. E is a
tautology if every interpretation is a model of E, E is satisfiable if it has at
least one model, etc.

E x a m p l e 1.22 Some examples to illustrate Definition 1.21:

�9 The formula (P V -~P) is a tautology (or a valid formula): every inter-
pretation makes either P or -~P true, so every interpretation is a model
of (P V ~P) . Even the empty interpretation I = {}, which makes all
atoms false, is a model of (P V ~P) .

1.3. S E M A N T I C S

All formulas
r

Tautology Contingent Inconsistent

13

Always
true

Sometimes true,
sometimes false

Satisfiable

Always
false

Y

Unsatisfiable

Figure 1.1: The class of tautologies, contingent formulas, etc.

�9 The formula P is satisfiable, but is invalid (not a tautology), hence a
contingent formula.

�9 The formula ((P A (P ~ Q)) -+ Q) is a tautology (or a valid formula),
see Example 1.23.

�9 The formula (P e+ -~P) is a contradiction (or an unsatisfiable formula).
�9 The set of formulas {P, Q, (- ,P v -~Q)} is a contradiction (an unsatisfi-

able set of formulas).
�9 The set {P, (Q A R)} is satisfiable, but invalid, hence contingent. The

set is true under I = {P, Q, R}, but false under I ' = {P, Q}. <~

Truth tables can be used to prove that some formula is a tautology or a
contradiction:

E x a m p l e 1.23 Let r be the formula ((P A (P --+ Q)) -+ Q). Using a t ruth
table to systematically try out all possible interpretations, we will prove that
r is true under all possible interpretations. See Table 1.3.

II P IQ]] (P -+ Q)
T T T
T F F
F T T
F F T

(e A (e ~ Q)) ((e A (P ~ q)) --+ Q)
T T
F T
F T
F T

Table 1.3: The truth table for ((P A (P -+ Q)) ~ Q)

Note that the third column is derived from the first two columns, the
fourth is derived from the first and the third column, and the last column is
derived from the fourth and second columns.

The first two columns contain all possible interpretations of {P, Q}. The
last column shows that r is true under all these interpretations. So every
interpretation is a model of r hence r is a tautology. <~

14 CHAPTER 1. PROPOSITIONAL LOGIC

Note the following relation between logical consequence and unsatisfiabil-
ity:

P r o p o s i t i o n 1.24 Let E be a set of formulas and r a formula. Then E ~ O
iff E U {-~r is unsatisfiable.

P r o o f E ~ r
is true under all models of E iff

E U {-~r has no models iff
E U {-~r is unsatisfiable.

Also note the following relation between logical equivalence and tautolo-
gies:

P r o p o s i t i o n 1.25 / f r and ~ are formulas, then r ~ r iff @ (r +4 t~).

P r o o f e v v ~ i f f
r and r have the same models iff
Every interpretation is a model of r and ~, or a model of 46 and --~ iff
Every interpretation is a model of (r 4+ r iff

(~ ++ ~). []

The following assertions will be useful in the rest of the book. The second
and third of these are sometimes called De Morgan's laws.

P r o p o s i t i o n 1.26 The following assertions hold.

2. (-~r v ~) ~ -~(r A ~)

4. ((0 v r A x) "~ ((4 A x) v (~ A x))
5. ((~ A ~) v x) ~ ((r v x) A (r v x))
6. (r -+ ~) ,~ (7r v r
7. (0 +4 g)) r ((r "-4 0) A (r --4 r

P r o o f We will only prove the sixth assertion, leaving the other proofs to
the reader. This assertion follows from Table 1.4, which shows that (r --4 r
and (~r V r have exactly the same models.

(4 -~ r
T T T

--T--! F F
F T T
F F T

(~4vr]]
T
F
T
T

Table !.4: The truth table for (4 ~ r and (-~0 V r

[]

1.4. CONVENTIONS TO SIMPLIFY NOTATION 15

1.4 Conventions to Simplify Notat ion

A complex formula can get overcrowded with parentheses. In this section, we
make some simplifying conventions. Strictly speaking, these simplifications
are not in accordance with the syntax of Definition 1.2, but since they are
unambiguous and will not arouse confusion, no harm will be done.

First, according to Definition 1.2, (P V Q v R) is not a formula, but
(PV (QV_R)) and ((PVQ) VR) are. It can be easily proved that (PV(QVR))
and ((P V Q) v R) are equivalent. Hence, we will sometimes write (P V Q v R)
instead of (P v (Q v R)) or ((P v Q) v R). Like (P V Q), such a formula is called
a disjunction. Similarly, we will sometimes use (P1 V P2 V P3 V P4) instead
of (P1 V (P2 V (P3 V P4))). The same conventions can be made regarding the
connective 'A', so we will write (P A Q A R) instead of (P A (Q A R)), etc.
Such a formula is also called a conjunction. Note that a finite set of formulas
{r r is logically equivalent to the conjunction (~1 A . . . A r

Second, we will often omit the outer parentheses of a formula. So the
formula (P -+ Q) can also be written as P ~ Q.

Third, by giving V and A precedence over --~ and +% we can omit the
parentheses around the two components of an implication or equivalence.
Combining this with the previous conventions, we can write P1 A P2 A Pa ~ Q
instead of ((P1 A (P2 A Pa)) --+ Q)-

Note that these simplifications still allow no ambiguity. For example, the
sequence P V Q A R (which might either mean (P V (Q A R)) or ((P V Q) A R),
which are not equivalent), is not allowed. We will use appropriate parentheses
anywhere where confusion or ambiguity might arise.

1.5 Summary

In this chapter we defined propositional logic, a relatively simple system of
logic. The syntax determined the set of well-formed formulas in a proposi-
tional language. Those formulas are well-formed that can be built up fi'om
atoms and the connectives we discussed. The semantics of propositional logic
is based upon the notion of an interpretation. An interpretation assigns truth
values to the propositional atoms, and extends these truth values to compos-
ite formulas using a truth table to handle the connectives. An interpretation
is a model of a formula if that formula is true under the interpretation. A
formula r (logically) implies a formula ~b, denoted by r ~ r if every model
of q~ is also a model of ~b. Formulas r and r are (logically) equivalent, denoted
by r <:~ r if r ~ ~b and r ~ r Similar concepts were defined for sets of
formulas.

Chapter 2

First-Order Logic

2.1 Introduct ion

Propositional logic, as defined in the previous chapter, is a nice little formal-
ism, but not a very strong or expressive one.

Let us try for example to formalize the sentence "John is Peter's father" in
propositional logic. Since this sentence cannot be broken up in smaller pieces
which could be connected by one of the five connectives, our only option is
to use an atom to formalize it. But now let us consider the sentence "Paul
is Mary's father". Again, this cannot be broken up into smaller components,
and hence must be formalized as another atom. There are obvious similarities
between these two sentences: they both mention the same relation (father-
hood). In the first sentence this relation holds between John and Peter; in
the second it holds between Paul and Mary. Yet this similarity cannot be
expressed in propositional logic, since both sentences can only be denoted by
different atoms.

We would like a more expressive system of logic to satisfy the following
requirements. Firstly, it should be able to distinguish between "things" (such
as 'Paul') and "assertions about things", Secondly, the same "thing" should
be denoted everywhere by the same symbol. Thus when formalizing the sen-
tences "Paul is a father" and "Paul is a teacher", the two formalizations
should both contain the same symbol denoting 'Paul'. Similarly, a concept
or predicate (such as fatherhood) should be denoted by the same symbol ev-
erywhere. And thirdly, we would like to be able to use variables, which can
be used to denote different things. For instance, we want to be able to say
"every x who is a child of Mary, is a teacher."

First-order logic is a formalism which satisfies these three requirements.
It was initially introduced by Gottlob Frege [Fre79], and further developed

18 C H A P T E R 2. F IR ST-OR DE R LOGIC

by Alfred North Whitehead and Bertrand Russell [WR27]. The semantics of
first-order logic was developed by Alfred Tarski [Tar36, Tar56]. 1

Even though first-order logic is much more complex than propositional
logic, both are built up along the same lines: first we define what constitutes
a well-forlned formula (syntax), then we define what a well-formed formula
means and how it acquires a t ruth value (semantics). Syntax is the subject
of the next section, semantics of the section after that. Of course, there is
much more to first-order logic than just the basic concepts we introduce in
this chapter. For a more extensive introduction we refer to [Men87, B J89].

2.2 Syntax

First-order logic is much more complex than propositional logic. This will be
evident from the syntax: whereas in propositional logic we only had formulas,
in first-order logic we have two different syntactical categories---terms and
formulas. Intuitively, a term denotes a "thing" which can be talked about
(like a number, a human being, etc.), and a formula is an assertion about
things.

As in propositional logic, we first specify an alphabet, the set of all symbols
which can be used in forming syntactical structures. Then we define the rules
with which well-formed syntactical structures (terms and formulas) can be
constructed.

D e f i n i t i o n 2.1 An alphabet of first-order logic consists of the following sym-
bols:

1. A set of constants: a, b, ..., which may be subscripted.
2. A set of variables: u, v, w, x, y , . . . , which may be subscripted.
3. A set of function symbols: f , g , . . . , which may be subscripted. Each

function symbol has a natural number (its arity) assigned to it.
4. A non-empty set of predicate symbols: P, Q , . . . , which may be sub-

scripted. Each predicate symbol has a natural number (its arity) as-
signed to it.

5. The following five connectives: -~, A, V, ~ and ~ .
6. Two quantifiers: ~ (called the existential quantifier) and V (called the

universal quantifier).
7. Three punctuation symbols: '('~ ') ' and ','. <7

As indicated in this definition, each function symbol has an arity assigned
to it. By this we mean the number of arguments the function has. This is
similar to functions in mathematics. For instance, the mathematical function
f (x , y) = x + 2y has two arguments, and is therefore of arity 2. A function

1As the word "first-order" implies, there are also "higher-order" logics. We will not
discuss these here (see [BJ89] for an int roduct ion to second-order logic). Other names
somet imes used for first-order logic are (first-order) predicate logic or predicate calculus.

2.2. S Y N T A X 19

symbol of arity 1 is called a unary function, a function of arity 2 is a binary
function. In general, a function symbol of arity n is called an n-ary function
symbol. The arity of a function may be 0, this is similar to for example the
constant function 5 in mathematics. Though we mentioned constants as a
separate class of symbols in the previous definition, this is not necessary: it is
often convenient to view constants as function symbols of arity 0. Thus the
set of constants is actually a subclass of the set of function symbols.

Each predicate symbol also has an arity assigned to it, which gives its
number of arguments. As will be explained in the following section, predicates
can be used to denote properties or relations. For example, the relationship
"x loves y" could be denoted by a binary predicate symbol. As was the case
with function symbols, the predicate symbols of arity 0 play a special role:
they can be used in the same way as atoms were used in propositional logic.
Since the connectives can also be used in the same way as they were used in
propositional logic, first-order logic is in fact a generalization of propositional
logic. In other words, the structure of propositional logic is embedded in the
structure of first-order logic.

D e f i n i t i o n 2.2 Terms are defined as follows:

1. A constant is a term.
2. A variable is a term.
3. If f is an n-ary function symbol and t l , t 2 , . . , tn are terms, then

f (t l , t 2 , . . . , t ~) is a term. <~

E x a m p l e 2.3 Suppose we have an alphabet consisting (apart from the con-
nectives, punctuation symbols and quantifiers) of the following:

1. The set of constants is {a, b, c}.
2. The set of variables is {xl, z2, y}.
3. The set of (non-constant) function symbols is {f, g}, where f has arity

1, and g has arity 3.
4. The set of predicate symbols is {P, Q, R, S}, where P has arity 2, Q

has arity 1, R has arity 2, and S has arity 0.

Then the following are all examples of terms which can be formed from this
alphabet:

�9 a

�9 X 2

�9 f (c)
�9 f (f (f (x t)))
�9 g(x2, xi, f (f (f (a))))

The following sequences of formulas are not terms (given this alphabet):

�9 f(a, b): f has arity 1.
�9 P(b, a): predicate symbols cannot be used when constructing terms.
�9 (a V x2): connectives cannot be used when constructing terms. <~

20 CHAPTER 2. FIRST-ORDER LOGIC

Using terms, we can construct formulas. As in propositional logic, the
smallest possible formula is called an atom. An atom is constructed by "fill-
ing in" the n argument-places of an n-ary predicate symbol with n terms.
From atoms, more complex formulas can be constructed using the connectives
(similarly to propositional logic), and the quantifiers.

D e f i n i t i o n 2.4 Well-formed formulas (or just formulas) are defined as fol-
lows:

1. If P is an n-dry predicate symbol and Q,t2, . . . ,t ,~ are terms, then
P(tl, t2, . . . , tn) is a formula, called an atom.

2. If r is a formula, then -~r is a formula.
3. If r and r are formulas, then (r A ,9), (r V r (r + ~) and (r e+ r

are formulas.
4. If r is a formula and x is a variable, then 3x r and Vx r are formulas.

<5

A formula which is not an atom, for example (P(a) V Q(x, y)), is called a
composite formula.

E x a m p l e 2.5 If we use the same alphabet as in Example 2.3, the following
sequences of symbols are all formulas:

�9 Q(a)
| S (remember that S is a 0-ary predicate symbol)
| P(f (f (x l)) , g(a, c, f(b)))
�9 ((/~ (f (c) , f (c)) ~ -~Q(I(e))) +4 P(x2, g(y, y, y)))
, Vx Q(z)
�9 -,3x Q(x)

| (Vx13x2 R(x2,xl) AVy Q(a))
| Vx,~x2 (R(x2, xl) A Vy Q(a))

On the other hand, the following sequences are not formulas:

. (P(a, b) V f(y)): f(y) is not a formula.
| P(a) : P has arity 2.
�9 P(a, b)V R(a, b): this should be surrounded by parentheses according to

our present Definition 2.4 (though see Section 2.4 for some simplifying
conventions).

| Q(P(a, b)): P(a, b) is a formula and not a term, hence it cannot be used
to fill the argument place of Q.

| Va Q(a): a is not a variable, hence cannot be used with the V-quantifier.

<3

From an alphabet, we can construct an infinite number of formulas. As
in propostional logic, the set of all well-formed formulas which can be con-
structed from some alphabet is called a language.

2.2. SYNTAX 21

D e f i n i t i o n 2.6 The first-order language given by an alphabet is the set of
all (well-formed) formulas which can be constructed from the symbols of the
alphabet.

Strictly speaking, only formulas are in the language L. But sometimes we
will speak loosely about the "terms in L", or the "variables in L". Of course,
in that case we mean the terms constructable from the alphabet on which L
is based.

When we give an example in the rest of this chapter, we will not explicitly
specify the alphabet we use. Instead, we assume that all the symbols we use
in the example are in the alphabet. Similarly, we assume that the arities of
the function and predicate symbols used are as described implicitly in the
example. For instance, if we use the formula "P(x, a)", we assume that P is
a predicate of arity 2 in the alphabet, that x is a variable, and that a is a
constant in the alphabet.

We now define some concepts concerning the relation between quantifiers
and variables in a formula. We will not need them in this section, but since
these are purely syntactical concepts, we define them here.

D e f i n i t i o n 2.7 The scope of gx (respectively 3x) in gx r (resp. 3x r is r
<>

E x a m p l e 2.8

�9 The scope of the 3-quantifier in the formula 3x (P(x, y) -+ Q(x)) is the
formula (P(x, y) --+ Q(x)).

�9 The scope of the 3-quantifier in the formula 3x (Vy P(x, y) A Q(x)) is
the formula (Vy P(x , y)/ ' , Q(x)), the scope of the V-quantifier is the

formula P(x, y). <1

When a formula gx r is constructed, we intend the quantifier Y to apply to
all occurrences of x in r but not to other occurrences of x or other variables.
Wha t this "applying" means is part of the semantics, the subject of the next
section. A variable-occurrence within the scope of some quantifier is called
bound, an occurrence outside of the scope of any quantifier is called free. For
example, the occurrence of x in Yx P(x, y) is a bound occurrence (since it
lies within the scope of the g-qnantifier), the occurrence of y in this same
formula is free.

D e f i n i t i o n 2.9 A bound occurrence of a variable x in a formula is an occur-
rence of x immediate ly following a quantifier, or an occurrence of x within
the scope of a quantifier that is immediately followed by x. An occurrence of
a variable which is not bound, is called free. �9

E x a m p l e 2.10 Some examples to illustrate the previous definition:

22 CHAPTER 2. FIRST-ORDER LOGIC

* All occurrences of the variables x and y in the formula 3z (P(x, y) --+
P(z, x)) are free, the occurrence of z is bound.

* The first occurence of x in (Vx Q(x)VP(x, f(c))) is a bound occurrence.
The second oceurence of x is free, since this second occurrence of x, in
P(x, f(c)), is not within the scope of the V-quantifier. <~

D e f i n i t i o n 2.11 A closed formula is a formula which does not contain any
free occurrences of variables. <5

E x a m p l e 2.12 The formula -~3y P(a, y) is a closed formula. The formuia
Vx (Q(x) v P(x, f(c))) is a closed formula, but the formula (Vx Q(m) v
P(x, f(c))) is not, since the occurrence of x in P(x, f(c)) is not in the scope
of the V-quantifier in the last formula. <l

De f in i t i on 2.13 A ground term (respectively ground formula) is a term
(resp. formula) which does not contain any variables. <5

E x a m p l e 2.14 The term f(g(a, b)) is a ground term, h(a, b, x) is not, since
it contains the variable x. The formula P(a, f(g(a, b))) is a ground atom, the
formula Vx (Q(a,g(x))A P(x, y))is not ground. <:]

2.3 Semant ics

2 . 3 . 1 I n f o r m a l l y

In first-order logic, a term refers to a "thing", and a formula is an assertion
about things, which may be either true or false. What sort of "things" do the
terms refer to? This depends on the way we interpret a first-order language.
Part of such an interpretation is a specification of the domain that the terms
in our language refer to. The domain could for example be the set of natural
numbers, a set of blocks, or a set of Dutch people.

A term in the language refers to an object in the domain. The term
assignment tells us to which domain element each term refers. Thus it tells
us what the constants refer to, how to handle function symbols, etc. We
visualize the term assignment in Figure 2.1.

terms
the term assignment

domain

Figure 2.1: The term assignment maps each term to an object in the domain.

2.3. SEMANTICS 23

When we have interpreted the terms, we can determine the t ruth value of
a toms containing these terms. Remember that an a tom is an n-ary predicate
symbol whose n argument-places each are "filled" with a term. What we want
is to determine the t ruth value of some atom, given the n-tuple of domain
elements to which the n terms in the a tom refer.

An example will make this clearer. Suppose we use the set of natural num-
bers as our domain, so each term in our language refers to a natural number.
Suppose also that we have some 3-ary predicate symbol P. We can interpret
this predicate symbol as ' + ' , as follows: we define the a tom P(tl, t2, ta) to
be true if the sum of the numbers to which the terms tl and t2 refer, equals
the number to which the term ta refers, and we define P(tl, t2, t3) to be false
otherwise.

Once we have determined to which objects the terms refer, and which
a toms are true, we can determine the truth or falsity of the composite for-
mulas. Here the connectives are treated in the same way as they were in
proposit ional logic. Thus a formula (r A r is true iff r is true and ~b is true,
etc. But, apart from the five connectives, we can also use the two quantifiers
when constructing a composite formula. The way these quantifiers work can
be informally explained as follows:

. First the existential quantifier 3. Suppose we have some formula 3x r
where x is a variable which occurs in the formula r (this formula is
pronounced as "there exists an x such that r is true"). This formula
3x r says that there is at least one element in the domain which, when
x refers to this element, makes the formula r true. Hence 3z r is said
to be true iff such an element indeed exists.

. Second, the universal quantifier V. Suppose we have some formula gx r
where again x is a variable which occurs in the formula r (this is pro-
nounced as "for all x, r is true"). This formula ~'x r says that each
element of the domain makes r true, when x refers to this element.
Thus we say that gx r is true iff indeed each object in the domain
makes r a true formula.

Interpreting a first-order language thus consists of three steps:

1. Determine the domain and the connection between the terms and the
domain (i.e., answer the question "to which object refers each term").

2. Determine the t ruth value of each atom, given the interpretation of the
terms which the a tom contains (i.e., assign to each predicate symbol a
function from the set of n-tuples of domain elements to {T, F}).

3. Determine the t ruth value of each composite formula, given the previous
two steps in the interpretation. This step involves using the rules for
the connectives and the quantifiers.

24 C H A P T E R 2. F IR ST-OR DE R LOGIC

2 . 3 . 2 I n t e r p r e t a t i o n s

Part of the semantics of first-order logic is a definition of the relation between
the terms in the language, and the domain we talk about. Each term "refers
to" (or "denotes") an object from this domain. The pre-inteTTretatwn is a
precise definition of this "referring"~

D e f i n i t i o n 2.15 A pre-inter~retation J of a first-order language L consists
of the following:

1. A non-empty set D, called the domain of the pre-interpretation.
2. Each constant i.n L is assigned an element of D.
3. Each n~ary function symbol f in L is assigned a mapping Jf from D ~

to D.

The domain D may be either finite or infinite. By D n we mean the set
of all n-tuples of domain elements: D ~ m {(dl~ . . . ,dn) i for every 1 (i <
n, di E D}. So, for instance~ if D -- {2, 3}, then D 3 contains 2 3 --- 8 elements~
such as (2, 2, 2), (2, 2, 3), (2, 3, 2).

We use function symbols to model functions. Suppose for example that
we want to model the mathematical function which gives the sum of its two
arguments. Suppose we use as our domain D the set of natural numbers.
We could model this mathematical function by inserting in our language
the function symbol g, of arity 2, and assigning in our pre-interpretation
the following mapping Jg (from D 2 to D) to g: Jg(n ,m) = n + m, where
'+ ' is the usual mathematical addition function. We see what the phrase "a
mapping from D ~ to D" means: two elements of the domain (namely the
arguments n and m of Jg) are mapped to one element in the domain (namely
the sum n 4- m). It is important not to confuse the function symbol g with
the mapping Jg. The function symbol g is a symbol m the language, whereas
the mapping Jg is not a symbol in the language, but is used to interpret the
function symbol g to which it is assigned.

E x a m p l e 2.16 Suppose our alphabet contains only one constant~ a, and one
function symbol f , of arity 1. We could model the natural numbers (which
we take as our domain) as follows: a denotes the number 0, f (a) denotes the
number l, f (f (a)) denotes 2, f (f (f (a))) denotes 3~ etc. This can be achieved
by the following pre-interpretation J:

1. The domain D is the set of natural numbers: {0, 1, 2, 3 , . . .} .
2. The constant a is assigned the natural number 0.
3. The function symbol f is assigned the following mapping from D to D:

J] (n) = n 4- 1, where '4-' is the usual addition function.

This gives us for instance the following:

�9 a refers to the number 0.
| f (a) refers to Jr(0) -- l.
| f (f (a)) refers to Jr(Jr(O)) -- J r (l) = 2. <~

2.3. S E M A N T I C S 25

Thus a pre-interpretation "translates" the constants in L to objects in D,
and it translates the n-ary function symbols in L to functions from D ~ to D.
Using a pre-interpretation, we can map each ground term to an element in
the domain. But, of course, there are also terms which are not ground, that
is, terms which contain variables. We want to say something about terms
containing variables also. For this we need a separate concept: a variable
assignment. The variable assignment tells us to which domain element each
variable in the language refers.

D e f i n i t i o n 2.17 Let J be a pre-interpretation with domain D of a first-
order language L. A variable assignment V with respect to L is a mapping
from the set of variables in L to the domain D of J .

We use V(x /d) to denote the variable assignment which maps the variable
x to d E D, and maps the other variables according to V. �9

E x a m p l e 2.18 Let the alphabet and the pre-interpretation J be as de-
scribed in Example 2.16, and let the alphabet contain also the variables x, y,
Yl and z. Then the following V is a variable assignment with respect to the
language L given by the alphabet:

�9 V (x) = 5.

�9 = o .

�9 v(y) = 5 .

�9 V (z) = 12.
<3

Remember that terms are constructed from constants, variables, and func-
tion symbols. The variable assignment tells us to which domain element each
variable refers. Similarly, the pre-interpretation tells us to which domain el-
ement each constant refers, and how to treat function symbols.

We may combine the information we get from a pre-interpretation J and a
variable assignment V. Suppose J has as domain the set of natural numbers,
and has Jg(n) = 3 * n, where ' , ' is the usual mathemat ica l multiplication
function. Suppose also that V tells us that the variable x is mapped to the
natural number 4. Then we can, from the combination of J and V, figure out
that the t e rm g(x) refers to the domain element 12. Such a combination of
a pre-interpretat ion and a variable assignment is called a term assignment,
since it assigns a domain element to each term in the language.

D e f i n i t i o n 2.19 Let J be a pre-interpretation with domain D of a first-
order language L, and let V be a variable assignment with respect to L. The
term assignment with respect to J and V of the terms in L is the following
mapping from the set of terms in L to the domain D:

1. Each constant is mapped to an element in D by Y.
2. Each variable is mapped to an element in D by V.

26 C H A P T E R 2. F IR ST-OR DE R LOGIC

3. If d l , . . . , d,~ are the elements of the domain to which the terms t 1, �9 - -, t,~
are mapped, respectively, then the term f (t] . , . . . , t , 0 is mapped to
J / (d l , . . . , d , O , where J/ is the function from D '~ to D assigned to
the function symbol f by J.

E x a m p l e 2.20 Let Z be the term assignment which can be constructed from
the pre-interpretation J defined in Example 2.16 and the variable assignment
V defined in Example 2.18. Then for instance:

�9 Z(f (a)) : 1.

�9 Z (f (f (x))) = 7.
| Z (a) : Z (y) = O.

. Z (f (f (f (z)))) = 15 . <t

Once we have a pre-interpretation, we can define an interpretation. An
interpretation "translates" each n-ary predicate to a corresponding function
from D n to {T, F}. That is, to each predicate corresponds a function which
assigns either T or F to all possible n-tuples of domain elements.

D e f i n i t i o n 2.21 An interp,vtation I of a first-order language L consists of
the following:

1. A pre-interpretation J, with some domain D, of L. I is said to be based
0/2 J .

2. Each n-ary predicate symbol P in L is assigned a mapping IF from D ~
to {T, F}. 0

Since a 0-dry predicate symbol has no arguments, its interpretation is
simply the assignment of a t ruth value. Thus 0-dry predicate symbols have
the same role as atoms in propositional logic. In this way, propositional logic
is embedded in first-order logic.

E x a m p l e 2.22 Let us continue Examples 2.16, 2.18, and 2.20. Suppose the
alphabet contains, apart from a, f and the four variables, one predicate
symbol P, of arity 3. We want to model P as %' . This can be done by the
following interpretation I:

1. The pre-interpretation is J as defined in Example 2.16 (thus D is the
set of natural numbers).

2. We associate with P the following mapping [p from D a to {T, F}:
Ip (n l ,n2 , na) = T if nl + n2 = ha, and Ip (n l ,n2 ,n3) = F otherwise.

Some examples of the way the func t ion / t , works:

�9 Ip (1 ,2 ,3) = T, since 1 + 2 = 3.
| Ip(225, 11,236) = T, since 225 + 11 = 236.
| Ip(5,22, 16) = F, since 5 + 22 # 16.
�9 Ip (6, 7, 0) = F, since 6 + 7 -~ 0. <1

2.3. SEMANTICS 27

When we have a pre-interpretation J and a variable assignment V, the
term assignment with respect to o r and V tells us for each term in the lan-
guage to which domain element this term refers. Also, when we have an
interpretation I (based on J), we can determine the truth value of any atom
once we know to which domain elements the terms in the atom refer.

Since any formula is constructed from atoms, connectives, and quantifiers,
we can determine the truth value of any formula once we know how to handle
the connectives and quantifers. How to determine the truth value of any
formula, given an interpretation and a variable assignment, is specified in the
following definition.

Before giving the definition, we note that special care must be taken in
case of quantifiers. Suppose we have the formula r = Vx R(f(x), y). The
term assignment with respect to J and V assigns a domain element to the
variable x, and it also assigns a domain element to the term f(x), so the
formula R(f(x) , y) can be given a t ruth value by applying the function [R
to the domain elements assigned to f (x) and y. But the formula r in fact
claims that R(f (x) , y) is true for every assignment to x, not just for the one
specific domain element assigned to x by V.

We solve this problem by defining that Vx R(f(x), y) has truth value T iff
for all elements d ~ D, R(f(x), y) has truth value T under I and V(x/d). So
for r to have truth value T, we require that R(f(x), y) has t ruth value T for all
possible assignments to x, keeping I and the rest of V (that is, the assignments
to variables other than x) fixed. The 3-quantifier is handled similarly in the
next definition. We have inserted some examples in this definition, continuing
Example 2.22.

D e f i n i t i o n 2.23 Let I be an interpretation, based on the pre-interpretation
J with domain D, of the first-order language L, and let V be a variable
assignment with respect to L. Let Z be the term assignment with respect to
J and V. Then a formula r in L has a truth value under I and V, as follows:

1. If r is the atom P(t l , . . . , t,~), and di is the domain element assigned
to tl by Z (i = 1 , . . . , n) , then the truth value of r under I and V is
Ip(dl , . . . ,dn) .
Example (continuing Example 2.22)
P(f(a), f(a), f(f(a))) has truth value Ip(1, 1, 2) = T under I and V.
P(f(x) , a, f (f(y))) has truth value Ip(6, O, 2) = F under I and V.

2. If r is a formula of the form ~p, (r A X), (~ V X), (r -+ X) or (r ++ X),
then the t ruth value of 0 is determined by the truth table for the
five connectives, Table 1.1 of the previous chapter (of course, we must
determine the truth values of r and X first, before we can apply the
truth table to find the truth value of r

Example
(P(f(x) , a, f (f (y))) -+ P(f(a), f(a), f (f (a)))) has truth value T under
I and V.

28 CHAPTER 2. FIRST-ORDER LOGIC

3. If r is a fornaula of the form 3x r then r has truth value T under I
and V if there exists an element d E D for which r has t ruth value T
under I and V(x/d). Otherwise, r has truth value F under I and V.

Example
3z P(z, z, f(a)) has truth value F under I and v, since there exists no
d E D such that P(z, z, f(a)) has truth value T under I and V(z/d)
(there is no natural number d such that d + d = 1).

4. If r is a formula of the form Vx tb, then r has truth value T under I and
V if for all elements d E D, r has t ruth value T under I and V(~:/d).
Otherwise, r has t ruth value F under I and V.

Example
Vx P(x, f(a), f(x)) has t ruth value T under I and V, because for all
d E D, P(x, f(a), f(x)) has t ruth value T under t and V(x/d) (for all
d E D it is true that d + l = d + l) .

O

E x a m p l e 2 .24 Some more examples, also continuing Example 2.22.

| The t ruth value of P(f(a), a, f(a)) under ~ and Y is T, since we have
Ie(1 , 0, 1) = T (in other words, 1 + 0 = 1).

* The t ruth value of P(f(f(a)), a, f(y)) under I and V is F, since 2 + 0 r
1.

| The t ruth value of the formula. (P(f(a), a, f(a)) A P(f(f(a)), a, f(y)))
under I and V is F.

| The t ruth value of -~?x P(Z(a), f(a), f(f(f(x)))) under I and V is T,
since there does not exist a natural number x such that 1 + 1 = 3 + ~.

| The t ruth value of VxVyVz (P(x, y, z) ++ P(f(a), y, f(z))) under I and
V i s T . <1

The t ruth value under I and V of a closed formula does not depend on the
variable assignment V we use. This can be seen as follows: in a closed formula,
all occurrences of variables are bound occurrences. So all occurrences of vari-
ables are within the scope of some quantifier. This means that when we are
figuring out what the truth value of some closed formula is, every variable x
is handled by the quantifier-rules, which use the variable assignment V(x/d).
This in turn means that the assignments made by the particular variable
assignment V are irrelevant for the t ruth value of the closed formula, hence
this t ruth value is determined completely by I.

Example 2.25 Define the interpretation I as follows: let D be a set of human
beings, P be a unary predicate symbol which we interpret as "is mortal" ,
and V be a variable assignment which maps x to John E D. Then the closed
formula r = Vx P(x) has t ruth value T under I and V, since every element
of the domain is human, and hence mortal . Note that it does not mat te r here

2.3. SEMANTICS 29

that V(x) = John, even though x appears in r Since the V-quantifier makes
x in r range over the domain as a whole, the particular variable assignment
V is irrelevant for the t ruth value of r <~

E x a m p l e 2.26 Let 's continue Example 2.22 once more. The closed formula
Vx3y P(x, y, f(a)) has t ruth value F under I , obtained as follows:

1. Vx3y P(x, y, f(a)) has t ruth value T under I and V iff
2. for every d C D, 3y P(x, y, f(a)) has t ruth value T under I and V(x/d)

iff
3. for every d ~ D, there exists a d' E D such that P(x, y, f(a)) has truth

value T under I and V(z/d)(y/d') iff
4. for every d ~ D, there exists a d ~ E D such that IF (d, d', 1) = T i f f
5. for every natural number d, there exists a natural number d' such that

rp(d , d', 1) = :r
6. for every natural number d, there exists a natural number f such that

d + f = l .

Since the last part of this iff-sequence is false, the closed formula we began
with has t ruth value F under [and V. But while determining this t ruth
value, we have not used the assignments made by V at all. V assigns x the
domain element 5, but the truth value of this closed formula does not depend
on this particular assignment to x. The formula would have had t ruth value
F even if V(x) were 1,000,000,000. <~

From these examples, we see that V is irrelevant when determining the
truth value of some closed formula. In the rest of this work we are only
interested in closed formulas. Thus we can leave out the variable assignment
V, and speak of "truth value under I" instead of "truth value under I and
V". Also, when we use the word ' formula ' later on, we mean 'closed formula ' ,
unless stated otherwise explicitly.

We end this Subsection by generalizing the terminology of true and false
to (closed) first-order formulas:

D e f i n i t i o n 2.27 Let r be a formula in the first-order language L, and / - an
interpretation of L. Then r is said to be true under I if its t ruth value under
I is T. I is then said to satisfy 6, or to make r true.

Similarly, r is said to be false under I if its t ruth value is F under I. I is
then said to falsify r or to make r false. �9

2 . 3 . 3 M o d e l s

As in propositional logic, an interpretation which makes some formula true is
called a model of that formula. The concepts of logical consequence, tautolo-
gies, etc. can also be easily generalized to the case of first-order logic. The
following definitions are almost literally the same as in propositional logic,
so we will pass over them fairly quickly.

30 CHAPTER 2. FIRST-ORDER LOGIC

D e f i n i t i o n 2.28 Let r be a formula, and I an interpretation. I is said to be
a model of r if I satisfies r r is then said to have I as a model. <5

D e f i n i t i o n 2.29 Let E be a set of formulas, and I an interpretation. I is
said to be a model of E if I is a model of all formulas r E E. E is then said
to have I as a model. �9

D e f i n i t i o n 2.30 Let E be a set of formulas, and r a formula. Then r is said
to be a logical consequence of E (written as E ~ r if every model of E is
also a model of r We also sometimes say ~ (logically) implies r If E = {r
this can also be written as ~p ~ 4. �9

D e f i n i t i o n 2.31 Let E and P be sets of formulas. Then r is said to be a
logical consequence of E (written as E ~ r) , if E ~ r for every formula
r E r . We also say E (logically) implies r.

E x a m p l e 2.32 Some examples:

�9 Let the interpretation I have D = {1,2} as domain, P be a binary
predicate interpreted as '> ' , let a denote 1 and b denote 2. Then I is a
model of the formula Vx P(z, x), since 1 _> 1 and 2 >_ 2. On the other
hand, I is not a model of the formula Yx3y ~P(x, y), since there is no
number n in the domain for which 2 > n is false.

| The formula Q(a) is a logical consequence of the formula Vy Q(y).
�9 The set of formulas {Q(f(b)), Q(f(f(c))} is a logical consequence of the

set {vx (P(x) P(b), P(f(c))}. <

If r is not a logical consequence of E, we write E ~= r and similarly E ~= F
if not E ~ F.

Logical consequence is a very important concept in artificial intelligence.
Often, the knowledge of some system (a robot, for instance) can be repre-
sented by a set of first-order formulas. We might then say that the system
"knows" some sentence, if the formula representing this sentence is a logical
consequence of its set of formulas.

In propositional logic, testing whether or not ~ ~ r is easy: the number
of possible interpretations that we need to consider, is finite (namely 2 ~,
where n is the number of atoms occurring in ~ and r so we can always
decide in finite time whether or not r is true in all models of D, simply by
examining all possible interpretations. This property is called the decidability
of propositional logic.

Unfortunately, things are not as easy when we let ~ and r consist of
first-order formulas. Since the number of possible terms is usually infinite,
the number of possible interpretations is also usually infinite. Hence we may
not be able to find out in finite time whether or not D ~ r by checking all
possible interpretations. This problem of finding out or proving that D ~ r

2.3. SEMANTICS 31

or E ~: r will be quite prominent in the next chapters. But first we will
generalize some other definitions from propositional logic to the first-order
c a s e .

D e f i n i t i o n 2.33 Two formulas 0 and ~ are said to be (logically) equivalent
(denoted by 0 r r if both b ~ ~ and r ~ r (so r and V5 have exactly
the same models). Similarly, two sets of formulas E and F are said to be
(logically) equivalent, if both E ~ P and r ~ E. �9

D e f i n i t i o n 2.34 Let r be a formula. Then:

1. r is called valid, or a tautology, if every interpretation is a model of r
This can be written as ~ r r is called invalid otherwise.

2. r is called satisfiable, or consistent, if some interpretation is a model of

3. r is called inconsistent, or unsatisfiable, or a contradiction, if no inter-
pretation is a model of r In other words, r is inconsistent if it has no
models.

4. r is called contingent if it is satisfiable, but invalid.

The above definition subdivides the set of all formulas in the same way
as in propositional logic. We again illustrate this graphically in figure 2.2.

All formulas

Tautology Contingent Inconsistent

Always
t r u e

Sometimes true,
sometimes false

Always
false i

Satisfiable Unsatisfiable

Figure 2.2: The class of tautologies, contingent formulas, etc.

These concepts can be defined similarly for a set E of formulas. E is a tau-
tology if every interpretation is a model of I2, E is satisfiable if it has at least
one model, etc.

E x a m p l e 2.35 Some examples co illustrate Definition 2.34:

�9 The formula (Sx Q(x) -+ --,gx ~Q(x)) is a tautology.
�9 The set of formulas {gx (P(x)A Q(x)),-~P(a)} is unsatisfiable. <a

We now generalize some results from the previous chapter to the case of
first-order logic. The proofs are the same as for the propositional case.

32 CHAPTER 2. FIRST-ORDER LOGIC

T h e o r e m 2.36 (Deduc t ion Theorem) Let E be a set of formulas, and r
and r be .formulas. Then E U {r ~ r iff E ~ (r -+ ~).

P ropos i t ion 2.37 Let E be a set of formulas and r a formula. Then E ~ r
iff E U {-,4} is unsatisfiable.

Propos i t ion 2.38 If r and ~ are formulas, then r ~=~ r iff ~ (r ++ ~).

Before proving the next proposition, we will first illustrate the eighth
assertion in that proposition by a more intuitive example.

Example 2.39 Suppose we have a language which contains the predicate P,
of arity 2. Suppose we have an interpretation I, with a domain consisting of
all human beings currently alive, and a function Ip such that Ip(hl, h~) = T
iff human being hi loves human being h2. Suppose also that our language
contains a constant a, which is mapped by I to the human being John.

Intuitively, the following sentences mean the same thing:

* "John loves everybody."
, "There isn't a human being whom John does not love."

First-order logic confirms this intuition, because we can prove that the fol-
lowing formulas are equivalent:

. Vx P(a, x)

Example 2.40 We give another example fbr the same language as in Ex-
ample 2.39. The two formulas

1. Vx3y P(x, y)
2. ~yvx P(x, y)

are not equivalent.
This can informally be illustrated using the interpretation defined in Ex-

ample 2.39: if we use this interpretation, then the first formula informally
means something like "everbody loves someone", and the second formula
means "there is someone whom everybody loves". Clearly, the first formula
can be true (if for example everbody loves his/her mother) while in the
same interpretation the second formula is false (if there does not exist a
person whom everybody loves). So these formulas are not equivalent. In fact,
3yVx P(x, y) ~ Vx3y P(x, y), but Vx3y P(x, y) ~ ByVx P(x, y). <~

Propos i t ion 2.41 The following assertions hold.

I. r , , -,-,4

s. (~r A ~r r -qr v ~)
~. ((r v 0) A X) ~ ((r A X) V (r A X))
5. ((r A e) v x) ~ ((~ v x) A (e v x))

2.4. CONVENTIONS TO SIMPLIFY NOTATION 33

6. (r -+ r r v
7, (r ++ r r ((r r A -+ r
8. Vx r r -~3x -,r
9. 3x r r -~Vx --r

P r o o f The proofs of the first seven items are the same as the proofs of
Proposition 1.26. The proof of the ninth assertion is similar to the proof of
the eigth item, which we give below:

Vx r is true under some interpretation I iff 2
Vx r is true under I and some variable assignment V iff
for all elements d e D, r is true under I and V(x/d) iff
for all elements d E D, -~r is false under I and V(x/d) iff
there is no element d E D, such that -~r is true under I and V(x/d) iff
~x -~r is false under I and V iff
- ~ x -1r is true under I and V iff
-~3x 7r is true under I.
Hence Vx r and -,3x -,r have exactly the same models. []

We end this section by giving a very fundamental result: the Compactness
Theorem, which will be needed in later chapters. The proof of this important
result lies beyond the scope of our work (see for instance [BJ89] for a proof).

T h e o r e m 2.42 (C o m p a c t n e s s) IrE is an infinite, unsatisfiabte set of for-
mulas, then there exists a finite, unsatisfiable subset of E.

Note the following consequence of this theorem:

T h e o r e m 2.43 Let E be an infinite set of formulas, and r be a formula. If
E ~ r then there is a finite subset E' of E, such that E' ~ r

P r o o f If E ~ r then by Proposition 2.37, E U {7r is unsatisfiable. By the
Compactness Theorem, there is a finite unsatisfiable set r C_ E U {-,r Put
E' = F\{-~r Then ~ ' C E, and since E' U {-~r is unsatisfiable, we have
E ~ ~ r by Proposition 2.37. []

2.4 Convent ions to Simplify Nota t ion

First-order logic faces the same notational problem as propositional logic:
huge amounts of parentheses make many complex formulas very hard to
read. To avoid this, we will make the same simplifying conventions as we have
already made for propositional logic, in Section 1.4 of the previous chapter.
So we have for instance the following:

2 R e m e m b e r t h a t we are only dea l ing with closed formulas .

34 CHAPTER 2. FIRST-ORDER LOGIC

�9 Both (P(a) V (3x Q(x) v Vx P(f(x)))) and ((P(a) v 3x Q(x)) v
gx P(f(x))) will be written as P(a) V Bx Q(x) v Vx P(f(x)).

| ((P(a) A 3x (Q(x) v R(x))) A (P(f(e)) A Q(f(b)))) will be written as
P(a) A 3x (Q(x) V R(x)) A P(f(c)) A Q(f(b)).

| ((VxVy S(x, y) A P(b)) -4 (Q(a) v Q(f(a)))) is written as VxVy S(x, y) A
P(b) -+ Q(a) v Q(f(a)).

We will also sometimes abbreviate iterated function symbols in the following
manner: f~(a) denotes f(f(a)), fa(a) denotes f(f(f(a))) , etc.

2.5 Summary

This chapter generalized propositional logic to first-order logic, which has a
much greater expressive power. It allows us to talk about objects and their
properties and relations. The syntax of first-order logic has two different cat-
egories: terms and formulas. Terms are constructed from constants, variables
and function symbols. Atomic formulas are constructed by filling in terms in
the argument places of predicate symbols. The set of well-formed formulas
in a first-order language can be built up from the atomic formulas, using the
five connectives and the universal and existential quantifiers.

The semantics of first-order logic consists of a generalization of the no-
tion of an interpretation in the propositional logic. An interpretation roughly
consists of a domain of objects, an assignment of objects to the terms of the
language, and an assignment of truth values to atomic formulas. The truth
values of more complex formulas are determined by rules for the connec-
tives (the familiar truth table from propositional logic) and rules for the two
quantifiers. A particular interpretation is a model of some formula, if that
formula is true under the interpretatiom A formula r (logically) implies a
formula r (r ~ ~) if every model of r is also a model of r Formulas r and

are (logically) equivalent, denoted by r Ca ~, if r ~ ~ and ~ ~ r Similar
concepts were defined for sets of formulas.

Chapter 3

N o r m a l Forms and
He r b r and M o d e l s

3.1 Introduct ion

In the previous chapter, we discussed the basic properties of first-order logic.
A first-order language consists of formulas, which stand in need of an inter-
pretation. The interpretation defines the domain our language "talks about",
it specifies the relation between the terms in the language and the objects in
the domain, and it gives each (closed) formula a truth value.

As we have seen, formulas can be built in many different ways. Some-
times formulas which look very differently are in fact logically equivalent.
For instance, the formulas -~x (P(x) --+ Q(x)) and Yy (P(y) A-,Q(y)) are
equivalent, despite their widely differing form.

It would be nice if we had some restricted normal form, to which all
formulas could in some way be reduced, and in which formulas could be com-
pared. For example, we would like a normal form in which the two formulas
above would "look alike". If we had such a normal form, we could for example
restrict many proofs to formulas in normal form, since any formula could be
put in such a form. In this chapter we will define two special forms: prenex
conjunctive normal form and Skolem standard form.

The prenex conjunctive normal form has the nice property that for any
formula, there exists another formula in prenex conjunctive normal form,
which is equivalent to the first formula. Skolem standard form does not have
this property, but is still very important for inductive logic programming.
In the final sections of this chapter, we will discuss the so-called Herbrand
interpretations, which have the set of ground terms in the language as their
domain.

36 CHAPTER 3. NORMAL FORMS AND HERBRAND MODELS

3.2 Prenex Conjunctive Normal Form

In this section we will define a first normal form, the prenex conjunctive
normal form of a formula. Recall that by ' formula ' , we mean 'closed formula ' .
The basic building blocks in the prenex conjunctive normal form are literals,
which in turn make up clauses.

D e f i n i t i o n 3.1 A literal is an a tom or the negation of an atom. A positive
literal is an atom, a negative literal is the negation of an atom. �9

E x a m p l e 3.2 P(x) and Q(a, y) are positive literals, -~Q(b, f(e)) is a negative
literal. <~

D e f i n i t i o n 3.3 A clause is a finite disjunction of zero or more literals. (>

E x a m p l e 3.4 The following formulas are clauses:

�9 P(a) v - ,P(x) v Q(x, y)
�9 ~R(x, a, f(y)) (this is a "disjunction" of one literal) <~

The notion of a first-order language can be restricted to clauses:

D e f i n i t i o n 3.5 The clausal language C given by an alphabet, is the set of
all clauses which can be constructed from the symbols in the alphabet. <5

Clauses are very important , because sets of clauses are commonly used to
express theories in inductive logic programming. Note that a clause may be
a disjunction of zero literals. This is called the empty clause, denoted by o .
We will explain what we mean by this in the next chapter, for this chapter
the empty clause is not relevant.

A formula in prenex conjunctive normal form starts with a sequence of
quantifier-variable pairs (called the prenex of the formula), followed by a
conjunction of clauses (the matrix of the formula). For instance, the formula
3x ((P(x) V -,Q(a)) A R(x)) is in prenex conjunctive normal form.

D e f i n i t i o n 3.6 A formula is in prenex conjunctive normal form if it has the
following form:

qlxl . . .qnXn (C1 A . . . A Gin),

P r e n e x M a t r i x

where each qi is either B or V, xl , x,~ are all the variables occurring in the
formula, and each Cj is a clause. The first part of the formula (the sequence
of quantifiers with variables) is called the prenex of the formula. The second
part is called the matrix of the formula 1, which we sometimes abbreviate to
M[xl,..., x,d. O

t T h i s t e r m ~ m a t r i x ' is j u s t a n a m e we use ; i t d o e s n o t h a v e v e r y m u c h in c o m m o n w i t h
the m a t h e m a t i c a l c o n c e p t o f a m a t r i x .

3.2. PRENEX CONJUNCTIVE NORMAL FORM 37

Example 3.7 These formulas are in prenex conjunctive normal form:

�9 Vx3y ((e(x) V ~Q(y)) A (-,R(a, b) V -,P(a)))
�9 3 ,3v3z (s(x, z, v) A P(v))
�9 Vx ((P(a) V P(b) V P(c)) A -,P(d) h (Q(x) v -.P(x)))

These formulas are not in prenex conjunctive normal form:

�9 3x~3y3z (S(z, y, z) A P(x))
�9 v . (p (.) + p(I(x))) <

In fact, any formula r can be transformed into an equivalent formula
tb, which is in prenex conjunctive normal form. We then say that r is a
prenex conjunctive normal form of r As a first, simple example, we will put
the formula 3x P(x) --+ 3x Q(x) in prenex conjunctive normal form, taking
small steps, each of which preserves equivalence (see Proposition 2.41):

3 . e (x) 3x O(x) r

-~x P(x) V 3x O(,) r
-,Bx P(x) v By Q(y) r
Vx -,P(x) V By O(y) r
vx (-,e(x) v By O(v))
VxBy v

The last formula, which is equivalent to the first formula, is in prenex con-
junctive normal form. We will now prove the following theorem, which shows
that this method of putting a formula in prenex conjunctive normal form
always works.

T h e o r e m 3.8 Let r be a formula. Then there exists a formula ~ in prenex
conjunctive normal form, such that r and ~ are equivalent.

P r o o f We give a constructive proof, i.e., we describe a procedure to transform
r into an equivalent formula 9, where ~ is in prenex conjunctive normal form.
Our procedure consists of five steps. To make the procedure more readily
understandable, we will let an example run parallel with the proof: during
the proof, we will apply the different steps in the procedure to the formula
Vx (P(x) -+ P(f(x))) V ~Vx (Q(x) v R(x, a)). It is not very difficult to see
that each step does what it is supposed to do; we will leave the details of the
proof to the reader.

1. Remove all occurrences in r of the connectives -+ and +-~, using the
following operations, which by Proposition 2.41 preserve equivalence:

1. replace (9 -+ X) by (-~r V X)
2. replace (9 ~ X)

Call the formula thus

Example

by ((-~tb V X) A (-~X V r

obtained r Then r r r

gx (P(x) --+ P(f(x))) V -~Vx (Q(x) v R(x, a)) r
Vx (-,P(x) V P(f(x))) V ~Vx (Q(x) v R(x, a))

38 C H A P T E R 3. NORMAL FORMS AND H E R B R A N D MODELS

.

.

.

.

1. replace
2. replace
3. replace
4. replace
5. replace

Example

Rename variables in r such that no two quantifiers are followed by
the same variable. Call the formula thus obtained r Then r ** r

Example
Vx (--,P(x) V P(f (x))) V ',Vx (Q(x) v R(:c, a))
w (~P(~) v P(s v ~vy (Q(y) v R(y, ~))

Construct from r an equivalent formula r in which each occurrence
of the connective -~ immediately precedes an atom, using the following
equivalence-preserving operations:

-~3x ~p by Vx -,r
-~(r v x) by (-~r A ~x)
-~(~b A X) by (-~b V -~X)
-,-7r by ~p

w (~P(~)
w (~P(~)
w (~e(~)

V P(f(~c))) V -,Vy (Q(y) V l=t(y, a)) z~z
V P(f(x))) V 3y ~(Q(y) v It(y, a))
v P(/(x))) v 3y (~Q(~) A ~R(y, a))

Construct from r an equivalent formula r in which all quantifiers are
at the front of the formula, using the following equivalence-preserving
operations:

1. replace ~x ~p V ~ by 3x (r V X)
2. replace ~p V 3x g by ~x (~p V X)
3. replace Vx r V X by Vx (r V X)
4. replace ~ V Vx ;g by Vx (r V)/)
5. replace 3x ~ A X by 3x (g? A X)
6. replace ~ A 3x ;~ by 3x (~ A X)
7. replace Vx r A)~ by Vx (r A X)
8. replace g? A Vx X by Vx (g) A X)

Note that r is of the form q~xl ...q,~x,~ X, where X does not contain
any quantifiers. So the first part of the prenex conjunctive normal form
(the prenex qlxl .. . q~x~) is already in order.

Example
Vx (-,P(x) V e (f (x))) V 3y (~Q(y) A -~R(y, a))
Vx ((~P(x) V P(f (x))) V 3y (-~Q(y) A ~R(y, a))) r
Yx3y ((-,P(x) V P(f (x))) V (-,Q(y) A -R (y , a)))

Finally, construct from r an equivalent formula r which is in prenex
conjunctive normal form. This means that the part of r following
the prenex must be transformed into a conjunction of disjunctions of
literals. This can be done using the following equivalence-preserving
operations:

1. replace ((0 A X) V~) by ((0 V ~) A (X V ~))

3.3. SKOLEM STANDARD FORM 39

2. replace (r V (x A by ((r v x) A (r v r
Example
Vx3y ((~P(x) V P(f(x))) V (-~Q(y) A -~R(y, a)))
gx~y ((-P(x) V P(f(x)) V ~Q(y)) A (-.P(x) V P(f(x)) V ~R(y, a)))

The final formula ~b is the desired prenex conjunctive normal form of r D

The prenex conjunctive normal form of some formula r is not unique.
For example, both Vx3yVz (P(x, y) A Q(a, z)) and Vx3y (P(x, y) A Q(a, x))
are prenex conjunctive normal forms of the formula r = Vx3y P(x,y) A
Vx Q(a, x). When we use the constructive procedure given in the previous
proof, we obtain the first of these prenex conjunctive normal forms. However,
the second one is also in prenex conjunctive normal form, and can be shown
to be equivalent to r

3 . 3 S k o l e m S t a n d a r d F o r m

In this section, we will define the Skolem standard form, named after the
logician Thoral f Skolem. Strictly speaking it is not a normal form, because
not every formula is equivalent to a formula in Skolem standard form. Still
Skolem standard form, which we will usually just call standard form, will
turn out to be very useful.

3.3.1 Clauses and Universa l Quant i f icat ion

The Skolem standard form is a conjunction of universally quantified clauses.
Wha t do we mean by universally quantified? To explain this, note that a
clause may contain variables. Since a clause, being a disjunction of literals,
does not contain any quantifiers, all occurrences of variables in a clause are
free occurrences. This means that a clause containing one or more variables
is not a closed formula, and hence cannot be given a t ruth value without a
variable assignment. However, we usually take a clause to be preceded by a
V-quantifier for every variable in the clause. In this way, a clause is treated
as a closed formula.

Example 3.9 The following formulas are universally quantified clauses:

�9 VxVy (P(x) V -,Q(a, y))
�9 VyVz (-~Q(g(y, f(z))) v ~P(b)) <1

For the general case, we can define universal quantification as follows:

Definition 3.10 Let r be a (not necessarily closed) formula. Let xl, �9 Xn
be all distinct variables which occur free in 4. Then we use V(r to denote
the formula Vxl . . .Vx~ r This V(r is a universally quantified formula.

40 CHAPTER 3. NORMAL FORMS AND HERBRAND MODELS

Intuitively, we can see that the formula Vx (P(x) A Q(a, x)) is logically
equivalent to Vx P(x) A Vx Q(a, x). In particular, if Vx (P(z) A Q(a, x)) is
true under some interpretation [, then no matter which domain element is
assigned to x, Q(a, x) is true under I. So then Vx Q(a, x) is true under I. Thus
it can be shown that Vx (P(z)AQ(a, z))logically implies Vx P(x)AVx Q(a, x).
The converse is also easy to see, so these two formulas are indeed equivalent.

In general, if C1 , . . . , C,~ are clauses containing the variables x l , . . . , x,~,
and f is an interpretation with domain D, then

V(C1 A C~ A . . . A C,~) is true under I iff
for every d l , . . . , dn E D, C1 A . . . ACm is true under / and some V(xl/dl)
... (x d &) iff
for every d l , . . . , d ~ E D, C1 and , . . a n d Cm are true under I and some

V(C1) AV(C2) A . . . A V(Cm) is true under I.

Hence: V(C1AC~A...ACre) 4e~ V(C1)AV(C2)A...AV(Cm). Thus we can write
each conjunction of universally quantified clauses as a universally quantified
conjunction of clauses, and vice versa.

Something needs to be said about the names of variables in a conjunction
of universally quantified clauses, namely that it does not mat ter whether two
or more clauses in the conjunction contain the same variables. Examine for
instance the following:

Vx (P(x) V -~Q(a, x)) A VxVy Q(y, x) r
Vy (P(y) V -,Q(a, y)) A VzVx Q(x, z).

Since a conjunction of universally quantified clauses is equivalent to the uni-
versally quantified conjunction of these same clauses, we also have:

w r y v Q(a, A Q(y,
wvyw v Q(a, A Q(y,

From this example, we see that we can rename variables in a clause without
regard to the variables occurring in other clauses in the conjunction. Re-
naming variables in clauses preserves equivalence. Of course, renaming the
variables in a clause should not change the meaning of the clause, so we are
not allowed to rename P(x) V Q(x, y) to P(z) v Q(z, z).

3 . 3 . 2 S t a n d a r d F o r m

In this subsection we will define the Skolem standard form. Every formula
can be put in this form, but not every formula has a standard form which is
equivalent to the originM formula. On the other hand, we do have the weaker
result that a formula is unsatisfiable iff its standard form is unsatisfiable.

What we want here, is to take a formula r which is in prenex conjunctive
normal form, and construct from r a formula which can be written as a

3.3. SKOLEM STANDARD FORM 41

conjunction of universally quantified clauses. This new formula will then be
called a Skolem standard form of the original formula. Since a conjunction
of universally quantified clauses is equivalent to the universally quantified
conjunction of these clauses, it does not really mat ter whether we search for
the former or the latter.

Recall what a formula in prenex conjunctive normal form looks like:

where each qi is either ~ or V, and each Cj is a clause. In fact, without
existential quantifiers, a formula in prenex conjunctive normal form would
already be a universally quantified conjunction of clauses, and hence could
be written as we want it: as a conjunction of universally quantified clauses.
So all we have to do, is get rid of the existential quantifiers in the prenex of
r This is done by a process called Skdemization.

We will illustrate this process by a small example. Suppose we have the
formula r = Vx3y Q(x, y). We want to construct a "similar" formula without
the existential quantifier. Consider the following mathematical proposition:
"for every natural number n there exists a natural number m such that
n < rn". We know that if we define the mathematical function f(n) = n + 1,
then for every natural number n, n < f(n). In other words, we could replace
m in the proposition by a function of n. Similarly, we could replace the
variable y in r by a unary function symbol having x as argument. So what
we do, is take a new function symbol, say f , and add this to the alphabet.
Now we replace the variable y by f(x), obtaining r = Vx Q(x, f(*)). This
new formula r a Skolemized.form of r is a universally quantified conjunction
of (in this case only one) clauses.

D e f i n i t i o n 3.11 Let r = qlXl . . .qnx~M[xl , . . . , xm] be a formulain prenex
conjunctive normal form. Then a Skolemized form of r is a formula r ob-
tained by applying the following procedure to r

1. Set r 1 6 2
2. If the prenex of r contains only universal quantifiers, then stop.
3. Let qi be the first (from the left) existential quantifier in r Let

xil, �9 �9 xij be the variables on the left of xi (that is, those variables
from x l , . . . , xi-1 that have not been deleted).

4. Add a new j -cry function symbol, which we denote here by f , to the
alphabet. Replace each occurrence of xi in the matr ix of r by the term
f (x i l , . �9 xlj). If there are no universal quantifiers to the left of xi in
r then replace each occurrence of xi by a new constant (0-ary function
symbol) which is added to the alphabet.

5. Delete 3xi from the prenex of r
6. Goto step number 2.

The new function symbols and constants which are added to the alphabet
are called Skolem functions and Skolem constants, respectively. �9

42 CHAPTER 3. NORMAL FORMS AND HERBRAND MODELS

It is important to note that we extend the alphabet in this process: each
new Skolem function or constant was not previously in the alphabet.

E x a m p l e 3.12 Here we describe the steps we take to find a Skolemized form
of 3xVyVz3u (P(x) A (-,Q(y, g(a, x)) V R(f(u), b, z))).

1. We replace each occurrence of x by the new constant c, and remove 3x
from the prenex, to obtain the formula:

VyVz3u (P(c) A (-~Q(y,g(a, c)) V R(f(u), b, z))).
2. Then we replace each occurrence of u by the new term h(y, z), and

remove 3u from the prenex. We then obtain the following Skolemized
form of the original formula:

VyVz (P(c) A (-~Q(y,g(a, c)) V R(f(h(y, z)), b, z))). <a

Note that a Skolemized form is a universally quantified conjunction of
clauses. This can be rewritten as a conjunction of universally quantified
clauses. This last form is then called a Skolem standard form.

D e f i n i t i o n 3.13 Let .6 be a formula, let r be a prenex conjunctive normal
form of r and let 6" = V(C1 A . . . A C~) be a Skolemized form of CJ. Define
the formula r as V(C,) A . . . A V(C,). Then r is called a Skolem standard
form (or just a standard form) of 6.

We say the standard form ~ is based on the prenex conjunctive normal
form 6'. We also say that r has r as a standard form. �9

Note that in the previous definition, 6" and the standard form r are equiv-
alent formulas. Every formula has a prenex conjunctive normal form, every
prenex conjunctive normal form has a Skolemized form, and every Skolem-
ized form is equivalent to a conjunction of universally quantified clauses. Thus
clearly, every formula has a standard form.

E x a m p l e 3.14 Below we describe the steps we take to get a standard form
of the formula r = gx (P(x) -+ P(f(x))) V -,Vx (Q(x) v R(x, a)).

1. First we construct 6'~ which is a prenex conjunctive normal form of r
(see the example in the proof of Theorem 3.8):

gx3y ((-~P(x) V P(f(x)) V -~Q(y)) A (--,P(x) V P(f(x)) V ~R(y, a))).

2. Replacing y by g(x) we obtain the following 6", which is a Skolemized
form of r hence a universally quantified conjunction of clauses:

Vx ((--,P(x) V P(f(x)) V -,Q(g(z))) A (--P(x) V P(f(x)) V ~R(g(x), a))).
3. Finally we rewrite 6" into standard form, as a conjunction of universally

quantified clauses:

= gx (~P(x) V P(f(x)) V --~Q(g(x))) A Yx (~P(x) V P(f(x)) V
a)).

E x a m p l e 3.15 Note the difference between the following two cases:

3.3. SKOLEM STANDARD FORM 43

�9 Vx P(x, f(x)) is a standard form of the formula Vx3y P(x, y).
�9 Vx P(a:, a) is a standard form of the formula 3ygx P(x, y). <1

A set E = { r r of formulas is equivalent to the formula (r A
. . . A Cn), so we can define the (Skolem) standard form of the set E as the
s tandard from of (r A . . . A r

Since the prenex conjunctive normal form of some formula r is not unique,
the s tandard form of this formula is not unique, either. When we replace a
variable by a new function symbol, we can choose among different possible
function symbols. For example, both Vx P(a, f(x)) and Vx P(a,g(x)) are
standard forms of the formula Yx~y P(a,y). The two functions f and g
may be interpreted as different functions over the domain. Analogously, in
the earlier proposition "for every natural number n there exists a natural
number m such that n < m", we could replace m by f(n) = n + 1, but also
by for instance g(n) = n + 2.

E x a m p l e 3.16 In this example we will show that a standard form of some
formula need not be equivalent to the original formula. The formula ~ = P (a)
is a s tandard form of the formula. r = 3x P(x), yet r and r are not equivalent.
We prove this by the following interpretation I , which is a model of r but
not of r

1. z) = {1, 2}.
2. The constant a is mapped to the number 2.
3. /p(1) = T a n d / p (2) = F. <1

From the previous example we see that putt ing a formula in s tandard
form does not preserve equivalence: if ~p is a s tandard form of r then r
and ~ are not necessarily equivalent. However, putt ing an unsatisfiable for-
mula in s tandard form does preserve unsatisfiablity: the original formula is
unsatisfiable iff the s tandard form is unsatisfiable (equivalently, the original
formula has a model iff the standard form has a model). This will be shown
in Theorem 3.19. To prove the theorem, we first need the following results.

Proposition 3.17 Let r be a formula, and let r be a standard form of r
Then ~ ~ r

Proof Without loss of generality, we assume r is the following prenex con-
junctive normal form:

qlxl . . , q~x~ M [< , . . . , x~],

where we use M [X l , . . . , xn] to denote the matr ix of the formula, which con-
tains the variables xl , �9 x,~. We also assume (again, without loss of gener-
ality) that r is based on this prenex conjunctive normal form r

Let q~ be the first existential quantifier in r Defne r as follows:

44 CHAPTER 3. NORMAL FORMS AND HERBRAND MODELS

Vxl . . .Vxv-1 qr+lxr+l.., qnxn M[xl, .., Xr-1, f r (X l , . . . , Xr--1), Zr-t-1, .-, Xn],

where the notation MIx1, . . . , x,_ 1, f , (x l , . . . , xr_ 1), x ,+~ , . . . , x,] means that
each occurrence of Xr in the matrix is replaced by f~(x l , . . . , x~-l), f~ being
the Skolem function (or Skolem constant if r = 1) that has been used to
replace x~ when constructing ~.

We will show that 61 ~ r Suppose that the interpretation I (with pre-
interpretation J and domain D) is a model of r This means that if V is
some arbitrary variable assignment, then for all d l , . . .~ d~-i E D,

is true under I and V(x l /d z) . . . (xr-i/d~_~). Let d~ be the domain element
Jf~(dl , . . . , d~-l). Then

q~+lz~+l ... q,~z,~ M[x l , . . . , x,-1, z~, x~+l,. . . , x~]

is true under / and V (x l / d l) . . . (x~-l/d~-l)(x~/d~). This means that for all
dl , . . . ,dr -1 , 3x~ q~+lx~+l ...q~x~ M[xl , . . . , x~- l , x~ ,x~+l , . . . , xn] is true
under I and V (x l / d l) . . . (x~-l/dr-~). And this in turn means that r is true
under I, so I is a model of 6. Hence 61 ~ 4-

Suppose qs is the first existential quantifier among q~+l, �9 �9 %. From 41
we can define a new formula 62, where qsx~ is removed from the prenex,
and each occurrence of x~ in the matrix of 61 is replaced by another Skolem
function fs, having x l , . . . , z ~ - l , x~+l , . . . ,x~- i as arguments (again, f~ is
the Skolem function which has been used to replace zo~ when constructing
~). Then we can prove in the same way as befbr% that r ~ 61, so CB ~ r

In this way, we can continue defining formulas 4; until all existential
quantifiers are removed from the prenex (each 4i will contain one existential
quantifier less than @-1). Everytime we will have the result that @ ~ 4.
So, if 6 contains k existential quantifiers, then r will contain only universal
quantifiers, and we will have the result that 6~r ~- 6. But since the Skolem
functions used to construct Ck are the same as the Skolem functions used to
construct ~, and since 6~ and ~b are based on the same prenex conjunctive
normal form 4, we see that Ck = ~. Hence ~ ~ 6. []

P r o p o s i t i o n 3.18 Let 6 be a formula, and let tb be a standard form ore . If
is unsatisfiable, then r is unsatisfiable.

P r o o f We make the same assumptions (without loss of generality), and we
define the same r Ck as in the proof of Proposition 3.17.

We will prove that if r is unsatisfiable, then r is unsatisfiable. So suppose
r is unsatisfiable. If r is satisfiable, then there exists an interpretation I
(with pre-interpretation J and domain D) such that r is true under I. That
is, if V is some arbitrary variable assignment, then for all d I , . . . , d~-I ~ D,
there exists a dr 6 D such that

3.4. H E R B R A N D MODELS 45

qr+lXr+l...qnXn M [x l , . . . , X r - l , X r , X r + l , . . . , x n]

is true under I and V(x l /d l) (x~/d~).
Now let the interpretation F (with pre-interpretation J~ and domain D)

be I, with the addition that J}r (d l , . . . , d~-l) = d~. Then r is true under
I ' , so 61 is satisfiable. This is a contradiction, so if 61 is unsatisfiable then r
is also unsatisfiable.

We can also prove in the same way that if 62 is unsatisfiable, then r is
unsatisfiable, so then r is unsatisfiable. And similarly, we can proof that if
r is unsatisfiable, then r is unsatisfiable, etc. Finally we have that if Ck is
unsatisfiable, then r is unsatisfiable. Since 6k = r we have the result that if

is unsatisfiable, then r is unsatisfiable. []

Now we can prove the theorem:

T h e o r e m 3.19 Let r be a formula, and let r be a standard form of r Then
6 is unsatisfiable iff r is unsatisfiable.

P r o o f
~ : Suppose r is unsatifiabIe. If r has a model M, then by Proposi-

tion 3.17, M is also a model of 6- Hence ~ has no models.
~ : This is Proposition 3.18. D

To end this section, note the following property of clauses:

P r o p o s i t i o n 3.20 A clause C is a tautology iff C contains a complementary
pair of literals (i.e., both A and -~A).

P r o o f
r This is obvious.
::~: Suppose C = L1 V . . . V Lk is a tautology, but does not contain A

and -~A. Let X l , . . . , x,~ be all distinct variables in C. Let D = { d l , . . . , d,~},
and V be a variable assignment which assigns di to xi, for every 1 < i < n.
Because C does not contain a complementary pair, and each xi is assigned
a different di, we can define an interpretation I, with domain D, such that
every literal Lj in C is false under I and V. But then C is false under I,
contradicting that C is a tautology. Hence C must contain a complementary
pair. []

3.4 H e r b r a n d M o d e l s

In this section, we will describe a special and very interesting class of inter-
pretations, the so-called Herbrand interpretations, named after the French lo-
gician Jacques Herbrand. Herbrand interpretations are particularly suited for

46 C H A P T E R 3. N O R M A L FORMS AND H E R B R A N D MODELS

clauses. In the next section, we will prove some interesting propositions con-
cerning Herbralld models. These propositions partly explain why Herbrand
models are useful, and why we need them in this work. Another reason why
we introduce Herbrand models, is that they provide a very natural semantics
for definite programs, which will be discussed in Chapter 7.

We start by defining the Herbrand universe (the set of all ground terms
in the language), and the Herbrand base (the set of all ground atoms in the
language).

D e f i n i t i o n 3.21 Let L be a first-order language. The Herbrand universe
UL for L is the set of all ground terms which can be formed out of the
constants and function symbols appearing in L. In ease L does not contain
any constants, we add one arbitrary constant to the alphabet to be able to
form ground terms.

D e f i n i t i o n 3.22 Let L be a first-order language. The Herbrand base BL for
L is the set of all ground atoms which can be formed out of the predicate
symbols in L and the terms in the Herbrand universe UL.

Often when we give an example, we do not first sum up the alphabet.
Instead, we just assume the alphabet consists of all symbols occurring in the
formulas we use.

E x a m p l e 3.23 Consider the set of formulas {P(a),Q(a, f(b)),Vx (P(x) -+
Q(x, x))}. Let L be the first-order language given by the symbols in this set.
Then the Herbrand universe UL is the infinite set

{a, b, f(a), f(b), f (f (a)), f (f (b)), . . .}.

The Herbrand base BL is the infinite set

{P(a) , P(b), Q(a, b), P(f(a)) , P(f(b)), Q(a, f(a)), Q(a, f(b)), . . .}.

<3

Like all interpretations, a Herbrand interpretation starts with a pre-
interpretation. What is special about Herbrand interpretations, is that we
take the set of ground terms (i.e., UL) as our domain. The mapping from
terms to domain elements is such, that each ground term is mapped to the
corresponding element in the domain, namely that term itself. So each ground
term in the language refers to itself in the domain.

D e f i n i t i o n 3.24 Let L be a first-order language. The Herbrand pre-inter-
pretation for L is the pre-interpretation consisting of the following:

1. The domain of the pre-interpretation is the Herbrand universe UL.
2. Constants in L are assigned themselves in UL.

3.4. H E R B R A N D MODELS 47

3. Each n-ary function symbol f in L is assigned the mapping J] from
g~ to UL, defined by J f (t l , . . . , t ~) = f (t l , . . . , t n) . O

Thus the function Jf maps t l , . �9 t,~ to the ground term f (t l , . . . , t~) in
the Herbrand universe UL.

E x a m p l e 3.25 We will give the Herbrand pre-interpretation for the alpha-
bet described in Example 3.23:

1. The domain is UL, as described in the previous example.
2. The constant a is mapped to a ~ UL, b is mapped to b E UL.
3. The function symbol f is assigned the following mapping Jf from UL

to uL: J (t) =] (t)

So for example, the term f (f (b)) is mapped to f (f (b)) r UL. <:J

Given an alphabet, essentially only one Herbrand pre-interpretation is
possible. 2 Based on this Herbrand pre-interpretation, we can define an Her-
brand interpretation by assigning to each n-ary predicate symbol P a map-
ping Ip from U~ to {T, F}. If UL is an infinite set (as is usually the case), an
infinite number of different IF's are possible, hence an infinite number of Her-
brand interpretations can be based on the unique Herbrand pre-interpretation
for a given alphabet.

De f in i t i on 3.26 Let L be a first-order language and d a Herbrand pre-
interpretation. Any interpretation based on J is called a Herbrand interpre-
tation. �9

Since a Herbrand interpretation assigns a mapping IF from U~ to {T, F}
to each n-ary predicate symbol P, it in fact divides the Herbrand base BL in
two disjoint sets:

1. The set of ground atoms P (t l , . . . , t ~) such that I p (t l , . . . , t ~) = T,
where P is an n-ary predicate symbol.

2. The set of ground atoms P (t l , . . . , t ~) such that I p (t l , . . . , t ~) = F.

This means that a Herbrand interpretation I is completely specified by the
set of all A E BL which are true under I. So we can represent any Herbrand
interpretation I economically by a subset (which we also call I) of Bc.

E x a m p l e 3.27 We define the following Herbrand interpretation I of the
language L defined in Example 3.23:

1. The pre-interpretation on which I is based, is the pre-interpretation
defined in the previous example.

2The only exception is the case where L does not contain any constants , and we have
to add one. Here we could choose different symbols for this new cons tant (a, or b, or c,
etc), so different Herbrand pre- interpreta t ions would be possible in this case.

48 C H A P T E R 3. NORMAL FORMS AND H E R B R A N D MODELS

2. P is assigned the following function from UL to UL : [p (t) = T if t = a
or i f t = f (f (a)) , Ip(t) = F otherwise.
Q is assigned the following function from U~ to UL: IQ(ti,t2) = T if
tl = t~, IQ(tl,t~) = F otherwise.

This I can be represented by the following infinite subset of BL:

{P(a) , P(f (f (a))) , O(a, a), Q(b, b), Q(f(a), f(a)), Q(f(b), f (b)) , . . . } . <

As the reader may already suspect, if some tbrmula is true under some
Herbrand interpretation I, then I is called an Herbrand model of this formula.

D e f i n i t i o n 3.28 Let L be a first-order language, E a set of formulas of L,
and I a Herbrand interpretation of L. If I is a model of E, it is called a
Herbrand model of E.

E x a m p l e 3.29 Continuing Example 3.23, the following are all Herbrand
interpretations of L:

�9 /1 = { P (a) , P (b) , Q (a , b) , Q (b , b) } .
I2 = { P (a) , Q(a, a), Q(a, f (b)) } .

�9 Ia = {P(f (f (a))) , P(b), Q(a, a), Q(a, f(b))}.
�9 /4 = { P (a) , P(b), Q(a, a), Q(b, b), Q(a, f (b)) } .

12 and /4 are Herbrand models of E = {P(a) ,Q(a , f (b)) ,Vx (P(x) -+
Q(x, x))}. I1 and Ia are not. <a

3.5 Results Concerning Herbrand Models

Now, why do we need Herbrand models? To show the usefulness of Herbrand
models, we need the following proposition.

P r o p o s i t i o n 3.30 Let E be a set of clauses in a first-order language L. Then
has a model iff E has a Herbrand model.

P r o o f
o : Suppose E has a model M. Then we define the following Herbrand

interpretation I:

1. The pre-interpretation is the Herbrand pre-interpretation of L.
2. Let P be an n-ary predicate symbol occurring in E. Then we define

the function Iv from U~ to { T , F } as follows: I v (t 1 , . . . , t ,) = T if
P (t ~ , . . . ,t~) is true under M, and Iv (t1 , . . . ,t~) = F otherwise.

It can easily be shown that I is a Herbrand model of E.
~ : This is obvious (a Herbrand model is a model). []

Note that in the previous proposition, E is required to be a set of clauses.
The proposition does not hold in the general case of arbitrary non-clausal

3.5. RESULTS CONCERNING HERBRAND MODELS 49

formulas. For example, consider the language L given by" the symbols in
= {3x P(x),- ,P(a)}. Here E has a model, but does not have a Herbrand

model. The problem lies in the domain: the Herbrand universe for this set of
formulas is the set {a}, whereas we need a domain of at least two elements
to make both formulas in E true.

We have already mentioned the importance of the concept of logical im-
plication (or logical consequence). Often, we have a set E and a formula r
and we want to find out whether E ~ r holds. E ~ r holds iff each model of

is also a model of r Thus a first idea might be to just check all models of
E, and see if r is true under these models. But, of course, because of the huge
(infinite) number of different ways of defining a model of E this approach is
intractable. Now a nice thing about Herbrand models is that we can restrict
our attention to Herbrand models when trying to prove E ~ r This is shown
by the following proposition:

P r o p o s i t i o n 3.31 Let E be a set of formulas and r a formula. Let S be a
standard form of E U {--r Then E ~ r iff S has no Herbrand models.

P r o o f E ~ r iff (by Proposition 2.37)
E U {-,r is unsatisfiable iff (by Theorem 3.19)
S is unsatisfiable iff
S has no models iff (by Proposition 3.30)
S has no Herbrand models. []

What the previous proposition shows, is that when trying to prove E ~ r
we only have to consider Herbrand interpretations of a standard form of

U {7r Though the number of Herbrand interpretations is usually infinite,
the task of investigating all Herbrand interpretations is much more tractable
than the task of investigating all arbitrary interpretations, since in Herbrand
interpretations we restrict ourselves to only one domain: the Herbrand uni-
verse UL.

E x a m p l e 3.32 Let E = {Vz (P(x) -+ Q(x)), 3x P(x)}, and r = ~x Q(x).
The set of clauses {(-,P(x) V Q(x)), p(a),-,Q(y)} is a standard form of the
set E U (-,r Proposition 3.31 implies that E ~ r iff S has no Herbrand
models. It can be shown that S has no Herbrand models, so E ~ r <~

E x a m p l e 3.33 Let E = {3x P (x) , - ,P (a)} , and r = P(b). Then the set of
clauses {P(c) , -~P(a) , - -P(b)} is a standard form of E U {-~r This standard
form has a Herbrand model, namely I = {P(c)}. Hence it follows that E ~= r

We have assumed here, in constructing this standard form, that c was
not part of the alphabet already (recall that introducing Skolem constants or
functions means extending the alphabet). We cannot use b as the new Skolem
constant instead of c, since b is already part of the alphabet (it occurs in
P(b)). For instance, if we took {P(b),-~P(a)} to be a standard form of E,

50 CHAPTER 3. NORMAL FORMS AND HERBRAND MODELS

then adding -~r would give the set of clauses {P(b) ,- ,P(a) , -~P(b)}, which
has no Herbrand model. So we would then mistakenly conclude that E ~ r

Finally, it should be noted that though Herbrand interpretations are suffi-
cient for determining the satisfiability of a set of clauses, they are not sufficient
for logical implication. For example, suppose we have a language L with only
one predicate symbol P, of arity 1, only one constant a, and no function sym-
bols of arity >_ 1. Then this language has only two Herbrand interpretations:
I1 = ~J and I2 = {P(a)}. The only Herbrand model of P(a) is I~, which is
also a Herbrand model of P(x). Hence every Herbrand model of P(a) is a
Herbrand model of P(x). Still, P(a) ~ P(x) does not hold, because we can
easily construct a non-Herbrand model of P(a) which is not a model of P(x).

3.6 Summary

This chapter defined two normal forms for first-order formulas. Firstly, we
discussed prenex conjunctive normal form, in which all quantifiers are at
the front of the formula, and the rest of the formula is a conjunction of
disjunctions of literals. A disjunction of literals is a clause. Sets of clauses
will be the vehicle for expressing theories in inductive logic programming.
Every formula can be put in prenex conjunctive normal form, and this normal
form will be logically equivalent to the original formula. Secondly, we defined
(Skolem) standard form, in which all existential quantifiers are eliminated. A
standard form can be written as a set or conjunction of universally quantified
clauses. Putt ing a formula in standard form does not always preserve logical
equivalence, but it does preserve satisfiability: the original formula has a
model iff the standard form has a model.

Furthermore, we defined the special class of Herbrand interpretations and
Herbrand models, which have the set of ground terms in the language as
domain. We showed that a set of clauses has a model iff it has a Herbrand
model. This means that in testing unsatisfiability of sets of clauses, we can
restrict attention to Herbrand models.

3.6. SUMMARY 51

3 .A Al ternat ive Nota t ion for Standard Forms

A standard form is a conjunction of universally quantified clauses. Usually,
the universal quantifiers are omit ted to simplify notation. Other notational
variants are also sometimes used in the ILP-li terature for such standard
forms. In this appendix, we will discuss most of these different notations.

First, concerning the building blocks of standard forms: clauses. A clause
is a finite disjunction of zero or more literals. The following different notations
are used in the li terature to denote a clause L1 V . . . V L~. We will illustrate
each notat ion on the clause P(a) V -~Q(x, y) v -,P(z) v Q(a, f(x)).

1. As a universally quantified disjunction of literals.

Example
VxVy (P(a) V -,Q(x, y) V -,P(x) V Q(a, f(x)))

2. As we defined it in the previous section, so as a disjunction of literals,
without explicit universal quantifiers.

Example
P(a) V -~Q(x, y) V -~P(x) V Q(a, f(x))

3. As a set ofli terals: { L , , . . . , L ~ } .

Example
{P(a) , -~Q(x, y),-~P(x), Q(a, f (x)) }
Note that both P(a) and P(a)VP(a) are represented by the set {P(a)}.
So in case of set-notation, a clause contains a literal only once.

4. As an implication. Suppose L1 = --,A1,... , Li = -~Ai are all negative
literals, and Li+l,. . . , Ln are all positive literals in the clause. Then the
clause is equivalent to the formula (A1 A . . . A Ai) --+ (Li+l V . . . V L~).
If the clause contains only positive literals, the '-+' symbol is usually
omit ted. If there are only negative literats, we can write (A1 A . . . A
A~)-<
For the notat ion of a clause as an implication there are also several
alternatives3:

1. As the formula (A1 A . . . AA;) --+ (Li+~ V . . . V L~).

Example
(O(x, y) A P(x)) --)" (P(a) V Q(a, f(x)))

2. Without the parentheses: A1 A . . . A Ai -+ Li+l V . . . V Ln.
Example
Q(x, y) A P(x) --+ P(a) V Q(a, f(x))

aTo complicate this notational mess even more, the implication r --+ r is often written
"the other way around" as ~b +- & We ignore this notation here, but will introduce it in
Chapter 7.

52 CHAPTER 3. NORMAL FORMS AND HERBRAND MODELS

3. As { A 1 , . . . , A , } --~ { L i + l , . . . , L n } , where { A 1 , . . . , A , } means
(A1 A. . . A Ai), and {Li+I, �9 �9 Ln} means (Li+l V . . . V L,~). Note
that the commas in the first set mean 'A', whereas in the second
set they mean 'V'.

Example
{Q(< P(.)) -+ {P(a), Q(a,

4. As the previous case, but without parentheses:
AI, . . . , A~ --+ L~+I,..., L,~.
Example
Q(x, y), P(x) -+ P(a), Q(a, f(x))

Now that we have seen the many different ways of representing a clause,
let us see how we can represent a standard form. We will illustrate this by
applying each notation to the formula VxVy (~P(a) V Q(x, y)) A gx P(x) h
Vy (Q(a, b) V -,P(y)).

1. As we defined it in the previous section, so as a conjunction of univer-
sally quantified clauses.

Example
VxVy (-~P(a) V Q(x, y)) A W. e(x) A Vy (Q(a, b) V ~P(Y))

2. As a conjunction of clauses, where the universal quantifiers are left
implicit for simplicity.

Example
(-,P(a) V Q(oe, y)) A e(x) A (Q(a, b) V -~P(y))

3. As a set of clauses, where the universal quantification is implicit. In
principle, this way of representing a standard form as a set of clauses can
be combined with any of the clause-representations mentioned above.

Example (if we represent a clause as a set of literals)
{{- ,P(a) , O(x, y)}, {P(x)}, {Q(a, b),-,P(y) }}

Example (if we represent a clause as a disjunction of literals)
v O(x, y)), P(.) , (Q(< b) v

Note that that if we do not make clear explicitly which notation we use,
sets like {P(a) , P(b)} are ambiguous: this set may either be the clause
P(a) V P(b), or a set consisting of the two clauses P(a) and P(b). In
this book, it will always be clear from the context whether we mean a
set to denote a clause, or a set of clauses.

Recall what we said at the end of Subsection 3.a.1: we can rename vari-
ables within clauses without regard to the variable names used in other

3.A ALTERNATIVE NOTATION FOR STANDARD FORMS 53

clauses. This means for example that the standard forms represented
by the following sets are all equivalent:

{ {~P(a), Q(x, y)}, {P(x)}, { Q(a, b),-~P(y)})

{{-~P(a), Q(z, y)}, {P(u)}, {Q(a, b),-~P(u)} }

{{-~P(a), Q(y, Xl)}, {P(y)}, { Q(a, b), -~P(y) } }

We hope the reader will not be put off by all these notational variants. In
the rest of our work, we will use the notation that seems most appropriate in
the context. We will t ry to be as consistent as possible in our own notational
conventions.

In the sequel, we will leave the universal quantification of a clause implicit.
So if we have a set E -- {C1, . . . , C,~} of clauses and a clause C, then we can
use E ~ C as an abbreviation of V(C1) A . . . A V(C~) ~ V(C). Similarly, if C
and D are clauses, we use C ~ D as an abbreviation of V(C) ~ V(D). For
notational convenience, we sometimes use L E C to denote that a clause C
contains a literal L, and C C D to denote that the set of literals in C is a
subset of the set of literals in D.

Chapter 4

R e s o l u t i o n

4.1 In troduct ion

Logic programming concerns the use of (clausal) logic for representing and
solving problems [Kow79]. 1 This use is widespread throughout many parts
of artificial intelligence. The idea is that some problem or subject of inquiry
can be described by a set of formulas, preferably clauses. If this description
is sufficiently accurate, then the solution to the problem, or some particu-
lar piece of information about the subject of inquiry, is logically implied by
the set of formulas. Thus, clearly, finding out which formulas r are logical
consequences of some set of formulas E is crucial to many areas of artificial
intelligence, including inductive logic programming.

Accordingly, we would like to have a procedure, an algorithm, which could
find out whether or not E ~ r is the case. What is an algorithm? We will
only give an informal explanantion here, referring to [HUT9, CLRg0] for the
more formal details. Intuitively, an algorithm is a procedure, a specific se-
quence of operations upon given data. It is used to solve some problem, and
should terminate after a finite number of steps for the given data. The data
(input) given to the algorithm is a particular instance of the problem, and
the desired result (output) is a solution to this instance. Consider for instance
the problem "is the natural number n prime?" It is well known that there
exists an algorithm which can give the right answer for each instance of this
problem (i.e., for each particular n).

In general, suppose we have some problem P. If there exists an algorithm
which can give the right answer to each instance of P, then P is called
computable. An example of a computable problem is the problem "give the
smallest prime number greater than n". The most straightforward algorithm

1The t e r m 'logic p r o g r a m m i n g ' is of ten res t r ic ted to the use of Horn c lauses (see Chap-
ter 7). However, in t h e b road sense in which we take it here, it refers to a n y t h i n g h a v i n g
to do wi th c lauses and reso lu t ion .

56 CHAPTER 4. RESOLUTION

to solve this problem simply checks whether n + 1 is prime; if so, it outputs
n + 1; if not, it checks whether n + 2 is prime, etc. Since there is no greatest
prime number, this procedure outputs the right answer after a finite number
of steps, for each instance of the problem.

One special class of problems, are the problems where the answer to each
instance can only take on the values 'yes' or 'no'. An important example of
this, is logical implication: "given a finite set of formulas E and a formula ~,
does E ~ r hold?" Clearly, each instance of this problem can only have 'yes'
or 'no' as answer. If such a two-valued problem is computable, it is called
decidable, and an algorithm which solves it is called a decision procedure. If
not, the problem is called undecidable.

For the propositional logic, logical implication is indeed decidable. For
suppose we are given E and r Let n be the number of distinct atoms in
these formulas. Then the number of interpretations is finite, namely 2 n. Hence
there is an algorithm to find out whether E D $ holds: this decision procedure
simply checks whether r is true in all models of E, and outputs 'yes' if this
is the case, and 'no' otherwise.

But what about logical implication in first-order logic? Here we can have
infinitely many different domains and hence infinitely many different inter-
pretations, which means that the decision procedure for propositional logic
will not work here. In fact, it can be proved that such a decision procedure
does not exist at all for first-order logic: logical implication for first-order
logic is an undecidable problem. This is called Church's Theorem. It follows
from a result proved independently by Alonzo Church [Chu36] and Alan
Turing [Tur36], the proof of which is beyond the scope of this book (see for
instance [B J89]).

T h e o r e m 4.1 (Church) The problem whether E ~ r where E is an arbi-
trary finite set of formulas and r is an arbitrary formuIa~ is undecidable.

Note carefully that the problem is undecidable for arbitrary E and r there
is no single algorithm which can always--after a finite number of steps--
return the right answer to the problem "is r a logical consequence of E?" for
any E and r

So our problem of deciding E ~ r cannot be solved by an algorithm
(and hence cannot be solved by a computer). There are, however, procedures
which can be of great help here. These are called proof procedures. Before
explaing what a proof procedure is in the next subsection, we will first make
some remarks on the impact of such procedures on the problem of deciding

There exist procedures which, when given as input arbitrary E and r for
which E ~ r holds, can verify in a finite number of steps that indeed E ~ ~.2
This seems perhaps a bit trivial (what's the point of verifying E ~ r when

2Because of the existence of such procedures, logical implication is sometimes called
semi-decidable.

4.2. WHAT IS A PROOF PROCEDURE? 57

you already know this?), but ig is not. The point is that such a procedure can
be given N and r as input for which you do not know yet whether ~ ~ r
The procedure is then guaranteed to terminate in a finite number of steps
and give a correct answer if indeed 2 ~ r If, on the other hand, the input
has the property that 2 ~: r then the procedure either terminates with the
correct answer 'no', or continues forever. This last property of such proce-
dures, that they need not terminate if N ~: r is very unfortunate. However,
it is unavoidable: if the procedure also always terminated with the right an-
swer if 2 g= r it would contradict Church's Theorem. In the next section,
we will elaborate a bit on such procedures. After that, we will introduce the
resolution rule, which forms the basis of some important proof procedures.

4 .2 W h a t Is a P r o o f P r o c e d u r e ?

In the previous section, we have already made some remarks on proof pro-
cedures, without really explaining what a such procedure is. We will explain
this presently. Roughly, a proof procedure is a way of generating a proof that
some formula r is a logical consequence of some set of formulas ~. The for-
mulas in ~ are usually called the premises of the proof, and r is called the
conclusion of the proof.

Usually, such a proof consists of a number of small steps of some spe-
cial form. In each step, a new formula is "derived" from the premises and
previously derived formulas. By 'deriving a formula' we mean constructing
a formula from the premises and previously derived formulas, according to
some specific rule. For instance, a proof procedure that is often used in math-
ematics is modus ponens. Modus ponens is the rule that allows one to derive
the formula r from the set of formulas {r (r --+ r This rule can be schema-
tized as follows. Here the premises are above the line, and the derived formula
is shown below the line:

~, r162
r

We can link several modus ponens steps together to form a proof. For ex-
ample, suppose we have }2 = {P(a), (P(a) --+ Q(b)), (Q(b) --+ 3x R(x))}.
Taking two modus ponens steps, we can derive the formula 3x R(x) from s
as follows:

1. Derive O(b) from {P(a), (P(a) -+ O(b))}.
2. Derive 3x R(x) from {Q(b), (Q(b) --+ 3x R(x))}.

The previous sequence of steps constitutes a proof that 3x R(x) can be de-
rived from N, using modus ponens. In general, a proof consists of one or more
steps, each taken according to the rule (or rules) specified by the proof pro-
cedure, where in each step the premises are the original set B and previously
derived formulas.

Clearly, if we use modus ponens, the conclusion r is a logical consequence
of the premises: {r (r --~ r ,~ r This property of modus ponens is called

58 CHAPTER 4. RESOLUTION

soundness. In general, a proof procedure is sound if all formulas 6 that can
be derived from some set E, according to this proof procedure, are logical
consequences of E. In other words, a proof procedure is sound if it allows
only logical consequences of the premises to be derived.

For most purposes, soundness is a necessary property of a "good" proof
procedure: a proof procedure which provides us with "proofs" of things which
do not follow from the premises could be rather misleading, a The following
scheme represents an example of an unsound proof procedure:

~, ~ - ~

This rule allows us to derive the formula P(a) from the set {Q(a), (P(a) --+
Q(a))}. But clearly {Q(a), (P(a) -+ Q(a))} ~: P(a), so this rule is not sound.

A second desirable property of proof procedures is completeness. A proof
procedure is complete if every formula that is a logical consequence of the
premises E, can be derived by this particular proof procedure. Modus ponens
by itself is not complete. For instance, there is no sequence of modus ponens
steps which can derive the formula P(a) from the premises E = {P(a)AP(b)},
though surely E ~ P(a). To see why this is so, note that we need a formula
of the form (4 --+ ~P) to be able to apply modus ponens. The set E does not
contain any formulas of this form. An example of a complete proof procedure
is represented by the following rule:

This rule allows us to derive any formula from any premise. It is clear that
this rule is complete: since we can use this rule to derive any formula from
the premises, we can also use it to derive any logical consequence of the
premises. Unfortunately, this rule is not sound: it allows us for example to
derive the formula -~P(a) from the premises {P(a)}. We see that obtaining
completeness is easy, but obtaining completeness and soundness at the same
time is much harder. To summarize: a proof procedure is sound if it can only
derive logical consequences of the premises, and it is complete if it can derive
all logical consequences of the premises.

In this and the next chapters we will discuss the derivation rule that is
probably the most important principle of mechanical theorem proving. 4 This
rule is called resolution. In this chapter we will define this rule and prove
its soundness. In later chapters we will prove several completeness results
involving resolution: the refutation completeness of resolution itself, and a
more direct completeness result (the Subsumption Theorem) which combines
resolution with another rule, called subsumption. Before we go into resolution,

3One excep t ion is SLDNF-reso lu t ion , the topic of C h a p t e r 8.
4If b can be der ived f rom E us ing some der iva t ion rules, t hen ~ is cal led a theorem

of the c o m b i n a t i o n of E a n d these der iva t ion rules. Hence the n a m e mechan ica l theorem
proving.

4,3. SUBSTITUTION AND UNIFICATION 59

we will first introduce in the following section some tools that are presupposed
by the definition of resolution: substitution and unification.

4.3 Subst i tut ion and Unification

4 . 3 . 1 S u b s t i t u t i o n

In this subsection we will define substitutions. A substitution replaces vari-
ables by terms. For example, we could replace the variable x by the term f(a)
in the clause P(x) V Q(x). We then get the new clause P(Z(a)) V Q(f(a)). If
we take the clauses to be universally quantified, we may say that this substi-
tution makes the clause "less general". Whereas the first clause "says" that
IF (d) = T or IQ (d) = T is true for all d in the domain, the second clause only
claims tha t IF (d) or IQ (d) is true if d is the domain element to which the
term f(a) is mapped by the pre-interpretation. Note that the second clause
is a logical consequence of the first clause: P(x) V Q(x) ~ P(f(a)) v Q(f(a)).

Defini t ion 4.2 A substitution ~ is a finite set of the form

{x l / t l , . . . , > o,

where the xi are distinct variables and the ti are terms. We say ti is substituted
for xi. xi/ti is called a binding for xi. The substitution 0 is called a ground
substitution if every ti is ground.

The substi tution given by the empty set (n = 0) is called the identity
substitution, or the empty substitution, and is denoted by e. The restriction
of 0 to a set of variables V is the substitution {x/t C 0 I x E V}. <7

E x a m p l e 4.3 {y/x, x/g(x, y)} and {x/a, y/f(z), z/f(a), xl/b} are substitu-
tions. The restriction of the latter to {x, z} is {x/a, z/f(a)}. <3

Defini t ion 4.4 An expression is either a term, a literal, or a conjunction or
disjunction of literals. A simple expression is a term or a literal.

Note that a clause is an expression. A substitution can be applied to an
expression, this means that variables in the expression are replaced by terms
according to the substitution.

Defini t ion 4.5 Let 0 = {xl / t~, . . . , xn/tn} be a substitution, and E an ex-
pression. Then EO, the instance of E by 0, is the expression obtained from
E by simultaneously replacing each occurrence of xi by ti, 1 < i < n. If E0
is ground, then E0 is called a ground instance. If 0 is a ground substitution
and E0 is ground, then 0 is called a ground substitution for E.

If E = { E l , . . . , En} is a finite set of expressions, then E0 denotes
E O}. <>

60 CHAPTER 4. RESOLUTION

E x a m p l e 4.6 Let/V be the expression P(y, f(x)) and let 0 be the substitu-
tion {x/a, y/g(g(x))}. The instance of E by 0 is EO = P(g(g(x)), f(a)). Note
that x and y are simultaneously replaced by their respective terms, mean-
ing that the x in y/g(g(x)) is not affected by the substitution x/a. Another
substitution is c~ = {x/Z(a), y/b}. E(r = P(b, f(f(a))) is ground, so E a is a
ground instance of E, and ~r is a ground substitution for E. <1

To understand substitutions, it may help to regard a substitution 0 =
{ x l / t l , . . . , xn/t,~} as the following mapping from the set of variables in the
language to the set of terms in the language:

f ti i f v = z i , O(v) \ v otherwise.

In this case, e would represent the identity mapping.
For example, suppose that the set of variables in the language is {x, y, z},

and 0 = {x /a , z / f (z) } . Then 0 represents the following mapping from
{x, y, z} to the set of terms in the language:

a i fv = x,
O(v) = y i f v = y ,

f(z) i f v = z .

Applying 0 to an expression E (i.e., determining the instance EO) then means
replacing each v in E by O(v), for each variable v occurring in E. For example,
i f E = P(x, z,g(y, z)), then EO is obtained by replacing in E each x by a, "re-
placing" each y by y, and replacing each z by f(z): EO = P(a, f(z), g(Y, a)).

It is always possible to expand a substitution 0 such that it works on more
variables in the language, by just adding the binding x/x for variables x that
0 does not act on. Hence we can always assume without loss of generality that
a substitution is defined on any variable in the language. For the previous
substitution 0 we could add y/y, which yields {x/a, y/y, z/Z(z)}. This way
we can make explicit the way in which a substitution works like a mapping,
in the usual mathematical sense.

If E is an expression which is not a term (i.e., a literal or a conjunction
or disjunction of literals), and 0 is a substitution, then the following holds:
E ~ EO. For example, P(x)v-~Q(y) ~- P(a) v-~Q(y), where we have used
the substitution {z/a}. The proof for this example is easy: suppose I is a
model, with domain D, of P(x) V ",Q(y). Then for all dl E D, and for all
d2 E D, IF(d1) = T or I0(d2) = F. Suppose a is mapped to domain element
d by I. Then for all d2 E D, IF(d) = T or IQ(d2) = F. Hence I is a model of
P(a) V -~Q(y). It is clear that for different E or 0, a similar proof can always
be given. Hence always E ~ E0.

We can apply some substitution 0, and then some substitution ~r. We then
get the composition of these two substitutions. Again, regarding substitutions
as mappings is helpful in understanding this definition. The composition of

4.3. SUBSTITUTION AND UNIFICATION 61

the substitutions 0 and c, is like the composition of two mappings: first ap-
ply 0, and then apply c< This composition can then itself be regarded as a
mapping from the set of variables in the language to the set of terms.

For instance, the composition of 0 = {y/ f (z)} and r = {x/b, y/a, z/a}
is 0c~ = {y/f(a), x/b, z/a}. Let us see how this operates on the variable y:
yO = f(z), and (yO)~ = f(z)r = f(a). This gives the same result as applying
the composit ion 0r immediately to y: y(Ocr) = f(a).

D e f i n i t i o n 4.7 Let 0 = {x l / s l , . . . , x ,~ /s ,~} and o" = {Y l /h , . . . ,Y~ / t~} be
substitutions. Consider the sequence of bindings

x l / (s l ~) , . . . , x~/(sm~), y l / h , . . . , y ~ / t ~ .

Delete from this sequence any binding x~/(sir for which xi = (sicJ, and any
binding yj/tj for which yj E {x l , . . . , x,~}. The substitution consisting of the
bindings in the resulting sequence is called the composition of 0 and r and
is denoted by Oct.

E x a m p l e 4.8 Let 0 = {x/ f(y) , z/u} and ~ = {y/b, u/z}. We construct
the sequence of bindings x/(f(y)o-), z/(u~r), y/b, u/z, which is x/f(b), z/z,
y/b, u/z. Deleting the binding z/z, we obtain the sequence x/f(b), y/b, u/z,
which yields the composition 0~r = {x/f(b), y/b, u/z}.

Let 0 = {x/y} and a = {x/a, y/a]. We construct the sequence of bindings
x / (y~) , x / a, y / a = x / a, x / a, y / a. After deleting the second occurrence of the
binding x/a (though not the first occurrence!) from this sequence, we obtain
0o" = {x/a, y/a}. <~

D e f i n i t i o n 4.9 Let 0 and cr be substitutions. We say 0 is an instance of ~r if
there exists a substitution 7 such that c~ 7 = 0. O

E x a m p l e 4.10 The substitution 0 = {x/f(b), y/a} is an instance of c~ =
{ x / f (x) , y / a } , since = O.

We now prove some properties of substitutions (if we regard substitu-
tions as mapp ings - - a s explained above- - then these properties are obvious
consequences of properties of mappings in general).

P r o p o s i t i o n 4.11 Let E be an expression, and let O, ~ and ~ be substitu-
tions. Then the following hold:

1. O=Oe=sO.
2. (EO)~ = E(O,).
s. (o~)~ : o(-v).

P r o o f

1. This is obvious, since ~ does not change anything.

62

2.

.

C H A P T E R 4. R E S O L U T I O N

It is sufficient to prove that the result holds for all variables occurring in
E. Let x be a variable occurring in E. Suppose 0 = { x l / s ~ , . . . , x ,~ /Sm}
a n d =

If x ~ { x l , . . . , x m } U {Yl,...,Yn}~ then x = (x0)G = x(0a).
= { X l , . . . , t h e n (x0) = =

If x = y~" E {Yl,. . . ,Y~}, and x ~ { x l , . . . , x m } , then (xO)cr = x~r = ti =

Let x be a variable. Then, using the previous part of this proposition,
x((0.)7) = (x (0 .)) ; = ((x0).)~. = (x0)(.~) = ~(0(.7)). []

Since (EO)(r = E(0c~), we will usually omit the parentheses, and write
this as EO~. Though the previous proposition shows that substitutions have
some nice properties, it is not generally true that 0~r = ~r0. For example, let
0 = { x / a } and let ~r = {x /b} . Then 0c~ = { x / a } , but c~0 = {x /b} .

Sometimes we need to rename the variables in a formula. The new formula,
which is equivalent to the old one, is called a variant of the old formula. We
can obtain such a variant by applying a renaming substitution, defined as
follows:

De f in i t i on 4.12 Let E be an expression, and let 0 be the substitution
{ x l / y l , . . . , x ~ / y ~ } . We say 0 is a renaming substitution for E if each xi
occurs in E, and Yl, �9 �9 Yn are distinct variables such that each Yi is either
equal to some x j in 0, or Yi does not occur in E. <5

E x a m p l e 4.13 Let E = f(a , x, y, z). Then 0 = { x / x l , z / z } is a renaming
substitution for E and EO = f (a , x l , y, x). On the other hand, ~r = { x / y } is
not a renaming substitution for E, because y is not equal to x and y already
occurs in E. <~

D e f i n i t i o n 4.14 Let E and F be expressions. We say E and F are variants,
or E is a variant of F, if there exist renaming substitutions 0 and c~ such that
E = FO and F = Ec,. C,

E x a m p l e 4.15 The clauses C = P (x) V Q(x , y) and D = P(y) V Q(y, z) are
variants, since C = DO for 0 = {v /x , z /v} , and D = f o r . = {xlv , v / z} ,
where 0 is a renaming substitution for C2, and cr is a renaming substitution

for C1. <3

P r o p o s i t i o n 4.16 Let E and F be expressions. I f there exist substi tutions
0 and (r such that E = FO and F = Ec% then E and F are variants.

P r o o f We assume without loss of generality that 0 only acts on variables in
F, and ~ only acts on variables in E. If 0 was not a renaming substitution
for F, then we could not have FO~ = EG = F, so 0 must be a renaming
substitution for F. Similarly, c~ must be a renaming substitution for E, and
E and F are variants. 71

4.3. SUBSTITUTION AND UNIFICATION 63

4.3 .2 U n i f i c a t i o n

A unifier for the set of expressions {Ez, E 2 , . . . , E~} is a substitution 0 such
that EIO = E20 = ... = E~O.

D e f i n i t i o n 4 .17 Let E be a finite set of expressions. A substitution 0 is
called a unifier for E if E0 is a singleton (a set containing exactly one ele-
ment). If there exists a unifier for E, we say E is unifiable. <5

E x a m p l e 4 .18 The substitution 0 = {x/a, y/f(a)} is a unifier for the set
E = {(P(x) V-~Q(y)), (P(a) v ~Q(f(x)))}, since E0 = {P(a) V -,Q(f(a))}.

The set {P(a, f(x)), P(a, g(x))} is not unifiable, because f(x) and g(r
are not unifiable. The set {P(a, x), P(y, b)} is unifiable, while the set {P(a, x),
P(x, b)} is not. <1

D e f i n i t i o n 4.19 If 0 is a unifier for E, and if for any unifier c~ for E there
exists a substitution 7 such that ~r = Off, then 0 is called a most general
unifier (abbreviated to mgu) for E.

E x a m p l e 4.20 Let N be the set {R(x, x), R(z, f(y)}. Then 0 = {x//(y),
z/ f(y)} is an mgu for 2. The substitution e~ = {x/f(a), z/f(a), u/a} is a
unifier for N, but not an mgu, since there does not exist a substitution 7 for
which ~r 3, = 0. <~

The mgu for some set of expressions is not unique: both {x/y} and {y/x}
are mgu ' s for the set {P(x) , P(y)}. Note that 0 = {x/z, y/z} is not an mgu
for this set, since there is no 3, such that {x/y} = 07. In particular, O{z/y} =

r {x/y}.
Below, we describe an algorithm to find an mgu for a set of expressions.

D e f i n i t i o n 4.21 Let E be a finite set of simple expressions. The disagree-
ment set of E is defined as follows. Locate the leftmost symbol position at
which not all members of E have the same symbol, and extract from each
expression in E the subexpression beginning at that symbol position. The set
of all these expressions is the disagreement set. O

E x a m p l e 4 .22 Let E be the set

{P(x, y, v), P(x, f(g(a)), x), P(x, f(z), f (a)) }.

The leffmost symbol position at which not all members of E have the same
symbol is in this case the second argument place of P. The disagreement set of
E is thus the set {y, f(g(a)), f (z)} , the set of all subexpressions at the second
argument place of each expression in E (the underlined subexpressions). The
disagreement set of E = {P(x) , Q(a),--,R(x)} is {P(x) , Q(a),-~R(x)}. <3

64 CHAPTER 4. RESOLUTION

The following algorithm takes as input a set E of simple expressions (terms
or literals), and at tempts to construct an mgu for this set. It can be proved
that the algorithm always finds an mgu if one exists, and always reports that
E is not unifiable if there does not exist an mgu for E.

Algorithm 4.1 (Unification Algorithm)
Input: A finite set E of simple expressions.
Output: An mgu for E (if E is unifiable).

1. Set k = 0 a n d ~ 0 =~ .
2. If E~rk is a singleton, then stop: ~rk is an mgu for E.

Otherwise, find the disagreement set Dk of E(rk.
3. If there exist x and t in Dk such that x is a variable not occurring in t,

then set o'~+1 = ~k{x/t}, increment k by 1 and go to step 2.
Otherwise, report that E is not unifiable, and stop.

E x a m p l e 4.23 We will show how the algorithm works on the set E =
{P(x, y, v), P(x, f(g(a)), x), P(x, f(z), f (a))} . In each E~k, we have under-
lined the members of the disagreement set.

i. ~r0 = ~.
Echo = {P(x, y, v), P(x , f(g(a)), x), P(x , f(z), f(a))}.

2. Do = {y, f(g~a)), f(z)},-~l - {y/f(g(a))~.
~0"1 --~ {P(~, f(g(a)), v)~ P(x, f(g(a)), x), P(x~ f(z), f(a))}.

3. D1 = {g(a), z } , - ~ 2 -- {y/f(g(a)),-~g(a)}.
Ecr2 = {P(x, f(g(a)), v_), P(x, f(g(a)), z_), P(x, f(g(a)), f(a))}.

4. D2 = {v, x, f (a)}, ~2 = {y/f(g(a)), z/g(a), v/x}.
E~rs = {P(x, f(g(a)),x_), P(x~ f(g(a)), f (a))} .

5. Ds = {x, f (a)}, ~r3 = {y/f(g(a)), z/g(a~,~/f(a)~ z / f (a)} .
Ecr4 = {P(f(a), f(g(a)), f(a))}.

E(r4 is a singleton, so ~r4 is an mgu for E.

E x a m p l e 4.24 Another application of the algorithm, this time to the set
E = {Q(a, x), Q(y, f (x))}, which is not unifiable.

1. O'o = g.

Ea0 = {Q(a_, x), Q(y_,/(~J)}.
2. Do : {a,y}, o'z = {g/a}.

Eal = {Q(a,~), O(a~ f (x))}.
3. D~ = {x, f (x)} , and there are no variable x and term t in D~ such that

x does not occur in t, so the algorithm terminates and correctly reports
that E is not unifiable. <1

Note the phrase "x is a variable not occurring in t" in the third step
of the algorithm. This check if x does not occur in t is called the occur
check. The occur check is crucial for the performance of the algorithm. For
example, without the occur check, the algorithm would not detect that the
set E = {x, f (x)} is not unifiable, and would continue forever. We will give
the first few steps of the way the algorithm without the occur check would
handle this E:

4.4. A N INFORMAL INTRODUCTION TO RESOLUTION 65

1. (rO=~.
Zo" 0 = { z , / (X)) .

2. Do = {x, f - ~ (note that x occurs in f(x)i), o'1 = {x / / (x) } .
~0" 1 -- {f(x), f (f (x)) } .

3. D1 = {x, f(x)}, G2 = { x / f (f (x)) } .
E~2 = {f (f (x)) , f (f (f (x))) } .

Clearly, this goes on forever. In each step, the algorithm mistakenly sets
o'k = ~ k - l { x / f (x) } , since it does not notice that x occurs in f (x) .

It can be proved by induction on the number k of steps used, that algo-
ri thm 4.1 always terminates, and always finds an mgu if one exists. We will
not give the details of the proof here, but refer instead to [Llo87, Theorem 4.3]
or [CL73, Theorem 5.2].

T h e o r e m 4.25 (Un i f i ca t i on T h e o r e m) Let E be a finite set of simple ex-
pressions. If E is unifiable, then the Unification Algorithm terminates and
gives an mgu for ~. If E is not unifiable, then the Unification Algorithm
terminates and reports the fact that E is not unifiable.

For more efficient unification algorithms, see [PW78, MM82]. More on
substitutions and (most general) unification may be found in [Ede85, LMM88]
and in Chapter 2 of [Apt97].

4.4 An Informal Introduct ion to Reso lut ion

Now that we know what a proof procedure is, and how to use substitutions to
unify sets of simple expressions, we can explain resolution. To avoid stating
immediately a large sequence of definitions, we will first informally introduce
the resolution principle in this section. Let us start with some examples:

�9 If we know that
1. Peter plays chess or Peter plays football.
2. Peter does not play football.

then we can conclude that Peter plays chess.
�9 {(P V Q), -~Q} ~ P (note that this can be seen as a formal representa-

tion of the previous example, where P stands for "Peter plays chess",
and Q stands for "Peter plays football").

�9 { (-~3x P(x) V O(a)), (Q(b) v Sx P(x)) ~ O(a) v Q(b)
�9 {(P(a)VQ(b)) , (-~P(a)v(Q(a) -+ R(a,b)))} ~ Q(b)v(Q(a) --+ _R(a, b))

Note the resemblance between these examples--they all conform to the
following scheme: {(r V r (-~r V X)} ~ r V X. This scheme, where r and/or
X may be omitted, and the order of the formulas is not important, can be
viewed as the following derivation rule:

66 CHAPTER 4. RESOLUTION

The proof procedure based on this rule is called resolution. It was introduced
in 1965 by J. A. Robinson [Rob65], who proved its refutation completeness
(for which see the next chapter).

It can be easily shown that the resolution rule is sound. Suppose both
premises are true. Since either r or -,8 must be false, at least one of the
formulas r and X must be true, for otherwise one of the premises r V r or
-~8 V X would be false. Hence the derived formula, ~b V X is true. Thus r V X
is a logical consequence of the two premises.

The formulas 0 and -10 which occur in the two premises are said to form
a complementary pair. In the scheme above, the formulas of the complemen-
tary pair are required to be the leftmost subformulas of the two premises,
respectively. But this order within each premise is of course not necessary:
the derivation of R(a)V Q(a) from {(R(a)V P(b)), (Q(a)V-~P(b))} is a valid
application of resolution, even though the formulas in the complementary
pair (P(b) and -~P(b)), are not at the front of their respective premises.

Resolution can be applied to all sorts of formulas, but usually the ap-
plication of resolution is restricted to clauses. That is, the premises and the
conclusion of the derivation are required to be clauses (thought to be uni-
versally quantified, as usual). The reason for this restriction is that we can
prove some important completeness results if we restrict ourselves to clauses.
So henceforth, we will only use resolution to derive clauses from clauses.
Applying a resolution step to two clauses is easy: the conclusion is just the
disjunction of all the literals in the two premise-clauses, except for the com-
plementary pair. For example, P(a) V Q(a) can be derived from the premises
P(a) V R(b) and -,R(b) V Q(a).

One or more applications of this derivation rule (resolution) together form
a derivation. As a simple example from propositional logic, let us see how we
can derive the clause P V Q from the set E = {(P V S), (-~S V Q v -~R), R}:

1. Derive P V Q V -~_R from {(P V S), (~S V Q v -~R)}.
2. Derive P V Q from {(P V Q v -~.R), R}.

Since resolution is a sound derivation rule, we have found a proof that {(P V
S), (~S V Q V ~R), R} ~ (P V Q).

Such a derivation can be represented by a binary tree. For the previous
example this tree is pictured i:n Figure 4.1. The tree should be read top-down:
the leaves are clauses from E, each node N that is not a leaf is derived (using
the resolution-scheme) from the two clauses on the nodes leading to N, and
the root of the tree is the conclusion of the derivation.

In the case of first-order logic, we have to make one important addition,
namely that we often must use unification to create a complementary pair.
For instance, the clauses C1 = --P(x) V-,R(a) and C~ = R(y) v- ,Q(y) do not
contain a complementary pair. However, when we apply the mgu 0 = {y/a},
then C~O and C20 contain the complementary pair {-~/~(a), R(a)}. So after

4.4. A N INFORMAL INTRODUCTION TO RESOLUTION

P v S . . S v Q v R

PvQv'~.R

P v Q

F i g u r e 4.1: The tree for the derivation of P V Q

67

a p p l y i n g this subs t i t u t i on , we can use the resolu t ion pr incip le to derive the
new clause R = -,P(x) V -,Q(a) f rom C10 and C20; see F igure 4.2.

c~ : -,P(~) v ~R(a) c : = n(y) v -Q(y)

-.P(~) v -,Q(a)

F i g u r e 4.2: Derivation of -,P(x) V -,Q(a), with mgu {y/a}

Also in the f i rs t -order case, several reso lu t ion s teps toge ther form a der iva-

t ion. For ins tance, we can find a de r iva t ion of the clause R(a) f rom the set
2 = {(Q(a) v P(a)), (-,Q(x) v P(x) v / ~ (x)) , - ~ P (y) } ; see F igure 4.3.

Q(a) v P(a) ,p(y) ~p(s) -Q(.) v P(~) v n(~)

Q(a) -,Q(~) v n(~)

n(a)

F i g u r e 4.3: Derivation of It(a)

One specia l case of a de r iva t ion is a refutation, this is a de r iva t ion
of the empty clause n. For instance, there exists a re fu ta t ion of the set
{ P (a) , - ~ P (x) } , involving one resolu t ion step.

68 CHAPTER 4. RESOLUTION

Up till now, we have not explained what the empty clause means. We
will explain this presently. A clause C is thought to be universally quantified.
Suppose x l , . . . , x,~ are all the variables appearing in C. Then C is true under
some interpretation I, with domain D, if for all dl, . . . , d,~ E D, at least
one literal in C is true under I and V(xl /d l) . . . (x~/d~) (where V is some
arbitrary variable assignment). But the empty clause does not contain any
literals which can be true, hence it is false under any I. This means that we
can consider [:3 as a contradiction. Later on in this chapter, we will formally
prove the soundness of derivations. This soundness implies that if we have
found a refutation (a derivation of the contradiction c3), we have found a
proof that E is unsatisfiable: every model of E is then a model of D, but []
has no models, so E has no models.

4.5 A Formal Treatment of Reso lut ion

In this section, we will make the informal discussion of the previous section
more precise, by providing formal definitions of the concepts used there. Be-
cause the syntax of propositional logic is embedded in the syntax of first-order
logic, all these definitions apply to propositional logic as well as to first-order
logic. Some subtle points that have been swept under the rug in the previous
section, will also be explained here.

To be able to apply resolution to clauses, we need two clauses which
contain a complementary pair, such as P(a) and -~P(a). So we start off with
the corresponding definition:

D e f i n i t i o n 4.26 Let L1 be a positive literal, and let L2 be a negative literal.
Then L1 and L2 form a complementary pair if --L1 = L2. <5

Here we adopt the convention that the negation of a negative literal -~A is
A. So for instance, if L = -~Q(x, y), then we use --L to denote Q(x, y).

E x a m p l e 4.27

* '~Q(x, y, f(b)) and Q(x, y, f(b)) form a complementary pair.
| The clauses P(x) V Q(a) and R(x, y) V -~Q(a) v -~P(f(a)) contain the

complementary pair Q(a) and -,Q(a). <~

If we have two clauses containing a complementary pair, we can derive a
clause which is called a binary resolvent of these two clauses, following the
resolution scheme presented in the previous section. The binary resolvent
then contains all the literals in the two original clauses, except for the two
literals in the complementary pair.

But as we have seen in Figure 4.2, sometimes we first have to apply a
substitution to the two original clauses in order to obtain a complementary
pair. An important and rather subtle point concerns the names of variables
in a clause. Suppose we have C1 = P(a) vQ(x) and C2 = -~P(a) VS(x). Then

4.5. A FORMAL TREATMENT OF RESOLUTION 69

by the resolution scheme, we could derive R = Q(x) v S(x) from C1 and C2.
But suppose we rename C2 to C~ = -~P(a) V S(y). Then we could derive
R' = Q(x) v S(y). Clearly, R and R' are not equivalent, in fact R' ~ R but
R ~ R I. The problem is, of course, that C1 and C2 both contain the variable
x. Intuitively, this is not "the same variable x". Yet the difference between
these two variables x is obliterated when we derive the clause R.

We want our binary resolvents to be as "general" as possible. Thus in the
previous example we would prefer R I to R as a binary resolvent. In order
to assure that we always get the binary resolvent we want, we make the
convention of renaming one (or both, though this is not necessary) of the
premises such that they do not have any variables in common. They are then
said to be standardized apart. This way, we do not accidentally consider a
variable x occurring in both of the original clauses to be the "same" variable.
Only after the renaming we construct the binary resolvent.

D e f i n i t i o n 4.28 Let C1 and C2 be clauses. If C1 and C2 have no variables
in common, then they are said to be standardized apart.

D e f i n i t i o n 4 .29 Let C1 : L1 V . . . V Li V. . . V Lm and C2 = M1 V . . . V Mj V
. . . V M,~ be two clauses which are standardized apart . If the substitution 0
is an mgu for the set {Li , - ,Mj}, then the clause

(L1 V ... V Li_I V Li+1 V . . . V L ~ VM1 V . . . V M j _ I V Mj+I V . . . V M.)O

is called a binary resolvent of 6"1 and 6"2. The literals Li and Mj are said to
be the literals resolved upon. �9

If C1 and C2 are not standardized apart , we can use a variant C~ of C2
such that C1 and C~ are standardized apart , and then take a binary resolvent
of C1 and C~. For simplicity, this is then also called a binary resolvent of C1
and C2 itself.

Note that if Li and My are the literals resolved upon and 0 is the mgu
used, then LiO and MjO form a complementary pair. We require 0 to be a
most general unifier, instead of an arbi trary unifier. The reason for this is that
we want to restrict the number of possible binary resolvents. If we allowed 0
to be an arbi t rary unifier, the set of binary resolvents of two clauses would
often be infinite, which makes the search for a deduction (see Section 5.6)
extremely complex.

E x a m p l e 4.30 Let C1 = Q(x)V~P(x)VR(y) and C2 = P(x)V~S(y, x). C1
and C2 are not standardized apart , so we rename C2 to C~ = P(u) V ~S(v, u).
Let 0 = {u/x}. Then 0 is an mgu for {P(x) , P(u)} . Hence C - Q(x) v R(x) V
~S(v, x) is a binary resolvent of Cl and C2. ~P(x) and P(u) are the literals
resolved upon here. <3

70 CHAPTER 4. RESOLUTION

In the previous definition, the binary resolvent may be the empty clause.
This is the case if C1 and C2 each consist of exactly one literal. For example,
the empty clause [] is a binary resolvent of the clauses C1 = P(x) and C2 =
-~P(a). We have already explained in the previous section that [] represents
a contradiction.

The previous definition of a binary resolvent is not sufficient: it does not
allow us yet to derive all the clauses we want. For instance, we would like
to be able to derive the empty clause [] from the clauses C1 = P(x) V P(y)
and C2 = -~P(u) V -~P(v), since clearly, [] is a clause which is a logical
consequence of the clauses C1 and C2. However, given only the definition of
a binary resolvent, it is not possible to construct a series of binary resolvents
from C1 and C~ which leads to the empty clause •, because every such
resolvent would still contain two literals.

To be able to derive [] f rom this C1 and C2, we need to introduce the
notion of a factor. A factor of a clause C is obtained by applying a substitution
0 to C which unifies one or more literals in C, and then deleting all but one
copy of these unified literals. For instance, 0 = {y/x} unifies the two literals
P(x) and P(y) in Cl. Thus C~ = P(x) is a factor of C1, obtained by deleting
the second copy of F(x) from CIO = P(x) V P(x) . Similarly, C~ = -~P(u) is
a factor of C2.

D e f i n i t i o n 4.31 Let C be a clause, LI, . . . , L, (n k 1) some unifiable literals
from C, and 0 an mgu for the set {L1 , . . . , Ln}. Then the clause obtained by
deleting L20,..., LnO from CO is called a factor of C. <>

Note that every non-empty clause C is a factor of C itself, using the
identity substitution ~ as mgu for one literal in C. It can easily be shown
that if C t is a factor of C, then C ~ C I. We leave this to the reader.

E x a m p l e 4.32 Some examples of factors:

* -~Q(a) v P(f(a)) is a factor of the clause -~Q(a) v P(f(a)) v P(y), using
{y/f(a)} as an mgu for {P(f(a)), P(y)}.

| O(x} V P(x, a) is a factor of Q(~) v Q(y) v Q(z) v P(z, a). <l

Factors are importanL because they enable us to derive from two clauses
C1 and C2 clauses which are not binary resolvents of C1 and C2. If we allow
factors of C1 and C2 to be used as intermediate clauses before taking a
binary resolvent, we can for instance derive [] from C~ = P(x) V P(y) and
C2 = -~P(u) V -~P(v), using the factor P(x) of C1 and the factor -~P(u) of
C2. When we use factors to find a resolvent, the resulting clause is called a
resotvent. From the following definition we see that every binary resolvent is
a resolvent, but not every resolvent is a binary resolvent.

D e f i n i t i o n 4.33 Let C1 and C2 be two clauses. A resolvent C of C1 and C2
is a binary resolvent of a factor of C1 and a factor of C2, where the literals
resolved upon are the literals unified by the respective factors. C1 and C2 are
called the parent clauses of C. <~

4.5. A FORMAL TREATMENT OF RESOLUTION 71

E x a m p l e 4.34 Some examples:

�9 -~P(a) vQ(a, y) is a factor of Cz = ~P(x) v -~P(a)vQ(x , y). So Q(a, y) v
R(z) is a resolvent of Cl and C2 = R(z) V P(a). Note that the literal
~P(a) that was resolved upon, was the literal unified in the factor of

C1.
�9 [] is a resolvent of C1 = Q(x) and C2 = -,Q(a) v-~Q(x). <1

A derivation of some clause C from some set of clauses E is a sequence of
clauses, such that each clause is either a member of E, or a resolvent of two
earlier clauses in the sequence.

D e f i n i t i o n 4.35 Let E be a set of clauses and C a clause. A derivation of
C from E is a finite sequence of clauses R 1 , . . . , Rk = C, such that each
Ri is either in E, or a resolvent of two clauses in {R1 , . . . , Ri - !} . If such a
derivation exists, we write E ~,. C. We then say C can be derived from E. A
derivation of the empty clause [] from E is called a refutation of E.

In the previous section, we have already seen some examples of deriva-
tions, in their representation as binary trees. Some more examples:

Example 4.36 We will give a derivation of ~P(x) from E = {(-~P(x) V
-~R(x) V -~Q(a)), R(y), ~Q(b), (Q(a) v Q(b))}. See Figure 4.4.

1. ~P(x) V -~R(x) V -~Q(a)
2. n(~)

4. Q(a) V Q(b)
5. ~P(x) V ~Q(a) (from 1 and 2)
6. Q(a) (from 3 and 4)
7. -~P(x) (from 5 and 6)

~P(~) v ~n(~) v -Q(a) n(v) ~Q(b) Q(a) v Q(b)

-~P(~) v ~Q(~) Q(~)

~P(~)

Figure 4.4: The tree for the derivation of "~P(x) from E

72 CHAPTER 4. RESOLUTION

E x a m p l e 4.37 We can prove that the set E = {(P(x) V Q(x, y)),-~P(z),
(-,Q(a, b) V P(a) v P(b))} is unsatisfiable, by giving a refutation of E. See
Figure 4.5 for illustration.

1. P(x) V Q(x,y)
2. -~P(z)
3. b) v v P(b)
4. Q(x, y) (a resolvent of 1 and 2)
5. P(a) V P(b) (from 4 and 3)
6. P(b) (from 5 and 2)
7. [] (from 6 and 2) <~

P(x) V Q(x,y) .P(z)

\ /
Q(x,y) -~Q(a, b) V P(a) v P(b)

\ , /
P(a) V P(b) -P(z)

P(~) -~,(z)

[3

Figure 4.5: The tree for the refutation of

The soundness of resolution is easily proved. First for a single resolution
step:

L e m m a 4.38 Let C1 and C2 be clauses. If R is a resolvent of C1 and C2,
then {61, C2} ~ R.

P r o o f Without loss of generality, we assume C1 and C2 are standardized
apart. Suppose R is a binary resolvent of C~ (a factor of C J and C~ (a factor
of C J . Let L~ (a literal in C~) and Mj (a literal in C~) be the literals resolved
upon, and let 0 be the mgu for {Li,-,Mj] that is used to obtain R. Then
C1 b C[O and C2 ~ C~O.

Suppose the interpretation I (with domain D) is a model of {C1, C;}.
Then I is also a model of {C[O,C~O}. Let r be all the vari-
ables occurring in C[O or C~O. Let V be an arbitrary variable assign-
ment. Then for all dl E D , . . . , d n 6 D, if LiO is false under I and

4.6. SUMMARY 73

V(xl/dl)...(x~/d~), at least one of the other literals in C[O is true un-
der I and V(zl /dl) . . . (z,/d,). Similarly, for all dl E D , . . . , d~ E D, if MjO
is false under I and V(xl/dl) . . . (xn/dn), at least one of the other literals in
C~O is true under I and V(xl/dl) . . . (xn/dn).

R consists of all literals in C[O and C~O, except for LiO and MjO. Since
either LiO or MjO (which form a complementary pair) is false under I and
V(zt /dl) . . . (xn/d~), at least one of the literals in R is true under I and
V(zl /dl) . . . (xn/d~), so I is a model of R. Hence {6'1, C2} ~ R.

The soundness of derivations follows easily from the previous lemma.

T h e o r e m 4.39 (S o u n d n e s s o f d e r i v a t i o n) Let E be a set of clauses, and
C be a clause. IfE F-r C, then E ~ C.

P r o o f Suppose N ~-~ C. Then there exists a derivation R 1 , . . . , Rk = C of
C from E. We will prove by induction on k that ~ ~ C.

1. Suppose k = 1. Then R1 = C E ~, so obviously 2 ~ C.
2. Suppose the theorem holds if k _< m. Let R 1 , . . . , R m + I = C be a

derivation of C from ~. If R,~+I E E then the theorem is obvious.
Otherwise, R,~+I = C is a resolvent of some Ri and Rj (i, j < m + 1).
By the induction hypothesis, we have ~ ~ Ri and ~ ~ Rj. From
Lemma 4.38, it follows that {.Ri, Rj} ~ C. Hence ~ ~ C. []

Note in particular what this soundness result means in case of a refutation.
If E F-~ D, then we have found a proof that E ~ []: E is unsatisfiable.

Resolution by itself is not complete in general. For instance, we cannot
derive P(f(z)) from P(~), even though P(x) ~ P(I(z)). In the next chapter,
we will examine what needs to be added to resolution to get a complete proof
procedure. On the other hand, we will also show that resolution is complete
with respect to unsatisfiable sets of clauses: E is unsatisfiable iff E has a
refutation.

4.6 Summary

Logic programming is concerned with describing problems as a set of for-
mulas (clauses), and solving those problems by checking which formulas are
logically implied by those formulas. According to Church's Theorem, logical
implication is undecidable for first-order logic: there is no algorithm that can
find out whether E ~ r holds, for every E and r However, there do exist
proof procedures which are both sound and complete, that is, which can prove
all and only logical consequences of a set ~.

One of the most important proof procedures is based on the resolution
rule. In essence, this rule derives a resolvent CVx from two premises CV~b and
--r V X- For first-order clauses, we also need unification and factors in such a

74 CHAPTER 4. RESOLUTION

resolution step. Combining several resolution steps, starting from clauses in
E and ending in a clause C, we get a derivation from E, denoted by E F r C.
Derivations are sound: if E br C, then E ~ C. Completeness results involving
resolution will be given in the following chapters. A derivation of the empty
clause [] is called a refutation of E. Since [] is a contradiction, a refutation
of E is a proof that E is unsatisfiable.

Chapter 5

Subsumption Theorem and
Refutation Completeness

5.1 In troduct ion

We start this chapter with an example showing how resolution can be used
to formalize some every-day reasoning. After that, we will see what needs to
be added to resolution in order to get a complete proof procedure.

E x a m p l e 5.1 Mary, the school teacher of little John, notices that little John
is not in school today. She knows that if someone is not in school then that
persoon is either ill, or lazy. She also knows that ill people do not go shopping,
but she has seen little John come out of the candy shop today.

We can formalize this as follows: a denotes little John, P(x) means "x is
in school today", Q(x) means "x is ill", R(x) means "x is lazy", and S(x)
means "x goes shopping". Now we have the following premises:

1. ~P(a) ("little John is not in school today")
2. Vx (~P(x) --+ (Q(x) v R(x))) ("people who are not in school are either

ill or lazy (or both)") '
3. Vx (Q(x) --4 -~S(x)) ("ill people don' t go shopping")
4. S(a) ("little John has gone shopping today")

We can write these formulas as the following clauses:

1. -~P(a)
2. P(.) v q(x) v R(,)
3. -~Q(~) v -~s(~)
4. S(a)

We can now prove that little John is lazy, by deriving the clause R(a) ("little
John is lazy") from these clauses: see Figure 5.1. <1

76 CHAPTER 5. SUBSUMPTION THEOREM

P(z) V Q(:c) v R(.v) -,P(a)

Q(a) v R(a) ~Q(x) v -~S(x)

R(~) v -~s(~) s(~)

% /
Figure 5.1: The proof tha~ little John is lazy

Derivations are a powerful tool. However, sometimes it is not possible
to derive a clause we want to prove, but only something more general. For
instance, suppose we want to prove that R(a) V R(b) is a logical consequence
of the clauses in the previous example, which it clearly is, since R(a)
R(a) V R(b). Even though there is a derivation of R(a) from those clauses,
there is no derivation of R(a) V R(b). Or take another example: suppose
E = {(Q(x) v P(a)),-,P(a)} and C = Q(b). Clearly, E ~ C, but using
resolution there only exists a derivation of Q(x) from E, not of Q(b). We
can patch this up by introducing subsumption. C subsumes D if there is a
substitution 0, such that CO C_ D. Clearly, R(a) subsumes R(a) V R(b), and
Q(x) subsumes q(b).

In this chapter we introduce a deduction as the combination of a deriva-
tion and a subsumption step. We then prove the soundness and complete-
ness of deductions. The main result is the Subsumption Theorem. We also
prove another completeness result, the refutation completeness of resolution
for unsatisfiable sets of clauses, and show that these two completeness results
are in a sense equivalent: the one can be proved from the other. Refutation
completeness was originally proved by Robinson [Rob65]. The Subsumption
Theorem was first proved in [Lee67, SCL69], where it was called the 'com-
pleteness theorem for consequence finding'. Kowalski [Kow70] first used the
name 'Subsumption Theorem'. In ILP, it was rediscovered by Bain and Mug-
gleton [BM92]. The proofs in this chapter are adapted from [NW95, NW96d].

The two completeness results mentioned here only apply to sets of clauses.
However, in Section 5.5 we show a way in which logical implication between
formulas other than clauses can also be proved by means of resolution. After
that, we give a procedure to find a proof if one exists. The chapter is followed

5.2. DEDUCTIONS 77

by an appendix which discusses some alternative, but equivalent definitions
of resolution.

5.2 D e d u c t i o n s

Definit ion 5.2 Let C and D be clauses, we say C subsumes D if there exists
a substi tution ~ such that C0 C D (i.e., every literal in C0 also appears in
D). �9

Subsumption is also sometimes called 0wsubsumption.

E x a m p l e 5.3 Some illustrations of subsumption:

�9 C = P (z) subsumes D = P(a) V Q(x), since C{x/a} = P(a), and
{P(a)} _C {P(a), Q(x)}.

�9 C = P(a) v P(a) subsumes D = P(a). Also, D subsumes C.
�9 C = P(x) V -~Q(a) subsumes D = P(a) V -~P(f(x)) V -~Q(a).
�9 The empty clause [] subsumes any clause, because the empty set is a

subset of the set of literals in any clause.
�9 The only clause which subsumes the empty clause •, is [] itself. <3

We leave it to the reader to prove that if C subsumes D, then C ~ D. The
combination of a derivation and subsumption yields a deduction. 1 Note that
E ~ C may be true for clauses C which have nothing to do whatsoever with
E. This is the case with tautologies: C = Q(x) v-~Q(x) v R(y) is a tautology,
hence E ~ C for any set E. We want to define a 'deduction' in such a way
that it is complete, so it should also work for tautologies. For this reason, we
include the case where C is a tautology in our concept of a deduction.

Defini t ion 5.4 Let E be a set of clauses and C a clause. We say there exists
a deduction of C from E, written as E ~-d C, if C is a tautology, or if there
exists a clause D such that E ~-r D and D subsumes C. If E F-d C, we say C
can be deduced from E. �9

E x a m p l e 5.5 Let C = -~P(b) V n(y) and E = {(-~P(x) V ~R(x) V ~Q(a)),
R(y),-~Q(b), (Q(a) v Q(b))}. Figure 4.4 (p. 71) showed that E ~-r -~P(x).
Since -,P(x) subsumes C, we have E ~-d C. <3

The soundness of deductions follows immediately from the soundness of
derivations (Theorem 4.39) and the fact that if D subsumes C, then D ~ C.

T h e o r e m 5.6 (S o u n d n e s s o f d e d u c t i o n) Let E be a set of clauses, and
C be a clause. I f E F-d C, then E ~ C.

lit should be noted that our terminology is somewhat non-standard here. For instance,
Chang and Lee [CL73] use the term 'deduction' for what we call a derivation.

78

5.3

CHAPTER 5. SUBSUMPTION THEOREM

The Subsumption Theorem

In this section, we give a proof of our most important completeness result: if
E ~ C, then E Fd C. In other words: any clause which is a logical consequence
of E, can be deduced from E. Combined with its converse, the soundness
of deductions, this is called the Subsumption Theorem. We prove this in a
number of successive steps in the following subsections. First we prove the
result in case both E and C are ground, then we prove it in case E consists
of arbitrary clauses but C is ground, and finally we prove the theorem when
neither E nor C need be ground.

5 . 3 . 1 T h e S u b s u m p t i o n T h e o r e m f o r G r o u n d E a n d C

L e m m a 5.7 Let E be a set of ground ctauses, and C be a ground clause. If
E ~ C, then E [-d C.

P r o o f By Theorem 2,43, we can assume E is finite. Assume C is not a
tautology. Then we need to find a clause D such that E F r D and D C C
(for ground clauses D and C, D subsumes C iff D C C). The proof is by
induction on the number of clauses in E.

1. Suppose E = {C1}. We will show that C1 C C. Suppose C1 (~ C.
Then there exists a literal L such that L C C1 but L ~ C. Let I be an
interpretation which makes L true, and all literals in C false (such an
i exists, since C is not a tautology). Then I is a model of C1, but not
of C. But that contradicts E ~ C. So C1 C C, and E ~-d C.

2. (See Figure 5.2 for illustration of this case). Suppose the theorem holds
if IF] _< m. We will prove that this implies that the theorem also holds
if IEI = r n + 1. Let E : {C1 , . . . ,Cm+l} , and E' = {C1, . . . ,Cm}. If
C,~+1 subsumes C or E' ~ C, then the theorem holds. So assume C,~+1
does not subsume C and E' ~ C.
The idea is to derive, using the induction hypothesis, a number of
clauses from which a derivation of a subset of C can be constructed.
First note that since E ~ U {Cm+l} ~ C, it follows from Theorem 2.36
that E' ~ (C~+1 -7 C), hence E' ~ C V-~C,~+x.
Let L 1 , . . . , L k be all the literals in Cm+l which are not in C (k >_ 1
since C~+1 does not subsume C). Then we can write Cm+l = L1 V
. . . V Lk V C ~, where C ~ C_ C. Since C does not contain Li (1 < i < k),
the clause C V -~Li is not a tautology. Also, since E ~ ~ C V -,C,~+1 and
Cm+l is ground, we have that E ~ ~ CV-~Li, for each i. Then by the
induction hypothesis there exists for each i a ground clause Di such
that E' Fr Di and Di C (C V-~Li).
We will use Cm+l and the derivations from E ~ of these Di to construct
a derivation of a subset of C from E. For each i, -,Li E Di, for otherwise
we would have Di C_ C and E' ~ C. So we can write each Di as -~LiVD},

5,3. T H E S U B S U M P T I O N T H E O R E M 79

and D~ C C (the case where some Di contains -~Li more than once can
be solved by taking a factor of Di).
Now we can construct a derivation of the ground clause defined as
D = C' V D~ V . . . V D;, from E, using C,~+1 and the derivations of
D 1 , . . . , Dk from E'. See Figure 5.2 for a schematic representation of
this derivation. In this tree, the derivations of D1, �9 Dk are indicated
by the vertical dots. So we have that E t-r D. Since C' _C C, and D~ C_ C
for each i, we have that D C C. Hence E [-4 C. []

C m + l = L1 v . V L k V C j D1 -= ~ L 1 v D~

L~ V . . . v Lk V C' v D' 1 D2 = ~L~ v D~

L3 V .. . v Lk v C' v D' 1 v D~

La v CJ v D~ v v D' �9 k - 1 D k = - , L k V D ~

C /
D = C ' v D~ v . . . v D~k

Figure 5.2: The tree for the derivation of D from E

5 . 3 . 2 T h e S u b s u m p t i o n T h e o r e m w h e n C is G r o u n d

In this section, we will prove the Subsumption Theorem in case C is ground
and E is a set of arbitrary clauses. The idea is to "translate" E ~ C to
Eg ~ C, where Eg is a set of ground instances of clauses of E. Then by
Lemma 5.7 there is a clause D such that Eg k~ D, and D subsumes C.
Finally, we "li f t" this derivation to a derivation from E. The next two results
show that logical implication between clauses can be translated to logical
implication between ground clauses. The first of these is Herbrand's Theorem.

T h e o r e m 5.8 (H e r b r a n d) A set o f clauses E is unsat is f iable i f f there exis ts

a f i n i t e unsat is f iable se t Eg o f ground ins tances o f clauses f r o m E .

80 CHAPTER 5. SUBSUMPTION THEOREM

P r o o f
r Eg is a finite set of ground instances of clauses from E, so E ~ Eg~

Hence if Eg is unsatisfiable, then E is unsatisfiable.
:=~: Let E ~ be the (possibly infinite) set of all ground instances of clauses

from E. It is not very difficult to see that a Herbrand interpretation I is a
model of a clause C iff I is a model of the set of all ground instances of C.
Hence such an I is a model of E iff it is a model of Eq Now:

E is unsatisfiable iff (by Proposition 3.30)
E has no Herbrand models iff
E' has no Herbrand models iff (by Proposition 3.30)
E t is unsatisfiable.

Finally, by the Compactness Theorem (Theorem 2.42) there is a finite unsat-
isfiable subset Eg of E'. O

T h e o r e m 5.9 Let E be a non-empty set of clauses, and C be a ground clause.
Then E ~ C iff there exists a finitc set Eg of ground instances of clauses from
E, such that E 9 ~ C.

P r o o f
~ : If Eg is a finite set of ground instances of clauses from E, then E ~ Eg.

Hence if Eg ~ C, then E ~ C.
~ : Suppose E ~ C. Let C = L1 V . . . V Lk (k > 0). Note that since C is

ground, -~C is equivalent to -~L1 A . . . A -~Lk. Then:

E ~ C iff (by Proposition 2.37)
E U {-~C} is unsatisfiable iff
E U {-~L1,...,-~Lk} is unsatisfiable iff (by Theorem 5.8)
there exists a finite unsatisfiable set E ~, consisting of ground in-
stances of clauses from E U {-~L1,...,--~Lk}.

Since adding clauses to an unsatisfiable set preserves unsatisfiability, we may
assume without loss of generality that E' contains every -~Li, 1 < i < k. Thus
we can write E' = Eg U {-~L1,...,-~L~}, where Eg is a finite set of ground
instances of clauses from E. (Eg may be empty if C is a tautology.) Now:

E' is unsatisfiable iff
Eg U {-~L1,...,-~Lk} is unsatisfiable iff
Eg U {-'(/,1 V . . . V Lk)} is unsatisfiable iff (Proposition 2.37)
Eg ~ L 1 V . . . V L k .

E x a m p l e 5.10 Let E = {(P(f(x)) V --,P(z)), P(a)} and C = P(f(f(a))) .
Then E ~ C. Here Eg = {(P(f(f(a)))V-,P(f(a))) , (P(f(a))V-~P(a)), P(a)}
is a set of ground instances of clauses of E, for which we have Eg ~ C. <3

5.3. THE SUBSUMPTION THEOREM 81

The following two lemmas are sufficient to "lift" a derivation, that is,
to turn a derivation from instances of certain clauses into a derivation from
those clauses themselves.

L e m m a 5.11 Let C1 and C2 be two clauses, and C[and C~ instances of C1
and C2, respectively. If R' is a resolvent of C[and C;, then there exists a
resolvent R of C1 and C2, such that R I is an instance of R.

P r o o f We assume without loss of generality that C1 and C2, and C[and
C; are standardized apart . Let C1 = L1 V . . . V L,~, 6"2 = M1 V . . . V M~,
C[= Cloh, and C~ = 6'2o'2. Suppose R' is a resolvent of C[and C~. Then
R' is a binary resolvent of a factor of C[and a factor of C~. See the figure
for illustration.

For notational convenience, we assume without loss of generality that the
factor of C[is (L1 V . . . V La)ch01, where 01 is an mgu for La~r l , . . . ,Lmch .
Similarly, the factor of C; that is used, is (Mx V . . . V Mb)c~202, where 02 is
an mgu for M b c % . . . , M ~ 2 . Let Li~lO1 and Mj~r202 be the literals resolved
upon, with mgu p. Abbreviate L1 V . . . V Li-1 V Li+l V . . . V L~ to D1, and
M1 V . . . V Mj-1 V Mj+I V . . . V Mb to D2. Then R' = (DI~101 V D2r
By our assumption of standardizing apart , this can be written as /~ ' = (D1 V
D2)o'101o'202 #.

Let 71 be an mgu for La V . . . V Lm. Then (L1 V . . . V La)71 is a factor
of C1. Note that oh01 is a unifier for L a , . . . , L m . Since 71 is an mgu for
L~, . . . , L,~, there exists a substitution 51 such that ch01 = 7151. Similarly,
(21//1 V . . . V Mb)72 is a factor of C2, with 72 as mgu for Mb V . . . V M~, and
there is a ~2 such that c~202 = '7262.

Since Lio'lO 1 and ~Mjo'202 c a n be unified (they have # as mgu) and 7i is
more general than cri0i (i = 1, 2), LiT1 and -'Mj72 can be unified. Let 0 be an
mgu for LiT1 and -'Mj72. Define/~ = (D171 V D272)0, which can be written
as R = (D1 V D2)71720. Since R is a binary resolvent of the above-mentioned
factors of C1 and 6'2, it is a resolvent of C1 and 6'2.

C1 C2

I ~1 f a c t o r f a c t o r ~Z

0 J

R ~

It remains to show that /~' is an instance of R. Since Li71o~152# =

Licr10132~ = Lio'lOl# = -~Mjo'2~2# = -~Mj7252# = -~Mj"/25152~, the sub-
st i tution 5152p is a unifier for LiT1 and -~Mj72. 0 is an mgu for Li71 and

82 CHAPTER 5. SUBSUMPTION THEOREM

-,Mj72 , so there exists a substitution g such that 51(~2~ = 0(~. Therefore
~t = (D1 V D2)~1010"202~ = (D1 V D2)"/15172(~2# = (D1 V D2)713"2~152# =
(D1 V D2)"/17205 = Rh. Hence/~t is an instance of R. []

L e m m a 5.12 (D e r i v a t i o n l i f t ing) Let E be a set of clauses, and E ~ a set
of instances of clauses .from E. Suppose R~, . . . , P~ is a derivation of the
clause R~ from E'. Then there exists a derivation R I , . . . , Rk of the clause
Rk from E, such that R} is an instance of Ri, for each i.

P r o o f The proof is by induction on k.

1. Suppose k = 1. R~ E E 1, so there exists a clause/~1 E E such that R~.
is an instance of J~l.

l 2. Suppose the lemma holds if k < m. Let R~ , . . . , R~, Rm+ I be a deriva-
tion of R~+ I from Eq By the induction hypothesis, there exists a deriva-
t i on /~1 , . . . , R,~ of R.~ from E, such that R} is an instance o f / t i for all
i, l < i < m . I f R p m+l E E ~, the lemma is obvious. Otherwise, Rm+ I is
a resolvent of two clauses C[and C; in {Ri , . ~., R~}. Then there exist
two clauses C1 and C~ in {/~1, . . . , Rm} such that C[is an instance of
C1, and C~ is an instance of C~. It follows h'om Lemma 5.11 that there
is a resolvent /~rn+l of C1 and C2, such that R' is an instance of m-I-1
Rm+l. Hence the lemma holds for k = m + 1. []

The previous lemmas are sufficient to prove the Subsumption Theorem
for the case where C is ground.

L e m m a 5.13 Let E be a set of clauses, and C be a ground clause. IrE ~ C,
then E ~- d C.

P r o o f Assume C is not a tautology. We want to find a clause D such that
E ~-~ D and D subsumes C. From E ~ C and Theorem 5.9, there exists a
finite set Eg such that each clause in Eg is a ground instance of a clause in
E, and E 9 ~ C. Then from Lemma 5.7 there exists a clause D' such that
Eg ~-r D', and D' subsumes C. Let R~ , . . . , R~ = D' be a derivation of D'
from Eg. It follows from Lemma 5.12 that we can lift this to a derivation
R1, . . .~ Rk of Ra from G, where D e is an instance of Rk. Let D = Rk. Then
E ~-~ D and D subsumes C (since D' subsumes C). o

5.3.3 The Subsumption Theorem (General Case)
Finally we prove the Subsumption Theorem for arbitrary E and C. Here we
need a Skolem substitution, which is related to the introduction of Skolem
constants that we used in Chapter 3.

5.3. THE SUBSUMPTION THEOREM 83

D e f i n i t i o n 5.14 Let E be a set of clauses, and C be a clause. Let xl, �9 x~
be all the variables appearing in C, and a l , . . . , an be distinct constants not
appearing in E or C. Then the substitution { x l / a l , . . . , x~/an} is called a
Skolem substitution for C with respect to E.

Similarly, if S is a set of clauses, Yl, �9 �9 yrn are all the variables appearing
in S, and b l , . . . , b,~ are distinct constants not appearing in E or S', then
{y~/bl , . . . , ym/bm} is a Skolem substitution for S with respect to E. 0

E x a m p l e 5.15 Let E = {P(x) V -~Q(y, f (a))} and C = Q(z,y) v P(b).
Then {z/c, y/d} is a Skolem substitution for C with respect to E. If S =
{P(x) , Q(x, y)}, then {x/b, y/c} is a Skolem substitution for S with respect
to E. <3

The following l emma shows that if we have derived some clause D from 2
which subsumes C0- -where 0 is a Skolem substitution for C with respect to
B - - t h e n D also subsumes C. For instance, suppose D = P(x) , C = P(y) V
Q(z) and 0 = {y/a, z/b}. D subsumes CO, but since 0 replaces each variable
by a constant that does not appear in E, C or D, D also subsumes C itself.

L e m m a 5.16 Let C and D be clauses. Let 0 = {xm/al , . . . ,xn/a~} be a
Skolem substitution for C with respect to D. If D subsumes CO, then D also
subsumes C.

P r o o f Since D subsumes CO, there exists a substitution r such that Do" C__
CO. Let o" be the substitution { y l / t l , . . . , y,~/t,~}. Let o.' be the substitution
obtained from o" by replacing each ai by xi in every tj. Note that o" = o"'0.
Since 0 only replaces each xi by ai (1 < i < n), it follows that D # C_ C, so
D subsumes C. []

Finally we can prove the general case of the Subsumption Theorem:

T h e o r e m 5.17 (S u b s u m p t i o n T h e o r e m) Let ~ be a set of clauses, and
C be a clause. Then E ~ C iff ~ ~-d C.

P r o o f
<=: By Theorem 5.6.
=~: Assume C is not a tautology. Let 0 be a Skolem substitution for C

with respect to E. Then CO is a ground clause which is not a tautology, and
E ~ CO. So by Lemma 5.13 there is a clause D such that E ~-~ D and D
subsumes CO. Since D is derived from E, D does not contain any of the
constants in 0. Therefore 0 is also a Skolem substitution for C with respect
to D. Then by L e m m a 5.16, D subsumes C. Hence ~ t-d C. []

84 CHAPTER 5. SUBSUMPTION THEOREM

5.4 Refutation Completeness

5.4.1 From the Subsumpt ion Theorem to Refutat ion
Comple teness

The Subsumption Theorem actually tells us that resolution and subsumption
form a complete set of derivation rules for clauses. Though the resolution rule
by itself is not complete for clauses in general~ it is complete with respect to
unsatisfiable sets of clauses. This refutation completeness is an easy conse-
quence of the Subsumption Theorem:

T h e o r e m 5.18 (Refutation completeness of resolution) Let E be a set
of clauses. Then E is unsatisfiable iff E F-~ •.

Proof
~ : By Theorem 4.39.
O : Suppose E is unsatisfiable. Then E ~ []. So by Theorem 5.17 there

exists a clause D, such that E F-r D and D subsumes the empty clause rn.
But [] is the only clause which subsumes [], so D = [:2. []

Surprisingly, the Subsumption Theorem hardly ever appears in the stan-
dard literature about resolution, which mainly focuses on refutations. We
include the Subsumption Theorem here because it is a much more "direct"
form of completeness than refutation completeness. Though E ~ C can be
proved by giving a refutation of EU {-,C} (see Section 5.5), a direct deduction
of C from E is much more straightforward. A deduction has the advantage
that the relation between the premises in E and the conclusion C is easier
to see. For this reason, the Subsumption Theorem will be very useful in the
proofs of a number of results in the second part of this book.

5.4.2 From Refutat ion Completeness to the Subsump-
tion T h e o r e m

In the previous subsection~ we showed that refutation completeness is a direct
consequence of the Subsumption Theorem. Here we will show the converse:
that we can obtain the Subsumption Theorem from refutation completeness.
This shows that these two results are in a sense equally powerful in case of
unconstrained resolution.

To prove the Subsumption Theorem from refutation completeness, we will
first show how to turn a refutation of E U {-~L1, . . . , - ,L~} into a deduction
of L1 V . . . V Lk from E. Thus our proof is constructive. We start with an
example. Suppose E = { (P(x)V ~R(f(f(b)))), (R(f(x))V-~R(x))}, and C =
P(x) V Q(x) v --,R(b). First we note that 0 = {x/a} is a Skolem substitution
for C with respect to E. Now --,CO ~:~ {-~P(a),-~Q(a), R(b)}. Figure 5.3 shows
a refutation of E U {- ,P(a) , - ,Q(a) , R(b)}.

5.4. 85 R E F U T A T I O N C O M P L E T E N E S S

n(](~)) v -~n(~)

P(~) v ~n(f(](b))) I-P(�9 I n(f(~)) v-~R(~) n(](b))

-.n(y(f(b))) n(f(](b)))

Q

F i g u r e 5 . 3 : A refutation of E U {-~P(a), ~Q(a), R(b)}

Now by omit t ing the leaves of the refutation tree which come from -~Ct)
(the framed literals) and by making appropriate changes in the tree, we get
a derivation of the clause D = P (x) V-~R(b) (Figure 5.4). D subsumes C, so
we have turned the refutation of Figure 5.3 into a deduction of C from E.

n(f(~)) v -~n(x) n(f(y)) v -~n(y)

P(~) v -~n(](/(b))) n(/(f(y))) v -~n(y)

D = P(~) v -,n(b)

subsumption

c = P(~) v q(~) v -n(b)

F igure 5.4: A deduction of C from E, obtained from the previous figure

This approach also works in the general case. The following l emma does
most of the work.

L e m m a 5.19 Let E be a set o f clauses, and C = L1 V . . . V Lk be a non-
tautologous ground clause. I r E U {-~LI, . . . ,--~Lk } F-r •, then E t-d C.

P r o o f Suppose E U {--~L1,...,-~Lk} ~-r []- Then there exists a refutation
R I , . . . , R,~ = [] of E U { -~L1 , . . . , -~Lk} . Let r be the number of resolvents in

86 C H A P T E R 5. SUBSUMPTION T H E O R E M

this sequence (i.e., r = n - the number of members of E U {-~L1,. . . , -~Lk} in
R 1 , . . . , R .) . We prove the l emma by induction on r.

1. If r = 0, then Rn = D r E. Since [] subsumes any C, the l emma holds.
2. Suppose the l emma holds for r < m. We will prove that this implies

that the l emma also holds for r = m + 1. Let R 1 , . . . , R n = [] be a
refutation of E to { - , L l , . . . , - , L k } containing m + 1 resolvents. Let Ri
be the first resolvent. Then/~1, �9 ..,/~,~ = [] is a refutation of E U {/~i} tO
{-~L1,. . . , -~Lk} containing only m resolvents, since Ri is now one of the
original premises. Hence by the induction hypothesis, there is a clause
D, such that E t0 {Ri} k> D and D subsumes C.
Suppose Ri is itself a resolvent of two members of ~. Then we also have
E ~-,. D, so the l emma holds in this case.
Ri cannot be a resolvent of two members of {-~L1, . . . , -~Lk}, since this
set does not contain a complementary pair (C is not a tautology).
The only remaining case we have to check, is where R~ is a resolvent of
C ~ E E and some-~L~ (l < .s < k). Let C j = M 1 V . . . V M j V . . . V M h .
Suppose Ri is a binary resolvent of (M~ V . . . V Mj)cr (a factor of C j,
using o" as an mgu for { M j , . . . , Mh}) and -~L~, with 0 as mgu for Mj~r
and Ls. Then R~ = (M1 V . . . V Mj_l)o'O and C~o'O = t:ti V Ls V . . . V L~
(h - j + 1 copies of Le), since M j , . . . , M/~ are all unified to L, by ~0.
Now replace each t ime Ri appears as leaf in the derivation tree of D,
by C'(rO = t~i V L~ V . . . V L,, and add L, V . . . V L, to all decendants of
such an Ri-leaf. Then we obtain a derivation of D V Ls V . . . V Ls from

U {C'~rO}. Since C'crO is an instance of a clause from E, we can lift
(by Lemma 5.12) this derivation to a derivation from E of a clause D ~,
which has D V L, V . . . V L, as an instance. Since D subsumes C and
L~ E C, D' also subsumes C. Hence E ~-d C. []

Now we can prove the Subsumption Theorem (Theorem 5.17) once more,
this t ime starting from Theorem 5.18.

T h e o r e m 5.17 (S u b s u m p t i o n T h e o r e m) Let E be a set of clauses, and
C be a clause. Then E ~ C i f f ~ ~-d C.

P r o o f
~ : By Theorem 5.6.
~ : If C is a tautology, the theorem is obvious. Assume C is not a tau-

tology. Let 0 be a Skolem substitution for C with respect to Z. Suppose
CO = L1 V . . . V Lk. Because C is not a tautology, C0 is not a tautology.
Since CO is ground and E ~ CO, by Proposition 2.37 the set of clauses

U (-~L1, �9 . . ,-~Lk} is unsatisfiable. Then it follows from Theorem 5.18 that
E U {-~L1,. �9 --,Lk} ~-r O. Therefore by Lemma 5.19, there exists a clause D
such that E ~-~ D, and D subsumes CO. Finally, from Lemma 5.16, D also
subsumes C itself. Hence E ~-d C. []

5.5. PROVING NON-CLAUSAL LOGICAL IMPLICATION 87

5.5 Proving Non-Clausal Logical Implication

The two previous completeness results, the Subsumption Theorem and refuta-
tion completeness, are very important, but they only apply to sets of clauses.
In general, if we want to prove E ~ r E need not be a set of clauses, nor
does r have to be a clause. For instance, let E = {Vx (P(x) --+ Q(x)), P(a)},
and let ~ = 3x Q(x). Clearly E ~ r but there is no way that this can be
proved by resolution "directly".

There is, however, a trick to avoid this problem. The trick is not to apply
resolution to E, but to a standard form of 2 U {-7r A standard form can
always be represented by a set of clauses, hence we can apply resolution to it.
If E ~ r then this standard form of E U {--,r will be unsatisfiable, and the
refutation completeness of resolution guarantees us that we can prove this.
We then have the following result, which shows that resolution can be used
to prove any case of logical implication.

T h e o r e m 5.20 Let E be a set of formulas, let r be a formula, and let S be
a set of clauses representing a standard form of E U {-~r Then E ~ r iff
S F~ [].

P r o o f 2 ~ r iff (by Proposition 2.37)
E U {-~r is unsatisfiable iff (by Theorem 3.19)
S is unsatisfiable iff (by Theorem 5.18)
S~ [] []

So to prove a case of non-clausal implication N ~ r we use the refutation
completeness of resolution. It should be noted that we cannot determine
separately a standard form S of E and a standard form I' of r and then use the
Subsumption Theorem. For instance, suppose E = {P(a)} and r -- 3x P(x) .
Then S = {P(a)} is a standard form of E, and r = {P(b)} is a standard
form of r We had 2 ~ r but this property is lost in this case when we move
to standard forms: S ~ F, because of the introduction of the new constant b
in I'.

E x a m p l e 5.21 Let N = {Vx (P(x) ~ Q(x)), P(a)}, and let r = 3y Q(y).
We will prove that E ~ r We first obtain a standard form of E U {-,r
S = {(-~P(x) V Q(x)), P(a),-~Q(y)}. Then we prove by resolution that S is
unsatisfiable, by giving a refutation of S. See Figure 5.5. Thus S is unsatis-
fiable, and we have E ~ r from Theorem 5.20. <~

5.6 How to Find a Deduct ion

Suppose we want to find out whether E ~ C holds. By the Subsumption
Theorem, this is the case iff there is a deduction of C from E. There are

88 CHAPTER 5. SUBSUMPTION THEOREM

"~P(x) v Q(x) ~Q(y)

O

Figure 5.5: The tree for the refutation of S

two kinds of deductions: (1) C is a tautology, and (2) there is a derivation
from E of a clause D, which subsumes C. Checking the first case is easy:
by Proposition 3.20, C is a tautology iff C contains a complementary pair.
Unfortunately, checking the second case is much harder. In fact, this is an
undecidable problem, even if E contains only one clause. This follows from a
result proved by Schmidt-Schauss [SS88]:

T h e o r e m 5.22 (S c h m i d t - S c h a u s s) The problem whether C ~ D, where
C and D are arbitrary clauses, is undecidable.

Some related undecidability results are given in Section 7.8.
Since C ~ D iff C ~-d D, the existence of a deduction of D from C is also

undecidable. Then clearly, if E is a set of clauses and C is a clause, E F-d C
is also undecidable.

This means that the best we can do, is find a procedure that always finds
a deduction of C from E if one exists. Such a procedure is not guaranteed to
terminate if a deduction does not exist. The simplest procedure of this kind
is based on two observations. Firstly, the set of clauses which can be derived
from E by a derivation tree of depth n, is finite. And secondly, whether some
clause subsumes C is decidable (see Section 14.3). Thus we first check if
some clause in E subsumes C. If not, we construct the set of clauses which
can be derived from E by a derivation tree of depth 1, and check if one of these
subsumes C. If not, we construct the set of clauses which can be derived from
E by a derivation tree of depth 2, and see if one of these clauses subsumes C,
etc. If E ~-d C and C is not a tautology, then there is a derivation of a clause
which subsumes C, and this will eventually be found.

The following procedure, called the level-saturation method, implements
this idea. It tries to find a derivation from E of a clause which subsumes C,
by summing up E ~ E l, E~ , . . . defined as follows:

E 0 = E
E n + ~ = { C I C i s a r e s ~ ofC~ E (E ~ ~ U . . . U E ~) a n d C 2 � 9 ~}

5.6. HOW TO FIND A DEDUCTION 89

The set B" contains all clauses which can be derived from Z by a derivation
tree of depth n. An example will make this clearer.

E x a m p l e 5.23 Let C = P(x , b) and X = {(P(x, y) V R(z)), (Q(u) v ',R(a)),
(--,Q(b) v -~Q(v))}. Then P~ ~ C. We will use the level-saturation method to
find a derivation of a clause which subsumes C. See Table 5.1 for the first
three sets that are generated.

~o: (1) P(x, y) V R(z)
(5) Q(.) v ~R(a)
(3) -Q(b) v~Q(v)

E 1 : (4) P(x, y) V Q(u) from (1) and (2)
(5) -~R(a) v ~O(v) from (5) and (3)
(6) -,R(a) V "~Q(b) from (2) and (3)
(7) -.R(a) from (2) and (3)

I22: (8) P(x, y) v ~Q(v) from (1) and (5)
(9) P(x, y) V ~Q(b) from (1) and (6)

(10) P(~, v) from (1) and (r)
(11) -.R(a) V ~R(a) from (2) and (5)
(12) -,_R(a) V-~R(a) from (2) and (6)
(13) -~Q(b) vP(x,y) from (3) and (4)
(14) -.O(v) vP(x,y) from (3) and (4)
(15) P(x,y) from (3) and (4)
(16) P(x,g) V--R(a) from (4) and (5)
(17) P(x,y) V.R(a) from (4) and (6)

Table 5.1-" The sets of resolvents constructed by the level-saturation method

Note that two clauses may have more than one resolvent. For instance,
clauses (5), (6) and (7) are all resolvents of (2) and (3). We wanted to find a
derivation of a clause which subsumes C = P(x, b). E 2 contains such a clause:
clause (10) is P(x, y). One such a clause is enough, so there is no need to
construct E 3, E 4, etc.

P(~v, y) V H(z) "~R(a)

P(~, y)

F igure 5.6: The derivation obtained from the level-saturation method

90 CHAPTER 5. SUBSUMPTION THEOREM

Since P(x, y) E E 2, there exists a derivation tree of depth 2, representing
a derivation of P(x, y) from E. The parent clauses of P(x, y) were clauses (1)
and (7). (1) is a member of E, and (7) has (2) and (3) as parents, which are
also in E. Hence the derivation of P(x, y) is as pictured in Figure 5.6. <a

Note that when looking for a deduction of the empty clause n, we can
ignore the subsumption step, since [] is the only clause which subsumes [].
Thus it suffices to check whether some E ~ contains D.

As can be seen from the previous example, the number of clauses in E ~
rapidly increases, even for small n. This can make the search for a deduction
very inefficient. Numerous tricks and procedures have been invented to speed
up the search. For instance, all tautologies can be removed from E ~, since
tautologies are not necessary in a deduction anyhow--if Cn is a tautology and
{C1, . . . , C~} ~ C, then also {C1, . . . , C~_~} ~ C. Removing the tautologies
decreases the number of clauses in En+l and later sets, since we won't have
to bother then about resolvents that have one of the tautologies in E ~ as
parent clause. For discussions of what can be done to speed up the search~ we
refer the interested reader to books such as [CL73, Lov78, GN87], and articles
such as [KK71, MR72, Ino92]. In the next chapter, we will give two examples
of more efficient procedures, called linear resolution and input resolution.
Here some restrictions are put on the form of derivations. This decreases the
number of possible derivations, thus making the search for a derivation more
efficient. We will show that the first of these is still complete, while the second
is not.

5.7 Summary

A deduction combines a derivation and a subsumption step. Deduction is
sound and complete: the Subsumption Theorem states that E ~ C iff E t-d C.
This result immediately implies the refutation completeness: E is unsatisfiable
iff E k~ D. Conversely, we can also prove the Subsumption Theorem start-
ing from the refutation completeness. Furthermore, refutation completeness
can also be used to prove non-clausal cases of logical implication. The level-
saturation method, essentially a way of summing up all possible derivations,
can be used to find a deduction if one exists.

5.A ALTERNATIVE DEFINITIONS OF RESOL UTION

5.A Alternative Definitions of Resolut ion

91

It should be noted that the way we have defined resolution here is not the
only possible way: Here we will briefly discuss three alternatives which have
appeared in the literature. This appendix is somewhat subtle and perhaps
confusing; since it is not necessary for an understanding of the rest of this
work, the reader may wish to skip it.

R o b i n s o n

Firstly, in Robinson's paper [Rob65] which first introduced resolution, a
clause is taken to be a set of literals (see the Appendix to Chapter 3), and
factors are built into the resolution step itself. 2 A set M of positive literals
from a clause C1 is (most generally) unified with the a toms in a set N of
negative literals from a clause C2, instead of resolving upon a single literal
f rom each parent. If 0 is the mgu used, then the resolvent is

((C,\M) u (C2\N))O.

For example, if we consider the clauses C1 --~ {P(~g, y), P(a, a), Q(x)} and
C2 = {-~P(z, z),-~P(a, z), R(z)}, then we can use M = {P(x, y), P(a, a)} C
Ci, N = {~P(z, z), ~P(a, z)} __ C~, and mgu {x/a, y/a, z/a}, to obtain the
resolvent {Q(a), R(a)}.

C h a n g a n d L e e

Secondly, in Chang and Lee's [CL73] a clause is treated as a set ofliterals (but
written down as a disjunction). A binary resolvent of C1 and C2, resolved
upon literals L1 E C1 and L2 E C2 with mgu 0, is defined as

(C10 - LIO) ~ (C20 - L20).

A resolvent of C1 and C2 is defined as a binary resolvent of factors of C1
and C2. Since a set of literals contains literals only once, taking a factor is
a special case of applying a substitution. There is no need to delete all but
one copies of the unified literals, since by definition a set contains literals
only once, and hence all but one of the unified literals as it were "disappear
automatical ly" from the clause. For instance, if C = P(a)VP(x)VQ(x), then
the mgu 0 = {x/a} yields the factor CO = P(a) V Q(a).

Note that every [Rob65]-resolvent is also a [CL73]-resolvent: if the sets
M C C1 and N C C2 are used to construct a [Rob65]-resolvent R of C1
and C2, then we can use an mgu o'1 of M and an mgu 0"2 of N to construct
factors C~ = Cl0"1 and C~ = C2c~2. It is easy to see that R is a [CL73]-
resolvent, obtained as a binary resolvent of C~ and C~. Conversely, not every

2In th is work, we have chosen to s epa ra t e the definit ions of a fac tor and a b ina ry
resolvent , s ince b ina ry resolu t ion wi thou t factors is sufficient in case of SLD-reso lu t ion for
Horn c lauses (see C h a p t e r 7).

92 CHAPTER 5. SUBSUMPTION THEOREM

[CL73]-resolvent is a [Rob65]-resolvent: if C1 = {P(x), P(a), Q(a)} and C2 =
{~Q(a)}, then {P(a)} is a [CL73]-resolvent (using the factor {P(a), Q(a)} of
C1), while the only [Rob65]-resolvent is {P(x), P(a)}.

Genese re th and Nilsson

A third alternative is used in Genesereth and Nilsson's [GN87]. There a clause
is, again, treated as a set of literals. A binary resolvent of C1 and CB, resolved
upon literals L1 and L2 with mgu ~), is defined as

- u -

Apart from the set notation, this is the same as our own definition. Clearly, for
every binary resolvent R of C1 and C~ in our definition, there exists a binary
resolvent R' of C1 and C2 in the definition of [GN87], such that R' C R.
[GN87] define a resolvent of CI and C2 as a binary resolvent of factors of
C1 and C2. Thus it can be seen that if 7{ is a resolvent of C1 and C2 in our
definition, then there is a [GN87]-resolvent R' of C1 and C2 such that R' C R
(and hence R' ~ R).

Note that if R is a [GN87]-resolvent of C1 and C2~ then there is a [CL73]-
resolvent R' of C1 and C2 such that R t C_ R. Some [GN87]-resoIvents are
not [CL73]-resolvents. For instance, suppose C1 = {P(x, a),P(x,x)} and
C~ =- {~P(a, a)}. Then {P(a, a)} is a [GN87]-resolvent of C1 and C2, while
the only [CL73]-resolvent is the empty clause. On the other hand, every
[CL73]-resolvent is a [GN87]-resolvent, due to the use of factors.

Despite the differences between these alternative definitions and our own,
oar proof of the Subsumption Theorem in this chapter can fairly easily be
adjusted to accommodate these alternative definitions. Thus, even though
the number of resolution steps required for the deduction of some particular
clause may vary between definitions, eventually each definition can deduce
exactly the same clauses from a set E~ namely the logical consequences of E.

Chapter 6

Linear and Input
Resolution

6.1 Introduction

In the previous two chapters, we defined resolution, and proved deductions to
be sound and complete. We also explained how the level-saturation method
can find a deduction of C from E, if one exists. Essentially, it just tries
out all possible derivations--and often the set of all possible derivations is
infinite. Searching for a proof is very cumbersome, because in "unconstrained"
resolution, any two clauses (both clauses from the original set E, and previous
resolvents), can be resolved together. This means that in each step, there is
a large number of possibilities which all ought to be tried.

This number of possibilities could be reduced by imposing constraints on
the derivations that are allowed. Ideally, such a restricted form of resolution
significantly reduces the number of possibilities that have to be tried (com-
pared to unconstrained resolution), without sacrificing completeness. That
is, we want a restricted form of resolution which is more efficient than un-
constrained resolution, but which still allows us to deduce any clause that is
a logical consequence of the premises.

Many important restrictions have been developed since the introduction
of the resolution principle by Robinson in 1965. The most important of these
can be subdivided into two broad classes: forms of semantic resolution and
forms of linear resolution.

Semantic resolution takes particular interpretations and orderings of lit-
erals into account. By imposing all sorts of restrictions on the possible deriva-
tions, in terms of the chosen interpretation and ordering, semantic resolution
is much more efficient than unconstrained resolution. It was introduced by
Slagle in [Sla67]. Chapter 6 of [CL7a] discusses several forms of semantic reso-
lution, and proves the refutation completeness of those forms. Slagle, Chang,

94 CHAPTER 6. LINEAR AND INPUT RESOLUTION

and Lee proved versions of the Subsumption Theorem for semantic resolution
in [SCL69].

However, in this book we will not discuss semantic resolution in detail.
Instead, we define a simple form of linear resolution, and prove its complete-
ness. We prefer linear resolution over semantic resolution here, because it is
conceptually simpler and provides a bridge between the unconstrained reso-
lution of the previous chapters, and the SLD-resolution of the next chapter
(which is a special case of linear resolution).

Linear resolution is characterized by the linear shape of its derivations.
It was independently introduced by Loveland [Lov70] and Luckham [LucT0].
An important further restriction called SL-resolution (Linear resolution with
a Selection function) was introduced by Kowalski and Kuehner [KKT1],
and proven to be refutation-complete. Chang and Lee [CL73] discuss OL-
resolution (Ordered Linear resolution). 1 Minicozzi and Reiter proved the
Subsumption Theorem for linear resolution in [MR72]. More recently, In-
oue [Ino92] developed SOL-resolution (Skip-OL-resolution) and proved a ver-
sion of the Subsumption Theorem for it.

For the sake of transparency, we will discuss a very simple form of linear
resolution here. Many features and restrictions could be added on to improve
efficiency (see the references given above). We will prove the Subsumption
Theorem and refutation completeness fbr this form of linear resolution. Af-
ter that, we will define a further restriction of linear resolution called input
resolution, and show that this is not complete for general clauses, not even
when the set of premises contains only one clause.

6.2 Linear Reso lu t ion

D e f i n i t i o n 6.1 Let E be a set of clauses and C be a clause. A linear deriva-
tion of C from E is a finite sequence of clauses R0 , . . . , Rk = C, such that
R0 E E and each Ri with 1 < i _< k is a resolvent of Ri-1 and a clause
@ ~ ZU{Ro,...,.R~_~}.

R0 is called the top clause, Ao, . . . , Rk the center clauses, and C 1 , . . . , Ck
are called the side clauses of this linear derivation. If a linear derivation of C
from E exists, we write E f-tr C.

A linear derivation of [] from E is called a linear refutation of E.

It is instructive to see how linear resolution fits into the definition of
unconstrained resolution. Whereas in unconstrained resolution a clause Ri
in the derivation can be a resolvent of any two previous clauses, in linear
resolution /~i should be a resolvent of R~'-I and a clause from E or one of
the previous center clauses. This greatly reduces the search space of possible
derivations.

t However, their proof of refutat ion completeness contains an error. OL-resolution is not
refutat ion-complete, as described on pp. 324-325 of [Ino92].

6.3. REFUTATION COMPLETENESS 95

Linear derivations are characterized by the "linear" shape of their corre-
sponding derivation trees. See Figure 6.1. Such a tree can be turned into a
derivation tree for unconstrained resolution by adding the derivations of each
side clause Ci which is not in ~.

Ro C1

R1 C2

Rz

Rk- i Ck

R~

Figure 6.1: The characteristic shape of a linear derivation

Linear deductions are defined as follows:

D e f i n i t i o n 6.2 Let P. be a set of clauses and C a clause. There exists a
linear deduction of C from 2, written as N ~-m C, if C is a tautology, or if
there exists a clause D such that E ~-~ D and D subsumes C. �9

E x a m p l e 6.3 We will give a linear deduction of C = Q(a) v / / (a) from
G = {(P(x)V~O(x)), (~P(x)V~Q(a)), (-,P(x)vQ(x)), (P(x)VQ(x)VR(x))}.
Figure 6.2 shows a linear derivation of D = R(a) from E. Note that the
underlined side clause C4 is the center clause R1. Note also that we sometimes
rename side clauses to achieve that the side clauses and the corresponding
center clauses are standardized apart . Since D subsumes C, we have a linear
deduction of C from ~. Hence G ~-Id C. <]

6.3 Refutation Completeness

A proof of the refutation completeness of linear resolution is given in Theo-
rem 7.2 of [CL73] (but see the note on p. 94). We adapt this proof for our
own definitions here, first proving the case for ground clauses, which is then
lifted. The proof of the following lifting l emma is similar to Lemma 5.12.

96 C H A P T E R 6. L INEAR AND INPU T R E S O L U T I O N

n o : P (g) V "~Q(T,) Cl -= "~P(y) V "~Q(a)

nl = ~Q(~) v ~Q(~) c2 = ~P(y) v Q(y)

Ru = "~P(a) C3 = P (x) V Q(x) v -~(x)

n~ = c2(~) v R(~) c~ = - ,Q(~) v - ,Q(~)

R4 = D = R(a)

Figure 6.2: A linear derivation of D from E

L e m m a 6.4 (L i n e a r d e r i v a t i o n l i f t ing) Let E be a set of clauses, and
E' be a set of instances of clauses from E. Suppose R~o,..., R~ is a linear
derivation of the clause R~ from E ~. Then there exists a linear derivation
[to , . . . , ftk of the clause Rk from E, such that R~ is an instance of fti, for
each i.

The following l emma is the refutation completeness of linear resolution
for ground clauses.

L e m m a 6.5 I f E is an unsatisfiable set of ground clauses, and C C E such
that E \ { C } is satisfiable, then there is a linear refutation of E with C as top
clause.

P r o o f By the Compactness Theorem (Theorem 2.42), we can assume E is
finite. Let n be the number of distinct ground atoms occurring in literals in
clauses in E. We prove the l emma by induction on n.

1. If n = 0, then E = {D}. Since E \{C} is satisfiable, C = []
2. Suppose the l emma holds for n < m, and suppose m + 1 distinct a toms

appear in E. We distinguish two cases.
C a s e 1: Suppose C = L, where L is a literal. We first delete all clauses
from E which contain the literal L (so we also delete C itself from
E). Then we replace clauses which contain the literal -,L by clauses
constructed by deleting these -~L (so for example, L1 V --L V L2 will
be replaced by L1 V L2). Call the finite set obtained in this way F.

6.3. REFUTATION COMPLETENESS 97

Note that neither the literal L, nor its negation~ appears in clauses in
F. If M were a Herbrand model of F, then M U {L} (i.e., the Herbrand
interpretation which makes L true, and is the same as M for other
literals) would be a Herbrand model of E. Thus since E is unsatisfiable,
P must be unsatisfiable.
Now let E' be an unsatisfiable subset of F, such that every proper
subset of E ~ is satisfiable. E' must contain a clause D ' obtained from a
member of E which contained -~L, for otherwise the unsatisfiable set E '
would be a subset of E \{C} , contradicting the assumption that E \{C}
is satisfiable. By construction of E' , we have that E ' \ { D ~} is satisfiable.
Furthermore, E' contains at most m distinct atoms, so by the induction
hypothesis there exists a linear refutation of E ' with top clause D ' . See
the left of Figure 6.3 for illustration.

D ~ 6 E' Ci E E ~

R1 C~ E E ~

[3

C=L6 ~ D =-~LVD' 6 ~

D' Ci V -~L 6 E

RI V -~L C~ 6 E

-~L L

[3

Figure 6.3: Case 1 of the proof

Each side clause in this refutation that is not equal to a previous center
clause, is either a member of E or is obtained from a member of E by
means of the deletion of-~L. In the latter kind of side clauses, put back
the deleted -~L literals, and add these -~L to all later center clauses. Note
that afterwards, these center clauses may contain multiple copies of ~L.
In particular, the last center clause changes from [] to -,L V . . . V -~L.
Since D / is a resolvent of C and D = -,L V D ' E E, we can add C and
D as parent clauses on top of the previous top clause D' . Tha t way,
we get a linear derivation of --L V . . . V -,L from E, with top clause C.
Finally, the literals in -~L V . . . V--,L can be resolved away using the top
clause C = L as side clause. This yields a linear refutation of E with
top clause C (see the right of Figure 6.3).
C a s e 2: Suppose C = L V C' , where C ' is a non-empty clause. C '
cannot contain -~L, for otherwise C would be a tautology, contradicting
the assumption that E is unsatisfiable while E \{C} is satisfiable.

98 C H A P T E R 6. L IN EAR A N D I N P U T R E S O L U T I O N

Obtain E ~ from E by deleting clauses containing -~L, and by removing
the literal L from the remaining clauses. Note that C ~ C E'. If M were
a Herbrand model of E' , then M O {-,L} is a Herbrand model of E.
Thus since E is unsatisfiable, E ~ is unsatisfiable.
Furthermore, because E \{C} is satisfiable, by Proposition 3.30 there is
a Herbrand model M ~ of E\{C}. Since E is unsatisfiable, M ~ is not a
model of C. L is a literal in C, hence L must be false under M ~. Every
clause in E ' \ { C ' } is obtained from a clause in E \{C} by deleting L
from it. Since M p is a model of every clause in E \ { C) and L is false
under M', every clause in E ' \ { C ~} is true under M ~. Therefore M ~ is a
model of E ' \{C '} , which shows that E ' \{C '} is satisfiable.
Then by the induction hypothesis, there exists a linear refutation of E ~
with top clause C r. Now similar to case 1, put back previously deleted
L literals to the top and side clauses, and to the appropriate center
clauses. This gives a linear derivation of L V . . . V L from E with top
clause C.
Note that {L} U (E\{C}) is unsatisfiable, because L is false in any
Herbrand model of E\{C}, as shown above. On the other hand, E \{C}
is satisfiable. Thus by case 1 of this proof, there exists a linear refutation
of {L} O (E\{C}~ with top clause L. Since L is a factor of L V . . . V L,
we can put our linear derivation of L V . . . v L "on top" of this linear
refutation of {L} O (E\{C}) with top clause L, thus obtaining a linear
refutation of E with top clause C. []

Theorem 6.6 (Refutation completeness of linear resolution) Let E be
a set of clauses. Then E is unsatisfiable iff E F-tr n

P r o o f
z;=: From Theorem 4.39.
=~: Suppose E is unsatisfiable. Then by Theorem 5.8, there is a finite

unsatisfiable set Eg of ground instances of clauses in E ~. Let E~ be an um
satisfiable subset of Eg, and C E E~ such that E ; \ { C } is satisfiable. From
Lemma 6.5, we have Eg F-~r Q. Hence E P~r [] by Lemma 6.4. []

6.4 The Subsumption Theorem

Starting from refutation completeness, it is now possible to prove also the
Sttbsumption Theorem for linear resolution. Our proof is similar to the one
given in [MR72]. We use refutation completeness, and then turn a linear
refutation into a linear deduction, using the following lemma:

L e m m a 6 . 7 Let E be a set of clauses, and C :- L1 V . . . V Lk be a non-
tautologous ground clause. I f E 0 {-~L1,. . . , - ,Lk} ~-lr C3, then E ~-~ C.

6.4. THE SUBSUMPTION THEOREM 99

P r o o f Suppose ~ U {-~L1,...,-~Lk] ~-z~ []. Then there exists a linear refu-
tat ion R 0 , . . . , R,~ -- [] of P, (; {-~L1,. �9 -~Lk}. Notice that the top clause
and the first side clause in this linear refutation cannot both be members of
{-~L1,. . . , -~Lk}, because C is not a tautology. Thus we can assume R0 E ~.
It is then possible to prove by induction on n that this linear refutation can
be t ransformed into a linear deduction of C from ~, with top clause R0:

1. I f n - 0, then R0 -- [] is a member of ~. Since [] subsumes any clause
C, the result follows.

2. Suppose the l emma holds for n _< m. Let R 0 , . . . , R , ~ + I = [] be a
linear refutation of ~ U {-~L1, �9 �9 -~Lk}. Then R1,. �9 R~n+l is a linear
refutation of ~ U {R1) U {'-~L1,...,-~Lk}. By the induction hypothesis,
there is a linear derivation of a clause D from ~ LJ {R1}, with top clause
R1, such that D subsumes C.
Suppose R1 is itself a resolvent of two members of ~. Then we also have

PL~ D, so the l emma holds in this case.
The only remaining case we have to check, is where R1 is a resolvent of
R0 E ~ and some -~Ls (1 < s < k). Let R0 -- M1 V . . . V Mj V . . . V Mh.
Suppose R~ is a binary resolvent of (M~ V . . . V Mj)~ (a factor of R0,
using cr as an mgu for {Mj , . . . , Mh}) and -~L~, with 0 as mgu for Mj~
and Ls. Then R1 = (M1V. . .V Mj_I)~O and RoCrO = R1V L~ V . . . V L~
(h - j + 1 copies of Ls), since M j , . . . , Mh are all unified to L~ by c~0.
Now replace each t ime R1 appears as leaf (i.e., top or side clause) in the
derivation tree o lD , by Rocr0 = R1VL~V...VL~, and add L~V...VL~ to
all decendants of such an Rl-leaf. This gives a new derivation, in which
each resolvent is the corresponding resolvent in the old derivation of
D plus some extra copies of L~. Thus we obtain a linear derivation of
D V L~ V . . . V L~ from E U {R0~r0). Since R0c~0 is an instance of a clause
from E, we can lift (by Lemma 6.4) this derivation to a derivation from
E of a clause D' , which has D V L~ V . . . V Ls as an instance. Since D
subsumes C, D ' also subsumes C. Hence ~ F-td C. []

T h e o r e m 6.8 (S u b s u m p t i o n T h e o r e m for l i n e a r r e s o l u t i o n) Let ~ be
a set of clauses, and C be a clause. Then E ~ C iff E ~-Id C.

P r o o f
~ : From Theorem 5.6.
~ : If C is a tautology, the theorem is obvious. Assume C is not a tau-

tology. Let 0 be a Skolem substitution for C with respect to E. Let C8 be
the clause L1 V . . . V Lk. Since C is not a tautology, CO is not a tautol-
ogy. CO is ground and E ~ CO, so the set of clauses E U {-~L1, . . . , -~Lk)
is unsatisfiable by Proposition 2.37. Then it follows from Theorem 6.6 tha t
E O {-~L1, �9 -~Lk} ~-lr D. Therefore by Lemma 6.7, there exists a clause D
such that E ~-Ir D, and D subsumes CO. From Lemma 5.16, D also subsumes
C itself. Hence E ~-ld C.

100 CHAPTER 6. LINEAR AND INPUT RESOLUTION

6.5 The Incompleteness of Input Resolution

Linear resolution is a restriction of unconstrained resolution. Linear resolution
itself can be further restricted to input resolution, by stipulating that each
side clause should be a member of E. Input resolution is significant for two
reasons. Firstly, SLD-resolution, which we will introduce in the next chapter,
is in turn a restricted form of input resolution. And secondly, input resolution
is used fairly often in the literature. Contrary to linear resolution, input
resolution is not complete, not even when the set of premises E contains only
one clause. Before we give our counterexample, we will first formally define
input resolution:

D e f i n i t i o n 6.9 Let E be a set of clauses and C be a clause. An input deriva-
tion of C from E is a linear derivation in which each side clause Ci is a member
of E. The side clauses C1, �9 Ck in an input derivation are also called input
clauses. If an input derivation of C from E exists, we write E ~-ir C.

An input derivation of [] from E is called an input refutation of E. <~

D e f i n i t i o n 6.10 Let E be a set of clauses and C a clause. There exists an
input deduction of C from E, written as E Pid C, if C is a tautology, or if
there exists a clause D such that E ~-i~ D and D subsumes C. <5

Most examples of the previous chapters were cases of input resolution, and
many derivations that are not input derivations can be transformed into input
derivations. This might induce us to expect that input resolution is complete.
That is, we might expect that the Subsumption Theorem and refutation
completeness can be stated in terms of input resolution. However, this is not
the case.

Input resolution is not refutation-complete. A simple propositional exam-
ple suffices to show this. Let E = {(P V Q), (P v-~Q), (=P v Q), (- ,P v "~O)}.
Figure 6.4 shows a refutation by unconstrained resolution of E. This proves
that E is unsatisfiable.

g v Q Pv-~Q ~PvQ ~P v-~Q

P V P -~P V -~P

O

Figure 6.4: An unconstrained refutation of E

6.5. THE INCOMPLETENESS OF INPUT RESOLUTION 101

Unfortunately, there does not exist an input refutation of E. It is easy
to see why this is so. To reach the empty clause [3, the last input clause
should contain only one literal, or have a factor containing only one literal.
However, each clause in E contains two distinct literals. Hence there is no
input refutation of E, and input resolution is not refutation-complete.

This also implies that the Subsumption Theorem does not hold either for
input resolution, since refutation completeness would be a direct consequence
of it. We can in fact prove a stronger negative result, namely that the Sub-
sumption Theorem for input resolution is not even true in the simple case
where E contains only a single clause. In our counterexample we let E : {C},
where C is the following clause:

C : P(r x2) V Q(z2, z3) v -,Q(x3, x4) v ~P(x4, xl).

Figure 6.5 shows that clause D (see below) can be derived from C by uncon-
strained resolution. This also shows that C ~ D.

C1 C2 C3 C4

Dt D~

factor i i factor

Di D;

D

F igure 6.5: The derivation of D from C by unconstrained resolution

Figure 6.5 makes use of the clauses listed below. C1, C2, C3, C4 are
variants of C. Dz is a binary resolvent of Cz and C2, D2 is a binary resolvent
of C3 and C4 (the underlined literals are the literals resolved upon). D~ is
a factor of D1, using the substitution {xs/xl, x6/z2}. D'2 is a factor of D2,
using {xll/x12, x13/xg}. Finally~ D is a binary resolvent of D~ and D~.

C1 = P(xl , z2) V q(x2, z~) v ~q(x3, x4) v -~P(x4, xl).
C2 = P(xs, xr V Q(x6, xT) v -~q(xT, xs) v -~P(xs, x5).

c~ = P (~ , ~) v q(~4 , ~15) v -'Q(~I~, x~6) v ~P(~6, ~3).
D, = P (~ , ~) v -'Q(~3, ~) v - ,P(~ , ~) v P (~ , ~6) v Q(~ , ~) v - ,P(~ , ~) .

102 CHAPTER 6. LINEAR AND INPUT RESOLUTION

D~ = P(.~, xt0) v -~Q(<~, <~) v - .P(.~ , .~) v P(<~, <~) v Q(<~, <0)v
~P(x11, xla).

D i = P(xl, x2) V ~Q(xs, x4) v -~P(*4, xl) v Q(x2, x2) v ',P(xa, x,) .
D'2 = P(xg, *10) V ~Q(x12, "12) v ~P(x,2, xg) v P(x9, *14) v Q(x14, XlO).
D = --,Q(xa, *4) V -~P(*4, xl) V Q(x2, *2) V -~P(xa, *1) V P(, , , x,o)V

~O(xl, xl) V P(x2, x14) V O(x14, xlo).

Thus D can be derived from C using unconstrained resolution. However,
neither D nor a clause which subsumes D can be derived from C using only
input resolution. We prove this in Proposition 6.12. This shows that input
resolution is not complete, not even if E contains only one clause.

The following l emma shows that each clause which can be derived from
C by input resolution contains an instance of P(xl, x2) V -~P(x4~ Xl) or an
instance of Q(x2, x3) v -,Q(x3, x4).

L e m m a 6.11 Let C be as defined above. If C ~-ir E, then E contains an
instance of P(xl, x2) V -,P(x4, xl) or an instance of Q(x2, xa) v -,Q(xa, x4).

P r o o f Let Ro, �9 Rk = E be an input derivation of E from C. We prove
the l emma by induction on k:

1. Ro = C, so the l emma is obvious if k = 0.
2. Suppose the l emma holds for k <_ n. Let R o , . . . , R~+I = E be an input

derivation of E from C. Note that the only factor of C is C itself.
Therefore E is a binary resolvent of C and a factor of R,~. Let 0 be the
mgu used in obtaining this binary resolvent. If P(xl, x2) or -~P(x4, Xl)
is the literal resolved upon in C, then E must contain (Q(x2, x3) v
-~Q(xa, x4))0. Otherwise Q(x2, xa) or -,Q(x3, x4) is the literal resolved
upon in C, so then E contains (P(Xl, x2) V ~P(x4, xl))O. Hence the
l emma also holds for k = n + 1.

P r o p o s i t i o n 6.12 Let C and D be as defined above. Then C ~/ia D.

P r o o f Suppose C ~-ia D. Then since D is not a tautology, there exists
a clause E such that C ~'iT E and E subsumes D. From Lemma 6.11 we
know that. E contains an instance of P(x~, x2) V -,P(x4, xl) or an instance of
Q(x2, x3) v ~Q(x3, x4). It is easy to see that neither P(xl, x~) V-,P(x4, xl)
nor Q(x2, x3) v -~Q(x3, x4) subsumes D. But then 13 does not subsume D, so
we have found a contradiction. Hence C Vi~ D. []

So we see that input resolution is not complete: C ~ D, but C ~/id D. This
is unfortunate, since input resolution is more efficient than unconstrained res-
olution or linear resolution. However, if we restrict ourselves to Horn clauses
(clauses containing at most one positive literal), a special case of input reso-
lution called SLD-resolution can be shown to be complete. This will be the
topic of the next chapter.

6.6. SUMMARY 103

6.6 Summary

This chapter defined linear resolution and input resolution, two important
restrictions of unconstrained resolution, which are characterized by the linear
shapes of their derivations. We proved the Subsumption Theorem for linear
resolution, as well as its refutation completeness. On the other hand, input
resolution is not complete, not even when E (the set of premises) contains
only one clause.

Chapter 7

SLD-Reso lut ion

7.1 Introduct ion

Thus far, we have concerned ourselves with the set of all clauses. However, in
practice as well as theory, one often restricts this set. In this chapter, we will
discuss an impor tant example of such a restriction, namely the restriction to
Horn clauses, named after the logician Alfred Horn. These are clauses with
at most one positive literal. The set of Horn clauses is indeed a restriction,
since formulas such as P(a) V P(b) cannot he expressed as Horn clauses.

This loss of expressive power is compensated for by a gain in tractability:
due to their restricted form, sets of Horn clauses are easier to handle than
sets of general clauses. In particular, deduction based on SLD-resolution 1,
which is a special case of input resolution, is complete for Horn clauses. One
form of this completeness is the Subsumption Theorem for SLD-resolution,
a second is its refutation completeness. A third form of completeness is in
terms of the least Herbrand model of a set of Horn clauses.

SLD-resolution was introduced by Kowalski in [Kow74]. It is simpler than
the unconstrained or linear resolution that we need for general clauses. Fur-
thermore, the use of Horn clauses is supported by the wide availability and
applicability of the programming language PROLOG, which is built on SLD-
resolution and which will be discussed in the next chapter. For these reasons,
most applications and much theoretical work in ILP is only concerned with
Horn clauses.

In this chapter we will discuss Horn clauses and SLD-resolution, and
prove its soundness and completeness. Much of the material in this chap te r - -
particularly in the later sections--is drawn from [Llo87], which is the stan-
dard reference for logic programming. However, we also refer to more recent

1The abbreviation 'SLD' stands for 'SL-resolution for Definite clauses', where 'SL-
resolution' abbreviates 'Linear resolution with a Selection function' (see [KK7"I]). A 'selec-
tion function' is similar to the concept of a 'computation rule' that we will introduce in
this chapter.

106 CHAPTER 7. SLD-RESOLUTION

texts [Doe94, Apt97] on logic programming, which correct some subtle errors
in [Llo87]. The completeness results of the later sections were first proved in
[Hi174, Cla79, AE821, and more recent proofs may be found in [St~igo, BezgO].
The definition of SLD-derivation we give here is more general than the one
given in [Llo87], which only focuses on refutations. Our main completeness
result, the Subsumption Theorem for SLD-resolution, is not given in [Lto87],
nor in the other references mentioned above. Furthermore, the proofs of some
of the completeness results we give here are quite different from the ones given
in [Llo87], in that we do make use of fixed-point theory, but use only the basic
definitions of resolution.

7.2 SLD-Resolut ion

D e f i n i t i o n 7.1 A definite program clause is a clause containing one positive,
and zero or more negative literals. A definite goal is a clause containing only
negative literals. A Horn clause is either a definite program clause, or a
definite goal. O

If a definite program clause consists of the positive literal A and the
negative literals -~B1,. �9 -~B,., then such a clause can equivalently be written
as the following implication:

(B1 A . . . A Bn) --+ A.

In most papers and books about logic programming, this is written as:

A +-- B 1 , . . . , • n .

A is called the head of the clause, B1, �9 �9 B~ is called the body of the clause.
It will be convenient to denote the head of a clause C by C +, and the body
(the conjunction B1A. . .ABn) by C - . In case of an atom A (that is, if n = 0),
we carl omit the 'e - ' symbol~ A definite goal can equivalently be written as

4- BL,.. , ,B~.

The empty clause [] is also considered to be a goal.
In the same way as we have clausal languages, we also have more restricted

Horn languages:

D e f i n i t i o n 7.2 The Horn language 7{ given by an alphabet is the set of all
Horn clauses which can be constructed from the symbols in the alphabet. O

As our proof procedure for Horn clauses, we use SLD-resolution. This is
input resolution with some restrictions:

1. SLD-resolution is only applied to a set E of Horn clauses. The top clause
can be either a definite program clause or a goal in E.

2. All input clauses are definite program clauses from E.

7.2. SLD-RESOL UTION 107

3. The literals resolved upon are the head of the input clause, and a se-
lected atom in the body of the center clause.

4. No factors are used, so all resolvents are binary resolvents.

More formally:

D e f i n i t i o n 7.3 Let s be a set of Horn clauses, and C be a Horn-clause. An
SLD-derivation of length k of C from g is a finite sequence of Horn clauses
R 0 , . . . , / ~ k = C, such that R0 C ~ and each Ri (1 < i < k) is a binary
resolvent of -Ri- 1 and a definite program clause Ci E ~, using the head of Ci
and a selected atom in the body of Ri-1 as the literals resolved upon.

R0 is called the top clause, and the Ci are the input clauses of this SLD-
derivation. If an SLD-derivation of C from N exists, we write N ~-,. C. An
SLD-derivation of [] from E is called an SLD-refutation of E. <?

Note that either each /~i in an SLD-derivation is a goal, or each R~ is a
definite program clause. We will discuss the selected a tom in Section 7.6.

D e f i n i t i o n 7.4 Let N be a set of Horn clauses and C a Horn clause. There
exists an SLD-deduction of C from 2, written as 2 P,d C, if C is a tautology,
or if there is a Horn clause D, such that E ~-~ D and D subsumes C. O

E x a m p l e 7.5 Consider E = {P(0, x, x), (P(s(x) , y, s(z)) +-- P(x , y, z))},
a set of clauses which formalizes addition. Let us see how we can prove
C = P(s2(O), s(O), sa(0)) (i.e., 2 + 1 = 3) from this set by SLD-resolution.
Figure 7.1 shows an SLD-derivation of R2 = P(s2(0), y, s2(y)) from 2. The
selected a toms are underlined. Since R~ subsumes C, we have N ~-~d C. <~

Ro = P(s(~),v,~(z)) ~- P(~,v,*) c, = P(s(~),., ~(~)) ~- e(. ,~,~)

R1 = P (s ~ (x) , y , s ~ (z)) +-- P (x , y , z) C~ = P (O , v , v)

R~ = P(,~(o), y, ~(~))

subsumes

c = P(s~(0), ~(0), ~(0))

F i g u r e 7.1: An SLD-deduction of C from

108 CHAPTER 7. SLD-RESOLUTION

7.3 Soundness and Completeness

In this section, we are concerned with the soundness and completeness of
SLD-resolution. Since SLD-resolution is a special case of unconstrained reso-
lution, the soundness is obvious: if E ~-,d C, then E ~ C. For the complete-
ness of SLD-resolution, we have to do a little more work. The main result
here will be the Subsumption Theorem for SLD-resolution, which we prove
starting from the refutation completeness.

7 . 3 . 1 R e f u t a t i o n C o m p l e t e n e s s

In this subsection, we will prove that SLD-resolution is refutation-complete:
a set of Horn clauses is unsatisfiable iff it has an SLD-refutation. First we
establish refutation completeness for ground Horn clauses:

L e m m a 7.6 If E is a finite unsatisflable set of ground Horn clauses, then

P r o o f Let n be the number of facts (clauses consisting of a single positive
literal) in E. The proof is by induction on n.

1. If n = 0, then [] E E, for otherwise the empty set would be a Herbrand
model of E.

2. Suppose the lemma holds for 0 _< n < m. Suppose 53 contains m + 1
distinct facts. If [] E E the lemma is obvious, so suppose D ~ ~.
Let A be a fact in E. We first delete all clauses from E which have A
as head (so we also delete the fact A from E). Then we replace clauses
which have A in their body by clauses constructed by deleting these
atoms A from the body (so for example, B +- A, B 1 , . . . , Bk will be
replaced by B +- B1 , . . . , Bh). Call the set obtained in this way 531.
[f M is a Herbrand model of 53 r, then MU{A} is a Herbrand model of E.
Thus since E is unsatisfiable, E / must be unsatisfiable. 53/only contains
m facts, so by the induction hypothesis, there is an SLD-refutation of
E / If this refutation only uses clauses from E / which were also in Y3,
then this is also an SLD-refutation of E, so then we are done.
,Otherwise, if C is the top clause or an input clause in this refutation
and C ~ 53, then C was obtained from some C t E E by deleting all
atoms A from the body of C f. For all such C, do the following: restore
the previously deleted copies of A to the body of C (which turns C into
C ~ again), and add these atoms A to all later resolvents. This way, we
can turn the SLD-refutation of E ~ into an SLD-derivation of +- A, . . . , A
from E. See Figure 7.2 for illustration, where we add previously deleted
atoms A to the bodies of R0 and C'2. Since also A ~ E, we can construct
an SLD-refutation of E, using A a number of times as input clause to
resolve away all members of the goa.1 +~ A, . . .~ A. []

The proof of the lifting lemma for SLD-resolution is similar to Lemma 5.12.

7.3. SOUNDNESS AND COMPLETENESS

R0 ~'E CI E E (RoV'~A) E ~ C1 E

1 / 1 /
R1 C2 ff Z R1 v "~A C2 V "~A E

l /
R 2 = O ,~- A,

l
+--A

[]

/
A A E E

/
A E E

/
Figure 7.2: The SLD-refutations of E' (left) and E (right)

109

L e m m a 7.7 (S L D - d e r i v a t i o n l i f t ing) Let E be a set of Horn clauses, and
E' be a set of instances of clauses from E. Suppose R'o,..., R~ is an SLD-
derivation of the clause R~ from E'. Then there exists an SLD-derivation
Ro , . . . , Ra of the clause Rk from E, such that R~ is an instance of Ri, for
each i.

The previous lemmas allow us to prove the refutation completeness of
SLD-resolution:

T h e o r e m 7.8 (R e f u t a t i o n c o m p l e t e n e s s o f S L D - r e s o l u t i o n) Let E be
a set of Horn clauses. Then E is unsatisfiable iff E Fsr D.

P r o o f
~ : By Theorem 4.39.
~ : Suppose E is unsatisfiable. By Theorem 5.8, there is a finite unsatisfi-

able set E~ of ground instances of clauses from E. From Lemma 7.6, we have
E~ b ~ D. Using Lemma 7.7, we can lift this to E F~ D. []

7.3.2 The Subsumption Theorem

Here we will prove the Subsumption Theorem for SLD-resolution. As in the
case of linear resolution, we establish this result by translating a refutation
to a deduction, using the following lemma:

L e m m a 7.9 Let E be a set of Horn clauses, and C = L1V . . .VLk be a non-
tautologous ground Horn clause. If E U {-~LI~..., ~Lk } bsr D, then E Fsd C.

P r o o f Suppose E U {~L1,. . .~-~Lk} b~ D, that is, there exists an SLD-re-
futation Ro, . . . , I~ = [] of E U {-~L1,... ,-~Lk}. By induction on n:

Ii0 CHAPTER 7. SLD-RESOLUTION

1. If n = 0, then /{0 = [] E E, so then the l emma is obvious.
2. Suppose the l emma holds for n _< m. Let Ro, . . . ,Rm+l = [] be an

SLD-refutation of E tO {-~L1,..., '~Lk}. Then R1, . . . , R,~+I is an SLD-
refutation of E U {R1} tO {~L1, . . . , ~Lk}. By the induction hypothesis,
there is an SLD-derivation /{~, R ~ , . . . , R~ from E O {/{1}, where /{~
subsumes C. Note that R1 must be a definite goal, so R, is either the
top clause in this derivation, or not used at all.
If /{~ ~ R1, then R~ E E. Moreover, in that case R1 is used nowhere
in the SLD-derivation of R~, so then this is an SLD-derivation of R~
from E, and hence E ~-~d C. In case R~ = /~1, we distinguish three
possibilities:

t. /{1 is a binary resolvent of a goal G E E and a definite clause
C1 E E. Then G, R' 1, R'>. . . , RI, with C, as first input clause, is
an SLD-derivation from P,. R~ subsumes C, so then E F-,d C.

2. /{1 is a binary resolvent of a negative literal ~L E {=L1,. . . , -~Lk},
and a definite clause C1 E E (note that this means that C is a
definite program clause, with L as head). Let 0 be the mgu used in
this resolution-step, so C16 = L \ /R , . Then C10, L V R ~ , . . . , L V/{~
is an SLD-derivation of L V R I from E U .{C~O}. (See Figure 7.3 for
illustration.) C,0 is an instance of a clause in E, so by Lemma 7.7,
we can find an SLD-derivation from E of a clause D, of which
L V R I is an instance. Since R I subsumes C and L E C, L V/{~
subsumes C, and hence D also subsumes C. Therefore E ~-~d C.

-~L C1 E E

R~I = R1 C2 E E CIO =- L V R1 C2 6 E

R; L v R;

Figure 7.3: Illustration of case 2 of the proof

3. t{1 is a binary resolvent of a goal G E E, and a positive literal
L E {-~L1 , -~Lk}. Let 0 be the mgu used in this resolution step,
so GO = -~L V R1. Then GO(= ~L V/{I),-~L V / { ~ , . . . , ~L V/{~ is
an SLD-derivation of -~L V R~ fi'om E U {GO}. G6 is an instance
of a clause in E, so by Lemma 7.7, we can find an SLD-derivation
from E of a clause D, of which ~L V R~ is an instance. Since R I
subsumes C and -~L E C, -~L V R~ subsumes C, and hence D also
subsumes C. Therefore E F-~d C. []

7.4. DEFINITE PROGRAMS AND LEAST HERBRAND MODELS 111

Now we can prove the Subsumption Theorem for SLD-resolution:

T h e o r e m 7.10 (S u b s u m p t i o n T h e o r e m fo r S L D - r e s o l u t i o n) Let E be
a set of Horn clauses, and C be a Horn clause. Then E ~ C iff E ~-~d C.

P r o o f
r By Theorem 5.6.
=~: If C is a tautology, the theorem is obvious. Assume C is not a tau-

tology. Let 0 be a Skolem substitution for C with respect to 2. Let CO be
the clause L1 V . . . V Lk. Since C is not a tautology, CO is not a tautol-
ogy. CO is ground and E ~ CO, so by Proposition 2.37 the set of clauses

U {-~L1,. . . ,-~L~} is unsatisfiable. Then it follows from Theorem 7.8 that
E U {-,L1, . . . , -~Lk} F-s~ []. Therefore by Lemma 7.9, there exists a clause D
such that E ~-~ D, and D subsumes CO. From Lemma 5.16, D also subsumes
C itself. Hence E ~-~d C. []

Note the following special case of this result: if E is a set of definite
program clauses and A is an a tom such that E ~ A, then there exists an
a tom B such that ~ l-st B and A is an instance of B.

7 . 4 D e f i n i t e P r o g r a m s a n d L e a s t H e r b r a n d

M o d e l s

It should be noted that our definition of SLD-resolution is more general than
usual. Usually, for instance in [Llo87], SLD-resolution is only applied to find
the logical consequences of sets of definite program clauses, rather than arbi-
t rary sets of Horn clauses. Moreover, only SLD-refutations are used for this,
not arbi t rary derivations. In this and the next sections, we will discuss this
more restricted case.

D e f i n i t i o n 7.11 A definite program is a finite set of definite program clau-
ses.

We will usually denote definite programs by the symbol II.

E x a m p l e 7.12 The set H consisting of the following clauses is a definite
program.

1. P(0, x, x)
2 P(s(x), y, s(z)) ~- P(x, y, z)
3. Q(s(0), s(0))
4. O(s(s(0)), s(0))
5. Q(s(s(x)), u) +-- Q(x, y), Q(s(x), z), P(y, z, u)

It formalizes the Fibonacci numbers, which are defined as follows: the first
and second Fibonacci numbers are both equal to one, while the (n + 2)-th

112 CHAPTER 7. SLD-RESOLUTION

number is the sum of the n-th and (n + 1)-th number. The predicate symbol
P denotes addition (i.e., P(tl , ty, t3) means tl +t2 : t 3) , and the predicate Q
denotes the Fibonaeci nmnbers (i.e., Q(n, m) means that the n-th Fihonacci
number is m). <~

We will use Herbrand models to specify the semantics of definite pro-
grams. To define a Herbrand model, we need a Herbrand pre-interpretation.
This means that we must first define an alphabet. Usually, we assume the
alphabet is implicitly given in the program II we are dealing with. Tha t is,
we use the alphabet which consists of all symbols appearing in II. If H does
not contain a constant, we add one constant a to the language. We will use
UI~ to denote the Herbrand universe for the language given by this alphabet,
and Bn to denote the Herbrand base for this language.

Note that Br~ (the set of all ground atoms which can be constructed from
the symbols in II) is a Herbraad model of every definite clause, while the
empty set is a Herbrand model of every definite goal other than []. If H is a
definite program, then Bn is a Herbrand model of every clause in II, so every
definite program is satisfiable. Usually, some subsets of Bn are Herbrand
models of H, and some other subsets are not. As the next proposition shows,
the intersection of some Herbrand models of II is itself also a Herbrand model
of 11. This does not hold for sets of arbitrary non-Horn clauses. For example,
both {P(a)} and {Q(a)} are Herbrand models of E = {P(a) V Q(a)}, while
their intersection is the empty set, which itself is not a model of E.

P r o p o s i t i o n 7.13 Let H be a definite program. If {M1, My, . . . , Mk, . . . } is
a (possibly infinite) set of Herbrand models of H, then their intersection M =
Ni-VLi is also a Herbrand model of H.

P r o o f Suppose each of the Mi is a Herbrand model of H, but M = NiMi is
not.. Then there is a ground instance CO of a clause C E H which is false under
M. Let CO = A +- B1, . . . ,B ,~ (n >_ 0). Then Bj C M for every 1 < j < n,
but A ~ M. Since M = r we have Bj ~ /Vii for every 1 _< j < n and
i > 1. But since each Mi is a model of CO, we must then also have A E Mi,
for each i > 1. But then A E M = fliMi, which is a contradiction. []

It follows from the previous proposition that the intersection of all Her-
brand models of H, which will be called the least Herbrand model, is itself
also a Herbrand model of II.

D e f i n i t i o n 7.14 Let II be a definite program. The intersection of all Her-
brand models of H is called the least Herbrand model of II, and is denoted by

MII.

E x a m p l e 7.15 Suppose we have the following definite program H:

1. e (~ , z) ~- Q(x, y), P(y, z)

7.5. C O R R E C T A N S W E R S AND COMPUTED A N S W E R S 113

2. P(x, x)
3. Q(a, b)

Then M = {P(a, a), P(b, b), P(a, b), O(a,b)) is a Herbrand model of 11.
Clearly, every other Herbrand model of II must contain this M, so M is
in fact the least Herbrand model 2~Iii of II. ,3

The least Herbrand model of a definite program II is the model that
is "implicit" in the program. The domain of the model is the set of ground
terms constructable from the symbols in 11; each ground term in the language
denotes the corresponding ground term in the domain; furthermore, exactly
those ground atoms which are logical consequences of II, are true in Mn:

T h e o r e m 7.16 I f I I is a definite program, then Mn = {A E Bn [II ~ A}.

P r o o f Let A E Bri. Then we have:
1I ~ A iff (by Proposition 2.37)
II U {-~A} is unsatisfiable iff
II U {-~A} has no models iff (by Proposition 3.a0)
H U {-,A} has no Herbrand models iff
A is true under all Herbrand models of 1I iff
A E MII. rn

D e f i n i t i o n 7.17 Let II be a definite program. The success set of 11 is {A E
Bn t H U { e - - A } bs~ rn}.

Thus the success set of 11 consists of those ground atoms A such that
H U {+-- A} has an SLD-refutation. Since II U {e- A} ~-s~ ~ iff H U {+-- A}
is unsatisfiable iff II ~ A iff II E MII, we have the following completeness
result:

Theorem 7.18 (Completeness with respect to MII) Let II be a defi-
nite program. The success set of H is equal to its least Herbrand model Mrs.

7 .5 C o r r e c t A n s w e r s a n d C o m p u t e d A n s w e r s

In this section we will take a slightly different approach towards SLD-
resolution than used in the Subsumption Theorem, by considering correct and
computed answers. This approach, which points forward to PROLOG, views
SLD-refutations as a means of answering the question "What follows from a
definite program?" (hence the term 'answer'). Such questions are answered by
examining the substitutions used in SLD-refutations of a set 1I U {G}, where
G is a goal. In the rest of this chapter, when we discuss some SLD-refutation
of II U {G}, we assume G r rn.

114 CHAPTER 7. SLD-RESOLUTION

Because the actual mgu's used in a refutation are crucial for computed
answers, we have to be very precise about the condition of standardizing
apart. It is not sufficient here merely to require--as we have done up till
now-- tha t the two parent clauses in each resolution step are standardized
apart. Example 7.22 below shows what might go wrong if we only use that.
Instead, when dealing with correct and computed answers we will require
SLD-refutations to satisfy the following stronger condition:

C o n d i t i o n *
In an SLD-refutation of IIU {G}, with mgu's 01,- . . , 0n and input
clauses C1, . . . , C,, no variable in C/ should occur in G or in
C1 , . . . ,C~-1 or in 01, . . . ,0~-1.

In other words, C{ neither shares variables with G, nor with earlier mgu's
and input clauses. This can easily be achieved by using appropriate variants
of clauses in II as input clauses: given some SLD-refutation which does not
satisfy Condition *, we can simply rename some input clauses and make
corresponding changes in later mgu's and center clauses to obtain an SLD-
refutation which does satisfy Condition *. In the remainder of this chapter,
whenever we use a phrase like "let l) be an SLD-refutation", we assume this
refutation to satisfy Condition *. Note that Condition * implies that every
Ci is standardized apart from each earlier center clause.

With this additional condition in place, we can now define correct and
computed answers.

D e f i n i t i o n 7.19 Let II be a definite program, G = + - A j , . . . , Ak a definite
goal, and 0 be a substitution for variables of G. We say that 0 is a correct
answerfor 110 {G} i f H ~ g ((d l A . . . A A~)0). �9

A correct answer for H U {G} provides a correct answer to the question
"What follows from H?" A correct answer is a semantical notion, which has its
proof procedural counterpart in the concept of a computed answer, obtained
from an SLD-refutation of H O {G} (satisfying Condition *, as we stated
above). Later on in this section, we will show that ~ is a correct answer iff
is (roughly) an instance of a computed answer. 2

D e f i n i t i o n 7.20 Let II be a definite program, and G a definite goal. Let
61 , . . . , ~ be the sequence of mgu's used in some SLD-refutation of II U {G}.
A computed answer 0 for IIU{G} is the restriction of the composition 01 . . . 07~
to the variables of G. <~

E x a m p l e 7.21 Consider again the following program II:

t. P(x, z) <- Q(x, y), P(y, z)

2An impor tan t result, the proof of which lies beyond the scope of this book, says tha t
any computable function is computable by a definite program. See [Llo87, Theorem 9.6]
or [Doe94, Chapter 7].

7. 5. CORRECT ANSWERS AND COMP UTED ANSWERS 115

2. P(x, x)
3. Q(a, b)

Suppose G = + - P(x, b). Figure 7.4 shows an SLD-refutation of H U {G},
where the 0i denote the mgu ' s used in each step. The selected atoms are
underlined. This refutation corresponds to the computed answer {x/a}, since
0102t~3 = {v/a, x/a, y/b, z/b, w/b}. <1

Ro = G =+-- P(x , b) C1 = P(v , z) e-- Q(v, y), P(y , z), 81 = {v / x , z /b}

R1 =+- Q (x , y) , P (y , b) C2 = Q(a,b),02 = {x la , y lb}

~a=D

Figure 7.4: An SLD-refutation of II U {G}, with computed answer {x/a}

E x a m p l e 7.22 The following example, adapted from Apt and Doets [AD94],
shows what can go wrong if we do not impose Condition *. Consider the
program H:

1. O(x', y') O(y', y')
2. Q(x, x)

Suppose G =+-- Q(x, y). Since I1 ~ VxVy Q(x, y), the empty substitution c
is a correct answer, and we would like this to be a computed answer as well.
Figure 7.5 shows an SLD-refutation of IIU {G}. The composition of the mgu 's
in this refutation, restricted to the variables in G, is {x/y}. Note that in each
resolution step, the two parent clauses are standardized apart , so the weak
requirement that we used up till now is satisfied. However, G and the second
input clause share the variable x, so Condition * is not satisfied. Because of
this, we do not get the computer answer ~ that we want, but only the weaker
answer {x/y}. On the other hand, if we rename the second input clause to its
variant Q(w, w), thus satisfying Condition *, then we do get c as computed
answer. Thus, if we do not impose Condition *, two SLD-refutations with
the same center clauses, the same selected a toms in each center clause, and
variant input clauses, sometimes yield very different results. <~

The problem described in the last example does not mat te r if we are
only interested in the existence of an SLD-derivation or SLD-refutation: as

116 C H A P T E R 7. SLD-RESOLUTION

Ro = ~ = + - Q (~ , y) c~ = Q,(~:',~') +- ? , (y ' , y ') , o ~ = { = ' l ~ , y ' / y }

nl =e- O(y, y) c~ = Q(~, ~), o~ = {~/y}

/~2 = E]

Figure 7.5: The variables x in G and in C2 interfere

long as the two parent clauses in each resolution step are standardized apart ,
renaming an input clause to one of its variants gives a resolvent which is a
variant of the old resolvent. However, when we are particularly interested in
computed answers we really need Condition *

In the rest of this section, we will show how the correct and computed
answers coincide. Tha t is, we will show that 0 is a correct answer iff 0 equals
the restriction of some instance of a computed answer to the variables in G.
First we will prove that if 0 is a computed answer, then 0 (and hence also all
instances of 0) is correct. This is another form of soundness.

T h e o r e m 7.23 (S o u n d n e s s o f c o m p u t e d a n s w e r s) Let H be a definite
program, and G a definite goal. Then every computed answer for H U {G} is
a correct answer for H U {G}.

P r o o f Let G =+-- A1, . . . ,A,~, and 01, . . . ,Ok be the sequence of mgu 's in
an SLD-refutation of length k of 1I U {G} with computed answer 0. We will
prove by induction on k that I! ~ V((A1 A . . . A An)01 . . . Ok), thus showing
that 0 is a correct answer.

1. If k = 1, then G =+- A1 and there is an a tom B E II such that
B01 = A101. Hence B ~ V(A101).

2. Suppose the result holds for k _< m, and let 01 , . . . , 0,~+1 be the sequence
of mgu ' s in an SLD-refutation of length m + 1 of IiU {G} with computed
answer 0. Suppose the first input clause is C1 = B +- B 1 , . . . , Bq (q >_
0), and As is the selected a tom in G. Then the second center clause
in the refutation is ~,- (A 1 , . . . , A ~ - I , B 1 , . . . , B q , A s + I , . . . , A n) 0 1 . By
the induction hypothesis, we have II ~ V((.A~ h . . . A A~-I A B1 A . . . A
Bq A As+ 1 A , . . A An)01 . , . Ore+l). Furthermore, note that C1 U V((B~ A
. . . A Bq)01, . .0re+l) ~ B O a . . . O r e + l , hence also II ~ V((A1 A . . . A

A~-I A B A Aa+~ A . . . A An)01 ...Ore+l}. Finally, since B01 = AsOt,
we can replace B by As in the previous formula, thus obtaining II
V((A1 A . . . A A .)O l . , ,0m+l) , []

Not every correct answer is a computed answer. Take for instance II =
{P(x, a)}, G =+- P(x , a) and 0 = {x /a} . Then 0 is a correct answer but

7.5. C O R R E C T A N S W E R S A N D C O M P U T E D A N S W E R S 117

not a computed answer for H U {G}, since the only computed answers are
the empty substitution r and substitutions of the form { x / y } , where y is a
variable. However, we can prove that if 0 is a correct answer, then there is a
computed answer ~r and a substitution 3', such that 0 equals the restriction
of o" 7 to the variables in G. For this, we need the next two lemmas.

L e m m a 7.24 Let H be a definite program, G a definite goal, and 0 a sub-
stitution. Suppose there exists an SLD-refutat ion of H U {GO} with mgu's
0 1 , . . . , Ok. Then there exists an SLD-refutat ion of H U { G } of the same length
with mgu's 0~ , . . . , 0~, such that there is a substitution 7 with the property that

GO01 . . .Ok = GO'~ . . . O'k 7.

P r o o f By induction on k:

1. If k = 1, then GO =+-- AO, the first input clause is some C1 = B E
H, and 01 is an mgu for AO and B. We can assume G and C1 are
standardized apart, then 001 is a unifier for A and B. Let 0~ be an mgu
for A and B, then there is a 7 such that 001 = 017. Now R~ = G , / ~ =
0, with input clause C1 and mgu 0[, is an SLD-refutation of II U {G},
and we have GO01 = GO~ 7.

2. Suppose the lemma holds for k _< m. Let R0 = GO, R1, � 9 Rm+l = []
be an SLD-refutation of II U {GO} with mgu's 01 , . . . , 0,~+1, and with
C1 as first input clause (see Figure 7.6 for illustration). Assume G and
C1 are standardized apart. Then 01 is an mgu for the selected atom
A~O in GO and C +, so 001 is a unifier for As in G and C +. Let 05 be
an mgu for these two atoms, then there is a p such that 001 = O'lp.
Let G =+-- A1 , . . . ,AN. There is a binary resolvent /~ =+- (A1, . . . ,
A s - l , C f , A ~ + I , . . . , An)O~ of G and C1, with mgu 01, such that R i p =
R1. By the induction hypothesis, there is an SLD-refutation R~ , . . . ,
R~n+l = [] of H U {R i } with mgu's 0 I, . . . , Ore+ 1 ' , and there is a 7' such
that R~p02 . �9 0,n+l ' ' ' ' = R102 . . . 0m+17 . We may assume without loss of
generality that the SLD-refu ta t ion/~ = G, R [, . . . , -R~+ 1 ' = [] satisfies
Condition *. Because R~ =+-- (A1, . . . , As- i , Ci-, A , + I , . . . , A~)O~I and
0 ~ p : 001, we have (G - ~ A s) O 0 1 . . . Om+l = (a - ~As)O~l - �9 �9 0m+l ' 7 "

Let xl, �9 . . , xp be the variables in A,O[that do not occur in R~. It follows
from Condition * that 01 ' 7' , . . . ,0 re+l , do not act on any of these z~,
so xiO'2. �9 �9 Ore+ 1 ' 7~ = zi for 1 < i < p. Define t~ = xip02 �9 �9 0,~+1 and
7 = 7 ~ U { z l / t l , . . . , z p / t p } . Now suppose x is a variable in As, and g
is a variable occurring in zO'~. If y occurs in R~, then yO~.. . 0"+17 =
yO'2 ' ' . . . 0 m + 1 7 = ypO 2 . . . 0 m + 1 . If y does not occur in R~, then y =
xj for some 1 < j < p, so then yO~ ~ = xjO~ ' = - - _ - - . 0 m + 1 7 . . . 0 m + l " /

X j 7 = t j = Z I P 0 2 . . . O m + l = yp02. 0m+l. Hence xO~O~ 0rn.t_ 1 ' ~/ =

xO~p02 . . . 0m+l = x00102 ..~ 0,~+1. Since this holds for every variable z
in A~, we have A~O01 . . . 0,~+! = A~O[- �9 �9 0m+l' 7.
Combining the conclusions of the last two paragraphs, it follows that
GO0~ . . . Om+~ = GO'I . . . 0~+~7. []

118

GO--+-- (Az , . . . ,As , . . . ,Ar~)O Cj,,Oj.

R1

Flm C~+1, ~m+l

i
R m + l = El

C H A P T E R 7. S L D - R E S O L U T I O N

G =+- (A1,...,A_~,...,A~) C1,0~

1
Ri

Rk

R ~ + , = []

Figure 7.6: The induction step in the lemma

L e m m a 7.25 Let H be a definite program, and !et G =<-- A 1 , . . . , A ~ be a
definite goal. / f l I ~ V(A~ A . . . A An) then there exists an SLD-refutation of
II U {G} with the empty substitution e as the computed answer.

P r o o f Suppose 11 ~ V(A, A . . . A A ,) . Let xl , xm be all distinct variables
in G, and let 0 = { x t / a i , . . . , x ,~/am} be a Skolem substitution for G with
respect to H. (A1A...AAn)O is ground and we have that II ~ (A1A...AA~)O.
Then II U {GO} is unsatisfiable, hence by Theorem 7.8 there exists an SLD-
refutation of 11 U {GO}. We may assume this refutation satisfies Condition *
(if not, renaming some input clauses will do).

Suppose the sequence of mgu's in this SLD-refutation is 01,. �9 0~. Let
O" = 01 . . . O k . Then the computed answer for IItJ {GO} of this SLD-refutation
is the restriction of ~r to the variables in GO. Since GO contains no variables, it
follows that this computed answer is e. We assume without loss of generality
that none of the variables x l , . . . , x~ appears in this SLD-refutation. Then
replacing each ai by xi (1 < i < m) in this SLD-refutation yields an SLD-
refutation of H U {G} with e as the computed answer. []

Now we can prove the completeness of computed answers: 3

T h e o r e m 7.26 (C o m p l e t e n e s s o f c o m p u t e d answer s) Let II be a defi-
nite program, and G be a definite goal. I f 0 is a correct answer for 11 U {G},
then there exist a computed answer ~r for II U {G} and a substitution 7, such
that 0 equals the restriction of ~7 to the variables in G.

3 In T h e o r e m 8.6 of [L1o87], i t is s t a t e d t h a t if 0 is a c o r r e c t a n s w e r , t h e n t h e r e a r e a
c o m p u t e d a n s w e r ~r a n d a s u b s t i t u t i o n ~ / s u c h t h a t 0 = r T h i s is n o t q u i t e c o r r e c t . T a k e
for i n s t a n c e YI = { P (f (y , z)) } , G =~- P(x) . T h e n 8 = { x / f (a , a) } is a c o r r e c t a n s w e r for
F [u {G} . S i n c e a l l v a r i a n t s of P (f (y , z)) a r e of t h e f o r m P (/ (u , v)) , w h e r e u a n d v a r e d i s -
t i n c t v a r i a b l e s , e v e r y c o m p u t e d a n s w e r for F I n { G } is of t h e f o r m cr = { x / / (u , v) } . H o w e v e r ,
t h e r e is no "y s u c h t h a t 0 = cr'y. I n p a r t i c u l a r , cr{u/ct,v/a} = {x /] (c t ,a) ,u /a ,v /a} :/: O.
T h i s e x a m p l e was r e p o r t e d in [She94]; see a l so [Apt97 , pp . 100-101] .

7.6. COMP UTATION R UL ES 119

P r o o f Suppose G =+-- A1,. . . ,A~. Then since 0 is a correct answer, we
have that II ~ V((A1 A . . . A AN)0). So by Lemma 7.25, there exists an SLD-
refutation of II U {Gfl} with 6 as computed answer. Suppose the sequence of
mgu's in this SLD-refutation is 01 , . . . , Ok. Then since the computed answer
of this SLD-refutation is c, we have G001 . . . 0k = GO.

Now by Lemma 7.24, there exists an SLD-refutation of H U {G} with
mgu's 0~, . . . ,0~ and there exists a substitution 7 such that G001. . .0k =
G0~. . . 0~7. Let cr be the restriction of 0~. . . 0~ to the variables in G. Then G
is a computed answer, and 0 equals the restriction of G7 to the variables in
G, because GO = Go" 7. []

7.6 Computat ion Rules

In this section, we will explain the role of the selected atom in an SLD-
derivation. This selected atom can be selected by a computation rule. The
concept of an SLD-refutation can be refined by specifying that the selected
atoms in that refutation should be selected according to some particular
computat ion rule 7~. The refutation is then called a refutation via 7r

E x a m p l e 7.27 Consider the program H:

1. P(x, z) +-- Q(x, y), P(y, z)
2. P(z, z)
3. Q(a, b)

Suppose G =6-- P(x, b). Figure 7.4 showed an SLD-refutation of H U {G},
with computed answer {x/a}, using a computation rule which always selects
the leftmost atom in a goal. Now let 7~ be the computation rule which always
selects the rightmost atom in a goal. Figure 7.7 shows an SLD-refutation of
1] U {G} via T~, also with {x/a} as computed answer. <~

A computat ion rule is often (for instance in [Llo87]) defined as a function
from the set of goals to atoms in those goals. For example, the computation
rule in the above example always simply selects the rightmost atom in a goal
in a derivation, without taking into account the "history" of the derivation
(i.e., the earlier steps in the derivation). However, it is sometimes useful to
be able to take this history into account. This would enable us for instance to
define a kind of "first in, first out" computation rule, which will be useful in
the next chapter. Such a rule always selects one of the "oldest" atoms, i.e., one
of the atoms in the last goal that have been present in center clauses at least
as long as other atoms. For instance, consider a derivation 191 with only two
center clauses (e-- P, Q), (+-- P, R), and input clause Q e-- R, and a derivation
~92 with center clauses (+-- Q, R), (+-- P, R), and input clause Q e-- P. Both
derivations have the same final goal, so if we define a computation rule as
a function from goals to atoms, a computation rule has to select the same

120 CHAPTER 7. SLD-RESOLUTION

Ro = G =r p(x , b) C1 = P(v, z) +- Q(v, y)~ P(y, z), 01 ~- {v /x , z/b}

R2 me- Q(~:,b) Ca :- Q(a,b),Oa = {~/a}

R3 =Q

Figure 7.7: An SLD-refutation of II u {G} via

atom in the last goal of ~?1 and in the last goal of 112. On the other hand,
the "first in, first out" rule would select P in the last goal of :Dr and R in
the last goal of :D~.

In order to allow computation rules which take into account the whole
derivation, we %llow AI~t [Apt971 in defining a computation ruie as a func-
tion which takes as input a derivation (with a non-empty conclusion), and
selects an atom in the last goal in this derivation (Apt actually uses the term

'selection rule').

D e f i n i t i o n 7,28 Let S be the set of all SLD-derivations (with an arbitrary
definite goal as top clause and arbitrary definite progre~m clauses as i~xput
clauses) that end in a non-empty definite goal, A computation rule ~ is a
function from S to the set of atoms, such that if 7) is a derivation in $, then
~(T~) is an atom (the selected atom) in the last goal of Z~. O

D e f i n i t i o n 7.29 Let H be a definite program, G a definite goal, and T/ a
computation rule. An SLD-refutation ofII U {G} via T~ is an SLD-refutation
of II U {G}, in which the selected atoms are selected by using 7U 0

D e f i n i t i o n 7.30 Let II be a definite program, G a definite goal, and Tr
computat ion rule. An TO.computed answer for II U {G} is a computed answer
for H U {G} which is ohta,i~ed from an SLD-refutatioa of H U {G} via ~ , @

Notice that the two SLD-refutations in figures 7,4 and 7.7 yield the same
computed answer {x/a}, even though they use different computation rules.
This independence of the computation rule holds in general. The proof is
based on the following rather elaborate lemma, which shows that it is possible
to "switch" the selected atoms between two consecutive center clauses.

Lemma 7.31 (Switching L e m r n a) Let II be a definite program, and G a

definite goal. Suppose that II U {G} has an SLD-refutation Ro = G, R1, . . . ,

7.6. COMPUTATION RULES 121

Rq-l, Rq, Rq+l, . . ., Rk =- [2] with input clauses C1, . . . ,Ck and with mgu's
01,.. . , Ok. Suppose that

Rq-1 =+- A 1 , . . . , A i - l , A i , A j _ I , A j , . . . , A n
R~ =+-- (A 1 , . . . , A~_I, C ~ , . . . , A ~ _ I , A j , . . ., A~)O~

//q+l =+-- (&, . . . , A~_~, C~-,..., &-l , C~-+~,..., A~)OqOq+~

Then there exists an SLD-refutation of HU {G} of the same length, in which
Aj is selected in the (q - 1)-th goal instead of Ai, and Ai is selected in the q-th
goal instead of Aj, and the q-th and (q + 1)-th input clauses of the original
refutation are interchanged. Furthermore, if 0 is the computed answer for
H O {G} in the original refutation and 8' is the computed answer for 1FI tO {G}
in the new refutation, then GO and GO ~ are variants.

P r o o f We assume without loss of generality that Rq-1, Cq and Cq+l are
standardized apart . Since AjOqOq+] = C++10q+1 = C++lOqOq+l, Aj and C++I

can be unified. Let O~ be an mgu for Aj and Cq++l. Since OqOq+l is a unifier

for Aj and C++t, there exists a cr such that OqOq+l = O'qO.
Since C + r = C+O'q~ = C+OqOq+x -- AiOqOq+i = AiOq~r, C + and Ai0q can

!
be unified. Let 0q+ i be an mgu for C + and AiO'q. We have that ~r is a unifier

! / for C + and &O'q, so there exists a o" such that c~ = Oq+lc~. This means that
OqOq+x = vqvq+ic~.~P a, ' Now we can select Aj in the (q - 1)-th goal instead of Ai,
and A~ in the q-th goal instead of Aj, by interchanging the q-th and (q + 1)-th
input clauses of the original refutation. This gives us the following (the goals

. . . , Rq_ 1 in this new refutation are the same as R0 , . . . , /~q -1 in the old
refutation):

R I =+- A1, . ,A i - l ,A i , A j - I , A j Ak q - 1 ~ , ' ' ' ~

R'q =6-- (Ai , . . . ,A i - i ,A i , . . . ,A j_ i ,Cq+i , . . . ,Ak)O'q

/ ~ ; + 1 : + ' - " (A I , . . . , A i _ I , C i , . . . , A j _ I , % I , . . . , A k) 8 ; 8 ; + 1

Now we will show that -Rq+X and /t{q+ 1 ' are variants. Since AiOqOq+ll I _-
C+OqO'q+i, and 0q is an mgu for Ai and C +, there exists a "y such that

OqOv+l = 0q7. Also, AjOq7 = Aj0q0q+ 1 = .~q+xvq,q+l = C++10q7 = C++17,
so "y is a unifier for AjOq and C++1 . Since 0q+l is an mgu for AjO v and C++1,
there exists a substitution ~r" such that 7 = 0q+l er".

/ I I / / So 0q0q+ 1 = 0qOq+l~r". We have already shown that OqOq+l = 0q0q+l~r,
so/gq+l and R' q+l are variants. Now the rest of the new refutation after R ' q+l
can be the same as the original one, modulo variants. Here we may assume
without loss of generality that the new refutation satisfies Condition *. Hence
if 0 is the computed answer for II tO {G} in the original refutation and 0' is
the computed answer for II tO {G} in the new refutation, then GO and GO'
are variants. []

122 C H A P T E R 7. SLD-RESOLUTION

T h e o r e m 7.32 (I n d e p e n d e n c e o f t h e c o m p u t a t i o n ru l e) Let 1I be a
definite program, G a definite goal, and 7r a computation rule. If there is
an SLD-refutation of I1 L) {G} with computed answer O, then there is an
$LD-refutation of II U {G} via Td with computed answer 0', such that GO and
GO' are variants.

P r o o f Let R0 = G, 1:~1, ' ' .1]~k be an SLD-refutation of II U {G} with mgu's
01,. �9 0k and computed answer 0. G itself is an SLD-derivation in S. Suppose
Tg(G) = A,. If As is not the selected atom in G in this refutation, then for
some 1 <_ j <_ k, A,01 . . . Oj is the selected atom in Ry. Hence by repeatedly
applying the Switching lemma we can move the selection of A, "upward" in
the refutation, obtaining an alternative SLD-refutation R~ = G, R~ , . . . , R~ =
[] of 11 U {G}, with computed answer ~r, such that G0 and G~r are variants,
and such that As is the selected atom in R~, in accordance with R..

Repeating this procedure k - 1 times, we can also bring the selected atoms
in later goals in accordance with g , eventually obtaining an SLD-refutation
R~' = G, R ~ ' , . . . , / ~ = [] of II U {G}, with computed answer 0', such that GO
and G0' are variants, and such that all selected atoms are selected according
to T4. []

This result shows that it does not really matter, in terms of completeness,
which computation rule we use. Thus when searching for an SLD-refutation,
we only need to consider the derivations via one particular 7r which greatly
reduces the search space of all possible SLD-derivations. Combining the pre-
vious theorem with Theorems 7.8 and 7.26, we also immediately have the
following:

T h e o r e m 7.33 Let II be a definite program, G a definite goal, and Tr a
computation rule. Then II U {G} is unsatisfiable iff there exists an SLD-
refutation of II U {G} via T4.

T h e o r e m 7.34 Let 17I be a definite program, G a definite goal, and T~ a
computation rule. I f 0 is a correct answer for II U {G}, then there exist an
Tg-computed answer r for II tO {G} and a substitution 7, such that 0 equals
the restriction of cr.y to the variables in G.

The latter result is sometimes called the strong completeness of SLD-resolu-

tion.

7.7 SLD-Trees

The previous sections showed that if 0 is a correct answer for IIU {G} and T4 is
a computation rule, then there exists an SLD-refutation via T4 corresponding
to a computed answer r of which 8 is (roughly) an instance. But how do we
find such a refutation? This is done by constructing and searching (parts of)

7. 7. SLD-TREES 123

an ~LD-tree. Such a tree essentially contains all possible SLD-derivations via
some computa t ion rule 7~, thus also all possible SLD-refutations via 7~. In
order to be able to conveniently denote the input clauses used in refutations
in this tree, we assign a unique number to each of the clauses in the program
H. Here we also make the convention that SLD-derivations need not be finite:
they can go on indefinitely long. We will see an example of such an infinite
SLD-derivation later in this section.

D e f i n i t i o n 7.35 Let H be a definite program, and G a definite goal. An
SLD-tree for II U {G} is a tree satisfying the following:

1. Each node of the tree is a (possibly empty) definite goal.
2. The root node is G.
3. Let N =+-- A 1 , . . . , A s , . . . , A k (k > 1) be a node in the tree, with As

as selected atom. Then, for each clause C in II such that As and (a
variant of) C + are unifiable, the node N has exactly one resolvent of
G and C, resolved upon Bs, as a child. The edge between the node and
the child is labeled with the number of the input clause C. The node
has no other children.

4. Nodes which are the empty clause [] have no children. <5

D e f i n i t i o n 7.36 Let H be a definite program, G a definite goal, and 7~ a
computat ion rule. The SLD-tree for HU{G} via Tt is the SLD-tree for HU{G}
in which the selected a toms are selected by T/. <5

An SLD-tree for H O {G} may contain three kinds of branches. First,
branches which are a path from the root to a leaf having [] as its goal. Such
a branch corresponds to a refutation of II U {G}, and a computed answer for
H O {G} can be obtained from the branch. Since such a refutation is exactly
what we are looking for, these branches are called success branches.

Second, branches which are a path from the root to some leaf having a
non-empty goal. This non-empty goal is a leaf because no further derivation
steps are possible from this goal. Thus this branch does not lead us to a
refutation. Hence these branches are called failure branches.

Third, infinite branches. These correpond to infinite SLD-derivations. We
cannot get much useful information from such an infinite branch (in fact,
infinite branches are nothing but trouble).

E x a m p l e 7.37 Suppose we have the following program H:

1. y), z)

3. Q(a, b)

Suppose also that our goal G is +-- P(x, b) (that is, we want to find out for
which x the formula P(x, b) is a logical consequence of H). If we use the
computa t ion rule Tr which always selects the leftmost a tom in a goal, we can

124 CHAPTER 7. SLD-RESOLUTION

~- Q (a , y) , P(y, b)

+- P(b, b)

9(b, ~), P(~, b) o
f a i l ed s u c c e s s , {x/a}

Figure 7.8: An SLD-tree

rn

success, {z/b}

visualize the SLD-tree for 1-IU {G} via ;g as in Figure 7,8, Here the computed
answer for a success branch is shmvn below the O-leaf in which this branch
ends.

The tree contains two success branches: one having the substitution {x/a}
as its computed answer, and one having {x/b} as its computed answer. Note
that the success branch with {x/a} as computed a•swer corresponds to the
refutation shown in Figure 7.4, <a

Changing the computation rule may radically alter the structure of the
SLD-tree, as the next example (adapted from [Llo87]) shows.

E x a m p l e 7.38 Consider the same H and G as in the previous example, but
now with a computation rule g* which selects the rightraost atom in each
goal. The SLD-tree for II U {G} via g ' is shown in Figure 7.9. Like the tree
in Figure 7.8, this tree contains two success branches, corresponding to the
computed answers {x/a} and {x/b}. However, the change of computation rule
from tg to ~ ' has resulted in the change from a finite to an infinite SLD-tree!
Here the Ieftmost branch corresponds to an infinite SLD-derivation. <a

Constructing the SLD-tree for H U {G} via some T4 can be regarded as
a refinement of the level-saturation method we described earlier for uncon-
strained resolution. Roughly, the n-th level in the SLD-tree (where G is the
0-~h level) contains all clauses which can be derived from HU{G} by an SLD-
derivation of length n, in which the selected atoms are selected by g . Since
the SLD-tree for H tO {G} via g thus contains all possible SLD-refutations
of II tO {G} via T4, our completeness theorems can also be translated to the
SLD-tree:

7.8. U N D E C I D A B I L I T Y 125

4- P (x , b)

4- Q(x , y) , P(y , b)

/ ",,,
4- Q(x , y) , Q (y , u) , P (u , b) 4- Q(~:,b)

4- Q (x , y) , Q (y , u) , Q (u , v) , P (v , b) 4- Q (x , y) , Q (y , b) []

, / "..,

0

success, {x /b}

3i
4- Q(x, a)

failed

Figure 7.9: An infinite SLD-tree

T h e o r e m 7.39 Let II be a definite program, G a definite goal, and 7~ a
computation rule. Then H U {G} is unsatisfiable iff the SLD-tree for II U {G}
via Tl contains at least one success branch.

T h e o r e m 7.40 Let H be a definite program, G a definite goal, and 7t a
computation rule. I f O is a correct answer for IIU {G}, then the SLD-tree for
HU {G} via Tt contains a success branch corresponding to a computed answer
c 5 such that for some % 0 equals the restriction of ~7 to the variables in G.

7.8 Undecidability

In this section we state, without proof, two important undecidability results
for Horn clauses. Firstly, implication between two Horn clauses is undecidable
(Theorem 4.5 of [MP92]).

T h e o r e m 7.41 (Marcinkowski $z Pacholski) It is undecidable whether
a definite program clause that contains at least two negative literals, logically
implies another definite program clause.

Consequently, {C} t-~d D is undecidable as well.
The second result, proved in [HW93], states that satisfiability of a set of

only 3 Horn clauses is already undecidable.

126 C H A P T E R 7. SLD-RESOLUTION

T h e o r e m 7.42 (H a n s c h k e &: W f i r t z) It is undecidable whether a set con-
sisting of an atom, a definite program clause with one negative literal, and a
definite goat with one negative literal, is satisfiable.

From Theorem 7.39, we know that IIU{G} is unsatisfiable iff the SLD-tree
for I l (J {G} via some 7~ contains at least one success branch (i.e., an SLD-
refutation via 7~). It follows tha t there is no algorithm for deciding whether
such an SLD-tree actually contains a success branch.

7.9 Summary

Horn clauses are clauses with at most one positive literal, definite program
clauses are clauses with exactly one positive literal, definite goals are clauses
without positive titerals, and a definite program is a finite set of definite
program clauses. In ILP, attention is often restricted to a language of Horn
clauses instead of a full clausal language.

For Horn clauses we can define SLD-resotution, a restricted form of in-
put resolution. We proved various different forms of completeness of SLD-
resolution: the Subsumption Theorem and the refutation completeness, from
which it follows that the success set of a definite program equals the unique
least Herbrand model of that program, and also completeness in terms of
computed answers. The latter form of completeness is independent of the
computation rule that is used.

An SLD-tree is a tree containing all possible derivations from a program II
and a goal G, via some computat ion rule. Such a tree contains all computed
answers for H U {G}. Implication between two Horn clauses is undecidable,
and so is the satisfiability of sets of Horn clauses.

Chapter 8

S L D N F - R e s o l u t i o n

8.1 Introduct ion

Suppose we are given some definite program II. If a particular ground a tom
A is implied by II, we can say on the basis of II that A is true. But what
about an a tom A such that II g: A? If II ~: A, then A is not a member of
the least Herbrand model Mrf, so we cannot conclude on the basis of this
program that A is true. On the other hand, there are models of II which
make A true as well, so it seems we cannot conclude that A is false either.
Given only this program, we do not know whether A is true or false.

At first sight, it may seem we should treat the t ruth value of such an
a tom as unknown. However, there are often quite good reasons to treat such
an a tom as false. For example, consider a definite program H which describes
a t ime-table for the times of departure of trains from some particular fixed
station to various destinations. The program consists of ground atoms such
as To(amsterdam, 12:00), meaning that the train to Amste rdam will leave at
12 o'clock. Now suppose II does not contain the a tom To(rotterdam, 12:00).
Then, strictly speaking, the program does not tell us whether or not a train
to Rot te rdam will depart at 12 o'clock, since II ~= To(rotterdam, 12:00) and
II ~= -,To(rotterdam, 12:00). However, when dealing with a t ime-table, we
natural ly assume the table is complete: every departure is explicitly stated
in the table. This means that in our case we can assume that no train to
Rot te rdam departs at 12 o'clock, so To(rotterdam, 12:00) is taken to be false.
And more generally, we can consider as false each instance of To(x, y) that
is not implied by the program.

The assumption that a t ime-table is complete, is an instance of the Closed
World Assumption (CWA), which is often applicable when we are dealing
with some piece of knowledge. The CWA, introduced by Reiter [Rei78], is
the assumption that the given description of the world of interest is not only
true, but complete as well: it contains all information concerning the world.

128 CHAPTER 8. SLDNF-RESOL UTION

In the case of some given definite program II which purports to describe
this world, this means that we assume that all and only ground atoms that
describes true "facts about the world", are implied by H. 1 Consequently, for
us the CWA amounts to the following:

1. If A is a ground a tom and 1I ~ A, then A is taken to be true.
2. If A is a ground a tom and H ~ A, then A is taken to be false.

Let us consider how the CWA might be implemented for some given
definite program II. For the first part , this is conceptually quite simple: if
we want to infer some a tom A that is implied by II, we can find an SLD-
deduction of A from II (or an SLD-refutation of II U {e- A}).

Since rl ~ A iff HU {+-- A} has an SLD-refutation, the second part of the
CWA can be translated to the following negation as failure rule:

if we fail to find an SLD-refutation of r Iu{+- A}, we can infer -~A.

The name 'negation as failure' was introduced by Clark [Cla78], who studied
the logical properties of this rule in detail. Note that the above rule is not
sound, in the strict sense of Chapter 4: in the case of the t ime-table we
inferred -,To(rotterdam, 12:00), even though H ~= -~To(rotterdam, 12:00).

There exists an SLD-refutation of HU {<-- A} iff any SLD-tree for 11U {+--
A} contains a success branch. Hence negation as failure can be effected by
searching some particular SLD-tree for H U {+-- A}: we can infer ~A if we
do not find a success branch in this tree. However, as we have already noted
in Section 7.8, in general it is undecidable whether an SLD-tree actually
contains a success branch, because such a tree may contain branches of infinite
length. Thus the negation as failure rule is rather hard to implement for the
general situation where trees may be infinite. If, on the other hand, we only
consider fir, ite trees, we can find out after a finite number of steps whether
a tree contains a success branch or not. For this reason, the application
of negation as failure is usually restricted to finite SLD-trees. An SLD-tree
whose branches are all finite and which contains no success branches is called
finitely failed. Thus 'negation as failure' is restricted to 'negation as finite
failure':

if some SLD-tree for I1 '.3 { +-- A} is finitely failed, we can infer -~A.

This derivation rule is actually a nonmonotonic rule. A derivation rule is said
to be monotonic if formulas which can be derived from a set E of premises
(clauses, in our ease) are still derivable if we add new premises to E; it is said
to be nonmonotonic otherwise. The proof procedures we have introduced
up till now, unconstrained deduction, linear deduction, input deduction and
SLD-deduction are all monotonic. For example, if 11 [-,d A, then I I ' [-,d A for
every I I ' D II.

On the other hand, negation as finite failure is aonmonotonic. Consider
again t he t ime-table II. Since To(rotterdam, 12:00) r negation as finite

1Why we restrict attention to gro,tnd atoms will be explained in Sect.ion 8.4.

8.1. INTRODUCTION 129

failure allowed us to derive -,To(rotterdam, 12:00) from II. But now suppose
we extend the t ime-table to II ' = II U {To(rotterdam, 12:00)}. Since now
To(rotterdam, 12:00) is implied by the program, our derivation rule is no
longer applicable in this case. Thus -~To(rotterdam, 12:00), which could be
derived from H, can no longer be derived from its superset II ' . The nonmono-
tonic property of negation as finite failure can also be seen by considering
SLD-trees. I f we have a finitely failed SLD-tree for I I tJ {+- A}, we can infer
~A. But if we extend II to H', the SLD-tree is extended as well, and if a
success branch or an infinite branch is added, the tree is no longer finitely
failed.

Let Bn be the Herbrand base of some program II. When considering
negation as finite failure, we can take Bn to consist of three disjoint subsets:

1. The set of a toms A that are logically implied by H. This is the familiar
least Herbrand model Mr[.

2. The set of a toms A such that there is a finitely failed SLD-tree for
II U { ~ A}. This set is called the finite failure set, denoted by FH.

3. The remainder: the set of a toms A such that every SLD-tree for IIU {e--
A} is infinite, but contains no success branch.

This division of Bn is illustratred on the left of Figure 8.1. The inner circle
is Mri, the outward rim is Fn, and the area between Mn and Fn represents
the third set.

F igure S .h The division of B~ (left) and B~, (tight)

Given l-I, we can infer the atoms in Mn using ordinary SLD-resolution,
and the negations of the a toms in Yr~ using negation as finite failure. However,
we can infer neither A nor -~A if A ~ Mn and A ~ Fn.

To illustrate again the nonmonotonici ty of negation as failure, suppose
some clauses are added to H, yielding II/. Suppose this enlarges the least
Herbrand model: MII C Mn,. Assuming the new clauses do not contain new
symbols, we have Bn = BII,. This means that the union of the second and
third sets will have to "shrink" in order to make room for the larger Mr[,, as
illustrated on the right of Figure 8.1. In particular, Frp will be a subset of
Fn, and if A E Fri\Fn,, then -,A can no longer be inferred.

Since negation as failure can be used to derive negative literals from a
program, it can also be employed to support the use of negative literals in

130 CHAPTER 8. SLDNF-RESOL UTION

the body of a clause. Consider for instance a murder case. In most judicial
systems, one is innocent until proven guilty. This could be formalized by the
implication C = Innocent(x) +-- -~Guilty(x). When we use negation as finite
failure, C does not simply express the obvious t ruth that someone who is
not guilty is innocent. It expresses something stronger: if we cannot prove
that someone is guilty, we take him to be innocent--which is just what we
want in a legal context, hnplications of this form are often very useful. Since
definite program clauses are not sufficiently expressive for such implications,
we generalize them to program clauses, which do allow both positive and
negative literals to appear in their body. A normal program is then a finite
set of such program clauses. Suppose we have some normal program II, with
C E 1I, which describes the evidence against some suspect a. If we fail finitely
to prove Guilty(a), negation as finite failure allows us to infer -~Guilty(a).
Using clause C, we then conclude Innocent(a).

Actually, the above program clause C is logically equivalent to the non-
Horn clause Innocent(x) V auiZty(x). However, in order to be able to gener-
alize SLD-resolution to normal programs, normal clauses are given the same
structure as definite program clauses (i.e., one atom in the head, and the other
literals in the body). Moreover, the choice of which atom to put in the head of
a program clause also gives certain predicates a kind of precedence over other
predicates. For instance, the program clause D = Guilty(x) +- -,Innocent(x)
is logically equivalent to C, but negation as finite failure treats these two log-
ically equivalent clauses quite differently, and different conclusions may be
drawn from C than from D. C corresponds to the assumption that if we can-
not prove someone's guilt, then that person is innocent. Clause D reverses
the burden of proof: if we cannot prove someone's innocence, he is taken to
be guilty.

In order to derive information from a normal program, we can apply SLD-
resolution to program clauses, resolving the heads of input clauses with atoms
in the body of a goal. But SLD-resolution by itself is clearly not enough, since
it has no means for handling negative literals in a goal. Therefore we combine
SLI)-resolution with negation as finite failure to handle such negative literals.
This combination is called SLDNF-resolution, and will be discussed in later
sections of this chapter. In the final secLion of this chapter we discuss some
properties of the programming language PROLOG, which implements SLDNF-
resolution.

8.2 N e g a t i o n as Failure

In Chapter 7 we defined SLD-resolution, which could be used to infer an
atom A from II whenever II ~ A. In this section we will define negation as
(finite) failure for definite programs. As explained above, our main interest
is in the set of ground atoms A such that H U {<-- A} has a finitely failed
SLD-tree. For such atoms, we can infer -~A from II. In the next section we

8.2. NEGATION AS FAILURE 131

will extend negation as failure in order to be able to deal with clauses having
negated literals in their body,

D e f i n i t i o n 8.1 Let H be a definite program, and G a definite goal. An SLD-
tree for II U {G} is called finitely failed if it is finite and contains no success
branches. �9

D e f i n i t i o n 8.2 Let II be a definite program and Bn be the Herbrand base
of II. The SLD finite failure set of H is Fn = {A E BII] there exists a finitely
failed SLD-tree for H tJ {+-- A}}. <~

E x a m p l e 8.3 Consider the definite program H consisting of the following
clauses:

1. Pe t (x) +-- Small(x), Dog(z)
2. Pet(x) +- Cat(x)
3. Small(a)
4. Spider(a)

Figure 8.2 shows a finitely failed SLD-tree for II t2 {e- Pet(a)}, so Pet(a) is
in the SLD finite failure set Fn of II. Hence we can infer that a is not a pet,
even though II ~: ~Pet(a), <~

4-- Small(a), Dog(a) 4-- Cat(a)

failed

3 i

e- Dog(a)
failed

Figure 8.2: A finitely failed SLD-tree for II U {+-- Pet(a))

In order to show that some ground atom A is in Fn, we need to find
at least one finitely failed SLD-tree for II U {+-- A}. However, it might be
that some SLD-trees for II U {+-- A} are finitely failed, while some others are
infinite. For example, suppose II consists of the clause P(x) +-- P(f(x)), Q(a).
Then the SLD-tree for II U {e-- P(a)} via the computation rule which always
selects the rightmost atom in a goal is finitely failed. On the other hand, the
computation rule which always selects the leftmost atom in a goal yields an
infinite SLD-tree for II U {+-- P(a)).

132 CHAPTER 8. SLDNF-RESOL UTION

Searching all SLD-trees for II t2 {+-- A} in order to check whether one
of them is finitely failed, is rather cumbersome. Thus we would like to find
some restrictions on SLD-trees for II U {6- A}, such that if one of them is
finitely failed, then they all are. This would allow us to restrict attention to
one particular SLD-tree. In the remainder of this section, we will show that
the following fairness restriction on SLD-trees is sufficient for our purposes.

D e f i n i t i o n 8.4 Let 17[be a definite program, and G be a definite goal. An
SLD-derivation from II t2 {G} with G as top clause is called fair if one of the
following holds:

1. The derivation is finite.
2. The derivation is infinite, and for every atom A appearing in some goal

in the derivation, (some further instantiated version of) A is the selected
atom in a later goal in the derivation.

An SLD-tree for Fl U {G} is fair if every branch of the tree is a fair SLD-
derivation. O

Note that a finitely failed SLD-tree is fair.
Given a definite program [[and a definite goal G, a fair SLD-tree for

1-i U {G} can always be constructed. We might for instance apply a "first in,
first out"-computat ion rule, which in a goal in a derivation always selects one
of the atoms that have been present in earlier goals in the derivation at least
as long as other atoms. Using such a computation rule ensures that, even in
an infinite derivation, each atom eventually gets selected.

The next theorem shows that if A is in the SLD finite failure set, of II,
then the SLD-tree via any fair computation rule will be finitely failed.

T h e o r e m 8.5 Let H be a definite program and A E BI]. Then A E FH iff
every fair SLD-tree for II U {+-- A} is finitely failed.

P r o o f
~ : If every fair SLD-tree for H U {6- A} is finitely failed~ there is at least

one finitely failed SLD-tree for H U {+-- A}, hence A E FH.
--~: Suppose A E Fn. Then there is at least one finitely failed SLD-tree

T for II U {6- A}. Let d be the length of the longest derivation in T. Now
suppose there is a fair SLD-tree T ~ for II U {+-- A} that is not finitely failed.
Then T t must contain an infinite fair SLD-derivation �9 with goals G0(--e-
A), G1, G2, �9 �9

Note that since A in 6- A must be selected in the root of T , T must
contain an SLD-derivation starting with Go, G1. It need not contain an SLD-
derivation starting with Go, G1, G2, because the atom selected in G1 in 7"
may be different from the atom selected in G1 i n /) in Tq However, since :D
is fair, (an instance of) the atom selected in G1 in 7- must also be selected in
some later goal in D in Tq Thus by applying the Switching Lemma several
times to ~ , we can transform it into another infinite fair SLD-derivation,

8.3. S L D N F - T R E E S FOR N O R M A L P R O G R A M S 133

with goals G0(=e-- A), G1, G'2, G'3, G~4, . . ., such that Go, GI, G' 2 must be (the
first goals in) an SLD-derivation in 7-.

Repeating this procedure a number of times, we obtain an infinite fair
SLD-derivation Ho(=e- A), H 1 , . . . , Hd, Hd+l, . . . , such that Ho, . . . , H~+I
must be (the first goals in) an SLD-derivation (of length d + 1) in 7-. But T
only contains SLD-derivations of length _< d. Thus we have a contradiction,
which shows that every fair SLD-tree for H U {+-- A} is finitely failed.

8.3 SLDNF-Trees for Normal Programs

Suppose II is a definite program and G a definite goal. In the previous chapter,
we have seen that we can construct an SLD-tree for II U {G}, which will
contains a success branch iff PI U {G} is unsatisfiable. In the last section,
we saw how negation as finite failure can be used to derive negative ground
literals from a definite program. Using this, we are now able to generalize our
notion of a goal, by allowing negative as well as positive literals in its body.

D e f i n i t i o n 8.6 A normal goal is of the form t-- L1 , . . . , Ln, n >_ O, where
each Li is a literal. �9

When we have a definite program II and a normal goal G, we need to gen-
eralize the SLD-tree to an SLDNF-tree. We adapt the definition of SLDNF-
trees given by Apt and Doets [AD94, Doe94], which is slightly more general
than the definition of [Llo87]. An SLDNF-tree combines SLD-resolution with
so-called subsidiary trees. Such subsidiary trees are invoked whenever a neg-
ative ground literal is selected. An example will make this clearer.

E x a m p l e 8.7 Let us continue Example 8.3. Suppose we have the normal
goal G =+-- -~Pet(a). Figure 8.3 shows an SLDNF-tree for H U {G}. This tree
consists of two distinct trees. On the left we have the main tree, containing
two nodes, with G as root. The fact that a negative ground literal is selected
in G leads us to construct a subsidiary tree for II U {e- Pet(a)} (on the
right of the picture). Since this subsidiary tree is finitely failed, we can infer
-~Pet(a). This in turn allows us to delete -~Pet(a) from the body of G in
the main tree. 2 Thus we end up with the empty clause in the main tree. As
in the case of SLD-trees, a branch which ends in the empty clause is called
a success branch, and an SLDNF-tree whose main tree contains a success
branch is called successful. <3

Given a definite program II and a normal goal G, an SLDNF-tree for
II U {G} is actually a set of trees~ organized around a main tree, which has

2Deleting a selected negative literal -~Pct(a) from the body of a normal goal after having
inferred "~Pet(a) is analogous to deleting a selected atom P(a) from the body of a goal by
resolving with an input clause P(a).

134 CHAPTER 8. SLDNF-RESOLUTION
subsidiary

G =e- -~Pet(a) 4- P e t (a)

[

O e- S m a l l (a) , Dog(a) +- Ca t (a)

success 3 t failed

e-. Dog(a)

failed

Figure 8.3: A successful SLDNF-tree for H U { ~ -Pet(a)}

G as root. This main tree is similar to an SLD-tree. When a positive literal
is selected in some goal G ~ in the main tree, we add the binary resolvents
of G' and clauses in 1I as children to G', just as in SLD-trees. Additionally,
whenever a negative ground literal -,A in the body of some goal G r in the
main tree is selected, a new subsidiary SLDNF-tree for G ' is constructed,
with +- A as root. Note that we cannot treat a selected negative literal in the
same way as a positive literal, since a negative literal cannot be unified with
an a tom in the head of a clause in II. Applying negation as finite failure,
we delete --,A from the body of G ~ just in case the subsidiary tree for G t
finitely fails. If the subsidiary tree is successful, we cannot apply negation as
finite failure, so then the node G I is marked failed. We should not construct
a subsidiary tree in case a non-ground negative literal is selected in G ~. In
fact, if a non-ground negative literal is selected, we cannot continue with G I.
This is the problem of floundering, which will be dealt with in Section 8.4

When we start with a definite program II and a normal goal G, the only
negative literals in the bodies of goals in the tree stem from G. However,
now that we are able to handle negative literals in the initial goal, there
is no reason to stop here: we may as well allow the clauses in II to contain
negative literals in their body. In this case, resolving a goal with a clause from
the program may introduce new negative literals in the goal. For instance,
resolving +- P(x) with P(a) +- -~Q(a) yields the goal +-- -,Q(a). Such new
negative literals can be handled by subsidiary trees, in the same way as
we handled negative literals from the original goal G. For example, if H =
{Innocent(x) +- ~Guilty(x)} and G =4-- Innocent(a), then resolving G with
the clause in 1I yields G1 = + - -,Guilty(a). Since the tree for +- Guilty(a)
will fail immediately, G1 has the empty clause as only child. Thus we have
an SLDNF-refutat ion of II U {G}, and we may conclude Innocent(a) from
II. On the other hand, i f I I ' = {Guilty(x) +~ -,Innocent(x)}, then we cannot
find an SLDNF-refutat ion of II U {G}, and we cannot infer Innocent(a) from
IY. In this case we can infer Guilty(a) from 111.

In general, we can generalize definite program clauses to program clauses:

8.3. SLDNF-TREES FOR NORMAL PROGRAMS 135

D e f i n i t i o n 8.8 A program clause is of the form A +-- L I , . . . , L n , n >_ 0,
where A is an a tom and each Li is a literal. s

D e f i n i t i o n 8.9 A normal program is a finite set of program clauses.

Normal programs are also sometimes called general programs in the lit-
erature. In a program clause A +-- L1, �9 �9 L~, the a tom A will be called the
head, and L 1 , . . . , L,~ the body of the clause. The head of a program clause C
is sometimes denoted by C +, the body by C - . If each Li in a program clause
is positive, the program clause is simply a definite program clause.

A program clause C = A e- L I , . . . , Ln is the following implication:
V((L1A. . .AL~) ~ A). This is logically equivalent to V(-~L1V V~LnVA).
For each negative literal L~ = -~Bi, we can replace -~Li by the logically equiv-
alent positive literal B~, thus obtaining a disjunction of literals, with pos-
sibly more than one positive literal. Hence a non-definite program clause
C is actually logically equivalent to a non-Horn clause. Similarly, normal
goals may also be logically equivalent to non-Horn clauses, for instance
+-- -~P(a),-~P(b) is equivalent to P(a) V P(b). However, as we noted in the
introduction, there is more to SLDNF-resolution than just logical implica-
tion and logical equivalence. For example, the two logically equivalent clauses
Innocent(x) +-- -~Guilty(x) and Guilty(x) ~- -~Innocent(x) are treated quite
differently by SLDNF-resolution, as we saw above.

Contrary to definite programs, normal programs need not have a least
Herbrand model. Consider the normal program H = {Male(peter) +-
-~Female(peter)}. Both {Male(peter)} and {Female(peter)} are Herbrand
models of H, yet their intersection (the empty set) is not.

Now let us get back to SLDNF-trees. Suppose H is a normal program and
G is a normal goal. Constructing an SLDNF-tree for H O {G} is similar to
the case of the definite program. The main tree starts with G as initial goal.
Whenever a positive literal is selected in some goal G ~, G t has the binary
resolvents of G ~ and clauses in FI as children, as before. Whenever a ground
negative literal -~A is selected in G ~, we construct a new subsidiary tree with
+- A as root. If this new tree has been completely constructed and turns out
to be finitely failed, we add the goal obtained by deleting ~A from the body
of G ~ as a child to G ~. If, on the other hand, the subsidiary tree contains a
success branch, the goal G ~ fails.

Given a normal goal, one important distinction between the cases of a
definite program and a normal program should be noted. In the definite case,
a subsidiary tree starts with a definite goal +-- A, and resolving goals with
definite program clauses does not introduce new negative literals in the body
of a goal. Hence each node in the subsidiary tree is a definite goal, and the
subsidiary tree is an ordinary SLD-tree. However, as we have seen, resolving
a goal with a program clause whose body contains negative literals adds
those negative literals to the goal. This implies that in the case of a normal
program, a subsidiary tree may contain goals in which a ground negative

136 CHAPTER 8. SLDNF-RESOL UTION

literal is selected, which requires constructing another subsidiary tree. Hence
subsidiary trees may need their own subsidiary trees, something which does
not occur when we are dealing with a definite program.

The actual definition of an SLDNF-tree will be given below. It is based on
the notion of a pre-SLDNF-tree. This is a finite set of finite trees, containing
a main tree and a number of subsidiary trees. An initial pre-SLDNF-tree
only contains a main tree, consisting of the root G. This initial tree can be
extended to another pre-SLDNF-tree, which can in turn be extended to a
further pre-SLDNF-tree, and so on. Before we give the formal definition, let
us first give an example.

E x a m p l e 8.10 Let G =+- P(x), and H be the following normal program:

1. P(v) +- O(v)
P(y) , - n(y),

a. O(v) +- s(a)
4. 0(a)
5. R(b)
6. s(b) +-
r. S(b)
8.

Figure 8.4 shows the construction of an SLDNF-tree for H U {G}. Here we
select the leftmost literal in each goal.

Initially, we start with only G, which is pre-SLDNF-tree (1) in the figure.
In order to extend it, we select P(x) in G, and the first extension (pre-SLDNF-
tree (2)) is obtained by adding as children to G the resolvents of G and
clauses in H. On the edges between nodes, we add the mgu and the number
of the input clause used. A further extension yields the pre-SLDNF-tree (3).
Note that both leaves of (2) are expanded to get (3). When extending (3)
to (4), we select the atom S(a) in the leftmost leaf. This atom cannot be
unified with the head of any clause in H, so in. extension (4), we mark this
leaf as failed. Since the second leaf of (3) is empty, it is marked success
in (4). In the rightmost leaf of (3) we select the negative ground literal
~S(b), so we construct a subsidiary tree with ~- S(b) as root in (4). In
extension (5), two children are added to this subsidiary tree. A number of
further extensions (omitted from the figure) finally yield pre-SLDNF-tree (6)
in Figure 8.5. Since all leaves in the main tree (as well as in all subsidiary
trees) are marked, it is a complete SLDNF4ree. In the extensions that led
to this tree, the success of the second subsidiary tree (for +-- -~S(c)) caused
the goal +-- -,S(c) to be marked failed. This in turn made the first subsidiary
tree (for +- -~S(b)) finitely failed, which allowed us to delete -,S(b) fi'om the
goal 4-- -,S(b), leading to a success branch. <1

Note that if a subsidiary tree is constructed for some node N, then adding
a child to N or marking N as failedcan only take place afterfurther extensions
have made the subsidiary tree finitely failed or successful. For instance, tree

8.3. SLDNF-TREES FOR N O R M A L P R O G R A M S 137

(1) a=<-- P(=) (2) G = , - P(~__2 1,{v/~}/~v/=}
~- q (=) *- R (~) , - s (=)

(3) v =~ P(=)

1 , { y / ~ # / = }

O(:~) ~- R(~),-,s(~)

a , { v l ~ ~ l ~ }] 5,{=tb}

(4) a =~- e (x}

1 ,{y/~y/x}

3,{y/~/a} 5,{~/b}

subsid ~- s(~) [] ,-- ~s(b)
failed success

-,+- s(b)

(5) a :~- e(~).

1 , { v / ~ } / ~ , { y / ~ }

3 , { y / ~ / a } 5,{~/~}

+- s(~) D +- -s(b) - --

failed success

subsid ~- S(b)

~- s(a) ~- ~s(~)

Figure 8.4: A sequence of pre-SLDNF-trees.

138

(6) a =~ P(y)

,-- Q(~) ~ R(~__2), ~s(~)

3 4 v l ~ ~ / a } 15,{~/b}

fai led s u c c e s s

CHAPTER 8. SLDNF-RESOLUTION

subsid
+- ~s(b) ~- s(_~)

subsid n +- s(~) e- -S(c) +- s(~)
success failed failed

8~S

[]

SUCCESS

Figure 8.5: A successful SLDNF-tree for II U {G}

(4) is an extension of (3) in Figure 8.4, which adds a subsidiary tree for +--
-,S(b). Tha t this subsidiary tree is finitely failed only becomes apparent after
some further extensions have been constructed, so only after those extensions
can we add the empty clause as a child to +-- -,S(b).

This process of starting with an initial tree and then constructing exten-
sions, is formally defined below.

Definition 8.11 A tree is called successful if it contains a leaf marked as
success, and is called finitely failed if it is finite and all its leaves are marked

failed. <~

Definition 8.12 Let TI be a normal program and G a normal goal. A pre-
SLDNF-tree T for II O {G} is a finite non-empty set of finite trees, such
that one element in T is called the main tree, each node in each tree in 7-
is a normal goal, and some nodes N in some trees in T may be assigned a
subsidiary tree subsid(N) ~ T. The leaves in trees in T may be marked. The
possible markings for leaves are failed, success, and floundered.

Such pre-SLDNF-trees are inductively defined as follows:

1. An initial pre-SLDNF-tree % for II U {G} contains only a main tree,
which has G as single node.

2. If T~ is a pre-SLDNF-tree for IIU {G}, then any extension T~+I of'F~ is
a pre-SLDNF-tree for II U {G} as well. The extension of.a pre-SLDNF-
tree is defined below.

Extension of T~:
Let T~ be a pre-SLDNF-tree for 11 U {G}. If all leaves of the main tree of T~

8.3. SLDNF-TREES FOR NORMAL PROGRAMS 139

are marked, then Tn has no extension. Otherwise, an extension T~+I of T~
is obtained by applying the following procedure E x t e n d to the main tree of
Tn. This recursive procedure may change the main tree, as well as subsidiary
trees.
P r o c e d u r e E x t e n d (e x t e n d s a t r e e T):
For each non-marked leaf G f of T, from left to right (the left-right order is
induced by the numbers of the input clauses used), do the following:
If G ~ = o, mark it with success.
Otherwise, if no literal in G t has yet been selected (which is the case if thus
far no subsidiary tree has been assigned to G~), then select one. If the selected
literal L is positive, then:

1. If there is no (variant of) C E II whose head can be unified with L,
then mark G ~ as failed.

2. Otherwise, for every input clause C C II such that R is a binary resol-
vent of G' and (a variant of) C, with L and (a variant of) C + as literals
resolved upon and mgu 0, add R as a child to G'. Here we require that
the variant of C that is used, neither shares variables with the root of
T, nor with other input clauses or mgu's used in the branch leading to
G ~ (this is similar to Condition * of the previous chapter). Mark the
edge from G ~ to R with the mgu 0 and the number of the input clause
used.

If L = -~A is negative, then:

1. If A is not ground, then G ~ is marked as floundered, and will have no
children.

2. If A is ground and subsid(G ~) is undefined, then add to the set of trees
a new tree, with +-- A as single node, and define subsid(G ~) to be this
newly added tree.

3. If A is ground and subsid(G ~) is defined and successful, then mark G ~
as failed.

4. If A is ground and subsid(G') is defined and its leaves are all marked
floundered, then mark G t as floundered.

5. If A is ground and subsid(G ~) is defined and finitely failed, then add
/~ = G ~ - -,L (i.e., G' after L has been deleted from its body) as only
child to G ~. Mark the edge from G ~ to R with the empty substitution.

6. Otherwise, i.e., if none of the previous four items could be applied,
apply the E x t e n d procedure to subsid(G~). <)

The main tree of a pre-SLDNF-tree T for II U {G} is the tree in T which
has G as root, the other trees in T are the subsidiary trees. Though we
defined a pre-SLDNP-tree as a set of trees, it is often convenient to regard
it as a single tree, with two kinds of edges: ordinary edges between nodes,
and special edges from a node to the root of its subsidiary tree (in Figure 8.4
and 8.5, these special edges were dashed).

Let us now explain how we can get from a sequence of pre-SLDNF-trees to
an actual SLDNF-tree. Starting with an initial pre-SLDNF-tree 7~ containing

140 CHAPTER 8. SLDNF-RESOLUTION

only G, we can construct a sequence of extensions To, Ti, 7~, Each 7i+i
in this sequence has its predecessor 7} as a subtree. If the sequence reaches
some pre-SLDNF-tree Tn which has no further extension, then this T, is an
SLDNF-tree for II tJ {G}. Otherwise, if the sequence is infinite, then the union
of all pre-SLDNF-trees in the sequence is an SLDNF-tree. This is formally
defined as follows:

D e f i n i t i o n 8.13 Let H be a normal program, and G be a normal goal. A
set of trees T is called an SLDNF-tree for I1 W {G} if there exists a (possibly
infinite) sequence TO,T i , . . . , 7~,. . . of pre-SLDNF-trees, with the following
properties:

1. To is the initial pre-SLDNF-tree for IIU {G} (i.e., only a main tree with
G as only node).

2. Each 7~+i is an extension of T-
3. If the sequence is finite and T~ is the last pre-SLDNF-tree in the se-

quence, then T~ has no extension and T = Tn.
4. Otherwise, T is the smallest tree (including subsidiary trees) which has

each T /as a subtree.

The main tree o f t is the tree in T which has G as root, without its subsidiary
trees.

T is called successful (resp. finitely failed) if its main tree is successful
(resp. finitely failed). We say II U {G} succeeds (resp. finitely fails) if there is
a successful (resp. finitely failed) SLDNF-tree for II U {G}. C>

The SLDNF-tree can be constructed by starting with G, and then con-
structing an extension of G, an extension of an extension of G, etc. Note that
in an infinite sequence of extensions each pre-SLDNF-tree is finite, while the
actual SLDNF-tree obtained from this sequence may be infinite. Nevertheless,
if the main tree in an infinite SLDNF-tree T is successful or finitely failed,
then we will get to know this after a finite number of extensions (though note
that a successful main tree may grow in further extensions, even if it already
contains a success branch). Similarly, each success branch in the main tree
will be finished after a finite number of extensions.

In an SLDNF-tree, we are particularly interested in the properties of the
main tree. Each branch in the main tree represents an SLDNF-derivation,
and each SLDNF-derivation of the empty clause is an SLDNF-refutation.
The subs%itrLtions em.plo?red in such ~ refutatioia can be used to obtain a
computed answer.

D e f i n i t i o n 8.14 Let H be a normal program, and G a normal goal. An
SLDNF-derivation from II U {G} is a branch in the main tree of an SLDNF-
tree T for 17[U {G}, together with the subsidiary trees in T whose roots can
be ree~ched from this branch.

If such an SLDNF-derivation ends with the empty clause in the branch
of the main tree, it is called an SLDNF-refutatio~ of II O {G}. <>

8.4. FLOUNDERING, AND HOW TO AVOID IT 141

D e f i n i t i o n 8.15 Let II be a normal program, and G =+-- L z , . . . , L~ a nor-
mal goal. Let 01, �9 �9 Ok be the sequence of substitutions on the edges of some
SLDNF-refutation of IIU {G}. A computed answer 0 for HU {G} is the restric-
tion of 01 . . . Ok to the variables in G. If 0 is a computed answer for II U {G},
we write II F-~f (L I , . . . , L ~) 0 �9

Note that the particular mgu's used in the subsidiary trees do not affect
the computed answer: the only thing we are interested in, regarding subsidiary
trees, is whether they are successful or finitely failed (or neither). Also note
the nonmonotonicity: {P(a)} F-~f -~P(b), while {P(a) , P(b)} ~/s~y -,P(b).

E x a m p l e 8.16 For the II U {G} from Example 8.10, we can extract two
computed answers from the main tree: 01 = {x/a} and 0~ = {x/b}. Note
that II ~ P(x)01, while II ~ P(x)O~. <

It is not very difficult to see that SLDNF-derivations generalize SLD-de-
rivations. In particular, if H is a definite program and G is a definite goal,
then an SLDNF-tree for H U {G} is simply an SLD-tree for II U {G}. We can
also easily generalize the definition of fairness to SLDNF-trees, though we
will not need this in the sequel.

We end this section by defining the notion of a computation rule for
SLDNF-resolution. In ordinary SLD-resolution, we use a computation rule
to select the atom that will be resolved upon in the next resolution step
in a derivation. As this may have to do with the history of the derivation,
we defined a computation rule as a function that took an SLD-derivation as
input, and returned an atom in the last goal of the derivation. Since SLDNF-
derivations are defined in terms of SLDNF-trees, and we already need to select
literals when constructing an SLDNF-tree, we cannot simply generalize the
definition from the previous chapter, taking an SLDNF-derivation as input to
the rule. Instead, in SLDNF-resolution a computation rule takes a complete
pre-SLDNF-tree T as input, together with a leaf G in T, and outputs a literal
in G.

Definition 8.17 Let ~ be the set of all pre-SLDNF-trees, and G the set of
all normal goals. A computation rule T~ is a function from ;o x ~ to the set
of literals, such that if T is a pre-SLDNF-tree and G is a non-empty, non-
marked leaf in T, then :~(T, G) is a literal (the selected literal) in the body
of G. �9

A pre-SLDNF-tree, SLDNF-tree, SLDNF-derivation, or -refutation is said
to be via Tr if T~ is used for selecting the selected literal in each node. Simi-
larly, we can define an 7C-computed answer.

8.4 Floundering, and How to Avoid It

Let us now explain floundering. Why do we only construct a subsidiary tree
if a ground negative literal is selected, and mark a node as floundered if a

142 CHAPTER 8. SLDNF-RESOLUTION

non-ground negative literal is selected? Why not select a non-ground literal
and construct a finitely failed tree, just as we do for ground negative literals?
As the next example shows, dropping the restriction to ground iiterMs may
cause unsoundness.

E x a m p l e 8.18 Let H = {(P(f(z)) +-- ~Q(x)), Q(a)}. Then H U {~- Q(x)}
succeeds, and hence, if we allow a subsidiary tree for +- '~Q(x) to be con-
structed, IIU{+- ~Q(a:)} finitely fails. Consequently, 11u{+- P(f(x))} finitely
fails as well, so ii u {e- -~P(f(x))} succeeds, with computed answer e. Thus
I1 b,~f -,P(f(x)).

On the other hand, H U {+- Q(f(a))} finitely fails. Therefore II U {+-
-~Q(f(a))} succeeds, and H U {+-- P(f(a))} succeeds as well. Thus allowing
the selection of non-ground negative literMs les.ds to the unsound result that
both H P~4 "P(f(x)) and I-[~-~,~j P(f(a)). <a

Given this unsoundness, we should avoid the selection of non-ground neg-
alive literals as much as possible: we need a computation rule which does not
select a non-ground negative literal if other (positive and/or ground) literals
can be selected. Such a computation rule is cMled safe.

D e f i n i t i o n 8.19 h computation ruie is safe if it selects a non-ground nega-
tive literal in the body of a goal G only if the body of G consists exclusively
of non-ground negative literals. (>

In other words, a safe computation rule only selects a non-ground negative
literal if it has no alternative. For example, if 52 is a safe computation rule,
then 5c~(T; (+-- Q(a:, y),-~P(;e))) = (~(x, y) for any pre-gLDNF-tree T. On t~he
other hand, if G =e - -~P(x),-~R(x), then even a safe computation rule can
only select a non-ground negative literal. Thus we should avoid goals which
oilly contain non-ground negative literals in their body. Such goals are called
blocked, and cause floundering:

De f in i t i on 8.20 Let 1I be ~ normal program, and G be a normal goal. We
say G is blocked if its body consists exclusively of non-ground negative literals.
11 O {G} flounders if some SLDNF-tree for I1 U {G} via a safe computation
rule 7?~ contains a blocked node. <>

Note carefully that being blocked is a property of a goal G, while floun-
dering is a property of II U {G}.

In order to avoid floundering, we might allow only a restricted kind of
programs and goals. The definition of allowedness we adopt here, taken
from lAB94], is slightly less general, but perhaps more readable than the
one given in [Llo87].

De f in i t i on 8,21 A normal goal G is allowed if every variable that occurs in
a negative literal in the body of G also occurs in a positive literal in the body
of G. A program clause C = A ~ C - is allowed if the normal goal +- -~A, C -
is allowed. A normal program is allowed if each of its clauses is allowed. <5

8.4. FLOUNDERING, AND HOW TO AVOID IT 143

Observing that negative literals in the body of a clause are actually pos-
itive literals in the clause, the above condition can be restated more simply
as follows: a normal clause or goal is allowed if each variable that appears in
a positive literal also appears in a negative literal.

E x a m p l e 8.22 4- --,P(a, x), Q(f(x)) and P(a, y) 4- -,Q(a), P(x, y) are al-
lowed. P(x, y) 4- Q(x, z) is not allowed. <1

Note that a blocked goal is not allowed, while every definite goal is allowed.
Furthermore, an a tom is allowed iff it is ground, which is rather restrictive.
Thus not every definite program is allowed. However, in case of a definite
program and a definite goal, we need not worry about allowedness, because
floundering will not happen anyway due to the absence of negative literals
from the bodies of clauses and goals. In case of normal programs and normal
goals, Proposit ion 8.25 shows that allowedness, together with the use of a
safe computa t ion rule, is sufficient to avoid floundering.

L e m m a 8.23 Let G be an allowed normal goal, and C an allowed normal
clause. Then any binary resolvent of G and C is allowed.

P r o o f We assume G and C are standardized apart , G = 4 - L1, . . . ,Ln ,
C = A 4- C - , and G' = 4 - (L1, . . . ,L ,_I ,C- ,L ,+I , . . . ,L ,~)O is a binary
resolvent of G and C. Note that Ls must be positive. Let x be a variable
occurring in a negative literal in the body of G'. Due to the allowedness of
C, if x occurs in C-O, then x must also occur in a positive literal in C-O.
Since G is allowed, GO is allowed as well. Then if z occurs in a negative LiO
and does not occur in any positive LjO (j # s) in G ~, it must occur in L~O.
LsO = AO and every variable in AO occurs somewhere in a positive literal in
C-O, so x must occur in a positive literal in C-O. []

Before proving the next proposition, we first illustrate its second part with
an example.

E x a m p l e 8.24 Suppose H = {Q(a), (P(y) 4- ~R(a),Q(y))} and G = 4 -
P(x). Both H and G are allowed. Figure 8.6 shows an SLDNF-refutat ion of
H U {G}. The computed answer is {x/a}, which is a ground substitution for
G. <1

P r o p o s i t i o n 8.25 Let H be an allowed normal program, and G an allowed
normal goal. Then:

I. II U {G} does not flounder.
2. Every computed answer for H U {G} is a ground substitution for G.

P r o o f
1. Let 7~ be an arbi trary safe computat ion rule, and T be an SLDNF-tree

for II U {G} via 7~. The initial pre-SLDNF-tree from which T is constructed

144 CHAPTER 8. SLDNF-RESOLUTION

~- P(r

*- Q(~) Q(a)

{~/'~} i
[]

P(y) ~- -~R(~), Q(y)

~- n(~)
fai led

Figure 8.6: An SLDNF-refutation with allowed program and goal

only contains the allowed goal G. Moreover, using Lemma 8.25 it can easily
be shown that any further extension adds only allowed goals to the tree. Thus
every node in T is allowed, so not blocked. Hence 11 U {G} does not flounder.

2. Let 01 , . . . , Ok be the sequence of substitutions on the edges of some
SLDNF-refutat ion of 1I U {G}. We will show by induction on k that if x is a
variable in G, then x01 . . . ~h is ground.

.

.

Suppose k = 1, then G contains only one literal. If this literal is positive,
the result follows immediately from the fact that the only input clause
must be an a tom A, which is allowed and hence ground. Then GO1 = A
will be ground. If the only literaI in G is negative, it must be ground
because of the atlowedness of G, so any substitution will be a ground
substitution for G.
Suppose the result holds for k <_ m, let 01 , . . . , Om+l be the sequence of
substitutions on the edges of some SLDNF-refutation of II U {G}, x be
a variable in G, and G~ be the next goal.
If a positive literal L was selected in the body of G, then G1 is a binary
resolvent of G and some input clause C E H, which we assume to be
standardized apart . If x occurs in some literal in G other than L, then
x01 occurs in G1. Since L01 = C+01, any variable in L01 also occurs
in C+01. Furthermore, since C is allowed~ any variable in C+01 also
occurs in C-01, and hence in G1. Thus if x occurs in L, then any
variable in xOa occurs in G1. Therefore any variable in x01 occurs in
G1. By the induction hypothesis, for any variable y in G1, we have that
yO~ ... Om+l is ground. Hence x0i . . . Om+l is ground as well.
If a ground negative literal L was selected in the body of G, then G1
is G without L, so then x occurs in G1 and 0a = e. The result follows
again f rom the induction hypothesis. []

8.5. THE COMPLETION OF .4 NORMAL PROGRAM 145

8.5 The Complet ion of a Normal Program

We have already noticed that negation as (finite) failure is not sound: if
II is a definite program and A ~ Fn then we can derive -~A from II, even
though II ~ ~A. This unsoundness carries over to SLDNF-derivations for
normal programs. Still we can prove a form of soundness, by comparing our
derivation rules with what is logically implied by the completion of a normal
program, rather than by the program itself. The completion of a program is
intended to make explicit the "negative information" in a program, based on
the Closed World Assumption.

How does this work? Let us start with an example. Consider a time-table
program 11, consisting of the following:

To(amsterdam~ 12:00)
To(maastrieht, 13:30)

This program states that To(x, y) is true if (1) x = amsterdam and y =
12:00, or (2) x = maastricht and y = 13:30. Now under the Closed World
Assumption, we can assume this is a complete description of To(x, y): there
are no train departures other than ~hose explicitly mentioned here. In other
words: To(x, Y) is true if and only if (1) or (2) hold. The program itself only
states the if part, but thanks to the added only/]part, we can now say that
To(rotterdam, 12:00) is false.

Suppose we have in our language a predicate symbol '= ' , which captures
our intuitive notion of equality. It is written in infix notation, so we write 't =
s' instead of '= (t, s)', and we use t r s to denote the negated atom --,(t = s).
Using this predicate, we can make explicit the assumption of completeness,
by strengthening 11 to the following formula II/:

VxVy (To(x, y) ~ (((x = amsterdam) A (y = 12:00))V
((x = maastricht) A (y = 13:30)))).

If the predicate symbol ' = ' correctly formalizes equality, then we have
rotterdam r amsterdam and rotterdam # maastricht. Together with II /
this implies -,To(rotterdam, 12:00). Thus the atom -~To(rotterdam, 12:00) is
a logical consequence of the completed program.

Before we can define the completion in general, something needs to be said
about the predicate symbol '= ' . In first-order logic, predicates by themseb~es
have no meaning. For instance, without constraints on the interpretation of
~=', amsterdam = rotterdam might be either true or false, just as P(a, b)
is true in some interpretations, and false in others. Similarly, amsterdam =
amsterdam might be false, just as P(a, a) may be false. So in order to make
'=~ conform to our intuitions about equality, we need to put some restrictions
on its interpretation~ This is done by including the following egvatity theory
in the completion of the program, which states the properties that '= ' should
have.

146 CHAPTER 8. SLDNF-RESOL UTION

D e f i n i t i o n 8.26 The equality theory EQ for some alphabet consists of the
following formulas (called equalitg a~ioms):

1. V (I (z l , . . . , x~) • 9(y l , . . . , Y•)), for every pair f , 9 of distinct func-
tion symbols. Here n, m > 0, so the inequality of distinct constants is
included in this case.

2. Y(t[x] r x), where t[x] is any term containing the variable x, but not
the same as x.

3. V((x 1 7s Yt) V ... V (x,, ~: Yn) -~ (f (x l , . . . , x n) • I(Yl~.. ,Yn))), for
each function symbol f .

4, v (x = x).
5. V((x 1 --= Yl) A . . . A (xn ---- yn) --+ (f (x x , . . . , Xn) -= f (Y l , . . , Yn))), for

each function symbol f .
6. Y((xl = y l) A . . . A (x ~ =y~)-+ (P (x l , . . . , x ~) - + P (y l , . . ,Yn))),for

each predicate symbol P (including '= ' itself). �9

These axioms are intended to capture syntactical identity in the Herbrand
universe (i.e., the set of ground terms). We will later be interested in Herbrand
models of the axioms. Note that a term is always equal to itself, by the
fourth axiom. If s and t are distinct ground terms, then EQ ~ (s 5s t).
For example, EQ ~ VxVy (f(x) ?A g(y)) by the first equality axiom, so
EQ ~ (f(a) 7 s y(f(a))). ~rhe equality axioms do not completeiy specify the
equality relation for non-ground terms. For instance, EQ ~ V(x = f(y)) and
EQ V:: V(x r f(y)), since EQ ~ if(a) = f(a)) and EQ ~ (a ~- f(a)).

Before formally defining the completion, let us give another example,
slightly more complex than the time-table. Suppose we want to write a
program describing some university records. Only two kinds of persons are
present at this very simple university: professors and students. Everyone is
either a student or a professor. There are only two professors, Confucius and
Socrates, and everyone else is a student. In a normal program H, this would
look as follows:

Pro f (eon f ucius)
Prof(socrates)
Student(y) +--,Prof(y)

However, these clauses do not tell us that if someone (for instance Plato) is a
student, then that person is not a professor. To make explicit that a student
is not a professor, we need to complete the program.

Let us first consider the clauses witk Prof in their head. The program
itself only states that if x = confucius or x = socrates, then Prof(x) is true.
Similar to the ease of the time-table, we assume this is a complete description
of the set of professors. Hence we add the only @side to the above statement,
obtaining that x is a professor if, and only if~ x = confucius or x ~ socrates.
We can do something similar with the clause having Student in its head: the
completion states that r is a student if, and only if, x is not a professor. Thus
the completion of II makes explicit that Confucius and Socrates are the only
professors (and not students), and that everyone else is a student:

8.5. THE COMPLETION OF A NORMAL PROGRAM 147

gx (Prof(a:) e+ ((z = confucius) V (x = socrates)))
Vx (Student(x) ~ By ((x = y) i - ,Pro f (y)))

The somewhat complex form of the body of the second formula will be ex-
plained in a moment. Apart from these two formulas, the completion cornp(II)
of II also contains the equality theory.

Note that by the first equality axiom we have plato r confucius and
plato r socrates, assuming plato to be a constant in the alphabet. Thus
comp(II) ~ -,Prof(plato) by the first formula in the completion, and
consequently comp(II) ~ Student(plato) by the second formula. Neither
-,Prof(plato) nor Studant(ptato) are logical consequences of II itself. Nev-
ertheless, the CWA allows us to infer these two literals, and the completion
makes this explicit by logically implying them.

The general way to transform a program into its completion is as follows.

Def in i t ion 8.27 Let II be a normal program, and P be a predicate symbol.
Then the definition of P in II is the set of clauses in II which have P in their
head. O

Suppose the definition of some m-ary predicate symbol P in II consists
of k program clauses. We want to turn this definition into something of the
form

VXl.-.VXrn (P(xl,. . . ,~rn) ~ Z),

where x l , . . . , xm are new variables not appearing in the definition of P, and
E is roughly the disjunction of the bodies of the clauses in the definition. The
first thing we must do in order to achieve this, is give each of the k clauses
in the definition the same head P (x l , . . . , Xm). Let

C1 = P(t l , . . . , tm) +-- L1 , . . . ,L~

be the first of the clauses in the definition of P, and suppose the variables in
C1 are y] , . . . , Yd. The first step in the transformation turns this clause into
the clause

C~ = P (x l , . . . , x ~) +- (xl = t l) , . . . , (xm = t m) , L 1 , . . . , L , .

Let us call E-Herbrand interpretations all those Herbrand interpretations
which satisfy the equality theory. Since C~ together with the fourth equality
axiom logically implies C1, any E-Herbrand model of C~ is also an E-Herbrand
model of C1. Conversely, it is not very difficult to see that any E-Herbrand
model of C1 is also an E-Herbrand model of C~, using axiom 6. Since C1 and
C~ have exactly the same E-Herbrand models, we may say that the above
transformation from C1 to C~ has preserved equivalence with respect to E-
Herbrand interpretations.

To motivate the second step that we want to take for the transformation,
note that the body of the clause C~ contains y l , . . . , Yd, which are universally

148 CHAPTER 8. SLDNF-RESOLUTION

quantified. This universal quantification may cause problems. Consider for
instance H = {P ~ Q(y)}, where P is a Gary predicate symbol meaning
that Ho~and is inhabited, ~ d Q(y) means that y lives in Holt~nd. P +-- Q[y)
thus means that if some y lives in Holland, then Holland is inhabited. If we
simply added the "only if"-side, we obtain Vy (P ++ Q(y)). But this implies
that if P is true, then Q(y) is true for every y. In other words, if Holland
is inhabited, then every person lives in Holland. This is clearly too strong,
considering that Holland is a rather small country. What we would like to
have as a completion, is something like "Holland is inhabited iff there is at
least one person y living in Holland." Therefore the second step turns the
universal quantifiers for Yl, �9 �9 Ye into existential quantifiers in the body of
the formula itself:

P (x ~ , . . , , . ~) ~ ? w . . o3y~ ((~., = tl) f . . . A (~,, = t,~.) A L1 A . . . A L~),

which may be abbreviated to

Note that C~ and C~' are logically equivalent, For instance, Very (P(x) +--
(x = y),Q(y)) @ Vz (P(~) <-- 3y ((x = y) A Q(y))). This implies that C1,
C~, and C[/ all have the same E-tterbrand models.

Suppose the above transformation is made for each of the k clauses in the
definition of P, so we have

P(r '-,Xm) <-- Ek,

Together these k formulas imply

The completed definition of the predicate symbol P is the closed formula

w ~ . . . w m (P(~ , . . . , ~,~) ~ (E~ v . . . v E~)).

In case Q is an m-sty predicate symbol in H that does not occur in the head
of a c~ause in rf, we take every instance of Q to be false, So in this case the
completed definition of Q is Vxl , . . gx,~ -~Q(xl,.-., z,~).

The completed definition of some predicate is not itself a set of clauses,
nor can it always be transformed into an equivalent set of clauses, due to the
presence of existential quantifiers. For instance, if II = {P +- Q(y)}, then the
completed defirdtion of P is P ++ 3y Q(y), which cannot be transformed to
an equivalent set of clauses.

The completion of a normal program combines the completed definitions
with the equality theory:

8.5. THE COMPLETION OF A :NORMAL PROGRAM 149

D e f i n i t i o n 8.28 Let II be a normal program. The completion of II, denoted
by comp(II), is the set of the completed definitions of the predicate symbols
in 1I, together with the equality theory. <)

The completion of a program is sometimes unsatisfiable. Consider H =
{P(a) <-- -,P(a)}, which itself is satisfiable, since it has {P(a)} as a model.
However, comp(H) combines Vx (P(x) ~ ((x = a)A-~P(a))) with the equality
theory, which is unsatisfiable. It is not very difficult to show that if II is
a definite program, then comp(H) is satisfiable. For restrictions on (non-
definite) normal programs which ensure a satisfiable completion, we refer
to [Llo87, AB94] and the references therein.

Note the following relation between a program and its completion:

P r o p o s i t i o n 8.29 If II is a normal program, then comp(H) D H.

P r o o f Let C = P (t l , . . . , t,~) +-- L1, . . . , L~ C l-t, and

D = gx l . . .Vx ,~ (P (x l , . . . , xm) ++ (El V.. . V/~k))

be the completed definition of P. Suppose Ei was obtained from C:

& = 3 v l . . . ? y d ((-1 = t l) A . . . A (xm = A L1 A . . . A

D implies Vzl . . . Vxm (P(x~, . . . , x,~) ~- E~), which is equivalent to the clause

P(x l , . . . ,* ,~) +-- (xl = t l) , . . . , (x,~ = t , ~) ,L1 , . . . ,L~ .

This clause has the following instance (substituting tj for xj):

: :

This instance, together with the 4th equality axiom, implies C. Hence
comp(II) ~ C. []

It follows from this proposition that if L is a literal and H ~ V(L), then
co~,p(n) ~ V(L).

It should be noted that the completion, though motivated by and based
upon the Closed World Assumption, is actually weaker than the CWA. Con-
sider the definite program FI = {P(y) +-- P(f(y))}. Then H ~: P(a), so the
OWn would justify inferring -,P(a). Nevertheless, comp(H) = {Vx (P(x) ++
((x = y)A P(f(y))))} V EQ does not imply - ,P(a) , because an interpretation
that satisfies the equality axioms and makes true P(fn(a)) for every n > 0
would be a model of comp(H) but not of -,P(a). Thus the completion makes
explicit only part of the CWA, just as negation as finite failure is only a
partial implementation of "full" negation as failure.

As mentioned at the beginning of this section, in order to be able to
prove soundness results we should compare SLDNF-derivations with what is
implied by the completion, not with what is implied by the program itself.
Thus we define the notion of a correct answer, the semantical counterpart to
the computed answer, as follows:

150 CHAPTER 8. SLDNF-RESOL UTION

Definition 8.30 Let II be a normal program, G =+-- L1 , . . . , Lk a normal
goal, and 0 be a substitution for variables of G. We say that 0 is a correct
answer for comp(II) O {G} if comp(II) ~ v((n l A. . . A Lk)O).

To end this section, let us compare the previous definition with the def-
inition of a correct answer for definite programs, given in the last chapter.
Suppose 1I is a definite program and G a definite goal. It follows from Propo-
sition 8.29 that a correct answer for II U {G} in the old sense is also a correct
answer for comp(H) O {G} in the sense of this chapter. It can be shown that
the converse holds as well (see Proposition 14.5 of [Llo87]). So in the def-
inite case, 0 is a correct answer for II U {G} iff it is a correct answer for
eomp(II) U {G}.

8.6 Soundnes s w i th R es pec t to the Comple-
t ion

In this section we prove two important soundness results: the first for finitely
failed SLDNP-trees, the second for successful ones. Suppose H is a normal
program, and G --=e- L ~ , . . . , L~ a normal goal. Firstly, if eomp(II) O {G} has
a finitely failed SLDNF-tree, then comp(H) ~ V(-,(L1 A . . . A n ,)) , which is
the same as eomp(II) ~ V(G). Secondly, if some success branch in an SLDNF-
tree for comp(II) U {G} yields a computed answer 0, then this is also a correct
answer: comp(ri) ~ V((L1 A , . . A Ln)O),

The basis of the proof is the next lemma. Rather than including the very
technical proof of this l emma (Lemma 15.3 of [Llo87]; a similar result is given
in Section 5.7 of [Apt90]), we illustrate it with an example.

L e m m a 8.31 Let H be a normal program, G a normal goal, and L~ a positive
literal in the body of G.

I. If there is no (variant of) C E I I whose head can be unified with L~,
then comp(II) ~ G.

2. If the set {GI , . . . , Gr} of all binary resolvents of G and clauses in II
(resolved upon L~) is non-empty, then comp(II) ~ G ++ G~ i . . . i G~.

E x a m p l e 8.32 Let II = {P(a), (p(f2(y)) e-- P(y))}. Then cornp(II) =
{vx (P (x) = a) v = A u E Q

Let G =+-- P(f(a)). Since P(f(a)) cannot be unified with any a tom in
the head of a clause in II, there are no resolvents from G and II. Thus II U
{G} finitely fails, and we infer -~P(f(a)). This is sound with respect to the
completion, since comp(II) ~ -~P(f(a)) .

If G = + - P(f2(a)), then the only resolvent of G and clauses in n is
G1 =+- P(a). Now it easy to see that through substituting f2 (a) for x in the
formula in the completion, we have comp(II) ~ p(f2 (a)) ++ P(a), hence also
eo p(n) > <

8.6. SOUNDNESS WITH RESPECT TO THE COMPLETION 151

T h e o r e m 8.33 (S o u n d n e s s o f n e g a t i o n as f in i t e f a i l u r e) Let II be a
normal program, and G a normal goal. IfIIU{G} has a finitely failed SLDNF-
tree, then comp(H) ~ G,

P r o o f Let G =+-- L 1 , . . . , L n , and T be a finitely failed SLDNF-tree for
H U {G}. Then G must be non-empty. The main tree of T is finitely failed,
so there exists a finite number k > t, such that this main tree is complete
after k extensions of the initial tree G. The proof is by induction on k.

1. If k = 1, then G =+-- L1. L1 cannot be negative, since constructing a
subsidiary tree (which must first finitely fail or become successful before
the main tree can be further extended) would involve at least two more
extensions. Hence Lt is an atom, and there is no (variant of) C E H
whose head can be unified with L1. Then comp(II) ~ G by the first
part of Lemma 8.31.

2. Suppose the theorem holds for k _< m, the main tree of T is complete
after m + 1 extensions, and L~ is selected in G in the initial pre-SLDNF-
tree.

1.

.

Suppose Ls is positive. Let G 1 , . . . , G. (r > 1) be the children of
G in the main tree of T. For each 1 < i < r, the subtree initiating
in Gi is itself a finitely failed SLDNF-tree, so by the induction
hypothesis we have that eomp(II) ~ Gi. Then comp(H) ~ G1 A
. .. A G~, and comp(H) ~ G from Lemma 8.31, part 2.
If Ls = ~A is negative, then A is ground. Because the main tree
of T is finitely failed, the subsidiary SLDNF-tree subsid(G) for
11 U {+-- A} is either successful or finitely failed.
Case 1. First suppose subsid(G) is successful. Then this sub-
sidiary tree contains a success branch (i.e., an SLDNF-refutation
ofHU{+-- A}). Let the length of this success branch be I. Now it can
be proved by induction oil t that comp(H) U {+-- A} ~ [2, using (1)
the soundness of resolution steps, and (2) the fact that each sub-
sidiary tree used on this success branch must be finitely failed after
m or less extensions (so the induction hypothesis can be applied).
Therefore comp(H)U{+- A} is unsatisfiable, and comp(H) ~ A by
Proposition 2.37. Then also comp(H) ~ -~L~, and since -~L~ ~ G
(i.e., L~ E G -) , it follows that comp(lI) ~ G.
Case 2. Now suppose subsid(G) is finitely failed. Then the only
child of G is G' =+-- Lt, . . . , L~-I, L~+I,..., L~, and the tree with
this G' as root is finitely failed after m or less extensions. Hence by
the induction hypothesis we have comp(II) ~ G'. Since G' C G,
the result follows. []

In particular, if A is a ground atom and II U {+-- A} has a finitely failed
SLDNF-tree, then comp(II) ~ ~A. Using this result, we can prove the sound-
ness of answers computed by SLDNF-refutations in the next theorem.

152 CHAPTER 8. SLDNF-RESOLUTION

E x a m p l e 8.34 In Example 8.16 we noted that the SLDNF-tree of Exam-
ple 8.10 contained two computed answers, 01 = {x/a} and 02 = {x/b}, and
that H ~ P(x)01 but II ~ P(x)02. Thus computed answers are not sound
with respect to the program 1] itself. On the other hand, the next theorem
guarantees us the soundness of computed answers with respect to the com-
pletion: we have comp(II) ~ P(x)01 as well as comp(II) ~ P(x)02. <1

T h e o r e m 8.35 (S o u n d n e s s o f S L D N F - r e s o l u t i o n) Let 17 be a normal
program, and G a normal goal. Then every computed answer for II U {G} is
a correct answer for co p(II) u {G}.

P r o o f Suppose G =+-- LI, . . . ,L~, and Go = G, G1,...,G~ = [] be the
main branch of an SLDNF-refutation of H • {G} with computed answer 8.
Let 0i, �9 �9 Ok be the substitutions used. We will prove by induction on k that
comp(II) b V((L1 A . . . A Ln)01... Ok), thus showing that 0 is a correct answer
for comp(II) U {G}.

1. If k = 1, then G =<-- L1.
1. tf L1 is positive, then there is an a tom B ~ II such that B01 =

L101. Hence B ~ V(LI01). Now eornp(H) ~ B by Proposi-
tion 8.29, and the result follows.

2. If L1 = "~A is negative, then A is ground, and there is a finitely
failed SLDNF-tree for II U {§ A}. The computer answer is just
here. By Theorem 8.33 we have comp(H) ~+- A. Since +-- A ca -~A
and -~A = L1, we have comp(H) ~ L1, so e is a correct answer.

2. Suppose the result holds for k < m, and let Go = G, G l , . . . , G,~+I = []
be the main branch of an SLDNF-refutation of H U {G} with substi-
tutions 0 1 , . . . , 0m-l-1 and computed answer 8. Let L8 be the selected
literal in G.

t. Suppose Ls is positive~ and the first input clause is C = B +-
C - . Then the second goal in the refutation is G1 =+-- (L1 , . . . ,
L ~ _ I , C - , L~+I,..., Ln)01. By the induction hypothesis we have

V((L A...AL _I AC- AL,+I
Furthermore, note that C U V(C--01 ...0,~+1) ~ B0t ...0,~+1.
Then we have comp(II) U V(C-01 . . . 0~+~) ~ B01... 0~+~, since
comp(II) ~ C by Proposition 8.29. Therefore also camp(H)
V((L1 A . . . A Ls-~ A B A Ls+ l / \ ~, L,~)01 . . . 0~+1). Finally, since
B01 = Ls01 we can replace B by L~ in the previous formula, thus
obtaining cornp(H) ~ V((L1 A . . . A Ln)01... Ore+l).

2. If Ls = -~A is negative, then A is ground and there is a finitely
failed SLDNF-tree for I IO{+- A}. We have comp(H) ~ Ls by The-
orem 8.33. Combining this with comp(II): ~= V((L~ A . . . A L~- t A
L~+~ A. . . / \ Lr~)O~ ... Orn+~) (induction hypothesis), the result fol-
lows. []

8.7. COMPLETENESS 153

8.7 Completeness

In this section we will devote some attention to the completeness and incom-
pleteness of SLDNF-resolution. First, consider a definite program II and a
definite goal G. At the end of Section 8.5, we mentioned that a substitution
0 is a correct answer for H U {G} iff it is a correct answer for comp(II) U {G},
so the set of correct answers remains the same when we consider the com-
pletion of II. Since, furthermore~ an SLDNF-tree for II t_J (G} is simply an
SLD-tree for II U {G}, the set of computed answers remains the same as
well. Hence, for definite H and G, the completeness of computed answers for
SLDNF-resolution follows from the completeness of computed answers for
SLD-resolution (Theorem 7.26 of the last chapter).

Computed answers stem from trees with success branches. What about
trees without success branches? We would like these to be finitely failed, so we
won't get stuck in infinite branches. The next result says that if eomp(H)
G, then every fair SLD-tree for Ht2 {G} is indeed finitely failed. In particular,
if A is a ground atom and eomp(II) ~ -~A, then every fair SLD-tree for
I/t2 {+- A} will be finitely failed, hence A E Fn. We will not prove this result
here, which is originally due to Jaffar, Lassez, and Lloyd [JLL83] (for a proof,
see [Llo87, Theorem 16.1] or [Apt90, Theorem 5.30]). 3

Theorem 8.36 (Completeness of negation as finite failure) Let II be
a definite program, and G a definite goal. If comp(II) ~ G, then every fair
SLD-tree for II U {G} is finitely failed.

The previous result on negation as failure for definite programs, as well
as the results on SLD-resolution of the previous chapter, are quite strong.
Unfortunately, equally strong results are missing for SLDNF-resolution for
normal programs. In fact, SLDNF-resolution is not complete, not even in
case of a definite programs combined with a normal goal. For example, let
II = {Q(a, b)} and G =+-- -~Q(x, a) (note that G is not allowed according to
Definition 8.21). Then comp(Fl) ~ -~Q(b, a), so {x/b} is a correct answer for
H U {G}. However, no SLDNF-tree for H U {G) contains a success branch,
since ~Q(x, a) cannot be selected due to floundering.

Thus in order to obtain completeness results, we have to put some con-
straints on the programs and goals we use. Theorem 16.3 of [Llo87] gives a
completeness result for so-called allowed hierarchical normal programs and
allowed normal goals. A normal program II is hierarchical if there is an as-
signment of natural numbers to each of the predicates in II, such that for
every C E H, the number assigned to the predicate in C + is greater than
the numbers assigned to the predicates in C - . Unfortunately, the restric-
tion to hierarchical programs rules out any recursion: for instance, a program
containing P(f(x)) e- P(x) is not hierarchical.

3 For a different completeness result for SLDNF-resolut ion, see Theorem 8.52 of [Doe94].
This result employs a 3-valued semantics, where the possible t ru th values are ' t rue ' , ~false ~,
and 'undefined' , r a the r than only ' t rue ~ and 'false'.

154 CHAPTER 8. SLDNF-RESOL UTION

8.8 Prolog

The use of normal programs as a means for knowledge representation and
computat ion has been implemented in several practical programming lan-
guages. In this section, we will briefly give an overview of the best-known
of these languages, the language PROLOG (short for Programming in logic).
PROLOG was introduced in the early 1970s by Colmerauer and his co-workers,
and its subsequent development influenced, and was itself influenced by, the
development of logic programming. Many ILP systems are implemented in
PROLOG, and many examples in the ILP literature are given in terms of
PROLOG. We will here mainly discuss some of the logical aspects of PROLOG.
For a more extensive introduction to PROLOG as a practical programming
language, we refer to [CM87, Bra90, SS94, Apt97].

8 . 8 . 1 S y n t a x

In PaOLOG, names of predicates are strings of symbols starting with a lower
case letter. Names of variables start with an upper case letter or an under-
score, and names of constants and function symbols start with a lower case
letter. We will here denote PROLOO clauses and terms in a typewriter-style
font. The implication sign %-' of a Horn clause is in most PROLOS-systems
written as ' : - ' , and a negative literal -~A in the body of a program clause is
usually written as not A.

An important feature of PROLOG is its ability to handle lists of terms. Lists
can be implemented using a special binary function symbol '.' and a special
constant nil (which denotes the empty list), so they can be incorporated
within first-order logic without any additional concepts. The first element of
the list is placed at the first argument place of the '. '-function, the remainder
of the list is put at the second place. For instance, the list [a , b , c] can be
represented by the term .(a, .(b, .(c, nil))). The empty list [] is represented
by nil. [X~L] denotes a list with X as first element, and list L as remainder,
and [X,YIL] is a list which has X as first element, and g as second element,
followed by the list L.

E x a m p l e 8.37 The familiar operations on lists can easily be formalized in
PROLOG. 4 For instance, the following program describes when object X is a
member of the list at the second argument place:

I. member(X, IX [L])
2. member(X,[Y[L]) :- member(X~L)

Appending two lists Lt and L2 to get a third list L3 can be done by the
following program:

1. a ppe nd (l] ,L2,L2)

4ILP systems are often tested by making them learn definitions of these list-operations
from a few examples.

8.8. PROLOG 155

9. append([X[L1] ,L2, [X[L3]) : - append(L1,L2,L3)
<1

PROLOG also provides operators like +, *, etc., for doing relatively simple
arithmetic, such as addition, multiplication, etc. Here '+' is a binary function
symbol, written in infix notation. To assign some value to a variable in the
body of a clause, the operator i s is used. Comparison of values is done by
operators like =:=, >, >=, etc. '>' is a binary predicate symbol, again written
in infix-notation. For a more complete overview over these operators, and
also for the operators for reading, writing, etc., we refer the reader again
to [CM87, Bra90, SS94, Apt97].

E x a m p l e 8.38 Consider the following recursive algorithm for computing the
greatest common divisor (gcd) d of two positive integers x and y:

1. I f x = y , t h e n d = z .
2. I f x < y , t h e n d i s t h e g c d o f x a n d y - x .

Otherwise, d is the gcd of x - y and y.

This algorithm can be translated into PROLOG using operators for subtrac-
tion and comparison, as follows:

1. gcd(X,X,X)
2. gcd(X,Y,D) : - X<Y, Y1 i s Y-X, gcd(X,Y1,D)
3. gcd(X,Y,D) :- X>Y, Xl is X-Y, gcd(Xl,Y,D)

8.8.2 Prolog and SLDNF-Trees

There are two sides to each PROLOG program: a declarative side and a pro-
cedural side. The declarative side concerns the content of a normal program
(what the program says), while the procedural side concerns how PROLOG
extracts this content from the program. One of the ideas behind PROLOG is
that a programmer only needs to worry about the declarative side. He can re-
strict himself to describing the problem he wants to solve, without bothering
how it will be solved: the procedural side is left to the system.

Let us assume some normal program II is given to a PROLOG system. The
procedural side is invoked when a question is posed to the system. Questions
(often called queries) are put to a PROLOG system in the form of a conjunc-
tion of literals L 1 , . . . , L n . This question can be seen as the question "for
which substitutions 0 is V((LI A . . . h L~)O) a logical consequence of the com-
pletion of the program?", or in other words: "what are the correct answers
for II U {+-- L 1 , . . . , L~]?"

PROLOG answers this question by constructing computed answers, which
are the counterpart of the correct answers. It does this by searching an
SLDNF-tree for IIU{+- L 1 , . . . , L~}, using the computation rule which always
selects the leftmost literal in a goal. The system searches this tree in a depth-
first fashion, printing out every computed answer it finds in the main tree.

156 C H A P T E R 8. SLDNF-RESOL UTION

This depth-first search can be described by the following recursive procedure,
which is initially called with G =+- L 1 , . . . , L,~.

Search(G):
If G = D, construct the computed answer I%r this leaf.
If the leftmost literal L in G is positive, then

Construct the resolvents G 1 , . . . , G~ of G and clauses in II.
Search(G1).

Search(G~).
If L = -~A is negative, then Search(+- A). (Note that if this call to Search
returns, then the SLDNF-tree for +- A is finite.) If this call to Search found
no success branches, then Seareh(G - -,L).

Though the way PROLOG works can more or less be equated with the
search of SLDNF-trees, a number of difficulties arise as a consequence of
some subtle differences between PROLOG and "proper" SLDNF-trees.

Firstly, as can be seen from the Search procedure described above, PRO-
LOt ignores floundering. When a negative literal -,A is selected, PROLOG does
not distinguish between ground and non-ground literals. In both cases, the
system tries to construct a finitely failed SLDNF-tree for II U {+. A}. This
may lead to the unsoundness exhibited in Example 8.18. Moreover, PRO-
LOt'S computation rule is not safe: it always selects the leftmost literal in a
goal, even when this literal is negative and non-ground~ and other positive or
ground negative literals are available in the goal.

Secondly, a PROLOG program is an ordered list of clauses, not a set of
clauses. Combined with the depth-first search, completeness now depends on
the order of clauses in the program:

E x a m p l e 8.39 Consider the infinite SLDNF-tree (actually, just an SLD-
tree) that PROLOG would have to search given a goal : - p(X) and a program
II consisting of

1. p (a)
2. p (f (x)) : - p (x)

The SLD-tree for HU{G} is shown on the left of Figure 8.7. PROLOG'S depth-
first search will not terminate due to the presence of an infinite branch, but
the system will eventually find and print out each computed answer.

However, now suppose we would reverse the order of clauses in II: 1 be-
comes 2, and 2 becomes 1:

1. p(~(X)) : - p(X)
2. p (a)

This gives the SLD-tree shown on the right of Figure 8.7. Now PROLOG's
depth-first search will find no computed answer at all because it gets stuck
in the leftmost branch, which stretches downward without end. <1

8.8. PROLOG 157

:- p(x) ' - p(X)

[] : - p(X) : - p(X) []

success, {X/~} Jl / / ~ 2 \ ~ s~ccess, {X/a}

[] []

success, {X/f (a)} : : success, { X / f (a) }

Figure 8.7: The effect of reversing the order of clauses in H

The most impor tant distinction between PROLOG and SLDNF-trees is
the use of the cut operator, which is the topic of the next subsection.

8.8.3 The Cut Operator
The cut operator is incorporated in PROLOG for reasons of efficiency. By
inserting this opera tor - -usual ly denoted by a ' ! ' - s y m b o l - - i n the body of
some clauses in the program, the programmer can control the search. The
effect of the cut operator is that certain parts of the SLDNF-tree are pruned
from the tree and hence will not be searched.

How does this work? Consider the Search procedure described on p. 156.
Suppose G is resolved with C 1 , . . . , C~ E I I , yielding, respectively, the new
normal goals G1, �9 �9 G,~. Moreover, suppose 6 ' /contains the cut operator ! as
an a tom (with arity 0) in its body 5, then Gi contains this cut as well. Now if
this cut becomes the leftmost literal in a goal at some moment during the call
of Search(Gi), then it is selected, and resolved away immedia te ly- -we may
assume any program contains ! as a "hidden" atomic clause. However, after
this call to Search(Gi) returns, the calls to Search(Gi+l), . . . , Search(G~)
are not executed. In this way, the cut operator prunes the subtrees which
have, respectively, Gi+l, . . . , G~ as root: these subtrees are not searched,
and any computed answer in them is ignored. If the cut was not selected at
some moment during the call of Search(Gi), the calls to Search(Gi+l) , . . . are
made as if Gi did not contain a cut.

Example 8.40 Suppose we want to compute the sign function:
-1, ifx<O;

f (x) = 0, if x = 0 ;
1, i f x > 0.

5Though it is convenient to describe ! as an a tom, the cut does not have any logical
significance: it is only used to control the search th rough the SLDNF-tree. As argued
in [L1o87], it does not affect the semantics of the program. If we view the cut as "always
t rue" , then for instance A :- B,C r A : - B, ! ,C.

158 CHAPTER 8. SLDNF-RESOLUTION

This function can be formalized by the following PROLOG program II, the
first two clauses of which contain a cut:

1. s i g n (X , - 1) : - X<0,!
2. sign(X,O) :- X=O,!
3. sign(X,i) :- X>O

Suppose G = : - s i g n (- 2 , Y) . The tree for II U {G} is shown in Figure 8.8.
PROLOO evaluates the a tom -2<0 as true when selected, and -2=0 and -2>0
as false. The root G contains three children, one for each of the clauses in II.
The first input clause adds a cut operator to the body of the leftmost child.
Since this cut is selected after two steps on the leftmost branch, the subtrees
initiating in the other two children of G are not searched. Thus the framed
part of the tree is discarded.

' - s i g n (- 2 , u

Y
�9 - -2<0, ! - -2=._...O0, ! : - - 2 > 0

fa i led fa i led

p a r t of t h e t r e e p r u n e d b y c u t
/

D

success, {Y/-1}

Figure 8.8: The effect of a cut

In this case, the pruning is beneficial: since Y in sign can have only one
value, it is no use to search the other two subtrees, given that the value of
Y has already been found in the leftmost subtree. Note that if the goal had
been s i g n (0 , Y) , then the leftmost branch would have immediately led to
failure, hence ! would not be selected in the leftmost branch. In this case,
the cut in the center branch would be selected, leading to the discarding of
only the rightmost subtree. <1

In the previous example, the pruned parts of the tree did not contain any
success branches. However, if these pruned parts contained success branches,
then the computed answers corresponding to these branches would not be
found. This leads to a form of incompleteness. Moreover, when combined
with negation as finite failure, use of the cut may even cause unsoundness,
as the next example (adapted from [Llo87]) shows:

8.9. SUMMARY 159

E x a m p l e 8.41 Suppose we want to write a program for the subset-relation.
Here sets are represented as lists, and subse t (L 1, L2) should succeed just in
case there is no X which is a member of L1 but not of L2. Let H consist of
the following clauses:

i. subset(LI,L2) :- not p(LI,L2)
2. p(LI,L2) :- member(X~L1), not member(X,L2)
3. member(X,[XIL]) :- '

4. member(X,[YJL]) :- member(X,L)

At first sight, it seems a good idea to use a cut in the first clause of the
definition of member, because if this clause applies (i.e., if its head can be
unified with the selected atom in some goal), we already know X is a member
of the list at the second argument place, so the second clause of the definition
will not be needed. However, because of this cut, PROLOG'S SLDNF-tree for
the goal : - p([1 , 2] , [1]) is (incorrectly) finitely failed. But then the query
s u b s e t ([1 , 2] , [1]) succeeds, even though {1, 2} % {1}. <~

The moral of examples like this, is that the cut must be used very carefully.
It is often very difficult to see, especially in large programs, whether it will
have any undesirable effects. Moreover, to see the effects of a cut, a PROLOG-
programmer should have a thorough knowledge of the procedural side of a
program. This impairs the idea that a programmer only needs to concern
himself with the declarative side of the programming task at hand.

For a more extensive analysis of the peculiarities of cut and negation in
PaOLOC, we refer to [SS94, AT95, Apt97].

8.9 Summary

Negation as finite failure, based on the Closed World Assumption, is the
derivation rule which states that if H U {+-- A} finitely fails, then we can
derive the ground atom ~A from H. The possibility of deriving negative
literals from a definite program allowed us to generalize definite program
clauses to program clauses, which may contain negative literals in their body.
A normal program is a finite set of program clauses.

Combining SLD-resolution and negation as finite failure yields SLDNF-re-
solution, which handles negative literals in a goal by negation as finite failure.
Negation as failure should only be applied to ground negative literals (i.e.,
no floundering), in order to avoid unsoundness. We proved the soundness
of SLDNF-resolution in terms of the completion of normal programs, and
stated a completeness result. Finally, we discussed the language PROLOG
and some of its difficulties, in particular the potentially adverse effects of the
cut operator.

P a r t II

Inductive Logic
Programming

Chapter 9

What Is Inductive Logic
Programming?

9.1 Introduct ion

Learning a general theory from specific examples, commonly called induction,
has been a topic of inquiry for centuries. It is often seen as a main source of
scientific knowledge. Suppose we are given a large number of pat ient 's records
from a hospital, consisting of properties of each patient, including symptoms
and diseases. We want to find some general rules, concerning which symptoms
indicate which diseases. The hospital 's records provide examples from which
we can find clues as to what those rules are. Consider measles, a virus disease.
If every patient in the hospital who has a fever and has red spots suffers from
measles, we could infer the general rule

1. "If someone has a fever and red spots, he or she has measles."

Moreover, if each patient with measles also has red spots, we can infer

2. "If someone has measles, he or she will get red spots."

These inferences are cases of induction. Note that these rules not only tell us
something about the people in the hospital 's records, but are in fact about
everyone. Accordingly, they have predictive power: they can be used to make
predictions about future patients with the same symptoms.

Usually when we want to learn something, we do not start from scratch:
most often we already have some background knowledge relevant to the learn-
ing task. For instance, in the hospital records we might find that patients
suffer from measles if they are infected by virus a or by virus b, and patients
not infected by a or b are not bothered by measles. Now suppose the back-
ground knowledge tells us that both a and b belong to a virus family c, which

164 CHAPTER 9. WHAT IS INDUCTIVE LOGIC PROGRAMMING?

consists of viruses with a similar structure. In this case, we may induce the
role

3. "If someone is infected by a virus x from family c, he or she
has measles"

assuming, of course, that this rule is not contradicted by other patients in the
records. If we had ignored this background knowledge, it would have been
sensible to induce the following two much weaker rules:

4. "If someone is infected by virus a, he or she has measles."
5. "If someone is infected by virus b, he or she has measles."

Rule 3, together with the background knowledge, implies rules 4 and 5, and
has more predictive power than 4 and 5 taken together.

The study of induction can be approached from many angles. It used to
be mainly an issue for philosophy of science (see Section 9.5), but is nowa-
days also often studied in relation to computer algorithms, within the field
of artificial intelligence (AI, see [RN95] for a general introduction). As Mar-
vin Minsky, one of the founders of AI, wrote: "Artificial Intelligence is the
science of making machines do things that would require intelligence if done
by man" IMin68, p. v]. Given this view, the study of induction is indeed part
of AI, since learning from examples certainly requires intelligence if done by
mail .

The branch of AI which studies learning is called machine learning. Some
of the main approaches in machine learning are learning in neural networks,
decision trees, genetic algorithms, and finally logic. The latter approach
is nowadays called inductive logic programming (ILP). Stephen Muggleton,
when introducing the name inductive logic programming, defined this field as
the intersection of machine learning and logic programming. Thus ILP stud-
ies learning from examples, within the framework provided by clausal logic.
Here the examples and background knowledge are given as clauses, and the
theory ~hat is to be induced from these, is also to consist of clauses. Using
logic has some important advantages over other approaches used in machine
learning:

| Logic in general, and first-order logic in particular, is a very well de-
veloped mathematical field, providing ILP with a large stock of well
understood concepts, techniques, and results.

�9 Logic provides a uniform and very expressive means of representation:
the background knowledge and the examples, as well as she induced
theory, can all be represented as formulas in a clausal language. In
particular, due to this uniform representation, the use of background
knowledge fits very naturally within a logical approach towards machine
learning. Theory and background knowledge are of the same form, they
just derive from different sources: theory comes from inductive learning,
while background knowledge is provided by the user of the system.

9.2. THE NORMAL PROBLEM SETTING FOR ILP 165

�9 Knowledge represented as rules and facts over certain predicates comes
much closer to natural language than any of the other approaches in
machine learning. Hence the set of clauses that an ILP system induces
is often much easier to interpret for us humans than, for instance, a
neural network.

In the next section, we will define the normal problem setting of induction
in the precise terms of clausal logic, and introduce some terminology. In
Sections 9.3 and 9.4 we discuss some alternatives to this setting. We end the
chapter by giving a brief survey of the history of induction in general, and
ILP in particular.

9.2 The Normal Problem Sett ing for ILP

Inductive logic programming concerns learning a general theory from given
examples of the predicates that we want to learn, possibly taking background
knowledge into account. We can distinguish between two kinds of examples:
positive examples, which are true, and negative examples, which are false.
Usually, the positive and negative examples are given as sets E + and E - ,
respectively, of ground atoms. However, ground clauses are also sometimes
used as examples, for instance in a least generalization approach. In fact,
there is no theoretical reason against using non-ground clauses as examples,
though this is rather unusual.

In ILP, both background knowledge and the induced theory are repre-
sented as finite sets of clauses. In the ordinary setting, after the learning is
done, the theory together with the background knowledge should imply all
given positive examples in E + (completeness), and should not contradict the
given negative examples in E - (consistency). Completeness and consistency
together form correctness.

Before going into the formal definitions, let us look at a simple example.
Suppose E + = {P(0), p(s4(0)), p(sS(0))}, E - = {P(s(0)), p(sa(0))}, and
the background knowledge is empty. Then a program containing the following
clauses

1. P(s2(x)) 4-- P(x)
2. P(O)

will imply all positive examples (completeness) and no negative ones (consis-
tency), and hence is correct.

If we consider only definite programs as theories, it suffices for consistency
to require that no negative examples are implied. However, this need not be
the case if we allow arbitrary clauses. For instance, let E = {P(a)V P(b)} and
E - = {P(a), P(b)}. Then E does not imply any of the negative examples,
yet it still contradicts the negative examples: E - tells us that P(a) and P(b)
are both false, so the clause P(a) V P(b) from E cannot be true. In other
words, the set {(P(a)V P(b)),-~P(a),-,P(b)} is unsatisfiable. In order to rule

166 C H A P T E R 9. W H A T IS I N D U C T I V E LOGIC P R O G R A M M I N G ?

out cases like this, we have to complicate the definition of consistency a bit,
requiring that E, together with the negations of the negative examples, is
consistent (satisfiable). This is formally defined below.

Def in i t i on 9.1 A theory is a finite set of clauses. 0

Def in i t i on 9.2 If E = { C 1 , C 2 , . . . } is a (possibly infinite) set of clauses,
then we use E to denote {--C1, -~C2,.. o}. �9

Def in i t i on 9.3 Let E be a theory, and E + and E - be sets of clauses. E
is complete with respect to E +, if E ~ E +. E is consistent with respect to
E - , if E U E - is satisfiable. E is correct with respect to E + and E - , if E is
complete with respect to E + and consistent with respect to E- .1 <>

E x a m p l e 9.4 Suppose we are given E + = {P(0), p(s4(0)), P(sS(0))}, and
E - = {p(s2(0)), p(sa(0))}. Thela a theory E that consists of

1. +-

2. P(0)

is complete with respect to E +, because it implies every positive example.
On the other hand, we have N ~ P(s2(O)). Hence E tO E - is unsatisfiable,
which means that E is not consistent with respect to E - . <~

Note the following property of consistency:

P r o p o s i t i o n 9.5 Let E be a theory, and E - = {el ,e2, . . .} be a set of
clauses. Then E is not consistent with respect to E - iff there are i l , . . . , i n
such that E ~ ei~ V . . . V ei~ 2

P r o o f E is not consistent with respect to E - = {el, e~,.. .} iff
E U {-~el, ~e2, .. .} is unsatisfiable iff (using Theorem 2.42)
there are i i , . . . , in such that E U {-~eil, . . . , ~ei,} is unsatisfiable iff
there are i l , . . . , i,, such that E U {--,(% V . . . V e~,.)} is unsatisfiable iff (by
Proposition 2.37) there are i i , . . . , in such that E ~ ell V . . . V ei, . []

By the previous proposition it is necessary for the consistency of E with re-
spect to E - that E does ~ot imply one of ~,he clauses in E - , As we saw above,
in the general case of arbitrary clauses this is not sufficient for consistency:

l I f we are working wi th n o r m a l p r o g r a m s as theor ies and backg round knowledge, t hese
def in i t ions m a y be changed s o m e w h a t to take into accoun t the completion of t he p r o g r a m .
If gl is a n o r m a l p r o g r a m , we can say YI is complete with respec t to E + if camp(H) ~ E +,

a n d consistent with respec t to E " if camp(H) U E - is sat isf iable.
aNote t h a t eq v . . . v ei,~ need not. 5e a claus% for i n s t ance if ez = Vx P(x) a n d

e2 = Vy Q(y). However, if t h e e i l , . . . , ei~ are s t anda rd i zed apa r t (in par t icu la r , if each ei9
is g round) , t h e n ei 1 v , . . v e ~ is logically equiva lent to the c lause cons i s t ing of all l i terals
in t he ei.i 's. For ins tance , Yx P(x) v Vy Q(y) is equiva lent to the c lause P(x) v Q(y).

9.2. THE NORMAL PROBLEM SETTING FOR ILP 167

E = {P(a)V P(b)} is not consistent with respect to E - = {P(a), P(b)}, even
though E ~= P(a) and E ~ P(b). However, in the quite common case where
the possible theories are restricted to definite programs and the examples to
ground atoms, it is sufficient:

Proposition 9.6 Let II be a definite program, and E - be a set of ground
atoms. Then II is consistent with respect to E - iff II ~ e, for every e E E - .

Proof II is consistent with respect to E - = {el, e2, . . .} iff
II U {'~el,-~e2,.. .} is satisfiable iff (by Proposition 3.30)
II U {-~el, -~e2,...} has a Herbrand model iff
MH does not contain any e E E - iff (by Theorem 7.16)
H ~ e, for every e E E - . []

Several deviations from correctness are the following:

Definition 9.7 Let E be a theory, and E + and E - be sets of clauses. E is
too strong with respect to E - , if E is not consistent with respect to E - . E
is too weak with respect to E +, if E is not complete with respect to E +.

E is overly general with respect to E + and E - , if E is complete with
respect to E + but not consistent with respect to E - . E is overly specific with
respect to E + and E - , if E is consistent with respect to E - but not complete
with respect to E +.

Note that E is correct iff it is neither too strong nor too weak.

Example 9.8 Suppose we are given E + = {P(s(0)), P(s3(O)),p(sh(O)),
p(s7(0))}, and E - = {P(0), P(s2(0)), p(s4(0))}. Then a theory E

1. P(s2(x)) 4- P(x)
2. P(s(O))

is correct with respect to E + and E - . Note that N can be viewed as charac-
terizing the odd numbers.

N' = {P(s2(x))} is both too strong with respect to E - and too weak with
respect to E +. It is too strong because it implies some negative examples,
and it is too weak because it does not imply the positive example P(s(O)).

E " = {P(s(x))} is overly general with respect to E + and E - . <3

Now the learning problem for ILP can be formally defined:

Inductive Logic Programming: Normal problem setting

Given: A finite set of clauses B (background knowledge), and sets
of clauses E + and E - (positive and negative examples).
Find: A theory E, such that E U B is correct with respect to E +
and E - .

168 CHAPTER 9. WHAT IS INDUCTIVE LOGIC PROGRAMMING?

Apart from being called the normal setting, this setting also sometimes
goes under the name of explanatory setting, since the theory should, in a
sense, be an explanation of the examples. As we have emphasized above, E +
and E - are most often restricted to ground atoms. We may sometimes be
learning from scratch. In this case, no background knowledge is present, and
B (the empty set) can be dropped from the problem setting.

Note that a solution E does not always exist. The first reason for this
is rather trivial: B U E + may be inconsistent with respect to the negative
examples, for instance if P(a) is both a positive and a negative example at
the same time. To solve this~ we have to require that B t2 E + is consistent
with respect to E - .

The second reason for the non-existence of a solution is more profound.
Note that our problem setting allows infinite sets of examples, One instance
of this is Shapiro's setting for model inference, the topic of the next chapter.
Here the examples are given in an enumeration, which may be infinite. Al-
lowing an infinite number of examples implies, roughly, that there are "more"
possible sets of examples than there are theories. Hence a correct theory does
not always exist, even when the examples can only be ground atoms and
background knowledge is not used, as proved in the next theorem.

The proof of this theorem employs two different "kinds of infinity". The
first kind concerns sets containing the same number of elements as the set
of natural numbers. Such sets are called enumerably infinite, or denumerable.
The second kind of infinite set is Called uncountable. An example of an un-
countable set is the set of real numbers. It is well known that the power set of
an enumerably infinite set S (the set of all subsets of S) is uncountable, and
that the latter is "larger" than the former. A more extensive introduction into
these matters can be found in many mathematics books, for instance [BJ89]:

T h e o r e m 9.9 There exist sets E + and E- of ground atoms, such that there
is no theory which is correct with respect to E + and E - .

P r o o f Consider a clausal language C containing (possibly among others) a
function symbol of arity > 1 and a constant a. Let A be the set of ground
atoms in C. If E C C is a theory, let As = {A E A I E ~ A}.

The number of clauses in C is enurnerably infinite. Then because a theory
is a finite set of clauses, the number of theories is also enumerably infinite.
Thus the number of d~fferent A~'s induced by all possible theories, is also
only enumerably infinite.

The power set of .A is uncountable. Since an uncountable set is much
larger than an enumerably infinite one, there must be a set E + _C A, such
that there is no finite E for which A~ = E +. Define E - = A \ E +. Note that
for every theory E, we have E + ~ As or A~ ~ E +. If E + q: N~, then E is
not correct with respect to E +. On the other hand, if.A~ ~ E +, then there
is a ground atom A such that A E As but A ~ E +, hence A E E - and E
is not consistent with respect to E'- . Therefore a theory E is correct with

9.2. THE NORMAL PROBLEM SETTING FOR ILP 169

respect to E + and E - only if .d~ = E +. Hence there is no such correct ~. []

If E + is finite, then E = E -e will be a correct theory, but a rather unin-
teresting one. In this case, we would not have learned anything beyond the
given examples: the induced theory has no predictive power. To avoid this,
we can put some constraints on the theory. For instance, we might demand
that E contains less clauses than the number of given positive examples. In
that case, E = E + is ruled out. Since constraints like these mainly depend
on the particular application at hand, we will not devote much attention to
them.

In any case, if one or more correct theories do exist, then they are "hidden"
somewhere in the set of clauses in the language we use. Accordingly, finding
a satisfactory theory means that we have to search among the permit ted
clauses: learning is searching for a correct theory [Mit82]. Hence the set of
clauses that may be included in the theory is called the search space.

The two basic steps in the search for a correct theory are specialization and
generalization. If the current theory together with the background knowledge
contradicts the negative examples, it is too strong. Accordingly, it needs to
be weakened. That is, we need to find a more specific theory, such that the
new theory and the background knowledge are consistent with respect to
the negative examples. This is called specialization. On the other hand, if
the current theory together with the background knowledge does not imply
all positive examples, we need to strengthen the theory: we need to find
a more general theory such that all positive examples are implied. This is
generalization. Note that a theory may be both too strong and too weak at
the same time, witness G / in Example 9.8. In this case, both specialization and
generalization are called for. In general, finding a correct theory amounts to
repeatedly adjusting the theory to the examples by means of specialization
and generalization steps. Whether a particular theory is too weak or too
strong, can be tested using one of the proof procedures we introduced in the
previous chapters.

In general, most ILP systems conform roughly to the following scheme:

I n p u t : B, E + and E - .
O u t p u t : A theory E, such that E U B is correct with respect to ti7+ and E:-.

Start with some initial (possibly empty 3) theory E.
Repeat

1. If E tO/3 is too strong, specialize E.
2. If E U/3 is too weak, generalize E.

until E U B is correct with respect to E + and E - .
Output E.

3If we start with a non-empty theory E, the learning task is sometimes called theory
revision.

170 CHAPTER 9. WHAT 1S INDUCTIVE LOGIC PROGRAMMING?

Thus the main operations an ILP system should perform, are special-
ization and generalization. The following chapters can be considered as an
investigation into the properties of a number of different approaches towards
specialization and generalization. Each of these can be used when searching
for a correct theory.

Flanking the repeat-until-correct cycle of the search for a correct theory,
often a learner starts with an initial pre-processing phase and ends with a
post-processing phase. In the pre-processing phase, we may for instance try
to detect and eliminate errors in the given examples (noise, see Section 19.5
for more on this). The post-processing phase is mainly used to "clean up" the
learned theory E, for instance by successively removing redundant clauses C
for which E U B ca (E\{C}) U B, or by restructuring E in order to improve
its comprehensibility or efficiency.

We will now introduce some terminology often used in ILP:

T o p - d o w n a n d b o t t o m - u p
One useful distinction among ILP systems concerns the direction in which a
system searches. First~ there is the top-down approach, which starts with a E
such that E U/~ is overly general, and specializes this. Secondly, there is the
bottom-up approach which starts with a E such that E U B is overly specific,
and generalizes this. Admittedly, a top-down system may sometimes locally
adapt itself to the examples by a generalization step. Such a generalization
step may be needed to correct a (large) earlier specialization step, which
made the theory too weak. After the correction, the system continues its
generM top-down search. Analogously, a bottom-up system may sometimes
make a specialization step. Nevertheless, a system can usually be classified in
a natural way as top-down or bottom-up, depending on the general direction
of its search.

Example 9.10 Consider the sets E + and E - of Example 9.8, Assume the
background knowledge is empty. A top-down approach may take the following
steps to reach a correct theory.

1. Start with E = {P(z)}.
2. This is clearly overly general, since it implies all negative examples.

Specialize it to E = {P(s(x)), P(0)}.
3, E is still too general, for instance, it implies P(0) ~ E - . Specialize it

to Z = {P(s2(z)), P(s(0))}.
4. Now E no longer implies P(0), but it is still overly general. When we

specialize further to E = {(P(s2(x)) +- P(x)),P(s(O))}, we end up
with a theory that is correct with respect to E + and E - . <~

Single- and multiple-predicate learning
We can also distinguish between single-predicate learning and multiple-
predicate learning. In the former case, all given examples are instances of

9.2. THE NORMAL PROBLEM SETTING FOR 1LP 171

only one predicate P, and the aim of the learning task is to find a set of
clauses which implies P (x l , . . . , x,~) just for those tuples (x l , . . . , x~} whose
denotation "belongs" to the concept denoted by P. In other words, the set of
clauses should "recognize" the instances of P. Though all examples have the
same predicate P, other predicate symbols (pre-defined in the background
knowledge) may be used to construct a correct theory.

In multiple-predicate learning, the examples are instances of more than
one predicate. Note that multiple-predicate learning cannot always be split
into several single-predicate problems, because the different predicates in a
multiple-predicate learning task may be related.

B a t c h l e a r n i n g a n d i n c r e m e n t a l l e a r n i n g
The distinction between batch learning and incremental learning concerns
the way the examples are given. In batch learning, we are given all examples
E + and E - right at the outset. This has the advantage that errors in the
given examples (noise) can be measured and dealt with by applying statistical
techniques to the set of all examples.

On the other hand, in incremental learning the examples are given one
by one, and the system each time adjusts its theory to the examples given so
far, before obtaining the next example.

I n t e r a c t i v e a n d n o n - i n t e r a c t l v e
Interactive systems can interact with their user in order to obtain some addi-
tional information. For instance, they can ask the user whether some partic-
ular ground atom is true or not. In this way, an interactive system generates
some of its own examples during the search. A non-interactive system does
not have the possibility to interact with the user.

Bias
Bias concerns anything which constrains the search for theories [UM82]. FoP
lowing [NRA + 96], we will distinguish three kinds of bias: language bias, search
bias, and validation bias.

Language bias has to do with constraints on the clauses in the search space.
These may for instance be a restriction to Horn clauses, to clauses without
function symbols, to clauses with at most n literals, etc. The more restrictions
we put on clauses, the smaller the search space, and hence the faster a system
will finish its search. On the other hand, restrictions on the permit ted clauses
may cause many good theories to be overlooked. For example, we may restrict
the search space to clauses of at most 5 literals, but if all correct theories
contain clauses of 6 or more literals, no solution will be found. Thus there is
in general a trade-offbetween the efficiency of an ILP system, and the quality
of the theory it comes up with.

One important issue concerning language bias is the capability of a system
to introduce new predicates when needed. A restriction of the language to
the predicates already in use in the background theory and the examples may

172 CHAPTER 9. WHAT IS INDUCTIVE LOGIC PROGRAMMING?

sometimes be too strict. In that case predicate invention (the automatic intro-
duction of new useful predicates) is called for. For example, if we are learning
about family relations, and neither the examples nor the background knowl-
edge contain a predicate for parenthood, it would be nice if the system could
introduce such a useful predicate itself. Some more on language restrictions
and predicate invention may be found in Sections 19.2 and 19.3, respectively.

Search bias has to do with the way a system searches its space of permitted
clauses. One extreme is exhaustive search, which searches the search space
completely. However, usually exhaustive search would take far too much time,
so the search has to be guided by certain heuristics. These indicate which
parts of the space are searched, and which are ignored. Again, this may cause
the system to overlook some good theories, so here we see another trade-off
between efficiency and the quality of the final theory.

[f a system has found that a correct theory is not available using its present
language and search bias, it can try again using a more general language
and/or a more thorough search procedure. This is called a bias shift.

Finally, validation bias concerns the stopping criterion of the learner: when
should we stop the search? One obvious criterion would be to stop as soon as
we have found a correct theory. However, it may be worthwhile to search a
little further. For instance, if we have found a correct theory containing 100
clauses, but we have reason to believe that there also exist correct theories
with only 10 clauses, we may not be satisfied with the first correct theory. On
the other hand, it may sometimes also be worthwhile to stop the search when
the theory is not yet quite correct--for instance, when a few positive examples
are not implied and/or a few negative negative examples are implie& This
has to do with noise handling, for which see Section 19.5.

9.3 The Nonmonotonic Problem Setting

The normM problem setting that, we introduced above is used in some form
or other by the majority of ILP researchers. However, in recent years a family
of other problem settings has appeared. These settings have in common that
the induced theory should no longer imply the positive examples, but should
be a set of general relations that are true for the examples. Examples are
Helft's nonmonotonic setting for induction [He189, DD94, D~e95b], Flach's
weak conf~rmation fFla921 and confirmatory induction [Fla94, Fla95]. These
settings are well suited for the problem of data mining or knowledge discovery:
given a large amount of data, find "interesting" regularities among the data.

We will describe a simple variant of the nonmonotonic setting, which we
adapt from [D~e95b]. Here the examples are not clauses, but Herbrand inter-
pretations. Given is a set Z + of Herbrand interpretations which are positive
examples, and a set 37- of Herbrand interpretations whidh are negative exam-
ples. The aim of the learning task is simply to find a set of clauses that is true
under every positive example, and false under every negative one. Each of

9.4. ABDUCTION 173

those interpretation may be seen as a kind of "description" of a situation, and
the induced theory expresses regularities that hold in the positive examples
and not in the negative ones.

Inductive Logic Programming: Nonmonotonie problem setting

Given: Two sets Z + and Z - of Herbrand interpretations (positive
and negative examples).
Find: A theory P, which is true under each I E Z + and false
under each I E Z - .

Quite often, only positive examples are used. As a further requirement to
this setting, we may demand that if C E P, is one of the induced clauses, then
it should be "most general" in the sense that any clause more general than
C is false under at least one of the positive examples. There is one major
problem with this setting, namely that we cannot handle infinite Herbrand
interpretations very well as examples. A possible solution for this is to restrict
attention to languages with only a finite number of constants, and no function
symbols of arity > 1. In this case, the Herbrand base will be finite, and each
Herbrand interpretation will be a finite set of ground atoms.

In the following chapters, we will usually assume we are working in the
normal problem setting. However, in both the normal and the nonmonotonic
settings the main activity of a learning system is a search for appropriate
clauses, and specialization or generalization of clausal theories are the main
operations in this search. This means that the techniques of the next chapters
are applicable within the nonmonotonic setting as well.

9.4 A b d u c t i o n

One further setting has to be mentioned, because it has strong links with
induction. This is the setting for abduction, which was first introduced by the
philosopher Charles Sanders Peirce [Pei58]. The logical form of abduction is
roughly the same as for induction [KKT93, DK96], and indeed the distinc-
tions between induction and abduction are somewhat blurry. Both proceed
from given examples and some background knowledge, and the aim is to find
a theory that, together with the background knowledge, "explains" the ex-
amples. However, the theory that abduction produces should be a particular
fact, which together with the background knowledge explains the examples.
This is different from induction, which should produce a general theory.

As an informal example, suppose you are Robinson Crusoe on his island,
and you see a strange human footprint in the sand. Since you know that hu-
man footprints are produced by human beings, and the footprint is not your
own, you can conclude on the basis of your background knowledge that some-
one else has visited your island. The hypothesis that someone else has visited
the island explains the presence of the footprint (the example). Inferring this
particular explanation is a case of abduction.

174 CHAPTER 9. WHAT IS INDUCTIVE LOGIC PROGRAMMING?

9.5 A Brie f His tory of the Field

Like most other scientific disciplines, the study of induction started out as
a part of philosophy. Philosophers particularly focused on the role induction
plays in the empirical sciences. For instance, the Greek philosopher Aristotle
characterized science roughly as deduction from first principles, which were
to be obtained by induction from experience [Ari60].4

After the Middle Ages, the philosopher Francis Bacon [Bac94] again
stressed the importance of induction (in the modern sense) from experience
as the main scientific activity. In later centuries, induction was taken up by
many philosophers. David Hume [Hum56, Hum61] formulated what is nowa-
days called the problem of induction, or Hume's problem: how can induction
from a finite number of cases result in knowledge about the infinity of cases
to which an induced general rule applies? What justifies inferring a general
rule (or !'law of nature") from a finite number of cases? Surprisingly, Hume's
answer was that there is no such justification. In his view, it is simply a psy-
chological fact about humans beings that when we observe some particular
pattern recur in different cases (without observing counterexamples to the
pattern), we tend to expect this pattern to appear in all similar cases. In
Hume's view, this inductive expectation is a habit, analogous to the habit
of a dog who runs to the door after hearing his master call, expecting to be
let out. Later philosphers such as John Stuart Mill [Mi158] tried to answer
Hume's problem by stating conditions under which an inductive inference is
justified. Other philosophers who made important comments on induction
were Stanley Jevons [Jev741 and Charles Sanders Peirce [Pei58].

In our century, induction was mainly taken up by philosophers and math-
ematicians who were also involved in the development and application of
formal logic. Their treatment of induction was often in terms of the prob-
ability or the "degree of confirmation" that a particular theory or hypoth-
esis receives from available empirical data. Some of the main contributors
are Bertrand Russell [Rus80, Rus48], Rudolf Carnap [Car52, Car50], Carl
Hempel [Hem45a, Hem45b, Hem66], Hans Reichenbach [Rei49], and Nelson
Goodman [Goo83]. Particularly in Goodman's work, an increasing number
of unexpected conceptual problems appeared for induction.

In the 1950s and 1960s, induction was sworn off by philosophers of science
such as Karl Popper [Pop59]. However, in roughly those same years it was
recognized in the rapidly expanding field of artificial intelligence that the
knowledge an AI system needs to perform its tasks, should not all be hand-
coded into the system beforehand. Instead, it is much more efficient to provide
the system with a relatively small amount of knowledge, and with the ability
to adapt itself to the situations it encounters--to learn from its experience.
Thus the study of induction switched from philosophy to artificial intelligence.

4Though it should be noted that Aristotle's concept of induction was rather different
from the modern one, involving the "seeing" of the "essential forms" of examples.

9.5. A BRIEF HISTORY OF THE FIELD 175

In AI, many different approaches towards inductive learning exist, for
instance using neural networks or genetic algorithms. Two approaches which
pre-date ILP and which greatly influenced its development, are attribute-value
learning and inductive inference. In attribute-value learning, an example is
an object whose attributes have certain values. For example, an example
'flipper' might be described by "color = grey, length = 3m, swims = yes,
mammal = yes, species = dolphin", and the goal of the induction might be
to find rules that describe when an object belongs to a certain class (for
instance the class of dolphins). A prime example of attribute-value learning
is J. R. Quinlan's work on the induction of decision trees for classifying given
examples [Qui86, Qui93].

While attribute-value learning is a very experimental and application-
oriented area, the field of inductive inference is much more abstract and
theoretical in nature. The issue here is in which cases an unknown target set
can be identified after reading only a finite number of examples for this set.
Gold's fundamental paper [Go167] may be regarded as its birth; an overview
of results can be found in [AS83]. Most work in inductive inference has dealt
with learning formal languages and automata, though it has also been applied
to clausal logic [ASY92].

In the last 10 or so years, inductive logic programming has grown to be-
come one of the most prominent approaches in machine learning, particularly
among European researchers. ILP may be seen as lying somewhere in between
attribute-value learning and inductive inference. It is more theoretical in na-
ture than attribute-value learning, and its representational formalism (clausal
logic) has greater expressive power than the attribute-value framework. On
the other hand, ILP is more practical and more concerned with considerations
of efficiency and applicability than inductive inference. 5

Claude Sammut [Sam93] starts his article on the (ancient) history of ILP
with the work of Brunet, Goodnow, and Austin [BGA56] in cognitive psy-
chology. They analyzed the way human beings learn concepts from positive
and negative instances (examples) of that concept. In the early 1960s, Ranan
Banerji [Ban64] used first-order logic as a representational tool for such con-
cept learning.

Around 1970, Gordon Plotkin [Plo70, Plo71a, Plo71b] was probably the
first to formalize induction in terms of clausal logic. His idea was to gen-
eralize given ground clauses (positive examples) by computing their least
generalization. This generalization could be relative to background knowl-
edge consisting of ground literals. Plotkin's work, which is related to that
of John Reynolds [ReyT0], is still quite prominent within ILP. Clauses are
still used by virtually everyone for expressing theory, examples and back-
ground knowledge, and Plotkin's use of subsumption as a notion of generality
is also widespread. During the 1970s, Plotkin's work was continued by Steven

5 We can also discern traces of the influence of philosophy of science in ILP. For example,
Plotkin 's work was influenced by Hempel, and Shapiro's by Popper. See also [Fla94].

176 CHAPTER 9. WHAT IS INDUCTIVE LOGIC PROGRAMMING?

Vere [Ver75, Ver77], while Brian Cohen's incremental system CONFUCIUS was
inspired by Banerji.

In the early 1980s, Sammut's MARVIN [Sam81, SB86] was a direct de-
scendant of CONFUCIUS. MARVIN is an interactive concept learner, which
employs both generalization and specialization. At around the same time,
Ehud Shapiro [Sha81b, Sha81a] defined his setting for model inference, and
contructed his model inference algorithm. This is a lop-down algorithm
aimed at finding complete a.r.iomatizations of given enumerations of exam-
ples. Shapiro's work was greatly influenced by work in the field of inductive
inference. His framework contains many seminal ideas, in particular the use
of the Backtracing Algorithm for finding false clauses in the theory, and the
concept of a refinement operator, used for specializing a theory. Shapiro im-
plemented his algorithm, though only for Horn clauses, in his model inference
system MIs. He later incorporated this work in his PhD thesis [Sha83], as
part of a system for debugging definite programs.

Then in the second half of the 1980s--no doubt partly as a consequence
of the growing popularity of logic programming and PROLOG--research con-
cerning machine learning within a clausal framework increased rapidly. Wray
Buntine [Bun86, Bun88] generalized subsumption, in order to overcome some
of its limitations. Stephen Muggleton built his system DCCE [Mug87], aimed
at generalizing given propositional clauses. It became clear that Ducg's gen-
eralization operators could be seen as inversions of resolution steps. Thus
in [MB88] Muggleton, together with Buntine, introduced inverse resolution.
They implemented inverse resolution, both as an operator for making gen-
eralization steps and as a tool for predicate invention in CmOL. In the next
years, inverse resolution drew a lot of attention and sparked off much new
research.

Some early alternatives to inverse resolution were implemented in FOIL,
LINUS, and GOLEM. FOIL is based on a downward refinement operator guided
by information-based search heuristics, in which Quinlan upgraded his ear-
lier work on decision trees to Horn clauses. LINUS was developed by Nada
Lavrae and Sago D~eroski. It solves ILP problems by transforming them to
an attribute-value representation, and then applying one of several possible
attribute-value learners to learn a general theory from this simpler repre-
sentation. Muggleton and Feng's GOLEM WaS in a way a return to Plotkin:
it is based on Plotkin's relative least, generalization, though with additional
restrictions for the sake of efficiency. These systems, as well as others, are
described in some more detail in Section 19.6, at the end of this book.

In 1990, Stephen Muggleton introduced the name inductive logic pro-
gramming, and defined this field as the intersection of machine lea.rning and
logic programming [Mug90, Mug91a]. In the next year he organized, together
with Pavel Brazdil, the first International Workshop on Inductive Logic Pro-
gramming, bringing together a number of researchers involved in learning
from examples in a clausal framework. Since 1991 these international work-

9.6. SUMMARY !77

shops have been repeated every year, establishing ILP as a flourishing field
of inquiry. Literally dozens of systems have been implemented since, and
have been applied quite successfully in various fields. Among the more the-
oretical topics, formal learnability theory, predicate invention, data mining
in the nonmonotonic setting, handling real numbers, and handling of noisy
examples have gained an increasing amount of attention in recent years.

9.6 Summary

Induction (learning from examples) used to be mainly a subject for philoso-
phy, but is nowadays also studied within machine learning, a branch of arti-
ficial intelligence. Inductive logic programming is the intersection of machine
learning and logic programming. Accordingly, ILP is concerned with learning
from examples within a framework of formal--usually clausal--logic.

In the normal problem setting, we have a finite set of clauses 13 (back-
ground knowledge), and sets E + and E - of positive and negative examples.
A finite set of clauses is called a theory. A theory E is complete if E implies
all positive examples, and consistent if E does not contradict the negative ex-
amples. E is correct if it is both complete and consistent; too strong if it is not
consistent; too weak if it is not complete; overly general if it is complete but
not consistent; and overly specific if it is consistent but not complete. In the
normal problem setting, our aim is to find a theory E, such that E U B is cor-
rect with respect to E + and E - . To find such a E, we have to search through
the set of clauses. The two main operations in the search are specialization
(weakening the theory) and generalization (strengthening the theory).

In the alternative, nonmonotonic problem setting, each example is a Her-
brand interpretation. We are given a set Z + of positive examples and a set
Z - of negative examples. Our aim now is to find a theory which is true under
every positive example and false under every negative one. Search by means
of specialization and generalization is the main activity in this setting as well.

Chapter 10

T h e F r a m e w o r k for M o d e l
Inference

10.1 Introduct ion

One of the most prominent problems in ILP is the model inference problem,
introduced by Ehud Shapiro in his seminal paper [ShaSlb]. Some parts of
his framework, particularly admissibility and the Backtracing Algorithm, will
be discussed extensively in this chapter. Other parts will be described in
less detail, either because they are mainly of historical interest, or because
they serve as a motivation for more formal analysis in later chapters (see
particularly the discussion of refinement operators in Chapter 17).

The model inference problem is concerned with characterizing certain con-
cepts in some domain. Given a domain, a concept is a particular relation that
holds between some elements in the domain. Such a relation can be expressed
in two ways: either by giving all instances of the relation explicitly, or by giv-
ing the rules which characterize those instances. The former is usually called
the extension of a relation, the latter the intension.

Expressing a relation in these two ways is similar to expressing a set in
two ways. For example, consider the domain D = {0, 1, 2, 3,4}. The relation
R = {(0, 1), (1, 2), (2, 3), (3,4)} can also be expressed as R = {(x, y) E D x
D] y = x + 1}. In the first representation, the set of all 4 instances of the
relation R is given explicitly, while in the second representation we only give
the rule y = x + 1 which characterizes R. Particularly in a large domain,
where we have relations with many instances, the second representation is
much more compact and useful than the first.

The model inference problem is the problem of discovering the charac-
terizing rules for certain concepts from given instances of those concepts, in
the context of logic. Suppose we have a first-order language with a binary
predicate symbol P, successor function s, and constant 0. Translating the

180 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE

previous relation R to this language, the instances of the concept are rep-
resented by the ground atoms P(0, s(0)), P(s(0), s2(0)), P(s2(O), sa(0)), and
p(s3(0), s4(0)). Making the link with the normal problem setting of the previ-
ous chapter, these instances are positive examples for the concept. As negative
examples, we have for instance P(s2(O), sl(0)), P(s3(O), sS(0)), which are not
in the concept. Given these examples, we could use {P(x, s(x))} as a set of
rules which characterizes the concept R in the domain {0, 1, 2, 3, 4}, thereby
solving this particular model inference problem.

10.2 Formalizing the Problem

In this section we will formalize the model inference problem. It will turn out
to be a special case of the normal problem setting for ILP that we defined in
the last chapter. The characterizing rules will be formalized as a "complete
axiomatization". To find such an axiomatization, we will need an enumeration
or an oracle to obtain the t ruth values of the examples.

1 0 . 2 . 1 E n u m e r a t i o n s a n d t h e O r a c l e

Let us consider a clausal language C with finitely many constants, function
and predicate symbols~ We distinguish two subsets of C, namely Co and Ch,
such that go C Ch C_ C. Co, the observational language, is the language in
which the positive and negative examples are formulated. Usually, this will
be the set of ground atoms or the set of ground literals. Ch, the hypothe-
sis language, is the language we use to formulate our theory. For technical
reasons, we assume the empty clause [] is a member of Ch.

As we explained informally above, we want to learn the rules in Ch that
characterize concepts, each of which is represented by a set of ground atoms.
More precisely, suppose we have some domain D, and several concepts over
this domain. Also suppose g contains a predicate symbol for each of the
concepts over the domain, if we can pair up each element in the domain
with a ground term in the language, then we can represent each concept by
giving all its instances as ground atoms in the language. Doing this for each
of the concepts, we obtain a (possibly infinite) Herbrand interpretation I of
the language, in which each concept is represented by its instances as ground
atoms. Our task is to learn the characterizing rules from this interpretation.

All information about I that is available for our learning task is given by
examples from go. Since it would be rather hard to swallow the complete set
of examples from Co at once, it is assumed that the examples are given one
by one, as a sequence of facts. This is called an enumeration of Co.

D e f i n i t i o n 10.1 Let C be a clausal language, Co C g, and I a Herbrand
interpretation. If c~ C s and V is the truth value of c~ under I, then the pair
(a, V) is called a fact of I. If V = T, then c~ is called a positive example of
I. If V = F, a is a negative example of I. 0

10.2. FORMALIZING THE PROBLEM 181

D e f i n i t i o n 10.2 Let C be a clausal language, Co C_ C, and I a Herbrand
interpretation. An enumeration of Co under I is a sequence F1, F2 , . . . of
facts of I , such tha t each ~ C Co occurs in at least one fact Fi = (o~, V).

Note that in Shapiro's sense of the word, every fact in the enumeration
constitutes an 'example ' , not just the ones that a learner has already seen.
Thus an enumerat ion contains all there is to know about Co. A device like
this should be given as input to an algorithm for solving model inference
problems, for without sufficient knowledge of Co the algorithm would not
always be able to find adequate theories.

Another device that is useful in model inference is an oracle, which an-
swers questions about the concepts in the domain. For any formula a E Co, it
can return a ' s t ru th value under I. Thus the oracle has to have "knowledge"
about the par t of the interpretation I that pertains to Co. Two justifications
for assuming an oracle can be given:

. Compare model inference with the work of a scientist. The scientist
may not know the general rules that characterize the concepts over his
domain of inquiry, but he can obtain knowledge about certain specific,
observable instances of those concepts by doing experiments. Posing a
question to an oracle in model inference is similar to doing an experi-
ment in science, which is like "posing a question to nature".

. When learning, a student may have a teacher who can answer questions
on particular instances of the concepts. It need not be the case here
chat the student only learns what the teacher already knows. We only
assume the teacher has sufficient knowledge of the instances of the
concepts. The teacher may know all about the particular instances of
the concepts, and yet be pleasantly surprised by the characterizing rules
that a smar t student comes up with. Translating this analogy to model
inference, the oracle acts as the teacher, while the learning algorithm
is the student.

If we assume the set Co can be summed up, then an enumeration can be
constructed from an oracle, and vice versa. Suppose we have an oracle. Then
we can obtain an enumeration of Co under I by just enumerating the formulas
in Co one by one, adding on their t ru th values which can be obtained by posing
questions to the oracle.

Conversely, if we have an enumeration of facts, we can construct an oracle,
as follows. Suppose the question "is c~ true under I" is put to the oracle, where

C Co. We can just sum up all the facts in the enumeration until we come to
(a, V). V is then the answer to the question posed to the oracle. So we need
not give both an enumeration and an oracle as input to a model inference
algorithm: the one can be constructed from the other.

182 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE

10.2.2 Comple te Axiomat izat ions and Admiss ibi l i ty

Given an enumeration and/or an oracle for I, we want to find a theory con-
taining a finite number of rules that characterize the concepts represented in
I. We will now define what constitutes a "good" theory: a finite subset of Ch
is a good theory if it is both true under I, and implies exactly those formulas
from the observational language Co that are true under I. Such a theory is
called a Co-complete axiomatization of I; the model inference problem is the
problem of finding such an axiomatization.

D e f i n i t i o n 10.3 Let C be a clausal language, Co C_ C, and [a Herbrand
interpretation. Then we use Co I to denote the true members of Co: Co x = {a C
Co t a is true under [}. s

D e f i n i t i o n 10.4 Let C be a clausal language, Co C_ Ch C_ C, and I a Herbrand
interpretation. A theory E C Ch is called a Co-complete axiomatization of [
if E is true under I, and E ~ Co I. <)

A theory ~ which implies all positive and no negative examples may still
be false under t . For instance, suppose Ch = { P (x) , P (a) , P (b) , P (c) , O } ,
Co = {P(a), P(b)}, and [= {P(a), P(b)}. Then the only information the
examples can give us, is that P(a) and P(b) are true under I. We do not
consider P(c) as an example, since P(c) ~_ Co. In the light of these two
examples from Co, E = {P(x)} would be a correct theory. Nevertheless, P (x)
is false under I because P(c) is false under [. The problem here is that Co
is not "rich" enough, compared to Ch. Knowing all there is to know about
Co is not enough in this case to know whether clauses in E are true under I.
Clearly this situation is undesirable. To solve it, we lay down an admissibility
requirement for the relation between Co and Ch:

D e f i n i t i o n 10.5 Let Co and Ch be sets of clauses, such that Co C_ Ch. We
say the pair (Co, Ch) is admissible, if for every Herbrand interpretation I and
every satisfiable theory E C_ Ch, {~ E Co I E ~ a} = Co x implies that E is
true under I. <5

The pair (Co,Ch) is admissible if a satisfiable theory which implies all
positive and no negative examples, is also true. In other words, if a clause
in the theory is false under I, then this can be detected from the examples;
any false but satisfiable theory should be refutable by facts. Note that if
Co = Ch, then the pair (Co, Ch) is surely admissible. As we have seen, letting
Co = {P(a) ,P(b)} and Ch = { P (z) , P (a) , P (b) , P (c) , [] } , the pair (Co,Oh)
is not admissible. The following theorems provide two important admissible
pairs.

T h e o r e m 10.6 Let C be a clausal language, Co the set of ground atoms in
C, and Ch the set of Horn clauses in C. Then the pair (Co, Ch) is admissible.

10.2. FORMALIZING THE PROBLEM 183

P r o o f Let I be a Herbrand interpretation, and E C_ CA a satisfiable theory
such that {a E Co I E ~ a} = CO~. We have to prove that E is true under
I. Suppose E is not true under I. Then there exists a Horn clause C E E
which is false under I. Since [is a Herbrand interpretation, there is a ground
instance C ~ of C which is false under I. C ~ is either a definite program clause,
or a definite goal.

Suppose C t = A +-- B1 , . . . ,B~ (n > 0). Then A is false under I, and
each Bi is true under I. So A ~ Co/, while Bi E Co / for every i. Then because
{a E Co]E ~ a} = Co/, we have E ~ B/ for every i. However, since also
E ~ C' and C ' U { B 1 , . . . , B ~ } ~ A, we must have that E ~ A. Then
A E Co z, which contradicts the assumption that A ~ Co/. Therefore E must be
true under I.

Suppose C I =+- B1,. �9 B~. C / is false under I, so every B / i s true under
I, hence Bi E Co/, for every 1 < i < n. Then also E ~ B~, for every i.
B1 A . . . A Bn and -~C ~ are logically equivalent, hence E ~ -~C ~. But on the
other hand C E E, so also E ~ CC This contradicts the satisfiability of E.
Thus E must be true under I. []

It is important to note that the definition of 'admissible' only states a
requirement for satisfiable theories E. Suppose we let CA be the set of Horn
clauses, and Co the set of ground atoms. Recall that we assume [] E Ch. Now
let E = {[]}, and I be a Herbrand interpretation which makes all ground
atoms in the language--hence every formula in Co--true. Then {a E Co] E
a} = Co = CO/, but nevertheless E is not true under I, because [] E E. So
the requirement of admissibility says nothing about unsatisfiable sets such as
{[]} or {P(z) , +-- P(x)}.

The previous theorem tells us that (ground atoms, Horn clauses) is ad-
missible. However, if we extend the hypothesis language to the set of general
clauses, the pair (ground atoms, general clauses) is not admissible. A proposi-
tional example suffices to show this. Suppose the language contains the atoms
P, Q, and R, and Co = {P,Q,R} . Let I = {R} and E = {R, (P V Q)}. Then
{a E Co] E ~ a} = {R} -- go/. E ~: P and E ~: Q. Nevertheless, E is false
under I, because P V Q is false under I. So in this case Co is not sufficiently
expressive to detect the falsity of E.

This means that if we want to use the set of general clauses as hypothesis
language, we must make the observational language more expressive than
the set of ground atoms. The following theorem tells us that using the set of
ground literals as observational language will do.

T h e o r e m 10.7 Let C be a clausal language, Co the set of ground literals in
C, and Ch the set of clauses in C. Then the pair (Co,C~) is admissible.

P r o o f Let I be a Herbrand interpretation, and E C CA a satisfiable theory
such that {c~ E Co I E ~ ~} = C~. We have to prove that E is true under [.
Suppose E is not true under I. Then there exists a clause C E E which is

184 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE

false under [. Since I is a Herbrand interpretation, there is a ground instance
C' of C which is false under I.

Suppose C' = A1 , . . . , Ak +-- B 1 , . . . , Bn. Then each Ai is false under I,
each Bj is true. This means that for every i, -~Ai E go z, and for every j,
Bj E do. Thus E ~ -~Ai, for each i, and E ~ Bj, for each j. This means that
E ~ -~C'. But since also E ~ C ~, that would contradict the consistency of
E. Hence E must be true under I. []

When we use the admissible pair gh = clauses and Co = ground literals,
then we should make sure that our theory E not only implies all atoms which
are true under I, but also all true negative literals. Thus in the example before
the theorem, E = {R, +- P, +- Q} would be a go-complete axiomatization of
I = {R} (though a rather trivial one).

Let us briefly consider the definition of a correct theory that we gave in
Chapter 9. E is correct with respect to a set of positive examples E + and a set
of negative examples E - , if E ~ E + (completeness) and E O E - is satisfiable
(consistency). In the setting of the present chapter, we have E + = go "r and
E - = Co\Co/. Note that if E is a Co-complete axiomatization of I, then it
is correct with respect to E + and E - : we have that ~ ~ E +, and E U E -
is satisfiable, because it has I as a model. Recall from the previous chapter
that it is not sufficient for consistency to have that E ~ e for all e E E - .
For instance, suppose gh is a clausal language, go is the set of ground atoms
in gh, and E - = go\do = {P(a), P(b)}. 'Then a theory E = {P(a) V P(b)}
does not imply any member of E - , yet still E is not consistent with respect
to E - , hence false under I, and not. a Co-complete axiomatization of t . This
corresponds to the fact that the pair (ground atoms, general clauses) is not
admissible.

1 0 . 2 . 3 F o r m a l S t a t e m e n t o f t h e P r o b l e m

Using the concepts we have introduced so far, the model inference problem
can now be stated more precisely:

G iven : A clausal language C, an observational language Co, and
a hypothesis language gh, such that Co C gh me g and the pair
(Co, Ch) is admissible. In addition there is an enumeration and/or
an oracle for the clauses in Co under some Herbrand interpretation
I of C.
Find ; A Co-complete axiomatization of I.

Clearly, this problem is a special case of the normal problem setting of the
last chapter. In that setting, the examples were given as sets E + and E - .
In the present setting for model inference, those examples are given as an
enumeration and/or an oracle. Note that the background knowledge B of the
general setting is not mentioned in the present setting. Shapiro himself did

10.2. FORMALIZING THE PROBLEM 185

not use background knowledge, but it can be included quite easily in the
model inference problem, and also in the Model Inference Algorithm which
we will see later on in this chapter.

E x a m p l e 10.8 This example of a model inference problem in the field of
elementary arithmetic was given by Shapiro. It has the set of natural numbers
as domain, and deals with the concepts of addition and multiplication. The
domain is the set of natural numbers, formalized as the ground terms 0, s(0),
s2(0), s3(0), etc. The language C contains the 3-ary predicates Plus and
Times, and I is the obvious intended interpretation of these two predicates.
Co is the set of ground atoms, and Ch is the set of definite program clauses
in C. The enumeration of I might start as follows:

(Plus(s(0), 0, s(0)), T)
(Plus(s ~(o), s ~(o), s 5(o)),T)
(Times(O, O, s(O)), F)
(Tirnes(s 2 (0), s2 (0), s4(0)), T)
(Plus(O, s(O), s2 (0)), F)

Our aim in solving this model inference problem is to find, after reading a
limited number of examples, a theory which implies Plus(t1, t2, t3) iff tl +t2 =
t3, and implies Times(tl,t2,t3) iff iff tl * t2 = t3. Such a theory might for
instance be a set E consisting of the following Horn clauses:

1. Plus(x, O, x)
2. Plus(x, s(y), s(z)) +- Plus(x, y, z)
3. Times(x, O, O)
4. Times(x, s(y), z) Times(x, w), Plus(w, x, z)

The reader may wish to verify that indeed E ~ Plus(t1, t2,t3) just in case
tl + t2 = t3, and E ~ Times(t1, ~2, t3) just in case tl * t2 = t3. Hence this is
a Co-complete axiomatization of I. Or in other words, these clauses are the
rules that characterize the concepts Plus and Times. <1

Our hope is that we can construct methods or algorithms which are able
to find a Co-complete axiomatization after reading only a limited number of
examples. Shapiro takes the following general incremental top-down approach
towards solving model inference problems:

1. Start with a very general theory. It should imply anything.
2. Read .a new example from the enumeration.
3. Repeat the following:

If the theory is too strong (w.r.t. the examples read so far), weaken it.
If the theory is too weak, strengthen it.
until the theory is correct with respect to the examples read so far.

4. Goto step 2.

Several questions are raised by this approach:

186 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE

| If the theory is too strong, which clauses should be weakened, and how?
| If the theory is too weak, how can it be made stronger?
| How do we know when we are finished? Or in other words: when should

we stop repeating steps 2-4?

These questions will be addressed in the next sections.

10.3 Finding a False Clause by Backtracing

In this section, we will discuss the question of how to weaken a theory which
is too strong. If the hypothesis language and the observational language are
admissible, then a theory E is too strong just in case it implies a negative
example, i.e., a member of Co that is false under I. Now if all the clauses in
the theory were true under I, E would not imply a false formula. Hence if the
theory is too strong, at least one of the clauses in E is false under I. Clearly,
if we have a false clause in E, then deleting this clause from E is an obvious
way to weaken the theory as a whole.

So it would be very convenient if we had an algorithm which could
find a false clause in a too strong theory. Shapiro gives such an algorithm
in [Sha81b], called the Backtracing Algorithm. The algorithm uses an oracle
extensively. It is assumed here that Co contains the set of ground atoms, so
the oracle "knows" the truth value under I of each ground atom. In Shapiro's
original formulation, the algorithm is only applied to refutations. We gener-
alize it here to arbitrary deductions. The algorithm works by inspecting a
deduction of a negative example. If Ch is the set of general clauses, then this
deduction could be an unconstrained or a linear deduction. If Ch contains
only Horn clauses, we only need to investigate SLD-deductions. Note that if
the languages Co and Ch become less expressive, then we can also settle for a
less powerful proof procedure. For instance, if Co is the set of ground atoms
and Ch is the set of atoms, then subsumption by itself is already a complete
proof procedure. In this case, an atom in E should be deleted iff it subsumes
a negative example.

Suppose E ~ C, where C is a clause which is false under I. Then there
exists a derivation from E of a clause D which subsumes C. Since C is false
and D subsumes C, D itself is also false under I. The Backtracing Algorithm
takes as input a tree representing a derivation of such a clause D which is
false under I. For convenience, we assume that the tree is such that if C1 is
the left parent and C2 the right parent of some clause in the tree, then the
literal resolved upon in C1 is negative, and the literal resolved upon in C2 is
positive. Clearly, we can do this without loss of generality.

We will now explain how the algorithm searches through the tree. Let us
first suppose all clauses in the derivation are ground, and N0 = D1 V D2 is
the root of the tree, with parent clauses C1 = -,A V D1 and C2 = A V D2.
Since the root N0 is false under [~ at least one of its parent clauses is false
under I. Because No is false, both D1 and D2 are false. If A is true, then the

10.3. FINDING A FALSE CLAUSE B Y BACKTRACING 187

left parent C1 is false, since it is the disjunction of -,A and D1, which are
both false. On the other hand, if A is false, then the right parent C2 is false.
Since the t ru th value of A can be obtained from the oracle, we can find a
false parent clause of No. Let us call this parent N1. By the same method, we
can find a false parent N2 of N1, etc. This way we can work our way upward
in the tree, tracing back the false clauses that led to the derivation of the
false root No. Eventually, we reach a false leaf of the derivation tree: this is
a clause in E which is false under I .

E x a m p l e 10.9 We give an example from propositional logic to show the idea
behind the algorithm. Let E = {(R +- P, Q), (P +-- Q), Q}, and I = {P, Q}.
Figure 10.1 shows a derivation of the clause R from E. However, since R is
false under I, at least one of the leaves of the tree must be false under I . We
will now systematical ly trace back the false clauses, start ing from the root
(the upward arrows show the path along which we proceed):

1. No = R. No has R +-- P and P as parent clauses. One of them must
be false under I. We already know R is false. -~P and P are the literals
resolved upon, so we ask the oracle about the t ruth value of P. The
oracle answers that P is true. Hence the algorithm selects the false left
parent as N1.

2. N1 = R +-- P . We ask the oracle about the t ruth value of Q. It is true,
so the left parent is chosen as N2.

3. N2 = R 4-- P, Q. This is a leaf of the tree, hence we have found that
N~ is a member of E which is false under I. <~

N2 =R+--P ,Q Q Pe--Q

N I = R + - P P

N o = R

Q

Figure 10.1: Backtracing the derivation of the false clause R

In case of first-order logic, the situation is more complex. Since the oracle
only answers questions about ground atoms, we have to apply some ground
substi tution to the a tom that is resolved upon before we can give it to the
oracle. Suppose we have a non-ground No, with parents C1 = -,A1 V D1 and
C2 = A2 V D2. For convenience, let us momentari ly ignore the use of factors.
Since No is false under I, there is a false ground instance D[V D~ of No,

188 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE

and ground instances --A V D~ of C1 and A V D~ of C2, where --A and A are
instances of the respective literals in C1 and C2 that were resolved upon in
deriving No. See Figure 10.2.

C1 = -~At v D1 C2 = A2 v D2

No

".A ~ V D 2

D; V D~

Figure 10.2: Backtracing of non-gTound clauses, using ground instances

Now we can apply the same method as before: if the oracle tells us that
A is true, then -,A V D~ is false. This is an instance of 6'1, so we can take
N1 = C1 as a false parent of No. Otherwise, A V D~ is a false ground instance
of C~, so then C2 is selected as N1. In the same way, we can find a false
parent N2 of N1, etc.

Before giving an example for the first-order logic, we first formally present
the Backtracing Algorithm. The algorithm takes a tree T as input, represent-
ing a derivation from E of a clause that is false under I, and returns a false
leaf of T (i.e., a false clause from E). This algorithm works for unconstrained
resolution, for input resolution, and for SLD-resolution. In the latter case, we
can ignore the factors, so then o-1 = or2 = e.

A l g o r i t h m 10.1 (B a c k t r a c i n g A l g o r i t h m)
I n p u t : A derivation T of a clause which is false under I.
O u t p u t : A leaf N~ of T and a ground substitution Ok for Nk (i.e., Nk0k is
ground), such that NkOk is false under I.

1. Set k = 0, No is the root of T, and 00 is a ground substitution for No
such that NoOo is false under I (if No = D, then set 00 = r

2. While Nk is not a leaf of T
1. Let C1 be the left a.nd C2 the right parent clause of Ark- Let --,A1 V

D1 and A2 V D2 be the factors of C1 and C2 that are used here,
and c%, or2 be the substitutions used in obtaining these factors,
respectively. Let -,A1 and A2 be the literals resolved upon, with
mgu 0. See the figure below for illustration.

2. Let 0' be a substitution such that Pk+l = A200k0' is ground.
3. If Oracle(P~+l) = T then set Nk+l = C1 and 0k+l = ~rl00k0'

else set N~+I = C2 and 0k+l = c~200~0'.
4. Set k t o k + l .

10.3. FINDING A FALSE CLAUSE B Y BACKTRACING

c1 c2

factor [[factor
(71 IO'2

"~Ai V D i A2 V D2

Nk = (D1 V D2)O

189

If T represents a linear derivation, a small modification of the algorithm
is called for. Namely, if we come to a false side clause which equals a previ-
ous center clause, Nk+l should become this false center clause where it first
appears as resolvent, not the side clause. The side clause is a leaf of T, but
we are only interested in finding false leaves that are members of T , hence
we cannot terminate the algorithm when we reach such a side clause that
equals a previous center clause. Since the side clause may be a variant of the
corresponding center clause, it is sometimes necessary to rename some of the
variables in Ok+i, such that they apply to the variables in the center clause

gk+l.

E x a m p l e 10.10 We will illustrate the algorithm on the refutation tree T
shown in Figure 10.3, which is also given in [Sha81b]. Here the domain is the
set of natural numbers, denoted by 0, s(0), s2(0) , . . , as usual. The language
contains only one binary predicate < (written in infix notation), and the
interpretation I makes t l _< t2 true iff the number denoted by tl is smaller
than or equal to the number denoted by t2. Let Y. consist of the following:

1. +-- s(z) < 0 ("no successor is less than or equal to 0")
2. s(x) < y e - - x _ < y (" i f x _ C y , t h e n x + l _ < y ")
3. 0 < w ("every natural number is greater than or equal to 0")

T shows an SLD-refutation of E. Let us see how the algorithm would work
through this tree:

e-- s (z) < 0 N2 = s (x) < y +-- x < y

N1 =+-- x < 0 0 < w

No = Q

Figure 10.3: Backtracing the refutation of E

190 C H A P T E R 10. THE F R A M E W O R K FOR MODEL INFERENCE

1. k = O , N o = n , Oo=e.
2. We are dealing with SLD-resolution here, so we can ignore (rl and (r~ (no

factors are used here). No has two parent clauses. The titerals resolved
upon are -,(x _< 0) in the left parent, and 0 < w in the right parent.
The mgu is 0 = {m/0, w/O}. Since (0 _< w)O0o is already ground, o ' = e
in this step, and Pi = 0 _< 0. Oracle(Pi) = T, so the algorithm selects
the left parent: N1 --+-- x _< 0. Set 01 = 00o0' = {x/0, w/O}, and k = 1.

3. Ni has two parents. The literal resolved upon in the left parent is
-~(s(z) <_ 0), on the right it. is s(x) <_ y, and the mgu is 0 = {z /x , y/O}.
(s(x) <_ y)OOm = s(0) _< 0 is already ground, so 0' = ~ again, and
P2 = s(O) < O. Oracle(P2) = F, so the algorithm selects the right
parent: N~ = s(x) <_ y +-- x < y. Set 02 = 0010t = {x/O,y/O,z/O,w/O},
and k = 2.

4. N2 is a leaf of T, so the algorithm terminates.
<3

We now prove that the algorithm indeed works: if T represents a deriva-
tion of a false clause, then the algorithm finds a false leaf Nk of T, that is, a
false clause from E.

T h e o r e m 10.11 (C o r r e c t n e s s o f t h e B a c k t r a e i n g A l g o r i t h m)
Let ~ be a set of clauses, I a Herbrand interpretation, and 7- a tree repre-
senting a derivation from ~ of a clause which is false under I. Then Algo-
rithm I0.1 with "-fl as input returns a leaf Nk of T~ and a ground substitution
Ok for Nk, such that NkOk is false under I.

P r o o f In order to avoid notational overload, we ignore the substitutions (ri
and or2 in this proof. However, the idea should be clear, and the factors can
easily be incorporated in the proof. Let k" be the number of ground atoms
tested by the oracle. We prove the theorem by induction on k.

1. Suppose k = 0. Then T contains only the false root No, hence No E E.
The while-loop of the algorithm is never entered. The first step of the
algorithm sets 00 to a ground substitution such that NoOo is false under
I.

2. Suppose the theorem holds for k < n. Let P i , - - . , P~+I be the ground
atoms tested by the oracle during the process. By the induction hy-
pothesis, we can assume the algorithm has "traced back" from No to
N,~, and N,~ 0" is ground and false under [, where N,~ is a node in T
having the leaves Ci and C2 as parents. See the figure for illustration.

N ~ + i = C i --- " ,A i V D1 C2 --- A z v D2

N~ = (DI V D2)O

10.4. INTRODUCTION TO REFINEMENT OPERATORS !91

Let ~' be such that Pn+l = A2~0n0 ' is ground. We only prove the
situation where Oracte(P~+l) = T. If P~+I is false, the proof is similar.
If Pn+I is true, then N,,+I = C1 and ~ + l = t~t~,~t~'. We need to prove
that ~9,,+1 is a ground substitution for Nn+l, and Nr~+l~n+l is false
under I.
Firstly, since N , ~ is ground and false under I, and N#9,~ = (D1 V
D=)ee, = (D1 v D,)ee , ,e ' = (D, v D18,~+L is ground and
false under I. Secondly, A10,~+l = A100,~0' = AuO~nO' = P,~+I is
ground and true under I, so ~Alt)~+l is ground and false under I.
Then N~+10~+1 = --'Al{~rz+l V Dl~n+l is ground and false under I. []

10.4 Introduct ion to Ref inement Operators

The previous section has shown a way to weaken a theory which is too strong:
find a false member of the theory E by the Backtracing Algorithm, and delete
this clause from the theory. However, deleting a clause might make the theory
in turn too weak. A way to strengthen the theory again, is to add weaker
versions of previously deleted clauses. For instance, suppose the clause P(x)
is false under I, and has been deleted from E. It might be that P(f(x)),
which is a "refinement" of P(x) , is true under I. Thus the theory might be
strengthened by adding P(f(x)) to it.

A systematic way to find refinements of clauses, is by using a refinement
operator. Because a full discussion of refinement operators presupposes the re-
sults of Chapters 13 through 16, we postpone the full t reatment of refinement
operators to Chapter 17. In this section we will only give a brief introduction.

There are two kinds of refinement operators: upward and downward ones.
An upward refinement operator computes a set of generalizations of a given
clause, a downward refinement operator computes a set of specializations.
What constitutes a 'specialization' or 'generalization' of a clause, is deter-
mined by a generality order on clauses. Such an order on clauses can for
example be denoted by >-. Then we can say that C is a generalization of D
(dually: C is a specialization of D), if C _ D holds. Many different generality
orders are possible, some of the most important are subsumption and logical
implication. In each of these orders, the empty clause [] is the most general
clause.

We assume Ch is ordered by such a generality order >-. Shapiro's top-down
approach only employs a downward refinement operator p, so p(C) is a set
of specializations of a given clause C. We start with E = {[]}. This is clearly
too strong, since it implies any clause. Hence we want to find specializations
of [::]. We use the set p([]) for this. If p([]) is still too strong, its false members
can in turn be replaced by their refinements, and so on.

This allows us to search stepwisely through the generality order. This
stepwise approach will only work if there is a path (a number of refinement
steps) from [] to every clause in at least one correct theory. For instance,

192 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE

suppose E = {D2, D3, D4} is a correct theory. Let the refinement operator
p be such, that p(c~) = {C1,C=}, p(Ct) = {Ca, C4}, p(C2) = {Da, D4},
p(Ca) = {D1}, and p(C4) = {D2, Da}. Starting from rn, we can reach E by
considering p(D), p(C1), p(C2), p(C4). See Figure 10.4.

D1

C3

Y

[]

C1 C2

/ Q ,
D2 Da

D4

Figure 10.4- Paths through t he refi_nement operator p

10.5 The Model Inference Algorithm

Recall that at the end of Subsection 10.2.3, we mentioned three questions
with respect to model inference. The first two questions have been dealt with
in the previous sections. A short summary:

�9 If the theory is too strong, it contains at least one clause which is false
under the Herbrand interpretation I. This clause can be found by the
Backtracing Algorithm, and the theory can be weakened by deleting
the false clause

| If the theory is too weak, it can be made stronger by adding refinements
of a previously deleted clause to the theory, The refinements of the
deleted clause are obtained by applying a refinement operator to it.

Using the tools developed in the previous sections, an outline for an algorithm
for solving model inference problems can now be given. Shapiro implemented
this algorithm for Horn clauses, in his Model Inference System MIs.

10.5. THE MODEL INFERENCE ALGORITHM 193

A l g o r i t h m 10.2 (O u t l i n e o f a M o d e l I n f e r e n c e A l g o r i t h m)

Set ~ to {c?}.
Repeat forever 1 :

Read the next fact from she enumeration
Repeat

While ~ is too strong with respect to the facts read so far, apply
the Backtracing Algorithm to find a false clause, and delete
this clause from ~.

While N is too weak with respect to the facts read so far, add to
refinements of previously deleted clauses.

until ~ is correct with respect to the facts read so far.

This algorithm is top-down and incremental. It is also interactive, because
of the use of an oracle in the Backtraeing Algorithm. Since the language may
contain more than one predicate, the algorithm is fit for multiple-predicate
learning.

There is an important technical problem here. Namely, testing whether
the current theory E is too strong or too weak means determining whether
E ~ a holds for certain a. This is usually undecidable (see Theorem 7.41),
because we do not know in advance how many resolution steps we need to
deduce a. Hence a procedure that should test if E ~ a is the case need
not terminate, and hence is not an algorithm. Shapiro used an idea called
h-easiness to deal with this problem, which he adapted from [BB75]. Here h
is some computable function that assigns a natural number to each formula
in Co. A theory E is h-easy if, for every C such that E ~ C and C E Co, we
have that C can be deduced from E using at most h(C) resolution steps. Thus
h-easiness bounds the maximal number of proof-steps that have to be taken
to deduce C, which makes implication decidable (given h). An interpretation
I is h-easy if an h-easy Co-complete axiomatization of I exists. Shapiro then
restricts the allowed interpretations I (from which the examples come) to
the h-easy ones, where h is some fixed function provided by the user of his
system. We will not go further into h-easiness.

Another problem is when to stop reading facts. This was the third and
last question that we listed in Subsection 10.2.3. When do you know that E is
a Co-complete axiomatization of I? First of all, it should be noted that such
a Co-complete axiomatization need not exist at all. This is a consequence of
Theorem 9.9. So in this case, the algorithm will never reach a final theory. But
even when we are dealing with an I for which a Co-complete axiomatization
does exist, for an infinite Co there is no way of knowing whether you have
found it. The reason for this is that you cannot determine if your current
theory is correct for all examples in the enumeration that have not been read
so far.

1 Of cou r se , i f t h e e n u m e r a t i o n is f in i te , we c a n s t o p o n c e a l l f a c t s h a v e b e e n r e a d .

194 CHAPTER 10. THE FRAMEWORK FOR MODEL INFERENCE

What the algorithm can do, is output its theory-so-far after each time
it has digested a new fact. Once it has found a E which is a Co-complete
axiomatization of I, it will never change its theory anymore, and output the
same E after each new fact. If the algorithm eventually finds a Co-complete
axiomatization of I (though without being aware of this), the algorithm is said
to have identified I in the limit, in accordance with Gold's paradigm [Go167].
In general, this is the best a model inference algorithm can do.

E x a m p l e 10.12 Let g be a language that contains only one predicate sym-
bol, P, one constant 0, and one function symbol s. Ch is the set of all definite
program clauses with at most one negative literal, plus the empty clause.
Thus apart from [], Ch contains only atoms and clauses of the form A e- B,
where A and B are atoms. Let Co be the set of ground atoms. Since Ch is in
this case a subset of the set of Horn clauses, it follows from Theorem 10.6
that the pair (Co, Ch) is admissible. Suppose we are given the following enu-
meration of I, which makes P(t) true iff t denotes an even number:

(P(O),T)
(P(s(O)), F)
(P(s2(0)), T)
(P(s3(O)), F)
(p(si(O)),T)

We want to find a Co-complete axiomatization of I - - o r in other words, an
axiomatization of the set of even numbers--using the following refinement
operator:

{P(x)} if C = [] ;
{P(sn+l(x)), (P(sn(x)) ,= P(x)),

p (c) = i f c = p (, - (x)) ;

0 otherwise.

The algorithm takes the following steps:

1. Set E to {~}.
2. Read (P(O),T).
3. E is neither too strong nor too weak for the facts read so far.
4. Read (P(s(O)), F).
5. E is too strong, since the false example P(s(O)) can be deduced from

it. The false clause [] is deleted, so now E = (~.
6. E is now too weak, because the positive example P(0) cannot be de-

duced from it. Add p(a) = {P(x)} to E.
7. E is now too strong. Delete the false clause P(x). E = ~ again.
8. E is too weak. Add p(P(x)) = {P(s(x)) , (P(x) e- P(x)), P(0)} to E.
9. E is too strong. Delete the false clause P(s(x)) and the superfluous

tautology P(x) +-- P(x). Then E = {P(0)} is neither too strong nor
too weak with respect to the facts read so far.

10.6. SUMMARY 195

10. Read T).
11. E is too weak. Add p(P(s(x))) = {p(s2(x)), (P(s(x)) +-- P(x)), P(s(0))}

to E.
12. E is too strong. Delete P(s(x)) e-- P(x) and P(s(O)). Then X =

{P(s2(x)), P(0)} is neither too strong nor too weak.
la. Read F).
14. E is too strong. Delete P(sU(x)).
15. E = {P(0)} is too weak. Add p(P(s2(x))) = {p(s3(x)), (P(s2(x)) +--

P(,=(o))}.
16. E is too strong. Delete P(sa(x)).
17. E = {P(0), P(s2(O)), (P(s2(x)) +-- P(x))}, this is correct for all the

facts in the enumeration. So the theory will not change hereafter when
we continue to read new facts.

The final theory E is a go-complete axiomatization of I. Note that P(s ~ (0)) is
superfluous, because it is implied by the other two clauses in E. Also, the spe-
cific refinement operator p that we use here, need not work for certain other
Herbrand interpretations I of gh, in other words, it need not be complete.
The completeness of refinement operators will be treated in Chapter 17. <a

1 0 . 6 S u m m a r y

The model inference is concerned with fnding clausal rules that characterize
certain concepts represented in a Herbrand interpretation. The problem can
be stated as follows:

G iven : A clausal language C, an observational language Co, and
a hypothesis language Ch, such that Co _ Ch C_ C and the pair
(Co, Ch) is admissible. In addition there is an enumeration and/or
an oracle for the clauses in Co under some Herbrand interpretation
I o fg .
F i n d : A go-complete axiomatization of I (a true theory which
implies all true members of Co).

Shapiro's Model Inference Algorithm takes a top-down approach towards
solving model inference problems. It starts with the most general theory
E = {O}, and succesively reads new examples from the enumeration. If after
reading an example the theory is too strong, it is weakened by deleting false
clauses from it. These false clauses can be found by the Backtracing Algo-
rithm. If the theory is too weak, it is strengthened by the addition of special-
izations of previously deleted clauses. These specializations are constructed
by a downward refinement operator, which will be dealt with extensively in
Chapter 17.

Chapter 11

Inverse Reso lu t ion

11.1 I n t r o d u c t i o n

Induction can be seen as the inverse of deduction. Deduction moves from the
general rules to the special case, while induction intends to find the general
rules from special cases (examples). As we have seen in previous chapters,
one of our main tools for deduction is resolution. This led Muggleton and
Buntine [MB88] to introduce inverse resolut ion as a tool for induction. Their
paper was followed by a wave of interest and research into the properties of
inverse resolution [Wir89, HS91, Mug91b, Mug92b, Mug92c, RP89, RPg0,
Rou92, NF91, Ide93c, Ide92, Ide93b, Ide93a, LN92, SADB92, Tay93, SA93,
BG93]. Inverting resolution is nowadays still a prominent generalization op-
erator for bot tom-up approaches to ILP.

In this chapter, we will give the main ideas behind inverse resolution. It
is an interesting idea which has been very influential. However, we feel the
theoretical foundation of this idea needs much more investigation. Moreover,
in the application of inverse resolution, many indeterminacies arise: many
different choices of literals, clauses and substitutions lay open. Accordingly,
inverse resolution generates a very large search space of possibilities. 1 There-
fore we will here only give the intuition behind it. Though the chapter serves
as a motivation for some concepts introduced later on, the contents of this
chapter are not required for an understanding of the later chapters.

In their article, Muggleton and Buntine described two operators based
on inverting resolution steps: the V- and the W-operator. Given C1 and R,
the V-operator finds C2 such that R is an instance of a resolvent of C1 and
C2. Thus the V-operator generalizes {C1, R} to {C~, C2}. The W-operator
combines two V-operators, and generalizes {R1, R2} to {C1, C2, C3}, such
that R1 is an instance of a resotvent of C1 and C2, and R2 is an instance of

1 Unfolding, the dual to inverse resolution which we introduce in the next chapter, seems
t o have relatively less indeterminacy, and hence may be more useful.

198 CHAPTER 11. INVERSE RESOL UTION

a resolvent of 6'2 and Ca. In addition, the W-operator is able to invent new
predicates. Using V- and W-operators, Muggleton and Buntine implemented
an interactive bo t tom-up system called CmOL (the name is the inverse of
'logic').

11.2 The V-Operator

Suppose we have a language containing the predicates Swims, Animal and
Fish. Suppose we are learning from examples, and our theory solar is a definite
program H, which as yet only contains the following clauses:

Animal(sharky)
Swims(sharky)

Here sharky is a constant.
Suppose we get a new positive example Fish(sharky). This example is

not implied by II, so we should adjust our theory. The adjusted theory ought
to imply the example Fish(sharky). This means that a proper way to ad-
just the theory, is to add clauses that are needed for an SLD-deduction of
Fish(sharky). Usually when we apply SLD-resolution, we have a set of Horn
clauses, and we want to see what can be deduced from it. This case is just
the opposite: we already know what we want to deduce--namely the clause
Fish(sharky)--and we want to find clauses from which this can be deduced.

Since the only thing we know about the SLD-derivation that we want to
construct is its conclusion Fish(sharky), we start with the bo t tom of the
derivation: the final resolvent should be Fish(sharky) (see Figure 11.1). We
now want to find two parent clauses which have Fish(sharky) as a resol-
vent. Or rather, we want to find two clauses that have a resolvent of which
Fish(sharky) is an instance, which is sufficient for our purposes. This ap-
proach yields an instance of an SLD-derivation, where the unifiers are not al-
ways most general. When we lift this to an SLD-derivation (i.e., when we make
the unifiers mgu's) , we obtain a derivation of a clause of which Fish(sharky)
is an instance. Thus we want to find a center clause and an input clause,
which have a resolvent of which Fish(sharky) is an instance. Clearly, a huge
number of possible choices for these two clauses lays open. Let us say we
use Swims(sharky), which is already in H, as input clause. Then there are
several possibilities for the other parent, the center clause. Here we adopt the
least general possibility, which is Fish(sharky) +-- Swims(sharky). Then
Fish(sharky) is a resolvent of these two parent clauses.

We might stop here, and add Fish(sharky) +-- Swims(sharky) to II. But
suppose we choose to invert another resolution step. We now want to find
two parent clauses for Fish(sharky) +-- Swims(sharky). We decide to use
Animal(sharky) as input clause. Again, there are several possibilities for the
other parent clause. Let us say we choose Fish(x) +-- Animal(x), Swims(x).

11.2. THE V-OPERATOR 199

In the intended interpretation, this clause states that swimming animals are
fish. 2 Adding this clause to II, we get 1-I':

Animal(sharky)
Swims(sharky)
Fish(x) +- Animal(x), Swims(x)

Figure 11.1 shows the derivation we have inverted. Thus invert ing--more
precisely: constructing in a bot tom-up fashion--the derivation yields a can-
didate which can be added to our theory in such a way that the new positive
example is implied by the theory.

Fish(x) +-- Animal(x), Swims(x) Anirnal(sharky)

Fish(sharky) ~ Swims(sharky) Swims(sharky)

Fish(sharky)

Figure 11.1: Inverting this SLD-derivation yields a clause for the theory

A nice feature of inverse resolution is that the clauses of the "old" (too
weak) theory can be used in inverting the derivation. In the previous simple
example, we could use the two atoms in II as input clauses in the derivation.
Furthermore, if we had some background knowledge B at our disposal, we
could also use clauses from B as input clauses. This allows an interesting
interplay between the old theory and the background knowledge on the one
hand, and the newly induced clauses on the other. However, it should be
noted that using clauses from the original II or B as input clauses is fairly
arbitrary. It artificially restricts the range of choices for one of the parent
clauses. It may seem that we ought to try all possible C1, 6"2 such that R is
an instance of a resolvent of C1 and C2, rather than only considering C1 E H
or C1 E B. However, to reduce the number of possibilities, we assume that C1
(the input clause) is part of the old II or in B, and we only consider finding
possible C2's.

The resolution rule takes two parent clauses, and derives a resolvent.
Inverse resolution essentially faces the following "inverse" problem: given a
clause R and a parent clause C1, find a second parent clause 6'2 such that
R is an instance of a resolvent of C1 and C2. A V-operator is an algorithm

2Of course , th is is biologically incorrect : a whale is a s w i m m i n g an imal , bu t not a fish.
Hence ifrnoby deno t e s some pa r t i cu la r whale, t h e n the s y s t e m will have to ad jus t i ts t heo ry
af te r it h a s seen t he posi t ive e x a m p l e s AnimaI(moby) a n d Swims(moby), a n d the nega t ive
e x a m p l e Fish(raoby).

200 CHAPTER 11. INVERSE RESOLUTION

which can find solutions for this problem. The name of the operator derives
from the V-shape of resolution steps. Usually, many alternatives for C2 are
possible, and we should perhaps try out different possibilities. Note that to
invert a resolution step for arbitary clauses, we should also have a mechanism
to invert factors, something which is ignored in [MB88]. For simplicity, we
will restrict our discussion in this chapter to definite program clauses, for
which factors are not needed. Hence we are here only concerned with finding
Ca such that R is an instance of a binary resolvent of Ci and Ca. In the
remainder of this chapter, we will abbreviate 'binary resolvent' to 'resolvent'.

Let two Horn clauses Ci = Li V C[and R be given. We assume here
for notational convenience that L~ is the leftmost literal in Ci, this is of
course not necessary. Our V-opera~cor should find C2 = L2 V C~, such that
R is an instance of a resolvent of Ci and C2. We assume C1 and Ca are
standardized apart, and L1 and L~ are the literats resolved upon. Thus we
want to find C2 = L2 V C~, such that for some 0 which unifies Li and
~L2, R = C~O V C~O. a Since C1 and C2 are standardized apart, the unifier

can be divided in two disjoint substitutions, namely 0 = 01 U 02, where
0i only acts on variables in Ci, and 02 only acts on variables in C2, and
LlO1 = -,L20~. Using separate 01 and 02 rather than a single substitution 0
facilitates independent manipulation of C{ and C~. Let # be an mgu for L1
and -,L2. Then R t = C~# V C~# is a resolvent of Ci and C2. Since 0i U 02 is
a unifier for Li and -,L2, there is a 7 such that #3' = 01 U02. Thus R = R'7,
which shows that R is an instance of a resolvent of Ci and C2. This analysis
gives Figure 11.2.

C~ =L~vCl C2=L2VC~

R' = c;~ v c;~

!,
R = C~Oi v C~

Figure 11.2: The setting for the V-operator

The simplest situation is where C1 = L1, so where C[is empty. Then for
a given 01, any C2 and 02 with C202 = -~LlO1 V R will do. Since -~LlO1 V R
is an instance of any of these possible Ca's, it is dear that Ca = ~LiO1 V R
is the "minimal" of all possible C2's, for a fixed ~?l.

E x a m p l e l l . 1 Suppose C1 = P(x , f (x)) and R = p(y, f2(y)). We want
to find the minimal generalization as described above, for 0i = {x/ f (y)} .

alf some L - -,A is a negative literal, we use -~L to denote the atom A.

11.2. THE V - O P E R A T O R 201

Here L1 = P(x , f (x)) , so the minimal C2 is ',L101 V R = -~P(f(y), f2(y)) V

p(y , f2(y)) = p(y , f2(y)) <__ p (f (y) , f2(y)) . <l

Usually the situation is not as simple, and C1 will contain more than one
literal. How can we find an adequate C2 in this case? Let us first assume C~01
and ' C202 do not overlap. Tha t is, C[01 and C~02 have no laterals in common.
Clearly, if we assume the setting of Figure 11.2, then R can be split into two
parts: C[O1 derives from C1, and C~O~ derives from C2. We have to find a 0a
such tha t C~01 C_ R. Once we know C[O1, we also know C;02, because this is
the remaining part of R: C~02 = _R - C'101.

However, C~ itself, L2 and 02 are still unknown, and allow many different
choices. Any choice for L2 and C~ will do, as long as it satisfies L101 = -~L~02
and ' = - C202 R C[01, for some 02. In this case, choosing L2 = -~L101 and
C~ = R - C[01 yields the minimal choice for C2. Tha t is, since C202 =
-,L~O~ V (R - C[O1), the clause -~L101 V (R - C[01) is an instance of each of
the possible C2. Thus choosing this clause itself as 6"2 (i.e., 0~. = e), is the
minimal choice.

The non-deterministic algorithm 4 given below, incorporates this analysis,
and constructs all possible C2's.

A l g o r i t h m 11.1 (V - o p e r a t o r)
I n p u t : Horn clauses C1 = L1 V C~ and/~, where C~O1 C_ R for some 01.
O u t p u t : A Horn clause C2, such that R is an instance of a resolvent of C1
and C2.

1. Choose a substitution 01 such that C{01 C_C_ R.
2. Choose an L2 and C~ such that LIO1 = ~L202 and C~02 = R - C[O1,

for some 02.
3. Let 6'2 = L2 V C;.

E x a m p l e 11.2 Let C1 -- P(x) V ~ Q (f (x)) , L1 =- P(x) , and R = Q(g(y)) v
- ,Q(f(g(y))) . We assume G01 and C202 do not overlap.

1. Here only one 01 is possible, namely 01 = {x/g(y)} .
2. L2 and C~ should be such that, for some 02, L101 = P(g(y)) = ~L20B

and R - C~01 = Q(g(y)) = C~02. Figure 11.3 shows all possible C2 =
LB V C~ (unique up to renaming of variables) of two laterals, from top
to bo t tom in decreasing order of generality. C2 -= ~L101 V (R - C [0 1) =
-~P(g(y)) V Q(g(y)) is the minimal choice.

Note tha t for some C2, R itself is not a resolvent of C1 and C2. For
instance, if we let C2 = ~P(z) V Q(y), then the resolvent of C1 and C2 is
- ,Q(f (z)) v V(y), of which R is an instance. <1

4The algorithm is 'non-deterministic' because its output is not determined by its input.
For instance in step 1, the algorithm has to choose one among many different possible 01 's,
which all satisfy C~O1 C_ R.

202 CHAPTER 11. INVERSE RESOL UTION

.p(~) v Q(y)

i f \ \
-,e(g(z)) v p(y) -P(~) v p(g(y))

~p(g(z)) v QO(~))

~P(9(y)) v Q(g(y))

Figure 11.3: The possible C~

Thus far we have assumed that C[01 and C~02 do not overlap. But now
consider R = P(a) e-- Q(a), Ct = P(a) +-- Q(a),R(a) and C~ = R(x) +-
Q(z). Then R' = P(a) +- Q(a),Q(a) is a resolvent of Ca and C2- Ct and
C2 both contribute a literal Q(a) to the body of R ~. The V-operator given
above is able to find C2 from C1 and R ~. Since the only difference between
/~ and R' is the extra copy of Q(a) in the body of R ~, and an example will
usually be given without duplicated literals (i.e., in the form of R rather than
/~'), we would like the V-operator to be able to find C2 from C1 and R as
welI. Itowever, since ClOt and C202 overlap in the literal Q(a) in the body
of R, the V-operator is not capable of doing this. Given CI and R as input,
it can only find R(x) and R(a) as C2. Thus we sometimes have to duplicate
some literals in R before applying the V-operator, in order to be able to find
the desired parent clauses. In this example, we have to duplicate Q(a) - - in
other words, change R into R~--to be able to find C; using the V-operator. In
general, which literals in R we should duplicate depends on the application.
We will not go into details here.

Our goal in inverse resolution is to construct a derivation of a positive
example A (usually a ground atom) which hitherto was not implied by the
theory. Using the algori~hrn for the V-operator, we can invert one resolution
step, for given C1 and R. By repeatedly applying the V-operator, we are able
to invert any SLD-derivation. However, there are many indeterminacies here,
which make an unrestricted search through all possible invertible derivations
very inefficient. Within the V-operator itself, many different choices for 0z,
L2 and C; are possible. And even before we can use the V-operator, we have
to decide which clause from the old theory or the background knowledge to
use as C1, and which literals to duplicate in R. Thus the total number of
possibilities may become very large sometimes~ which can make application

11.3. THE W-OPERATOR 203

of inverse resolution very inefficient. We will not go into those issues here,
which would require much more detailed research.

11.3 The W-Operator

One of the problems inductive learning algorithms have to face, is the fact
that it is sometimes necessary to invent new predicates. For instance, suppose
we want our algorithm to induce clauses from examples about family life. It
would be very unfortunate if the system did not possess a predicate for the
concept of 'parent ' . If we have not given such a predicate to the system in
advance, the system should be able to invent this predicate for itself. If we
examine the V-operator carefully, it is clear that this operator cannot invent
new predicates: all predicates appearing in any of the possible C2 that we
might construct already appear in C1 or R. However, by putting two V-
settings side-by-side, we get a W-shape. The W-operator, which is based on
this new setting, is indeed able to invent new predicates.

We will first give an example which shows the idea behind the W-
operator. Suppose we have two Horn clauses R1 = Grandfather(x, y) +--
Father(x,z), Father(z, y) and R2 = Grandfather(a, b) +- Father(a, c),
Mother(e,b), and suppose we want to generalize these clauses. The W-
operator constructs clauses CI, C2, C3, such that R1 is an instance of a resol-
vent of C1 and C2, and R2 is an instance of a resolvent of C2 and C3. Thus
the W-operator generalizes {R1, R2} to {CI, C2, C3}. In Figure 11.4, we give
possible C1, C2, C3 which can serve this purpose.

C1 : Paren t (z , y) +-- C~ : Grandfather(x ,y) +-- C3 --- Parent(c ,b) C-
Father(z , y) Father(s , z) ,Paren t (z , y) Mother(c,b)

R1 = Grand fa ther (x , y) ~ R~ = Grandfather(x, b) ~
Father(~, z), Father(z , g) Father(x , e), Mother(c, b)

l {~/a}

t ~ = Grand/ather(a, b) +--
Father(a, c), Mother(c, b)

Figure 11.4: Generalization of {R1, R~} to {C1, C2, Cz} by the W-operator

The important point to notice about Figure 11.4 is that the predicate
Parent, which appears in C1, C~ and C3, did not appear in the clauses R1
and R2 we started with. Thus in generalizing {R1, R2} to {C1, C2, C3}, the
W-operator has itself introduced a new predicate. The invention of this new
predicate is quite useful, since it allows us to write out the definition of a
'Grandfather ' in a very succint way in C2: x is the grandfather of y, if x

204 CHAPTER 11. INVERSE RESOLUTION

is the father of some z, and z is a parent of y.5 Note that any predicate
name may be assigned the role of Parent here, including "old" names such
as Grandfather or Mother, since this predicate is resolved away in the two
resolution steps anyway.

The general setting for the W-operator is pictured in Figure 11.5. Given
R1 and R2, the W-operator constructs Ci, C2, Ca, with the property that R1
is an instance of a resolvent of Ci and C2, and R2 is an instance of a resolvent
of C2 and Ca. What we want to find, are Ci = La V Ctl, C2 : L2 V Ci,
Ca = L3 V Ci, 01, 02, c'i and c~a, such that LiOi = -,L202, L2c'l = "~LJ2,
R~ = C[O1 V C;O~ and R2 = C~cq V C~er2. Thus L1 and L2 are resolved upon
in deriving R'i, while L2 and L3 are resolved upon in deriving B~. // is an
mgu for Li and -,L~, and u is an mgu for -~L2 and La. Hence Li and La must
either be both positive, or both negative. Note that L1, L2, L3 do not appear
in R1 and R2, which gives the opportunity for inventing a new predicate.

C~ = L1 V C~1

ltl = c',~ v c ; .

R~ = C[el v C;Oa

C ~ = L 2 v C ~ C3 = L ~ v C ~

//; : c ; . v c ; .

R2 = C~i v C;e~

Figure 11.5: The setting for the W-operator

We will here only sketch the idea behind the construction of C1, C2 and C3.

1. Given R1 and R~, we first try to find a C~ such that C~6~ C R1 and
C ~ h C R2~ for some 02 and zl . If such a C~ cannot be found--which
means, intuitively, that t~1 and R~ have "nothing in eommon"- -we
should let C~ be empty.

2. If we have chosen an appropriate C6, we can complete C2 by choosing
also L2. In principle, any L~ will do.

3. Once we have decided which clause to take as C2, then a C1 and Ca
can be found independently. Ct can be constructed by the V-operator
from C2 and R1, and Ca can be constructed by the V-operator from C~

and/g2-

Consider Figure 11.4 again. Given Ri and R2, how did we find C1, C2
and Ca? First we note that (Grandfather(x,y)V-,Father(x, z))e C_ t:il,

5The fact; t h a t we have n a m e d the new predica te Parent, is only i n t ended to serve our
in tu i t ion . Of course , the W - o p e r a t o r i tself does not ~know" t h a t th is new pred ica te deno te s
t he concep t of ' pa r en t ' . As far as the W - o p e r a t o r is concerned, the new p r e d i c a t e - - a n d
also t he old p red ica tes Grandfather, Father, and Mother, raight have any n a m e .

11.4. MOTIVATION FOR STUDYING GENERALITY ORDERS 205

and (Grandfather(x, y) V -~Father(x, z)){x/a, y/b, z/c} C R2. Hence C~ =
Grandfather(x, y) V -~Father(x, z) is an appropriate choice.

Secondly, we have to choose L2. Let us say we take L2 = -~Parent(z, y).
This gives C2 = Grandfather(x, y) +-- Father(x, z), Parent(z, y).

Thirdly, the V-operator can find C~ = Parent(z, y) +- Father(z, y) from
C2 and R1. Similarly, it can construct the clause C3 = Parent(c,b) +--
Mother(c,b) from C2 and R2. Thus the W-operator generalizes {R~, R2}
to C2, C3}.

11.4 Mot ivat ion for Studying General i ty Or-
ders

Let us consider the W-operator. We want to find C;, 02 and r such that
C~02 C_ RI and C~r~ C R2. Let D~ = C~02 and D2 = C~ch. Clearly, many
different C~'s can give the same D1 and D2. These C~'s can be considered as
generalizations of {D1, D2}. We would like to begin with a minimal C~. This
motivates our investigation of the notion of a 'least generalization' of clauses
in Chapters 13-16. If we have found a minimal C~, the other possible C~'s
can be found by taking small generalization steps, starting from the minimal
C~. This motivates our study of 'covers' of a clause, which can be seen as
minimal generalizations or specializations of that clause.

Small generalization and specialization steps are also relevant for the V-
operator. There we are often interested in finding a "minimal" C2, as in
Figure 11.3, where -~P(g(y)) V Q(g(y)) is the minimal choice. The other Cz's
can then be found by taking small generalization steps starting from the
minimal C~.

Similarly, such small steps are also crucial for Shapiro's downward refine-
ment operator. If his refinement operator takes too large specialization steps,
it may skip over the right clauses. On the other hand, if it takes steps which
are too small, it may take too long before the operator reaches an appropriate
clause, or it may even never get there. Again, there is a relation with covers.

To be able to speak about relations of generality between clauses, the set of
clauses must somehow be structured by some generality order. The arguments
given above motivate our study of generality orders, least generalizations,
covers, etc. in Chapters 13-16.

11.5 Summary

Since induction can be seen as the inverse of deduction, and resolution is
our main tool for deduction, using inverse resolution for induction seems a
sensible idea. Muggleton and Buntine introduced two operators for this. The
V-operator generalizes two given clauses {C1, R} to {C1, C2}, such that R
is an instance of a resolvent of C1 and C2. The W-operator combines two

206 CHAPTER 11. INVERSE RESOLUTION

V-operators: it generalizes two given clauses {R1, R2} to {C1, C2, C3}, such
that R1 is an instance of a resolvent of C1 and C2, and R2 is an instance of
a resolvent of C2 and C3, In addition, the W-operator is also able to invent
new predicates.

Chapter 12

Unfolding

12.1 Introduct ion

In an ILP problem, it is sometimes the case that we initially start with a
theory that is overly general: it is complete, but not consistent. The prob-
lem of finding a correct theory then becomes the problem of specializing the
initial theory to a correct one. In this chapter we will investigate how such
specialization can be done using unfolding, which can be viewed as the dual
of inverse resolution. 1 While inverse resolution is a generalization operator
based on constructing a parent clause from a resolvent and another parent
clause, unfolding is a specialization operator which constructs resolvents from
given parent clauses. As in the previous chapter on inverse resolution, we will
restrict at tention to definite program clauses, so the theories should be defi-
nite programs. Furthermore, we will also assume that the given examples E +
and E - consist of ground atoms (ground instances of one or more predicates).

Let us first formally define the specialization problem:

G i v e n : A definite program H and two disjoint sets of ground
atoms E + and E - , such that H is overly general with respect to
E + and E - , and suppose there exists a definite program H / such
that H ~ YI / and II / is correct with respect to E + and E - .
Find: One such a W.

Clearly, this is a special case of the normal problem setting of Chapter 9. We
need to presuppose the existence of a correct specialization H r of II, because
a correct program does not always exist, as proved in Theorem 9.9. Hence
trying to solve a specialization problem only makes sense when a correct
specialization exists. Note that background knowledge can be included in II,
so we will not mention background knowledge separately in this chapter.

1Apar t f rom p r o g r a m specia l iza t ion, unfo ld ing can also be used for p r o g r a m transyor-
ruction, which a ims at i m p r o v i n g p rog rams , for i n s t ance by m a k i n g t h e m more efficient or
readable . For th is , see [PP94], and the references there in .

208 C H A P T E R 12. UNFOLDING

A natural way to specialize H is, first, to replace a clause in 1l by all its
resotvents upon some body-atom in this clause. Constructing these resolvents
is called unfolding. The new program obtained in this way after ~nfolding a
clause in II, is clearly implied by 11. The function of the replaced clause
is taken over by the set of resolvents produced by unfolding. We can then,
secondly, delete some new clauses from the program that have to do with the
negative examples, thus specializing the program. Hopefully, after repeating
these two steps a number of times, we can get rid of all negative e•
This method was introduced in [B194].

For simplicity, let all examples be ground instances of P (x l , . . . , x~), for
some predicate P. The motivation for the method described above is the
fact that it can be used to prune negative examples from the SLD-tree for
H O {+- P (x ~ , . . . , x,~)}. We will illustrate this by an example.

Consider the program I1, consisting of the following c~auses:

c l = p(x, v) +- Q(x, v)
c= = Q(b, b) +- O(. , a)

a~d ~+ = {e(<b)}, S - = { P (< 4 } . The SLD-t~ee for n u { , - e (, , v) }
is shown on the left of Figure 12.1. The success branches corresponding to
positive examples are marked with. a %' , for negative examples with a ' - ' .

~- p(~., ,j)

,1
~.- Q(~, y)

Q(~, ~) o

{z/b,y/b},+

~1~,~I~},-

+- P(~, ~)

Q
{z/< v/b}, +

,'-- P(~, v)

1,2 i

0
{xt<vla},- {~tb, v/b},+

Figure 12.1: The SLD-trees for II~ H', and H"

P(a, a) is a negative example, so we would like to remove this by weaken-
ing the program. This could be done by deleting Ca or Ca from II. However,
this would also make the positive example P(b, b) no longer derivable, thus
rendering the program too weak. Another way to specialize is, first, to unfold

12.2. UNFOLDING 209

C~ upon Q(x, y). The following C1,2 and Ct,a are the two clauses produced
by unfolding C1.

C1,2 = P(b, b) +-- Q(a, a) (resolvent of C1 and C2)
C1,3 = P(a, a) (resolvent of C1 and Ca)

Now we replace the unfolded clause C1 by its resolvents C1,2 and C1,3. This
results in H' = {C2, C3, C1,2, C1,3}. The SLD-tree for H' U {(-- P(x, y)} is
shown in the middle of Figure 12.1. In this tree, the negative example is
directly connected to the root, via the branch that uses C1,3. Now the negative
example can be pruned from the tree by deleting Cl,a from II r, which does
not affect the positive example. Then we obtain II" = {C2, C3, C1,2}, which
is correct with respect to E + and E- . The SLD-tree for H 'r U { ~ P(x, y)} is
simply the tree for H r, after the rightmost branch has been pruned (right of
Figure 12.1).

The idea behind this method is the following:

1. Unfolding removes some internal nodes from the SLD-tree, for instance,
the internal node +-- Q(x, y) in the tree on the left of Figure 12.1. This
tends to separate the positive from the negative examples, and also
brings them closer to the root of the tree.

2. If a negative example hangs directly from the root, and its input clause
C is not used elsewhere in the tree for a positive example, then the
program can be specialized by deleting C.

In other words: unfolding can transform the SLD-tree in such a way that neg-
ative examples can be pruned by deleting clauses from the program, without
also pruning positive examples. Thus the use of unfolding as a specialization
tool can be motivated by looking at SLD-trees, and the SLD-refutations those
trees contain.

It can be seen from some examples that we give later on, that unfolding
and clause deletion by itself is not sufficient for a complete specialization
method--some specialization problems cannot be solved in this way. How-
ever, if we look at program specialization through the perspective of SLD-
derivations rather than refutation, then we can see from the Subsumption
Theorem for SLD-resolution that subsumption is what we need to make our
specialization technique complete. Thus we define UDS specialization here,
which is a specialization technique based on Unfolding, clause Deletion, and
Subsumption. We prove that UDS specialization is complete: every special-
ization problem has a UDS specialization as a solution. This chapter is mainly
based on [NW96a].

12.2 Unfolding

In this section we will define unfolding, in the next section we will use it to
solve specialization problems.

210 CHAPTER 12. UNFOLDING

D e f i n i t i o n 12.1 Let II be a definite program, C = A +-- B1, . . . ,B ,~ a def-
inite program clause in II, and Bi the i-th atom in the body of C. Let
{C1 , . . . , C,~} be the set of clauses in II whose head can be unified with

Bi.
Then unfolding C upon Bi in II means constructing the set Uc,i =

{ D z , . . . , Din}, where each Dj is the resolvent of Cj and C, using Bi and
the head of Cj as the literals resolved upon.

E x a m p l e 12.2 Let II consist of the following clauses:

C, = P(f(x)) +- P(x), Q(x)
C2 : Q(x) +- R(x, a)
C3 = P(f(a))
c4 : Q(b)

Suppose we want to unfold CI upon Q(x) in the program II. {C~,C4} is
the set of clauses in II whose head can be unified with Q(x), so Ucl,2 =
{(P(f(x)) +-- P(x), R(x, a)), (P(f(b)) e- P(b))}. <~

Note that Uc,i may be the empty set. This is the case if there is no
program clause whose head unifies with the i-th atom in the body of C. Note
also that an atom cannot be unfolded, since it has no body-atoms.

Using the set Uc,i, we can construct a new program from II in two ways.
The first way, used in [BI94], replaces C by Uc,i, thus obtaining the pro-
gram (H\{C}) O Uc,i. This is how unfolding was originally considered by
Komorowski [Kom82] and formally studied by Tamaki and Sato [TS84]. The
second way to obtain a new program adds Uc,{ to H, without deleting the
unfolded clause C from the program.

D e f i n i t i o n 12.3 Let II be a definite program, and Uc,i the set of clauses
constructed by unfolding C upon Bi in II. Then II,~,c,~ = (H\{C}) O Uc,~ is
called the type 1 program resulting from unfolding C upon Bi in II.

II,2,c,i = II U Uc,~ is called the type 2 program resulting from unfolding
C upon Bi in H. O

We will show that constructing the type 1 program preserves the least
Herbrand model, while constructing the type 2 program preserves logical
equivalence, which is stronger.

P r o p o s i t i o n 12.4 Let rl be a definite program, G a definite goal, and lI~l,c,i
the type i program resulting from unfolding C upon Bi in H. Then HU{G} i-st

P r o o f
r Suppose II~l,c,i O {G] t-8~ []. Then by the soundness of resolution,

H~<c,iU{G] is unsatisfiable. It is easy to see that II ~ II~l,c,i. Hence HU{G}
is unsatisfiable, and by Theorem 7.8 we have II U {G} ~-,~ [].

12.2. UNFOLDING 211

=~: Suppose II U {G} ~-sr ~, and suppose C (the unfolded clause), is
A +- B1 , . . . , B i , . . . , Bn, which we abbreviate to A +-- Bi, Bi, B2, where
B1 = B i , . . . , B i - 1 and B~ = B~+i,...,B,~, and Bi is the atom unfolded
upon. If there is an SLD-refutation of II U {G} in which C isn't used as an
input clause, then this is also an SLD-refutation of H~l,c,iU{G}. But suppose
C is used as input clause in all SLD-refutations of II t2 {G}. We will prove
that from such a refutation, a refutation of II~l,c,i U {G} can be constructed.

Suppose we have a refutation of H U {G} with goals Go , . . . , Gn and in-
put clauses C1 , . . . , C~, which uses C at least once as input clause. By the
independence of the computation rule (Theorem 7.32), we can assume that
for any j , if C is the input clause in the step leading from Gj-1 to Gj, then
the instance of Bi that is inserted in Gj by C, is the selected atom in Gj.

Suppose the j - th input clause is C. We picture this part of the refutation
on the left of Figure 12.2. For this picture, we make the following notational
conventions:

�9 Gj-1, the (j - 1)-th goal, is the goal e-- A i , . . . , A k , . . . , A m , which we
abbreviate to +-- Ai, Ak, A~.

| The input clause used in the (j + 1)-th step is Cj+i = A' +-- B', where
B' is an abbreviation of B [, . . . , B'~.

�9 Oj is an mgu for Ak and A (used in the j - th resolution step).
�9 Oj+~ is an mgu for B~Oj and A' (used in the (j + 1)-th resolution step).

C j = C = C / =

G j _ 1 =+-" A 1 , A k , A 2 A +-- B 1 , B ~ , B 2 , 8] G j - - 1 =+- A 1 , A k , A 2 (A +.- B I , B I , B 2) o - , c r I

Gj =+- (AI,BI, Bi,B2,A2)O j A I +- BI,83~I GI

Gj.[. 1 =+- (AI, B 1 , B I, B2, A2)O]Oj~- 1

Figure 12.2: Using input clause C' instead of Cj and Cj+i

Since the (j + 1)-th step of the tree on the left of Figure 12.2 shows that Bi
and A' can be unified (say, with mgu ~r), the clause C' = (A +-- Bi, B', B2)o
(the result of resolving C with Cj+l = A' e- B') must be in Uc,i. We assume
without loss of generality that Gj- i , Cj = C, Cj+i, and C' are standardized
apart.

What we want is to construct a tree which, instead of using C in the j - th
step, uses C'. For this, we will show that Gj+i is a variant of the goal G~+I,

212 CHAPTER 12. UNFOLDING

which can be derived from Gj_l and C ~. Then we can replace the j - th step
(which uses C) and the (j + 1)-th step by one single step which does not need
C anymore, but instead uses C' . See the right of the figure.

Because Oj+l is an mgu for A ~ and BiOj and WOj = A' (due to the
standardizing apart), OjOj+l is a unifier for A' and Bi. Since ~ is an mgu
for A' and Bi, there exists a substitution 7 such that c, 7 = OjOj+l. Art7 =
AOjOj+l = AkOjOj+l = AkO'7 = AkT, so 7 is a unifier for Act and Ak. This
shows that Ac~ and Ak can be unified. Let er' be an mgu for A~ and Ak. Let
G}+I =+- (A1, (B1, B', B2)~,A2)~r' be the goal derived from Gj -1 and C' .

l We will show that Gj+I and Gj+ 1 are variants.

1. We have already shown that 7 is a unifier for A# and Ak. Further-
more, # is an mgu for Act and Ak, so there exists a substitution 5
such that # 5 = 7. Now Gj+I =4-- (AI,B1,B',B2,A2)OjOj+I =e-

N>'a = a1+ a.

2. # is an mgu for Ak and AcT, and A~r = Ak (because of the standardiz-
ing apart) , so c,# is a unifier for Ak and A. Furthermore, Oj is an mgu
for Ak and A, so there exists a substitution 7' such that OjT' -= cro a.

X 7' = ' , A Oj7 = A'(rer' = Bio'# = BiOjW l, SO ,~1 is a unifier for A e and
BiOj. Oj+l is an mgu for A' and BiOj, so there exists a substitution
5' such that 0j+15' = 7'. Now G'j+I =+-- (A--7, (B1, B' , B2)a, A2---)cr' =+-

(A1, B1, B t, B2, A2)~o "t ---<-- (A1, B1, B',-~2, AB)OjT' =<-- (A1, B1, B' ,

B2, A2)OjOj+IS' = Gj+15'.

t G ~ We have shown that Gj+I = Gj+I~ and j+ l = Gj+I~ ' , so by Proposi-
tion 4.16, Gj+I and G' j+ t are variants.

] Since Gj+t and Gj+ 1 are variants, we have shown that the two resolution
steps leading from Gj-1 to Gj+I can be replaced by a single resolution step,
which uses C ~ as input clause. In the same way, we can eliminate all other
uses of C as input clause in the rest of the tree, by constructing a refutation
which uses some clause in Uc,i to replace a usage of C, each t ime replacing
two resolution steps by one single resolution step. Finally we get an SLD-
refutation of 11 O Uc,i O {G} which doesn't use C at all. This means that we
have in fact found an SLD-refutation of II~l,c,~ O {G}. []

A direct consequence o f the proof given above is the following:

C o r o l l a r y 12.5 Let 1I be a definite program, G a definite goal, and II~l,c,i
the type t program resulting from unfolding C upon Bi in II. Suppose there
exists an SLD-refutation of length n of HU{G}, which uses C r times as input
clause. Then there exists an SLD-refutation of length n - r of H~l,c,i U {G}.

Intuitively, this eorolla,ry shows that unfolding makes refutations shorter.
So unfolding has the potential of improving the efficiency of an SLD-based

12.3. UDS S P E C I A L I Z A T I O N 213

theorem prover. Especially unfolding often-used clauses is worthwhile, since
then the value r mentioned in the corollary is highest. On the other hand,
unfolding usually increases the number of clauses. So what we see here is an
interesting trade-off between the number of clauses and the average length of
a refutation: unfolding usually decreases the average length of a refutation,
but also usually increases the number of clauses in the program.

We now proceed to prove that constructing the type 1 program preserves
the least Herbrand model Mn of the program. This is also proved in [TS84],
though differently from our proof.

T h e o r e m 12.6 Let II be a d@'nite program, C EII , and II~Lc,~ the type 1
program resulting from unfolding C upon Bi in II. Then Mn = Mn~,c,~.

P r o o f Let A be some ground atom. Then:
A E Mri iff (by Theorem 7.16)
II ~ A iff (by Proposition 2.37)
H U {+-- A} is unsatisfiable iff (by Theorem 7.8)
II U {+- A} t-s~ [] iff (by Proposition 12.4)
II~l,c,i U {+-- A} Vs~ [] iff (by Theorem 7.8)
II~l,c,~ U {+-- A} is unsatisfiable iff (by Proposition 2.37)
H~l,c,i ~ A iff (by Theorem 7.16)
A E MrI~l,c,~.
Hence Mn = Mn~,c,~. []

Thus constructing the type 1 program preserves the least Herbrand model.
However, it does not preserve logical equivalence. Take for instance H =
{C = P (f (x)) +-- P(x)}. Then H~I,c,1 = {P(f2 (x)) +- P(x)}. Now Mn =
Mn,l,c,1 = ~, but II ~z IIul,c,1 since IIul,C,1 ~: YI. Note that this means that
a specialization of II need not be a specialization of H,l,c,i . This is actually
one of the reasons for the fact that type 1 unfolding and clause deletion
cannot solve all specialization problems (see Section 12.3).

On the other hand, constructing the type 2 program does preserve logical
equivalence. Since II C_ II~2,c,~ we have II,~,c,i ~ 11; and because II~2,cj \II
is a set of resolvents of clauses in II, we also have II ~ IIu2,c,i.

Prop os i t i on 12.7 Let II be a definite program, C E H, and [I~2,c,i the
type 2 program resulting from unfolding C upon Bi in II. Then H ~:~ IIu2,c,i.

12.3 UDS Specialization

As the example in the introduction to this chapter showed, the combina-
tion of constructing the type t program and clause deletion can be used
to specialize overly general definite programs. This combination is not com-
plete: it cannot solve all specialization problems. Consider II = { (P(f (x)) ~-

214 CHAPTER 12. UNFOLDING
P(~)

P(~) []

p(~) r~
1 / / ~ 2 {~'/](~)}' +

/ \
P(~)

I"1

: {x/ i f (a)} , +

Figure 12.3: The SLD-tree of H U { e P(x)}

P(x)), P(a)}. Then MH = {P(a), P(f(a)), P(f2(a)), P(fa(a)) . . .} . Let E + =
Mn\{P(f ; (a))} and E - = {P(f2(a))}. See Figure 12.3.

Let IIz = II. The only clause which can be unfolded is P(f(x)) +-- P(x).
Unfolding this results in the following type 1 program:

II2 = {(P(f2(x)) +-- P(x)), P(f(a)), P(a)}.

Then unfolding P(f~(*)) ~- P(,) gives

113 = {(P(f4(x)) +- P(x)), P(fa(a)), P(f2(a)), P(f(a)), P(a)}.

Notice that MH1 = !V/II2 ----- ~IIIa, but unfolding has nevertheless weakened
the program: II1 ~ H2 ~ 113, but H2 ~= H1 and Ha ~= H~. In Ha, p(f4(x)) +__
P(x) can be unfolded, etc. It is not difficult to see that in general, any program
which can be constructed from H by type 1 unfolding and clause deletion, is
a subset of

{P(fU'~(x)) +- P(x)), P(f2'~-l(a)), P(f2'~-2(a)),.. . , P(f(a)), P(a)},

for some n. To specialize this program such that P(f2(a)) is no longer deriv-
able, we must in any case remove P(f2(a)). However, this would also prune
some of the positive examples (such as P(f2~+2(a))) from the program via
the clause P (f 2~ (x)) +- P(x). Thus type 1 unfolding and clause deletion are
not sufficient for this particular specialization problem.

But suppose we use the type 2 program instead of the type 1 program.
That is, suppose we do not immediately delete the unfolded clause from the
program. In this case, we can find a correct specialization with respect to
the examples given above, as follows. We start with H~ = H, and unfold
P(f(x)) +- P(x) without removing the unfolded clause. This gives 11~:

H i = {(P(f~(x)) +- P(x)), (P(f(r +- P(x)), e(f(a)) , P(a)}.

12.3. UDS SPECIALIZATION 215

Now we unfold P(fU(x)) +-- P(x), again without removing the unfolded
clause. This gives II~:

HI 3 = {(P(f4(x)) +- P(x)) , (P(f3 (x)) +- P(x)) , (P(f2 (x)) +- P(x)),
(P(f (x)) +--- P(x)), P(f3(a)), P(f2(a)), P(f (a)) , P(a)}.

If we delete some clauses from II~, we obtain II":

II" = {(P(f4(x)) +- P(x)), (P(fa(x)) +- P(x)), P(f (a)) , P(a)}.

This is a correct specialization of II with respect to E + and E - : I I" ~ E +,
and H" ~= P(Z2(a)).

Yet the combination of type 2 unfolding and clause deletion is still not suf-
ficient. Consider II = {P(x)}, E + = {P(f (a)) , P (F (a)) } and E - = {P(a)}.
II ' = { P (f (x)) } is a solution for this specialization problem. But since [I
contains only a single atom, no unfolding can take place here. Thus the only
two programs which can be obtained by type 2 unfolding and clause dele-
tion, are II itself and the empty set, neither of which is correct. In order to
solve this specialization problem, we have to allow the possibility of taking a
subsumption step. In general, we can define UDS specialization (Unfolding,
clause Deletion, Subsumption) as follows:

D e f i n i t i o n 12.8 Let II and H ~ be definite programs. We say H ~ is a UDS
specialization of II, if there exists a sequence II1 = II, I I 2 , . . . , II~ = IIt (n > 1)
of definite programs, such that for each j = 1 , . . . , n - 1, one of the following
holds:

1. I I j + 1 -~ IIj~2,c, i.

2. I I j+ l = I I j \ { C } for some C E IIj .
3. I I j+ l = IIj U {C} for a C that is subsumed by a clause in II j . <>

UDS specialization is indeed complete: any specialization problem has a
UDS specialization as solution. For the proof of completeness, we use the
Subsumption Theorem for SLD-resolution (Theorem 7.10).

T h e o r e m 12.9 Let II and IY be definite programs, such that II' contains no
tautologies. Then II ~ II ~ iff II ~ is a UDS specialization of II.

P r o o f
~ : By the soundness of resolution and subsumption.
==~: Suppose II ~ II ~. Then for every C E II ~, we have H ~ C. Let C

be some particular clause in H ~ that is not in H. Then by the Subsumption
Theorem for SLD-resolution, there exists an SLD-derivation from II of a
clause D which subsumes C, as shown in Figure 12.4.

Since R1 is a resolvent of R0 and C1 (upon the selected a tom Bi in R0),
if we unfold R0 in H upon Bi we get the program II,2,Ro,i which contains
/~1. Now when we unfold R1 in IIu2,Ro,i, we get a program which contains
R2, etc. Thus after n applications of (type 2) unfolding, we can produce a

216 CHAPTER 12.

Ro 6 II C1 6 H

!
R~

UNFOLDING

R = - I C,~ 6 1-I

R~ = D

I
I subsumes

C

Figure 12.4: An SLD-deduction ,of C from H

UDS specialization (a superset of H) containing the clause R~ = D. Since D
subsumes C, we can add C to the program, by the third item in the definition
of UDS specialization.

If we do this for every C EI I ' that is not in I], we get a program II" which
contains every clause in HI. Since II" is obtained from H by a finite number of
applications of unfolding and subsumption, 1I" is a UDS specialization of II.
Now delete from II" all those clauses that are not in IY. Then we obtain II'
as a UDS specialization of H. Thus if II ~ IY, then H' is a UDS specialization
of II. []

Now suppose we have H, H e, E + and E - , such that Pf ~ II' and II' is cor-
rect with respect to E + and E-o We can assume H ~ contains no tautologies.
Then it follows from the previous theorem that II' is a UDS specialization of
II. This shows that UDS specialization is complete:

C o r o l l a r y 12.10 (C o m p l e t e n e s s o f U D S spec i a l i z a t i on) Every special-
ization problem with II as initial program has a UDS specialization of II as
solution.

Eff ic iency
Note that if we want to unfold some particular clause C, we actually only
need to consider the resolvents of C and clauses from the original II. This is
clear from Figure 12.4, because in order to produce R~+I, we only need to
resolve /?4 with Ci+i, which is a member of the original II. In other words,
we only need to add a subset of Ucj to the program. We might define U~:,~ as
the set of resolvents upon B~ of C and clauses from the original H, and then
use IIj+l = IIjUU~, i instead of IIj+l = IIj,2,c, , = I I j U U c , i . This reduces the
number of clauses that unfolding produces, and hence improves efficiency.

12.4. SUMMARY 217

12.4 Summary

The specialization problem, a special case of the normal problem setting for
ILP, can be stated as follows:

G iven : A definite program H and two disjoint sets of ground
atoms E + and E - , such that II is overly general with respect to
E + and E - , and suppose there exists a definite program H / such
that H ~ H' and H/ i s correct with respect to E + and E - .
F ind : One such a III.

Unfolding, constructing the set Uc,i of resolvents of a clause C E II with
clauses in II, can be used as a tool for solving such problems. The type 1
program is obtained by replacing C in II by Uc,i, while the type 2 program
is II U Uc,i. Constructing the type 1 program preserves the least Herband
model, while the type 2 program preserves logical equivalence with the orig-
inal program.

A UDS specialization of II is a definite program obtained from II by
a finite number of applications of unfolding (type 2), clause deletion, and
subsumption. UDS specialization is a complete specialization method: every
specialization problem with II as initial program has a UDS specialization of
lI as solution.

Chapter 13

The Latt ice and Cover
Structure of A t o m s

13.1 Introduct ion

As we have explained earlier, the normal problem of inductive logic pro-
gramming is to find a correct theory, a set of clauses which implies all given
positive examples and which is consistent with respect to the given nega-
tive examples. Usually, it is not immediately obvious which set of clauses we
should pick as our theory. Rather, we will have to search among the permit ted
clauses for a set of clauses with the right properties. If a positive example is
not implied by the theory, we should search for a more general theory. On the
other hand, if the theory is not consistent with respect to the negative exam-
ples, we should search for a more specific theory--for instance, by replacing a
clause in the theory by more specific clauses--such that the theory becomes
consistent. Thus, as mentioned before, the two most important operations
in ILP are generalization and specialization. Repeated application of such
generalization and specialization steps may finally yield a correct theory.

To systematically facilitate this search, it would be very handy if the set
of clauses that has to be searched, is somehow structured. In this and the
following chapters, we will structure the set of clauses by imposing a generality
order upon it. Tha t is, we will describe several alternatives for what it means
for some clause to be more general than another clause. Since generalization
(or dually, specialization) can proceed along the lines of such a generality
order, using such an order can direct the search for a correct theory.

In this chapter we will be concerned with ordering what is urguably the
simplest set of clauses, namely the set of atoms. It is based on the work
of John Reynolds [ReyT0] and Gordon Plotkin [PloT0]. In particular, we will
here discuss covers, least generalizations, and greatest specializations of atoms.
Covers form the basis of most refinement operators, for instance those de-

220 CHAPTER 13. STRUCTURE OF ATOMS

fined by Shapiro [ShaSlb], Laird [Lai88], and Van der Laag and Nienhuys-
Cheng [LN93]. Least generalizations can be used to generalize given finite
sets of examples. 1

13.2 Quasi-Ordered Sets

All generality orders which we will define, are so-called quasi-orders. We
first introduce quasi-orders in a very abstract way, as a relation with certain
properties. In later sections, we will apply this concept to the set of atoms.

A relation R is defined on a set G, and can be seen as a subset of G x G,
the set of all ordered pairs of elements from G. If the pair (a, b) E R C_ G x G,
then we write aRb. For example, if G is the set of clauses and ~ denotes the
usual 'logical implication' relation, then this relation is the set of all pairs
(C, D) of clauses where C ~ D. So then we can write (P(x), P(a)) ~ , or
equivalently P(x) ~ P(a).

D e f i n i t i o n 13.1 Let R be a relation on a set G.

1. R is reflexive if for all x E G, xRx holds.
2. R is symmetric if for all x, y E G, xl:ty implies that also yRx.
3. /~ is transitive if for all x, y, z ~ G, xRy and yRz implies xt:tz.
4. R is antisymmetrie if for all x, y E G, xRy and yRx implies x = y.

D e f i n i t i o n 13.2 Let ~ be a relation on a set G.

1. /~ is called a quasi-order on G, if R is reflexive and transitive. The pair
{G, R} is then called a quasi-ordered set.

2. R is called a partial order on G, if R is reflexive, transitive and anti-
symmetric. The pair {G, R} is then called a partially ordered set.

3. R is called an equivalence relation on G, if R is reflexive, symmetric
and transitive. <5

A well known result from mathematics is the fact that an equivalence
relation on G partitions G into disjoint equivalence classes. Note that a partial
order is also a quasi-order. We will usually denote quasi-orders or partial
orders by >_ or __., rather than by R.

E x a m p l e 13.3 Let G = R x R be the set of all ordered pairs of real numbers,
which can be seen as representing the plane. We can define a relation _> on
G, as follows: (a,b) >_ (c, d) iff ~ + b 2 >_ v ~ + d ~. That is, (a, b) _> (c,d)
iff the euclidean distance in the plane from the origin (0, 0) to (a, b) is greater
than or equal to the distance from (0, 0) to (c, d).

1There is also a, relation between least generalizations and inverse resolution,
s e e [Mug92b].

13.2. QUASI-ORDERED SETS 221

For any (a, b) E G, we have (a, b) _> (a, b), so _> is reflexive. Also, if
(a, b) _> (c, d) and (c, d) _> (e, f) , then (a, b) _> (e, f) , which shows tha t > is
also a t ransi t ive relation, hence (G, _>} is a quasi-order.

We can define an equivalence relation ,~ on G, by defining (a, b) ~ (c, d) iff
(a, b) >_ (c, d) and (c, d) _> (a, b). Then the equivalence class [(a, b)] of (a, b),
which is the set {(c, d) E G I (a, b) ~ (c, d)}, is the set of all points in the
plane with equal distance to the origin as (a, b). T h a t is, [(a, b)] is the circle
in the plane with the origin as centre, and ~ as radius. <1

If (G, _>) is a quasi-ordered set, then we will write x > y iff bo th x > y
and y ~r x. If bo th x ~ y and y ~ x, we say tha t x and y are incomparable in
this quasi-order.

We will now show how, given a quasi-order >_ on some set G, we can turn
this into a par t ia l order > on the set of equivalence classes of G. First we
define the following equivalence relation ~ on G: for all x, y E G, we write
x ~ y iff x _> y and y _> x. This relat ion ~ is an equivalence relation, because:

1. x ~ x for all x E G (~ is reflexive).
2. If x ~, y, then x _> y and y _> x, so then y ~ x (~ is symmetr ic) .
3. Suppose x ~ y and y ~, z, then x _> y, y >_ x, y >_ z and z > y. Hence,

by the t rans i t iv i ty of >_, we know x ~ z (~ is transit ive).

Thus we can say tha t x and y are equivalent if x ~ y. Now let [x] be
the equivalence class of x E G. Tha t is, Ix] = {y I x ~ y}. The equivalence
relat ion z par t i t ions the set G into a number of disjoint equivalence classes.
Next we construct a relat ion ~ on the set of these equivalence classes, by
defining [x]>_[y] if x k Y. This can be shown to be well-defined: if x ~ x' and
y ~ y' then we have x >_ y iff x' >_ y', so it does not ma t t e r whether we use
x >_ y o1" x' >_ y' to define Ix] = [x']~[y] = [y']. It is easy to see tha t the
relat ion ~ forms a part ial order. For instance an t i symmetry : if [x]~[y] and
[y]_[x], then x _> y a n d y > x, so x ~ y and hence [x] = [y].

Thus we can use a quasi-order _> on G to define a partial order ~ on the
set of the equivalence classes of G, via the equivalence relation ~,. This par t ia l
order is said to be induced by the quasi-order on which it is based.

We now turn to defining upper and lower bounds on quasi-ordered sets.

D e f i n i t i o n 13 .4 Let (G, >} be a quasi-ordered set, and S C_ G. An element
x E G is called an upper bound of S if x >_ y for all y E S. An upper bound
x of S is called a least upper bound (lub) of S, if z > x for all upper bounds
z of S.

Dually, an element x E G is called a lower bound of S if y _> x for all
y E S. A lower bound x of S is called a greatest lower bound (glb) of S, if
x > z for all lower bounds z of S.

E x a m p l e 13.5 Consider (R, _,,>\ the set of real numbers quasi-ordered by
the usual 'greater than or equal to ' relation, and let S be the open interval

222 CHAPTER 13. STRUCTURE OF ATOMS

(0, 1) C_ R. Then any x E R with x _> 1 is an upper bound of S, and 1 E R
is the least upper bound. Also, any x < 0 is a lower bound of S, and 0 is the
greates t lower bound. <1

Notice t ha t if x and y are bo th lab ' s of some set S C_ G, then y > x and
x >_ y, so then x ~ y. This means tha t all lub 's of S are equivalent. Dually,
if x and y are glb 's of some S, then also x ~ y.

E x a m p l e 13 .6 In a quasi-ordered set, a subset need not have a lub or glb.
Consider (Q,_>}, where Q is the set of ra t ional numbers , and S = {q E
Q I q2 < 2} c Q. Since v/2 ~ Q, S has no lub in Q. Also, - v ~ ~. Q, which
implies tha t S has no glb either. <3

E x a m p l e 13 .7 Let G = { a , b , c , d } , and let >_ be defined as c > a, c _> b,
d > a and d >_ b. Then since c and d are incomparable , the set {a, b} has no
lub in this quasi-order. See Figure 13.1. <3

c d

F i g u r e 13.1: {a, b} has no lub here

D e f i n i t i o n 13 .8 Let (G, >_} be a quasi-ordered set. If for every x, y E G, a
lub of {x, y} and a glb of {x, y} exist, then (G, _>} is called a lattice.

In m a t h e m a t i c s , the concept of a latt ice is often defined on a par t ia l order,
ra ther t han on a quasi-order. The previous definition is more convenient for
us, because in ILP we usually have to do with a quasi-order on clauses, even
when we are interested in propert ies of equivalence classes of clauses. But
anyhow, if we have a lat t ice on a quasi-order, we also have a lat t ice on the
par t ia l order on the equivalence classes induced by the quasi-order.

I f some x, y E G have more than one lub, we let x t_l y denote an a rb i t ra ry
lub. Since all lub ' s are equivalent under ~ , for any given x, y, one x t_l y is then
equivalent to all o ther lub 's of {x, y}. Moreover, i f x ~ x ' and y ~ y' , then
xUy ~ x 'UJ. I t is easy to see tha t in a lat t ice (G, >) , any finite non -empty set
S _C G has a lub. For if S = { x a , . . . , x~}, then ((. . . ((xl t.J x2) t_l x a) . . .) kl xn)
is a lub of S. Since (x I_1 y) kJ z ~ x II (y U z), we m a y use xl l_J x2 kJ . . . I_1 x~ to
denote an a rb i t r a ry lub of S.

Analogously, we let x ~ y denote an a rb i t ra ry glb.

13.2. QUASI-ORDERED SETS 223

E x a m p l e 13.9 Let G be the power set of {a, b, c}, i.e., G is the set of all
subsets of {a, b, e}, and let _D be the usual superset relation between sets. It
is easy to see that (G, __D} is a partially ordered set. In fact, {G, D) is a lattice.
To see this, it is sufficient to note that for all x, y E G, x U y = x U y, and
x M y = x A y, so the lub and glb of any two elements exist. The lattice (G, _D}
is pictured in Figure 13.2. <~

{a,b,c}

{a,b) {a,c} {b,c)

{a} {b} {c)

{}

Figure 13.2: The lattice-structure of {G, D)

Now we define upward and downward covers, which can be seen as the
smallest possible non-trivial upward or downward steps in the quasi-order.

D e f i n i t i o n 13.10 Let (G, ___) be a quasi-ordered set, and let x, y E G. If
x > y and there is no z E G such that x > z > y, then x is an upward cover
of y, and y is a downward cover of x. (>

E x a m p l e 13.11 In the previous example, the set {a, b} E G has one upward
cover, namely {a, b, c}, and two different downward covers, namely {a} and
{b}, <

As we have seen, a set in a quasi-order need not have a tub or glb. We can
weaken the requirement of a least upper bound (resp. greatest lower bound)
somewhat, by considering some minimal upper bounds (resp. maximal lower
bounds). Consider Example 13.7. There the set S = {a, b} has no lub. How-
ever, there is no element "between" c and {a,b}, nor is there an element
between d and {a, b}. Thus c and d are minimal upper bounds of S.

D e f i n i t i o n 13.12 Let (G, >} be a quasi-ordered set, and let S C_ G. I f x E G
is an upper bound of S, and if for any upper bound y E G of S we have that
x > y implies x ~ y, then x is called a minimal upper bound (mub) of S.

Dually, if x E G is a lower bound of S, and if for any lower bound y E G
of S we have that y > x implies x ~ y, then x is called a maximal lower
bound (mlb) of S.

224 CHAPTER 13. STRUCTURE OF ATOMS

The differences and similarities between the concepts of an upward cover,
a least upper bound, and a minimal upper bound are important in ILP, and
are sometimes confused. These differences are similar in the "downward" case.

The main difference between an upward cover on the one hand, and a
lub or a mub on the other, is that a lub or a mub is "above" a subset of G~
whereas an upward cover is "above" a single element in G. This difference
does not disappear in case the subset contains only a single element. That
is, if S = {y}, then any lub and any mub of S is equivalent to y, whereas an
upward cover of y must always be some other element, not equivalent to y.

The main difference between a lub and a mub is that a lub of a set S (if
such a lub exists) is unique up to equivalence. On the other hand, a set S
may have more than one distinct, incomparable mub's, a lub is a "smallest"
upper bound of S, while z is a mub if there are no "smaller" upper bounds
than x. If a lab of S exists, it is also a. mub of S, and any other mub of S

will be equivalent to the lub.
We have already seen that a set need not have a lub or glb. Neither need

it have a mub or an mlb, nor upward or downward covers. For instance, let G
be the infinite set {y, xl, x2, xa, . . .} , and let _> be a quasi-order on G, defined
as xl > x2 > . . . > xn > x~+l > . . . > y. Then there is no upward cover of
y: for every xn, there always is an x,~+l such that z~ > x~+l > y. This is a
situation where y has no complete set of upward covers.

D e f i n i t i o n 13.13 Let (G, ~} be a quasi-ordered set, y E G, S~ a set of
upward covers of y in G, and Sd a set of downward covers of y in G. We say
S~, is complete for y, if for all z E G, z > y implies there is an x E S~, such
that z "__ x > y. If there exists a finite set of upward covers of y which is
complete for y, we say y has a finite complete set of upward covers'.

Similarly, Sd is complete for y, if for all z E G, y > z implies there is an
x E Sd such that y > x >_ z. If there exists a finite set of downward covers
of y which is complete for y, we say y has a finite complete set of downward
eove?~8. (~

Note that a complete set of upward covers for y need not contain all
upward covers of y. However, in order to be complete, it should contain
at least one element from each equivalence class of upward covers. On the
other hand, even the set of all upward covers of y need not be complete for
y. Witness the example given before the last definition: here the set of all
upward covers of y is empty, but obviously not complete.

An analogous definition can be given for sets of mub's and mlb's:

D e f i n i t i o n 13.14 Let (G ,>) be a quasi-ordered set, S C_ G, Su a set of
mub's of S, and Sd a set of mlb's of S. We say S~, is complete for S, if for
all upper bounds z E G of S, there is an x E St, such that z ~ x. tf there
exists a finite set of mub's of S which is complete for S, we say S has a finite
complete set of mub's.

13.3. QUASI-ORDERED SETS OF CLAUSES 225

Similarly, Sd is complete for S, if for all lower bounds z E G of 5, there
is an x E Sd such that x > z. If there exists a finite set of mlb 's of S which
is complete for 5, we say S has a finite complete set of mlb's. <)

13.3 Quas i -Ordered Sets o f Clauses

All particular quasi-orders we will be interested in in this work, are quasi-
orders on sets of clauses. The most important quasi-orders we will discuss~
are the subsumption order and the implication order. The terminology in
the previous sections most ly follows mathemat ica l conventions, but the ILP
communi ty has its own terminology regarding quasi-orders on sets of clauses,
which is not always uniformly defined. Let g be a set of clauses, S C g, and
> a quasi-order on g. Then we use the following definitions in ILP:

�9 If C , D E g and C > D, then C is called a generalization of D (or C
is more general than D), and D is a specialization of C (or D is more
specific than C).

�9 Covers are used as defined in the last section.
�9 An upper bound C C g of S is called a generalization of 5.
�9 A lub C E g of S is called a least generalization (LG) of S.
�9 A mub C C g of S is called a minimal generalization (MG) of S.
�9 A lower bound C E g of S is called a specialization of 5.
�9 A glb C E g of S is called a greatest specialization (GS) of S.
�9 An mlb C E g of S is called a maximal specialization (MS) of 5.

The idea behind this is that generalization corresponds to an "upward" step
in the quasi-ordered set, while specialization corresponds to a "downward"
step. Upward and downward covers generalize or specialize individual clauses
to other individual clauses; least or minimal generalizations generalize a set
of clauses to an individual clause; and greatest or maximal specializations
specialize a set of clauses to an individual clause. 2

Generality orders are usually defined in a way that is correlated with
logical implication. For example, the quasi-order subsumption, the topic of
this and the next chapter, is consistent with logical implication: if C subsumes
D, then C ~ D.

13.4 A t o m s as a Quas i -Ordered Set

In this section, we assume a language with a finite, non-empty set of predi-
cate symbols, a finite set of function symbols and a finite, non-empty set of
constants. We will consider the set .4 of all a toms in this language. In this
chapter, we assume A includes the special elements T (the top element) and

2 Some work has also been done on minimally generalizing or specializing sets of clauses
to other sets of clauses, though we will not discuss this work here. See [AISO94] for gen-
eralization and [Wro93] for specialization.

226 C H A P T E R 13. S T R U C T U R E OF A T O M S

• (the bottom element). Atoms of the ordinary form P (t l , . . . , t n) will be
referred to as conventional atoms. We will here show how A can be seen as
a lattice.

D e f i n i t i o n 13.15 We define a quasi-order __ on the set A of all a toms in
some language as follows. If A, B E A, then:

| T _ A , f o r e v e r y A E A .
* A _ l , f o r e v e r y A E A .
| A ~ B, if A, B are conventional atoms and there is a substitution 0,

such that AO = B, so A subsumes B.

Right from the very first applications of the subsumption relation in ILP,
there has been some controversy about the symbol used for denoting this
relation: Plotkin [PloT0] used '_<', while Reynolds [Rey70] used '_>'. We use
'~-' here, similar to Reynolds' ' > ' because we feel it serves the intuition to
view A as somehow "greater" or "stronger" than B, if A _. B holds.

Notice tha t if the empty clause [] is added to the set of atoms, [] can
be used as the top element T, since it subsumes any atom. Actually, in
computat ional logic tile symbols ' T ' and ' • are often used to denote "true"
and "false", respectively. Common usage in ILP is just the reverse: now T = []
denotes a clause which is always false.

As we explained earlier, A and B are defined equivalent (written as A
B) if A ~ B and B ~ A. Using this equivalence relation we have the following
lemma, which shows that the equivalence class of some a tom A is exactly the
set of variants of A.

L e m m a 13.16 Let A, B E A. Then A ~ B iff one of the following holds:

| A = B = T o r A = B = i .
* A and 13 are conventional atoms which are variants.

P r o o f
~ : Suppose A ~ B. If A = T, then by Definition 13.15 also B = T.

Similarly for A = • If A and B are both conventional, then there are substi-
tutions 0 and ~r such that AO = B and B e = A. Hence by Proposition 4.16,
A and B are variants.

r Follows immediately from the definition of ~. []

The ~_-relation orders the set of atoms according to subsumption. One
might think that ordering them according to logical implication would be
more natural. As the following l emma shows, the ~_-relation does in fact also
order the a toms according to implication, because with respect to conven-
tional atoms, implication and subsumption come to the same.

L e m m a 13.17 For conventional atoms A and B, A ~ B iff A ~- B.

13.4. ATOMS AS A QUASI-ORDERED SET 227

P r o o f
=~: A cannot be resolved with itself and B is not a tautology, hence it

follows from the Subsumption Theorem (Theorem 5.17) that A _~ B.
~ : If A __ B, then A subsumes B, hence A ~ B. []

1 3 . 4 . 1 G r e a t e s t S p e c i a l i z a t i o n s

We now proceed to show that (A, ;:-_> is a lattice. In order to do this, we have
to establish that for any A, B E A, both an LG (lnb) A U B and a GS (glb)
A ~ B exist. We start with the GS.

T h e o r e m 13.18 Let Ji be the set of atoms. Then for all A, B E ,4, a greatest
specialization A [7 B exists.

P r o o f By the remark following Definition 13.8, we can assume A and B are
standardized apart. We divide the proof in the following cases:

�9 I f A = _ l _ o r B = - l - , t h e n A r T B = •
B = T, then A[7 B = A.

�9 Suppose A and B are conventional atoms which are not unifiable. Since
A and B are not unifiable, there is no conventional atom C such that
A ~ C a n d B ~ ' - C . Hence A ~ B = - k .

�9 Suppose A and B are unifiable conventional atoms. Then there is an
mgu 0 for {A, B}. We will show A r7 B = AO = BO.
Let C E A such that A >'- C and B ~- C, then we need to show
AO • C. If C = _l_, this is obvious. If C is conventional, then there are
substitutions 0.1 and 0,2 such that A0,1 = C = Bo-2. Here we can assume
o"1 only acts on variables in A, and 0"2 only acts on variables in B. Let
0, = 0"1 U 0"2. Notice that 0" is a unifier for {A, B}. Since 0 is an mgu for
{A, B}, there is a 7 such that 0 7 = 0". Now AO 7 = Ao" = A0"1 = C, so
AO >- C. []

E x a m p l e 13.19 Let A = P(x, f(y), a) and B = P(u, f(a), v). The substitu-
tion {u/x, y/a, v/a} is an mgu for A and B. Therefore A Yl B = AO = BO =
P(x, f(a), a). Notice that all variants of P(x, f(a), a) are also GSs of A and
B. Thus A and B have more than one GS, but they are all equivalent. <3

1 3 . 4 . 2 L e a s t G e n e r a l i z a t i o n s

If A and B are conventional, then A [7 B can be constructed by applying
the Unification Algorithm to variants of A and B which are standardized
apart. To construct an LG A t2 B of A and B, we need to do more or less
the opposite. Rather than finding a most general instance, as the Unification
Algorithm does, we now need to find a least generalization. Since doing this

228 CHAPTER 13. STRUCTURE OF ATOMS

is more or less the opposite of unification, the algorithm which constructs an
LG of A and B is called the Anti-Unification Algorithm. It is given in different
forms both in [Rey70] and in [PloT0]. We adapt Reynolds' algorithm and his
correctness proof here.

This algorithm uses term occurrences. Suppose we have the atom A =
P(f(g(y), x),g(y)). We can identify a term occurrence with its position in
the atom. The first term f(g(y), z) has position (1) in A, the first occurrence
ofg(y) has position (1, 1} (the first position within the term that has position
(1) in A), the occurrence of x has position (1, 2}, and the rightmost occurrence
of g(y) in. A has position (2) in A.

Definit ion 13.20 Let A = P (t l , . . . , t n) be a conventional atom. Then ti
has position (i} in A. If the term f (s l , . . . , s,~) has position (P l , . . . ,Pk) in A,
then sj within this term has position (Pl, . . . , Pk, j} in A.

If some term t has position p in A~ then the pair (t,p) is called a term
occurrence in A. �9

Positions are also sometimes called places by others. Now the two oc-
currences of g(y) in A = P(f(g(y), z),g(y)) can be written as (g(y), (1, 1})
and (g(y), (2}). Notice that the fact that the first occurrence of g(y) in A
is to the left of the second occurrence of g(y), corresponds to the fact that
the position (1, 1) comes before (2) in a lexieographical ordering of positions.
Suppose B = P(f(h(a), y), b). We can say that the first position where A and
B differ, is (1, 1}. A has g(y) at position (1, 1}, B has h(a) at (1, 1}.

Now we can give the Anti-Unification Algorithm, which can be used to
find A U B for conventional atoms A and B. If A and B do not have the
same predicate symbol, then their LG is T. So for the following algorithm,
we assume A and B have the same predicate symbol.

Algorithm 13.1 (Anti-Unification Algorithm)
I n p u t : Conventional atoms A, B, with the same predicate symbol.
Output: A tJ B.

1. Set A ' = A , B r = B , 0 = r 1 6 2
Let zl, z2, �9 �9 be a sequence of variables not appearing in A or B.

2. If A t = B ~, then output .A ~ and stop.
3. Let p be the leftmost symbol position where A ~ and B ~ differ. Let s and

t be the terms occurring at this position in A ~ and B ~, respectively.
4. If, for some j with 1 < j <_ i, zjO = s and zjcr - t, then replace s at

position p in A r by zj, replace t at position p in B ~ by zj, and goto 2.
5. Otherwise set i to i + i, replace s at position p in A ~ by zi, and replace

t at position p in B ~ by zi. Set 0 to 0 U {zi/s}, ~r to ~r U {zi/t}, and goto
2.

E x a m p l e 13.21 Let A = P(f(g(x), a), g(x)) and B = P(f(h(y), x), h(y)).
We can use Algorithm 13.1 to find A W B, as follows:

13.4.

1.

ATOMS AS A QUASI-ORDERED SET 229

A' = P(f (g (x) ,a) ,g (x)) , B ' = P(f (h (y) , x) , h (y)) , 0 = e, ~r = e, and
i = O .
p = (1, t} is the leftmost symbol posit ion where A t and B ~ differ, s =
g(x) and t = h(y). Set i = 1, and replace s and t at posit ion (1, 1} by
Zl.

2. d ' = P (f (q , a) , g (x)) , B' = P (f (z l , x) , h (y)) , 0 = {z l /g(x)} , c~ =
{z~lh(~)}, and i = 1.
p = (1, 2) is the leftmost symbol posit ion where A ~ and B ~ differ, s = a
and t = x. Set i = 2, and replace s and t at posit ion (1,2) by zB.

3. A t = P (f (z l , z ;) , g (x)) , B' = P(f (z l , z2) ,h (y)) , 0 = {z l /g (x) , z2 /a} ,
= a n d i - - 2

p = (2} is the leftmost symbol position where A' and B ' differ, s = g(x)
and t = h(y). Note tha t qO = s and z~r = t, so s and t at posit ion (2}

are replaced by zl.
4. Now A ' = P(f (z l , z~) , zl) = B', so the a lgor i thm stops and returns

A' = A U B . <a

Note tha t if two a toms A = P (s l , . . . , s ~) and B = P (t l , . . . , t ~) are
generalized to A U B = P (r l , . . . , r ~) by Algor i thm 13.1, and if si = sj
and ti = t j , then ri = rj. For instance, i f A = P (a , f (a , x) , a) and B =
P(x, f (x , y), x), then ALI B = P(z~, f (z l , z2), Zl), in which the terms at the
first and third a rgument place are equal.

We will now prove tha t the Anti-Unificat ion Algor i thm does what it is
supposed to do. The t ru th of the next l emma is easy to see:

L e m m a 13 .22 After each iteration of the Anti-Unification Algorithm, there
are terms s l , . . . , s i a n d t l , . . . , t i such that:

1. 0 -~- {Z l /81 , . . . ,z i /8i} and o : { z l / t l , . . . , z i / t i } .
2. AIO = A and B'c ~ = B.
3. For every 1 < j < i, sj and tj differ in their first symbol.
3- There are no 1 < j , k << i such that j 7k k, sj = sk and tj = tk.

P r o p o s i t i o n 13 .23 Let A and t? be two atoms with the same predicate sym-
bol. Then the Anti- Unification Algorithm with A and B as input returns AI IB.

P r o o f It is easy to see tha t the a lgor i thm terminates after a finite number
of steps, for any A, B. Let C be the a tom tha t the a lgor i thm returns, and let
0 = { z l / s l , . . . , z i / s i } and cr = { z l / t l , . . . , z i / t i } be the final values of 0 and
cr in the compu ta t i on of C (so C equals the final values of A ' and B ' in the
execution of the algori thm). Then CO = A and C a = B by L e m m a 13.22,
par t 2. Suppose D is an a t o m such tha t D ~ A and D ~ B. In order to show
tha t C = A U B, we have to prove D ~ C.

Let E = CV1D, which exists by Theorem 13.18. Then C __ E and D _ E.
Since E is a GS of { C , D) and C ~- A and D ~_ A, we must have E _ A.
Similarly E _ B. Thus there are subst i tut ions 7 , # , u, such tha t C 7 = E,

230 C H A P T E R 13. S T R U C T U R E OF A T O M S

c

A B

Figu re 13.3: Illustration of~he proof

A = E # = C T # , a n d B = E v = C T u . T h e n C 0 = A = C T # a n d C a = B =
CTu (see Figure 13.3 for illustration). Hence if x is a variable occurr ing in C,
then x.O = xT# and x~r = XTU.

We will now show tha t C and E = C7 are variants, by showing tha t 7 is
a renaming subst i tu t ion for C. Suppose it is not. Then 7 maps some variable
x in C to a term tha t is not a variable, or 7 unifies two distinct variables x, y
in C.

Suppose x is a variable in C, such tha t x7 = t, where t is a term tha t is not
a variable. If x is not one of the zj 's , then xTg = xO = x, contradict ing the
assumpt ion tha t x 7 = t is not a variable. But on the other hand, if x equals
some zj, then t# = xT# = xO = sj and tv = xTu = xer = t j . Then sj and
t j would both start with the first symbol of t, contradict ing L e m m a 13.22,
par t 3. So this case leads to a contradict ion.

Suppose x, y are dist inct variables in C such tha t 3, unifies x and y. (1)
If neither x nor y is one of the zj 's, then xT# = x0 = x r y = gO = YTP,
contradic t ing x~, = YT. (2) If x equals some zj and y does not, then xT# =
xO = sj and x'yu = x(r = t j , so z'yp r x3'~' by L e m m a 13.22, par t 3. But
YT# = yO = y = yc, = YT~', contradict ing x~/ = y% (3) Similarly for the
case where y equals some zj and x does not. (4) If x = zj and y = z~.,
then j :fi k, since x 7~ y. Furthermore~ sj = xO = x~/# = YT# = yO = sk
and tj = x~r = ~Tu = yTu --- yo- = tk. But this contradicts L e m m a 13.22,
par t 4. So the assumpt ion tha t 7 unifies two variables in C also leads to a
contradict ion.

Thus 7 is a renaming subst i tut ion for C, and hence C and E are variants.
Finally, since D _ E, we have D ~ C. []

Using this proposit ion, we can now establish the existence of a least gen-
eralization A U B of any A, B C A. Notice tha t A k.l B is the only (up to
equivalence) min imal generalization of {A, B} in A, and A N B is the only
max ima l specialization of {A, B } in A.

T h e o r e m 13 .24 Let A be the set of atoms. Then for all A, B G A , a least
generalization A I I B exists.

P r o o f We divide the proof in the following cases:

13.4. ATOMS AS A QUASI-ORDERED SET 231

�9 If A = T o r B = T, then A U B = T. I f A = _ l _ , t h e n A U B = B. If
B = .1_, then A U B = A.

�9 If A and B are conventional a toms with the same predicate symbol,
A U B is given by the Anti-Unification Algorithm.

�9 If A and B are conventional a toms with different predicate symbols,
then A U B = T. []

E x a m p l e 13.25 Let A = P(a, x, f (x)) and B = P(y, f(b), f (f (b))) . Then
A I-7 B = P(a, f(b), I (f (b))) is obtained from the Unification Algorithm. On
the other hand, A U B = P(zl , z2, f(z2)) can be obtained by applying the
Anti-Unification Algori thm to A and B. See Figure 13.4. <~

A U B = P(Zl,Z~,f(z2))

A = P(< ~, f(~:)) B = P(y,](b),/(f(b)))

A • 13 = P(a , f (b) , f (f (b)))

Figure 13.4: An LG and a GS of atoms A and B

Now that we have established the existence of an LG and GS of any
A, B C ,4, we have shown that the set of a toms ordered by subsumption, is
a lattice.

T h e o r e m 13.26 Let ,4 be the set of atoms. Then (AM, ~} is a lattice.

Notice that the partial order on the equivalence classes (the sets of vari-
ants) of .4 induced by >-, also forms a lattice. In this lattice, the lub and glb
of [x] and [y] are Ix U y] and [x ~ y]. Other than in the quasi-order, the lub
and glb are unique here.

The result that (,4, _>-) is a lattice shows that the set of a toms is wen-
structured. The more structured a set is, the better it is suited to be searched
for candidates to include in a theory. This search usually procedes by small
upward steps (generalization) or downward steps (specialization) in the lat-
tice. If we want to generalize or specialize a set of a toms to a single atom,
we can use a least generalization or greatest specialization of this set. On the
other hand, we may also want to generalize or specialize an individual a tom
to another individual a tom. The next section discusses covers, which are the
smallest non-trivial steps between individual a toms that we can take in the
AM-lattice.

232 C H A P T E R 13. S T R U C T U R E OF A T O M S

13.5 Covers

In this section we will discuss the different sorts of covers of atoms. Since B
is a downward cover of A iff A is an upward cover of B, we will first restrict
a t tent ion to downward covers. Afterwards, we extend our results to upward
covers.

1 3 . 5 . 1 D o w n w a r d C o v e r s

The next example gives the first type of downward covers.

E x a m p l e 13 .27 Suppose A = P(x, z). We can prove tha t B = P(x, f (y)) is
a downward covet" of A. On the other hand B ' = P(x, f (x)) is not a downward
cover of A, since we have A >- B > B ~. <~

L e m m a 13 .28 (D o w n w a r d c o v e r t y p e 1) Let A be a conventional atom,
f an n-ary function symbol, z a variable in A, and x l , . �9 x~ distinct vari-
ables not appearing in A. Let 0 = { z / f (x l , . . . , x n) } . Then B = AO is a
downward cover of A.

P r o o f It is clear tha t A and B are not variants, so A >- B. Suppose there
is a C such tha t A >- C ~- B. Then there are r # such tha t A~r = C and
C/-t = B, hence AG# = B = AO. Here cr only acts on variables in A, and #

only acts on variables in C.
Let (x, p) be a te rm occurrence in A, where x is a variable. Suppose x :fi z,

then xO = x, so (x,p) must also be a term occurrence in B. Hence xc~ must be
a variable, for otherwise (xcr#, p) in B would contain a constant or a function.
Thus cr mus t m a p all variables other than z to variables. Furthermore, cr
cannot unify two distinct variables in A, for then 0 would also have to unify
these two variables, which is not the case.

If zc~ is also a variable, then c~ would m a p all variables to variables, and
since r cannot unify distinct variables, it would map all distinct variables
in A to distinct variables. But then r would be a renaming subst i tu t ion for
A, contradict ing A >- C. Hence r mus t m a p z to some term containing a

funct ion symbol .
Now the only way we can have Ar = B, is if zo" = f (Y l , - . . , Yn) for

dist inct yi not appear ing in A, and no variable in A is mapped to some yi
by cr. But then A(r and B would be variants, contradict ing A r = C >- B.
Therefore such a C does not exist, and B is a downward cover of A. []

The next l emma gives another type of cover, which can be obtained by
subs t i tu t ing a constant for a variable in A. Since a constant can be seen as a
funct ion symbol of arity O, this type of cover can be seen as a subtype of the
previous type. Thus we do not need to prove the next lemma.

13.5. COVERS 233

L e m m a 13.29 (D o w n w a r d cover t y p e 2) Let A be a conventional atom,
z a variable in A, and let a be a constant. Let 0 = {z /a} . Then B = AO is a
downward cover of A.

E x a m p l e 13.30 P(a, z, f(a)) , P(x, a, f(a)) and P(x, b, f(a)) are downward
covers of type 2 of A = P(x, z, f(a)). <1

E x a m p l e 13.31 The third type of cover of downward atoms can be obtained
by unifying two variables in A. So if A = P(x, y, f (z)) , then P(x, x, f (z)) ,
P(x , y, f (x)) and P(x, y, f (y)) are downward covers of type 3 of A. <1

L e m m a 13.32 (D o w n w a r d cover t y p e 3) Let A be a conventional atom,
and x , z two distinct variables in A. Let 0 = { z / x } . Then B = AO is a
downward cover of A.

P r o o f It is clear that A ~- B. Suppose there is a C such that A ~- C ~- B.
Then there are ~, # such that Ac~ = C and C# = B, hence Ac~# = B = AO.
Here r only acts on variables in A, and # only on variables in C. Note that
~r and # can only map variables to variables, since otherwise Ar = B would
contain more occurrences of functions or constants than A, contradicting
AO = B, since 0 does not add any occurrences of function symbols to A.

If c~ does not unify" any variables in A, then A and C would be variants,
contradicting A ~- C. If y unifies any other variables than z and x, then we
could not have Ar = B. Hence ~r must unify z and x, and cannot unify
any other variables. But then Ar and B would be variants, contradicting
Ac~ = C ~ B. Therefore such a C does not exist, and B is a downward cover
of A. []

In Corollary 13.40, we will show that every downward cover of an atom A
is a variant of one of the three types of downward covers we discussed above.
Thus a variant of each downward cover can be obtained by applying one of
the following elementary substitutions:

D e f i n i t i o n 13.33 Let C be a clause. An elementary substitution for C is
one of the following:

�9 { z / f (x l , . . . , x~)), where z is a variable occurring in C, and x l , . . . , xn
do not appear in C.

�9 { z /a) , where z is a variable occurring in C.
�9 { z / x) , where z and x are distinct variables occurring in C.

It is easy to see that if A = T, then the set of downward covers of A is
exactly the set of most general atoms, defined as follows:

D e f i n i t i o n 13.34 Let P be an n-ary predicate symbol, and x l , . . . , xn dis-
tinct variables. Then P (x l , . . . , xn) is a most general atom. �9

234 CHAPTER 13. STRUCTURE OF ATOMS

L e m m a 13.35 Every most general atom is a downward cover of T.

E x a m p l e 13.36 P(x), P(y) and Q(x, y) are downward covers of T. <1

Every most general atom is a downward cover of T, and the three types
mentioned above together form all downward covers of a conventional atom
A. Since it is clear that • does not have any specializations, it does not have
any downward covers. So now we have completely specified all downward
covers in the set A of atoms.

1 3 . 5 . 2 U p w a r d C o v e r s

Dually, B is an upward cover of A iff A is a downward cover of B. Thus the
upward covers of some conventional atom A are also of three types, which
can be constructed by inverting the three elementary substitutions:

| Type 1: Let t = f (x l , . �9 x~) occur in A, where all xi are distinct, and
each occurrence of xi in A is within an occurrence of t. Then replacing
all occurrences of t in A by some new variable z not in A yields an
upward cover of A.

| Type 2: Replacing some occurrences of a constant a by a new variable
z gives another upward cover of A.

�9 Type 3: Replacing some (but not all) occurrences of a variable x by a
new variable z also yields an upward cover of A.

The next lemma is obvious:

L e m m a 13.37 Every ground atom is an upward cover of -k.

Note that if we have a finite number of predicate symbols in the language,
then the set of downward covers of T (i.e., the set of all most general atoms),
is finite up to variants. On the other hand, if the language contains a function
symbol of arity 1 or more, then the set of upward covers of • is infinite. For
instance, the ground atoms P(a), P(f (a)) , P(Z2(a)) , . . . are all upward covers
of _1_.

Since the top element T has no generalizations, we have hereby exhausted
all upward covers within the set of atoms.

13.6 Finite Chains of Downward Covers

In this section, we will show that given two atoms A and B such that A ~- B,
there is a finite sequence of downward covers from A to a variant of B. This
means that if we want to get from A to B, we only need to consider downward
covers of A, downward covers of downward covers of A, etc. First we give an
example:

13.6. FINITE CHAINS OF D O W N W A R D COVERS 235

Example 13.38 Let A = P(x, y) and B = P(f (g(z) ,g (z)) , a). Letting 0 =
{x / f (g (z) , g(z)), y/a}, we have A0 = B. By decomposing 0 into elementary
substitutions, we can find the following chain of downward covers from A to
a variant of B:

1. Let A 0 = A .
2. Let o'0 = { x / f (z l , z2)} and A1 = A0(r0 = P (f (z l , z2), y).
3. Let ch = {zl /g(z3)} and A2 = A1ch = P(f(g(z3), z2), y).
4. Let ~r2 = {z2/g(z4)} and A3 = A2~2 = P(f(g(z3),g(z4)) , y).
5. Let r = {y/a} and A4 = A3cr3 = P(f(g(z3), g(z4)), a).
6. Let ~4 = {z3/z4} and A5 = A4cr4 = P(f(g(z4),g(z4)) , a).

Thus we have constructed the chain Ao = A ~- A1 ~- A2 ~- A3 ~- A4 ~- A5 w~
B, where each Ai+l is a downward cover of Ai. The composition ~rochcr2c'3cr4,
restricted to the variables in A, equals 0. <l

Note that it is not always possible to get from A to B itself using only
elementary substitutions. For instance, we cannot get from A = P(x) to
B = P(Z(x)) . But we can get to]3' = P(f (y)) , which is a variant of B. Given
A ~ B, the following algorithm is able to find a finite chain of downward
covers from A to a variant of B.

Algorithm 13.2 (Finite Downward Cover Chain Algorithm)
I n p u t : Conventional atoms A, B, such that A ~- B.
O u t p u t : A finite chain A = A0 ~- A1 ~ . . . ~- A~-I ~- An ~ B, where each
Ai+l is a downward cover of Ai.

1. Set A0 = A and i = 0, let 00 be such that AOo -= B.
2. If no term in 0i contains a function or a constant, then goto 3.

If x / f (t l , . . . , t ~) is a binding in 0i (n _> 0), then choose new distinct
variables zl, �9 �9 �9 zn.
Set Ai+l = A i { x / f (z l , . . . , z ~) } .
Set Oi-F1 : (0 i \{x / f (t l , . . . , t n)}) [-J {z l / t l , . . - ,Zn/ tn} .
Set i to i + 1 and goto 2.

3. If there are distinct variables x, y in Ai, such that xOi = yOi, then:
Set Ai+l = A i { x / y } .
Set 0~+~ = 0A{x/x0 d .
Set i to i + 1 and goto 3.
Otherwise (if such x, y do not exist), set n = i and stop.

Intuitively, step 2 of the algorithm first instantiates the appropriate vari-
ables to functions and constants, and afterwards step 3 unifies appropriate
variables to obtain a variant of B. The next lemma shows the Finite Down-
ward Cover Chain Algorithm to be correct.

Lemma 13.39 Let A and B be conventional atoms such that A ~- B. Then
there is an n > 0 such that Algorithm 13.2 with A and B as input terminates.
The chain A = Ao ~ A1 ~- . . . ~- An-1 >- An constructed by the algorithm
has the properties that each Ai+l is a downward cover oral , and An ~ B.

236 C H A P T E R 13. S T R U C T U R E OF A T O M S

P r o o f Step 2 of the algorithm cannot be repeated indefinitely long, since
Oi+, contains one occurrence of a function symbol less than 0i after one
application of this step. Similarly, step 3 cannot be repeated without end,
since 0i+i acts on fewer distinct variables than 0i after this step. This shows
that the algori thm must terminate, for some i = n > 0.

It is clear from the algorithm that Ai+i is a downward cover (of one of
the three types) of Ai. It remains to show that An ~ B. For this, we prove
the invariant AiOi = B, by induction on i. From this invariant, we know the
sequence of covers has the following structure:

A = A0 -+ Ai -+ " . - + Ai -% B.

1. AoOo = B, from the first line of the algorithm.
2. Suppose AiOi = B.

If step 2 of the algorithm is applied, then:
Ai+l = A i { x / f (z l , zn)}, Ai+l is a type 1 or 2 (if n = 0) downward
cover of Ai,
e i + t = . . n/tn}.

Now we have B = AiOi = A i { x / f (z l , . . . , zn)}Oi+z = Ai+zOi+z.
If step 3 of the algorithm is applied, then:
Ai+i = A i { x / y } , Ai+l is a type 3 downward cover of Ai,
Oi+l = 0 A { , / x 0 i } .
Now B = AiOi = Ai{x/y}Oi+l = Ai+lOi+l.

Since step 2 of the algorithm was no longer applicable to On (otherwise the
algorithm would not have terminated with i = n), 0n cannot map variables to
terms containing functions or constants. Also, since step 3 was not applicable
to On, Or~ does not unify any variables in An. This means that On is a renaming
substitution for An. Now from the invariant, we know An ~ AnOn = B. []

In other words, i fA > B, then there is a sequence Yl, �9 �9 Cn of elementary
substitutions such that B ~ A r 1 6 2 Note that the atoms in the chain
constructed above, are all downward covers of one of the three types defined
above. Thus if B is a downward cover of A, there is a downward cover Az of
one of the three types, such that A = A0 ~- Ai ~ B.

C o r o l l a r y 13.40 Every downward cover of a conventional atom A is a vari-
ant of a downward cover of A of one of the three types defined above,

T h e o r e m 13.41 Let A and B be atoms such that A >- B, Then there is a
finite chain A = Ao >- Ai >- . , . >~ .An-i >- An ~ B~ where n > 1 and each
Ai+l is a downward cover of Ar

P r o o f We distinguish the following four cases:

| A and B are conventional: this case is Lemma 13.39.
. A = T and B is conventional: suppose B has predicate P, of arity n.

Then A1 = P (x z , . . . , a n) is a downward cover of A, and A1 _ B. If

13.7. F INITE CHAINS OF U P W A R D COVERS 237

A1 ~ B, we are done. Otherwise, by the previous case there is a finite
downward cover chain from A1 to B.

�9 A is conventional and B = L: if A is ground, B is a downward cover
of A. Otherwise, let B ' be a ground instance of A (since we assumed
our language has a non-empty set of constants, such a ground instance
always exists). By the first case of the proof, there is a finite downward
cover chain from A to B' . B is a downward cover of B ' , hence there is
a finite downward cover chain from A to B.

�9 A = T and B = _1_: let A' = P (x l , . . . , x,~) be a most general a tom, and
B ' a ground instance of A'. By the first case, there is a finite downward
cover chain from A' to Bq A' is a downward cover of A and B is a
downward cover of B ~, hence the result follows. []

It ibllows from the previous theorem that if A >- B, then there is a
downward cover C of A, such that A 5- C _ B. This shows as a corollary
that the set of downward covers of a conventional a tom is complete for that
a tom.

Given that the language contains a finite number of function symbols, the
set of non-equivalent (non-variant) type 1 downward covers of a conventional
a tom is finite. Also, if the number of constants is finite, the number of type 2
covers is finite. Since the set of non-equivalent type 3 covers is also finite, it
is possible to construct a finite complete set of downward covers of any con-
ventional a tom. Furthermore, since we assume a language with only finitely
many predicate symbols, the number of non-equivalent most general a toms
is also finite, so the set of non-equivalent downward covers of T is finite. The
set of downward covers of _1_ is of course empty, and the empty set is a finite
complete set of downward covers of _L. This gives the following corollary:

Corollary 13.42 Every atom has a finite complete set of downward covers.

13.7 Finite Chains of Upward Covers

Algori thm 13.2 is given A >- B, and starts from A, working downward to a
variant of B. We might want to reverse the algorithm, to start from B instead
of A, conducting an upward search towards a variant of A. We will not go
into details here, but just give some examples to indicate the differences with
the downward algorithm.

E x a m p l e 13.43 Let A = P (f (x , y) , z) and B = P(f (g(v) ,g(v)) ,b) . The
following is one possible chain of upward covers from B to a variant of A:

1. Bo = B = P(f (g(v) ,g(v)) ,b) .
2. B1 = p (/ (g (v) , g(zl)) , b).
3. B2 = P(f (z2 ,g (z l)) , b).
4. B3 = P(f (z2 , z3), b).

238 C H A P T E R 13. S T R U C T U R E OF A T O M S

5. B4 = P(f (z2 , z3), z4) ~-, A.

Note that while Algorithm 13.2 first instantiates variables to functions and
constants, and then unifies some variables, in this example we do the reverse:
first the step from Bo to B1 "undoes" the unification of v and zl, and then
the steps from 81 to 84 "undo" some instantiations of variables. <1

If we want to describe this reversed algorithm in a way symmetr ical to
Algorithm 13.2, then we should use inverse substitutions, instead of the sub-
stitutions 00 , . . . , 0N used in Algorithm 13.2. However, like the inverse of a
function, the inverse of a substitution need not be a function itself, because a
substitution may map occurrences of distinct variables to the same term. In
order to be able to invert substitutions, we need positions of term occurrences
again.

For example, let A = P(x , y) and B = P(g(b),g(b)). Letting 0 =
{z/g(b), y/g(b)}, we have AO = B. If we want to establish an inverse substi-
tution 0 -1 from B to A, we need to map the first occurrence o f t (b) in B to
the variable x, but the second occurrence to y. Thus, whereas a substitution
is a function from variables to terms, an inverse substitution such as 0 -1
cannot be a function from terms to variables.

However, since every term occurrence in B has a unique position, 0 -1
can be regarded as a function from term occurrences to variables. Thus we
can write 0 - I = {(g(b)/x, (1)), (9(b)/y, (2))}, denoting that g(b) at position
(1} should be mapped to x, and g(b) at position (2} should be mapped to y.
Using this notation, we have BO -1 = A.

Notice that this notation can also be used to describe the application
of the ordinary substitution 0 to A. Then 0 = {(x/g(b), (1)), (y/9(b), (2))}.
See [NF91] for a more detailed discussion of inverse substitutions.

E x a m p l e 13.44 Let A = P (f (x , y), z) and B = P(f (g(v) ,g (v)) , b) again,
as in Example 13.43. Then dO = B, where 0 = {x/g(v) , y/g(v), z/b}, and
BO - t = A, where 0 -1 = {(g(v) /x , (1, 1}), (g(v) /y , (1,2}) , (b/z, (2>)}. Now
the following steps give us the chain of upward covers:

1. Bo = B = P(f (g (v) ,g (v)) ,b) .
2. B1 = Boo'o = P(f (g (v) , g (z l)) , b), for ~0 = { (v / z l , (1, 2, 1))}.
3. B2 = 8 1 o " 1 : P(f (z2 ,g (z l)) , b), for (rl = {(9(v)/z2, (1, 1>)}.
4. Ba = B2(r2 = P(f(z21 za), b), for (r 2 = {(g(zl) /za, (1, 2})}.
5. B~ = Bac~a --- P (f (z2 , za), z4) ~ A, for o-3 - {(b/z4, (2})}. <1

As we have seen on p. 234, there are three standard types of upward
covers. If we work out the details of the inverse of the Finite Downward
Cover Chain Algorithm, the following results immediately follow, analogous
to the downward case:

C o r o l l a r y 13.45 Every upward cover of a conventional atom A is a variant
of an upward cover of A of one of the three standard types.

13.7. FINITE CHAINS OF UPWARD COVERS 239

T h e o r e m 13.46 Let A and 13 be atoms such that A >- B. Then there is a
finite chain A ~ Bn ~- Bn-1 ~- ,., ~- B1 ~ Bo = B, where n > 1 and each
Bi+ 1 i8 an upward cover of Bi.

One asymmet ry of the downward and upward cases concerns the upward
covers of • We have shown that every atom, including V and • has a finite
complete set of downward covers. However, in case of a language without
constants but with at least one function symbol of arity _> 1, the bo t tom
element _1_ has no upward covers at all, let alone a finite complete set of
upward covers. In case of a language with at least one constant and at least
one function symbol of arity > 1, there are an infinite number of conventional
ground atoms, each of which is an upward cover of • Together these ground
a toms comprise a complete set of upward covers of • but again _1_ has no
finite complete set of upward covers in this case. However, each conventional
a tom does have a finite complete set of upward covers. The top element T
does not have any upward covers at all, but it has the empty set as a finite
complete set of upward covers, since no element lies "above" T.

C o r o l l a r y 13.47 Every atom other than • has a finite complete set of up-
ward covers.

E x a m p l e 13.48 Let A = P(x, f(y), a), and suppose the language contains
no other function symbols than f , and two constants a and b. The set of
non-equivalent downward covers of A consists of the following:

1. Type 1: P(f(z) , f(y), a), P(x, f (f (z)) , a).
2. Type 2: P(a, f(y), a), P(b, f(y), a), P(x, f(a), a), P(x, f(b), a).
3. Type 3: P(x, f(x), a).

The set of non-equivalent upward covers of A consists of:

1. Type 1: P(x, z, a).
2. Type 2: p (, , f(y), z).
3. Type 3: none. <a

W h y do we c o n s i d e r u p w a r d a n d d o w n w a r d cove r s s e p a r a t e l y ?

The reader may wonder why we take all this trouble about inverse sub-
sti tutions to find chains of upward covers. As we have seen before, if
A0 = A ~- A1 ~ . . . ~- An ~ B is a chain of downward covers from A to
B, then this chain in opposite order is also a chain of upward covers from (a
variant of) B to A. So, why bother with two different ways (one downward,
one upward) of constructing such a chain?

The reason for this is the general direction of search in an application.
In top-down search, we want to find some unknown specialization B of A.
Then we should use substitutions to try and find a chain of downward covers
s tar t ing from A, as in Algori thm 13.2. Since such finite chains always exist for
atoms, we can restrict at tention to downward covers of A, downward covers

240 CHAPTER 13. STRUCTURE OF ATOMS

of downward covers of A, etc. On the other hand, in bot tom-up search we
want to find some unknown generalization A of B. In that case, we should
use inverse substitutions to find a chain of upward covers from B to A, as in
Example 13.44.

13.8 Size

The generality relation ~ on atoms was defined by sabs*;itution. Is there a
quantitative way to express the complexity of an atom, which coincides with
the generality relation __? For instance, A = P(x, y) > P(f (x) , f(y)) = B,
which coincides with the fact that B contains more occurrences of symbols
than A. On the other hand A = P(x, y) >- P(x, x) = C, which coincides
with the fact that A contains more distinct variables than C. Roughly, we
would expect that a more general atom contains fewer symbols, but more
distinct variables than a more specific atom. Based on this intuition, we
can define the following size to measure the complexity of an atom. This
measure was introduced by Reynolds in [Rey70], where it was used to prove
Theorems 13.41 and 13.46. We proved these results directly, bat size is still
an interesting measure for expressing the complexity of atoms.

D e f i n i t i o n 13.49 The size of an atom is defined as follows:

| s i z e (T) = O.

| size(L) = ~ .
* if A is a conventional atom, then

size(A) = the number of symbol occurrences in A
- the number of distinct variables in A. <>

By 'symbol occurrences', we mean occurrences of predicates symbols, function
symbols, constants, and variables.

E x a m p l e 13.50 The atom A = P(x, g(x, y)) contains 5 symbol occurrences:
P, x, g, x, and y. It contains two distinct variables, so size(A) = 5 - 2 = 3.
Similarly, size(P(z , y)) = 3 - 2 = 1 and size(Q(x, f (x) ,g(a, f(a)))) = 8 - 1 =

7. <~

Note that if A ~ B, then size(A) = size(B). The converse does not hold.
For instance, A = P(a, ae) and B = P(aa, a) have the same size, but are not
variants of each other.

L e m m a 13.51 Let A and B be atoms. If B is a downward cover of A, then
size(A) < ize(B)

P r o o f We distinguish the following cases:

| A = T. Then size(A) = 0, and B must be a most general atom
P (x l , . . . , x , .) . Hence size(B) = (n + 1) - n = 1 > 0 = size(A).

13.9. S U M M A R Y 241

�9 A is ground and B = _t_. Then size(A) < c~ = size(B).
�9 A is conventional and B is a type 1 or type 2 cover.

B = AO, where 0 = { z / f (z l , . . . , x , ~) } and x l , . . . , x n are new distinct
variables (n = 0 in case of a type 2 cover). For every occurrence of z in
A, there are n + 1 new symbol occurrences, namely f , xl , �9 �9 x~, in B.
Let k be the number of occurrences o fz in A. Then k > 1 and size(B) =
(number of symbol occurrences in A - k + k , (n + 1)) - (number of
distinct variables in A - 1 + n) = size(A) + n , k - n + 1 > size(A).

�9 A is conventional and B is a type 3 cover.
B = AO, where t9 = { z / x } . A and B contain the same number of
symbol occurrences, but B contains one distinct variable less than A.
Hence size(B) = size(A) + 1. []

The size-complexity coincides with the >- order in the following way:

Proposition 13.52 Let A and B be atoms. I f A ~- B, then size(A) <
size(B).

Proof By Theorem 13.41, there is a finite chain A = A0 >- A1 >- . . . >--
A,~-I >- An ~ B, where n > 1 and each Ai+l is a downward cover ofA~. Using
the previous lemma, we have size(A) < size(A1) < . . . < s ize(A~_l) <
size(An) = size(B) (the final equality holds because variants have equal
size). []

The converse of this result does not hold. For example, if we put A =
P(a, b) and B = P(a, f(b)), then size(A) = 3 < 4 = size(B), but A ~ B.

13.9 Summary

In this chapter, we started by defining the notions of a quasi-order, a par-
tial order, and an equivalence relation. Some important concepts defined for
quasi-ordered sets, are the least upper bound (in ILP terminology: least gen-
eralization) and the greatest lower bound (greatest specialization) of a finite
subset of the ordered set. These notions may be relaxed to minimal upper
bound (minimal generalization) and maximal lower bound (maximal special-
ization), respectively. A lattice is a quasi-ordered set in which any two ele-
ments have a least upper bound and a greatest lower bound. Downward and
upward covers of an element in the quasi-ordered set can be seen as the max-
imal non-trivial specializations and the minimal non-trivial generalizations
of that element, according to this order.

We used these concepts in an analysis of the set of a toms quasi-ordered by
subsumption. Here .A denotes the set of all conventional a toms in a language,
with additional top and bo t tom elements T, _l_. The outcome of this analysis
can be summed up in the following points:

242 CHAPTER t3. STRUCTURE OF ATOMS

| Every finite set of atoms has a greatest specialization (obtainable from
the Unification Algorithm) and a least generalization (obtainable from
the Anti-Unification Algorithm). Thus (A, h) is ~ lattice.

. Every conventional atom has a finite complete set of upward and down-
ward covers. The downward covers of a conventional atom A are ob-
tained by applying each of the three kinds of elementary substitutions
to it, the upward covers are obtained by inverting those substitutions.
The downward covers of T are the most general atoms. The upward
covers of _t_ are the ground atoms.

| If A ~- B, then there is a finite chain of downward covers from A to a
variant of B, and a finite chain of upward covers from B to a variant
of A.

The chapter ended by defining size, which is a measure for the complexity of
atoms. This measure is consistent with ~. Tha t is, if A ~- B, then size(A) <
size(B).

Chapter 15

The Implication Order

15.1 Introduct ion

Subsumption is the generality order that is used most often in ILP. It is
used much more than logical implication. 1 The reasons for this are mainly
practical: subsumption is more tractable and more efficiently implementable
than implication. For instance, subsumption between clauses is decidable
(Section 14.3), while implication is not (Section 7.8). However, a clause C
which implies another clause D, need not subsume this D. For instance, take

C = P(f(x)) +-- P(x)
D ---- P(f2(x)) +-- P(x)

Then C ~ D, but C ~ D. Subsumption is too weak in this case. A further
sign of this weakness is the fact that two tautologies need not be subsume-
equivalent, even though they are logically equivalent.

For the construction of least generalizations, subsumption is again not
fully satisfactory. For example, if S consists of the clauses D1 = P(f2(a)) +--
P(a) and 02 = P(f(b)) +-- P(b), then the LGS of S is P(f(y)) +-- P(x).
On the other hand, the clause P(f(x)) +-- P(x) seems more appropriate
as a least generalization of S, since it implies D1 and D2, and is implied
by the LGS. However, it does not subsume D1. Even for clauses without
function symbols, the subsumption order may still be unsatisfactory. Consider
D1 = P(x, y, z) +-- P(y, z, x) and 92 = P(x, y, z) +- P(z, x, y). The clause
D1 is a resolvent of D2 with D2, and D2 is a resolvent of D1 with D1, so D1
and D2 are logically equivalent. This means that D1 is a least generalization
under implication (LGI) of the set {D~, D2 }. Yet the LGS of these two clauses
is P(x, y, z) +- P(u, v, w), which is clearly an over-generalization. As these
examples also show, the subsumption order is particularly unsatisfactory if

:tit is e a s y t o see t h a t l o g i c a l i m p l i c a t i o n is r e f l ex ive a n d t r a n s i t i v e , a n d h e n c e a q u a s i -
o r d e r on c l a u s e s .

266 CHAPTER 15. THE IMPLICATION ORDER

we consider recursive clauses: clauses where the same predicate symbol occurs
both in a positive and a negative literal. Thus it is desirable to make the step
from the subsumption order to the more powerful implication order.

A further advantage of the implication order is that one can easily com-
pare a set of clauses (a theory) with another theory or clause. For example,
if E = {(P +-- Q), (Q +- R)} and C = P +- R, then we have E ~ C. On the
other hand, subsumption cannot be used here to compare the generality of
E and C, because neither member of E subsumes C.

In this chapter we discuss some of the properties of the implication order.
Firstly, we show that if S is a finite set of clauses containing at least one
non-tautologous function-free clause (apart from this clause, S may contain
a finite number of arbitrary other clauses, including clauses which contain
function symbols), then there exists a computable least generalization (LGI)
of S under implication. Secondly, every finite set of clauses has a greatest spe-
cialization (GSI) under implication. These results are drawn from [NW96b].
The proof of the LGI result makes use of the Subsumption 'Theorem, of some
ideas from [Ide93a, Ide95] concerning a restricted form of implication called
T-implication, and of an important lemma due to Gottlob [Got87].

This LGI result does not solve the general question concerning the exis-
tence of LGIs, but it does provide a positive answer tbr a large class of cases.
These cases may be of great practical significance, since the presence of only
one non-tautologous function-free clause in a finite S already guarantees the
existence and computability of an LGI of S, no matter what other clauses S
additionally contains. Particularly in implementations, the language is often
required to be function-free, as can for instance be seen from the systems we
survey in Section 19.6.

The third property of the implication order that we discuss concerns cov-
ers. Here the negative results from the subsumption order carry over to the
implication order. This result stems from [LN94b].

15.2 Least General izat ions

The question whether every finite set of clauses has a least generalization
under implication (LGI), has been devoted quite a lot of attention. For Horn
clauses, this question has already been answered negatively. The following
example is taken from [MD94].

Let D1 = P(f~(x)) +--- P(x), D2 = P(f3(x)) +- P(x), C1 ---- P(f(x)) ~--
P(x), and 62 = P(f~(y)) +- P(x). Then we have both C1 ~ {D1,D2}
and C2 ~ {D1, D~}. It is not very difficult to see that a Horn clause which is
more specific than either C1 or C2, cannot imply both D1 and D2. For C1: no
resolvent of C1 with itself implies D2, and no clause that is properly subsumed
by C1 still implies D1 and D2. Hence, by the Subsumption Theorem, there
is no proper specialization of C1 that implies D1 and Dg. For C~: every
resolvent of C2 with itself is a variant of C2, and no clause that is properly

15.2. L E A S T G E N E R A L I Z A T I O N S 267

subsumed by C2 still implies D~ and D2. Thus C1 and C2 are both minimal
generalizations under implication (MGIs) of {D1, D2}. Since C1 and C2 are
themselves incomparable under implication, there is no LGI of {D1, D2} in
7/. Whether any two Horn clauses have a finite complete set of MGIs in 7-t,
is at present an open question.

However, the fact that there is no LGI of {D1, D2} in 7-/, does not mean
that D1 and D2 have no LGI in C, since a Horn language is a more restricted
space than a clausal language. In fact, it is shown in [MP94b] that C =
P (f (x)) V p (f2 (y)) V - ,P(x) is an LGI of D1 and D2 in C. For this reason,
it may be worthwhile for the LGI to consider a clausal language instead of
only Horn clauses.

In the next subsection, we show that any finite set of clauses which con-
tains at least one non-tautologous function-free clause, has an LGI in C. An
immediate corollary of this result is the existence of an LGI of any finite
set of function-free clauses. In our usage of the word, a 'function-free' clause
may contain constants, even though constants are sometimes seen as function
symbols of arity 0.

D e f i n i t i o n 15.1 A clause is function-free if it does not contain function
symbols of arity 1 or more. A set of clauses is function-free if all its members
are function-free. <5

1 5 . 2 . 1 A S u f f i c i e n t C o n d i t i o n for t h e E x i s t e n c e o f an
L G I

In this subsection, we show that any finite set S of clauses containing at least
one non-tautologous function-free clause, has an LGI in C. We start with
some lemmas, the first of which was originally proved by Gottlob in [Got87].
It is in fact an immediate corollary of the Subsumption Theorem:

L e m m a 15.2 (G o t t l o b) Let C and D be non-tautologous clauses, C p~ and
C ~ g be the sets of positive and negative literals in C, respectively, and D p~
and D ~ g be the sets of positive and negative literals in D. I f C ~ D, then
C p~ ~ D p~ and C '~g ~-- D ~g .

Proof Suppose C ~ D. Then since C v~ ~ C, we have C p~ ~ D. C p~
contains only positive literals, so it cannot be resolved with itself. Then it
follows from Theorem 5.17 that C; ~ ~ D. But then C p~ must subsume the
positive literals in D, hence C p~ ~ D TM. Similarly C ~g • D ~g. []

An important consequence of this lemma concerns the depth of clauses,
defined as follows:

D e f i n i t i o n 15.3 Let t be a term. If t is a variable or constant, then the
depth o f t is 1. I f t = f (t l , . . . , t ~) , n > 1, then the depth o f t is 1 plus the

268 CHAPTER 15. THE IMPLICATION ORDER

depth of the ti with largest depth. The depth of a clause C is the depth of
the term with largest depth in C. O

Note that a clause is function-free iff it has depth 1.

E x a m p l e 15.4 The term t = f(a, x) has depth 2. The clause C = P(f(x)) e-
-P(g(I(a), a)) has depth 5, since 9(f(x) , a) has depth 3. <1

It follows from Gottlob's lemma that if C ~ D, then the depth of C is
smaller than or equal to the depth of D--otherwise the positive part of C
could not subsume the positive part of D, or the negative part of C could not
subsume the negative part of D. For instance, take D = P(x, f(x,g(y))) +--
P(y(a), b), which has depth 3. Then a clause C containing a term f (x , g2 (y))
(depth 4) cannot imply D.

L e m m a 15.5 Let E be a set of clauses, C be a clause, and o" be a Skdera
substitution for C with respect to E. Then E ~ C iff E ~ Ca.

P r o o f
:~: Obvious.
~ : Suppose C is not a tautology, and let o" = { a l / a l , , , . ,an~an}. If

E ~ Ca, it follows from the Subsumption Theorem (Theorem 5.i7} that
there is a D such that E br D, and D _ C~r. All constants in D also appear
in clauses in E, so c, is a Skolem substitution for C with respect ~o D. Then
by Lemma 5.16 we have D _. C, hence E ~ C. []

The proof in this section can be divided in two steps. First, we use the Sub-
sumption Theorem to adapt Theorem 5.9. That is, if C ~ D, C is function-
free and cr is a Skolem substitution for D with respect to C, then we can
effectively determine which ground instances of C are needed for a deduction
of De. Secondly, we can then use the finiteness of the number of these ground
instances to establish the existence of an LGI.

D e f i n i t i o n 15.6 Let C be a clause, xl, �9 �9 x~ all distinct variables in C, and
T a set of terms. Then the instance set of C with respect to T is 27(C, T) =
{CO t 0 = { x l / t l , . . . , a n / t n } , where t~ E T, for every 1 < i < n}. If E =
{ C , , . . . , Ck} is a set of clauses, then the instance set of E with respect to T
is ~(S, T) = Z(C1, T) U , . . U Z(Ck, T). 0

E x a m p l e 15.7 If C = P(x) V Q(y) and T = {a,y(z)}, then Z(C,T) =
{(P(a) V Q(a)), (e(a) v Q(/(z))), (P(f(z)) v e (a)) , (P(f(z)) v O(f(z)))}. <1

A term set of a set S of clauses by some Skolem substitution cr is a finite
set of ground terms, defined as follows:

D e f i n i t i o n 15.8 Let S be a finite set of clauses, and c~ be a Skotem substi-
tution for S. Then the term set of S by cr is the set of all terms (including
subterms) occurring in Sea. �9

15.2. LEAST GENERALIZATIONS 269

E x a m p l e 15.9 The term set of D = P(p(x) , y, z) +- P(y, z, f~(x)) by o- =
{x/a, y/b, z/c} is T = {a, f(a), f2(a), b, c}. <3

Consider C = P(x, y, z) +- P(z, x, y), and D, cr and T as defined in the
above example. Then C ~ D, and also Z(C, T) ~ Do-, since Do- is a resolvent
of P(f2(a), b, c) +-- P(c, f2(a) , b) and P(c, f2(a) , b) +-- P(b, c, f2(a)), which
are in :Z(C, T). As we will show in the next lemma, this holds in general: if
C ~ D and C is function-free, then we can restrict attention to the ground
instances of C instantiated to terms in the term set of D by some o-.

The proof of Lemma 15.10 uses the following idea. Consider a derivation
of a clause E from a set E of ground clauses. Suppose some of the clauses
in E contain terms not appearing in E. Then any literals containing these
terms in E must be resolved away in the derivation. This means that if we
replace all the terms in the derivation that are not in E, by some other term
t, then the result will be another derivation of E. For example, the left of
Figure 15.1 shows a derivation of length 1 of E. The term f2 (b) in the parent
clauses does not appear in E. If we replace this term by the constant a, the
result is another derivation of E (right of the figure).

P(b) ~-- P(f2(b)) P(f2(b)) 4- Q(a,f(a))

E = P(b) +- Q(a, f(a))

P(b) 4-- P(a) P(a) ~ Q(a,](a))

E = P(b) ~ Q(a,J(a))

F igure 15.1: Transforming the left derivation yields the right derivation

L e m m a 15.10
substitution for
C ~ D iffZ(C,

P r o o f
~=: Suppose

Now C ~ D by

Let C be a function-free clause, D be a clause, o- be a Skolem
D with respect to {C}, and T be the term set olD by or. Then
T) Do-.

Z(C, T) ~ Do-. Since C ~ Z(C, T), it follows that C ~ Do-.
Lemma 15.5.

~ : Suppose C ~ D. If D is a tautology, then Do" is a tautology, so this
case is obvious. Suppose D is not a tautology, then Do" is not a tautology.
Since C ~ Do-, it follows from Theorem 5.9 that there exists a finite set E
of ground instances of C, such that E ~ Do-. By the Subsumption Theorem,
there exists a derivation from E of a clause E, such that E _ Do'. Since E
is ground, E must also be ground, so we have E C Do-. This implies that E
only contains terms from T.

Let t be an arbi trary term in T, and let E ~ be obtained from E by replacing
every te rm in clauses in E which is not in T, by t. Note that since each clause
in E is a ground instance of the function-free clause C, every clause in E ~ is
also a ground instance of C. Now it is easy to see that the same replacement

270 CHAPTER 15. THE IMPLICATION ORDER

of terms in the derivation of E from E results in a derivation of E from E~:
(1) each resolution step in the derivation from E can also be carried out in
the derivation from E ~, since the same terms in E are replaced by the same
terms in E ~, and (2) the terms in E that are not in T (and hence are replaced
by t), do not appear in the conclusion E of the derivation.

Since there is a derivation of E from E ~, we have E ~ ~ E, and hence
E ~ ~= Do.. E ~ is a set of ground instances of C and all terms in E ~ are terms
in T, so E' C_ Z(C, T). Hence Z(C, T) ~ Do'. []

Lemma 15.10 cannot be generalized to the case where C contains function
symbols of arity > !, take C = P(f (x) , y) +-- P(z , x) and D = P(f (a) , a) +-
P(a, f(a)) . Then T = {a, f (a)} is the term set of D, and we have C ~ D,
yet it can be seen that Z(C, T) ~= D. The argument used in the previous
lemma does not work here, because different terms in some ground instance
need not relate to different variables. For example, in the ground instance
P(f2(a) , a) +- P(a, f(a)) of C, we cannot just replace f~(a) by some other
term, for then the resulting clause would not be an instance of C.

On the other hand, Lemma 15.10 can be generalized to a set of clauses
instead of a single clause. If E is a finite set of function-free clauses, C is an
arbitrary clause, and o. is a Skolem substitution for C with respect to E, then
we have that E ~ C iff I (E , T) ~ Ccr. The proof is almost literally the same
as above.

This result implies that E ~ C is reducible to an implication Z(E, T)
Co. between ground clauses. Since, by the next lemma, implication between
ground clauses is decidable, it follows that E ~ C is decidable in case E is
function-free.

L e m m a 15.11 The problem whether E ~ C, where E is a finite set of
ground clauses and C is a ground clause, is decidable.

P r o o f Let C = L1 V . . . V Ln, and A be the finite set of all ground atoms
occurring in E and C. Now:
2 ~ C iff (by Proposition 2.37)
E U { - ,L1 , . . . , - ,L~} is unsatisfiable iff (by Proposition 3.30)
E U {-~Lt , . . . , - - ,L ,} has no Herbrand model iff
no subset of A is a Herbrand model of E U {-~L1,... ,-~L~}.
Since .4 is finite, the last statement is decidable. []

C o r o l l a r y 15.12 The problem whether E ~ C, where E is a finite set of
function-free clauses and C is a clause, is decidable.

The next sequence of lemmas leads to our LGI result.

L e m m a 15.13 Let S be a finite set of non-tautologous clauses, V = {xl , . . . ,
Xm} be a set of variables, and let G = {C1, C2, . . . } be a (possibly infinite)

15.2. LEAST GENERALIZATIONS 271

set of generalizations of S under implication. Then the set G ~ = Z(C1, V) U
Z(Cs, V) U . .. is a finite set of clauses.

P r o o f Let d be the maximal depth of the terms in clauses in S. It follows
from Lemma 15.2 that G (and hence also G 0 cannot contain terms of depth
greater than d, nor predicate symbols, function symbols or constants other
than those in S. The set of literals which can be constructed from predicate
symbols in S, and from terms of depth at most d consisting of function
symbols and constants in S and variables in V, is finite. Hence the set of
clauses which can be constructed from those literals is also finite. G ~ is a
subset of this set, so G ~ is a finite set of clauses. []

L e m m a 15.14 Let C be a function-free clause, D be a clause, and o- be
a Skolem substitution for D with respect to {C}. Suppose C ~ D, and let
T = { t l , . . . , t ~ } be the term set of D by cr, V = { x l , . . . , x , ~ } be a set of
variables, andre >_ n. If E is an LGS of Z(C, V), then E ~ D.

P r o o f Let 7 = {x l / t l , . . . , x~ / t n , x~+l / t n , . . . ,Xm/ t~} (it does not mat-
ter to which terms the variables x~+l, . . . , x~ are mapped by 7, as long as
they are mapped to terms in T). Suppose Z(C, V) = {Cpl , . . . , Cpk}. Then
Z(C, T) = {Cp17 , . . . , Cpk7}. Let E be an LGS of Z(C, V) (note that E must
be function-free). Then for every 1 < i < k, there are 0i such that EO{ C_ Cpi.
This means that EOi7 C Cpi7 and hence EOi7 ~ CpiT, for every 1 < i < k.
Therefore E ~ Z(C, T).

Since C ~ D, we know from Lemma 15.10 that Z(C, T) ~ Do., hence
E ~ Do-. Furthermore, since E is an LGS of Z(C, V), all constants in E
also appear in C, hence all constants in E must appear in D. Thus o- is also
a Skolem substitution for D with respect to {E}, and we have E ~ D by
Lemma 15.5. []

Consider C = P(x, y, z) +- P(y, z, x) and D =+-- Q(w). Both C and D
imply the clause E = P(x, y, z) +- P(z, x, y), Q(b). Now note that C U D =
P(x, y, z) +- P(y, z, x), Q(w) also implies E. This holds for clauses in general:

L e m m a 15.15 Let C, D, and E be clauses such that C and D are standard-
ized apart. I f C ~ E and D ~ E, then C U D ~ E.

P r o o f Suppose C ~ E and D ~ E, and let M be a model of C U D . Since C
and D are standardized apart, the clause C U D is equivalent to the formula
V(C) V V(D) (where V(C) denotes the universally quantified clause C). This
means that M is a model of C or a model of D. Now it follows from C ~ E
or D ~ E that M is also a model of E. Therefore C U D ~ E. []

Now we can prove the existence of an LGI of any finite set S of clauses
which contains at least one non-tautologous and function-free clause. In fact

272 CHAPTER 15. THE IMPLICATION ORDER

we can prove something stronger, namely that this LGI is a special LGI,
defined as follows:

D e f i n i t i o n 15.16 Let C be a clausal language, and S be a finite subset of
C. An LGI C of S in C is called a special LGI of S in C, if C' __ C for every
generalization C ~ C C of S under implication.

Note that if D is an LGI of a set containing at least one non-tautologous
function-free clause, then by Lemma 15.2 D is itself function-free, because it
should imply the function-free clause(s) in S. For instance, C = P(x, y, z) +-
P(y, z, x), Q(w) is an LGI of D1 = P(x, y, z) +- P(y, z, x), Q(f(a)) and D2 =
P(x, y, z) +- P(z, x, y), Q(b). Note that this LGI is properly subsumed by
the LGS of {D1, Dy}, which is P(x, y, z) +-- P(x ' , ~' z " y ,),Q(w). An LGI may
sometimes be the empty clause [], for example if S = {P(a) , Q(a)}.

T h e o r e m 15.17 (E x i s t e n c e o f spec ia l L G I in C) Let C be a clausal lan-
guage. If S is a finite set of clauses from g, and S contains at least one
non-tautologous function-free clause, then there exists a special LGI of S in
C.

P r o o f Let S = { D 1 , . . . , D . } be a finite set of clauses from C, such that
S contains at least one non-tautologous function-free clause. We can as-
sume without loss of generality that S contains no tautologies. Let cr be
a Skolem substitution for S, T = { t l , . . . , t r n} be the term set of S by ~,
V = {x l , . . . ,Xm } be a set of variables, and G = {C1,C2,. . .} be the set of
all generalizations of S under implication in C. Note that [] E G, so G is
not empty. Since each clause in G must imply the function-free clause(s) in
S, it follows from Lemma 15.2 that all members of G are function-free. By
Lemma 15.13, the set G' = Z(CI, V) UZ(Cy, V) U. . . is a finite set of clauses.
Since G t is finite, the set of distinct Z(Ci, V)s is also finite. For simplicity, let
{Z(C1, l f) , . . . ,Z(Ck, V)} be the set of all distinct Z(Ci, V)s.

Let Ei be an LGS ofZ(Ci, V), for every 1 _< i _< k, such that E 1 , . . . , E k
are standardized apart. For every 1 < j <_ n, the term set of Dj by r is
some set { t j1 , . . . , t j~} C_ T, such that m > j , . From Lemma 15.14, we have
that Ei ~ Dj, for every 1 < i < k and 1 _< j < n, hence Ei ~ S. Now let
F = E1 O . . . U Ek, then we have F ~ S from Lemma 15.15.

To prove that F is a special LGI of S, it remains to show that Cj ~ F, for
every j _> 1. For every j > 1, there is an i (1 < i < k), such that :T.(Cj, V) =
Z(C/, V). So for this i, Ei is an LGS ofZ(Cj, V). Since every clause in Z(Cj, V)
is an instance of C~, we have that Cj is itself also a generalization of I (C j , V)
under subsumption, hence Cj ~ Ei. Then finally Cj ~ F, since Ei C_ F. []

As a consequence of this result, every finite set S in which all clauses are
function-free, has an LGI in C.

C o r o l l a r y 15.18 Let C be a clausal language. Then for every finite set of
function-free clauses S C C, there exists an LGI of S in C.

15.2. L E A S T G E N E R A L I Z A T I O N S 273

P r o o f Let S be a finite set of function-free clauses in C. If S only contains
tautologies, any tautology will be an LGI of S. If S contains some non-
tautologous clauses, then by the previous theorem, there is a special LGI of
S. []

This corollary is not trivial, since even though the number of Herbrand
interpretations of a language without function symbols is finite (due to the
fact that the number of all possible ground atoms is finite in this case), S
may nevertheless be implied by an infinite number of non-equivalent clauses.
This may seem like a paradox, since there are only finitely many categories
of clauses that can "behave differently" in a finite number of finite Her-
brand interpretations. Thus it would seem that the number of non-equivalent
function-free clauses should also be finite. This is a misunderstanding, since
logical implication (and hence also logical equivalence) is defined in terms
of all interpretations, not just Herbrand interpretations. For instance, define
D1 -= P(a, a) and D2 = P(b, b), C,~ = {P(xi , xj) I i r j, 1 <_ i, j <_ n}. Then
we have C~ ~ {Di, D2}, C, ~ (7,~+i and Cn+i ~ Cn, for every n > 1 (see
the proof of Proposition 14.32).

The general question concerning the existence of an LGI in clausal lan-
guages remains open. We will briefly mention here another attempt to answer
this question, using self-saturated clauses [MP94b]. A clause is self-saturated
if it is subsumed by any clause which logically implies it. A clause D is a self-
saturation of C, if C and D are logically equivalent and D is self-saturated.
Note that if C is a function-free non-tautologous clause, and D is a special
LGI of the set {C}, then D is logically equivalent to C and is subsumed by
any clause which logically implies C. Thus every such C has a self-saturation
D. Now, if two clauses C1 and C2 have self-saturations D1 and D2, respec-
tively, then an LGS of D1 and D2 is also an LGI of C1 and C2. This solves
our question concerning the existence of LGIs for clauses which have a self-
saturation. However, it is also shown in [MP94b] that there exist clauses
which have no self-saturation, so the concept of self-saturation cannot solve
our question in general.

Though the general question remains open for clausal languages, we do
have the following result, which says that if a set S has a minimal generaliza-
tion under implication (MGI), then this is also a least generalization under
implication (LGI).

P ropos i t ion 15.19 Let C be a clausal language, and S be a finite subset of
C. I f C E C is an MGI of S in C, then C is an LGI of S in C.

P r o o f Suppose some C E Cis an M G I o f S i n C , but not an L G I o f S in
C. Then C N S, but there also is a D E C, such that D ~ S and D ~= C.
We can assume C and D are standardized apart. Then by Lemma 15.15, we
have C U D ~ S. Since C C CU D, we also have C ~ CUD. On the other

274 CHAPTER 15. THE IMPLICATION ORDER

hand, since D ~ C U D and D ~= C, we must have C U D ~ C. Thus we have
C ~ (C U D) ~ S, and C and C U D are not equivalent. But this contradicts
the assumption that C is an MGI of S in C. []

15.2 .2 T h e LGI is C o m p u t a b l e

In the previous subsection we proved the existence of an LGI in C of every
finite set S of clauses containing at least one non-tautologous function-free
clause. In this subsection, we will establish the computability of such an LGI.
The next algorithm, extracted from the proof of the previous section, com-
putes this LGI of S.

A l g o r i t h m 15.1 (L G I A l g o r i t h m)
I n p u t : A finite set S of clauses, containing at least one non-tautologous
function-free clause.
O u t p u t : An LGI of S in C.

1. Remove all tautologies from S, call the remaining set S ~.
2. Let m be the number of distinct terms (including subterms) in S',

let V = {x . l , . . . , x,~}. (Notice that this m is the same number as the
number of terms in the term set T used in the proof of Theorem 15.17.)

3. Let G be the (finite) set of all clauses which can be constructed from
predicate symbols and constants in S' and variables in V.

4. Let {UI , . . . , /2~} be the set of all subsets of G.
5. Let Hi be an LGS of Ui, for every t < i < n (these Hi can be computed

by the LGS Algorithm of Section 14.7).
6. Remove from {H1, . . . , H,~} all clauses which do not imply S ~ (since each

Hi is function-free, by Corollary 15.12 this implication is decidable),
and standardize the remaining clauses { H 1 , . . . , Hq} apart.

7. P~eturn the clause H = H1 U . . . U Hq.

The correctness of this algorithm follows from the proof of Theorem 15.17.
First notice that H ~ S by Lemma 15.15. Furthermore, note that all
Z(C~, V)s mentioned in the proof of Theorem 15.17 are elements of the set
{U1 , Un}. This means that for every Ei in the set { E l , . . . , Ek} mentioned
in that proof, there is a clause Hj in { H i , . . . , Hq} such that Ei and Hj are
subsume-equivalent. Then it follows that the LGI F = E1 U . . . U Ek of that
proof subsumes the clause H = H1 U . . . U Hq that our algorithm returns. On
the other hand, F is a special LGI, so F and H must be subsume-equivalent.

Suppose the number of distinct constants in S' is c, and the number
of distinct variables in step 2 of the algorithm is m. Furthermore, suppose
there are p distinct predicate symbols in S', with respective arities al, . . . , a v.
Then the number of distinct atoms that can be formed from these constants,

= ~ = l (~ + variables and predicate symbols, is 1 ~ rn) ~ and the number of
distinct literals that can be ibrmed, is 2.t. The set G of distinct clauses which

15.3. GREATEST SPECIALIZATIONS 275

can be formed from these literals is the power set of this set of literals, so
= ., 2 2~~ IG[2 2l. Then the set {Ui , . . U~} of all subsets of G contains 2 IGj =

members.
Thus the algorithm outlined above is not very efficient (to say the least).

A more efficient algorithm may exist, but since implication is harder than
subsumption and the computation of an LGS is already quite expensive, we
should not put our hopes too high. Nevertheless, the existence of the LGI
algorithm does establish the theoretical point that the LGI of any finite set
of clauses containing at least one non-tautologous function-free clause, is
effectively computable.

Theorem 15.20 (Computability of LGI) Let C be a clausal language. [f
S is a finite set of clauses from C, and S contains at least one non-tautologous
function-free clause, then the LGI o r s in C is computable.

15.3 Greatest Specializations

Now we turn from least generalizations under implication to greatest special-
izations. Finding least generalizations of sets of clauses is common practice
in ILK On the other hand, the greatest specialization, which is the dual of
the least generalization, is used hardly ever. Nevertheless, the GSI of two
clauses Di and DB might be useful. For example, suppose we have one pos-
itive example e +, and two negative examples e~- and e~-, 'and suppose that
Di implies e + and e~-, while D2 implies e + and e~. Then it might very well
be that the GSI of D1 and D2 still implies e +, but is consistent with respect
to {e 7 , e~ }. Thus we could obtain a correct specialization by taking the GSI
of Di and D2.

It is obvious from the previous sections that the existence of an LGI of S
is quite hard to establish. For clauses which all contain function symbols, the
existence of an LGI is still an open question, and even for the case where S
contains at least one non-tautologous function-free clause, the proof was far
from trivial. However, the existence of a GSI in C is much easier to prove. In
fact, a GSI of a finite set S is the same as the GSS of S, namely the union
of the clauses in S after these are standardized apart.

To see the reason for this asymmetry, let us take a step back from the
clausal framework, and consider full first-order logic for a moment. If r and
r are two arbitrary first-order formulas, then it can be easily shown that
their least generalization is just 4i A r and their greatest specialization is
just r V r See Figure 15.2.

Now suppose r and 42 are clauses. Then why do we have a problem
in finding the LGI of 4i and 427 The reason for this is that r A 52 is not
a clause. Instead of using r A r we have to find some least clause which
implies both clauses 4i and 4B. Such a clause appears quite hard to find
sometimes.

276 CHAPTER 15. THE' IMPLICATION ORDER
r ^ r

Figure 15.2: Least generalization and greatest specialization in first-order logic

On the other hand, in case of specialization there is no problem. Here
we can take r V r as GSI, since r V r is equivalent to a clause, if we
handle the universal quantifiers in front of a clause properly. If r and r are
standardized apart, then the formula r V r is equivalent to the clause which
is the union of r and r This fact was used in the proof of Lemma 15.15.

Suppose S = {D1,.o., D,~}, and D i , . . . , D~ are variants of these clauses
which are standardized apart. Then clearly D = D~ U . . . U D~ is a GSI
of S, since it follows from Lemma 15.15 that any specialization of S under
implication is implied by D. Thus we have the following result:

Theorem 15.21 (Existence of GSI in C) Let d be a clausal language.
Then for every finite non-empty S C C, there exists a GSI of S in C~

The previous theorem holds for clauses in general, so in particular also
for function-free clauses. Furthermore, Corollary 15.18 guarantees us that in
a function-free clausal language, an LGI of every finite S exists. This means
that the set of function-free clauses quasi-ordered by logical implication, is
in fact a lattice.

C o r o l l a r y 15.22 Let C be a function-free clausal language. Then (C, ~} is
a lattice.

In case of a Horn language 7/, we cannot apply the same proof method
as in the case of a clausal language, since the union of two Horn clauses need
not be a Horn clause itself. In fact, we can show that not every finite set
of Horn clauses has a GSI in ~ . Here we can use the same clauses that we
used to show that sets of Horn clauses need not have an LGI in 7-/, this time
taking the perspective of specialization instead of generalization.

Again, let D1 : P(f2(x)) +-- P(x), D2 = P(f3(x)) +- P(x), C1 =
P(f(x)) +- P(x), and 62 = P(f~(y)) e-- P(x). Then Cl ~ {D1,D2} and
C~ ~ {D1, D2}, and there is no Horn clause D such that D ~ 91, D ~ D2,
C1 ~ D and C2 ~ D. Hence there is no GSI of {C1, C2} in 7~. Whether any
two Horn clauses have a finite complete set of maximal specializations (MSI)
under implication in// / is an open question.

15.4. COVERS IN THE IMPLICATION ORDER 277

15.4 Covers in the Implication Order

In this section, we will extend the negative results of the previous chapter
concerning upward and downward covers co the case of implication. This
extension is based on the fact that the clauses used there were non-recursive.

Definit ion 15.23 A clause is recursive if it contains a positive literal and
a negative literal with the same predicate symbol. Otherwise the clause is
called non-recursive.

E x a m p l e 15.24 The clauses P(f (x)) +-- P(x) and {P(a), Q(x),-~P(f(y))}
are recursive, {P(a),--,Q(x, a)} and {P(x, y), P(y, x)} are non-recursive.

Note that not every recursive clause can be resolved with itself, for in-
stance P(x, a) 4-- P(x, b). <~

It can be shown that for non-recursive clauses, subsumption and impli-
cation coincide. For instance, if D = {P(xl , x2), P(x2, Xl)}, then C ~ D iff
C _ D. This result follows from the Subsumption Theorem, and the fact that
a non-recursive clause cannot be resolved with itself.

L e m m a 15.25 Let C and D be non-recursive clauses. Then C ~ D iff C ~-
D.

P r o o f
~ : Obvious.
~ : Suppose C ~ D. Then by the Subsumption Theorem (Theorem 5.17),

there is a clause E such that C ~-~ E and E _ D. But since C is non-recursive,
the only clause that can be derived from C, is C itself. It follows that E = C,
and hence C ~ D. []

Let us denote the case where C properly implies D (i.e., C ~ D and
D ~ C) by C >i D. Then we also have the next lemma:

L e m m a 15.26 Let C and D be non-recursive clauses. Then C >i D iff
C>.-D.

P r o o f C >i D iff
C ~ D and D ~ C iff (by the previous lemma)
C ~- D and D ;~ C iff
C ~ - D .

Using this result, we can extend Proposition 14.32 to the implication
order:

Propos i t ion 15.27 Let C be a clausal language containing a binary predicate
symbol P. Then C = {P(xl , xl)} has no upward cover in (C, ~) .

278 CHAPTER 15. THE IMPLICATION ORDER

P r o o f Suppose D is an upward cover of C in {C, ~). Then D >i C, so it
follows from Gottlob's Lemma that D only contains positive literals, hence
D is non-recursive. Now by the previous lemma we have D ~ C. By Proposi-
tion 14.32, D cannot be an upward cover of C in (C, ___}, so there must be an E
such that D ~- E ~ C. Because C is non-recursive, E must be non-recursive
as well. But then by the previous lemma, we must also have D >i E >i C,
contradicting the assumption that D is an upward cover of C in (C, ~}. []

Proposition 14.40 can be extended analogously to the implication order:

P r o p o s i t i o n 15,28 Let C be a clausal language containing a binary predicate
symbol P, Then C -7- {P(•l, x2), P(x2, xx)} has no finite complete set of
downward co~e~'s in (C, ~).

As in the case of subsumption, these results can be translated to the case
where C only contains unary predicate symbols and a binary function symbol
f , by replacing every P(x , y) by Q(f(x, y)). Also, the negative results of this
section can be translated to Horn clauses.

15.5 Summary

This chapter discussed the implication order on a clausal language. Impli-
cation between (Horn) clauses is undecidable, but using implication as a
generality order is more desirable than using subsumption~ since it is better
able to deal with recursive clauses. The main results on the implication order
can be summed up as follows:

| Every finite set of clauses which contains at least one function-free non-
tautologous clause, has a computable least generalization (LGI) under
implication in C. Every finite set of clauses has a greatest specialization
(GSI) under implication in C. As a corollary, if C is a function-free
clausal language, then (C, ~) is a lattice.

| There exist pairs of Horn clauses which do not have an LGI in 7/.
Similarly, there exist pairs of Horn clauses which do not have a GSI in
7t.

| For general clauses which all contain function symbols, the LGI-question
is still open.

| Some clauses, such as {P(x l , xt)}, have no upward covers.
Some clauses, such as {P(xl, x2), P(x~, xl)}, have no finite complete
set of downward covers.

Chapter 16

Background Knowledge

16.1 I n t r o d u c t i o n

The generality orders of the previous two chapters, subsumption and logical
implication, were treated as relations between two individual clauses. The
background knowledge that figured prominently in our problem setting of
Chapter 9 was left out of consideration. In this chapter, we will see how we
can incorporate background knowledge into our generality orders.

Why does background knowledge matter? The answer is that combining
the examples with what we already know often allows for the construction
of a more satisfactory theory than can be glanced from the examples by
themselves. To illustrate this, we consider the following two clauses as positive
examples (not just ground atoms as examples, this time): 1

D1 = CuddlyPet(x) +- Small(x), Fluffy(x), Dog(x)
D2 = CuddlyPet(x) +-- Fluffy(x), Cat(x)

Given only these clauses, the most obvious way to generalize them is to take
their LGS or LGI, which is the rather general clause

C = CuddIyPet(x) +- Fluffy(x)

However, suppose we have the following definite program B which expresses
our background knowledge.

Pet(x) ~- Cat(x)
Pet(x) +- Dog(x)
Small(x) ~- Cat(x)

Given B, we may also use the following clause as generalization:

1 Th i s e x a m p l e a n d the re la ted E x a m p l e s 16.2, 16.19, 16.33 are s imi la r to e x a m p l e s g iven
in [BunS8].

280 CHAPTER 16. BACKGROUND KNOWLEDGE

D = CuddIyPet(x) 4-- Small(x), Fluffy(x), Pet(x),

since D together with B implies both examples. 2 Note that without the back-
ground knowledge B, our clause D neither subsumes nor implies the examples.
If we interpret this example in human terms, the generalization D is much
more satisfactory than C. After all, not every fluffy object is a cuddly pet--
consider teddy bears. Thus the use of background knowledge allows us to find
a better theory.

Given the usefulness of background knowledge, we should find a formal-
ized way to reckon with it in our generality order. In this chapter we will dis-
cuss three such ways: Plotkin's relative subsumption [Plo71a, Plo71b], relative
implication, and finally Buntine's generalized subsumption [Bun86, Bun88].
Relative subsumption and relative implication apply to arbitrary clauses and
the background knowledge may be an arbitary finite set of clauses. General-
ized subsumption only applies to definite program clauses and the background
knowledge should be a definite program.

Of these three orders, the discussion of generalized subsumption will be
the most technical. In order not to put off the reader, we save it for last,
discussing relative subsumption and relative implication first. Each of the
three orders will be related to some form of deduction. We can use these
three forms of deduction to show that generalized subsumption is a weaker
quasi-order than relative subsumption, and relative subsumption is in turn a
weaker order than relative implication. In other words, if C is more general
than D with respect to some definite program B according to generalized sub-
sumption~ it is also more general according to relative snbsumption, while the
converse need not hold. And similarly, if C is more general than D relative
to some set of clauses B according to relative subsumption, it is also more
general according to relative implication, while the converse need not hold.
We will show that both relative and generalized subsumption reduce to ordi-
nary subsumption in case of non-tautologous clauses and empty background
knowledge. Similarly, with empty background knowledge relative implication
is simply logical implication.

Implication relative to background knowledge B is defined as follows: C
logically implies D relative to B if {C} t5 B ~ D. The link between relative
implication and the normal problem setting of Chapter 9 is obvious: if E +
is a set of positive examples and C is a least generalization under relative
implication (relative to B), then we have {C}UB D E+. Thus such least gen-
eralizations may be used to generalize examples while taking into account the
background knowledge. The definitions of relative and generalized subsump-
tion are somewhat more complicated, but since each of these orders implies
relative implication, we also have {C} U 8 ~ E + if C is a least generalization
under relative or generalized subsumption.

~Actually, it can be shown that this D is a least generalization under generalized sub-
sumption (LGGS) with respect to/3 of these two examples. See Example 16.33.

16.2. RELATIVE SUBSUMPTION 281

Since empty background knowledge reduces relative and generalized sub-
sumption to ordinary subsumption, and relative implication to ordinary im-
plication, the negative results on covers that we proved in the last two chap-
ters for subsumption and implication, carry over to the three orders of this
chapter: some clauses do not have finite complete sets of upward or down-
ward covers in these orders. As to the existence and non-existence of least
generalizations or greatest specializations in the three orders, we will only
pay attention to least generalizations, since these are used much more often
than their dual. In general, whichever of the three orders we use, least gen-
eralizations do not always exist in the presence of background knowledge.
However, for each of these orders we will prove that certain restrictions on
the background knowledge guarantee the existence of a least generalization.

16.2 Relative Subsumption

This section discusses Plotkin's relative subsumption [Plo71a, Plo71b].

1 6 . 2 . 1 D e f i n i t i o n a n d S o m e P r o p e r t i e s

If C is more general than D, under ordinary subsumption, then we have Ct~ C
D for some tL This means that V(C0 --+ D) is a tautology: ~ V(C~ -~ D). We
can take background knowledge into account by making V(C0 --+ D) relative
to the background knowledge. That is, C subsumes D, relative to background
knowledge ~, if/~ ~ Y(C0 --+ D)3

D e f i n i t i o n 16.1 Let C and D be clauses, and/~ be a set of clauses. We say
C subsumes D relative to B, denoted by C }-s D, if there is a substitution
such that B ~ V(CO -+ D). The ks-order is called relative subsumption, and
B is the background knowledge of this order. <5

In this chapter, both '+-' and :--+' are used to denote the implication-
connective. The former is only used in Horn clauses, the latter everywhere
else. Note that Y(C0 --+ D) will usually not be a clause.

E x a m p l e 16.2 Let C and D be as follows:

C = Small(x) +-- Cat(x)
D = CuddlyPet(x) +- Fluffy(x), Cat(x)

and let B consist of the following two clauses:

Pet(x) +-- Cat(x)
CuddlyPet(x) Small() Flu# (x), Pet(x)

3In his PhD thesis, Plotkin also gave an alternative definition of subsumption relative
to background knowledge B: C ___g Dig there is a clause E such that g ~ V(E ++ D) and
C ~ E. He showed this definition to be equivalent to the one we adopt here [Plo71a, p. 49].

282 CHAPTER 16. BACKGROUND K N O W L E D G E

C subsumes D relative to B. Informally, this can be seen as follows: suppose
for every x it holds that if x is a cat, then x is small (i.e., C is true). Using
the first clause of B, we also have that if x is a cat, then x is a pet. Thus if x
is a fluffy cat, then x is small, fluffy, and a pet, and by the second clause of
B, x is a cuddly pet (i.e., D is true).

More formally, we have C ~ D because B ~ V(Ce -+ D). <~

Reflexivity and transitivity are easily proved, so relative subsumption is
a quasi-order on clauses. Note that each set of clauses B induces its own
quasi-order: the quasi-orders induced by B = {P(a)} and 13 = {P(a), P(b)}
are different. Note also that if D is a tautology, then C >_is D for any C
and B. Furthermore, it is also easy to see that if C ___e D and B C_ B', then
C h i s ' D.

We will now show that relative subsumption is stronger than subsumption.
Firstly, it is easy to see that subsumption implies relative subsumption. If
C _ D, then CO C_ D, for some 0. But then V(C0 -+ D) is a tautology, and
13 ~ V(CO --+ D) for any B. Hence if C ' D, then C ___~ D.

Now consider propositional atoms P, Q, and /~. Let C = P, D = Q,
and B = {Q +-- P}. Then B ~ (C -~ D), so C >-~ D. Since C ~ D, we
see that relative subsumption does not imply subsumption. This even holds
for the case where B is empty and D is a tautology: if B = t~, C = Q, and
D = P <-- P, then C __.s D, but C ~ D. Thus relative subsumption is a
strictly stronger quasi-order than ordinary subsumption.

The next proposition establishes a relationship between subsumption and
relative subsumption in the case where B consists of ground literals. We first
illustrate with an example. (Recall from Chapter 9 that if E = {C1, C2,. �9 .}
is a set of clauses, then E denotes the set {-,C~,-,C~,.. .}.)

E x a m p l e 16.3 Let C = Q(x) +- P(x), D = Q(a), and 13 = {P(a)}. Note
that if O = {x/a} , then B ~ (c o --~ D), so C >-is D. Nov+ suppose we add
the negation of the atom in 13 to D, obtaining the clause D' = (D t2 B) =
Q(a) e--P(a). Then we have that C >- D'. <

P r o p o s i t i o n 16.4 Let C and D be non-tautologous clauses, and I3 be a finite
set of ground literals such that 13 N D = ~J. Then C >-~ D iff C >- (D U 13).

P r o o f
=>: Suppose C ___~ D, so 13 ~ V(C0 -+ D) for some 8. Assume CO ~= DUTY,

Then there is an L E CO such that L d D and L E B. Since, furthermore,
B N D = ~, we can find an interpretation I which makes every literal in B
true (so I is a model of B), and a variable assignment V, such that L (and
hence CO) is true under I and V, while no literal in D is true under 1 and
V. But then CO -+ D is false under I and V, contradicting/3 ~ V(C0 -+ D).
Thus we must have CO C D U B.

~ : Suppose C _ (D U B) , so CO C D U B for some 0. We want to prove
B ~ V(C8 --+ D). Let M be a model of B, and V be a variable assignment

16.2. RELATIVE SUBSUMPTION 283

such that CO is true under M and V. We need to show that D is also true
under M and V. At least one L E CO is true under M and V. Since also
L C D U B and each literal in B is false under M, it follows that L E D, so
D is true under M and V. Hence B ~ V(CO -+ D). []

In general, as we have seen, relative subsumption is a stronger quasi-order
than subsumption. However, relative subsumption coincides with ordinary
subsumption for non-tautologous clauses and empty background knowledge.
This is an immediate corollary of the last proposition.

C o r o l l a r y 16.5 If C and D are non-tautologous clauses, then C ~_r D iff
C subsumes D (C ~_ D).

Each of the three orders that we discuss in this chapter, relative sub-
sumption, relative implication, and generalized subsumption, can be related
to some kind of deduction. The relation between relative subsumption and
deductions is expressed by the following theorem, due to Plotkin [Plo71a].

T h e o r e m 16.6 Let C and D be clauses, and 13 be a set of clauses. Then
C ~_~ D iff there exists a deduction of D from {C} U 13 in which C occurs at
most once as a leaf.

P r o o f
=5: Suppose C ___t3 D. If C ~_ D, or if D is a tautology, then the theorem

is obvious (recall that we included the tautology-case in the definition of a
deduction). Suppose that C ~ D and D is not a tautology. There is a 0 such
that I3 ~ V(CO ~ D). Let C = L1V. . .VL~. Note the following equivalences:

v(co D)
V((L10 V . . . V LnO) -+ D) r
V(n(LIO V . . . V LnO) V D)
V((~LIO A . . . A "nLnO) V D) 9:>"

v D) A . . . A V D))
V(nL10 V D) A . . . A V(~L,~O V D).

Since 13 ~ V(CO -+ D), we also have 13 ~ V(-~LiO V D), for every 1 < i < n.
We may assume without loss of generality that there is a j such that LiO ~ D
just in case 1 < i < j (i.e., LIO V . . . V L 9 is the part of CO that does not
"overlap" with D). Because C ~ D, we must have j _> I. Since D is not a
tautology, the clause -~LiO V D is not a tautology either, for every 1 < i < j .

By the Subsumption Theorem, for every i with 1 < i _< j there is a
derivation from B of a clause Ei such that Eio'i C -nLiO V D for some o'i. If
-~LiO ~ EiGi for some i, then Eio'i C_ D, so then there is a deduction of D
from B itself. Hence the result follows if -,LiO ~]~io'i for some i.

Now suppose --,LiO E Ei(ri for every 1 _< i _< j. Then we can write
EiGi = -~LiO V Di, where Di C D. Since CO = LIO V . . . V L,~O, there exists

284 CHAPTER 16. BACKGROUND KNOWLEDGE

an input derivation of the clause E = Lj+IO V . . . V L,~O V D1 V . . . V Dj, with
CO as top clause and El~r~,..., Ej~rj as input clauses. See Figure 16.1 for
illustration. Since LiO ~ D for j + 1 < i < n and Di C_ D for 1 < i < j , we
have E C_ D.

We can lift the derivation of Figure 16.1 to an input derivation of a clause
E ~ which subsumes D, using C as top clause and E l , . . . , Ej as input clauses.
Note that C occurs only once as a leaf in this input derivation. Moreover,
each Ei is derived f rom/3 alone, so we can construct the required deduction
of D from {C} U 13, in which C occurs only once as a leaf.

CO = LIO V ... V L=8 EIc~I = -~L18 V DI

L ~ O v . . , v L ~ O V D I E 2 G 2 = " , L 2 0 v 192

L a P V . . . v L ,~O v D I v D 2

L j O v . . . q L ,~O v D 1 v . . . v D j - 1 E j a j = - , L j O v D j

E -m L j . + z ~ V . . . V L n O V D 1 V . . . V D j

D

Figure 16.1: An input deduction of' D from C8 and E1~1, ...~ Ejai

~ : If D is a tautology, the theorem is obvious, so suppose D is not a
tautology. Let R 1 , . . . , R~ be a derivation from {C} U 13 in which C occurs at
most once as a leaf, such that R,~ subsumes D. If C is not used at all in this
derivation, then B ~ D, so C ___u D in this case. Suppose C occurs once as
a leaf in the derivation. We wilt prove by induction on n that C ___u D.

1. If n = 1, then C ~ D, and hence C ___~ D.
2. Suppose the result holds for n < m, and R 1 , . . . , Rm+l be a derivation

from {C}U13 in which C occurs once as a leaf, such that R,~+I subsumes
D. Thus C is used exactly once as a parent clause in a resolution step
in the tree representing the deduction. Let /~j be the second parent
clause, then 13 ~ Rj, because C cannot be used in the derivation of Rj
from {C} U 13. Let Rk be the resolvent of C and Rj.
If/~k also occurs somewhere else in the tree, then there exists a deriva-
tion of/~k from B alone, since C cannot be used in the derivation of

16.2. RELATIVE SUBSUMPTION 285

this second occurrence of Rk as well. But if Rk can be derived without
C, we do not need C to derive D. Therefore, if Rk occurs more than
once in the tree, then B ~ D and hence C ___u D.
Now we may assume Rk occurs only once in the tree. Remove C and
the derivation of Rj (including Rj itself) from the tree. Then we obtain
a deduction, of length < m, of D from {Rk} U B in which Rk occurs
once as a leaf. By the induction hypothesis, there is a substitution 7
such that B ~ V(Rk7 -4 D).
We know that Rk is a resotvent of C and Rj, so there exists a factor
C#1 of C and a factor Rip2 of Rj, such that R~ is a binary resolvent of
Cpl and Rj#2. Let 5 be the mgu in this resolution step, then C#15 =
C' V A and Rj#25 = R'j V -,A, for some atom A, and Rk = C' V R~.
Define 0 = #157 and cr = #257, then Rk7 = C'7 V RaT is a binary
resolvent of CO = C'7 V A 7 and Rj~ = R}7 V -~A 7. We will show
that Rj~r ~ V(CO ~ RkT). Suppose M is a model of Rjc~, and V is a
variable assignment such that CO is true under M and V. Then C '7
or R~-7 is true under M and V, so Rk7 is true under M and V. Hence
Rj~ ~ V(CO -4 RkT). Combining B ~ Rj and Rj~ ~ V(CO -4 RkT)
with B ~ V(/~k7 -4 D), it follows that 13 ~ V(CO -4 D), []

1 6 . 2 . 2 L e a s t G e n e r a l i z a t i o n s

Let us now turn to the existence and non-existence of least generalizations un-
der relative subsumption (abbreviated to LGRSs). Such least generalizations
need not exist in the general case. The following counterexample is adapted
from Niblett [Nib88]. It shows the non-existence of LGRSs both for the case
of a clausal language C, and for a Horn language 7/.

E x a m p l e 16.7 Let

01 --- Q(a)
D2 = Q(b)
13 = {P(a, y), P(b, y)}

We will show there is no LGRS of {D1,D2} relative to B. Consider the
following infinite sequence of clauses:

61 = Q(x) +-- P(x, f(x))
C2 = Q(x) +-- P(x, f(x)), P(x., f2(x))
C3 = Q(x) +- P(x, f (x)) , P(x , f2(x)), P(x, fa(x))

It is easy to see that 6"/~-s Ci+l for every i > 1. We also have Ci ~-8 D1 and
Ci ~-~ D2, for every i > 1.

Suppose some clause D is an LGRS of {D1, D2} relative to B, then we
should have Ci ___~ D, for every i >_ 1. Then by Theorem 16.6, for every i > 1

286 CHAPTER !6. BACKGROUND KNOWLEDGE

there exists a deduction of D from {Ci} U 13, in which Ci occurs at most once
as a leaf. Ci cannot occur zero times as a leaf, because then a clause from 13
would simply subsume D, which is impossible. Thus for every i > 1, there
exists a deduction of D from {Ci} U 13, in which Ci occurs once as a leaf. It
cannot be that every Ci subsumes D, for then D would contain an instance
of the term f i (x) , for every i > 1.

Thus for some j , the deduction of D from {CN} U 13 involves at least one
resolution step. Since the members of 13 are atoms and CN only occurs once
as a leaf, the parent clauses in the first resolution step must be Cj and a
member of 13. Suppose this member of 13 is P(a, y). Then P(a, y) must be
unified with an atom of the form P(x, f'~(x)) in the body of Cj. Then the
head of the clause Cj is instantiated to Q(a). This head will not be changed
anymore in later resolution steps, so D would have Q(a) as head- -bu t then
there is no deduction of D2 : Q(b) from {D} U 13.

Similarly, if the member of 13 in the resolution step had been P(b,y)
instead of P(a, y), D would have had Q(b) as head, and there would be no
deduction of D1 = Q(a) from {D} U 13. Either way, the assumption that D
is an LGRS of {D1, D2} relative to 13 leads to a contradiction. <~

Despite this negative result, we cart identify a restriction on the back-
ground knowledge which guarantees existence (and computability) of an
LGRS of any finite set of clauses. This result has been exploited in the GOLEM
system, for which see Section 19.6.

T h e o r e m 16.8 (E x i s t e n c e o f L G R S in g) Let d be a clausal language
and 13 C_ g be a finite set of ground literals. Then every finite non-empty
set S C_ C of clauses has an LGRS in g.

P r o o f If a clause D is a tautology or B C/D # ~, then 13 ~ D, hence for
any clause C we have C h~ D. Remove from S all tautologies and all D for
which 13 N D r ~, call the remaining set S ~, If S' is empty, any tautology is
an LGRS of S. If $' = {D1 , . . . , D~} is non-empty, then it follows easily from
Proposition 16.4 that an LGS of {(D~ O R) , . . . , (D~ UB)} in C is an LGRS
of S' in C, and hence also of S. The existence of such an LGS follows from
Theorem 14.27. []

Thus if the background knowledge B is a finite set of ground literals, then
we can construct an LGRS of a set S = {D1 , . . . , Dn} simply by constructing
an LGS o f T = {(D1 O B) , . . . , (Dn UB)] .

Note that if all clauses in S are Horn clauses and each literal in /3 is a
ground atom, then each Di O ~ in T is also a Horn clause. In this case, the
LGS of T (and hence the LGRS of S) will be a Horn clause as well. If all
clauses in S are definite program clauses having the same predicate symbol
in their head, this LGS will be a definite program clause as well. Otherwise,
this LGS will be a Horn clause without positive literals (i.e., a definite goal).
Hence we also have the following result:

16.3. RELATIVE IMPLICATION 287

Theorem 16.9 (Existence of LGRS in ?/) Let ?t be a Horn language
and B C_ 7{ be a finite set of ground atoms. Then every finite non-empty
set S C_ 7i of Horn clauses has an LGRS in 7-l.

16.3 Relative Implication

In this section we discuss the most general quasi-order on clauses: relative
implication.

16.3 .1 D e f i n i t i o n a n d S o m e P r o p e r t i e s

Relative implication is perhaps the most obvious way to take background
knowledge into account. It takes roughly the same form as our problem setting
in Chapter 9, and is defined as follows:

Definition 16.10 Let C and D be clauses, and B be a set of clauses. C
(logically) implies D relative to B, denoted C ~ D, if {C} U B ~ D. The
~ - o r d e r is called relative implication, and B is the background knowledge of
this order. �9

Obviously relative implication is reflexive and transitive, so it can serve
as a quasi-order on a set of clauses. It is equally obvious that if C ~ D,
then C ~ s D. The converse need not hold. Consider C = P(a) +- P(b),
D = P(a), and B = {P(b)}: then C ~ s D, but C ~ D.

It is important to be precise about the position of the universal quantifiers
for C and D when distinguishing between relative subsumption and relative
implication. If C ~-s D, then B ~ g(CO ~ D) (for some 0). If C ~ s D, then
{C} U B ~ D, which is equivalent to B ~ V(C) -~ V(D) by the Deduction
Theorem (Theorem 2.36). Relative subsumption implies relative implication,
but not conversely:

E x a m p l e 16.11 Let B = {P(a)}, C = P(f(x)) +-- P(x) and D = P(f2(a)).
Then C ~ s D, because there is a deduction of D from {C} U/3. However,
we have C ~ D, because C has to be used more than once in the deduction
of D. <

Theorem 16.6 characterized relative subsumption by a restricted form of
deduction:

C ~u D iff there exists a deduction of D from {C} U B in which
C occurs at most once as a !eaf.

The requirement that C be used at most once means that C cannot be
resolved with itself in deductions for relative subsumption. This constraint
is lifted for relative implication, as the relation between relative implication
and deduction is given by the Subsumption Theorem:

288 CHAPTER 16. BACKGROUND KNOWLEDGE

C ~ s D iff there exists a deduction of D from {C} U B.

Thus the fact that relative implication is a strictly stronger quasi-order than
relative subsumption can also be seen as follows: the restriction on relative
subsumption that C be used at most once in a deduction of D (Theorem 16.6),
does not hold for relative implication.

1 6 . 3 . 2 L e a s t G e n e r a l i z a t i o n s

Here we discuss least generalizations" under relative implication (LGRIs).
Firstly, in case of Horn clauses we have already shown in Section 15.2 that the
two definite program clauses D1 = P(f2(x)) +-- P(z) and D2 = P(fa(x)) +-
P(x) do not have an LGI in 7t. This negative result carries over to relative
implication, since ordinary logical implication is just a special case of relative
implication.

For general clauses, we have seen in the last chapter that a set S has
an LGI if it contains at least one non-tautologous function-free clause. At
present, it is not known whether sets of clauses which all contain function
symbols always have an LGI. Nevertheless, for relative implication, we have a
negative result. The next, example shows that even if S and B are both finite
sets of function-free clauses, an LGRI of S relative to B need not exist.

E x a m p l e 16.12 Consider

D1 =
z)2 = p(b)

B = {(P(a) V -~Q(~)), (P(b) V -~Q(x))}

We will show that the set S = {D1, D~} has no LGRI relative to B in C.
Suppose D is an LGRI of S relative to B. Note that if D contains the

literal P(a), then the Herbrand interpretation which makes P(a) true, and
which makes all other ground atoms false, would be a model of B t2 {D} but
not of D2, so then we would have D ~ D2. Simitarly~ if D contains P(b)
then D ~:t~ D1. Hence D cannot contain P(a) or P(b).

Now let d be a constant not appearing in D. Let C = P(x) V Q(d), then
C ~t~ S. By the definition of an LGRI, we should have C ~ D. Then by the
Subsurnption Theorem, there must be a derivation from BU {C} of a clause E,
which subsumes D. The set of all clauses which can be derived (in 0 or more
resolution steps} from BU{C} is ~U{C}U{(P(a}\/P(r (P(b)VP(x))}. But
none of these clauses subsumes D, because D does not contain the constant
d, nor the literals P(a) or P(b). Hence C ~ D, contradicting the assumption
that D is an LGRI of S relative to B in C. <~

Thus in general an LGRI of S relative to B need not exist. But again we
can identify a special case in which the existence of an LGRI is guaranteed.

P r o p o s i t i o n 16.13 Let C and D be clauses, and B be a finite set of
function-free ground literals. Then C ~ D iff C ~ (D O B).

16.4. GENERALIZED SUBSb[~PTION 289

P r o o f
~ : Suppose C ~ s D, i.e., {C} U13 ~ D. Let M be a model of C, then we

need to show that M is also a model of D U B. If M is not a model of 13, then
it is a model of at least one literal in B, and hence of the clause D U B. If,
on the other hand, M is a model of 13, then it is also a model of D, because
{C} U 13 ~ D. Then M is also a model of D U B.

4=: Suppose C ~ (D U B). Leg M be a model of {C} U 13, then we need
to show M is also a model of D. M is a model of C, and hence of the clause
D U 13. But M is also a model of 13, and hence not a model of 13. Therefore
M must be a model of D. []

T h e o r e m 16.14 (E x i s t e n c e o f L G R I in C) Let C be a clausal language
and 13 C C be a finite set of function-free ground literals. I f S C. C is a finite
set of clauses, containing at least one D for which D U 13 is non-tautologous
and function-free, then S has an LGRI in C.

P r o o f Let S = {Di, . . . , D~}. It follows easily from the previous proposition
that an LGI in B o f t = { (D 1 U B) , . . . , (D~ UB)} is also an LGRI of S in C.
The existence of such an LGI of T follows from Theorem 15.17. []

Note the following special case of this result:

C o r o l l a r y 16.15 Let C be a function-free clausal language and 13 C_ C be a
finite set of ground literals. If S C_ C is a finite set of clauses, then S has an
LGRI in C.

P r o o f Let S' be obtained by deleting from S all clauses which are implied by
B. If S j is empty, any tautology is an LGRI of S. If D E S/, then B ~= D, so
D cannot contain any of the literats in B. Then D U B is non-tautologous and
function-free. Hence if S' is non-empty, it has an LGRI in C by the previous
theorem. Clearly, this is also an LGRI of S itself.

16.4 Generalized Subsumption

In this section we introduce the third quasi-order on clauses with background
knowledge, Buntine's generalized subsumption [Bun86, Bun88], and prove
some of its properties. It applies only to definite program clauses.

16.4.1 Definit ion and Some Properties

Suppose we are given some particular definite program /3 as background
knowledge. Buntine's definition of generalized subsumption can be motivated

290 CHAPTER 16. BACKGROUND KNOWLEDGE

as follows: a definite clause C may be said to be more general than another
definite program clause D, if in any situation consistent with what we already
know, C can be used to prove at least as many results as D. Here "a situation
consistent with what we already know" can be formalized as "a Herbrand
model of the background knowledge 8 2 Furthermore "C can be used to prove
at least as many results as D" is formalized as "the set of a toms covered by
C is a superset of the set of a toms covered by D." The notion of 'covering'
(not to be confused with the notion of an upward or downward 'cover' defined
in Chapter 13) is defined below. Recall from earlier chapters that if C is a
definite program clause, then C + denotes the head of C, and C - denotes the
conjunction of the atoms in the body of C.

D e f i n i t i o n 16.16 Let C be a definite program clause, A a ground atom,
and I a Herbrand interpretation. We say C covers A under ! if there is a
ground substitution 0 for C (i.e., CO is ground), such that C-O is true under
I , and C+O = A.

E x a m p l e 16.17 Let C = P(f(x)) +- P(x) and A = P(f(a)). Then C
covers A under I = {P(a)}, because if O = {x/a}, then C-O = P(a) is true
under I , and C+O = A. Note that A itself need not be true under I for the
definition of covering to apply. On the other hand, C does not cover A under
I = {P(f(a))}, even though A is true under this [.

C = P(x) covers A = P(a) under any Herbrand interpretation. <~

Put t ing the pieces together, generalized subsumption (or g-subsumption)
is defined as follows:

D e f i n i t i o n 16.18 Let C and D be definite program clauses and B be a
definite program. We say C g-subsumes D with respect to B, denoted by
C >_s D, if for every Herbrand model M of B and every ground a tom A such
that D covers A under M, we have that C covers A under M. The >B-order
is called generalized subsumption, or g-subsumption, and B is the background
knowledge of this order. (>

E x a m p l e 16.19 Let B consist of the following clauses:

Pet(x) +- Cat(x)
Pet(x) +- Dog(x)
Small(x) e- Cat(x)

And suppose

C = CuddlyPet(x) +-- Small(x), Pet(x)
D = CuddlyPet(x) +-- Cat(x)

16.4. GENERALIZED SUBSUMPTION 291

Then we can show that C _>0 D. For suppose M is a Herbrand model of
B, and D covers some ground atom A = CuddlyPet(t) under M. Then for
0 = {x/ t} , D-O = Cat(t) is true under M. Since M is a model of/~, in
particular of the first and third clause of B, Pet(t) and Small(t) must be
true under M as well. Then C-O = Small(t) A Pet(t) is true under M, and
C+O = A, so C also covers A under M. Hence C g-subsumes D with respect
to B. Rephrased in natural language: if small pets are cuddly pets, then cats
are cuddly pets, since we already know that cats are small pets. <

It is not very difficult to show that subsumption implies g-subsumption.
To see this, suppose C __ D. Then CO C D, so C+O = D + and C-O C_ D-O
for some 0. If D covers some A under some I, there is a 7 such that D - 7 is
true under I and D+'y = A. But then C+07 = D+7 = A, and C-O"/C_ D-"/
is true under I, so C covers A under I as well. Hence if C _ D, then C _>~ D.
The converse need not hold: if/3 = {P(a)}, C = Q(a) +-- P(a) and D = Q(a),
then C_>ts D but C ~z D.

From the definition it is clear that g-subsumption with respect to some
particular definite program B is reflexive and transitive, so it imposes a quasi-
order on the set of definite program clauses. Note that a clause C need not
g-subsume every tautology with respect to any B. For instance, consider the
empty program B = ~ as background knowledge, C = P(a), and D = Q(a) +--
Q(a). Because B is empty, any Herbrand interpretation is a model of B (no
members of B can be false under I, since B has no members). If we take
I = {O(a)}, then D covers Q(a) under I, while C does not. So C does not
g-subsume the tautology D with respect to the empty program. Finally, note
that if C _>8 D, then C and D must have the same predicate symbol in their
head.

Buntine himself extended this order on clauses to an order on finite sets
of clauses (i.e., definite programs), but we will not go into that here.

The next two lemmas, which we illustrate with an example, show the def-
inition of g-subsumption to be equivalent to another formulation, which will
be more convenient in later proofs than the definition based on covering. First
a notational remark: if D is a definite program clause and (r a substitution,
then D - r is a conjunction of atoms, so we can use B U D-o" to denote the
definite program consisting of the clauses in B and the atoms in D-o-.

E x a m p l e 16.20 Consider

c = Q(x, y) , - P(x), Q(y, x)
D = Q(a, y) e-- Q(y, a)

= { P (x) }

then C _>~ D. Let o- = {y/b} be a Skolem substitution for D. If 0 =
{x/a, y/b}, then C+0 = Q(a, b) = D+o ", so D+(r is an instance of C +. Now
/3 together with D-cr = Q(b, a) logically implies C - 0 = P(a) A Q(b, a). <~

292 C H A P T E R 16. B A C K G R O U N D K N O W L E D G E

L e m m a 16.21 Let C and D be definite program clauses, 13 be a definite
program, and o- be a Skolem substitution for D with respect to {C} U B. Then
C >~ D iffthere exists a ground substitution 0 for C, such that C+O = D+cr
and B U D-~r ~ C-O.

P r o o f
~ : Suppose C > s D. Let M be the least Herbrand model of B U D - r

The substitution (r is a ground substitution for D, and D-o- is true under
M, so D covers D+o- under M. Then C must also cover D+o- under M. Thus
there is a ground substitution 0 for C, such that C+O = D+o-, and C-O is
true under M, i.e., C-O C M, so M ~ C-O. It follows from Theorem 7.16
that BUD- O- ~ M, hence BU D-~r ~ C-O.

~ : Suppose there is a ground substitution 0 for C, such that C+O = D+o-
and B U D - ~ ~ C - 0 . Let A be some ground a tom and M some Herbrand
model of B, such that D covers A under M. To prove that C _>~ D, we need
to show that C covers A under M.

Construct a substitution 0' from 0 as follows: for every binding x /a E o-,
replace a in bindings in 0 by x. Then we have CO~o- = CO, and none of the
Skolem constants of c~ occurs in 0 s. Then C+0%r = C+O = D+o-, so C+O ' =
D +. Since D covers A under M, there is a ground substitution 7 for D, such
that D - 7 is true under M, and D+7 = A. This implies C+0'7 = D+7 = A.

It remains to show that C-O'? is true under M. Because B U D-o-
C - O ' a , it follows from the Subsumption Theorem for SLD-resolution that ,
for every a tom B in C - , there is an SLD-deduction of BO'~ from B U D - ~ .
We want to turn these into SLD-deductions of BO' 7 from B U D - 7 , thus
proving tha t B U D - 7 ~ C-O~7. Let x i , . . . , x ~ be the variables in D - ,
{ x i / a i , . . . , x n / a ~] C o-, and { x l / t i , x ~ / t ,] C 7. If we replace each
Skolem constant ai in the SLD-deductions by ti (1 < i < n), we obtain SLD-
deductions of BO'7 from B U D - 7 , for every B in C - . Hence B U D - 7
C-O' 7. Since M is a model of B U D - 7, it is also a model of C-O' 7. []

L e m m a 16.22 Let C and D be definite program clauses, B be a definite
program, and o- be a Skolem substitution for D with respect to {C} U B.
Then C >~ D iff there exists a substitution ~, such that C+~ = D + and
;3 U D - z ~ C - 0o', where C - Oct is ground.

P r o o f By the previous lemma, we have C >_s D iff there exists a ground
substi tution 0' for C, such that C+O ' = D+o- and BU D-~r ~ C-O r. Since cr
is a Skolem substitution, we can define a 0 such that COO- = CO j and none of
the Skolem constants of o- occurs in 0. Then C+O = D + and C-O r = C-Oo-,
so the result follows. []

The relation between g-subsumption and deductions is given below by
Theorem 16.25. First note that a binary resolvent of two clauses is g-subsumed
by one of its parent clauses with respect to the other parent clause:

16.4. GENERALIZED SUBSUMPTION 293

E x a m p l e 16.23 Consider the following clauses:

C = CuddlyPet(x) +- Cute(x), Cat(x)
D : CuddlyPet(x) +- Small(x), Pet(x), Cat(x)
E = Cute(x) +-- Small(x), Pet(x)

Then D is a binary resolvent of C and E, and C _>{E} D.

L e m m a 16.24 If D is a binary resolvent of definite program clauses C and
E, resolved upon the head of E, then C _>{E} D.

P r o o f We may assume that C and E are standardized apart . Let C = B +-
B1, �9 �9 Bs, �9 B,~, where Bs is the a tom resolved upon, and p is the mgu of
Bs and E + tha t is used. Then D = (B +- B 1 , . . . , B s - I , E - , B ~ +] , . . . , B ~) p .
Let M be a Herbrand model of {E}, and A be a ground a tom such that D
covers A under M. We need to prove that C covers A under M.

D covers A under M, so there is a ground substitution 0 for D, such that
D+O = B#O = A, and D-O = (B 1 , . . . , B ~ - I , E - , B ~ + I , . . . , B n) p O is true
under M. Let 7 be a ground substitution for B,#O, and define 0' = p07. Then
C+Y = Bp07 = A 7 = A. Since D-O is ground and true under M, the atoms
(B1, �9 . . , B , - I , B ,+I , �9 . . , B~)0 ~ are ground and true under M. Furthermore,
M is a model of E and thus also of E0' , and E - 0 ~ = E-I~O 7 = E-pO C_ D-O
is ground and true under M, hence E+~ ' = E+#07 = B8#07 = B,O ~ is
ground and true under M. Thus every a tom in C-0 ' is ground and true
under M, which means that C covers A under M. t2

T h e o r e m 16.25 Let C and D be definite program clauses and B be a definite
program. Then C >_~ D iff there exists an SLD-deduction of D, with C as
top clause and members of B as input clauses.

P r o o f
~ : Suppose C _>s D. Let (r be a Skolem substitution for D with respect

to {C} UB. Then by Lemma 16.22, there is a substitution 0 such that C+0 =
D +, and 13 U D-o- ~ C-0c~, where C-0o" is ground. By Proposition 2.37,
13 U D-o" U {+- C-0~} is nnsatisfiable.

By the refutation completeness of SLD-resolution, there is an SLD-refu-
ration of B U D - e r a {+- C-0~} , with goals Go(=+- C-0~r), G 1 , . . . , G,~ = n,
input clauses E l , . . . , E,~, and mgu 's 01 , . . . , 0,~ (here n = 0 if C is an atom,
and n _> 1 otherwise). Each input clause is either a member of B, or an a tom
from D-c~. By the Switching Lemma, we can assume there is an i > 0 such
tha t E l , . . . , Ei are members of B, and E i + l , . . . , E,~ are the input clauses
(atoms) that come from D-c~. Note that then G~-0i+l . . . ~n _C D - ~ .

For every 0 _< j < n, define G~ = C+0c ~ +- G j . Tha t is, add the ground

a tom C+0~r as head to each goal in the refutation. Then G ~ , . . . , G~ is an
SLD-derivation of G~, with top clause G~ = COc~ and input clauses from

294 CHAPTER 16. BACKGROUND KNOWLEDGE

B. Furthermore, we have G}Oi+l...O, = C+Oo " +- G~Oi+z...O~ = D+c~ +-
Gi-Oi+l...On C_ D~r, so G~ subsumes Dc~. Now by the Lifting Lemma for
SLD-resolution (Lemma 7.7), we can find an SLD-derivation of a clause F
which subsumes D~, with C as top clause and members of B as input clauses.
By Lemma 5.16, F also subsumes D itself, so we have found the required
SLD-deduction.

~ : Suppose Co(= C), C1 , . . . , C . is an SLD-derivation (n _> 0), with C
as top clause and members of B as input clauses, and C~ subsumes D. We
will prove by induction on n that C >_u D.

1. If n = 0, then C _ D, and hence C k s D.
2. Suppose the result holds for n < m, and Co(= C), C1, . . . ,C ,~+l be

an SLD-derivation, with C as top clause and members of B as input
clauses, and Cm+l subsumes D. C1 is a binary resolvent of C and
some E C B, so we have C >_{E} C1 by Lemma 16.24, and hence also
C >_s C1, since E E B. By the induction hypothesis we have Cz _>s D.
Now C >_u D follows from the transitivity of >_~. []

It follows from this that g-subsumption reduces to ordinary subsumption
in the presence of empty background knowledge, as was the case for relative
subsumption.

C o r o l l a r y 16.26 If C and D are definite program clauses, then C >_r D iff
C ~ - D .

Finally, let us take a look at the relation between relative subsumption and
generalized subsumption. Comparing the restrictions on deductions stated in
Theorems 16.25 and 16.6, the next corollary follows immediately:

C o r o l l a r y 16.27 Let C and D be definite program clauses, and I3 be a def-
inite program. If C >_s D, then C h s D.

The converse does not hold, because g-subsumption requires that C and D
have the same predicate symbol in their head, while relative subsumption does
not (see Example 16.2). Hence Plotkin's relative subsumption is a strictly
stronger quasi-order than Buntine's g-subsumption.

1 6 . 4 . 2 L e a s t G e n e r a l i z a t i o n s

In this subsection we will investigate the existence and non-existence of least
generalizations under g-subsumption, which we abbreviate to LGGSs. Exam-
ple 16.7, which showed that least, generalizations need not exist under relative
subsumption, may serve as well to show that LGGSs need not exist. We leave
the details to the reader.

However, again some important special cases can be identified in which
the existence of an LGGS is guaranteed. Buntine himself identified two such

16.4. G E N E R A L I Z E D S U B S U M P T I O N 295

cases in which an LGGS of a finite set S (of definite program clauses which
all have the same predicate symbol in their respective heads) always exists:
(1) if all clauses in S are atoms, and the background knowledge B implies
only a finite number of ground atoms (i.e., Ms is finite); and (2) if S and B
are all function-free (see Corollaries 7.2 and 7.3 of [Bun88]). We add here a
third case, namely (3) if B is ground. Note that case (3) differs from case (1),
because B may imply only a finite number of ground examples, and still be
non-ground itself. For example, B = {P(a), (Q(x) +- P(x))} .

Actually, these three cases are special cases of Theorem 16.29, proved
below. Our proof differs slightly from Buntine's. The next lemma is the key
to the result. Note that if D is a definite program clause and E is a finite set
of ground atoms, then D U E is also a definite program clause.

L e m m a 16.28 Let C and D be definite program clauses, B a definite pro-
gram, ~r be a Skolem substitution for D with respect to {C} UB, and M be the
least IIerbrand model of B U D-cr. Then C >_is D iff there is a substitution 0
such that CO C_ {D+c~} U M.

P r o o f
~ : Suppose C _>6 D. By Lemma 16.21, there is a ground substitution 0

for C, such that C+O = D+~ and B U D-cr ~ C-O. Because M is the least
Herbrand model of/3 U D-cr, we have C-O C_ M from Theorem 7.16. Since
also C+O = D+cr, we have CO C_ {D+0 "} U M.

r Suppose there is a substitution 0 such that CO C {D+c ,} U M. Then
C+O = D+c~ and C-O C_ M. This means that we have M ~ C-O, hence also
/3U D-or ~ C - O . Therefore C >~ D by Lemma 16.21. []

Note that if the least Herbrand model M of B t2 D - ~ is finite, then this
lemma becomes: C _>B D iff C ~- {D+~} U M. Thus we have a means to
translate g-subsumption to ordinary subsumption.

T h e o r e m 16.29 (E x i s t e n c e o f L G G S) Let 7{ be a Horn language and B
be a definite program. Let S = {D1, . . . , Dry} C 7/ be a finite non-empty set of
definite program clauses, such that all Di have the same predicate symbol in
their head. Furthermore, for every 1 < i < n, let ~r i be a Skolem substitution
for Di with respect to BUS, and Mi be the least Herbrand model of BU D-~ cri.
I f every Mi is finite, then there exists an LGGS of S in 7/.

P r o o f By Theorem 14.27, there exists an LGS in 7/ of the set of clauses
T = {({D+c,,} U M1) , . . . , ({D+r U M~)}. Since each Di E S has the same
predicate in its head, this LGS of T will be a definite program clause which
also has this predicate in its head. Now it follows easily from the previous
lemma that this LGS of T in 7/ is an LGGS of S in 7/. []

Thus if the least Herbrand models mentioned in the theorem are indeed
finite, then we can find an LGGS of a set {D1, �9 D~} simply by constructing

296 CHAPTER 16. BACKGROUND KNOWLEDGE

an L GS of { ({D + (rl } U M1) , . . . , ({D+~n } kJ Mn)}. The three special cases we
mentioned, will be shown to be immediate corollaries of this result.

Firstly, if S is a finite set of atoms, then for each i, D [e will be empty
and Mi = Ms. If B implies only a finite number of ground atoms (i.e., if M~
is finite), then the theorem can be applied.

C o r o l l a r y 16.30 Let 7t be a Horn language and B be a definite program
such that M~ is finite. If S is a finite set of atoms which all have the same
predicate symbol, then there exists an LGGS of S in 71.

Secondly, if S and B are function-free, the set of ground atoms in the
Herbrand base BBos is finite, so the least Herbrand models M1, �9 . . , Mn will
be finite as well.

C o r o l l a r y 16.31 Let 71 be a Horn language and B be a function-free definite
program. If S is a finite set of function-free definite program clauses which
all have the same predicate symbol in their head, then there exists an LGGS
of S in71.

Thirdly and finally, if B is ground, then each Mi will again be finite.

C o r o l l a r y 16.32 Let 71 be a Horn language and B be a ground definite pro-
gram. If S is a finite set of definite program clauses which all have the same
predicate symbol in their head, then there exists an LGGS of S in 71.

E x a m p l e 16.33 Consider the clauses from the introduction:

D1 = CuddlyPet(x) +- Small(x), Fluffy(x), Dog(x)
D2 = CuddlyPet(x) +- Fluffy(x), Cat(x)

And background knowledge B:

Pet(x) +- Cat(x)
Pet(x) +-- Dog(x)
Small(x) Cat(x)

Let us take ~1 = {x/a} and cr2 : {x/b} as Skolem substitutions for D1 and
D2, respectively. Then

M1 : {Small(a), Fluffy(a), Dog(a), Pet(a)}
M2 = {Small(b), Fluffy(b), Cat(b), Pet(b)}

The following clause is an LGS of {({D+cq} U M-l[), ({D+cr2} U M-7)}, and
hence also an LGGS of D1 and D2:

CuddlyPet(x) 4-- Small(x), Fluffy(x), Pet(x) <

Though these existence results are fairly strong, it should be noted that
the LGGS obtained from the LGS algorithm may have a huge number of
literMs. Thus for efficient use of LGGSs, additional constraints may be needed
in practice.

16.5. SUMMARY 297

16.5 Summary

This chapter discussed three generality orders which are able to take back-
ground knowledge into account: Plotkin's relative subsumption (~-~), relative
implication (~ s) , and finally Buntine's generalized subsumption (_>s). Rela-
tive subsumption and relative implication apply to arbitrary clauses and the
background knowledge B may be an arbitary finite set of clauses. General-
ized subsumption only applies to definite program clauses and the background
knowledge should be a definite program. The relations between these three
orders and deductions are as follows:

1. C ___s D iff there exists a deduction of D from {C} U B in which C
occurs at most once as a leaf.

2. C ~ s D iff there exists a deduction of D from {C} U B.
3. C _>s D iff there exists an SLD-deduction of D, with C as top clause

and members of B as input clauses.

We investigated the existence of least generalizations in each of these
orders, both in case we are dealing with a Horn language 7-/, and for a general
clausal language g. The results are given in the following table, where '+'
signifies a positive answer, and ' - ' means a negative answer. In order to get
the total picture, we also include our results on least generalizations under
ordinary subsumption and implication from the last two chapters. In case of
a ' - ' for the general case, we include a reference to a theorem describing a
special case in which least generalizations are guaranteed to exist. The '?' in
the second row indicates that the general question concerning the existence
of an LGI for general clauses is still open.

Horn clauses General clauses
Subsumption (__) + +
Implication (~) - ? (+ Th 15.17)
Relative subsumption (___~) - (+ Th 16.9) - (+ Th 16.8)
Relative implication (~) - - (+ Th 16.14)
Generalized subsumption (>_e) - (+ Th 16.29) undefined

Table 16.1: Existence of least generalizations

Note the trade-off between the strength of the generality order and the
existence of least generalizations: in the weakest order (subsumption) least
generalizations always exist, while in the strongest order (relative implication)
the existence of least generalizations can only be guaranteed in very restricted
c a s e s .

Chapter 17

Refinement Operators

17.1 Introduct ion

In the chapter on Shapiro's model inference technique, we deferred the dis-
cussion of refinement operators to this chapter. The reason for this is that
refinement operators can be defined for different quasi-ordered sets of clauses.
Hence the discussion in this chapter presupposes the investigation of the prop-
erties of the various quasi-orders given in the last chapters. In this chapter, we
will apply the results of those chapters to the topic of refinement operators.

In Shapiro's sense, a refinement operator is a function which computes a
set of specializations of a clause. Specialization is the direction suited for his
top-down approach. His kind of refinement operator will therefore be called a
downward refinement operator. Dually, we might also define operators which
compute generalizations of clauses. These can be applied in a bot tom-up
search, so we will call them upward refinement operators.

A "good" downward refinement operator should satisfy certain desirable
properties. Ideally, it should compute only a finite set of specializations of each
clause--otherwise it will be of limited use in practice. This condition is called
locally finiteness. Furthermore, it should be complete: every specialization
should be reachable by a finite number of applications of the operator. And
finally, it is better only to compute proper generalizations of a clause, for
otherwise repeated application of the operator might get stuck in a sequence
of equivalent clauses, without ever achieving any real specialization. We would
also like three analogous conditions to hold for upward refinement operators
as well.

We will show in the next section that ideal upward and downward refine-
ment operators exist for the simplest of our quasi-orders: the set of atoms
ordered by subsumption. Unfortunately, these ideal conditions cannot all be
met at the same time for more complex orders. In Section 17.3, we will prove
that ideal refinement operators do not exist for full clausal languages or Horn

300 CHAPTER 17. REFINEMENT OPERATORS

languages ordered by subsumption or by the stronger orders. This negative
result is a concequence of the fact that finite complete sets of covers do not
always exist.

In order to define a refinement operator for full clausal languages, we have
to drop one of the three properties of idealness. We consider locally finiteness
and completeness to be the two most important properties, so we will drop
the 'properness'. Accordingly, in Section 17.4 we define locally finite and
complete, but improper refinement operators for full clausal languages. On
the other hand, if we want to retain all three ideal properties, it seems that
the only possibility is to restrict the search space. This is done in Section 17.5,
where we define ideal refinement operators for clausal languages bounded by
a newsize restriction. After that, we go into optimal refinement operators,
and refinement operators for theories (rather than individual clauses) under
logical implication.

Refinement operators are used very often in ILP systems, for instance in
MIS [Sha81b], SIM [LD90, Lin92], FOIL [Qni90, QC93], CLAUDIEN [DB93],
LINUS [LD94], and PROGOL [Mug95]. For reasons of efficiency, those operators
are usually less general than the ones we discuss here, and often incomplete.
Nevertheless~ we feel the complete operators we define here form a good
starting point for the construction of practical refinement operators. The
material in this chapter is mainly drawn from [LN93, NLT93, LN94a, LN94b,
LN97], and is collected in [Laa95].

17.2 Ideal Refinement Operators for Atoms

In this section, we will define the concept of a refinement operator for a
quasi-ordered set. As an example, we will then define downward and upward
refinement operators which are ideal for the set of atoms.

Definit ion 17.1 Let (G, >) be a quasi-ordered set. A downward refinement
operator for (G, >} is a function p, such that p(C) C_ {D I C >_ D}, for every
C c G .

An upward refinement operatorfor (G, >} is a function 5, such that 5(C) C_
{D I D _> C}, for every C E G. O

Usually in this chapter, G will be a clausal language C. In that case, R(C)
is a set of specializations of a clause C, while 6(C) is a set of generalizations
of C. However, in Section 17.7 we take G to be the set of finite subsets of C,
and we define an operator which specializes sets of clauses.

Several properties of refinement operators are defined as follows:

Definit ion 17.2 Let (G, >} be a quasi-ordered set, and p be a downward
refinement operator for (G, _>).

| The sets of one-step refinements, n-step refinements, and refinements
of some C E G are respectively:

17.2. IDEAL REFINEMENT OPERATORS FOR ATOMS 301

pl (c) = p(c),
p~(C) = {D [there is an E E p'-l(C) such that D E p(E)} , n > 2,
p*(C) = p~(c)u p~(C)u p3(c)

�9 A p-chain from C to D is a sequence C = C0, C 1 , . . . , C ~ = D, such
tha t Ci E p(Ci-1) for every 1 < i < n.

�9 p is locally finite if for every C E G, p(C) is finite and computable.

p is complete if for every C , D E G such that C > D, there is an
E E p*(C) such that D ~ E (i.e., D and E are equivalent in the
___-order).

�9 p is proper if for every C C G, p(C) C_ {D [C > D}.

�9 p is ideal if it is locally finite, complete, and proper.

We can define analogous concepts for the dual case of an upward refinement
operator 5. <5

A refinement operator induces a refinement graph. This is a directed graph
which has the members of G as nodes (here variant clauses in G can be viewed
as the same node), and which contains an edge from C to D just in case
D C p(C). This refinement graph is the space that is searched for candidates
to include in the theory. An ideal refinement operator induces a refinement
graph in which only a finite number of edges start f rom each node (locally
finiteness), in which there exists a path of finite length from C to a member
of the equivalence class of D whenever C > D (completeness), and which
contains no cycles (by properness).

Suppose (G, >} is a quasi-ordered set of clauses, such that every C E G has
a finite complete set of downward covers. Then a natural approach towards
ideal refinement operators, is by defining p(C) as such a finite complete set
of downward covers of C. As an example, we will show in this section how
we can define an ideal downward refinement operator for the set of atoms.
In Chapter 13, we have already proved that every a tom has a finite complete
set of downward covers.

D e f i n i t i o n 17.3 Let .4 be the set of a toms in a language. The downward
refinement operator PA for A is defined as follows:

1. For every variable z in A and every n-ary function symbol f in the
language, let X l , . . . , x~ be distinct variables not appearing in A. Let
p.4 (A) contain A{z / f (x l , . . . , x~)}.

2. For every variable z in A and every constant a in the language, let
p• (d) contain d{z/a}.

3. For every two distinct variables x and z in A, let p.4 (A) contain A{z/x}.

302 CHAPTER 17. REFINEMENT OPERATORS

Note that pA(A) may still contain variants. For instance, pA(P(x,y))
contains both P(x, x) and P(y, y). Clearly, in a practical application we can
ignore any redundant variants.

The three different kinds of atoms in p(A) correspond exactly to the three
kinds of downward covers that we discussed in Chapter 13. The fact that pA
is ideal follows easily from the properties of sets of covers of a toms that were
given in that chapter.

T h e o r e m 17.4 Let A be the set of atoms in a language containing only a
finite number of constants, function symbols, and predicate symbols. Then p.4
is an ideal downward refinement operator for (A, ~).

P r o o f By the definition of p.4, p.4 is locally finite. The completeness of
PA follows from the fact that there exists a finite chain of downward covers
between any two atoms A, B E ,4 for which A >- B (Theorem 13.41). Finally,
pA is proper since every a tom in p(A) is a downward cover of A, and hence
a proper specialization of A. []

E x a m p l e 17.5 Suppose we have a language containing one binary pred-
icate G, and two unary functions f and m. Suppose G(x ,y) is inter-
preted as "x is the grandfather of y", f(x) is "the father of x", and re(x)
is "the mother of x". Given the positive examples G(f(m(mary)), mary)
and G(/(f(john)), john), and the negative examples G(f(mary), john) and
G(m(f(john)),john), a good theory would be "x is the grandfather of all
those y for which x is the father of the father or mother of y". Or in atoms:
G(f(f(x)), x) and G(f (m(x)) , x).

Starting from the most general a tom G(x, y), we can use our downward
refinement operator p~ to find a variant of G(f(f(x)), x):

1. a(f(z) , y) y))
2. G(f(f(zl)) , y) E pA (G(f(z), y))
3. G(f(f(y)), y) E p.a (G(f(f(zl)), y))

Similarly, there is a pA-chain from G(x, y) to a variant of G(f(m(x)), x). <~

Let us now consider the dual case of an upward refinement operator for
the set of atoms. Since we already know what a complete set of upward covers
of an a tom is, an operator 5A can be defined straightforwardly as follows:

D e f i n i t i o n 17.6 Let .4 be the set of a toms in a language. The upward re-
finement operator 5~ for ,4 is defined as follows:

1. For every t = f (xl , . . . ,z ,~) in A, for which z l , . . . , x ~ are distinct
variables and each occurrence of some zl in A is within an occurrence
of t, 5.4 (A) contains an a tom obtained by replacing all occurrences of t
in A by some new variable z not in A.

i7.3.

2.

.

N O N - E X I S T E N C E OF IDEAL R E F I N E M E N T O P E R A T O R S 303

For every constant a in A and every non-empty subset of the set of
occurrences of a in A, ~ t (A) contains an a tom obtained by replacing
those occurrences of a in A by some new variable z not in A.
For every variable x in A and every non-empty proper subset of the set
of occurrences of x in A, 5r (A) contains an a tom obtained by replacing
those occurrences of x in A by some new variable z not in A.

Note that in the last item, we cannot replace all occurrences of x by a
new variable z, for then we would get a variant of A. For instance, P(z, a, z)
is a variant of A = P(x , a, x).

As in the case of p~t, it easily follows that 5r is locally finite, complete
and proper. We do not even have to presuppose a finite number of constants,
function and predicate symbols for this, because when constructing 5.4 (A) we
only have to deal with the finite number of symbols in A- - the re is no need
to introduce new constants, functions or predicates.

T h e o r e m 17.7 Let ,4 be the set of atoms in a language. Then 5~t is an ideal
upward refinement operator for (r ~}.

17.3 N o n - E x i s t e n c e of Ideal Ref inement Oper-
ators

The previous section defined an ideal refinement operator for the set of a toms
ordered by subsumption. In this section, we will show that for the most
interesting quasi-orders on a clausal language, ideal refinement operators do
not exist.

L e m m a 17.8 Let (G, >_} be a quasi-ordered set. I f there exists an ideal down-
ward refinement operator for (G, >_), then every C E G has a finite complete
set of downward covers.

P r o o f Suppose p is an ideal downward refinement operator for (G, _>), and
let C E G. Construct the set dc from p(C), as follows:

dc := p(C)
while there are D, E E dc such that D ~ E and D > E,

do dc := dc \{E}

Since p is ideal, p(C) is finite, so the previous construction terminates and
yields a finite set dc. By construction we have the following property:

(1) There are no D , E E dc such that D 5~ E and D > E.

Furthermore, by construction and by the completeness and properness of p,
we have the following:

(2) For every E E G: if C > E then there is a D E dc such that C > D > E.

304 CHAPTER 17. REFINEMENT OPERATORS

We will show that every member of dc is a downward cover of C. Suppose
some E E dc is not. Then there is an F E G such that C > F > E, and
by (2) there is a D such that C > D >_ F > E. But then D , E E dc with
D > E, which contradicts (1). Hence dc is a finite set of downward covers of
C. Furthermore, by (2) dc is complete. []

The dual lemma can be proved analogously:

L e m m a 17.9 Let {G, >_) be a quasi-ordered set. t f there exists an ideal up-
ward refinement operator for (G, >_), then every C E G has a finite complete
set of upward covers.

Since we have already proved for the subsumption order and the impli-
cation order that there are clauses which do not have a finite complete set
of downward covers (Propositions 14.40 and 15.28), and clauses that have no
finite complete set of upward covers (Propositions 14.32 and 15.27), the non-
existence of ideal refinement operators for these orders follows immediately.

C o r o l l a r y 17.10 Let C be a clausal language containing at least one predi-
cate or function symbol of arity > 2. 'Then there do not exist ideal downward
or ideal upward refinement operators for {C, ~}.

C o r o l l a r y 17.11 Let C be a clausal
care or function symbol of arity > 2.
or ideal upward refinement operators

language containing at least one predi.
Then there do not exist ideal downward
for (C, ~).

These negative results still hold when we replace C by a Horn language
7/. Of course, they also remain valid when we consider one of the orders with
background knowledge of Chapter 16.

However, even in a situation where every clause does have a finite complete
set of downward covers, defining p(C) as a finite complete set of downward
covers need not give an ideal downward refinement operator. Consider the
infinite chain 6'2 >- Ca >- . . . >- C~ >- ..~ >~ C that we used in the proof of
Proposition 14.32. Let G = {C, C2, Ca,...}. Then the set of all downward
covers of Ci in G is {C~+.~}, and the set of downward covers of C is empty.
However, due to the infinite length of the chain, C cannot be reached from
some Cr by only considering downward covers. So a refinement operator de-
fined as p(Ci) = {C/+1} is not complete, and hence not ideal. On the other
hand, if we define p(C~) -= {6'~+1, C}, then p is ideal for (G, ___>.

As is often the case, we cannot have it all: finiteness, completeness and
properness cannot all be achieved at the same time. Hence in order to define
a complete refinement operator, we have to give something up. Either we can
drop one of the conditions of locally finiteness, completeness, and properness,
or we have to restrict the language. The first approach is pursued in the
next section, the second approach in the section after that. The refinement
operators in the next sections are defined for general clausal languages, but
they can easily be restricted to Horn clauses.

17.4. COMPLETE OPERATORS FOR SUBSUMPTION 305

17.4 Complete Operators for Subsumption

Of the three conditions of locally finiteness, completeness and properness,
finiteness seems indispensable: an infinite set p(C) of refinements of a clause
C cannot be handled well, because it would then be impossible to test all
members of p(C) in finite time. Furthermore, it is obvious that complete-
ness is also a very valuable property, if you want to be able to guarantee
that a solution will always be found whenever one exists. Of the three ideal
properties, properness seems the least important. Therefore we will drop this
requirement, and discuss the case of refinement operators that are locally fi-
nite and complete, but improper. For subsumption, such refinement operators
exist, both for the downward and for the upward case.

1 7 . 4 . 1 D o w n w a r d

If C subsumes D, then C0 c_ D %r some substitution t~. Thus specialization
under subsumption can be achieved by applying (elementary) substitutions
and adding literals. In fact, when adding literals it is sufficient to add only
most general literals, since these can always be instantiated by a substitution
later on to get the right literals.

D e f i n i t i o n 17.12 A literal P(xl,. . . , x~) or -~P(xl,..., x~) is most general
with respect to a clause C, if xi, . . . , xn are distinct variables not appearing
in C. 0

E x a m p l e 17.13 If C = {P(x, f (x))}, D = {P(a, f(a)), Q(a, y),-~P(y, y)},
then a variant of D can be constructed from C by the following operations:

1. Add the literal Q(xl, x2) (which is most general with respect to C) to
C, then we get {P(x, f (x)) , Q(xl, x2)}.

2. Add the most general literal -~P(Yl, Y2), then we obtain {P(x, f(x)),
Q(xi, x2), v2))

3. Apply 01 = {x/a} to get {P(a, f(a)), Q(xl, x2),-~P(y,, y2)}-
4. Apply 02 = {xl/a} to get {P(a, f(a)), Q(a, x2), -~P(yz, y~)}.
5. Apply 0a = {yz/x2} to get {P(a, f(a)), Q(a, x=),-~P(x2, y2)}.
6. Apply 04 = {y2/x2} to get {P(a, f (a)) , Q(a, x2),-~P(x2, x2)}, which is

a variant of D. <~

This idea is the basis for our complete downward refinement operator. It
was first defined by Laird in [Lai88], hence we call it PL.

D e f i n i t i o n 17.14 Let C be a clausal language. The downward refinement
operator PL for (C, ~> is defined as follows:

1. For every variable z in C and every n-ary function symbol f in the
language, let xI,... , x~ be distinct variables not appearing in C. Let
PL (C) contain C{z/f(xl , . . . , x,~)}.

306 CHAPTER 17. REFINEMENT OPERATORS

2. For every variable z in C and every constant a in the language, let
pr. (C) contain C{z/a}.

3. For every two distinct variables x and z in C, let PL (C) contain C{z/x} .
4. For every n-dry predicate symbol P in the language, let x l , . . . , x .

be distinct variables not appearing in C. Then pL(C) contains both
c u and C u <>

Note that the literals P (x l , . . . , x,~) and - - ,P(x l , . . . , x~) that are added
to C by the fourth item in the definition are most general with respect to C.
The proof of locally finiteness and completeness is straightforward:

T h e o r e m 17.15 Let 6 be a clausal language, containing only a finite number
of constants, function symbols, and predicate symbols. Then])L is a locally
finite and complete downward refinement operator for (C, ~}.

P r o o f Locally finiteness follows immediately from the definition of PL and
the assumption of only a finite number of constants, function and predicate
symbols.

For the completeness, let C , D C C such that C ~ D. Then there is
a substitution 0 such that CO C_ D, where 0 only acts on variables in C.
Consider D\CO = { M ~ , . . . , M s } (n > 0). For every Mi, there is a most
general literal Li, of which Mi is an instance. We can assume that for every
1 _< i < n - 1, the variables in Li+l do not appear in C U { L 1 , . . . , L i } .
Then by the fourth item in the definition of PL we have a finite pL-chain
C, CU {L1}, C IJ {L1, L~}, . . . , C U {L1,. . . , L~}.

Furthermore, there is a substitution 0' such that (C U { L t , . . . , Ln })0' : _D,
where 0 C 0 r. It is easy to see that there exist elementary substitutions
01 , . . . , 0k, such that (CU{L~, . . . , L~})O' = D and (CU{L~ , L~})O~ . . . ~
are variants (this is a simple generalization of the same result for atoms). The
three kinds of elementary substitutions correspond to the first three items
in the definition of PL. Hence there is a finite pL-ehain (of length k) from
C U i l l , . . . , L~} to a variant of D, and hence there exists a finite pL-chain
from C to a variant of D. []

Since we already know that no ideal operators exist for this case, PL
cannot be proper. For instance, if C =- {P(x)} and D = iF (x) , P(y)}, then
D E fin (C) and C ~ D. However, this D is needed in a pz-chain from C to
iF (a) , P(b)}, as follows: {e(x)} , {P(x) , P(y)}, {P(a), P(y)}, {P(a), P(b)}.

Notice that for every o r C E d, we have [] > C, so p~(Cb) contains a
clause which is subsume-equivalent to C. In other words: if we start with the
empty clause (as Shapiro's Model Inference Algorithm does), then for every
C E C, a clause C p such that C ~ C ' can be reached by means of pL.

1 7 . 4 . 2 U p w a r d

In this subsection, we will define an upward refinement operator 5~ which is
the dual of PL. (The 'u' abbreviates ~unreduced', to distinguish the operator

17.4. COMPLETE OPERATORS FOR SUBSUMPTION 307

of this section from the operator 5~ for reduced clauses in the next section.)
At first sight, it appears that inverting the four items in the definition of
PL suffices for the definition of 5~. Tha t is, given the four operations of (1)
replacing f (x l , . . . , xn) by a new variable, (2) replacing some occurrences of
a constant by a new variable, (3) replacing some (not all) occurrences of a
variable by a new variable, and (4) removing a most general literal, we expect
to be able to derive from C, after some refinement steps, a clause E ,-~ D
whenever D ~-- C.

However, it is not quite as simple as that. As the next examples show,
it is sometimes necessary to duplicate literals before inverting one of the
elementary substitutions.

E x a m p l e 17.16 Let C = Even(x+x) +-- Even(x) and D = Even(x+y) e--
Even(x), Even(y), where ' + ' is a binary function symbol, written in infix
notation. Note that D{y/x} = C. However, we cannot reconstruct D from
C simply by replacing some occurrences of x in C by y. The reason for this
is that the substi tution {y/x} has decreased the number of literals in D:
it has unified the literals Even(x) and Even(y) in the body of D. Thus in
order to reconstruct D from C (i.e., to invert the elementary substitution
{y/x}), we should first duplicate the literal Even(x) in C. Doing this, we get
C' = Even(x + x) +-- Even(x), Even(x). Now we can get from C' to D by
replacing the 2nd and 4th occurrence of x in C ~ by y. <~

E x a m p l e 17.17 Something similar holds when we want to invert an ele-
mentary substitution of the kind {x/a}. Let C = Even(a + a) +- Even(a)
and D = Even(x + a) +- Even(a), Even(x). Then D{x/a} = C. Again, the
substi tution has decreased the number of literals in D. Thus in order to invert
the elementary substitution {x/a} correctly, we again should first duplicate
literals. Doing this, we get C' = Even(a + a) +-- Even(a), Even(a). Now we
can get from C ~ to D by replacing the 1st and 4th occurrence of a in C ~ by
X. <3

In our upward refinement operator, 5(C) should contain a variant of every
D for which DO = C, where 0 is an elementary substitution. As can be seen
from the above examples, it is sometimes necessary to duplicate literals in
order to correctly invert an elementary substitution. Since duplication of
literals is not allowed for clauses in set-notation, we will temporari ly adopt
ordered notation, treating clauses as disjunctions of not necessarily distinct
literals. Actually, the particular order of literals in the clause is not important ;
we only use ordered notat ion here to enable a clause to contain literals more
than once. We use C to denote such an ordered clause, and C to denote the
set of literals in C. Thus if C = P(x) V P(x) V -~Q(x), which may also be
written as C = P(x), P(x) +- Q(x), then C = {P(x),--,Q(x)}.

Now the problem is: which literals should we duplicate, and how many
times should we duplicate them? First, let us consider an elementary sub-
st i tution of the kind 0 = {z / f (x l , . . . ,x~)} , such that DO = C. Note that

308 CHAPTER 17. REFINEMENT OPERATORS

such a substi tution cannot unify literals in D, and hence cannot decrease
the number of literal% because the variables xl , x,~ are required to be
new variables. Thus to invert a substitution of this kind, we do not need
to duplicate any literals. Here it suffices to simply replace all occurrences of
f (x l , 0.., x~) in C itself by a new variable z to obtain D.

For the second kind of elementary substitution, 0 = {z/a}, things are
different. As the last two examples showed, it is sometimes necessary to du-
plicate literals in order to be able to invert a substitution of this kind. Suppose
we have the literal L = P(a, x, a) E C. Then D contains literals L 1 , . . . , L~
(n _> 1), which are all mapped to L by this elementary substitution 0. Now
the impor tan t point is that there is a finite upper bound on n. Tha t is, only
a limited number of distinct literals in D can be mapped to L by such an
elementary substitution 0. In this particular case, n is at most 4: only the
literals L~ = P(z ,x , z) , L2 = P(z,x ,a) , L~ = P(a,x ,z) and L4 = P(a,x,a)
are such tha t LiO = L. This means that we need 4 copies of L in order to be
able to invert any possible substitution 0 = {z/a}.

More generally, if some literal L E C contains the constant a k times,
then there are 2 z ways in which we can replace some of these k occurrences
by z. This means that we need at most 2 k copies of this literal before we
apply the inverse substitution: given 2 k copies of L, we can invert the effects
of any substitution {z/a}. Thus, if the literals L 1 , . . . , L,~ E C contain the

constant a respectively k l , . . . , k~ times, then an ordered clause C obtained
from C by duplicating L1 2 kl times, . . . , and duplicating L,~ 2 k~ times wilt
be sufficient to invert any 0 = {z/a} such that D~ = C.

A similar argument, holds when we want to invert an elementary substitu-
tion of the form {z/a}. For instance, in Example 17.16 we needed two copies
of the literal Even(x) E C. This is in accordance with our upper bound, since
the literal contains x once, and 21 = 2.

The following function dup computes the required ordered clauses, with
the right number of duplications. The first argument of dup is the clause (set
of literals) which has to be transformed, and the second argument is the t e rm
that is to be replaced by a new variable. The function dup returns a clause

with a sufficient number of duplications of literals.

D e f i n i t i o n 17.18 Let C = {L1 , . . . , L,~} be a clause, and t be a term oc-
curring in C. Suppose t occurs kl times in Lt, J~2 times in L~, etc. Then
dup(,C,t) = C is an ordered clause condsting of 2 kt copies of LI, 2 k~ copies
of L~ , 2 k~ copies of Ln. <~

Note that if some L E C does not contain the term t, then C contains L
2 0 = 1 times, as it should.

E x a m p l e 17,19 Let C = Q(~) e- e(x, x), P(f(x) ,a) , P(u, v). Then we
have dup(C, x) = Q(x), Q(x) e-- P(x, re), P(x, x), p(x, x), P(x, x), P(f(:v), a),
P(f (x) , a), P(u, v), and we have dup(C, a) = Q(x) +-- P(x, x), P(f (x) , a),

p(,, , v). <

t7.4. COMPLETE OPERATORS FOR SUBSUMPTION 309

Using the function dup to duplicate literals, we can now define our upward
refinement operator 5~:

D e f i n i t i o n 17.20 Let g be a clausal language. The upward refinement op-
erator 5u for (g, _) is defined as follows:

1. For every t = f (x l , . . . , x,~) in C, for which all xl are distinct variables
and each occurrence of x~ in C is within an occurrence of t, 5~(C)
contains the clause obtained by replacing all occurrences of t in C by
some new variable z not previously in C.

2. For every constant a in C and every non-empty subset of the set of
occurrences of a in C = dup(C, a), i f /) is the ordered clause obtained

by replacing those occurrences of a in C by the new variable z, then
5u (C) contains D (D is the set of literals in the ordered clause D).

3. For every variable x in C and every non-empty proper subset of the
set of occurrences of x in C = dup(C, x), if D is the ordered clause

obtained by replacing those occurrences of x in C by the new variable
z, then 5~(C) contains D.

4. If C = D U {L} and L is a most general literal with respect to D, then
~u (C) contains D.

E x a m p l e 17.21 Let C = Q(x) +-- P(x, z), P(f(x), a), P(u,v). The four
items in the definition of ~ (C) generate the following:

1. Since x in f(x) also appears outside of occurrences of f(x), this item
cannot be applied.

2. C = dup(V,a) = Q(z) +-- P(x,x) ,P(f(x) ,a) ,P(f(x) ,a) ,P(u,v) . The
following members of ~ (C) can be obtained from this:

= Q(x) e-- P(x, x), P(f(x), z), P(f(x), z), P(u, v) can be obtained
from C by replacing both occurrences of a by z, so D = Q(x) +-
P(x, x), P (/ (x) , z), P(u, v) (which i s /) without duplicate li terals)is a
member of ~ (C).

= Q(z) +-- P(x, x), P(f(x), z), P(f(x), a), P(u, v) can be obtained
from C by replacing the first occurrence of a by z, D = Q(x) +--
P(x, x), P(f(x), z), P(f(x)~ a), P(u, v).
Note that the latter D can also be obtained from C by replacing the
second occurrence of a by z.

3. dup(C, x) = Q(x), Q(x) +-- P(x, x), P(x, x), P(x, x), P(x, x), p (f (x) , a),
P(f(x), a), P(u, v). This generates (among others) the following mem-
bers of 5u (C):

Q(x) +- P(x, x), P(x, z), P(z, x), P(z, z), P(f(x), a), P(f(z), a), P(u, v).
Q(x), Q(z) +-- P(x, z), P(f(x), a), P(u,v).

dup(C, u) and dup(C, v) yield only clauses of ~ (C) that are subsume-
equivalent to C.

3!0 CHAPTER 17. REFINEMENT OPERATORS

4. Since -,P(u, v) is most general with respect to D = Q(x) +-- P(x, x),
P(f(x), a), we have D C <

The proof of locally finiteness and completeness is analogous to the proof
of Theorem 17.15.

T h e o r e m 17.22 Let C be a clausal language. Then 54 is a locally finite and
complete upward refinement operator for (C, ~}.

We already know that 54 cannot be proper. For instance, if we let C =
{ P (x) , P (y) } and D = {P(x)}, then D E 5~(C) and C ~ D.

1 7 . 5 I d e a l O p e r a t o r s f o r F i n i t e S e t s

Dropping the condition of properness allows us to define locally finite and
complete refinement operators for infinite languages. Alternatively, we could
stick to all three requirements of an ideal operator, and restrict the language
to a finite set. This approach is discussed in the present section.

In fact, if (G, >_} is a quasi-order, G is finite and >_ is decidable, then
there always exists an ideal refinement operator for (G, _>). It is easy to show
that every C E G has a finite complete set de(C) of downward covers, and
a finite complete set uc(C) of upward covers in G. These can be found by
exhaustively searching the whole quasi-order. If we define p(C) = de(C) and
5(C) = uc(C), then by definition p and 5 are locally finite and proper. To
show the completeness of p, let C, D E G such that C > D. Then either
D is a downward cover of C, in which ease there is an E E p(C) such that
D "~ E, or there is an E E p(C) such that C > E > D. In the latter ease, we
can find an F E p(E) such that C > E > F >: D, etc. Since G is finite and
p is proper, we must eventually find a p-chain from C to a member of the
equivalence cia, s of D, so p is complete, and hence ideal. The idealness of 5

is shown similarly.
'The fact that there always exists an ideal refinement operator for finite

sets is mainly of theoretical interest, because in practice it will often be very
inefficient to find the sets dc(C) and uc(C) for every C E G. Thus in practice,
we usually prefer more constructive--though possibly improper--refinement
operatars ever such very elaborate ideM operators.

In this section we will define ideal downward and upward refinement op-
erators for the set of reduced clauses bounded by a size-restriction. These
operators take reduced clauses as input, and return sets of reduced clauses.
The definitions are constructive, in the sense that they are based on elemen-
tary substitutions, as were the operators we saw in earlier sections. However,
the operators still involve some subsurnption tests. Shapiro defined a down-
ward refinement operator P0 for reduced clauses bounded by size in [Sha81b],
and included a completeness proof. Unfortunately, this proof contains some

17.5. IDEAL OPERATORS FOR FINITE SETS 311

errors, and his operator is actually incomplete. For a detailed discussion of
this incompleteness, we refer to [LN93] and [Nib93].

Instead of a size-bound, we will here use newsize. We assume some
newsize-bound (k, m) is given. The set of all reduced clauses in the lan-
guage is denoted by TO, we use 7E iz~ to denote the set of reduced clauses
bounded by (k, m), and C '~'~z~ for the set of all (possibly non-reduced)
clauses bounded by (k, rn). The sets 5g ~ z e and C ~ i z ~ are finite up
to variants, as we showed in Proposition 14.44. This guarantees that ideal
downward and upward refinement operators exist for ~ i z ~ . The main
difficulty for completeness proofs for the particular operators defined below,
is to show that all clauses in a refinement chain from some C E ~ iz~ to
some D E Tr ~ ' ~ i ~ are themselves also members of 5g ~ i ~ .

1 7 . 5 . 1 D o w n w a r d

Here we will define an ideal downward refinement operator p~ for 7~ ~*i~ '~
(the ' r ' subscript abbreviates 'reduced'). One of the main problems in defining
an ideal downward refinement operator for reduced clauses, is the fact that
addition of more than one literal in one step is sometimes needed to get from
one reduced clause to another, as described in the next example.

E x a m p l e 17.23 Consider the following reduced clauses:

c = Q(~) ~ P(~, .)
D = Q(x) +-- P(x, a), P(y, z), P(z, v)

We can prove that there is no E such that C ~- E ~- D. Thus for an ideal
refinement operator p for reduced clauses, we must have D E p(C). However,
D contains two more literals than C. This means that a single application of
one of the four items in the definition of PL is not sufficient to get us from C
to D. <~

To overcome the problem of this example, we will use non-reduced mem-
bers of the subsume-equivalence classes of C and D to form a bridge between
the reduced clause C and its reduced proper refinements D. For this we
make use of the Inverse Reduction Algorithm, which computes the (usually
non-reduced) members of the equivalence class of C of at most m literals.
Let eq ra (C) denote the set of clauses that the algorithm returns. We assume
this set does not contain any variants, which implies that it is finite. The
next example shows how these non-reduced clauses can solve the problem of
Example 17.23:

E x a m p l e 17.24 Consider C and D of the previous example. If m > 4, then
we have the clauses C ' = Q(x) +-- P (x , a) , P (y , z) , P (u , v) E eqm(C) and
D' = Q(x) +-- P (x , a) , P (y , z) , P (z , v) E eq'~(D) (in fact, D ' = D). Since
C'{u /z} = D' and C ~- D' , we can make the reduction of D' (which is D

312 CHAPTER 17. REFINEMENT OPERATORS

itself in this example) a member of p(C). Thus by applying an elementary
substitution to a non-reduced member of the equivalence class of C, we can
get to D. <1

Recall from Chapter 14 that two literals are compatible if they have the
same predicate symbol and sign, and incompatible otherwise. The fourth item
of the definition of p~ below adds a most general literal L = P (X l , . . . , Xn)
or L = - , P (x l , . . . , x~) to the reduced clause C, which is incompatible with
every literal in C. It is easy to see that D = C U {L} is reduced as well.
Furthermore, the next]emma guarantees that C properly subsumes this D.

L e m m a 17.25 Let C be a clause, and L be a most general literal with respect
to C. Then C ~- C U {L} iff L is incompatible with every literal M E C.

P r o o f
~ : Suppose C ~- C U {L} and L is compatible with some M E C. Let

be defined on variables in L only, such that L6 = M. Then (C U {L})fl = C,
contradicting C U {L} ~ C.

~ : Suppose L is incompatible with every literal M E C and C ;r CU {L}.
Since C __ C U {L} and C)Z C U {L}, we have C --~ C t2 {L}. Then there
must be a 0 such that (C U {L})0 C C. But then L0 E C, contradicting the
assumption that L is incompatible with every M E C. []

Using the set eq "~ (C) for the first three items and incompatible literMs for
the fourth item, we will now define our ideal downward refinement operator

fir.

D e f i n i t i o n 17.26 Let (k, m) be a pair of natural numbers, and 7~ "*~ize be
a language of reduced clauses bounded by (k, rn). For a given C E 7~ n*~*ize,
let pr (C) contain all D E 7~ n ~ i z * that satisfy one of the following conditions:

1. C ~ D, and there are C' E eqm(C) and D ~ E eqm(D) such that
C ' { z / f (x l , . . . , an)} = D', where x l , . . . , an are distinct variables not
appearing in C.

2. C >- D, and there are C' E eq'~(C) and D ~ E eq~(D) such that
c ' { z / a } = D'.

3. C ~- D, and there are C' E eqm(C) and D' E earn(D) such that

C ' { z / x } = D'.
4. IC[< m~ and x l , . . , , X n are distinct variables not appearing in C,

L = (' - ,)P(x l , . . . , xn) is a most general literal with respect to C that
is incompatible with every literal in C, and D = C tJ {L}. <>

Refinement operators as above can easily be adapted for Horn clauses, by
restricting T~ ne~ize to the set of reduced Horn clauses bounded by (k, m).
In that case, the only D's in the above definition that we need to consider,
are Horn clauses.

17.5. IDEAL OPERATORS FOR FINITE SETS 313

E x a m p l e 17.27 Consider the following clauses:

C = Q(x) ~- P(x, a)
D = Q(x) +- P(x, a), P(y, z), P(z, y)

Let T~ ~e~size be bounded by (3, 4), and suppose the language contains only
the predicates P and Q, the constant a, and the unary function f . The set
eq4(C) contains, among others, the following clauses:

1. Q(x) +-- P(x, a) (C itself)
2. Q(x), Q(y) +-- P(x, a), P(y, a)
3. Q(x) +-- P(x, a), P(y, z), P(u, v)

From these respective clauses, we can derive for example the following reduced
clauses in pr (C):

1. Q(f(z)) +-- P(f(z), a) (by the first item in the definition)
2. Q(a) +-- P(a, a) (by the second item: {y/a} and reduction)
3. Q(r +-- P(x, a), P(y, z), P(z, v) (by the third item)

From the last of these three clauses, we can then derive D in one further
refinement step, so D e p~ (C). <~

We will first prove the properness of p~, then its locally finiteness, and
then its completeness.

P r o p o s i t i o n 17.28 p~ is proper" for {T~ ~e~iz~, ~}.

P r o o f Let C E T~ iz% If D E pr(C) is generated by one of the first three
items, then by definition C ~- D. If D is generated by the fourth item, then
C ~- D by the previous Lemma. []

Locally finiteness is easy to prove. The set of clauses generated by the first
three items in the definition of Pr (C) is obtained as follows. (1) Construct the
set eq "~ (C); (2) apply the three kinds of elementary substitutions to all clauses
in this set; (3) reduce the resulting clauses; (4) remove from the resulting
reduced clauses all those that are not properly subsumed by C or that are
not bounded by (k, m). Since eq m (C) is finite, the number of elementary
substitutions is finite. Moreover, reduction is computable and subsumption
is decidable, so these 4 instructions can be completed in a finite number of
steps. Finally, since the number of predicate symbols that can be used for
the fourth item of the definition is finite, pr (C) is finite and computable.

P r o p o s i t i o n 17.29 Given a finite number of constants, function and pred-
icate symbols, Pr is locally finite for (TI new~ize, ~).

For the completeness, we need the following lemmas, the proofs of which
are illustrated by some examples.

314 CHAPTER 17. REFINEMENT OPERATORS

L e m m a 17.30 Let C, D C Td ne~*~ze be reduced clauses such that C >- D,
and let C ~ E eq'~(C) and D' C eqm(O) satisfy C'O = O', for some 9. Then
there is an E E p~(C) such that E >_ D.

P r o o f For simplicity, we identify variant clauses in this proof. Since C'O =
/3', there is a chain of clauses C' = Co, C~, . . . ,Cn = D' for which Ci =
Ci-10i, where 0~ is an elementary substitution as used in the first three items
of the definition of pr. Note that these Ci are bounded by (k, m), and are
not necessarily reduced. Let (Tj be the first Ci for which C >- Ci. Such a Cj
exists, since C >- D ~ D ~. Let E7 be a reduction of Cj. We have C ~ Cj-1, so
Cj-1 C eq~(C). Then since Cj_~Oi = Cj and E is a reduction of Cj, p~(C)
contains E. Finally E _ D, because E ~ Cj and CjOj+I ... On = D' ..~ D. []

E x a m p l e IZ .aa Let C = let D =
{P(a,b),P(c,b) ,P(c,d) ,P(a,d)) . If we let C' = C, D' = D, and 0 =
{w/b, x/e, y/d, z/a}, then C'O = D'. The substitution 0 can be decomposed
into the elementary substitutions 01 - {w/b}, 07 = {z/e}, Oa = {y/d}, and
84 = {z/a}. This gives the following chain of clauses:

C' = Co = {P(a, w), P(x, b), P(c, y), P(z, d))
Cl = CoO1 = {P(a, b), P(x, 19), P(c, y), P(z, d)}
C2 : C102 ~- {P(a, b), P(c, b), P(e, y), P(z, d)}
Ca = C20a = {P(a, b), P(c, b), P(c, d), P(z, d)}
C4 = cue4 = {P(a, b), P(c, b), P(c, d), P(a, d)} = D'.

C~ is properly subsumed by Co, so Pr (C) contains the clause E = {P(a, b),
P(c, y), P(z, d)} (the reduction of C1), which subsumes D.

L e m m a 17.32 Let C, D ~ T~ ~e~~ be reduced clauses such that C ~- D and
C C D. Then there {s an E E p~(C) such that E ~ D.

P r o o f Let F be a maximal subset of D~\C, such that (C t2 F) ~ C. That
is, for every literal M E D\(C U F), we have C >- (C tO F tO {M}). Let L
be a most genera! literal with respect to C U F such that LO = M for some
M E D\ (C U F) and some 0.

If (C U F U { L}) @ (C U f) , then by Lemma 17.25, L is incompatible with
every ~itere~t in (C U F), so L is incompatible with every ~iteral in C. Hence
by the fourth item in the definition o fp r , we have E = (C O {L}) ~ pr(C).
Furthermore, we have E _> D since E = C U {L} ~ C U {M} C D.

Otherwise, C ' = CU F U {L} and D' = C tO FU {M} satisfy C' >- D' and
C~O = D f. Then by Lemma 17.30, there is an E E P~ (C) such that E >_ D. a

E x a m p l e 17.33 Let C = {P(x)} and D = {_?(x),-~Q(a, x)}. The only sub-
set F of D \ C such that (C U F) ~ C, is the empty set. m = ~Q(a, x) is

17.5. IDEAL OPERATORS FOR FINITE SETS 315

the only literal in D\C, and L = -,Q(y, z) is a most general literal such that
MO = L, where 0 = {y /a , z / x} . Now E = C U {L} is reduced, E E p~(C),
and E ~- D. <l

E x a m p l e 17.34 Let C = {P(x) ,~Q(x,a)} and D = {P(x),-~Q(x,a),
-~Q(y, z),-,Q(z, y)}. Now F = {-~Q(y, z)} is a maximal subset of D \ C such
tha t (CUF) ~ C. Taking M = -~Q(z, y), we get L = -~Q(u, v) as a most gen-
eral literal with respect to CUF. If we let C' = CUFU{L}, D' = CUFU{M},
then C' E eq "~ (C) and D' E eq "~(D) (assuming m _> 4). Moreover, C'O = D j
for 0 = {u/z , v/y}. Hence by Lemma 17.30, there is an E E p~(C) such that
E ~ D, for instance E = {P(x) , - ,Q(x , a), ~Q(y, z),-~Q(z, v)}. <

P r o p o s i t i o n 17.35 p~ is complete for (Ti ~ i ~ , ~).

P r o o f Let C, D E ~,~ew~iz~ be reduced clauses such that C ~- D. Then there
is a 0 such that CO C_ D. Let F be a reduction of CO. Then either C ~- F or
C ,-~ F. If C ~- F, then C and F satisfy the conditions of Lemma 17.30. If,
on the other hand, C ,-~ F, then by Proposition 14.11, F is a variant of C,
we have F C D, and F and D satisfy the conditions of Lemma 17.32.

In either case, there is a C1 E p~ (C) such that C ~- C1 ~_ D. If C1 "~ D,
we have found a p<chain from C to C1 "~ D. Otherwise, we can again find a
C2 E p~(C1) such that C ~ C1 >- C2 ~- D, etc. Since 7~ i~ is finite up to
variants and p~ is proper, this chain C = Co, C1, C2 , . . . cannot go on without
end. Thus eventually we must find a finite p~-chain C = Co, C1,. �9 C~ = E,
such that D ~ E. []

C o r o l l a r y 17.36 Let (k, m) be a pair of natural numbers, and Tt ~r be
a language of reduced clauses bounded by (k, m), containing only a finite
number of constants , function symbols, and predicate symbols. Then Pr is an
ideal downward refinement operator for (Tt ~ i z ~ , ~-}.

The refinement operator Pr for Tt newsiz~ can easily be changed to an ideal
refinement operator Pc for C ~ s i z ~ , by defining pc(C) = p~(D), where D is
a reduction of C.

1 7 . 5 . 2 U p w a r d

Analogously, we can define an ideal upward refinement operator 5r for a finite
quasi-ordered set (T~ newsize, ___). As in the upward refinement operator 5~, we
sometimes have to duplicate literals. But here the ordered clauses obtained
after duplication of some literats need at most have m literals, because of the
(k, m)-bound. Thus we can use a set eq '~(C), which contains every ordered
clause of at most rn literals that is subsume-equivalent to C. This set can
be computed using an algorithm similar to the Inverse Reduction Algorithm.
We will just define ~ here, leaving the proof of idealness to the reader.

316 CHAPTER 17. REFINEMENT OPERATORS

Definition 17.37 Let (k, m) be a pair of natural numbers, and 74 ~ i z ~ be
a language of reduced clauses bounded by (k, m). For a given C E 74 ~ i ~ ,
let & (C) contain all D E 74 " ~ i z ~ that satisfy one of the following conditions:

1. D ~- C, and there are O E eq~'~(C) and /i~' E eq'~(D) such that
19~{z/Z(xl,..., x,~)} = &, where x~ , . . . , x~ are distinct variables not
appearing in/9~.

2. D ~- C, and there are O E eq~(C) and ii~ ~ E eqm(D) such that

= d ' .

3. D ~- C, and there are d E eq'~(C) and /) ' E eqm(D) such that
= d , .

4. C = D U {L} and L is a most general literal with respect to D, incom-
patible with every literal in D. �9

17.6 Optimal Refinement Operators

Apart from the concept of an ideal refinement operator, one can also define op-
timal refinement operators, which feature a different combination of desirable
properties. Optimal refinement operators are studied in [DB93, Gro92, VL93!.
In a quasi-ordered set of clauses {G, _>}, where G contains a top element U,
De Raedt and Brnynooghe [DB93] discuss downward refinement operators p
satisfying the following properties:

1. For every C G G, p(C) is a set of maximal specializations (downward
covers, in our terms) of C.

2. = a .

Let us call such an operator p a cover-refinement operator, since it only
employs downward covers. By definition, p is proper.

D e f i n i t i o n 17.38 Let p be a cover-refinement opera~or for a quasi-order
{G, k}. P is called optimaIiffor every C, D, E E G, E E p*(C) and E E p*(D)
implies C ~ p= (D) or D E p* (C). (>

In an optimal cover-refinement operator p, there is exactly one p-chain
from C to D if C > D. Translated to the refinement graph, there is exactly
one path in the graph from such a C to D. This means that the refinement
graph becomes a tree, with [] as root. Optimality is clearly desirable for
efficiency reasons.

Unfortunately, optimal cover-refinement operators do not exist for most
quasi-ordered languages. In fact, cover-refinement operators do not exist at all
for most quasi-ordered languages of interest. Since we have already proved in
Proposition 14.32 that the clause C = P(xl, xl) has no upward covers under
subsumption, there is no D for which C is a downward cover. Thus there is
no D for which C @ p(D), and consequently C ~ p*(D).

17. 7. R E F I N E M E N T O P E R A T O R S FOR THEORIES 317

Proposition 17.39 Let C be a clausal language containing at least one pred-
icate or function symbol of arity > 2. Then there does not exist a cover-
refinement operator for (C, >-}.

The same result of course also holds for (C, ~}, for the orders with back-
ground knowledge from Chapter 16, and for Horn languages 7-/.

17.7 Refinement Operators for Theories

For a clausal language ordered by logical implication, it is much less obvious
how we could define a locally finite and complete (but improper) refinement
operator than for languages ordered by subsumption. Since the Subsumption
Theorem tells us that implication is equivalent to a combination of resolution
and subsumption, a first suggestion for the downward case might be to just
add the set of self-resolvents of C to PL (C). That is, we could define Px (C) =
pL(C) U {D [D is a resolvent of C and C}.

However, this approach does not yield a complete refinement operator.
For instance, suppose C = P (f (x)) +- P(x) and D = P(fS (x)) ~-- P(x) ,
then C ~ D. We have pz(C) = pL(C) U {P(f2 (x)) ~ P(x)}. Unfortunately,
the only clauses in pI(C) that imply D, are subsume-equivalent to C. It can
be shown that there is no clause E E p*I(C) such that D r E.

The problem here is that in the SLD-derivation of D from C, D is a
resolvent of two different clauses: P(f2 (x)) +- P(x) , and C itself. Therefore it
is rather difficult to define a refinement operator for implication as a function
from a single clause to a set of clauses.

However, a refinement operator can be defined for arbitrary quasi-ordered
sets. For the operators of previous sections, we took this set to consist of
individual clauses, ordered by subsumption. But we can also consider the set
of all theories, ordered by logical implication. In other words, we can take the
set G of Definitions 17.1 and 1'7.2 to consist of finite sets of clauses, rather
than individual clauses. P1 then becomes a function from a theory to a set of
theories.

Suppose S is the set of theories in a clausal language C. The negative
result on downward covers from Chapter 15 carries over to S ordered by
implication:

Proposition 17.40 Let ~ be a clausal language containing a binary predicate
P, S be the set of theories in C, and C = {P(x l , x2), P(x2, z l)} . Then {C} E
S has no finite complete set of downward covers in IS, ~}.

P r o o f Suppose F = { E l , . . . , E~} C S is a finite complete set of downward
covers of {C} in (S, ~) . We can assume none of the Ei contains any tautolo-
gies. Note that since {C} ~ Ei and C contains only positive literals, it follows
from the Subsumption Theorem that C ~ D p~ for every D E E i (here Dpo*
denotes the set of positive literals in D). This means that F would remain

318 CHAPTER 17. REFINEMENT OPERATORS

a finite complete set of downward covers of {C} in @q, ~) if we remove all
negative literals from the clauses in the 2i's. Thus we can assume each clause
in each Ei contains only positive literals.

Let E be the union of all Ei's. We will show that E contains a finite
complete set of downward covers of C in (C, ~) , yielding a contradiction
with Proposition 15.28. Firstly, let D E C be such that C ~ D, then we have
to show that there is an E E E such that C ~ E ~ D. Since {C} ~ {D}
and F is a finite complete set of downward covers of {C} in ($, ~}, there
is a Ei E F such that Ei ~ {D}. But since each clause in Ei only contains
positive literals, this means that some E E E i subsumes D. Hence there is
an E E E such that C ~ E ~ D. Secondly, for every D E E there is an
i such that D E E i . Hence C ~ D because C ~ Ei, and D ~= C because
Ei ~: C. Thus each D E E is a proper specialization of C. Then it follows
that E contains a finite complete set of downward covers of C in (C, ~}. But
this is not possible. []

Thus by Lemma 17.8, there is no ideal downward refinement operator
for (S, ~) . As before, we drop the condition of properness, and we try to
construct a locally finite and complete, but improper operator for (S, ~) .
This operator Pl (the 'I' stands for 'implication') employs three operations:
(1) add to E all resolvents of clauses in E; (2) add to E some clauses subsumed
by a G E E (using PL); (3) delete a clause from E.

Def in i t i on 17.41 Let C be a clausal language, containing only a finite num-
ber of constants, function symbols, and predicate symbols. Let S be the set
of finite subsets of C. The downward refinement operator P1 for (S, ~) is
defined as follows:

1. (E U {R I R is a resolvent of C1,C2 E E}) E pI(E).
2. If E = { C I , . . . , C n } , then (E UpL(Ci)) E pt(E), for each 1 < i < n.
3. If E = {C1, . . . ,C~}, then (E\{Ci}) E px(E), tbr each 1 < i < n. <5

Note that every theory in pI(E) that is specified by one of the first two
items in the definition of Pz is logically equivalent to E. This shows that ps
is not proper.

The completeness of Px follows from the Subsumption Theorem, which
tells us that logical implication can be implemented by a combination of
resolution and subsumption:

T h e o r e m 17.42 Let C be a clausal language, containing only a finite number
of constants, function symbols, and predicate symbols. Let S be the set of finite
subsets of C. Then Pl is a locally finite and complete downward refinement
operator for ($, ~>.

P r o o f Locally finiteness follows from the definition of P1 and the locally
finiteness of PL.

17.8. SUMMARY 319

For the completeness of pl, suppose E ,F E S, such that E ~ F and
F ~: E. Let {C1, . . . , C~} be the set of non-tautologous clauses in F. Since
E ~ F, we have E ~ C~, for every i < i < n. 6'/ is not a tautology, so by
the Subsumption Theorem there is a derivation R~, R ~ = Di (ki > 1)

�9 �9 " 1 k i

from E, where Di subsumes C~. Let k = m a x { k l , . . . , k,}. From the first
i tem in the definition of PI, there is a p• E1 = E, E 2 , . . . , Ek, such that
Ej+I = Ej U {R [R is a resolvent ofC1,C2 E Ej}, for each 1 _ j < k - 1.
Then { D 1 , . . . , D ~ } C_ Ek.

Now since D1 ~- C1, it follows from the completeness of PL that by the
second item in the definition, there is a pi-chain from Ek to a set A1, such
that E C_ A 1 and there is a C{ E Z~l which is subsume-equivalent to C1. By
the same reasoning, there is a pi-chain from A1 to a set A2, such that A 1 C_
A2 and there is a C~ E A2 which is subsume-equivMent to C~. Repeating
this argument a few times, there is a pi-ehain from E to a set A,~, such
that { e l , . . . , CA} _C A,~, and C~ and C[are subsume-equivalent for each
l < i < n .

Now by the third item in the definition of PI, we can remove from AN
all clauses except for these C[. Thus there is a p/-chain from E to a set
{C~, . . . , CA}, which is logically equivalent to F. []

It is instructive to compare Px with the UDS specialization of Chapter 12.
In fact, if we restrict S to the set of definite programs in some language, and
we use only binary resolvents, then PI is almost the same as UDS specializa-
tion. There are two differences. Firstly, the first item in the definition of P1
adds all resolvent of clauses in E, while UDS specialization would only add
the set of all resolvents of some clause C and other members of E, resolved
upon some atom in the body of C. Secondly, while UDS specialization simply
adds a clause that is subsumed by a member of the original set, the second
item of PI implements this subsumption stepwisely via PL.

Our downward refinement operator P1 combines resolution, subsumption
(via PL), and clause deletion. Dually, it may be possible to define an upward
refinement operator for ($, ~}, in terms of inverse resolution, inverse sub-
sumption (via 5u), and, if necessary, clause addition. However, as we have
seen in Chapter 11, inverse resolution faces many indeterminacies. Therefore
we will not pursue definining an upward refinement operator for ($, ~} here.

17.8 Summary

Downward refinement operators compute sets of specializations of a clause,
upward ones compute sets of generalizations. A refinement operator is ideal
if it is locally finite, complete, and proper. We defined pat and 5.4, which are
ideal downward and upward refinement operators for atoms.

For clausal languages ordered by subsumption or stronger orders, ideal
refinement operators do not exist. They can be approximated by dropping

320 CHAPTER 17. REFINEMENT OPERATORS

the requirement of properness, or by bounding the language. PL and ~u a r e

locally finite and complete, but improper downward and upward refinement
operators for clausal languages ordered by subsumption. Furthermore, pr and
5~ are ideal downward and upward refinement operators for reduced clausal
languages ordered by subsumption and bounded by some newsize-bound.

(Optimal) cover-refinement operators do not exist for clausal languages
ordered by subsumption. For the set of theories ordered by logical implication,
we defined the locally finite and complete, but improper downward refinement
operator PI.

Chapter 18

PAC Learning

18.1 Introduct ion

The theory of learnability concerns the questions of what can or cannot be
learned, and, in particular, what can be learned efficiently. Initial analysis of
learnability in machine learning was mainly done in terms of Gold's paradigm
of identification in the limit [Go167], which we already saw in Chapter 10.
The idea here is that a learning algorithm is given an infinite sequence of
examples for some unknown target set. Each example is an object x of the
domain, together with a label indicating whether or not x is an element of
the target set. The learning algorithm reads examples one by one, and after
each new example it constructs a theory for the examples read so far. The
algorithm is said to identify the target set in the limit, if the sequence of
theories that it constructs, "converges" to the target set after only a finite
number of examples have been read. The major disadvantage of identification
in the limit is that, even though you can prove in some cases that there exists
an n such that a correct theory will be identified after n examples, you usually
do not know what this n is, so you cannot know for sure when you may end
the learning.

Nowadays, Valiant's paradigm of PAC tearnability [Va184] is usually con-
sidered to provide a better model of learnability. While identification in the
limit is concerned with exactly identifying the target in a finite number of
steps, the aim of PAC learning is to find a good approximation to the tar-
get in a small (polynomially-bounded) number of steps. A PAC algorithm
is an algorithm that takes examples concerning some unknown target con-
cept, and learns a concept which is probably approximately correct. That is,
a PAC algorithm will, with high probability, learn a concept which diverges
only slightly from the target concept. (The relation between 'concept' and
our earlier notion of a ' theory' will be explained below, at the beginning of
Section 18.6.)

322 CHAPTER 18. PAC LEARNING

In this chapter we give an overview of PAC-learnability settings and re-
sults relevant for ILP. These learnability results complement the learning
operators of the previous chapters. PAC learnability is concerned with two
major complexity issues: how many examples do we need to ensure that we
will probably find an approximately correct concept (sample complexity), and
how many steps do we need to take to find such a concept (time complexity)?
We consider the study of learnability theory to be both highly interesting,
and very important for ILP. Unfortunately, this theory presupposes quite a
lot of other theory, including Turing machines, NP-completeness, statistics,
etc. A fully self-contained treatment of learnability theory would require an
introduction into these topics as well, which would take us far beyond the
scope of the present book. Therefore we have co settle for a much more sketchy
treatment. In particular, we will leave out all proofs of results here, refering
instead to the original papers where those results were reported.

The chapter is organized as follows. In the next section we motivate and
define the standard setting for PAC learning. In Sections 18.3 and 18.4 we
go into sample complexity and time complexity, respectively. Our defini-
tions in Sections 18.2-18.4 follow those of Natarajan [Nat91] quite closely.
Section 18.5 discusses a number of related learning settings. Sections 18.6
and 18.7 are the main sections of this chapter. Here we show how the PAC
setting applies to ILP, and we give an overview of the main results that have
been reported for the normal and nonmonotonic problem settings, respec-
tively.

18,,2 PAC Algorithms

Before formally introducing the PAC setting, let us first illustrate and moti-
vate it by means of a metaphorical example. Suppose some biology student
wants to learn from examples to distinguish insects from other animals. That
is, he or she wants to learn the concept of an 'insect' within the domain of
all animals. A teacher gives the student examples: a positive example is an
insect, a negative example is some other animal. The student has to develop
his or her own concept of what an insect is on the basis of these examples.
Now~ the student will be said to have learned the concept approximately cor-
rectly, if; when afterwards tested, he or she classifies only a small percentage
of given test animals incorrectly as insect or non-insect. In other words, his or
her own developed concept should not diverge too far from the real concept
of an 'insect'.

In the interest of fairness, we require that the animals given as examples
during the learning phase, and the animals given afterwards as test, are all
selected by the same teacher (or at least by teachers with the same incli-
nations). For suppose the student learns from a teacher with a particular
interest in European insects, whose examples are mainly European animals.
Then it would be somewhat unfair if the animals that were given afterwards

18.2. PAC ALGORITHMS 323

to test the student, were selected by a different teacher having a decisive in-
terest in the very different set of African insects. In other words: the student
should be taught and tested by the same teacher.

Let us now formalize this setting:

D e f i n i t i o n 18.1 A domain X is a set of strings over some finite alphabet
E. The length of some x E X is the string length of x. X In] denotes the set
of all strings in X of length at most n.

A concept f is a subset of X, a concept class Y is a set of concepts. An
example for f is a pair (x, y), where x C X, y is called the label of the example,
y = 1 if x C f and y = 0 otherwise. If y = 1 then the example is positive, if
y = 0 it is negative.

If f and g are two concepts, then f a g denotes the symmetric difference
of f and g: f A g = (f \g) U (g\f) .

In our metaphor , X would be the set of descriptions of all animals, the
target concept f _C X would be the set of descriptions of all insects, and
the student would develop his or her own concept g __ X on the basis of a
number of positive and negative examples (i.e., insects and non-insects). The
symmetr ic difference f a g would be the set of all animals which the student
classifies incorrectly: all insects that he or she takes to be non-insects and all
non-insects he or she takes to be insects.

For technical reasons, we restrict the examples to those of length at most
some number n, so all examples are drawn from X [~]. Note that X ['q is a
finite set. We assume these examples are given according to some unknown
probabil i ty distribution P on X['q, which reflects the particular interests of
the teacher. If S C_ X[n], we let P(S) denote the probabili ty that a member of
X M that is drawn according to P, is a member of S (i.e., P (S) = ~ s e s P(s)) .
Now suppose the student has developed a certain concept g. Then in the test
phase, he will misclassify some object x E X M iff x E fAg . Thus we can
say that g is approximately correct if the probabili ty that such a misclassified
object is given during the test phase, is small:

P (f A g) 5 e,

where c E (0, 1] is called the error parameter . For instance, if e = 0.05, then
there is a chance of at most 5% that an arbitrary given test object from
X [~] will be classified incorrectly. Note that the set of examples that is given,
as well as the evaluation of approximate correctness of the learned concept
g, depends on the same probabil i ty distribution P. This formally reflects
the fairness requirement that the student is taught and tested by the same
teacher.

After all these preliminaries, we can now define a PAC algorithm as an
algori thm which, under some unknown distribution P and target concept f ,
learns a concept g which is probably approximately correct. 'P robably ' here
means with probabil i ty at least 1 - 5 , where 5 E (0, 1] is called the confidence

324 CHAPTER 18. PAC LEARNING

parameter. For instance, if (~ = 0.1 and the algorithm is run an infinite number
of times, at least 90% of these runs would output an approximately correct
concept. The constants c, 5, and n are given by the user as input to the
algorithm.

D e f i n i t i o n 18.2 A learning algorithm L is a PAC algorithm for a concept
class j r over domain X if

1. L takes as input real numbers 0 < ~, 5 ~ 1 and a natural number n E N,
where e is the error parameter, ~ is the confidence parameter, and n is
the length parameter.

2. L may call the procedure EXAMPLE, each call of which returns an ex-
ample for some concept f E j r according to an arbitrary and unknown
probability distribution P on X ['1,

3. For all concepts f E j r and all probability distributions P on X [~], L
outputs a concept 9, such that with probability at least 1 -~ , P (f A g) _<

A technicality: a PAC algorithm should be admissible, meaning that for
any input e, 5, n, for any sequence of examples that EXAMPLE may return,
and for any concept g, the probability that L outputs 9 should be well defined.

18.3 Sample Complexity
Having a PAC algorithm for a concept class Y is nice, but having an efficient
PAC algorithm for ~ is even nicer. In this section we analyze this efficiency in
terms of the number of examples the algorithm needs (the sample complexity),
while in the next section we treat the number of steps the algorithm needs
to take (time complexity).

The sample complexity of a learning algorithm can be seen as a func-
tion from its inputs e, 5, and n, to the maximum number of examples that
the algorithm reads when learning an unknown target concept under an un-
known probability distribution. Since the examples are drawn according to a
probability distribution, different runs of the same algorithm with the same
input and the same target concept and distribution may still read different
examples. 'Thus different runs of the same algorithm with the same input may
need a different number of examples in order to find a satisfactory concept.
Therefore, the sample complexity as defined below relates to the maximum
number of examples over all runs of the algorithm with the same input.

Definition 18.3 Let L be a learning algorithm for concept class J=. The
sample complexity of L is a function s, with parameters z, 5 and n. It returns
the maximum number of calls of EXAMPLE made by L, for all runs of L with
inputs e, 5, n, for all f E j r and all P on X In]. If no finite maximum exists,
we let s(e, 5, n) = ~ . <5

18.3. S A M P L E C O M P L E X I T Y 325

Of course, for the sake of efficiency we want this complexity to be as
small as possible. A concept class is usually considered to be efficiently PAC
learnable--as far as the required number of examples is concerned--if there
is a PAC algorithm for this class for which the sample complexity is bounded
from above by a polynomial function in l /e , 1/5, and n. Of course, even
polynomials may grow rather fast (consider nl~176 but still their growth rate
is much more moderate than, for instance, exponential functions.

D e f i n i t i o n 18.4 A concept class F is called polynomial sample PAC learna-
ble, if a PAC algorithm exists for f , which has a sample complexity bounded
from above by a polynomial in l /e , 1/5, and n.

Note that polynomial sample PAC learnability has to do with the worst
case: if the worst case cannot be bounded by a polynomial, a concept class is
not polynomial sample PAC learnable, even though there may be PAC algo-
ri thms which take only a small polynomial number of examples on average. 1

A crucial notion in the study of sample complexity is the dimension named
after Vapnik and Chervonenkis [VC71].

D e f i n i t i o n 18.5 Let .T be a concept class on domain X. We say that F
shatters a set S C_ X, if {S N S t f E F} = 2 s, i.e., if for every subset S' of
S, there is an f E F such that f N S = S'.

Note that if F C_ G and F shatters S, then ~ shatters S as well. Also note
that if T C_ g and .g shatters S, then ~" shatters T as well. In particular,
T = ~ is shattered by any non-empty F . The Vapnik-Chervonenkis dimension
of ~" depends on the largest sets that are shattered by F .

D e f i n i t i o n 18.6 Let F be a concept class on domain X. The Vapnik-
Chervonenkis dimension (VC dimension) of jr, denoted by D y e (F) , is the
greatest integer d such that there exists a set S C_ X with [SI = d that is
shattered by jr. D v c (F) = oo if no greatest d exists.

Note that if F = 2 s, then j r shatters S. Thus if ~" = 2 s for some finite
set S, then F has ISI as VC dimension.

E x a m p l e 18.7 Let X = {1,2,3,4} and Y = {{1}, {2},{3},{4},{1,2},
{ 2 , 3 } , { 1 , 3 , 4 } , { 1 , 2 , 3 , 4 } } be a concept class. Then Jr shatters the set
S = {1,2}, because { f N S I / E 2-} = {~, {1}, {2}, {1, 2}} = 2 s. Thus
jr 's "shattering" of S intuitively means that j r "breaks" S into all possible
pieces.

2" also shatters S' = {1, 2, 3}, because { f n S' I f S 9 t'} = {0, {1}, {2},
{3}, {1, 2}, {2, 3}, {1, 3}, {1,2, 3}} = 2 s. F does not shatter S" = {1, 2, 3, 4},
since there is for instance no f C j r with f N S I' = {1,4}. In general, there is
no set of four or more elements shattered by jr, so D v c (F) = IS'l = 3. <~

1Muggleton and Page's model of U-leachability provides a framework which is better
suited for average case analysis [MP94a]. However, thus far much more research has gone
into PAC learning than U-learning.

326 CHAPTER 18. PAC LEARNING

Some related dimensions are discussed in [Nat91, NP93].
Since we are actually dealing with XM rather than with X itself, we need

the following definitions, which "project" the VC dimension on XM.

Definition 18.8 The projection of a concept f on X [~] is f i l l = f ~ XM.
The projection of a concept class f on XM is iT[~] = {f['q I f E iT). <5

Definition 18.9 Let f be a concept class on domain X. iT is of polynomial
VC dimension if D v c (F In]) is bounded from above by some polynomial in
n.

The following fundamental result, due to [BEHW89], states the relation
between polynomial sample PAC learnability and the VC dimension. For a
proof we refer to Theorem 2.3 of [Nat91].

Theorem 18.10 Let iT be a concept class on domain X . Then f is polyno-
mial sample PA C learnable iff iT is of polynomial VC dimension.

Thus if we are able to show that some concept class is of polynomial VC
dimension, we have thereby shown it to be polynomial sample PAC learnable.

18.4 Time Complexity

In outline, the analysis of time complexity is similar to the analysis of sample
complexity: the time complexity of a learning algorithm is a function from
its inputs to the maximum number of computational steps the algorithm
takes on those inputs. Here we assume that the procedure EXAMPLE takes at
most some fixed constant number of steps. Again, we are mainly interested
in the existence of learning algorithms which have a polynomially-bounded
time complexity. (Actually, the work on computationally efficient learning
algorithms is just a special case of work on efficient algorithms in general, for
which see for instance [G J79, CLR90].)

18.4.1 R e p r e s e n t a t i o n s

Unfortunately, things are somewhat more complicated than in the last sec-
tion: the "number of examples" that an algorithm needs is unambiguous, but
what about the "number of computational steps"? What counts as a com-
putational step? In order to make this notion precise, we have to turn to
some precise model of computation, where it is clear what a single step is.
Usually Turing machines are used for thisfl We will not go into details, but
will just note here that a Turing machine programmed to learn some con-
cept will often not be able to output the learned concept g itself efficiently,

2Since Turing machines cannot represent arbitrary real numbers, we have to restrict
the parameters 5 and ~ somewhat, for instance by only allowing them to be the inverses
of integers.

18.4. TIME COMPLEXITY 327

for instance because]g[can be very large or even infinite. Therefore, instead
of the concept g itself, the Tnring machine will have to ou tpu t some finite
representat ion of g, which we call a name of g. Abstract ly, a representation
specifies the relat ion between concepts and their names:

D e f i n i t i o n 18 .11 Let .T be a concept class, and E a set of symbols. E*
denotes the set of all finite strings over E. A representation of Y" is a funct ion
R : ~ -+ 2 ~'' , where we require tha t for each f E 3 v, t / (f) # ~ and for every
dist inct f, g E Y~, R(f) n R(g) = ~. For each f E 3% R(f) is the set of names
of f in R.

The length of a name r E R (f) is s imply the string length of r, i.e., the
number of symbols in r. The size of f i n /~ is the length of the shortest name
in R(f) , denoted by Imin (f, R). <~

The set of symbols E tha t is used here, need not be the same as the alpha-
bet used for the strings in the domain X in Definition 18.1. The requirement
tha t R(f) • ~ for each f E ~c means tha t each concept in Y has at least one
name, while R(f) M R(g) = ~ for every distinct f , g means tha t no two distinct
concepts share the same name. Note the difference between the string length
of a str ing x E X and the size of a concept f E 3 c in R: the lat ter depends
on R, the former does not. 3

The aim of the analysis of t ime complexi ty is to be able to bound by
a po lynomia l funct ion the number of steps needed for learning. However, if
a learning a lgor i thm provides us with a name of an approximate ly correct
concept in a po lynomia l number of steps, but we are still not able to decide
in po lynomiM t ime whether tha t concept actual ly contains a given x E X,
we would still have a computa t iona l problem. Therefore, a representat ion R
should be polynomially evaluable: given an x E X and a name r of a concept
f , we should be able to find out, in polynomial time, whether x G f , using
r. This is defined as follows.

D e f i n i t i o n 18 .12 Let R be a representat ion of a concept class F over do-
main X. We say tha t R is evaluable if there exists an a lgor i thm which, for
any f E 9 r , takes any x E X and any name r E R(f) as input , and decides in
a finite number of steps whether x E f . R is polynomially evaluable if there is
such an algori thm, which has running t ime bounded by a polynomial in the
lengths of x and r. C>

In the sequel, whenever we write ' representat ion ' we actual ly mean a
polynomially evatuable representation.

3To give the reader of flavour of what these definitions will be used for: in Section 18.6
we will formMize the normal ILP setting in these terms. Since examples are usually ground
atoms, the domain X will consist of all ground atoms in some language, and a concept
will be a set of ground atoms. A definite program FI will represent, or be a name of, the
concept which equals its least Herbrand model MII.

328 C H A P T E R 18. PAC L E A R N I N G

18.4.2 Polynomial Time PAC Learnabil ity

In order to be able to study t ime complexity, we need to change the definition
of a PAC learning algorithm somewhat to incorporate the representation: a
PAC algorithm for a concept class ~ in representation R should output a
name of a concept g, rather than g itself.

Now t ime complexity can be defined as follows, where we introduce a new
parameter 1 that bounds the size of the concepts considered:

D e f i n i t i o n 18.13 Let L be a learning algorithm for concept class P in rep-
resentation R. The time complexity of L is a function t, with parameters c, 5,
n, and l. It returns the m ax i m um number of computat ional steps made by L,
for all runs of L with inputs e, ~, n, l, for all f E ; r such that l,~i,~(f, R) <_ l,
and all P on X N . If no finite m ax i m um exists, we define t(e, ~, n, l) = co. 0

Definition 18.14 A concept class $" is called polynomial time PAC learna-
ble in a representation R, if a PAC algorithm exists for f in R, which has a
t ime complexity bounded by a polynomial in l /e , 1/5, n, and I. O

Let us suppose we have some concept class jc of polynomial VC dimen-
sion. Then ~c is polynomial sample PAC learnable, so we know we only need
a polynomial number of examples. Now to achieve polynomial t ime PAC
learnability, it is sufficient to have an algorithm that finds, in a polynomial
number of steps, a concept that is correct with respect to these examples.
The following definition of correctness is similar in spirit to the one we gave
in Chapter 9: a concept, is correct if it contains all positive examples and no
negative ones. 4

D e f i n i t i o n 18.15 Let g be a concept and S be a set of examples. We say g
is correct with respect to S, if x E g for every (x, 1) E S and x ~ g for every
(x, 0) e s . o

An algorithm which returns a name of a concept that is correct with
respect to a set of examples S is called a fitting, since it finds a concept that
"fits" the given examples. As always~ we want a fitting to work efficiently.
The running t ime of the fitting should be bounded by a polynomial in two
variables. The first is the length of S, which we define as the sum of the
lengths of the various x E X that S contains. The second is the size of the
shortest correct concept, For this, we will extend the l,~i~ notation as follows.
If S is a set of examples, then lmin (S, R) is the size of the concept f E $"
with smallest size that is correct with respect to S. If no such correct f E o ~c
exists, then lmi~ (S, R) = oo.

Definition 18.16 An algorithm Q is said to be a fitting for a concept class
5 c in representation R if

4In the l i t e ra tu re on c o m p u t a t i o n a l l ea rn ing theory, usua l ly the t e rm ~consistenC is used
i n s t ead of ' cor rec t ' . We use ' correc t ' here in accordance wi th our earlier def ini t ions.

18.5. SOME RELATED SETTINGS 329

1. Q takes as input a set S of examples.
2. If there exists a concept in J: that is correct with respect to S, then Q

outputs a name of such a concept.

If Q is a deterministic algorithm such that the number of computational
steps of Q is bounded from above by a polynomial in the length of S and
lmi~ (S, R), then Q is called a polynomial time fitting. <~

As the next theorem (Theorem 3.1 of [Nat91]) shows, the existence of
such a fitting is indeed sufficient for the polynomial time PAC learnability of
a concept class of polynomial VC dimension.

T h e o r e m 18.17 Let jc be a concept class of polynomial VC dimension, and
R be a representation of jz. If there exists a polynomial time fitting for ~ in
R, then jz is polynomial time PA C learnable in R.

Conversely, it is also possible to give a necessary condition for polynomial
time PAC learnability in terms of so-called randomized polynomial time fit-
tings. We will not go into that here (see Theorem 3.2 of [Nat91]), but just
mention that it can be used to establish negative results: if no such fitting
for 5 r in /~ exists, then ~ is not polynomial time PAC learnable in R.

18.5 Some Related Settings

The standard PAC setting of the previous sections may be varied somewhat.
In this section, we will mention some alternatives.

18.5.1 Polynomial Time PAC Predictability

In the ordinary PAC setting~ a PAC algorithm for a concept class .T reads
examples from an unknown target concept f from iT, and has to construct a
concept g, also from .T, which is approximately correct. This may lead to a
seemingly paradoxical situation: we would expect that learning a superset of
.T is at least as hard as learning F itself, but this need not be the case in the
ordinary PAC setting. Namely, it may be that there is no polynomial time
PAC algorithm for some concept class .T in some representation R, while
for some larger concept class ~ D .T there is such a polynomial time PAC
algorithm. The latter algorithm, when given examples for some target concept
f E .T, always constructs a name of a probably approximately correct concept
g E ~ in polynomial time. Still, iT itself may be hard to learn, because the
requirement that the output concept should be a member of .T may be very
hard to meet.

We can take this into account by loosening the requirement on g some-
what, and allow it to be a member of a broader concept class ~, of which
~" is a subset. This gives the learning algorithm more freedom, which may
facilitate the learning task. Suppose we have a concept class 9 v, a broader

330 CHAPTER 18. PAC LEARNING

concept class G _D jr, and a representation R of G (which is of course also a
representation of Jr). Suppose, furthermore, that there exists a learning al-
gorithm L for Jr in R, which is just like a PAC algorithm for .T in R, except
that it outputs a name of a concept g such that g E G but not necessarily
9 E .T. In this case, we say that S is PACpredictable in R in terms ofF. If,
furthermore, the time complexity of algorithm L is bounded by a polynomial
in l /e , 1/(~, n, and l, we say that :P is polynomial time PAC predictable in
/~ in terms of ~. If some G exists such that ~" is polynomial time PAC pre-
dictable in R in terms of ~, we will simply say that :T is polynomial time
PAC predictable in R.

Clearly, if some concept class Jr is polynomial time PAC learnable in some
R, it is also polynomial time PAC predictable in/~: simply put G = Jr. Hence
the setting of polynomial time PAC predictability may be used to establish
negative results: if we can prove that some concept class Jr is not polynomial
time PAC predictable in R in terms of any 6, we have thereby also shown
that :T--as well as any superset of j r - - i s not polynomial time PAC learnable
in R. Some results listed below in Section 18.6 actually take this form. The
converse need not hold: some classes are polynomial time PAC predictable,
but not polynomial time PAC learnable (see Sections 1.4 and 1.5 of [KV94]
for an example). Hence polynomial time PAC predictability is strictly weaker
than polynomial time PAC learnability.

1 8 . 5 . 2 M e m b e r s h i p Q u e r i e s

We may facilitate the learning task by allowing a PAC algorithm to make use
of various kinds of oracles. As explained in Chapter 10, an oracle is a device
which returns answers to certain questions (queries). The most straightfor-
ward kind are the membership queries. Here the oracle takes some x E X
as input, and returns 'yes' if x is a member of the target concept, and 'no'
if not. For the PAC algorithm that uses an oracle, the oracle is like a black
box: you pose a question and get an answer, but do not know how the oracle
constructs it answer. Like the EXAMPLE procedure, oracles are assumed to
run in at most some fixed constant number of steps.

If a concept class jc is polynomial time PAC learnable in some R by an
algorithm which makes membership queries, we will say that j r is polynomial
time PAC learnable in R with membership queries. Analogously, we can define
PAC predictability with membership queries. Note that if a.n algorithm makes
membership queries, it in a way "creates its own examples." Note also that a
polynomial time algorithm can make at most a polynomial number of queries,
since each query counts for at least one computational step.

18.5.3 Identification from Equivalence Queries
While polynomial time PAC predictability is strictly weaker than polyno-
mial t ime PAC learnability, polynomial time identification from equivalence

18.5. SOME RELATED SETTINGS 331

queries, introduced by Angluin [Ang87], is strictly stronger. In this setting,
we have an oracle which takes a name of a concept g as input, and answers
'yes' if 9 equals the target concept f , and 'no' otherwise. In case of a 'no', it
also returns a randomly chosen counterexample x E fag . There is no need
for the oracle to provide the correct label of the counterexample x, because
the algorithm can find this out for itself: if x E g then x ~ f , and if x ~ g
then x E f . When equivalence queries are available, the requirement that an
algorithm outputs a name of an approximately correct concept is replaced
by the requirement that the target concept is identified exactly: an algorithm
that is allowed to make equivalence queries should output a name of the
target concept.

Consider a concept class ~" and a representation R of.T. Let L be an algo-
r i thm which uses equivalence queries in order to learn some unknown concept
f C .T under some unknown probability distribution P, and which takes as
input an upper bound 1 on lmin (f, R) and an upper bound n on the length
of the counterexamples from the oracle. If this algorithm always outputs a
name of the target concept, we say 3 c is identifiable from equivalence queries
in/~. If the running time of the algorithm L is bounded by a polynomial in
its inputs 1 and n, then .T is polynomial time identifiable from equivalence
queries in R. As in the case of membership queries, an algorithm with a
polynomially-bounded running time can make only a polynomially-bounded
number of equivalence queries.

It is shown in Section 2.4 of [Ang88] that if a concept class is polynomial
time identifiable from equivalence queries in some R, then it is also poly-
nomial time PAC learnable in R. The converse does not hold. Thus, while
PAC predictability can be used to establish negative results, identification
from equivalence queries may be used for positive results: if we can prove
that some concept class .T is polynomial time identifiable from equivalence
queries, we have thereby also shown that ~ , as well as any subset of $', is
polynomial time PAC learnable in R.

If polynomial time identification of .T from equivalence queries is done by
an algorithm which makes use of equivalence queries as well as membership
queries, then we say ~ is polynomial time identifiable from equivalence and
membership queries in R. This implies polynomial time PAC learnability with
membership queries.

For an overview of other kinds of queries, we refer to [Ang88].

18.5.4 Learning with Noise

In many learning tasks that involve real-world data, the examples may con-
tain errors (noise). There are various ways in which the analysis of noise may
be modelled in the theoretical setting for PAC learnability. We will discuss
only two kinds of noise here: Valiant's malicious noise [Va185], which is also
sometimes called adversarial noise, and Angluin and Laird's random classi-

332 CHAPTER 18. PAC LEARNING

fication noise [AL88]. For other kinds of noise, see [Lai88, Slo95]. (The way
noise may be treated in practice will be further discussed in Section 19.5.)

Firstly, in the malicious noise model, a malicious adversary of the learn-
ing algorithm tinkers with the examples: for each example that the learning
algorithm reads, there is a fixed, unknown probability 0 < r / tha t the adver-
sary has changed the original, correct example (x, y) to any other (x', y')-pair
he chooses. Since y~ may not be the correct label for x ~, the adversary may
introduce noise in this way. The adversary is assumed to be omnipotent and
omniscient--in particular, he has knowledge of the learning algorithm he is
trying to deceive. This means that the learning algorithm should be able to
cope even with the worst possible changes in the examples.

Secondly, in the random classification noise model, the EXAMPLE proce-
dure is replaced by a procedure EXAMPLE ~, and there is a fixed, unknown
probability 0 _< r / < 0.5 that the label of an example provided by this pro-
cedure is incorrect. For instance, suppose r~ = 0.1. If a learning algorithm
receives an example (x, y) from EXAMPLE rT, then there is a probability of
10% that y is incorrect.

In both models, the actual noise rate r/is unknown to the learning algo-
rithm. However, an upper bound r/b on the noise rate is given as an additional
input parameter to a PAC algorithm, where 0 _< ~ < r/b < 0.5. This ~/b is
added as a parameter to the time complexity function as well. If there is a
PAC algorithm for a concept class 5 r in some representation R, working in
the presence of malicious (resp. random classification) noise, with time corn-
plexity bounded by a polynomial in l /e , 1/5, n, I, and 1/(1 - 2r/b), then f
is said to be polynomial time PAC learnable in R with malicious (resp. ran-
dom classification) noise, a Similarly, we can define PAC predictability with
malicious or random classification noise.

18.6 Results in the Normal ILP Sett ing

Most research in PAC learning has focused on learning various classes of
formulas in propositional logic. Here the domain X consists of strings of bits
(zeros and ones), so a concept is a set of such strings. Each string of length n
is an assigment of t ruth values to the n propositional atoms P l , . . . , P n . For
instance, the string 101 makes Pl true, p~ false, and Pa true. Thus a string
of length n may be seen as an interpretation of a propositional language
with atoms P l , . . . , P ~ , in the sense of Chapter 1. A propositional formula
containing Pl, �9 . . , Pn represents (or is a name of) the concept which consists
of all strings of length n that make r true. In other words, r represents
the set of its models. For an overview of results in this setting, we refer
to [Nat91, AB92, KV94].

5Kearns' statistical query method [Kea93, KV94] provides a way to establish positive
learnabillty results in the presence of random classification noise. Kearns also showed that
the assumption that the learning algorithm is given ~?b is not necessary.

18.6. R E S U L T S IN THE N O R M A L ILP S E T T I N G 333

Below, we will tune the PAC setting to the normal ILP problem setting,
which is rather different from the propositional case, and give an overview of
the main results that have been obtained here. In Section 18.7, we tune the
PAC setting to the nonmonotonic ILP problem setting, which may be seen
as a generalization of the propositional case.

1 8 . 6 . 1 T h e N o r m a l I L P S e t t i n g i n P A C T e r m s

We will here restrict attention to learning definite programs from positive and
negative examples which are ground atoms, labeled with their t ruth value.
Because each example is a ground atom, it is natural to take the set of ground
atoms in some language as our domain X. The alphabet E used for this is
simply the alphabet of the underlying first-order language. Every concept is
then a subset of X, i.e., a set of ground atoms, and every concept class is a
set of sets of ground atoms.

Now the important thing is to recognise that definite programs can be
used to represent such concepts: the definite program II represents its least
Herbrand model Mri. That is, the least Herbrand model Mn of a definite
program H is a concept, and II can be seen as a name of this concept. Let us
call this representation 1) (for Definite programs). Here we take the length
of a clause to be its string length (including the '+--', ', ', '(', and ')' symbols),
and the length of a program to be the sum of the lengths of its members. For
instance, the length of a program containing P(a) and P (f (x)) +- P(x) , Q(x)
is 4+ 17 = 21. Using this representation, a PAC algorithm takes ground atoms
with their t ruth values as examples, and should return a definite program II
such that II has a probably approximately correct least Herbrand model: if
f is the target concept, then, with probability at least 1 - 5, we should have
P (f A M r I) _< e. Since distinct programs may have the same least Herbrand
model, some concepts will have more than one name in l). On the other hand,
however, note that there are also concepts without a name in this represen-
tation: for some concepts f , there is no II with MII = f (see Theorem 9.9).
Therefore we can only consider the learnability of concept classes in which
each concept is represented by at least one definite program.

One further issue has to be raised: is l) polgnomially evaluable? Or in
other words: can II ~ A be decided in polynomial time for arbitrary definite
programs II and ground atoms A? The answer is clearly negative: in general
II ~ A is not even decidable, let alone decidable in polynomial time. In order
to ensure polynomial evaluability, we have to restrict the kinds of programs
we use. Most results given below are actually restricted to function-free lan-
guages. In the appendix to this chapter, we show implication to be decidable
in polynomial time in function-free languages, so :D is polynomially evaluable
in this case. For the other kinds of programs mentioned in results below,
polynomial evaluability can also be proved. We will leave this to the reader.

One important feature of ILP is the use of background knowledge, which
usually forms one of the inputs of the learning task. The ordinary PAC setting

334 CHAPTER 18. PAC LEARNING

does not mention background knowledge, so we have to make an emandation
to this setting. Let us assume we have some set K;, which contains every defi-
nite program that we allow as background knowledge. For instance, K; might
contain all finite sets of ground atoms in some language. Now, apart from c, 5,
n, and l, a PAC algorithm for ILP purposes also receives one member B E K;
as input. B may not be changed during the run of the algorithm. The algo-
ri thm should return a definite program II such that the concept represented
by II U B (i.e., Mr~uu) is probably approximately correct.

Since B is an additional input to the learning algorithm, it should be re-
flected in the time complexity. This is done by adding an upper bound b on the
length of B as a fifth parameter to the time complexity function, in addition
to the ordinary parameters e, 5, n, and / that we saw earlier. For polynomial
time PAC learnability, we require the time complexity t(e, 5, n, l, b) of the
algorithm to be bounded by a polynomia.1 in 1/r 1/5, n, I, a.nd b. If such
an algorithm exists, we wilt say that • is polynomial time PAC learnable
in /? with background knowledge from tC. Analogously~ we can incorporate
the use of background knowledge in PAC predictability, identification from
equivalence queries, etc~

One further remark involving background knowledge: many results below
concern only single-predicate learning, where there is a single target predicate
symbol P. In this case, all we need to know about other predicates should
already be contained in the input B, only atoms with predicate P are given
as examples, and each clause in H should have P in its head.

In order to avoid too much notation, we will use the following abbreviation
(where K1 and K~ denote some restrictive property of programs): "definite
programs of kind K1 are polynomial sample/polynomiM time PAC learn-
able with background knowledge of kind K2" means that the set of concepts
representable by a definite program of kind Kt together with background
knowledge of kind K2 is polynomial sample/polynomial time PAC learnable
in representation/9, with background knowledge from the set of all programs
of kind Ka. Quite a lot of the results we give below are actually restricted
to programs of a single clause only. In this case, we say "clauses of kind
K1 are polynomial sample/polynomial time PAC learnable with background
knowledge of kind K2."

With all this notation in place~ we are now in a position to give an overview
of PAC-learnability results that have been reported tbr the normal setting.
For e~se of presentation, -are split-them into two groups: (1) results on lea~l-
ing non-recursive programs, and (2) results on learning recnrsive programs.
We will only give here the most important results which can be stated with-
out introducing too much additional notation. Other recent overviews may
be found in [KD94, CP95]; some further PAC-learnability results, which we
do not include below, are given in [Lin92, FP93a, FP93b, Coh93a, Coh93b,
Coh94b, Coh95b, Coh95c, Coh95a, Yarn95, D~e95b].

18.6. RESULTS IN THE NORMAL ILP SETTING 335

18.6.2 Learning Non-recursive Programs

Before we can state the main resclts for non-recursive clauses and programs,
we need to define some restricted kinds of clauses (repeating some notions
here that were already defined in earlier chapters).

* A definite program in which each clause has the same predicate symbol
P in the head, is called a definition of P.

. A k-literal definite program clause contains at most k literals in its
body. A k-literal definite program contains only k-literal clauses.

. A k-clause definite program contains at most k clauses.

. A clause or set of clauses is function-free if it does not contain function
symbols of ari ty > 1.

. A definite program clause is non-recursive if the predicate in its head
does not occur in its body. A definite program is non-recursive if all its
members are non-recursive.

�9 A clause C is allowed if all variables occuring in positive literals in
C also occur in negative literals in C. (In ILP, such clauses are also
sometimes called generative, range restricted, or connected.) A set of
clauses is allowed if all its members are allowed.

�9 A clause C is constrained if all variables occurring in negative literals
in C also occur in positive literals in C. A set of clauses is constrained
if all its members are constrained.

�9 A constrained atom is a constrained non-recursive definite program
clause. The predicate symbols in its body are called constraint pred-
icates.

�9 An ordered definite program clause A +-- B 1 , . . . , Bn is determinate
with respect to a definite program B, if for every 1 < i < n and every
substi tut ion 0 such that (A +- B 1 , . . . , B~_I)0 is ground and B ~ (B1 A
. . . A Bi-1)0, there is at most one substitution ~r for the variables in Bi0
such that BiOcr is ground and B ~ BiO~.

Suppose x l , . . . , xn are the variables in Bi that already occurred in
(A +-- B 1 , . . . , Bi-1)O, and Yl, . . . ,Y,~ are the other variables in Bi.
The idea behind determinacy is that B specifies a partial function
from X l , . . . , Xn to Yl, . . . , Ym: given ground instantiations of x l , . . . , x,~,
the background knowledge allows at most one ground instantiation of

Yl , . �9 Ym.

For example, suppose we use F(x ,y) to denote that y is the father
of x, and G(x,y) to denote that y is the grandfather of x. Then
the clause G(x, y) +-- F(x , z), F(z, y) is determinate with respect to

336 CHAPTER 18. PAC LEARNING

B = {F(a, c), F(b, e), r(c, e), F(d, e), F(e, f)}. Informally, determinacy
follows from the fact that any x has only one father z.

| The variable-depth of a variable x in an ordered definite program clause
A <-- B1, . . . , B~ is defined as follows. I fx occurs in A, then its variable-
depth is 0. Suppose x first occurs in Bi. If none of the other variables
in Bi already occurred in A <-- B 1 , . . . , B ~ - I , then x has variable-
depth co. Otherwise, the variable-depth of x is 1 plus the variable-
depth of the variable in Bi with greatest variable-depth occurring in
A <-- B , , . . . , Bi-1. The variable-depth of an ordered definite program
clause is the largest variable-depth of its variables. Note that such a
clause is constrained iff it has variable-depth 0.
If a definite program clause is determinate with respect to some definite
program B, its variable-depth is at most i and the arity of its predicate
symbols is at most j , then it is called ij-determinate with respect to
Bfi A definite program is / j-determinate with respect to B if all its
members are.

The clause from the last item has variable-depth 1 (because of z), so
this clause is (1, 2)-determinate with respect to B.

* Let C be a definite program clause. A term t in some literal L E C is
linked with linking-chain of length 0, if t occurs in C +, and is linked
with linking-chain of length d + 1~ if some other term in .5 is linked with
linking-chain of length d. The link-depth of a term t in some L E C is
the length of the shortest linking-chain of t. A literal L E C is linked if
at least one of the terms it contains is linked. C itself is linked if each
literal L E C is linked.

For example, the clause P(x) <-- Q(x, y, z), Q(x, y, w) is linked. The
term x has link-depth 0, while y, z, and w have link-depth t. Note that
w is linked with two linking-chains: one of length 1 (via x) and one of
length 2 (via 9 and a). Also note that the variable-depth of w is 2. The
clause P(x) +- Q(x, y), P(z) is not linked, because z is not linked.

. If a definite program clause is not determinate with respect to some
definite program B, the link-depth of its terms is at most i, and the
arity of its predicate symbols is at most j , then the clause is called
ij.~nondeterminate with respect to B.

For instance, P(x) +-- Q(x, y, z),Q(x,y, w) is (1, 3)-nondeterminate
with respect to • = {Q(a, b, b), Q(a, b, c)}.

* A definite program /3 is efficient if the set of computed answers for
B U {~-- A}, for arbitrary atoms A, can be computed by an algorithm

6Various non-equivalent definitions of i j-determinacy have appeared in the literature.
The one we give here is slightly different from the original definition given in [MF92], but
the details are not important for our purposes.

18.6. RESULTS IN THE NORMAL ILP SETTING 337

with running time polynomial in the length of A. In the appendix of this
chapter, it is shown that any function-free definite program is efficient.

�9 A definite program B is ffga if it consists of function-free ground atoms.

Consider an ffga definite program B, in which all atoms have the same
binary predicate symbol R. We can take /~(a, b) E B as denoting an
edge from a to b. If B represents a set of trees with edges directed
towards the roots, it is called a forest. If B represents a disjoint union
of directed cycles, it is called cyclical.

For example, B = {R(a,c),R(b,c),R(c,d)] U {R(e,f),_R(f,g)} is a
forest (with two trees, respectively having d and g as root), and
B = {R(a, b), R(b, e), R(c, a)} U {R(d, e), R(e, d)} is cyclical (with two
cycles).

In terms of these restrictions, we have the results listed below. For re-
sults involving/j-determinacy, k-literal clauses or k-clause programs, etc.,
we assume some fixed i, j , and k are given. Furthermore, instead of "ij-
(non)determinate with respect to the background knowledge" we will simply
write ij-(non)determinate. Many results given below presuppose a fixed up-
per bound on the arities of predicate symbols. Note, however, that such a
bound (for instance the j in i j-determinacy), together with a restriction to
function-free clauses, implies a fixed upper bound on the length of the exam-
ples, rendering the length parameter n irrelevant. Therefore, some of the more
recent results do not presuppose a bound on the arity of predicate symbols,
but let this vary with the length parameter.

Constrained atoms are polynomial time PAC learnable with efficient
background knowledge which uses only constraint predicates [PF92,
Theorem 7].

Finite sets of atoms are polynomial time identifiable from equivalence
and membership queries [AIS97, Theorem 13]. (Background knowledge
is not considered here.)

k-literal constrained function-free non-recursive definitions of the target
predicate are polynomial time PAC learnable with efficient background
knowledge [DMR93, Theorem 2]. This also holds with r /< 0.5 random
classification noise [D~e95a, Theorem 4] and with a "small" amount of
malicious noise [D~e95b, Theorem 3.5].

k-literal function-free non-recursive definitions of the target predi-
cate are polynomial time PAC learnable with ffga background knowl-
edge [Coh93b, Theorem 8]. This also holds with r I < 0.5 random classi-
fication noise [D~e95a, Theorem 4].

338 CHAPTER 18. PAC LEARNING

�9 k-clause /j-determinate function-free non-recursive definitions of the
target predicate are polynomial time PAC predictable with efficient
background knowledge ID~e95b, Theorem 3.4]. This also holds with
r /< 0.5 random classification noise [D~e95a, Theorem 4].

In [DMR92, Theorem 2], the same class had earlier been shown to
be polynomial time PAC learnable under simple distributions. In the
"simple distributions" setting, examples are drawn according to the
so-called universal distribution. See [LV9t] for details.

| If the widely assumed RP r PSPACE conjecture r is true, then deter-
minate linked function-free non-recursive definite program clauses are
not polynomial time PAC learnable with ffga background knowledge
[Kie93, Corollary 15].
If the widely assumed RP r NP conjecture is true, then (1, 2)-honda-
terminate function-free non-recursive definite program clauses are not
polynomial time PAC learnable with ffga background knowledge [Kie93,
Corollary 19].

| Function-free non-recursive definite program clauses with the target
predicate in the head and only atoms with binary predicate symbol R
in the body, are polynomial time PAC learnable with forest background
knowledge [HT96, Theorem 21]. This also holds with ~ < 0.5 random
classification noise [HST96, Theorem 4].
The same clauses are polynomial time PAC learnable with cyclical back-
ground knowledge if we use a non-standard representation [HT96, Sec-
tion 7,21.

1 8 .6 .3 L e a r n i n g R e c u r s i v e P r o g r a m s

Here we will give an overview of PAC-learnability results for programs in-
volving recursion, Quite a lot of these results are negative, because learning
recursive clauses is in generM more difficult than learning non-recursive ones.
In addition to the concepts of the last subsection, we also need the following:

| Let C be an ordered definite program clause with predicate symbol P
in its head. An atom in C- with predicate P is called recursive. C is
linearly recursive if it contains exactly one recursive atom, and k-ary
recursive if it contains k such atorn~. A recursive atom A in C- is closed
if each variable it contains already occurs in the literals to the left of
A. C is closed if all its recursive atoms are closed.

7Very briefly and informally, the complexity classes mentioned here are the following:
P is the class of problems solvable in polynomial time by a deterministic algorithm; RP
is the class of problems solvable in polynomial time by a randomized algorithm; NP is
the class of salvable problems for which the correcCness of a solution can be verified in
polynomial time by a deterministic algorithm; PSPAUE is the class of problems solvable
by a deterministic algorithm using a polynomially-bonnded amount of storage space. See
[HU79, G J79, CLRg0] for more details.

18.6. RESULTS IN THE NORMAL ILP SETTING 339

�9 A definite program clause C is term-related if it is an atom, or if any
term occuring in C - also occurs (possibly within another term) in C +.
A definite program is term-related if all its members are. Note that a
term-related clause is constrained.

Before we can state the main PAC-learnability results involving recursive
clauses, two additional kinds of queries have to be mentioned. These are not
applicable in the general PAC setting, but are useful in this particular ILP
formalization. The first concerns existential queries. Here we have an oracle
that takes a (possibly non-ground) atom A as input, and returns all ground
instances of A which are members of the target concept. The use of such an
oracle presupposes that any A has only a finite number of ground instances
which are members of the target concept. Existential queries can be seen as
a generalization of membership queries.

The second kind are the basecase queries [Coh95b]. Here the target con-
cept is represented by a particular definite program H containing two kinds
of clauses, recursive and non-recursive ones. The oracle takes a ground atom
A as input, and returns whether A is a member of the concept represented
by the non-recursive clauses of the target program H together with the back-
ground knowledge B (this concept is of course a subset of the target concept).

k-clause i j -determinate function-free definitions of the target predicate
are polynomial time PAC learnable under simple distributions with
existential and membership queries about the target predicate, and
with efficient background knowledge [DMR92, Theorem 3].

k-clause /-literal term-related definite programs are polynomial sam-
ple PAC learnable [NP94, Theorem 3]. (Background knowledge is not
considered here.)

Closed k-ary recursive i j-determinate function-free definite program
clauses are polynomial time identifiable from equivalence queries with
ffga background knowledge [Coh95b, Theorem 7]. (Cohen's use of i j-
determinateness involves so-cMled mode declarations. This is slightly
different from the definition we gave above. Furthermore, his t reatment
of examples is somewhat more general than ours. For the details, we
refer to his paper.)
Definite programs consisting of two/ j -determinate function-free clauses
of which the first is closed k-ary recursive and the second is non-
recursive, are polynomial time identifiable from equivalence and base-
case queries with ffga background knowledge [Coh95b, Proposition 9].
For k = 1, the latter result also holds with q < 0.5 random classification
noise [HST96, Theorem 7].

�9 Under certain plausible cryptographic assumptions (similar to the
P ~ N P assumption), definite programs consisting of an arbitrary

340 CHAPTER 18. PAC LEARNING

finite number of closed linearly recursive /j-determinate function-free
clauses are not polynomial time PAC predictable with ffga background
knowledge [Coh95c, Theorem 2].
Under the same assumptions, and if the arity of the target predicate
is at least 3 and i _> 3, ij-determinate function-free definite program
clauses containing an arbitrary number of closed recursive atoms are
not polynomial time PAC predictable with ffga background knowledge
[Coh95c, Theorem 3].

18.7 Results in the Nonmonotonic Setting

The PAC formalization of the nonmonotonic ILP setting is somewhat differ-
ent from the normal setting, but is a generalization of the setting for learning
propositional formulas with which we started the previous section. Let us con-
sider a function-free clausal language C with only a finite number of ground
atoms. Then any Herbrand interpretation of C is finite, and there are only
finitely many distinct Herbrand interpretations of C. Let the domain X be
a set of such Herbrand interpretations. Since a concept is a subset of the
domain, a concept is a finite set of Herbrand interpretations.

We use the following representation: a theory (finite set of clauses) T
represents the set of its models in X. That is, T is a name of {[E
X t I is a model of T}. Let us see if this representation is polynomially evalu-
able. Consider a function-free theory T and a Herbrand interpretation 1 E X.
Then we need to be able to determine whether T is true under I in time poly-
nomial in the lengths of T and I. T is true under I iff all ground instances of
clauses in T are true under L The number of such ground instances is easily
seen to be bounded by a polynomial (analogous to step 1 of the appendix).
Furthermore, a ground clause is true under I iff at least one of its literals is
true under I, which obviously can be decided in polynomial time. In sum,
our representation is polynomially evaluable.

Furthermore, it can be proved that in this representation, any set Z _C X
of Herbrand interpretations has a name. That is, for any set Z C_ X, there
exists a theory T such that Z is the set of Herbrand models of T. Given a
Herbrand interpretation I E X, we define r to be a conjunction of ground
literals, with the following property: A E r iff A E I, and -~A C r iff
A ~ L Then it is easy to see that the set of Herbrand models of Cx is
exactly {I}. For instance, if P(a), P(b), P(c) are the only ground atoms in
C, and I = {P(a), P(c)}, then ~I = (P(a) A -~P(b) A P(c)). Clearly, I is the
only Herbrand model of Cx. Now suppose Z = {I1 , . . . , In} C_ X is a set of
Herbrand interpretations. We define ~bz = Ch V . . . V r Note that I is
a Herbrand model of r iff I E Z. Thus Z is exactly the set of Herbrand
models of r By the construction in the proof of Theorem 3.8, we can find a
conjunction (or set) T of ground clauses which is logically equivalent to ~z.

18.8. SUMMARY 341

Since 5[is exactly the set of Herbrand models of T, the theory T is a name
of :/: in our representation.

The main result in this setting is:

�9 A jk-clausat theory is a set of allowed clauses such that each clause
contains at most k literals, and the length of each literal is at most j .
Function-free jk-clausal ~heories are polynomial time PAC learnable in
the nonmonotonic setting [DD94, Theorem 9].
This result remains valid with a "small" amount of malicious noise, and
with r~ < 0.5 random classification noise [D~e95a, Theorems 2 and 3,
respectively].

18.8 Summary

A concept is a subset of a domain X, and a concept class is a set of concepts.
A PAC algorithm takes examples for an unknown target concept, drawn ac-
cording to an unknown probability distribution, and learns, with tunably
high probability, a tunably good approximation of the target concept. A con-
cept class i f is polynomial sample PAC learnable if a PAC algorithm exists
for 9 c that uses only a polynomially-bounded number of examples, and is
polynomial time PAC learnable if the algorithm uses only a polynomially-
bounded number of steps. In the latter case, the algorithm should output a
name of the learned concept in some polynomially evaluable representation.
Polynomial time PAC predictability is weaker than polynomial time PAC
learnability, while polynomial time identification from equivalence queries is
stronger. When noise is involved, the examples may sometimes be incorrect.

In the normal ILP problem setting, a concept is a set of ground atoms,
and our aim is to find a definite program whose least Herbrand model proba-
bly approximates the target concept. In the nonmonotonic setting, concepts
are sets of Herbrand interpretations, and our aim is to find a theory whose
set of Herbrand models probably approximates the target concept. We gave
overviews of the main results reported for both settings.

342 CHAPTER 18. PAC LEARNING

18.A A Polynomial Time Decision Procedure

In this appendix, we will show that there is an algorithm which, when given
an arbitrary function-free definite program H and an arbitrary function-free
ground atom A, decides whether H ~ A in time polynomial in the length
/(H) of H and the length I(A) of A. We do not claim that the method outlined
below is the most efficient there is, but merely give it in order to establish
polynomial time decidability.

The construction is divided in two steps. First we show that H @ A iff
IIg ~ A, where IIg is a set of ground instances of clauses from 11, and the
length/(Hg) of II is bounded by a polynomial in/(11) and I(A); then we show
that Hg ~ A can be decided in time polynomial in/(IIg). Together these
steps enable us to decide II ~ A in time polynomial in I(H) and l(A).

Step 1: Reduct ion to ground case

Let H be a function-free definite program and A be a function-free ground
atom. Recall from Chapter 15 that if E is a set of clauses and T is a set of
ground terms, then Z(E, T) denotes the set of all ground instances of clauses
in E, instantiated with terms from T. Let T be the set of constants occurring
in A, and define YIg = Z(II, T).

Let us see how many clauses Hg contains. If a clause contains v distinct
variables, it has v .]T I < v . l(A) ground instances over T. Furthermore,
IH] < I(H) and each clause in H contains less than t(H) distinct variables.
Hence the total number of ground clauses in Hg is bounded by a polynomial
in l(II) and l(A). Since the length of each clause in Hg is at most I(H), it
follows that the length/(II9) of Hg is bounded by a polynomial in I(H) and

From the remarks following the proof of Lemma 15.10, we have H ~ A
iff Hg ~ A. Thus if we can decide Hg ~ A in polynomial time, we are done.

Step 2: Deciding t h e g r o u n d case

Here we will show that given a ground definite program H and a ground
atom A, it can be decided in time polynomial in /(II) whether H ~ A.
H ~ A iff A E MH (Theorem 7.16), so it will be sufficient to construct the
least Herbrand model MH in polynomial time, since A E Mn can clearly be
decided in polynomial time. We will show that the following algorithm does
just that.

A lgo r i t hm 18.1 (Algor i thm for cons t ruc t ing Mn)
Inpu t : A ground definite program H.
Output: The least Herbrand model Mw

1. Set M = 0 andH ~=H.

18.A A POLYNOMIAL TIME DECISION PROCEDURE 343

2. If there is a C E I I ~ such that C - C_ M,
then set M = M t5 {C +} and II' = I I ' \{C},
else output M and stop.

3. Goto 2.

We will informally show that the running time of this algorithm is
bounded by a polynomial in I(H). Each execution of step 2 adds one atom
to M and deletes one clause from III. Hence step 2 can only be executed
]H[< I(H) times and we have]M I < IHI < I(H) at each step. Each execution
of step 2 has to examine at most IH'I _< IIII _</(II) clauses C. Furthermore,
for a given C E II and M we have ICl < l(II) and [MI < I(H), so the number
of steps required to test whether C - C M is bounded by a polynomial in
l(II). It follows that the algorithm works in polynomial time.

It remains to show that the algorithm does indeed construct Mn when
given H as input:

P r o p o s i t i o n 18.18 Let II be a ground definite program, and M be the set
that the previous algorithm outputs when given II as input. Then M = MH.

P r o o f It is easy to see that i f A E M, then II ~ A. Hence M C_ Mn.
To show that also Mn C M, suppose some A E Mn, so II ~ A. Since II is
ground and A is a ground atom, it follows from the Subsumption Theorem for
SLD-resolution that there is an SLD-derivation of A from II, of some length
n (i.e., involving n resolution steps). We will prove A C M by induction on
n .

1. If n = 0, then A C II, and step 2 of the algorithm will clearly add A to
M before it terminates.

2. Suppose the statement holds for n < m, and consider an SLD-derivation
of A from II of length m + 1, with top clause A +-- B1, . . . , Bk. Then
for each 1 < i < k, there is an SLD-derivation of length < m of Bi
from H, hence Bi C M by the induction hypothesis. This means that
after a finite number of executions of step 2 of the algorithm, we have
C - C_ M. Therefore step 2 of the algorithm must also add A to M
before termination. [:]

Chapter 18

PAC Learning

18.1 Introduct ion

The theory of learnability concerns the questions of what can or cannot be
learned, and, in particular, what can be learned efficiently. Initial analysis of
learnability in machine learning was mainly done in terms of Gold's paradigm
of identification in the limit [Go167], which we already saw in Chapter 10.
The idea here is that a learning algorithm is given an infinite sequence of
examples for some unknown target set. Each example is an object x of the
domain, together with a label indicating whether or not x is an element of
the target set. The learning algorithm reads examples one by one, and after
each new example it constructs a theory for the examples read so far. The
algorithm is said to identify the target set in the limit, if the sequence of
theories that it constructs, "converges" to the target set after only a finite
number of examples have been read. The major disadvantage of identification
in the limit is that, even though you can prove in some cases that there exists
an n such that a correct theory will be identified after n examples, you usually
do not know what this n is, so you cannot know for sure when you may end
the learning.

Nowadays, Valiant's paradigm of PAC tearnability [Va184] is usually con-
sidered to provide a better model of learnability. While identification in the
limit is concerned with exactly identifying the target in a finite number of
steps, the aim of PAC learning is to find a good approximation to the tar-
get in a small (polynomially-bounded) number of steps. A PAC algorithm
is an algorithm that takes examples concerning some unknown target con-
cept, and learns a concept which is probably approximately correct. That is,
a PAC algorithm will, with high probability, learn a concept which diverges
only slightly from the target concept. (The relation between 'concept' and
our earlier notion of a ' theory' will be explained below, at the beginning of
Section 18.6.)

322 CHAPTER 18. PAC LEARNING

In this chapter we give an overview of PAC-learnability settings and re-
sults relevant for ILP. These learnability results complement the learning
operators of the previous chapters. PAC learnability is concerned with two
major complexity issues: how many examples do we need to ensure that we
will probably find an approximately correct concept (sample complexity), and
how many steps do we need to take to find such a concept (time complexity)?
We consider the study of learnability theory to be both highly interesting,
and very important for ILP. Unfortunately, this theory presupposes quite a
lot of other theory, including Turing machines, NP-completeness, statistics,
etc. A fully self-contained treatment of learnability theory would require an
introduction into these topics as well, which would take us far beyond the
scope of the present book. Therefore we have co settle for a much more sketchy
treatment. In particular, we will leave out all proofs of results here, refering
instead to the original papers where those results were reported.

The chapter is organized as follows. In the next section we motivate and
define the standard setting for PAC learning. In Sections 18.3 and 18.4 we
go into sample complexity and time complexity, respectively. Our defini-
tions in Sections 18.2-18.4 follow those of Natarajan [Nat91] quite closely.
Section 18.5 discusses a number of related learning settings. Sections 18.6
and 18.7 are the main sections of this chapter. Here we show how the PAC
setting applies to ILP, and we give an overview of the main results that have
been reported for the normal and nonmonotonic problem settings, respec-
tively.

18,,2 PAC Algorithms

Before formally introducing the PAC setting, let us first illustrate and moti-
vate it by means of a metaphorical example. Suppose some biology student
wants to learn from examples to distinguish insects from other animals. That
is, he or she wants to learn the concept of an 'insect' within the domain of
all animals. A teacher gives the student examples: a positive example is an
insect, a negative example is some other animal. The student has to develop
his or her own concept of what an insect is on the basis of these examples.
Now~ the student will be said to have learned the concept approximately cor-
rectly, if; when afterwards tested, he or she classifies only a small percentage
of given test animals incorrectly as insect or non-insect. In other words, his or
her own developed concept should not diverge too far from the real concept
of an 'insect'.

In the interest of fairness, we require that the animals given as examples
during the learning phase, and the animals given afterwards as test, are all
selected by the same teacher (or at least by teachers with the same incli-
nations). For suppose the student learns from a teacher with a particular
interest in European insects, whose examples are mainly European animals.
Then it would be somewhat unfair if the animals that were given afterwards

18.2. PAC ALGORITHMS 323

to test the student, were selected by a different teacher having a decisive in-
terest in the very different set of African insects. In other words: the student
should be taught and tested by the same teacher.

Let us now formalize this setting:

D e f i n i t i o n 18.1 A domain X is a set of strings over some finite alphabet
E. The length of some x E X is the string length of x. X In] denotes the set
of all strings in X of length at most n.

A concept f is a subset of X, a concept class Y is a set of concepts. An
example for f is a pair (x, y), where x C X, y is called the label of the example,
y = 1 if x C f and y = 0 otherwise. If y = 1 then the example is positive, if
y = 0 it is negative.

If f and g are two concepts, then f a g denotes the symmetric difference
of f and g: f A g = (f \g) U (g\f) .

In our metaphor , X would be the set of descriptions of all animals, the
target concept f _C X would be the set of descriptions of all insects, and
the student would develop his or her own concept g __ X on the basis of a
number of positive and negative examples (i.e., insects and non-insects). The
symmetr ic difference f a g would be the set of all animals which the student
classifies incorrectly: all insects that he or she takes to be non-insects and all
non-insects he or she takes to be insects.

For technical reasons, we restrict the examples to those of length at most
some number n, so all examples are drawn from X [~]. Note that X ['q is a
finite set. We assume these examples are given according to some unknown
probabil i ty distribution P on X['q, which reflects the particular interests of
the teacher. If S C_ X[n], we let P(S) denote the probabili ty that a member of
X M that is drawn according to P, is a member of S (i.e., P (S) = ~ s e s P(s)) .
Now suppose the student has developed a certain concept g. Then in the test
phase, he will misclassify some object x E X M iff x E fAg . Thus we can
say that g is approximately correct if the probabili ty that such a misclassified
object is given during the test phase, is small:

P (f A g) 5 e,

where c E (0, 1] is called the error parameter . For instance, if e = 0.05, then
there is a chance of at most 5% that an arbitrary given test object from
X [~] will be classified incorrectly. Note that the set of examples that is given,
as well as the evaluation of approximate correctness of the learned concept
g, depends on the same probabil i ty distribution P. This formally reflects
the fairness requirement that the student is taught and tested by the same
teacher.

After all these preliminaries, we can now define a PAC algorithm as an
algori thm which, under some unknown distribution P and target concept f ,
learns a concept g which is probably approximately correct. 'P robably ' here
means with probabil i ty at least 1 - 5 , where 5 E (0, 1] is called the confidence

324 CHAPTER 18. PAC LEARNING

parameter. For instance, if (~ = 0.1 and the algorithm is run an infinite number
of times, at least 90% of these runs would output an approximately correct
concept. The constants c, 5, and n are given by the user as input to the
algorithm.

D e f i n i t i o n 18.2 A learning algorithm L is a PAC algorithm for a concept
class j r over domain X if

1. L takes as input real numbers 0 < ~, 5 ~ 1 and a natural number n E N,
where e is the error parameter, ~ is the confidence parameter, and n is
the length parameter.

2. L may call the procedure EXAMPLE, each call of which returns an ex-
ample for some concept f E j r according to an arbitrary and unknown
probability distribution P on X ['1,

3. For all concepts f E j r and all probability distributions P on X [~], L
outputs a concept 9, such that with probability at least 1 -~ , P (f A g) _<

A technicality: a PAC algorithm should be admissible, meaning that for
any input e, 5, n, for any sequence of examples that EXAMPLE may return,
and for any concept g, the probability that L outputs 9 should be well defined.

18.3 Sample Complexity
Having a PAC algorithm for a concept class Y is nice, but having an efficient
PAC algorithm for ~ is even nicer. In this section we analyze this efficiency in
terms of the number of examples the algorithm needs (the sample complexity),
while in the next section we treat the number of steps the algorithm needs
to take (time complexity).

The sample complexity of a learning algorithm can be seen as a func-
tion from its inputs e, 5, and n, to the maximum number of examples that
the algorithm reads when learning an unknown target concept under an un-
known probability distribution. Since the examples are drawn according to a
probability distribution, different runs of the same algorithm with the same
input and the same target concept and distribution may still read different
examples. 'Thus different runs of the same algorithm with the same input may
need a different number of examples in order to find a satisfactory concept.
Therefore, the sample complexity as defined below relates to the maximum
number of examples over all runs of the algorithm with the same input.

Definition 18.3 Let L be a learning algorithm for concept class J=. The
sample complexity of L is a function s, with parameters z, 5 and n. It returns
the maximum number of calls of EXAMPLE made by L, for all runs of L with
inputs e, 5, n, for all f E j r and all P on X In]. If no finite maximum exists,
we let s(e, 5, n) = ~ . <5

18.3. S A M P L E C O M P L E X I T Y 325

Of course, for the sake of efficiency we want this complexity to be as
small as possible. A concept class is usually considered to be efficiently PAC
learnable--as far as the required number of examples is concerned--if there
is a PAC algorithm for this class for which the sample complexity is bounded
from above by a polynomial function in l /e , 1/5, and n. Of course, even
polynomials may grow rather fast (consider nl~176 but still their growth rate
is much more moderate than, for instance, exponential functions.

D e f i n i t i o n 18.4 A concept class F is called polynomial sample PAC learna-
ble, if a PAC algorithm exists for f , which has a sample complexity bounded
from above by a polynomial in l /e , 1/5, and n.

Note that polynomial sample PAC learnability has to do with the worst
case: if the worst case cannot be bounded by a polynomial, a concept class is
not polynomial sample PAC learnable, even though there may be PAC algo-
ri thms which take only a small polynomial number of examples on average. 1

A crucial notion in the study of sample complexity is the dimension named
after Vapnik and Chervonenkis [VC71].

D e f i n i t i o n 18.5 Let .T be a concept class on domain X. We say that F
shatters a set S C_ X, if {S N S t f E F} = 2 s, i.e., if for every subset S' of
S, there is an f E F such that f N S = S'.

Note that if F C_ G and F shatters S, then ~ shatters S as well. Also note
that if T C_ g and .g shatters S, then ~" shatters T as well. In particular,
T = ~ is shattered by any non-empty F . The Vapnik-Chervonenkis dimension
of ~" depends on the largest sets that are shattered by F .

D e f i n i t i o n 18.6 Let F be a concept class on domain X. The Vapnik-
Chervonenkis dimension (VC dimension) of jr, denoted by D y e (F) , is the
greatest integer d such that there exists a set S C_ X with [SI = d that is
shattered by jr. D v c (F) = oo if no greatest d exists.

Note that if F = 2 s, then j r shatters S. Thus if ~" = 2 s for some finite
set S, then F has ISI as VC dimension.

E x a m p l e 18.7 Let X = {1,2,3,4} and Y = {{1}, {2},{3},{4},{1,2},
{ 2 , 3 } , { 1 , 3 , 4 } , { 1 , 2 , 3 , 4 } } be a concept class. Then Jr shatters the set
S = {1,2}, because { f N S I / E 2-} = {~, {1}, {2}, {1, 2}} = 2 s. Thus
jr 's "shattering" of S intuitively means that j r "breaks" S into all possible
pieces.

2" also shatters S' = {1, 2, 3}, because { f n S' I f S 9 t'} = {0, {1}, {2},
{3}, {1, 2}, {2, 3}, {1, 3}, {1,2, 3}} = 2 s. F does not shatter S" = {1, 2, 3, 4},
since there is for instance no f C j r with f N S I' = {1,4}. In general, there is
no set of four or more elements shattered by jr, so D v c (F) = IS'l = 3. <~

1Muggleton and Page's model of U-leachability provides a framework which is better
suited for average case analysis [MP94a]. However, thus far much more research has gone
into PAC learning than U-learning.

326 CHAPTER 18. PAC LEARNING

Some related dimensions are discussed in [Nat91, NP93].
Since we are actually dealing with XM rather than with X itself, we need

the following definitions, which "project" the VC dimension on XM.

Definition 18.8 The projection of a concept f on X [~] is f i l l = f ~ XM.
The projection of a concept class f on XM is iT[~] = {f['q I f E iT). <5

Definition 18.9 Let f be a concept class on domain X. iT is of polynomial
VC dimension if D v c (F In]) is bounded from above by some polynomial in
n.

The following fundamental result, due to [BEHW89], states the relation
between polynomial sample PAC learnability and the VC dimension. For a
proof we refer to Theorem 2.3 of [Nat91].

Theorem 18.10 Let iT be a concept class on domain X . Then f is polyno-
mial sample PA C learnable iff iT is of polynomial VC dimension.

Thus if we are able to show that some concept class is of polynomial VC
dimension, we have thereby shown it to be polynomial sample PAC learnable.

18.4 Time Complexity

In outline, the analysis of time complexity is similar to the analysis of sample
complexity: the time complexity of a learning algorithm is a function from
its inputs to the maximum number of computational steps the algorithm
takes on those inputs. Here we assume that the procedure EXAMPLE takes at
most some fixed constant number of steps. Again, we are mainly interested
in the existence of learning algorithms which have a polynomially-bounded
time complexity. (Actually, the work on computationally efficient learning
algorithms is just a special case of work on efficient algorithms in general, for
which see for instance [G J79, CLR90].)

18.4.1 R e p r e s e n t a t i o n s

Unfortunately, things are somewhat more complicated than in the last sec-
tion: the "number of examples" that an algorithm needs is unambiguous, but
what about the "number of computational steps"? What counts as a com-
putational step? In order to make this notion precise, we have to turn to
some precise model of computation, where it is clear what a single step is.
Usually Turing machines are used for thisfl We will not go into details, but
will just note here that a Turing machine programmed to learn some con-
cept will often not be able to output the learned concept g itself efficiently,

2Since Turing machines cannot represent arbitrary real numbers, we have to restrict
the parameters 5 and ~ somewhat, for instance by only allowing them to be the inverses
of integers.

18.4. TIME COMPLEXITY 327

for instance because]g[can be very large or even infinite. Therefore, instead
of the concept g itself, the Tnring machine will have to ou tpu t some finite
representat ion of g, which we call a name of g. Abstract ly, a representation
specifies the relat ion between concepts and their names:

D e f i n i t i o n 18 .11 Let .T be a concept class, and E a set of symbols. E*
denotes the set of all finite strings over E. A representation of Y" is a funct ion
R : ~ -+ 2 ~'' , where we require tha t for each f E 3 v, t / (f) # ~ and for every
dist inct f, g E Y~, R(f) n R(g) = ~. For each f E 3% R(f) is the set of names
of f in R.

The length of a name r E R (f) is s imply the string length of r, i.e., the
number of symbols in r. The size of f i n /~ is the length of the shortest name
in R(f) , denoted by Imin (f, R). <~

The set of symbols E tha t is used here, need not be the same as the alpha-
bet used for the strings in the domain X in Definition 18.1. The requirement
tha t R(f) • ~ for each f E ~c means tha t each concept in Y has at least one
name, while R(f) M R(g) = ~ for every distinct f , g means tha t no two distinct
concepts share the same name. Note the difference between the string length
of a str ing x E X and the size of a concept f E 3 c in R: the lat ter depends
on R, the former does not. 3

The aim of the analysis of t ime complexi ty is to be able to bound by
a po lynomia l funct ion the number of steps needed for learning. However, if
a learning a lgor i thm provides us with a name of an approximate ly correct
concept in a po lynomia l number of steps, but we are still not able to decide
in po lynomiM t ime whether tha t concept actual ly contains a given x E X,
we would still have a computa t iona l problem. Therefore, a representat ion R
should be polynomially evaluable: given an x E X and a name r of a concept
f , we should be able to find out, in polynomial time, whether x G f , using
r. This is defined as follows.

D e f i n i t i o n 18 .12 Let R be a representat ion of a concept class F over do-
main X. We say tha t R is evaluable if there exists an a lgor i thm which, for
any f E 9 r , takes any x E X and any name r E R(f) as input , and decides in
a finite number of steps whether x E f . R is polynomially evaluable if there is
such an algori thm, which has running t ime bounded by a polynomial in the
lengths of x and r. C>

In the sequel, whenever we write ' representat ion ' we actual ly mean a
polynomially evatuable representation.

3To give the reader of flavour of what these definitions will be used for: in Section 18.6
we will formMize the normal ILP setting in these terms. Since examples are usually ground
atoms, the domain X will consist of all ground atoms in some language, and a concept
will be a set of ground atoms. A definite program FI will represent, or be a name of, the
concept which equals its least Herbrand model MII.

328 C H A P T E R 18. PAC L E A R N I N G

18.4.2 Polynomial Time PAC Learnabil ity

In order to be able to study t ime complexity, we need to change the definition
of a PAC learning algorithm somewhat to incorporate the representation: a
PAC algorithm for a concept class ~ in representation R should output a
name of a concept g, rather than g itself.

Now t ime complexity can be defined as follows, where we introduce a new
parameter 1 that bounds the size of the concepts considered:

D e f i n i t i o n 18.13 Let L be a learning algorithm for concept class P in rep-
resentation R. The time complexity of L is a function t, with parameters c, 5,
n, and l. It returns the m ax i m um number of computat ional steps made by L,
for all runs of L with inputs e, ~, n, l, for all f E ; r such that l,~i,~(f, R) <_ l,
and all P on X N . If no finite m ax i m um exists, we define t(e, ~, n, l) = co. 0

Definition 18.14 A concept class $" is called polynomial time PAC learna-
ble in a representation R, if a PAC algorithm exists for f in R, which has a
t ime complexity bounded by a polynomial in l /e , 1/5, n, and I. O

Let us suppose we have some concept class jc of polynomial VC dimen-
sion. Then ~c is polynomial sample PAC learnable, so we know we only need
a polynomial number of examples. Now to achieve polynomial t ime PAC
learnability, it is sufficient to have an algorithm that finds, in a polynomial
number of steps, a concept that is correct with respect to these examples.
The following definition of correctness is similar in spirit to the one we gave
in Chapter 9: a concept, is correct if it contains all positive examples and no
negative ones. 4

D e f i n i t i o n 18.15 Let g be a concept and S be a set of examples. We say g
is correct with respect to S, if x E g for every (x, 1) E S and x ~ g for every
(x, 0) e s . o

An algorithm which returns a name of a concept that is correct with
respect to a set of examples S is called a fitting, since it finds a concept that
"fits" the given examples. As always~ we want a fitting to work efficiently.
The running t ime of the fitting should be bounded by a polynomial in two
variables. The first is the length of S, which we define as the sum of the
lengths of the various x E X that S contains. The second is the size of the
shortest correct concept, For this, we will extend the l,~i~ notation as follows.
If S is a set of examples, then lmin (S, R) is the size of the concept f E $"
with smallest size that is correct with respect to S. If no such correct f E o ~c
exists, then lmi~ (S, R) = oo.

Definition 18.16 An algorithm Q is said to be a fitting for a concept class
5 c in representation R if

4In the l i t e ra tu re on c o m p u t a t i o n a l l ea rn ing theory, usua l ly the t e rm ~consistenC is used
i n s t ead of ' cor rec t ' . We use ' correc t ' here in accordance wi th our earlier def ini t ions.

18.5. SOME RELATED SETTINGS 329

1. Q takes as input a set S of examples.
2. If there exists a concept in J: that is correct with respect to S, then Q

outputs a name of such a concept.

If Q is a deterministic algorithm such that the number of computational
steps of Q is bounded from above by a polynomial in the length of S and
lmi~ (S, R), then Q is called a polynomial time fitting. <~

As the next theorem (Theorem 3.1 of [Nat91]) shows, the existence of
such a fitting is indeed sufficient for the polynomial time PAC learnability of
a concept class of polynomial VC dimension.

T h e o r e m 18.17 Let jc be a concept class of polynomial VC dimension, and
R be a representation of jz. If there exists a polynomial time fitting for ~ in
R, then jz is polynomial time PA C learnable in R.

Conversely, it is also possible to give a necessary condition for polynomial
time PAC learnability in terms of so-called randomized polynomial time fit-
tings. We will not go into that here (see Theorem 3.2 of [Nat91]), but just
mention that it can be used to establish negative results: if no such fitting
for 5 r in /~ exists, then ~ is not polynomial time PAC learnable in R.

18.5 Some Related Settings

The standard PAC setting of the previous sections may be varied somewhat.
In this section, we will mention some alternatives.

18.5.1 Polynomial Time PAC Predictability

In the ordinary PAC setting~ a PAC algorithm for a concept class .T reads
examples from an unknown target concept f from iT, and has to construct a
concept g, also from .T, which is approximately correct. This may lead to a
seemingly paradoxical situation: we would expect that learning a superset of
.T is at least as hard as learning F itself, but this need not be the case in the
ordinary PAC setting. Namely, it may be that there is no polynomial time
PAC algorithm for some concept class .T in some representation R, while
for some larger concept class ~ D .T there is such a polynomial time PAC
algorithm. The latter algorithm, when given examples for some target concept
f E .T, always constructs a name of a probably approximately correct concept
g E ~ in polynomial time. Still, iT itself may be hard to learn, because the
requirement that the output concept should be a member of .T may be very
hard to meet.

We can take this into account by loosening the requirement on g some-
what, and allow it to be a member of a broader concept class ~, of which
~" is a subset. This gives the learning algorithm more freedom, which may
facilitate the learning task. Suppose we have a concept class 9 v, a broader

330 CHAPTER 18. PAC LEARNING

concept class G _D jr, and a representation R of G (which is of course also a
representation of Jr). Suppose, furthermore, that there exists a learning al-
gorithm L for Jr in R, which is just like a PAC algorithm for .T in R, except
that it outputs a name of a concept g such that g E G but not necessarily
9 E .T. In this case, we say that S is PACpredictable in R in terms ofF. If,
furthermore, the time complexity of algorithm L is bounded by a polynomial
in l /e , 1/(~, n, and l, we say that :P is polynomial time PAC predictable in
/~ in terms of ~. If some G exists such that ~" is polynomial time PAC pre-
dictable in R in terms of ~, we will simply say that :T is polynomial time
PAC predictable in R.

Clearly, if some concept class Jr is polynomial time PAC learnable in some
R, it is also polynomial time PAC predictable in/~: simply put G = Jr. Hence
the setting of polynomial time PAC predictability may be used to establish
negative results: if we can prove that some concept class Jr is not polynomial
time PAC predictable in R in terms of any 6, we have thereby also shown
that :T--as well as any superset of j r - - i s not polynomial time PAC learnable
in R. Some results listed below in Section 18.6 actually take this form. The
converse need not hold: some classes are polynomial time PAC predictable,
but not polynomial time PAC learnable (see Sections 1.4 and 1.5 of [KV94]
for an example). Hence polynomial time PAC predictability is strictly weaker
than polynomial time PAC learnability.

1 8 . 5 . 2 M e m b e r s h i p Q u e r i e s

We may facilitate the learning task by allowing a PAC algorithm to make use
of various kinds of oracles. As explained in Chapter 10, an oracle is a device
which returns answers to certain questions (queries). The most straightfor-
ward kind are the membership queries. Here the oracle takes some x E X
as input, and returns 'yes' if x is a member of the target concept, and 'no'
if not. For the PAC algorithm that uses an oracle, the oracle is like a black
box: you pose a question and get an answer, but do not know how the oracle
constructs it answer. Like the EXAMPLE procedure, oracles are assumed to
run in at most some fixed constant number of steps.

If a concept class jc is polynomial time PAC learnable in some R by an
algorithm which makes membership queries, we will say that j r is polynomial
time PAC learnable in R with membership queries. Analogously, we can define
PAC predictability with membership queries. Note that if a.n algorithm makes
membership queries, it in a way "creates its own examples." Note also that a
polynomial time algorithm can make at most a polynomial number of queries,
since each query counts for at least one computational step.

18.5.3 Identification from Equivalence Queries
While polynomial time PAC predictability is strictly weaker than polyno-
mial t ime PAC learnability, polynomial time identification from equivalence

18.5. SOME RELATED SETTINGS 331

queries, introduced by Angluin [Ang87], is strictly stronger. In this setting,
we have an oracle which takes a name of a concept g as input, and answers
'yes' if 9 equals the target concept f , and 'no' otherwise. In case of a 'no', it
also returns a randomly chosen counterexample x E fag . There is no need
for the oracle to provide the correct label of the counterexample x, because
the algorithm can find this out for itself: if x E g then x ~ f , and if x ~ g
then x E f . When equivalence queries are available, the requirement that an
algorithm outputs a name of an approximately correct concept is replaced
by the requirement that the target concept is identified exactly: an algorithm
that is allowed to make equivalence queries should output a name of the
target concept.

Consider a concept class ~" and a representation R of.T. Let L be an algo-
r i thm which uses equivalence queries in order to learn some unknown concept
f C .T under some unknown probability distribution P, and which takes as
input an upper bound 1 on lmin (f, R) and an upper bound n on the length
of the counterexamples from the oracle. If this algorithm always outputs a
name of the target concept, we say 3 c is identifiable from equivalence queries
in/~. If the running time of the algorithm L is bounded by a polynomial in
its inputs 1 and n, then .T is polynomial time identifiable from equivalence
queries in R. As in the case of membership queries, an algorithm with a
polynomially-bounded running time can make only a polynomially-bounded
number of equivalence queries.

It is shown in Section 2.4 of [Ang88] that if a concept class is polynomial
time identifiable from equivalence queries in some R, then it is also poly-
nomial time PAC learnable in R. The converse does not hold. Thus, while
PAC predictability can be used to establish negative results, identification
from equivalence queries may be used for positive results: if we can prove
that some concept class .T is polynomial time identifiable from equivalence
queries, we have thereby also shown that ~ , as well as any subset of $', is
polynomial time PAC learnable in R.

If polynomial time identification of .T from equivalence queries is done by
an algorithm which makes use of equivalence queries as well as membership
queries, then we say ~ is polynomial time identifiable from equivalence and
membership queries in R. This implies polynomial time PAC learnability with
membership queries.

For an overview of other kinds of queries, we refer to [Ang88].

18.5.4 Learning with Noise

In many learning tasks that involve real-world data, the examples may con-
tain errors (noise). There are various ways in which the analysis of noise may
be modelled in the theoretical setting for PAC learnability. We will discuss
only two kinds of noise here: Valiant's malicious noise [Va185], which is also
sometimes called adversarial noise, and Angluin and Laird's random classi-

332 CHAPTER 18. PAC LEARNING

fication noise [AL88]. For other kinds of noise, see [Lai88, Slo95]. (The way
noise may be treated in practice will be further discussed in Section 19.5.)

Firstly, in the malicious noise model, a malicious adversary of the learn-
ing algorithm tinkers with the examples: for each example that the learning
algorithm reads, there is a fixed, unknown probability 0 < r / tha t the adver-
sary has changed the original, correct example (x, y) to any other (x', y')-pair
he chooses. Since y~ may not be the correct label for x ~, the adversary may
introduce noise in this way. The adversary is assumed to be omnipotent and
omniscient--in particular, he has knowledge of the learning algorithm he is
trying to deceive. This means that the learning algorithm should be able to
cope even with the worst possible changes in the examples.

Secondly, in the random classification noise model, the EXAMPLE proce-
dure is replaced by a procedure EXAMPLE ~, and there is a fixed, unknown
probability 0 _< r / < 0.5 that the label of an example provided by this pro-
cedure is incorrect. For instance, suppose r~ = 0.1. If a learning algorithm
receives an example (x, y) from EXAMPLE rT, then there is a probability of
10% that y is incorrect.

In both models, the actual noise rate r/is unknown to the learning algo-
rithm. However, an upper bound r/b on the noise rate is given as an additional
input parameter to a PAC algorithm, where 0 _< ~ < r/b < 0.5. This ~/b is
added as a parameter to the time complexity function as well. If there is a
PAC algorithm for a concept class 5 r in some representation R, working in
the presence of malicious (resp. random classification) noise, with time corn-
plexity bounded by a polynomial in l /e , 1/5, n, I, and 1/(1 - 2r/b), then f
is said to be polynomial time PAC learnable in R with malicious (resp. ran-
dom classification) noise, a Similarly, we can define PAC predictability with
malicious or random classification noise.

18.6 Results in the Normal ILP Sett ing

Most research in PAC learning has focused on learning various classes of
formulas in propositional logic. Here the domain X consists of strings of bits
(zeros and ones), so a concept is a set of such strings. Each string of length n
is an assigment of t ruth values to the n propositional atoms P l , . . . , P n . For
instance, the string 101 makes Pl true, p~ false, and Pa true. Thus a string
of length n may be seen as an interpretation of a propositional language
with atoms P l , . . . , P ~ , in the sense of Chapter 1. A propositional formula
containing Pl, �9 . . , Pn represents (or is a name of) the concept which consists
of all strings of length n that make r true. In other words, r represents
the set of its models. For an overview of results in this setting, we refer
to [Nat91, AB92, KV94].

5Kearns' statistical query method [Kea93, KV94] provides a way to establish positive
learnabillty results in the presence of random classification noise. Kearns also showed that
the assumption that the learning algorithm is given ~?b is not necessary.

18.6. R E S U L T S IN THE N O R M A L ILP S E T T I N G 333

Below, we will tune the PAC setting to the normal ILP problem setting,
which is rather different from the propositional case, and give an overview of
the main results that have been obtained here. In Section 18.7, we tune the
PAC setting to the nonmonotonic ILP problem setting, which may be seen
as a generalization of the propositional case.

1 8 . 6 . 1 T h e N o r m a l I L P S e t t i n g i n P A C T e r m s

We will here restrict attention to learning definite programs from positive and
negative examples which are ground atoms, labeled with their t ruth value.
Because each example is a ground atom, it is natural to take the set of ground
atoms in some language as our domain X. The alphabet E used for this is
simply the alphabet of the underlying first-order language. Every concept is
then a subset of X, i.e., a set of ground atoms, and every concept class is a
set of sets of ground atoms.

Now the important thing is to recognise that definite programs can be
used to represent such concepts: the definite program II represents its least
Herbrand model Mri. That is, the least Herbrand model Mn of a definite
program H is a concept, and II can be seen as a name of this concept. Let us
call this representation 1) (for Definite programs). Here we take the length
of a clause to be its string length (including the '+--', ', ', '(', and ')' symbols),
and the length of a program to be the sum of the lengths of its members. For
instance, the length of a program containing P(a) and P (f (x)) +- P(x) , Q(x)
is 4+ 17 = 21. Using this representation, a PAC algorithm takes ground atoms
with their t ruth values as examples, and should return a definite program II
such that II has a probably approximately correct least Herbrand model: if
f is the target concept, then, with probability at least 1 - 5, we should have
P (f A M r I) _< e. Since distinct programs may have the same least Herbrand
model, some concepts will have more than one name in l). On the other hand,
however, note that there are also concepts without a name in this represen-
tation: for some concepts f , there is no II with MII = f (see Theorem 9.9).
Therefore we can only consider the learnability of concept classes in which
each concept is represented by at least one definite program.

One further issue has to be raised: is l) polgnomially evaluable? Or in
other words: can II ~ A be decided in polynomial time for arbitrary definite
programs II and ground atoms A? The answer is clearly negative: in general
II ~ A is not even decidable, let alone decidable in polynomial time. In order
to ensure polynomial evaluability, we have to restrict the kinds of programs
we use. Most results given below are actually restricted to function-free lan-
guages. In the appendix to this chapter, we show implication to be decidable
in polynomial time in function-free languages, so :D is polynomially evaluable
in this case. For the other kinds of programs mentioned in results below,
polynomial evaluability can also be proved. We will leave this to the reader.

One important feature of ILP is the use of background knowledge, which
usually forms one of the inputs of the learning task. The ordinary PAC setting

334 CHAPTER 18. PAC LEARNING

does not mention background knowledge, so we have to make an emandation
to this setting. Let us assume we have some set K;, which contains every defi-
nite program that we allow as background knowledge. For instance, K; might
contain all finite sets of ground atoms in some language. Now, apart from c, 5,
n, and l, a PAC algorithm for ILP purposes also receives one member B E K;
as input. B may not be changed during the run of the algorithm. The algo-
ri thm should return a definite program II such that the concept represented
by II U B (i.e., Mr~uu) is probably approximately correct.

Since B is an additional input to the learning algorithm, it should be re-
flected in the time complexity. This is done by adding an upper bound b on the
length of B as a fifth parameter to the time complexity function, in addition
to the ordinary parameters e, 5, n, and / that we saw earlier. For polynomial
time PAC learnability, we require the time complexity t(e, 5, n, l, b) of the
algorithm to be bounded by a polynomia.1 in 1/r 1/5, n, I, a.nd b. If such
an algorithm exists, we wilt say that • is polynomial time PAC learnable
in /? with background knowledge from tC. Analogously~ we can incorporate
the use of background knowledge in PAC predictability, identification from
equivalence queries, etc~

One further remark involving background knowledge: many results below
concern only single-predicate learning, where there is a single target predicate
symbol P. In this case, all we need to know about other predicates should
already be contained in the input B, only atoms with predicate P are given
as examples, and each clause in H should have P in its head.

In order to avoid too much notation, we will use the following abbreviation
(where K1 and K~ denote some restrictive property of programs): "definite
programs of kind K1 are polynomial sample/polynomiM time PAC learn-
able with background knowledge of kind K2" means that the set of concepts
representable by a definite program of kind Kt together with background
knowledge of kind K2 is polynomial sample/polynomial time PAC learnable
in representation/9, with background knowledge from the set of all programs
of kind Ka. Quite a lot of the results we give below are actually restricted
to programs of a single clause only. In this case, we say "clauses of kind
K1 are polynomial sample/polynomial time PAC learnable with background
knowledge of kind K2."

With all this notation in place~ we are now in a position to give an overview
of PAC-learnability results that have been reported tbr the normal setting.
For e~se of presentation, -are split-them into two groups: (1) results on lea~l-
ing non-recursive programs, and (2) results on learning recnrsive programs.
We will only give here the most important results which can be stated with-
out introducing too much additional notation. Other recent overviews may
be found in [KD94, CP95]; some further PAC-learnability results, which we
do not include below, are given in [Lin92, FP93a, FP93b, Coh93a, Coh93b,
Coh94b, Coh95b, Coh95c, Coh95a, Yarn95, D~e95b].

18.6. RESULTS IN THE NORMAL ILP SETTING 335

18.6.2 Learning Non-recursive Programs

Before we can state the main resclts for non-recursive clauses and programs,
we need to define some restricted kinds of clauses (repeating some notions
here that were already defined in earlier chapters).

* A definite program in which each clause has the same predicate symbol
P in the head, is called a definition of P.

. A k-literal definite program clause contains at most k literals in its
body. A k-literal definite program contains only k-literal clauses.

. A k-clause definite program contains at most k clauses.

. A clause or set of clauses is function-free if it does not contain function
symbols of ari ty > 1.

. A definite program clause is non-recursive if the predicate in its head
does not occur in its body. A definite program is non-recursive if all its
members are non-recursive.

�9 A clause C is allowed if all variables occuring in positive literals in
C also occur in negative literals in C. (In ILP, such clauses are also
sometimes called generative, range restricted, or connected.) A set of
clauses is allowed if all its members are allowed.

�9 A clause C is constrained if all variables occurring in negative literals
in C also occur in positive literals in C. A set of clauses is constrained
if all its members are constrained.

�9 A constrained atom is a constrained non-recursive definite program
clause. The predicate symbols in its body are called constraint pred-
icates.

�9 An ordered definite program clause A +-- B 1 , . . . , Bn is determinate
with respect to a definite program B, if for every 1 < i < n and every
substi tut ion 0 such that (A +- B 1 , . . . , B~_I)0 is ground and B ~ (B1 A
. . . A Bi-1)0, there is at most one substitution ~r for the variables in Bi0
such that BiOcr is ground and B ~ BiO~.

Suppose x l , . . . , xn are the variables in Bi that already occurred in
(A +-- B 1 , . . . , Bi-1)O, and Yl, . . . ,Y,~ are the other variables in Bi.
The idea behind determinacy is that B specifies a partial function
from X l , . . . , Xn to Yl, . . . , Ym: given ground instantiations of x l , . . . , x,~,
the background knowledge allows at most one ground instantiation of

Yl , . �9 Ym.

For example, suppose we use F(x ,y) to denote that y is the father
of x, and G(x,y) to denote that y is the grandfather of x. Then
the clause G(x, y) +-- F(x , z), F(z, y) is determinate with respect to

336 CHAPTER 18. PAC LEARNING

B = {F(a, c), F(b, e), r(c, e), F(d, e), F(e, f)}. Informally, determinacy
follows from the fact that any x has only one father z.

| The variable-depth of a variable x in an ordered definite program clause
A <-- B1, . . . , B~ is defined as follows. I fx occurs in A, then its variable-
depth is 0. Suppose x first occurs in Bi. If none of the other variables
in Bi already occurred in A <-- B 1 , . . . , B ~ - I , then x has variable-
depth co. Otherwise, the variable-depth of x is 1 plus the variable-
depth of the variable in Bi with greatest variable-depth occurring in
A <-- B , , . . . , Bi-1. The variable-depth of an ordered definite program
clause is the largest variable-depth of its variables. Note that such a
clause is constrained iff it has variable-depth 0.
If a definite program clause is determinate with respect to some definite
program B, its variable-depth is at most i and the arity of its predicate
symbols is at most j , then it is called ij-determinate with respect to
Bfi A definite program is / j-determinate with respect to B if all its
members are.

The clause from the last item has variable-depth 1 (because of z), so
this clause is (1, 2)-determinate with respect to B.

* Let C be a definite program clause. A term t in some literal L E C is
linked with linking-chain of length 0, if t occurs in C +, and is linked
with linking-chain of length d + 1~ if some other term in .5 is linked with
linking-chain of length d. The link-depth of a term t in some L E C is
the length of the shortest linking-chain of t. A literal L E C is linked if
at least one of the terms it contains is linked. C itself is linked if each
literal L E C is linked.

For example, the clause P(x) <-- Q(x, y, z), Q(x, y, w) is linked. The
term x has link-depth 0, while y, z, and w have link-depth t. Note that
w is linked with two linking-chains: one of length 1 (via x) and one of
length 2 (via 9 and a). Also note that the variable-depth of w is 2. The
clause P(x) +- Q(x, y), P(z) is not linked, because z is not linked.

. If a definite program clause is not determinate with respect to some
definite program B, the link-depth of its terms is at most i, and the
arity of its predicate symbols is at most j , then the clause is called
ij.~nondeterminate with respect to B.

For instance, P(x) +-- Q(x, y, z),Q(x,y, w) is (1, 3)-nondeterminate
with respect to • = {Q(a, b, b), Q(a, b, c)}.

* A definite program /3 is efficient if the set of computed answers for
B U {~-- A}, for arbitrary atoms A, can be computed by an algorithm

6Various non-equivalent definitions of i j-determinacy have appeared in the literature.
The one we give here is slightly different from the original definition given in [MF92], but
the details are not important for our purposes.

18.6. RESULTS IN THE NORMAL ILP SETTING 337

with running time polynomial in the length of A. In the appendix of this
chapter, it is shown that any function-free definite program is efficient.

�9 A definite program B is ffga if it consists of function-free ground atoms.

Consider an ffga definite program B, in which all atoms have the same
binary predicate symbol R. We can take /~(a, b) E B as denoting an
edge from a to b. If B represents a set of trees with edges directed
towards the roots, it is called a forest. If B represents a disjoint union
of directed cycles, it is called cyclical.

For example, B = {R(a,c),R(b,c),R(c,d)] U {R(e,f),_R(f,g)} is a
forest (with two trees, respectively having d and g as root), and
B = {R(a, b), R(b, e), R(c, a)} U {R(d, e), R(e, d)} is cyclical (with two
cycles).

In terms of these restrictions, we have the results listed below. For re-
sults involving/j-determinacy, k-literal clauses or k-clause programs, etc.,
we assume some fixed i, j , and k are given. Furthermore, instead of "ij-
(non)determinate with respect to the background knowledge" we will simply
write ij-(non)determinate. Many results given below presuppose a fixed up-
per bound on the arities of predicate symbols. Note, however, that such a
bound (for instance the j in i j-determinacy), together with a restriction to
function-free clauses, implies a fixed upper bound on the length of the exam-
ples, rendering the length parameter n irrelevant. Therefore, some of the more
recent results do not presuppose a bound on the arity of predicate symbols,
but let this vary with the length parameter.

Constrained atoms are polynomial time PAC learnable with efficient
background knowledge which uses only constraint predicates [PF92,
Theorem 7].

Finite sets of atoms are polynomial time identifiable from equivalence
and membership queries [AIS97, Theorem 13]. (Background knowledge
is not considered here.)

k-literal constrained function-free non-recursive definitions of the target
predicate are polynomial time PAC learnable with efficient background
knowledge [DMR93, Theorem 2]. This also holds with r /< 0.5 random
classification noise [D~e95a, Theorem 4] and with a "small" amount of
malicious noise [D~e95b, Theorem 3.5].

k-literal function-free non-recursive definitions of the target predi-
cate are polynomial time PAC learnable with ffga background knowl-
edge [Coh93b, Theorem 8]. This also holds with r I < 0.5 random classi-
fication noise [D~e95a, Theorem 4].

338 CHAPTER 18. PAC LEARNING

�9 k-clause /j-determinate function-free non-recursive definitions of the
target predicate are polynomial time PAC predictable with efficient
background knowledge ID~e95b, Theorem 3.4]. This also holds with
r /< 0.5 random classification noise [D~e95a, Theorem 4].

In [DMR92, Theorem 2], the same class had earlier been shown to
be polynomial time PAC learnable under simple distributions. In the
"simple distributions" setting, examples are drawn according to the
so-called universal distribution. See [LV9t] for details.

| If the widely assumed RP r PSPACE conjecture r is true, then deter-
minate linked function-free non-recursive definite program clauses are
not polynomial time PAC learnable with ffga background knowledge
[Kie93, Corollary 15].
If the widely assumed RP r NP conjecture is true, then (1, 2)-honda-
terminate function-free non-recursive definite program clauses are not
polynomial time PAC learnable with ffga background knowledge [Kie93,
Corollary 19].

| Function-free non-recursive definite program clauses with the target
predicate in the head and only atoms with binary predicate symbol R
in the body, are polynomial time PAC learnable with forest background
knowledge [HT96, Theorem 21]. This also holds with ~ < 0.5 random
classification noise [HST96, Theorem 4].
The same clauses are polynomial time PAC learnable with cyclical back-
ground knowledge if we use a non-standard representation [HT96, Sec-
tion 7,21.

1 8 .6 .3 L e a r n i n g R e c u r s i v e P r o g r a m s

Here we will give an overview of PAC-learnability results for programs in-
volving recursion, Quite a lot of these results are negative, because learning
recursive clauses is in generM more difficult than learning non-recursive ones.
In addition to the concepts of the last subsection, we also need the following:

| Let C be an ordered definite program clause with predicate symbol P
in its head. An atom in C- with predicate P is called recursive. C is
linearly recursive if it contains exactly one recursive atom, and k-ary
recursive if it contains k such atorn~. A recursive atom A in C- is closed
if each variable it contains already occurs in the literals to the left of
A. C is closed if all its recursive atoms are closed.

7Very briefly and informally, the complexity classes mentioned here are the following:
P is the class of problems solvable in polynomial time by a deterministic algorithm; RP
is the class of problems solvable in polynomial time by a randomized algorithm; NP is
the class of salvable problems for which the correcCness of a solution can be verified in
polynomial time by a deterministic algorithm; PSPAUE is the class of problems solvable
by a deterministic algorithm using a polynomially-bonnded amount of storage space. See
[HU79, G J79, CLRg0] for more details.

18.6. RESULTS IN THE NORMAL ILP SETTING 339

�9 A definite program clause C is term-related if it is an atom, or if any
term occuring in C - also occurs (possibly within another term) in C +.
A definite program is term-related if all its members are. Note that a
term-related clause is constrained.

Before we can state the main PAC-learnability results involving recursive
clauses, two additional kinds of queries have to be mentioned. These are not
applicable in the general PAC setting, but are useful in this particular ILP
formalization. The first concerns existential queries. Here we have an oracle
that takes a (possibly non-ground) atom A as input, and returns all ground
instances of A which are members of the target concept. The use of such an
oracle presupposes that any A has only a finite number of ground instances
which are members of the target concept. Existential queries can be seen as
a generalization of membership queries.

The second kind are the basecase queries [Coh95b]. Here the target con-
cept is represented by a particular definite program H containing two kinds
of clauses, recursive and non-recursive ones. The oracle takes a ground atom
A as input, and returns whether A is a member of the concept represented
by the non-recursive clauses of the target program H together with the back-
ground knowledge B (this concept is of course a subset of the target concept).

k-clause i j -determinate function-free definitions of the target predicate
are polynomial time PAC learnable under simple distributions with
existential and membership queries about the target predicate, and
with efficient background knowledge [DMR92, Theorem 3].

k-clause /-literal term-related definite programs are polynomial sam-
ple PAC learnable [NP94, Theorem 3]. (Background knowledge is not
considered here.)

Closed k-ary recursive i j-determinate function-free definite program
clauses are polynomial time identifiable from equivalence queries with
ffga background knowledge [Coh95b, Theorem 7]. (Cohen's use of i j-
determinateness involves so-cMled mode declarations. This is slightly
different from the definition we gave above. Furthermore, his t reatment
of examples is somewhat more general than ours. For the details, we
refer to his paper.)
Definite programs consisting of two/ j -determinate function-free clauses
of which the first is closed k-ary recursive and the second is non-
recursive, are polynomial time identifiable from equivalence and base-
case queries with ffga background knowledge [Coh95b, Proposition 9].
For k = 1, the latter result also holds with q < 0.5 random classification
noise [HST96, Theorem 7].

�9 Under certain plausible cryptographic assumptions (similar to the
P ~ N P assumption), definite programs consisting of an arbitrary

340 CHAPTER 18. PAC LEARNING

finite number of closed linearly recursive /j-determinate function-free
clauses are not polynomial time PAC predictable with ffga background
knowledge [Coh95c, Theorem 2].
Under the same assumptions, and if the arity of the target predicate
is at least 3 and i _> 3, ij-determinate function-free definite program
clauses containing an arbitrary number of closed recursive atoms are
not polynomial time PAC predictable with ffga background knowledge
[Coh95c, Theorem 3].

18.7 Results in the Nonmonotonic Setting

The PAC formalization of the nonmonotonic ILP setting is somewhat differ-
ent from the normal setting, but is a generalization of the setting for learning
propositional formulas with which we started the previous section. Let us con-
sider a function-free clausal language C with only a finite number of ground
atoms. Then any Herbrand interpretation of C is finite, and there are only
finitely many distinct Herbrand interpretations of C. Let the domain X be
a set of such Herbrand interpretations. Since a concept is a subset of the
domain, a concept is a finite set of Herbrand interpretations.

We use the following representation: a theory (finite set of clauses) T
represents the set of its models in X. That is, T is a name of {[E
X t I is a model of T}. Let us see if this representation is polynomially evalu-
able. Consider a function-free theory T and a Herbrand interpretation 1 E X.
Then we need to be able to determine whether T is true under I in time poly-
nomial in the lengths of T and I. T is true under I iff all ground instances of
clauses in T are true under L The number of such ground instances is easily
seen to be bounded by a polynomial (analogous to step 1 of the appendix).
Furthermore, a ground clause is true under I iff at least one of its literals is
true under I, which obviously can be decided in polynomial time. In sum,
our representation is polynomially evaluable.

Furthermore, it can be proved that in this representation, any set Z _C X
of Herbrand interpretations has a name. That is, for any set Z C_ X, there
exists a theory T such that Z is the set of Herbrand models of T. Given a
Herbrand interpretation I E X, we define r to be a conjunction of ground
literals, with the following property: A E r iff A E I, and -~A C r iff
A ~ L Then it is easy to see that the set of Herbrand models of Cx is
exactly {I}. For instance, if P(a), P(b), P(c) are the only ground atoms in
C, and I = {P(a), P(c)}, then ~I = (P(a) A -~P(b) A P(c)). Clearly, I is the
only Herbrand model of Cx. Now suppose Z = {I1 , . . . , In} C_ X is a set of
Herbrand interpretations. We define ~bz = Ch V . . . V r Note that I is
a Herbrand model of r iff I E Z. Thus Z is exactly the set of Herbrand
models of r By the construction in the proof of Theorem 3.8, we can find a
conjunction (or set) T of ground clauses which is logically equivalent to ~z.

18.8. SUMMARY 341

Since 5[is exactly the set of Herbrand models of T, the theory T is a name
of :/: in our representation.

The main result in this setting is:

�9 A jk-clausat theory is a set of allowed clauses such that each clause
contains at most k literals, and the length of each literal is at most j .
Function-free jk-clausal ~heories are polynomial time PAC learnable in
the nonmonotonic setting [DD94, Theorem 9].
This result remains valid with a "small" amount of malicious noise, and
with r~ < 0.5 random classification noise [D~e95a, Theorems 2 and 3,
respectively].

18.8 Summary

A concept is a subset of a domain X, and a concept class is a set of concepts.
A PAC algorithm takes examples for an unknown target concept, drawn ac-
cording to an unknown probability distribution, and learns, with tunably
high probability, a tunably good approximation of the target concept. A con-
cept class i f is polynomial sample PAC learnable if a PAC algorithm exists
for 9 c that uses only a polynomially-bounded number of examples, and is
polynomial time PAC learnable if the algorithm uses only a polynomially-
bounded number of steps. In the latter case, the algorithm should output a
name of the learned concept in some polynomially evaluable representation.
Polynomial time PAC predictability is weaker than polynomial time PAC
learnability, while polynomial time identification from equivalence queries is
stronger. When noise is involved, the examples may sometimes be incorrect.

In the normal ILP problem setting, a concept is a set of ground atoms,
and our aim is to find a definite program whose least Herbrand model proba-
bly approximates the target concept. In the nonmonotonic setting, concepts
are sets of Herbrand interpretations, and our aim is to find a theory whose
set of Herbrand models probably approximates the target concept. We gave
overviews of the main results reported for both settings.

342 CHAPTER 18. PAC LEARNING

18.A A Polynomial Time Decision Procedure

In this appendix, we will show that there is an algorithm which, when given
an arbitrary function-free definite program H and an arbitrary function-free
ground atom A, decides whether H ~ A in time polynomial in the length
/(H) of H and the length I(A) of A. We do not claim that the method outlined
below is the most efficient there is, but merely give it in order to establish
polynomial time decidability.

The construction is divided in two steps. First we show that H @ A iff
IIg ~ A, where IIg is a set of ground instances of clauses from 11, and the
length/(Hg) of II is bounded by a polynomial in/(11) and I(A); then we show
that Hg ~ A can be decided in time polynomial in/(IIg). Together these
steps enable us to decide II ~ A in time polynomial in I(H) and l(A).

Step 1: Reduct ion to ground case

Let H be a function-free definite program and A be a function-free ground
atom. Recall from Chapter 15 that if E is a set of clauses and T is a set of
ground terms, then Z(E, T) denotes the set of all ground instances of clauses
in E, instantiated with terms from T. Let T be the set of constants occurring
in A, and define YIg = Z(II, T).

Let us see how many clauses Hg contains. If a clause contains v distinct
variables, it has v .]T I < v . l(A) ground instances over T. Furthermore,
IH] < I(H) and each clause in H contains less than t(H) distinct variables.
Hence the total number of ground clauses in Hg is bounded by a polynomial
in l(II) and l(A). Since the length of each clause in Hg is at most I(H), it
follows that the length/(II9) of Hg is bounded by a polynomial in I(H) and

From the remarks following the proof of Lemma 15.10, we have H ~ A
iff Hg ~ A. Thus if we can decide Hg ~ A in polynomial time, we are done.

Step 2: Deciding t h e g r o u n d case

Here we will show that given a ground definite program H and a ground
atom A, it can be decided in time polynomial in /(II) whether H ~ A.
H ~ A iff A E MH (Theorem 7.16), so it will be sufficient to construct the
least Herbrand model MH in polynomial time, since A E Mn can clearly be
decided in polynomial time. We will show that the following algorithm does
just that.

A lgo r i t hm 18.1 (Algor i thm for cons t ruc t ing Mn)
Inpu t : A ground definite program H.
Output: The least Herbrand model Mw

1. Set M = 0 andH ~=H.

18.A A POLYNOMIAL TIME DECISION PROCEDURE 343

2. If there is a C E I I ~ such that C - C_ M,
then set M = M t5 {C +} and II' = I I ' \{C},
else output M and stop.

3. Goto 2.

We will informally show that the running time of this algorithm is
bounded by a polynomial in I(H). Each execution of step 2 adds one atom
to M and deletes one clause from III. Hence step 2 can only be executed
]H[< I(H) times and we have]M I < IHI < I(H) at each step. Each execution
of step 2 has to examine at most IH'I _< IIII _</(II) clauses C. Furthermore,
for a given C E II and M we have ICl < l(II) and [MI < I(H), so the number
of steps required to test whether C - C M is bounded by a polynomial in
l(II). It follows that the algorithm works in polynomial time.

It remains to show that the algorithm does indeed construct Mn when
given H as input:

P r o p o s i t i o n 18.18 Let II be a ground definite program, and M be the set
that the previous algorithm outputs when given II as input. Then M = MH.

P r o o f It is easy to see that i f A E M, then II ~ A. Hence M C_ Mn.
To show that also Mn C M, suppose some A E Mn, so II ~ A. Since II is
ground and A is a ground atom, it follows from the Subsumption Theorem for
SLD-resolution that there is an SLD-derivation of A from II, of some length
n (i.e., involving n resolution steps). We will prove A C M by induction on
n .

1. If n = 0, then A C II, and step 2 of the algorithm will clearly add A to
M before it terminates.

2. Suppose the statement holds for n < m, and consider an SLD-derivation
of A from II of length m + 1, with top clause A +-- B1, . . . , Bk. Then
for each 1 < i < k, there is an SLD-derivation of length < m of Bi
from H, hence Bi C M by the induction hypothesis. This means that
after a finite number of executions of step 2 of the algorithm, we have
C - C_ M. Therefore step 2 of the algorithm must also add A to M
before termination. [:]

Chapter 14

The Subsumption Order

14.1 I n t r o d u c t i o n

We have met with the subsumption relation a few times before in this book,
for example in the subsumption theorems and in the generality order on
atoms of the previous chapter. We will extend the subsumption order on
atoms in two different ways to an order on clauses. The first is a rather strict
generality order, called the atomic order. We introduce this mainly as a tool
for studying the second extension, the subsumption order on clauses.

We show here that clausal languages and Horn languages are lattices
under subsumption: each finite set of clauses has a least generalization (LGS)
and a greatest specialization (GSS) under subsumption. On the other hand,
the positive results on finite complete sets of covers of atoms do not carry over
to arbitrary clauses. We prove that some clauses do not have finite complete
sets of downward or upward covers. This chapter is mainly based on the
articles [Plo70, NLT93, LN93, LN94a, NW96b].

14 .2 C l a u s e s C o n s i d e r e d as A t o m s

In this section, we will show how clauses can be treated as single atoms. For
this, we will introduce a very strict order on clauses, the atomic order ~a.
It provides a bridge between the ~-order on atoms of the previous chapter,
and the subsumption order on clauses we will discuss in the next sections.
The subsumption order for clauses and the existence of least generalizations
therein can be introduced without this intermediate order ~-a, as for instance
Plotkin does in [Plo70]. However, we feel that the _a-order is useful for
understanding subsumption, hence we discuss it here.

244 CHAPTER 14. THE SUBSUMPTION ORDER

D e f i n i t i o n 14.1 Let C = Li V . . .VLn and D = Mi V . . .VMm be clauses. If
n = m and for every i = 1 , . . . , n, Li and Mi have the same sign and predicate
symbol, we say C and D are compatible. If not, they are incompatible.

C is an atomic generalization of D, denoted by C ->~ D, if C and D are
compatible and there exists a substitution 0, such that LiO = Mi for every
i = 1 , . . . , n . 0

Example 14.2 P(a)VQ(z) P(a)vQ(a), but P(a)VQ(z) Q(a)VP(a)
and P(a) P(a) V P(a). <

If C >-~ D, then C and D must be compatible, so incompatible clauses
are incomparable in this order. For atoms A and B, A >2_ B iff A >_.~ B, so the
>-a-order is an extension of the ,---order on atoms of the previous chapter.
We will prove in this section that any two clauses C and D have a least
generalization in the set of clauses ordered by ->~, which we will denote by
LGA(C, D). Since for atoms A and B the two orders >.a and _ coincide, it
follows that LGA(A, B) = A tl B, where A U B is an LG of {A, B} under >.,
as defined in the previous chapter.

The reason why the >a-relation is called the atomic order, is that clauses
are compared as single atoms in this quasi-order. Let C = P(a)vQ(y , f (x)) v
-~P(x). C can be viewed as an atom A = V(P(a), Q(y, f (x)) , "~P(x)), where
V now acts as a 3-dry predicate symbol, and P, Q, and -~P are treated as
function symbols of arities 1, 2, and 1, respectively. Since we have already
established the existence of a least generalization of two atoms, the existence
of a least generalization of two compatible clauses in (C, ->~} follows easily,
by considering such atomic representations:

T h e o r e m 14.3 Let g be a clausal language, and C = Li V . . . V Ln and
D = M1V...VMn two compatible clauses in C. Then there is an LGA(C, D) =
N1 V . . . V Nn. Moreover, for any 1 < k < n, if C' = L1 V . . . V Lk and
D' = M1 V . . . V Mk, the~ L G A (C , D') = Ni V . . . V N~.

P r o o f Let A = V(L1 , . . . , L~) and B = V(M1 , . . . ,Mn) be the atomic repre-
sentations of C and D, respectively. Let V (N i , . . . , 5~) be the LGS of A and
B obtained from Algorithm 13.1 (the Anti-Unification Algorithm). Then it
is easy to see that E = Ni V . . . V ~u is an LGA(C, D).

For the second part of the theorem, let C' = Li V . . . V Lk and D e =
Ml V . . . V Mk, and let A' and B' be the atomic representations of C' and D',
respectively. Let LGS(A' , B e) denote the atom obtained by applying Algo-
r i thm 13.1 to A' and B', and let E ' be the clause represented by this atom.
Then E' is an LGA(C' , D').

Now note how the algorithm operates. The algorithm works from left to
right, arid when it anti-unifies the terms at some position of the two atoms, it
does not take the terms to the right of this position into account. Moreover,
the result, of anti-unifying the terms at this position is not changed anymore

14.3. SUBSUMPTION 245

when the algorithm continues with the terms to the right of the position. This
means that the k arguments in the atom L G S (X , B I) are exactly the first
k arguments in LGS(A, B), since the k arguments of A ~ and B ~ are exactly
the first k arguments in A and B, respectively. This in turn implies that E I
equals the first k literals of E. []

E x a m p l e 14.4 Let

C = P(x, g(x)) V-~P(a, b) V Q(x, g(f(x))
D = p(x, g(y)) v P(a, x) v Q(y, g(y))

The atomic representations of these two clauses are, respectively:

d = V(P(x, g(x)), -,P(a, b), Q(x, g(f(x)))
B = v(P(x, a(y)), P(a, x), Q(y, a(y)))

Algorithm 13.1 yields LGA(A, B) = V(P(x, g(zt)) ,-~P(a, z2), Q(zi, g(za))),
so we have that E = P(x, g(zl))V-~P(a, z2)V Q(zl, g(z3)) is an LGA(C, D).

Note that P(x, g(zz)) V-~P(a, z2) (the disjunction of the first two literals
of E) is an LGA of P(x,g(x)) V -,P(a,b) and P(x,g(y)) V -~P(a,x) (the
disjunction of the first two literals of C and D, respectively). <~

As we have seen, an LGA of C and D can be obtained by turning to atomic
representation and then applying the Anti-Unification Algorithm. Similarly
we could obtain a greatest specialization from the Unification Algorithm,
which shows that if C is a clausal language including artificial top and bot tom
elements T and 3_, then (C, ~ } is a lattice. We will not discuss this any
further, since we have mainly introduced the ___~-order as a toot for the study
of the more important subsumption order.

It follows from the remark following Example 13.21 in the last chapter
that if the terms at the # th and j - th argument place of an atom A are
equal, and if the terms at the i-th and j - th argument place in an atom B
are equal, then the terms at the i-th and j - th argument place of LGA(A, B)
are equal. This extends to the LGA of compatible clauses C and D: For
instance, if C = P(a) V Q(a, x) v P(a) and D = P(x) V Q(x, y) v P(x), then
LGA(C, D) = P(zl) V Q(zl, z2) v P(zl), where the first and third literal are
equal. Thus we have the following lemma, which will be used in the proof of
Theorem 14.27:

L e m m a 14.5 Let C = L1 V . . . V L~ and D = M1 V . . . V Mn be compatible
clauses, with LGA(C,D) = N1 V . . . V N~. If for some 1 <__ i , j < n we have
Li = Lj and Mi = Mj, then N~ = 51~.

1 4 . 3 S u b s u m p t i o n

The general subsumption order on clauses is defined as follows:

246 CHAPTER 14. THE SUBSUMPTION ORDER

D e f i n i t i o n 14.6 Let C and D be clauses. We say C subsumes D, denoted
by C ~ D, if there exists a substitution 0 such that CO C_ D (i.e., every literal
in CO is also a literal in D). C properly subsumes D, denoted by C ~ D, if
C ~- D and D ~ C. Furthermore, C and D are subsume-equivalent, denoted
b y C , - , D , i f C _ ~ D a n d D ~ C . <5

Clearly, the subsumption relation on clauses is reflexive and transitive.
Thus it imposes a quasi-order on the set of clauses. Note that if C ___a D,
then C ~ D, but not necessarily the other way around.

We will now informally show that it is decidable whether a clause C
subsumes a clause D. If C _ D, then there is a substitution 0 which maps
each Li E C to some Mj E D. If C contains n literals, and D contains m
literals, then there are m ~ ways in which the literals in C can be paired up
with literals in D. Then we can decide C ~ D by checking whether for at
least one of those m '~ ways of pairing the n literals in C to some of the m
!iterals in D, there is a 0 such that LiO = Mj, for each (L~, Mj) in the pairing.
If so, there is a 0 such that CO C D, and hence C ~_ D. If not, then there is
no such 0, and C ~ D. 1

A clause is always subsume-equivalent with a clause that does not contain
literals more than once. So for example P(z) V Q(a) V P(x) is obviously
subsume-equivalent with P(x) V Q(a). Similarly, the order of literals in a
clause does not mat ter much. For instance, P(a) V P(b) ,,~ P(b) V P(a). It will
often be convenient to ignore duplicate literals and the order of literals in a
clause, which are not important for the properties we are interested in. For
us, the only thing that really matters in a clause, is which distinct literals it
contains. This amounts to treating a clause as a set of literals, instead of a
disjunction of literals. For convenience, we will also adopt this representation
from now on. Thus we may use the set {P(a), Q(a)} to represent the clauses
Q(x)VP(a), P(a)VQ(x)VP(a), Q(x)VP(a)VQ(x), etc. For most parts of this
book, the distinction between on the one hand ordered notation, which does
not ignore the order and duplication of literals, and set notation of clauses on
the other, is just a mat ter of convenience. The only part where the distinction
is crucial is Section 14.7, where we take the step from the atomic order to the
subsumption order, using ordered notation for the former and set notation
for the latter.

Two atoms are subsume-equivalent iff they are variants. This is not true
for clauses in general. For instance, C = {P(x, x)} ~ {P(x, x), P (x ,y)} =
D, since C C D and D{y/x) G C, yet C and D are not variants. In
fact, the subsume-equivalence class of this C contains an infinite num-
ber of clauses which are not variants. For example, for each n, the clause
D~ = {P(x, x), P(x, xl), P(xl, x2),..., P(x,~-I, xr~)} is subsume-equivalent

1 Though subsumpt ion is decidable, ectually deciding it is ra ther expensive: subsumption
is an NP-complete problem [G J79, p. 264]. Kietz and Lfibbe [KL94] describe some special
cases where subsumpt ion is more efficiently decidable.

14.4. REDUCTION 247

with C = {P(x, x)}. Often, we are interested in properties of arbi trary mem-
bers of these subsume-equivalence classes. In this case, we can use one par-
ticular member of an equivalence class to represent that class, for instance
a reduced member of that equivalence class, as we will discuss in the next
section.

14.4 Reduct ion

A reduced clause is in a way a "smallest" member of its equivalence class.
For instance, the smallest members of the equivalence class of {P(x, x)} are
{P(x, x)} and its variants, which are reduced. Reducing a clause makes the
clause more tractable. {P(x, x)} is often easier to handle than other members
of its subsume-equivalence class, such as {P(x, x), P(x, xl), P(xl, x2)}.

D e f i n i t i o n 14.7 A clause C is said to be reduced if there is no proper subset
D of C (D C C) such that C ,-~ D. A reduced clause D such that C --~ D and
D C_ C is called a reduction of C. 0

E x a m p l e 14.8 C = {P(x, y), P(y, x)} is reduced. D = {P(x, x), P(x,y),
P(y, x)} is not reduced, since D f = {P(x, x)} is a proper subset of D and
D ,-~ D' . D ' is a reduction of D. <1

A clause C is reduced if there is no substitution 0 such that CO is a
proper subset of C. Although for C ,-~ C' and D ,-- D ' we have that C __ D
iff C ' ~ D/, subsume-equivalent clauses need not behave the same with
respect to other operations. Firstly, applying the same substitution 0 to
two subsume-equivalent clauses may yield two clauses which are no longer
subsume-equivalent:

E x a m p l e 14.9 Let C = {P(x, y), P(z, u)} and D = {P(x, y)}, then C ,--
D. Let 0 = {y/f(z) , z/ f(x) , u/x}. Then CO = {P(x, f(x)), P(f(x), x)} and
DO = {P(x, f (x))} , which are no longer equivalent. <~

A second perhaps surprising property, is the fact that a subset of a reduced
clause need not be reduced itself:

E x a m p l e 14.10 Let C = {-~Q(x, a),-,Q(y, a)} and D = {P(x, y),-~Q(x, a),
-~Q(y, a)}. Then D is reduced. However, C is a subset of D which is not
reduced, since C{x/y} is a proper subset of C. <1

Subsume-equivalent clauses need not be variants, but reduced subsume-
equivalent clauses, such as for example C = {P(x,y), P(y, x)} and D =
{P(z, x), P(x, z)}, are variants:

P r o p o s i t i o n 14.11 Let C and D be reduced clauses. If C ~ D, then C and
D are variants.

248 CHAPTER 14. THE SUBSUMPTION ORDER

P r o o f Since C ~ D, there are 0 and c~ such that CO C_ D and D(r C_ C.
Since C and D are reduced, we must have COr = C and DcrO = C. If 0 maps
some x in C to a term containing a function symbol or constant, then we
would not have COc~ = C, so 0 (and likewise o') can only map variables to
variables. If 0 unifies two or more variables in C, then the total number of
variables in COr C) would be less than the number of variables in C, which
is impossible. Hence 0, and similarly or, must be a renaming substitution,
which shows that C and D are variants. []

In [Plo70], Plotkin gave an algorithm to compute a reduction of a clause.
The following l emma is the basis of his algorithm:

L e m m a 14.12 Let C be a clause. If for some O, CO C_ C, then there is a
reduced clause D C CO such that C ,'~ D.

P r o o f Let C1 : CO. Clearly C ,-~ C1. If Ct is reduced, then let D = C1, and
we are done. Otherwise, there is a substitution 01 such that C2 : C101 C C1.
So C2 is a proper subset of C1 which is subsume-equivalent to C1. Since
C1 ~ C, we also have C2 "~ C, in fact C001 = C2 C C. If C2 is still not
reduced, we can go on defining Ca = C202 C C2, etc. Since C only contains a
finite number of literals, this cannot go on indefinitely. Hence we must arrive
at a D = Cn such that D is reduced and C ,,~ D. []

A l g o r i t h m 14.1 (R e d u c t i o n A l g o r i t h m)

I n p u t : A clause C.
O u t p u t : A reduction D of C.

1. Set D = C.
2. Find a literal L C D and a substitution 0 such that DO C D\{L} . If

this is impossible, then return D and stop.
3. Set D to DO and goto 2.

The previous algorithm gives Plotkin's approach to computing reductions
of clauses. A somewhat more sophisticated approach is given in [GF93].

We will now describe an alternative approach, which uses the basic rela-
tion between a clause and its reduction expressed in Lemma 14.15. First we
give an example.

E x a m p l e 14.13 Let C = {P(x , x) ,P (x , x l) ,P(z ,y)} . Let 0 = { x l / x , z / x ,
y/x}, then D = CO = {P(x, x)} C C is reduced. Notice that 0 does not act
on any variables in D.

Now let C --=- {Q(y, f (x)) , P(x) , Q(y, f (z)) , Q(a, f (x))} , O = {y/a, z /x} ,
then D = CO = {P(x), Q(a, f (x))} c_ C is reduced. Notice again that 0 does
not act on any variables in D. <~

14.5. I N V E R S E R E D U C T I O N 249

The previous examples suggest that a reduction of C may be obtained by
mapping some literals to a subset D of C, without affecting D. This turns
out to be true in general.

L e m m a 14.14 Let C be a clause and 0 a substitution. I f CO = C, then there
is a k >_ 1, such that LO k = L for every L C C.

P r o o f First note that 0 is injective: for all L1, L2 E C, if L~ 7~ L2, then
LIO ~- L~O, for otherwise ICO[< ICI. Hence if L~O = L20, then L~ = L2. For
each L E C, consider the following infinite sequence

L, LO, LO 2 , L0 3, . . .

Since CO = C, each literal in this sequence is a member of C. C contains
only a finite number of literals, so for some i < j we must have LO ~ = LoJ.
Then from the injeetivity, also L = LO j-~. For this L, define n(L) = j - i.
Notice tha t L = LOm if m is a multiple of n(L) . Let k be the least common
multiple of all n(L) . Then LO k = L for every L E C. []

L e m m a 14.15 Let C and D be clauses. I f D is a reduction of C, then there
is a substitution 0 such that CO = D and LO = L for every L ~ D.

P r o o f Suppose D is a reduction of C, then there is a o- such that C a _C D.
Then also Do- C C a _C D, since D _C C. If Do- ~ D, then D would not be
reduced, hence Do- = Co- = D. By the previous lemma, there is a k > 1 such
that Lo- k = L for every L E D. Now define 0 = o-k. Then since Co- = D and
Do" = D, we have CO = D. []

Thus an alternative for Plotkin 's approach is to take a proper subset D of
C, and see if all other literals in C can be mapped onto D by some 0 which
does not affect the variables in D. If such a D cannot be found, C is reduced.
I f D can be found but is still not reduced, then we can take a proper subset
of D again, etc. Eventually, we will reach D which is reduced.

14.5 Inverse R e d u c t i o n

Plotkin 's reduction algorithm finds a reduction D of C. In this section we de-
velop an algori thm which does the inverse: given a reduced clause D, the
algori thm constructs (possibly non-reduced) members C of the subsume-
equivalence class of D. This will be useful in the chapter on refinement oper-
ators. Since the subsume-equivalence class of D is infinite, we have to limit
the scope of the algorithm. This is done by restricting the number of literals
in C.

Given a reduced clause D, we know from Lemma 14.15 that for every
non-reduced C such that D C C and D ,-, C, we can find a 0 such that

250 CHAPTER 14. THE SUBSUMPTION ORDER

CO = D, and 0 only acts on variables not appearing in D. Thus C can be
reduced by mapping E = C\D to literals in D. In the inverse direction, we
can find C by adding a set E to D, such that EO C_ D, where 0 does not act
on variables in D. This is the idea used in the algorithm. If D is a reduced
clause and m is some positive integer, then our algorithm finds a variant of
every non-reduced C with rn or less literals in the subsume-equivalence class
of D.

Algorithm 14.2 (Inverse Reduction Algorithm)
I n p u t : A reduced clause D and an integer m.
O u t p u t : Variants of every C such that D ~ C and ICI < m.

1. / = 0 .
2. If IDI _< m, then output D.
3. While I < (m - I D]) do

1. Set l to l + 1.
2. For every sequence L 1 , . . . , Ll such that each Li E D, but the Li's

are not necessarily distinct:
Find every (up to variants) set E = { M 1 , . . . , M i} such that
(1) every Mi contains at least one new variable not in D, and
(2) if X l , . . . , x n are all those new variables, then there is a
0 = {zl/ t l , . . . ,x ,~/t ,~}, such that MiO = Li for i = 1 , . . . , I .
For every such E, output D W E.

E x a m p l e 14.16 Let D = {P(x,x)} . For m = 2, literals M1 that can be
added to D are P(x, y), _P(y, x), P(y, y), or P(y, z). For m = 3, some of the
possible Ml'S and M2's and corresponding 0's are:

M---7--

P(*, ~)
P(~, y)
P(~, y)
P (y, Y_.__.__~)

'M2 0
P(v, z)
P(x,z)
P(z, w)
P(v, ~)
P(z,~)

{v/~,z/~)
{v/~,z/~)
{v/x,z/~,~/~}
{v/~)
{v/~,~/~}

<1

The algorithm does not find every non-reduced equivalent clause with rn
or less literals, but it does find a variant of every such clause. For instance,
given D = P(x) +- Q(x, x), it finds P(x) +-- Q(x, x), Q(x, y), but not P(z) +-
Q(z, z), Q(z, ~).

14.6. GREATEST SPECIALIZATIONS 251

14.6 Greatest Specializations

We will now investigate the lattice-structure of a clausal language C ordered
by the subsumption relation ~-. In this section we will prove that every finite
set S of clauses has a greatest specialization under subsumption (GSS), in the
next section we show that it also has a least generalization under subsumption
(LGS). This holds both for clausal languages C, and for Horn languages 7/.
It is straightforward to show that the GSS of some finite set S of clauses in
C is s imply the union of all clauses in S after they are standardized apart:

Theorem 14.17 (Existence of GSS in C) Let C be a clausal language.
Then for every finite non-empty S C_ C, there exists a GSS of S in C.

P r o o f Suppose S = { D 1 , . . . , D~ } C_ C. Without loss of generality, we assume
the clauses in S are standardized apart . Let D = D1U...UDn, then Di __ D,
for every 1 < i < n. Now let C E C be such that Di _ C, for every 1 < i < n.
Then for every 1 < i < n, there is a 01 such that DiOi C C, and 0i only acts on
variables in Di. If we let 0 = 01U.. .U0,~, then DO = D101 U...UD~O~ C_ C.
Hence D __ C, so D is a GSS of S in C. []

Proving the existence of a GSS of every finite set of Horn clauses in 7t
requires a little more work, but here also the result is positive. For example,
D = P(a) +-- P(f(a)) ,Q(y) is a GSS of D1 = P(x) +-- P(f (x)) and D2 =
P(a) e-- Q(y). Note that D can be obtained by applying cr = {x/a} (the mgu
for the heads of D1 and D2) to D1UD2, the GSS of D1 and D2 in C. This idea
will be used in the following proof. Here we assume 7/ contains an artificial
bo t tom element _1_, such that C _ _l_ for every C C 7/, and I ~z C for every
C # _1_. Note that _1_ is not subsume-equivalent with other tautologies. Two
tautologies need not be subsume-equivalent either.

T h e o r e m 14.18 (E x i s t e n c e o f GSS in 7{) Let 7/ be a Horn language,
with an additional bottom element • E 7{. Then for every finite non-empty
S C 7/, there exists a GSS of S in 7{.

P r o o f Suppose S = { D 1 , . . . , Dn} C_ 7/. Without loss of generality we
assume the clauses in S are standardized apart , D 1 , . . . , Dk are the definite
program clauses in S, and Dk+l, . . . , D~ are the definite goals in S. If k = 0
(i.e., if S only contains goals), then it is easy to show that D1U . . . U D~ is
a GSS of S in 7/. If k _> 1 and the set { D I + , . . . , D +} (the set of heads of
clauses in S), is not unifiable, then _1_ is a GSS of S in 7{. Otherwise, let o- be
an mgu for {D + + , . . . , D k }, and let D = D l o ' U . . . U D ~ (r (note that actually
D i c r = Di for k + 1 < i < n, since the clauses in S are standardized apart) .
Since D has exactly one literal in its head, it is a definite program clause.
Furthermore, we have Di _ D for every 1 < i < n, since Dic~ _C D.

To show that D is a GSS of S in 7/, suppose C E 7/ is some clause such
that Di ~- C for every 1 < i < n. For every 1 < i < n, let Oi be such that

252 C H A P T E R t4. THE S U B S U M P T I O N O R D E R

D#~i C_ C, and 0i only acts on variables in Di. Let 0 = 01 tO . . . tO 0,~. For
every 1 < i < k, D+O D+0~ C +, so 0 is a unifier for {D +, ,D k+}.
But 0. is an mgu for this set, so there is a 7 such that 0 = 0" 7. Now D7 =
Dlo7 U . . . tO D,~0. 7 = D10 tO . . . 12 D,~O = D101 U . . . U D,O,~ C C. Hence
D >__ C, so D is a GSS of S in 7-/. See Figure 14.1_ for illustration of the case
where n = 2. D

Di D~

c

Figure 14.1: D is a GSS of D1 and D2

14.7 Least General izat ions

The previous section easily established the existence of the greatest special-
ization under subsumption. In this section we want to prove the existence
of the least generalization, which will be a little harder. We start with an
example of least generalization under subsumption.

E x a m p l e 14.19 Suppose we are given the following two ground clauses as
positive examples:

Tiger(a) +-- Mammal (a) , Striped(a)~ Orange(a)
Tiger(b) <--- Mammal(b) , Striped(b), Yellow(b)

These two clauses can be generalized to the following clause, which is their
LGS:

Tiger(x) +- Mammal (x) , Striped(x)
<3

Plotkin was the first to establish the result that any finite set of clauses
has an LGS. We will here give a proof which differs somewhat from Plotkin's,
using the ~_a-order. We use the LGA as a bridge to find the LGS.

Definit ion 14.20 Let C and D be clauses. A selection of C and D is a pair
of compatible literals (L, M), such that L E C, M E D. O

E x a m p l e 14.21 C = {P(x) , P(y) ,-~P(a)} and D = {Q(b), P(a),-~P(b)}
have three selections: (P(x) , P(a)), (P(y), P(a)), and (-~P(a),-~P(b)). <~

14.7. LEAST GENERALIZATIONS 253

Given two clauses C and D, there is only a finite number of selections.
Suppose C and D have a total of n selections. Then we can order these in a
sequence

(L~, M~), (L2, M e) , . . . , (L~, M,~),

and construct two compatible ordered clauses C ~ = L1 V . . . V L~ and D ~ =
M1 V . . . V M~. We will show that an LGA of C ~ and D ~ is also an LGS of C
and D.

Example 14.22 Let

C = {L1,L2,La}, for L1 = P(f(a) , f (x)) , L2 = P(f(x),g(a)), L3 = Q(a).
D = {M1, M2}, for M~ = P(f(b),x)), M2 = P(y,g(b)).

The set of all selections of C and D can be ordered in the following sequence:

S -- (L1, M1), (L1, M2), (L2, M1), (L2, M2).

From this sequence we can construct the following clauses:

C ~ = L1 V L1 V L~ V L2.
D'=MIVM2VM~VM~.

Note that the order and duplication of literals is not ignored in the atomic
order. The clauses C ~ and D ~ are compatible, and have the following LGA:

E' = P(f (z l) , z2) V P(z3, z4) V P(f(zh), zs) V P(z7, g(zl)).

This LGA can be shown to be also an LGS of C and D. Tha t is, if we turn to
set notat ion we have E = {P(f (z l) , z2), P(z3, z4), P(f(zh), ze), P(zT,y(zl))},
which can be reduced to {P(f (z l) , z;),P(zr, y(z,))}. This is an LGS of C
and D. Note that the predicate Q does not appear in the LGA or LGS. <]

We will now prove that the approach of the previous example always
yields an LGS of C and D.

D e f i n i t i o n 14.23 Let C and D be clauses, and S = (L1, M 1) , . . . , (Ln, M~)
a sequence of (not necessarily all) selections of C and D. Then we let Cs =
L1 V . . . V L,~, Ds = M1 V . . . V Mn, and we use LGA(Cs,Ds) to denote the
least generalization of {Cs, Ds} under __a.

From the last example, it can easily be seen that if S ~ is a sequence of
selections obtained by reordering a sequence S, or by adding or deleting
duplicate selections to S, then the LGA(Cs, Ds) obtained from S, and the
LGA(Cs,, Ds,) obtained from S ~ will be subsume-equivalent. Thus we have
the following lemma:

L e m m a 14.24 Let C and D be clauses, and S and S I be sequences of (not
necessarily all) selections of C and D, such that S and S ~ contain exactly the
same selections. Then LGA(Cs, Ds) ~ LGA(Cs,, Ds,).

254 CHAPTER 14. THE SUBSUMPTION ORDER

Furthermore, we also have the following lemmas:

L e m m a 14.25 Let C and D be clauses, and S and S' be sequences of (not
necessarily all) selections of C and D, such that every selection in S' also
occurs in S. Then LGA(Cs,, Ds,) >_ LGA(Cs, Ds).

P r o o f Let T ' be obtained by deleting all duplicate selections from S' , and
T be a permutat ion of S such that T ' is a prefix of T. So for some m _< n,
we have

CT, = L1 V . . . V L,,~, DT, = M1 V . . . V Mm.
CT = LI V . . . V Lm V . . . V Ln, DT = M~ V . . . v Mm v . . . V M,~.

Let LGA(CT, DT) = N1 V ... V Nm V ... V Nn. Then it follows from The-
orem 14.3 tha t LGA(CT, ,DT,) = N1 V . . . V N~, so LGA(CT, ,DT,) >_
LGA(CT,Dr) , because (N1 V . . . V N m) e C_ N1 V .. . V Nm V . . . V N,~.
The selections occuring in S are the same as those in T, and the selec-
tions in S ' are the same as those in T ' , so by the previous l emma we
have LGA(Cs, Ds) ~ LGA(CT, DT) and LGA(Cs,, Ds,) ~ LGA(CT,, DT,).
Hence LGA(Cs,, Ds,) h LGA(Cs, Ds). []

L e m m a 14.26 Let C and D be clauses, and S a sequence of (not necessarily
all) selections of C and D. Then LGA(Cs, Ds) ~ C and LGA(Cs, Ds) ~ D.

P r o o f Let E = LGA(Cs, Ds). Then E h a Cs, so E h Cs. But Cs h C,
since the literals in Cs form a subset of C. Hence E h C, by the transit ivity
of >__. Similarly E h D. []

Now we are able to establish the existence of a least generalization under
subsumption:

T h e o r e m 14.27 (E x i s t e n c e o f L G S in C) Let C be a clausal language.
Let C ,D E C be clauses, and S be a sequence of all selections of C and
D. Then an LGA(Cs, Ds) is an LGS of {C, D}.

P r o o f Let E = LGA(Cs ,Ds) . By L e m m a ! 4 . 2 6 , E h C a n d E h D. Let
F = { N 1 , . . . , N , ~ } be a clause such that F h C and F ~- D. In order to
establish that E is an LGS of {C, D}, we need to prove F h E.

Since F ~ C and F ~ D, there are 01 and 02, and L I , . . . , L m E C and
M 1 , . . . , M ~ E D, such that Ni01 = Li and Ni02 = Mi, for every 1 < i < m.
Then S ~ = (L1, M 1) , . . . , (L,~, M , 0 is a sequence of selections of C and D.
Let Cs, = L1 V . . . V L m , Ds~ = M1 V . . . V M m , let G = A'I V . . . V K m be
an LGA(Cs,, Ds,) , and ~rl and ~2 be such that G~rl = Cs, and Gcr2 = Ds,.
Since (N1 V . . . V Nm)O1 = Cs' and (N1 V . . . V Nm)02 = CO', there must be
a ~, such that (N1 V . . . V N , 0 7 = K1 V . . . V Kin. Thus we have the situation
given in Figure 14.2.

14.7. LEAST GENERALIZATIONS
N1 V . V N m

~ 1 (resp. 02)
x

G = K 1 V . . . V K ~ or1 (resp, a 2) CsJ = L1 V . . . V L ~
(resp. Ds~ = MI V .. . V M m)

Figure 14.2: Illustration of the proof

255

(N 1 V . . . VN,~)7 = G, so we have F ~- G. Since every selection in S ~ also
occurs in S, we have G • E from Lemma 14.25. Hence F ~ E. []

Thus the LGS of any two clauses exists, and can be computed by the
method explained in Example !4.22. This method is made explicit in the
following algorithm:

A l g o r i t h m 14.3 (L G S A l g o r i t h m)
I n p u t : Two clauses C and D.
O u t p u t : An LGS of {C, D}.

1. Let (L1, M1),. . . , (n,, M~) be a sequence of all selections of C and D.
2. Obtain LGS(V(L1,. . . , L,), V(M1, . . . , M~)) = V(N1, . . . , Nn) from the

Anti-Unification Algorithm.
3. Return {N1, . . . ,Nn}.

The LGS of any finite set of clauses can be computed by repeatedly apply-
ing this algorithm. Notice that if two clauses C and D have no selections--for
instance, when they have no predicates in common-- then their LGS is the
empty clause D. Thus [] can play the role of top element here, which means
that we do not need to add an artificial top element 7 to the language C.

Note that if all literals in C and D have the same sign and predicate
symbol, then C and D have]C] �9 IDI selections. Accordingly, the LGS of C
and D that can be obtained from these selections may also contain [C I �9 ID[
distinct literals. Thus the number of literals in an LGS may increase quite
rapidly.

Since we have now proved the existence of a GSS and LGS of every two
clauses, it follows that a clausal language ordered by subsumption has a
lattice-structure (we do not need an artificial bot tom element • for this).

C o r o l l a r y 14.28 Let C be a clausal language. Then (C, ~-) is a lattice.

Since there is at most one selection possible from the heads of a set of
Horn clauses, the LGS of a set of Horn clauses has at most one positive
literal, and hence is itself also a Horn clause. Therefore (7/, ~) is a lattice.
Here we need the bot tom element _L to guarantee the existence of a GSS of
two definite program clauses with different predicate symbols in their head.

256 CHAPTER 14. THE SUBSUMPTION ORDER

C o r o l l a r y 14.29 Let 7t be a Horn language, with an additional bottom ele-
ment -1_ E ~ . Then (~, ~) is a lattice.

14.8 Covers in the Subsume Order

The least generalization and the greatest specialization respectively concern
generalizing or specializing a set of clauses to a single clause�9 In this section
we will turn to generalizing and specializing single clauses, by investigating
covers of clauses in the subsumption order.

Here we will show that there exist clauses which have no complete set
of upward covers in the subsumption order. In fact, there are clauses which
have no upward covers at all. Dually, for the downward cover we will give
a clause which has no finite complete set of downward covers. Whether all
clauses have a (sometimes infinite) complete set of downward covers remains
an open question.

1 4 . 8 . 1 U p w a r d C o v e r s

In this section we will prove that the clause C = {P(x l , Xl)} has no upward
covers. For this we use an infinite chain of clauses C2 >- C3 >- . . . >- C~ >-
Cn+l >- . . . ;"- C, defined as:

C~ = { P (x i , x j) I i # j and i < i , j < n} ,n >_ 2.

So, for instance:

C3 = IF(x1, x2), P(x2, xl) , P(x l , x3), P(x3, xl), P(x2, xa), P(x3, x2)}

Concerning these clauses, we can prove the following:

L e m m a 14.30 For all n >_ 2, Cn is reduced.

P r o o f Suppose that for some n >_ 2, Cn is not reduced. Then there is a
substitution 0 such that C,~O C C,~. Thus there are two literals P(xi, xj) r
P(xk, Xm) in C,~, which are both mapped by 0 to the same literal P(x , , xt) E
C,. Since x~ r xk or xj r xm, P(xi , x~) or P(xj ,x ,~) is in C~. But then
P(xi , xk)O = P(xs, xs) or P(xj , Xm)O = P(xt , xt) is in CnO and hence also in
C,~. This is impossible. []

Furthermore, each Cn properly subsumes C~+l and C:

L e m m a 14.31 C~ >- C3 >- . . . ~- Cn ~ .. . ~- C.

14.8. COVERS IN THE SUBSUME ORDER 257

P r o o f First we prove that Cn ~- C, for every n ~ 2. Since Cn{x2/x l , . . . ,
x,~/xi} = C, we have CA ___ C. On the other hand, i f C _ C~, then Cn would
contain an instance of P(xl, xl), which is impossible, so C ~ C~.

Secondly we show that for every n > 2, C,~ ~- Cn+l. Since C~ C C,~+1,
we have C,~ ~ Cn+l. On the other hand, C~ is a proper subset of C~+1 and
by the previous l emma C~+I is reduced, so C,~+I ~ C,~. []

Using these properties of the clauses C2, C3,..., we can now establish that
C has no upward cover in the subsumption order.

P r o p o s i t i o n 14.32 Let C be a clausal language containing a binary predicate
symbol P. Then C = {P(xl, Xl)} ha8 no upward cover in (C, ~) .

P r o o f Suppose some clause D E C is an upward cover of C. Then D ~ C,
so there is a 0 such that DO C C. If D contains negative literals, or another
predicate than P, or a function symbol or constant, then DO would contain
these too, which is impossible since DO C C. Also, D cannot contain a literal
of the form P(x, x), for then we would have C ,-- D.

Hence D can only contain literals of the form P(x, y), where x # y. Let
n be the number of distinct variables in D. Then there is a variant D ~ of D,
such that D I C Cn, hence D ~- C,~. But then D ~ C,~ >- Cn+l >- C, which
contradicts the assumption that D is an upward cover of C. Therefore such
an upward cover D does not exist. []

From this result, we know that C has no complete set of upward covers.

14.8 .2 D o w n w a r d Covers

Now we turn to downward covers. It is not known whether a clause always
has a complete set of downward covers. However, we can show that there is
a clause C which has no finite complete set of downward covers. So if this
particular C does have a complete set of downward covers, this set must be
infinite. This result is sufficient to prove in Chapter 17 the negative result that
an ideal downward refinement operator does not exist for the subsumption
order. We use the following clauses (where all x~ and yj are distinct):

C = {P(x l , x2), P(x2, xl)}
D, = {P(yl, y2), P(y2, y3) , . . . , P(y,-1, y~), P(y~, yl)}, n _> 2
C~ = CU D~,n >__ 3

We will show that this C has no finite complete set of downward covers,
using a similar technique as in the previous subsection. The clauses D,~ have
a special form, called a cycle:

D e f i n i t i o n 14.33 Let C be a clause. A cycle of length n >_ 2 in C is a set
of literals in C which can be arranged in a sequence of the form

258 C H A P T E R 14. THE SUB SUMP TION O R D E R

P(w, P(w, us),..., P(yn,

where y , , . . . , y,~ are distinct variables. A clause of the form P(Yl, Yl) is called
a cycle of length 1. <5

Notice that a cycle can begin with any variable: P(y2, Ya), P(ya, Y4) , . . . ,
P(Y,~, Yl), P(Yl, Y2) is also a cycle. The following results give properties of the
clauses C, D , and Cn listed above.

L e m m a 14.34 For all n > 2, if~ is a substitution which only maps variables
to variables, and which unifies at least two variables in Dn, then DnO contains
a cycle of length less than n.

P r o o f Let i and j be such that l < i < j < n , y i 0 = y j 0 , and there are no
k ,m such that i < k < m < j , and ykt~ = yraO. Then yiO, y i+lO, . . . , y j -10
are distinct variables, and P(y~, yi+l)O, P(yi+l , yi+2)0, . . . , P(y j - I , yj)O is a
cycle of length j - i < n, which is contained in D,~O. E1

L e m m a 14.35 For all n >> 2, D,~ is reduced.

P r o o f Suppose that for some n >_ 2, Dn is not reduced. Then there is a
substitution 0 such that Dn~ is a proper subset of D~. This 0 can only map
variables to variables, and must unify at least two variables. Then by the
previous Iemma, DnO contains a cycle of length less than n. But then D~
must also contain this cycle, which is impossible. []

L e m m a 14.36 [f n = m . k for some k > 1, then Dn >- Din.

P r o o f Let Yl,--.,Y.~ be the m variables in Dry, and x l , . . . ,x** be the n
variables in D~. Define 0 in the following way: if for some p >__ 0 and 1 _< j _< m
we have i = m -p + j , then xiE) = yj. Then P(x,~, xl)0 = P(y,~, Yl), and in
general Dn ~ = Dra, hence Dn > D,~.

On the other hand, if for some o', D,~o" C D,~, then this a can only map
variables to variables, and must unify at least two variables in D,~, because
no variant of Dm is a subset of Dn. Then by Lemma 14.34 Dmo', and hence
also D~, must contain a cycle of length less than m. This is impossible, so
Dm ~ Dn. []

L e m m a 14.37 For any n = 3 k (k > 1), we have that Cn is reduced.

P r o o f Let n = 3 k , f o r s o m e k > 1. Suppose Cn = C t 0 D n is not reduced,
then there is a ~) such that C~,g is a proper subset of C,~. Since C and D,~
are reduced, ~ must map a literal in C to a literal in Dn, or vice versa. The
former is impossible, since {P(yi, Yi+l), P(Yi+I, Yi)} ~ Dn.

14.8. COVERS IN THE SUBSUME ORDER 259

Now suppose 0 maps some Iiteral in D,~ to a literal in C. Without loss
of generality, we assume P(yl , y~)O = P(x l , x~). Then y20 = x2, so P(p2, Ya)
must also be mapped to a literal in C, for otherwise P(Y2, ya)O = P(x2, t) q~
C,~. But then yaO = a:1, so P(Ya, Y4) must also be mapped to a literal in C,
etc. Hence if 0 maps some literal in D~ to a literal in C, it should map every
literal in D , to a literal in C. That is, in this case we have D~O C_ C.

Now D~O C_ C can only hold when n is even, for otherwise we would have
that P(y~, Yl) would be mapped by 0 to P(x l , xl), which is not in DnO. But
n cannot be even, since 3 ~ is odd. []

L e m m a 14.38 For any n = 3 k (k > 1), we have that C ~ Cn.

P r o o f Since C C C~, we have C ~ Cn. On the other hand, Cn is reduced
and C is a proper subset of Cn, so Cn ~ C. []

Now we let

Ek = C~, where n = 3 k, k > 1.

It follows from Lemma 14.36 that Dak+l >- D3 k , hence Ek+l = Ca~+~ >- Cak =
Ek, for every k _> 1. Then we have a chain C ~- . . . >- Ek+l ~- Ek >- . . .
E2 >-- El . To prove that C has no finite complete set of downward covers, we
now need to show that there is no downward cover of C "between" C and
this Ek-chain.

L e m m a 14 .39
every k > 1.

There is no downward cover E of C, such that E ~ Ek, for

P r o o f Suppose such an E does exist. Consider a k such that Ek contains
more distinct variables than E. Since C >- E >- Ek, E must contain a cycle
of length 2, as image of C. Let EO C_ Ek, then EO contains a cycle of length
2 in Ek. This cycle must be C. That implies EO = C U D'k, where D~ is a
subset of the cycle Dk.

Since Ek contains more variables than E, we know there is a variable in
Ek which is not in EO. Without loss of generality we can assume Yl is such a
variable. This means that P(yl , Y2) and P(y~, yl) are not in D; . Now define
o" as yio = X 1 i f / is odd, and yi~r = x~ i f i is even. Then EOa = C. But then
we have E ~ C, which contradicts the assumption that E is a downward
cover of C. []

P r o p o s i t i o n 14.40 Let C be a clausal language containing a binary predicate
symbol P. Then C = {P(x l ,x2) ,P(x2 , Xl)} has no finite complete set of
downward covers in (C, ~-}.

260 CHAPTER 14. THE SUBSUMPTION ORDER

P r o o f Suppose C does have a finite complete set S = {F1 , . . . , Fro} of down-
ward covers. Consider the Ek-chain mentioned above. Since S is complete,
for every Ei there is an Fj such that C ~- Fj K Ei. There are infinitely many
Ei, and only finitely many Fj. Thus there must be a particular Fj and an
infinite set T = { E i l , . . . , E i , , . . . } , such that Fj >'- Ei., for every Ei. E T.
Now for every Ek (k _>. 1), we can find an Ei . E T such that Ei, ~ Ek. But
then Fj _ Ek for every k >_ 1, which contradicts the previous lemma. []

The negative results of this section imply that the existence of finite chains
of upward or downward covers cannot be generalized from the subsumption
order on atoms to the subsumption order on general clauses.

These results can be extended to the case where C only contains unary
predicate symbols and a binary function symbol f . For then we can replace
every P(x, y) by Q(f(x,y)) in C, D~, Cn, and Ek, and repeat the same
argument as above to show that {Q(f(xl, x2)), Q(f(x~, xl)} has no finite
complete set of downward covers in (C, ~). The same holds for the negative
result on upward covers.

Moreover, the negative results of this section also hold when we restrict to
Horn clauses. We can transform the clauses and chains we used into definite
goals, by turning all positive literals into negative literals. The above proofs
are not affected by this change. Furthermore, when we add some ground atom
A as head to each of those goals, we obtain definite program clauses for which
the negative results also hold. Thus A +- P(xl, xl) has no upward covers in
(7-t, ~_}, and A +- P (x l , x2), .P(x=, xl) has no finite complete set of downward
covers in (7/, ~}.

14.9 A Complex i ty Measure for Clauses

If a language contains at least one function symbol of arity _> 1, the set of
atoms in this language is infinite, even if we identify variants. Thus to limit
the search space, we need a complexity measure, for instance size as defined
by Reynolds (see the last chapter). By bounding the size of atoms to some
number, the search space becomes finite and thus can be searched completely.

The set of clauses in a language with at least one predicate symbol of arity
> 1 is of course Mso infinite, and in this case even the subsume-equivalence
class of a clause contains an infinite number of clauses which are not variants.
So also in this case, we need a complexity measure to restrict the search space
of clauses to a finite set.

1 4 . 9 . 1 Size a s D e f i n e d b y R e y n o l d s

As we have seen earlier~ Reynolds [Rey70] defined the size of an atom A in
the following way:

14.9. A C O M P L E X I T Y M E A S U R E FOR CLAUSES 261

size(A) = the number of symbol occurrences in A
- the number of distinct variables in A.

Shapiro adapted this definition in his work on model inference [Sha81b]. How-
ever, some questions arise with respect to this measure which Shapiro did not
observe, and which renders his refinement operator Po, used for searching a
clausal language ordered by subsumption, incomplete [LN93, Nib93]. We will
not discuss his refinement operator, but only mention some of the difficulties
which appear in the application of size to clauses.

In the simple case of a toms A and B, we have shown that if A0 = B, then
size(A) < size(B). Furthermore, if also B e = A, then we have size(A) =
size(B). Hence ifAt~ = B and size(A) < size(B), then A >-- B. Thus we can
use size to help determine whether A properly subsumes B.

However, when applied to clauses, size no longer indicates whether some
clause C properly subsumes a clause D. For example, let

C1 = {P(x, y), P(y, x)}, C2 -- {P(x , x)}, C3 = {P(a ,a)}

Then C1 _ C2 and C2 __ C3. But on the other hand, size(C1) = 6 - 2 = 4,
size(C2) = 3 - 1 = 2, and size(C3) = 3 - 0 = 3. There appears to be no
coherent relation between subsumption among clauses, and the respective
sizes of those clauses. A second difficulty is that subsume-equivalent clauses
need not have the same size. For example, D = {P(a, a), P(x , x)} ,.~ C3, but
D h a s s i z e 6 - 1 - - 5 .

14.9.2 A N e w Complex i ty Measure

To a certain extent, Reynolds's size of an a tom reflects the complexity of an
atom. But it is only a number which does not really tell us very much about
the internal structure of the atom. When applied to clauses, it becomes even
less informative.

The reason why size does not work for clauses, is that the size of a clause
is influenced by the number of literals in the clauses. If a clause C subsumes
a clause D, then C may still have larger size than D just because C contains
more literals. On the other hand~ if C C D, then size(C) <_ size(D). The
number of literals in a clause C is an important structural property of C.
Accordingly, it should be taken into account by a complexity measure on
clauses, independently of the sizes of the particular literals in C.

This induces a new complexity measure newsize of a clause C, as a pair of
two different coordinates: the first coordinate is the size of the biggest literal
in C, while the second coordinate is the number of literals in C. Thus we
define:

D e f i n i t i o n 14.41 Let C be a clause. Then

newsize(C) = (maxsize(C), ICI),

262 CHAPTER 14. THE SUBSUMPTION ORDER

where maxsize(C) is the maximum of {size(L) I L E C}, and IC[is the
number of literals in C,

Note that this definition ignores the negation connective: both {P(a)} and
{-~P(a)} have newsize (2, 1).

E x a m p l e 14.42 Let C = {-,P(a, x), Q(f(y)), P(f(x) , f(a))}. Here we have
size(-~P(a,x)) = 2, size(Q(f(y))) = 2, and size(P(f(x) , f (a))) = 4, so
maxsize(C) = 4, and newsize(C) = (4, 3). <~

It is easy to show that if C >_. D, then maxsize(C) <_" maxsize(D). Hence
if C ,-~ D, then maxsize(C) = maxsize(D). However, other than in the
case of size applied to atoms, a clause C may properly subsume D while
still maxsize(C) = maxsize(D). For example, let C = {P(x),Q(y)} and
D = {P(z), Q(z)}. Then C >- D, but m a . s i z e (C) = 1 = maxsize(D).

It is often important to limit the number of clauses in the search space.
Our new complexity measure newsize can be used to achieve this. That is,
given numbers k and m, the set of clauses bounded by a newsize of (k, rn) is
finite when we identify variants.

D e f i n i t i o n 14.43 Let C be a clause, and (k, m) be a pair of natural num-
bers. We say C is bounded by (k, m) if maxsize(C) <_ k and [C[_< m.

P r o p o s i t i o n 14.44 Let g be a clausal language with finitely many con-
stants, function and predicate symbols. Then for given k ,m > O, the set
{C E C [C is bounded by (k, m)} is finite up to variants.

We will only sketch the idea behind this. Let C be a clausal language with
finitely many constants, function and predicate symbols, and suppose we are
given (k, m). It is not very difficult to see that the set of atoms with size <_ k
is finite up to variants~ Let v be the max imumof the set {r~ I there is an atom
A 6 g with size < k that contains n distinct variables}. Because a clause
bounded by (k, m) can contain at most m distinct literals, each of which can
contain at most v distinct variables, a clause bounded by (k, m) can contain
at most my distinct variables. Let us fix distinct variables x l , . . . , Xmv. Now
let tC be the finite set of all atoms of size < k that can be constructed from
the predicate symbols, function symbols and constants in g, and variables
x l , . . . , xm~. Since each clause that is bounded by (k, m) must be (a variant
of) a subset of/C, there are only finitely many such clauses, up to variants.

1 4 . 1 0 Summary
This chapter discussed the subsumption order on a clausal language, which
is used very often in ILP. We first defined the atomic order >__a, which treats

14.10. SUMMARY 263

clauses as atoms. It can be used as a bridge between the subsumption or-
der for atoms and the subsumption order for clauses. Subsumption between
clauses is a decidable relation. Equivalence classes under subsumption can be
represented by a single reduced clause. Reduction can be undone by inverse
reduction. The main properties of the subsumption order are the following:

�9 Every finite set of clauses has a least generalization (LGS) and greatest
specialization (GSS) under subsumption in C. Hence (C, ~ / i s a lattice.

�9 Every finite set of Horn clauses has a least generalization (LGS) and
greatest specialization (GSS) under subsumption in 7/. Hence (7/, h} is
a lattice.

�9 Some clauses, such as {P(x l , xl)}, have no upward covers.
Some clauses, such as {P(xl, x2), P(x2, xl)}, have no finite complete
set of downward covers.

Finally, since size is not very well-suited as a complexity measure on clauses,
we defined newsize.

List of Symbols

S e t s

E element
C subset
C proper subset
_D superset
D proper superset
U union
n intersection
\ set difference
A symmetric difference

empty set
IS[cardinality of set S
2 s power set (set of all subsets) of set S
S • T Cartesian product of sets S and T
S ~ n-fold Cartesian product of set S
N the set of natural numbers
Q the set of rational numbers
R the set of real numbers

Log ic

A conjunction (and)
V disjunction (or)
-7 negation
-+ implication
+- implication (in program clauses)

equivalence
V universal quantifier
3 existential quantifier
T true
F false

366

6

]v/ii
Fn
comp(II)
br

be
~-zr
[-~d
I-it
t-id
~-sr
~-sd
b ~ f

logical implication
logical equivalence
empty substitution
set of negations of formulas in set S
least Herbrand model of definite program rI
SLD finite failure set of definite program II
completion of normal program H
(unconstrained) derivation
(unconstrained) deduction
linear derivation
linear deduction
input derivation
input deduction
SLD-derivation
SLD-deduction
SLDNF-resolution
computation rule

LIST OF SYMBOLS

Languages and quasl-orders
A
7/
C

C ~ e Z U S / Z ~

Ch

Co
do
7%

S
Cpos
cneg

C +
C -
T
•
I-1
>

(s, >_>
A r n B
A U B

e ~

set of all atoms in a language
Horn language
clausal language
C bounded by newsize
hypothesis language in model inference
observational language in model inference
part of Co that is true under interpretation [
set of all reduced clauses in C
7r bounded by newsize
set of all theories from C
clause consisting of all positive literals in clause C
clause consisting of all negative literals in clause C
head of program clause C
body of program clause C
top element in lattice
bottom element in lattice
empty clause
arbitrary quasi-order
set S quasi-ordered by >
greatest lower bound of {A, B}
least upper bound of {A, B}
subsumption
equivalence relation induced by quasi-order (for atoms: variants)
subsume-equivalence

19.8.

13

~B
~>13

LIST OF SYMBOLS

atomic order
background knowledge
relative subsumption
relative implication
generalized subsumption

367

Ref inemen t o p e r a t o r s

PA
PL

P~
P1

su
s~

downward refinement operator for atoms
downward refinement operator under subsumption
downward refinement operator for reduced clauses
downward refinement operator under implication
upward refinement operator for atoms
upward refinement operator under subsumption
upward refinement operator for reduced clauses

PAC learning

X[~]
9c

fM
F['q

P
Dvc

~b
lrnin (f , R)

set of all finite strings over alphabet E
set of all strings of length at most n in domain X
concept class
projection of concept f on X [~]
projection of concept class F on X [~]
probability distribution
Vapnik-Chervonenkis dimension
confidence parameter
error parameter
rate of malicious or random classification noise
upper bound on Zl
size (shortest name) of concept f in representation _R

Bibliography

[AB92]

[AB94]

[AB95]

[AD94]

[AE82]

[AGB96]

[AIS97]

[AISO94]

[ALS8]

[ALLM94a]

[ALLM94b]

M. Anthony and N. Biggs. Computational Learning Theory.
Cambridge University Press, Cambridge, UK, 1992.

K. R. Apt and R. Bol. Logic programming and negation: A
survey. Journal of Logic Programming, 19/20:9-71, 1994.

H. Adg and H. Bostr6m. JIGSAW: Puzzling together RUTH
and SPECTRE. In [LW95], pages 263-266.

K. R. Apt and K. Doets. A new definition of SLDNF-resolution.
Journal of Logic Programming, 18(2):177-190, 1994.

K. R. Apt and M. H. van Emden. Contributions to the theory of
logic programming. Journal of the ACM, 29(3):841-862, 1982.

Z. Alexin, T. GyimSthy, and H. BostrSm. Integrating algorith-
mic debugging and unfolding transformation in an interactive
learner. In [Wah96], pages 403-407.

H. Arimura, H. Ishizaka, and T. Shinohara. Learning unions of
tree patterns using queries. Theoretical Computer Science, 1997.
Forthcoming.

H. Arimura, H. Ishizaka, T: Shinohara, and S. Otsuki. A general-
ization of the least general generalization. Machine Intelligence,
13:59-85, 1994.

D. Angluin and P. Laird. Learning from noisy examples. Ma-
chine Learning, 2(4):343-370, 1988.

D. W. Aha, S. Lapointe, C. X. Ling, and S. Matwin. Inverting
implication with small training sets. In [BD94], pages 31-48.

D. W. Aha, S. Lapointe, C. X. Ling, and S. Matwin. Learning re-
lations with randomly selected small training sets. In W. Cohen
and H. Hirsh, editors, Proceedings of the 11th International Con-
ference on Machine Learning (ICML-94), pages 12-18. Morgan
Kaufmann, San Mateo, CA, 1994.

370 BIBLIOGRAPHY

[Ang87]

[AntS8]

[Apt90]

[Apt97]

D. Angluin. Learning regular sets from queries and counterex-
amples. Information and Computation, 75(2):87-106, 1987.

D. Angluin. Queries and concept learning. Machine Learning,
2(4):319-342, 1988.

K. R. Apt. Logic programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B, pages
493-574. Elsevier, Amsterdam, 1990.

K. R. Apt. From Logic Programming to Prolog. Prentice-Hall,
1997.

[Ari60]

lASS3]

[ASY92]

Aristotle. Posterior Analytics. Harvard University Press, Cam-
bridge, MA, 1960. Edited and translated by Hugh Tredennick.

D. Angluin and C. H. Smith. Inductive inference: Theory and
methods. Computing Surveys, 15:237-269, 1983.

S. Arikawa, T. Shinohara, and A. Yamamoto. Learning elemen-
tary formal systems. Theoretical Computer Science, 95:97-113,
1992.

[AT95]

[Bac94]

[Baj93]

[Ban64]

[Ban87]

[BB75]

[BD94]

K. R. Apt and F. Teusink. Comparing negation in logic pro-
gramming and in Prolog. In K. R. Apt and F. Turini, editors,
Meta-Logics and Logic Programming, pages 111-133. MIT Press,
Cambridge, MA, 1995.

F. Bacon. Novum Organum. Open Court, Chicago, IL, 1994.
Edited and translated by P. Urbach and J. Gibson. First pub-
lished in 1620.

R. Bajcsy, editor. Procesdings of the 13th International Joint
Conference on Artificial Intelligence (LICAI-93). Morgan Kauf-
mann, San Marco, CA, 1993.

R. B. Banerji. A language for the description of concepts. Gen-
eral Systems, 9:135-141, 1964.

R. B. Banerji. A discussion of a report by Ehud Shapiro. Com-
putational Intell{gence, 3:295-303, 1987.

L. Blum and M. Blum. Towards a mathematical theory of in-
ductive inference. Information and Control, 28:125-155, 1975.

F. Bergadano and L. De Raedt, editors. Proceedings of the 7th
European Conference on Machine Learning (ECML-9~), Vol.
784 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
Berlin, 1994.

BIBLIOGRAPHY 371

[BD95] I. Bratko and S. D~eroski. Engineering applications of inductive
logic programming. New Generation Computing, 13:313-333,
1995.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension. Journal
of the ACM, 36(4):929-965, 1989.

[Bezg0] M. Bezem. Completeness of resolution revisited. Theoretical
Computer Science, 74:227-237, 1990.

[BG93] F. Bergadano and D. Gunetti. Basing top-down methods on
inverse resolution. In [Tor93], pages 190-201.

[BG94] F. Bergadano and D. Gunetti. Learning clauses by tracing
derivations. In [Wro94], pages 11-29.

[BG96a] F. Bergadano and D. Gunetti. Inductive Logic Programming:
From Machine Learning to Software Engineering. MIT Press,
Cambridge, MA, 1996.

[BG96b]

[BGA56]

F. Bergadano and D. Gunetti. Learning logic programs with
negation as failure. In [DR96], pages 107-123.

J. S. Bruner, J. J. Goodnow, and G. A. Austin. A Study of
Thinking. Wiley, New York, 1956.

[BCS91] F. Bergadano, A. Giordana, and L. Saitta. Machine Learning:
An Integrated Framework and its Applications. Ellis Horwood,
New York, 1991.

[BI94] H. BostrSm and P. Idestam-Almquist. Specialization of logic
programs by pruning SLD-trees. In [Wro94], pages 31-48.

[BJ89]

[BK94]

[BM92]

IBM95]

[BMV92]

G. S. Boolos and R. C. Jeffrey. Computability and Logic. Cam-
bridge University Press, Cambridge, UK, third edition, 1989.

I. Bratko and R. D. King. Applications of inductive logic pro-
gramming. SIGART Bulletin, 5(1):43-49, 1994.

M. Bain and S. Muggleton. Non-monotonic learning. In
[Mug92a], pages 145-153.

I. Bratko and S. Muggleton. Applications of inductive logic pro-
gramming. Communications of the A CM, 38(11):65-70, 1995.

I. Bratko, S. Muggleton, and A. Var~ek. Learning qualitative
models of dynamic systems. In [Mug92a], pages 437-452.

372 BIBLIOGRAPHY

[Boo58]

[Bos95a]

[Bos95b]

[Bra90]

[Bra93]

[BunS6]

[Bun88]

[Car50]

[Car52]

[csg]

[Chu36]

[CKB87]

[CL73]

[Cla78]

G. Boole. An Investigation of the Laws of Thought on which are
Founded the Mathematical Theories of Logic and Probabilities.
Dover, New York, 1958. First published in 1854.

H. BostrSm. Covering vs. divide-and-conquer for top-down in-
duction of logic programs. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-95),
pages 1194-1200. Morgan Kaufrnann, San Mateo, CA, 1995.

H. BostrSm. Specialization of recursive predicates. In [LW95],
pages 92-106.

I. Bratko. Prolog Programming for Artificial Intelligence. Addi-
son Wesley, Wokingham, second edition, 1990.

P. B. Brazdil, editor. Proceedings of the 6th European Conference
on Machine Learning (ECML-93), Vol. 667 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, 1993.

W. Buntine. Generalized subsumption. In Proceedings of the
7th European Conference on Artificial Intelligence (ECAI-86).
Brighton, 1986.

W. Buntine. Generalized subsumption and its applications to
induction and redundancy. Artificial Intelligence, 36(2):149-176,
t988.

R. Carnap. Logical Foundations of Probability. Routledge &
Kegan Paul, London, 1950.

R. Carnap. The Continuum of Inductive Methods. The Univer-
sity of Chicago Press, Chicago, IL, 1952.

P. Clark and R. Boswell. Rule induction with CN2: Some recent
improvements. In [Kod91], pages 151-163.

A. Church. A note on the Entscheidungsproblem. Journal
of Symbolic Logic, 1(1):40-41, 1936. Correction, ibidem (3),
pages 101-102.

B. Cestnik, I. Kononenko, and I. Bratko. ASSISTANT 86: A
knowledge elicitation tool for sophisticated users. In I. Bratko
and N. Lavra~, editors, Progress in Machine Learning, pages 31-
45. Sigma Press, Wilmslow, UK, 1987.

C. L. Chang and R. C. T. Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, San Diego, CA, 1973.

K. L. Clark. Negation as failure. In [GM78], pages 293-322.

BIBLIOGRAPHY 373

[Cla79] K. L. Clark. Predicate logic as a computational formalism. Re-
search Report DOC 79/59, Department of Computing, Imperial
College, London, 1979.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

[CM87] W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, Berlin, third edition, 1987.

[CN89]

[Coh934

P. Clark and T. Niblett. The CN2 induction algorithm. Machine
Learning, 3(4):261-283, 1989.

W. W. Cohen. Cryptographic limitations on learning one-clause
logic programs. In Proceedings of the 10th National Conference
on Artificial Intelligence. 1993.

[Coh93b] W. W. Cohen. Learnability of restricted logic programs. In
[Mug93], pages 41-71.

[Coh94~ W. W. Cohen. Grammatically biased learning: Learning logic
programs using an explicit antecedent description language. Ar-
tificial Intelligence, 68:303-366, 1994.

[Coh94b] W. W. Cohen. Pac-learning nondeterminate clauses. In Proceed-
ings of the 11th _National Conference on Artificial Intelligence.
1994.

[Coh95a]

[Coh95b]

W. W. Cohen. Pac-learning non-recursive Prolog clauses. Arti-
ficial Intelligence, 79(1):1-38, 1995.

W. W. Cohen. Pac-learning recursive logic programs: Efficient
algorithms. Journal of Artificial Intelligence Research, 2:501-
539, 1995.

[Coh95c] W. W. Cohen. Pac-learning recursive logic programs: Negative
results. Journal of Artificial Intelligence Research, 2:541-573,
1995.

[Coh96]

[CP95]

[CQ93]

W. W. Cohen. Learning to classify English text with ILP meth-
ods. In [DR96], pages 124-143.

W. W. Cohen and C. D. Page. Polynomial learnability and
inductive logic programming: Methods and results. New Gener-
ation Computing, 13:369-410, 1995.

R. M. Cameron-Jones and J. R. Quinlan. Avoiding pitfalls when
learning recursive theories. In [Baj93], pages 1050-1055.

374 BIBLIOGRAPHY

[CQ94]

[DB92]

R. M. Cameron-Jones and J. R. Quinlan. Efficient top-down
induction of logic programs. SIGART Bulletin, 5(1):33-42, 1994.

L. De Raedt and M. Bruynooghe. An overview of the interactive
concept-learner and theory revisor CLINT. In [Mug923], pages
163-191.

[DB93]

[DB96]

[DBJ94]

[DD94]

[DD95]

[DDRW941

[DK96]

[DM92]

[DMR921

[DMR93]

[Doe94]

L. De Raedt and M. Bruynooghe. A theory of clausal discovery.
In [Bajg3}, pages 1058-1063.

S. Dieroski and I. Bratko. Applications of inductive logic pro-
gramming. In [DR96], pages 65-81.

B. Dolgak, I. Bratko, and A. Jezernik. Finite-element mesh de-
sign: An engineering domain for ILP application. In [Wro94],
pages 305-320.

L. De Raedt and S. D~eroski. First order fie-clausal theories are
PAC-learnable. Artificial Intelligence, 70:375-392, 1994.

L. Dehaspe and L. De Raedt. A declarative language bias
for concept learning and knowledge discovery engines. Report
CW 214, Computer Science Department, Katholieke Universiteit
Leuven, 1995.

S. D~eroski, L. Dehaspe, B. Ruck, and W. Walley. Classification
of river water quality data using machine learning. In Proceed-
ings of the 5th International Conference on the Development and
Application of Computer Techniques to Environmental Studies,
Vol. I: Pollution Modeling, pages 129-137. Computational Me-
chanics Publications, Southampton, 1994.

Y. Dimopoulos and A. Kakas. Abduction and inductive learning.
In [DR96], pages 144-171.

B. Dol~ak and S. Muggleton. The application of inductive logic
programming to finite-element mesh design. In [Mug923], pages
453-472.

S. D/eroski, S. Muggleton, and S. Russell. PAC-learnability of
determinate logic programs. In Proceedings of the 5th Annual
ACM Workshop on Computational Learning Theory (COLT-
92), pages 128-135. ACM Press, Baltimore, MD, t992.

S. D~eroski, S. Muggteton, and S. Russell. Learnability of con-
strained logic programs. [n [Bra9a], pages 342-347.

K. Doets. From Logic to Logic Programming. MIT Press, Cam-
bridge, MA, 1994.

BIBLIOGRAPHY 375

IDa92]

[DR95]

[DR96]

[D2e95a]

L. De Raedt. Interactive Theory Revision: An Inductive Logic
Programming Approach. Academic Press, London, 1992.

L. De Raedt, editor. Proceedings of the 5th International Work-
shop on Inductive Logic Programming (ILP-95). Katholieke Uni-
versiteit Leuven, 1995.

L. De Raedt, editor. Advances in Inductive Logic Programming.
IOS Press, Amsterdam, 1996.

S. D2eroski. Learning first-order clausal theories in the pres-
ence of noise. In Proceedings of the 5th Scandinavian Conference
on Artificial Intelligence, pages 51-60. IOS Press, Amsterdam,
1995.

[D~e95b]

[Ede85]

[EW96]

[Vla921

[Flag3]

[Flag4]

[vla95]

[FP93a]

[VP93b]

[Fre79]

S. D~eroski. Numerical Constraints and Learnability in Inductive
Logic Programming. PhD thesis, Faculty of electrical engineering
and computer science, University of Ljubljana, Slovenia, 1995.

E. Eder. Properties of substitutions and unifications. Journal of
Symbolic Computation, 1:31-46, 1985.

W. Emde and D. Wettschereck. Relational instance-based learn-
ing. In L. Saitta, editor, Proceedings of the 13th International
Conference on Machine Learning (ICML-96), pages 122-130.
Morgan Kaufmann, San Mateo, CA, 1996.

P. A. Flach. A framework for inductive logic programming. In
[Mug92a], pages 193-211.

P. A. Flach. Predicate invention in inductive data engineering.
In [Bra93], pages 83-94.

P. A. Flach. Inductive logic programming and philosophy of
science. In [Wro94], pages 71-84.

P. A. Flach. Conjectures: An Inquiry Concerning the Logic of
Induction. PhD thesis, Tilburg University, 1995.

M. Frazier and C. D. Page. Learnability in inductive logic pro-
gramming: Some basic results and techniques. In Proceedings of
the lOth National Conference on Artificial Intelligence. 1993.

M. Frazier and C. D. Page. Learnability of recursive, non-
determinate theories: Some basic results and techniques. In
[Mug93], pages 103-126.

G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Halle, 1879. English trans-
lation in [Hei77].

376 BIBLIOGRAPHY

[GF93] G. Gottlob and C. G. Fermiiller. Removing redundancy from a
clause. Artificial Intelligence, 61(2):263-289, 1993.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of ,VP-Completeness. Freeman, New York,
1979.

[OL,96]

[GM78]

D. Gamberger and N. LavraS. Noise detection and elimination
applied to noise handling in a KRK chess endgame. In [Sto96],
pages 59-75.

H. Gallaire and J. Minker, editors. Logic and Data Bases.
Plenum Press, New York, 1978.

[GN871 M. R. Genesereth and N. J. Nilsson. Logical Foundations of
Artificial Intelligence. Morgan Kaufmann, Palo Alto, CA, 1987.

[0o167] E. M. Gold. Language identification in the limit. Information
and Control, 10:447-474, 1967.

[GooSa] N. Goodman. fhct, Fiction, and Forecast. Harvard University
Press, Cambridge, MA, fourth edition, 1983.

[Got87]

[Gro92]

[Hei77]

[Hel89]

[Hem45a]

[Hem45b]

[Hem66]

G. Gottlob. Subsumption and implication. Information Process-
ing Letters, 24(2):109-2111, 1987.

M. Grobelnik. Markus: An optimized model inference System. In
C. Rouveirol, editor, Proceedings of the ECAI Workshop on Log-
icai Approaches to Machine Learnin 9. Wiley, Chichester, 1992.

J. van Heijenoort, editor. From Frege to GSdel: A Source Book
in Mathematica~ Logic, I879-1931. Harvard University Press,
Cambridge, MA, 1977.

N. Helft. Induction as n onmonotonic inference. In R. J. Brach-
man, H. J. Levesque, and R. Reiter, editors, Proceedings of the
tst International Conference on Principles of Knowledge Rep.
resentation and Reasoning, pages 149-156. Morgan Kaufmann,
San Mateo, CA, 1989.

C. G. Hempel. Studies in the logic of confirmation (part I).
Mind, 54(2t3):1-26, 1945.

C. G. Hempel. Studies in the logic of confirmation (part II).
yYlind, 54(214):97-121, 1945.

C. G. Hempd. Philosophy of Natural Science. Prentice-Hall,
Englewood Cliffs, N J, 1966.

BIBLIOGRAPHY 377

[Hi174] R. Hill. LUSH-resolution and its completeness. DCL Memo 78,
Department of Artificial Intelligence, University of Edinburgh,
1974.

[HS91]

[HST96]

[HT96]

[HU79]

[Hum56]

[Hum61]

[HW93]

[Ide92]

[Ide93a]

[Ide93b]

[Ide93c]

[Ide95]

[Ino92]

D. Hume and C. Sammut. Using inverse resolution to learn re-
lations from experiments. In L. A. Birnbaum and G. C. Collins,
editors, Proceedings of the 8th International Workshop on Ma-
chine Learning, pages 412-416. Morgan Kaufmann, San Mateo,
CA, 1991.

T. Horvs R. H. Sloan, and G. Turgn. Learning logic programs
with random classification noise. In [Sto96], pages 97-118.

T. Horvs and G. Turs Learning logic programs with struc-
tured background knowledge. In [DR96], pages 172-191.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley, Read-
ing, MA, 1979.

D. Hume. An Enquiry Concerning Human Understanding. Gate-
way edition, Chicago, IL, 1956. First published in 1748.

D. Hume. A Treatise of Human Nature. Dolphin Books. Dou-
bleday, 1961. First published in 1739-1740.

P. Hanschke and J. Wiirtz. Satisfiability of the smallest binary
program. Information Processing Letters, 45 (5):237-241, t993.

P. Idestam-Almquist. Learning missing clauses by inverse reso-
lution. In Proceedings of the International Conference on Gen-
eration Computer Systems. Ohmsha, Tokyo, 1992.

P. Idestam-Almquist. Generalization of Clauses. PhD thesis,
Stockholm University, 1993.

P. Idestam-Almquist. Generalization under implication by using
or-introduction. In [Bra93], pages 56-64.

P. Idestam-Almquist. Generalization under implication: Expan-
sion of clauses for indirect roots. In Proceedings of the dth Scan-
dinavian Conference on Artificial Intelligence. IOS Press, Ams-
terdam, 1993.

P. Idestam-Almquis~. Generalization of clauses under implica-
tion. Journal of Artificial Intelligence Research, 3:467-489, 1995.

K. Inoue. Linear resolution for consequence finding. Artificial
Intelligence, 56:301-353, 1992.

378 BIBLIOGRAPHY

[Jev74]

[JLL83]

[JM94]

[KD94]

[14 aga]

[KLe93]

[KK71]

[KKT93]

[KL94]

[KMLS92]

IKMSS96]

W. S. Jevons. The Principles of Science: A Treatise. Macmillan,
Londou~ 1874.

J. Jaffar, J-L. Lassez, and J. W. Lloyd. Completeness of the
negation as failure rule. In A. Bundy, editor, Proceedings of
the 8th International Joint Conference on Artificial Intelligence
(IJCAI-83), pages 500-506. Morgan Kaufmann, Los Altos, CA,
1983.

J. Jaffar and M~ J. Maher. Constraint logic programming: A
survey. Journal of Logic Programming, 19/20:503-581, 1994.

J-U. Kietz and S. D~.eroski. Inductive logic programming and
learnability. SIGART Bulletin, 5(1):22-32, 1994.

M. 3- Kearns. ENcient noise4oierant learning from statisticM
queries. In Proceedings of the 25th ACM Symposium on the
Theory of Computing, pages 392-401. ACM Press, New York,
1993.

J-U. Kietz. Some lower bounds for the computational complexity
of inductive logic programming. In [Bra93], pages t15-123.

R. Kowalski and D. Kuehner. Linear resolution with selection
functiom Artificial I~telliSenCe, 2:227-260, 1971.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic
programming. Journal of L~ic and Compu~at~ion, 2(6):719-770,
1993.

J-U. Kietz and M. Liibbe. An efficient subsumption algorithm
for inductive logic programming. In [Wro94], pages 97-105.

R. D. King, S. Muggleton, R. A. Lewis, a~ad M. J. E. Stern-
berg. Drug design by machine learning: The use of inductive
togic programming to model the structure-activity relationship
of trimethoprim analogues binding to dihydrofolate reductase.
In Proceedings of the National Academy of Sciences, Vol. 89(23),
pages 11322-11326. 1992.

R. D- King, S. Muggteton, A. Srinivasan, and M. J- E. Stern-
berg. Structure-activity relationships derived by machine learn-
ing: The use of atoms and their bond connectivities to predict
mutagenicity by inductive logic programming. In Proceedings of
the National Academy of Sciences, Vol. 93, pages 438-442. 1996.

Y. Kodra~of[, editor. Proceedings of the 6th European Working
Sessions on Learning (EWSL-91), Vol. 482 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, 1991.

BIBLIOGRAPHY 379

[Kom82] H. J. Komorowski. Partial evaluation as a means for inferencing
data structures in an applicative language: A theory and imple-
mentation in case of Prolog. In Proceedings of the 9th A CM Sym-
posium on Principles of Programming Languages, pages 255-
267. ACM Press, New York, 1982.

[Kow70]

[Kow74]

[Kow79]

[KSg0]

[KSS95]

[KV94]

[KW92]

[Laa95]

[Lai88]

[Lau70]

[LDg0]

[LD94]

[LDB96]

R. A. Kowalski. The case for using equality axioms in automatic
demonstration. In [Lau70], pages 112-127.

R. A. Kowalski. Predicate logic as a programming language.
Information Processing, 74:569-574, 1974.

R. A. Kowalski. Logic for Problem Solving. North-Holland, New
York, 1979.

R. D. King and M. J. E. Sternberg. Machine learning approach
for the prediction of protein secondary structure. Journal of
Molecular Biology, 216:441-457, 1990.

R. D. King, A. Srinivasan, and M. J. E. Sternberg. Relating
chemical activity to structure: An examination of ILP successes.
New Generation Computing, 13:411-434, 1995.

M. J. Kearns and U. V. Vazirani. An Introduction to Computa-
tional Learning Theory. MIT Press, Cambridge, MA, 1994.

J-U. Kietz and S. Wrobel. Controlling the complexity of learn-
ing in logic through syntactic and task-oriented models. In
[Mug92a], pages 335-359.

P. R. J. van der Laag. An Analysis of Refinement Operators in
Inductive Logic Programming. PhD thesis, Erasmus University
Rotterdam, 1995.

P. D. Laird. Learning from Good and Bad Data. Kluwer Aca-
demic Publishers, Boston, MA, 1988.

M. Laudet, editor. Proceedings of the IRIA Symposium on Auto-
matic Demonstration, Versailles, France, 1968, Vol. 125 of Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin, 1970.

C. Ling and M. Dawes. SIM the inverse of Shapiro's MIS. Tech-
nical Report 263, University of Western Ontario, 1990.

N. Lavra~ and S. D~eroski. Inductive Logic Programming: Tech-
niques and Applications. Ellis Horwood, New York, 1994.

N. Lavra~, S. D2eroski, and I. Bratko. Handling imperfect data
in inductive logic programming. In [DR96], pages 48-64.

380 BIBLIOGRAPHY

[LDG91] N. Lavra~, S. D~eroski, and M. Grobelnik. Learning non-
recursive definitions of relations with LINUS. In [Kod91], pages
265-281.

[LDPK93]

[Lee67]

[Lin92]

[Llo871

[LMM88]

[LN92]

N. Lavra~, S. D~eroski, V. Pirnat, and V. Kri~man. The utility
of background knowledge in learning medical diagnostic rules.
Applied Artificial Intelligence, 7:273-293, 1993.

P~. C. T. Lee. A Completeness Theorem and a Computer Pro-
gram .for Finding Theorems Derivable from Given Axioms. PhD
thesis, University of California, Berkeley, 1967.

C. X. Ling. Logic program synthesis from good examples. In
[Mug92a], pages 113-129.

J. Wo Lloyd. Foundations of Logic Programming. Springer-
Verlag, Berlin, second edition, 1987.

J-L. Lassez, M. J. Maher, and K. Marriot. Unification revis-
ited. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 587-625. Morgan Kaufmann, Los
Altos, CA, 1988.

C. X. Ling and M. A. Narayan. A critical comparison of various
methods based on inverse resolution. In [Mug92a], pages 131-
143.

[LN93]

[LN94a]

[LN94b]

[LN97]

[LovT0]

[Lov78]

[LP911

P. van der Laag and S-H. Nienhuys-Cheng. Subsumption and
refinement in model inference. In [Brag3], pages 95-114.

P. van der Laag and S-H. Nienhuys-Cheng. Existence and nonex-
istence of complete refinement operators. In [BD94], pages 307-
322.

P. van der Laag and S-H. Nienhuys-Cheng~ A note on ideal re-
finement operators in inductive logic programming. In [Wro94],
pages 247-262.

P. van der Laag and S-H. Nienhuys-Cheng. Completeness and
properness of refinement operators in inductive logic program-
ming. Journal of Logic Programming, 1997. Forthcoming.

D. W. Loveland. A linear format for resolution. In [Lau70],
pages 147-162.

D. W. Loveland. Automated Theorem Proving: A Logical Basis.
North-Holland, New York, 1978.

J-L. Lassez and G. Plotkin, editors. Computational Logic. MIT
Press, Cambridge, MA, 1991.

BIBLIOGRAPHY 381

[Lue70] D. Luckham. Refinements in resolution theory. In [Lau70], pages
163-190.

[LVgl]

[LV97]

[LW95]

M. Li and P. M. B. Vitgnyi. A theory of learning simple con-
cepts under simple distributions. SIAM Journal of Computing,
20(5):915-935, 1991.

M. Li and P. M. B. Vitgnyi. An Introduction to Kolmogorov
Complexity and its Applications. Springer-Verlag, Berlin, second
edition, 1997.

N. Lavrae and S. Wrobel, editors. Proceedings of the 8th Euro-
pean Conference on Machine Learning (ECML-95), Vol. 912 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin,
1995.

[MB88] S. Muggleton and W. Buntine. Machine invention of first-order
predicates by inverting resolution. In J. Laird, editor, Proceed-
ings of the 5th International Conference on Machine Learning
(ICML-88), pages 339-352. Morgan Kaufmann, San Mateo, CA,
1988.

[MC95]

[MD94]

[Men87]

[MF92]

[Mic83]

[Mil58]

[Min68]

[Mit82]

R. J. Mooney and M. E. Califf. Induction of first-order decision
lists: Results on learning the past tense of English verbs. Journal
of Artificial Intelligence Research, 3:1-24, 1995.

S. Muggleton and L. De Raedt. Inductive logic programming:
Theory and methods. Journal of Logic Programming, 19/20:629-
679, 1994.

E. Mendelson. Introduction to Mathematical Logic. Wadsworth
& Brooks, Belmont, CA, third edition, 1987.

S. Muggleton and C. Feng. Efficient induction of logic programs.
In [Mug92a], pages 281-298.

R. S. Michalski. A theory and methodology of inductive learning.
In R. S. Michalski, J. G. Carbonel], and T. M. Mitchell, editors,
Machine Learning: An Artificial Intelligence Approach, Vol. 1,
pages 83-134. Morgan Kaufmann, Palo Alto, CA, 1983.

J. S. Mill. A System of Logic, Ratiocinative and Inductive.
Harper, New York, 1858.

M. L. Minsky, editor. Semantic Information PTvcessing. MIT
Press, Cambridge, MA, 1968.

T. M. Mitchell. Generalization as search. Artificial Intelligence,
18:203-226, 1982.

382 BIBLIOGRAPHY

[MKS92] S. Muggleton, R. D. King, and M. J. E. Sternberg. Protein sec-
ondary structure prediction using logic-based machine learning.
Protein Engineering, 5:647-658, 1992.

[MM82]

[MODS96]

[Moo96]

[Mor89]

IMP92]

[MP94a]

[MP94b]

[MR72]

[MSP961

[MugS7]

[Mug90]

[Mug91a]

A. Martelli and U. Montanari. An efficient unification algo-
rithm. A CM Transactions on Programming Languages and Sys-
tems, 4(2):258-282, 1982.

F. Mizoguchi, H. Ohwada, M. Daidoji, and S. Shirato. Learning
rules that classify ocular fundus images for glaucoma diagnosis.
In [Sto96], pages 191-204.

R. J. Mooney. Inductive logic programming for natural language
processing. In [Sto96], pages 205-224.

K. Morik, editor. Proceedings of the ~th European Working Ses-
sions on Learning (EWSL-89). Pitman, London, 1989.

J. Marcinkowski and L. PacholskL Undecidability of the Horn-
clause implication problem. In Proceedings of the 33rd Annual
[EEE Symposium on Foundations of Computer Science, pages
354-362. Pittsburgh, PA, 1992.

S. Muggleton and C. D. Page. A]earnability model for universal
representations. In [Wro94]~ pages 139-160.

S. Muggleton and C. D. Page. Self-saturation of definite clauses.
In [Wro94], pages 161-174.

E. Minicozzi and R. Reiter. A note on linear resolution strategies
in consequence-finding. Artificial Intelligence, 3:175-180, 1972.

S. Muggleton, A. Srinivasan, and D. Page. An initial experiment
into stereochemistry-based drug design using ILP. In [Sto96],
pages 245-261.

S. Muggleton. Duce, an oracle based approach to constructive
induction. In J. McDermott, editor, Proceedings of the IOth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-
87), pages 287-292. Morgan Kaufmann, Los Altos, CA, 1987.

S. Muggleton. Inductive logic programming. In S. Arikawa,
S. Goto, S. Ohsuga, and T. Yokomori, editors, Proceedings of
the 1st International Workshop on Algorithmic Learning Theory
(ALT-90), pages 42-62. Ohmsha, Tokyo, 1990.

S. Muggleton. Inductive logic programming. New Generation
Comp.uting, 8(4):295-318, 1991.

BIBLIOGRAPHY 383

[Mug91b] S. Muggleton. Inverting the resolution principle. Machine Intel-
ligence, 12, 1991.

[Mug91c]

[Mug92~

S. Muggleton, editor. Proceedings of the ist International Work-
shop on Inductive Logic Programming (ILP-91). Viana de
Castelo, Portugal, 1991.

S. Muggleton, editor. Inductive Logic Programming, Vol. 38 of
APIC Series. Academic Press, London, 1992.

[Mug92b] S. Muggleton. Inductive logic programming. In [Mug92a], pages
3-27.

[Mug92c] S. Muggleton. Inverting implication. In S. Muggleton and K. Fu-
rukawa, editors, Proceedings of the 2nd International Workshop
on Inductive Logic Programming (ILP-92). Tokyo, 1992. ICOT
Research Center. ICOT Technical Memorandum TM-1182.

[Mug93] S. Muggleton, editor. Proceedings of the 3rd International Work-
shop on Inductive Logic Programming (ILP-93). Ljubljana,
1993. Jo2ef Stefan Institute. Technical Report IJS-DP-6706.

[Mug94] S. Muggleton. Bayesian inductive logic programming. In
M. Warmuth, editor, Proceedings of the 7th Annual ACM Con-
ference on Computational Learning Theory (COLT-9~,), pages
3-11. ACM Press, 1994.

[Mug95] S. Muggleton. Inverse entailment and Progol. New Generation
Computing, 13:245-286, 1995.

[Mug96a] S. Muggleton. Learning from positive data. In [Sto96], pages
225-244.

[Mug96b] S. Muggleton. Stochastic logic programs. In [DR96], pages 254-
264.

[MWKE93]

[Nat91]

[NV91]

K. Morik, S. Wrobel, J-U. Kietz, and W. Emde. Knowledge
Acquisition and Machine Learning: Theory, Methods and Appli-
cations. Academic Press, London, 1993.

B. K. Natarajan. Machine Learning: A Theoretical Approach.
Morgan Kaufmann, San Mateo, CA, 1991.

S-H. Nienhuys-Cheng and P. Flach. Consistent term mappings,
term partitions and inverse resolution. In [Kod91], pages 361-
374.

384 BIBLIOGRAPHY

[Nib88]

[Nib93]

T. Niblett. A study of generalisation in logic programs. In
D, Sleeman, editor, Proceedings of the 3rd European Working
Sessions on Learning (EWSL-88), pages 13t-138. Pitman, Lon-
don, 1988.

T. Niblett. A note on refinement operators. In [Bra93], pages
329-335.

[NLT93]

[SP93]

[NP94]

[NRA+961

[Nw951

[NW96b]

[NW96c]

[NW96d]

[Pei58]

[PF92]

S-H. Nienhuys-Cheng, P. van der Laag, and L. van der Torte.
Constructing refinement operators by deconstructing logical im-
plication. In [Tor93], pages 178-189.

S-H. Nienhuys-Cheng and M. Polman. Complexity dimensions
and learnability. In [Bra931, pages 348-353.

S-H. Nienhnys-Cheng and M. Polman. Sampie PAC-learnabfiity
in model inference. In [BD94], pages 217-230.

C. N6dellec, C. Rouveirol, H. Ad6, F. Bergadano, and
B. Tausend. Declarative bias in ILP. In [DR96], pages 82-103.

S-H. Nienhuys-Cheng and R. de Wolf. The equivalence of the
subsumption theorem and the refutation-completeness for un-
constrained resolution. In K. Kanchanasut and a-J. L4vy, ed-
itors, Proceedings of the Asean Computer' Science Conference
(ACSC-95), Vot. 1023 of Lecture Notes in Computer Science,
pages 269-285. Springer-Verlag, Berlin, 1995.

S-H. Nienhuys-Cheng and R. de Wolf. A complete method for
program specialization based on unfolding. In [Wah96], pages
438-442.

S-H. Nienhuys-Cheng and R. de Wolf. Least generalizations and
greatest specializations of sets of clauses. Journal of Artificial
Intelligence Research, 4:341-363, 1996.

S-H. Nienhuys-Cheng and R. de Wolf. Least generalizations un-
der implication. In [Sto96], pages 262-275.

S-H. Nienhuys-Cheng and R. de Wolf. '1?he subsumption theorem
in inductive logic programming: Facts and fallacies. In [DR96],
pages 265-276.

C. S. Peirce. Collected Papers. Harvard University Press, Cam-
bridge, MA, 1958. Edited by C. Harstshorne and P. Weiss. Vol-
umes I-VII.

C. D. Page and A. M. Frisch. Generalization and learnability:
A study of constrained atoms. In [Mug92a], pages 29-61.

BIBLIOGRAPHY 385

[Plo70] G. D. Plotkin. A note on inductive generalization. Machine
Intelligence, 5:153-163, 1970.

[Plo71a]

[Plo71b]

G. D. Plotkin. Automatic Methods of Inductive Inference. PhD
thesis, Edinburgh University, 1971.

G. D. Plotkin. A further note on inductive generalization. Ma-
chine Intelligence, 6:101-124, 1971.

[Pop59]

[PP94]

[pwr8]

[QC93]

[Qui86]

[Qui90]

[Qui93]

[Rei49]

[Rei78]

[Rey70]

K. R. Popper. The Logic of Scientific Discovery. Hutchinson,
London, 1959.

A. Pettorossi and M. Proietti. Transformation of logic programs:
Foundations and techniques. Journal of Logic Programming,
19/20:261-320, 1994.

M. S. Paterson and M. N. Wegman. Linear unification. Journal
of Computer and Systems Sciences, 16(2):158-167, 1978.

J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report.
In [Bra93], pages 3-20.

J. R. Quinlan. Induction of decision trees. Machine Learning,
1(1):81-106, 1986.

J. R. Quinlan. Learning logical definitions from relations. Ma-
chine Learning, 5(3):239-266, 1990.

J. R. Quinlan. C~.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1993.

H. Reichenbach. The Theory of Probability. University of Cali-
fornia Press, Berkeley, 1949.

R. Reiter. On closed world data bases. In [GM78], pages 55-76.

J. C. Reynolds. Transformational systems and the algebraic
structure of atomic formulas. Machine Intelligence, 5:135-151,
1970.

[Rie96~ A. Rieger. MP: An efficient method for calculating the minimum
Herbrand model of chain datalog programs. In [Wah96], pages
385-389.

[Rie96b]

[Ris78]

A. Rieger. Restructuring chain datalog programs. In [Sto96],
pages 292-311.

J. Rissanen. Modeling by shortest data description. Automatica,
14:465-471, 1978.

386 BIBLIOGRAPHY

[RN95] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, N J, 1995.

[Rob65] J. A. Robinson. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.

[Rou92] C. Rouveirol. Extensions of inversion of resolution applied to
theory completion. In [Mug92a], pages 63-92.

[Rou94] C. Rouveirol. Flattening and saturation: Two representation
changes for generalization. Machine Learning, 14:219-232, 1994.

[RP89] C. Rouveirol and J-F. Puget. A simple and general solution for
inverting resolution. In [Mor89], pages 201-210.

[RP90] C. Rouveirol and J-F. Puget. Beyond inversion of resolution.
In B. Porter and R. Mooney, editors, Proceedings of the 7th In-
ternational Conference on Machine Learning (ICML-90), pages
122-1:30. Morgan Kaufmann, San Mateo, CA, 1990.

[Rus48] B. Russell. Human Knowledge: It's Scope and Limits. George
Allen and Unwin, London, 1948.

[RusS0] B. Russell. The Problems of Philosophy. Oxford University
Press, Oxford, 1980. First published in 1912.

[SA93] T. Sato and S. Akiba. Inductive resolution. In K. P. Jantke
et al-, editors, Proceedings of the ~th International Workshop
on Algorithmic Learning Theory (ALT-g3), Vol. 744 of Lecture
Notes in Artificial Intelligence, pages 101-110. Springer-Verlag,
Berlin, 1993.

[SADB92] G. Sablon, H. Ad4, L. De Raedt, and M. Bruynooghe. Some
thoughts on inverse resolution. In [Mug92a], pages 409-422.

[SamSl] C. A. Sammut. Learning Concepts by Performing Ezperiments.
PhD thesis, University of New South Wales, 1981.

[Sam93] C. A. Sammut. The origins of inductive logic programming: A
prehistoric tale. In [Mug93], pages 127-147.

[SBS6] C. A. Sammut and R. B. Banerji. Learning concepts by ask-
ing questions. In R. S. Michalski, J. G~ Carbonell, and T. M.
Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, Vol. 2, pages 167-192. Morgan Kaufmann, Los Altos,
CA, 1986.

BIBLIOGRAPHY 387

[SCL69]

[Sha81a]

[ShaSlb]

[Sha83]

[She94]

[SK96]

[Sla67]

[Slo95]

[SMB941

[SMKS94]

[SMSK96]

[Som95]

[SR96]

J. R. Slagle, C. L. Chang, and R. C. T. Lee. Completeness the-
orems for semantic resolution in consequence-finding. In D. E.
Walker and L. M. Norton, editors, Proceedings of the Ist Inter-
national Joint Conference on Artificial Intelligence (IJCAI-69),
pages 281-285. Morgan Kaufmann, Los Altos, CA, 1969.

E. Y. Shapiro. An algorithm that infers theories from facts.
In A. Drinan, editor, Proceedings of the 7th International Joint
Conference on Artificial Intelligence (IJCAI-81), pages 446-451.
Morgan Kaufmann, Los Altos, CA, 1981.

E. Y. Shapiro. Inductive inference of theories from facts. Re-
search Report 192, Yale University, 1981. Reprinted in [LPgl],
pages 199-254.

E. Y. Shapiro. Algorithmic Program Debugging. MIT Press,
Cambridge, MA, 1983.

J. C. Shepherdson. The role of standardising apart in logic pro-
gramming. Theoretical Computer Science, 129:143-166, 1994.

A. Srinivasan and R. D. King. Feature construction with in-
ductive logic programming: A study of quantitative predictions
of biological activity aided by structural attributes. In [Sto96],
pages 352-367.

J. R. Slagle. Automatic theorem proving with renamable and
semantic resolution. Journal of the A CM, 14(4):687-697, 1967.

R. H. Sloan. Four types of noise in PAC learning. Information
Processing Letters, 54:157-162, 1995.

A. Srinivasan, S. Muggleton, and M. Bain. The justification
of logical theories based on data compression. Machine Intelli-
gence, 13:87-123, 1994.

A. Srinivasan, S. Muggleton, R. D. King, and M. J. E. Sternberg.
Mutagenesis: ILP experiments in a non-determinate biological
domain. In [Wro94], pages 217-232.

A. Srinivasan, S. Muggleton, M. J. E. Sternberg, and R. D. King.
Theories for mutagenicity: A study in first-order and feature-
based induction. Artificial Intelligence, 85:277-300, 1996.

E. Sommer. FENDER: An approach to theory restructuring. In
[LW95], pages 356-359.

M. Sebag and C. Rouveirol. Constraint inductive logic program-
ming. In [DR96], pages 277-294.

388 BIBLIOGRAPHY

[sss8]

[SS94]

[st 90]

M. Schmidt-Schauss. Implication of clauses is undecidable. The-
oretical Computer Science, 59:287-296, 1988.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Pro-
gramming Techniques. MIT Press, Cambridge, MA, second edi-
tion, 1994.

R. F. St/irk. A direct proof for the completeness of SLD-
resolution. In E. B6rger, H. Kleine Brining, and M. M. Richter,
editors, Computer Science Logic 89, Vol. 440 of Lecture Notes
in Computer Science, pages 382-383. Springer-Verlag, Berlin,
1990.

[Sta94]

[stag5]

[Sta96a]

I. Stahl. On the utility of predicate invention in inductive logic
programming. In [BD94], pages 272-286.

I. Stahl. The efficiency of predicate invention in ILP. In [DR95],
pages 231-246.

I. Stahl. Compression measures in ILP. In [DR96], pages 295-
307.

[Sta96b]

[Sto96]

[Tar36]

[Tar56]

[Tay93]

[Tor93]

[TS84]

I. Stahl. Predicate invention in inductive logic programming. In
[DR96], pages 34-47.

Stockholm University/Royal Institute of Technology, Depart-
ment of Computer and Systems Sciences. Proceedings of the 6th
International Workshop on Inductive Logic Programming (ILP-
96), Report Series No. 96-0t9. 1996.

A. Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen.
Stadia Philosophica, pages 261-405, 1936. English translation in
[Tar56].

A. Tarski. Logic, Semantics, Metamathematics. Papers from
1923 to 1938. Oxford University Press, New York, 1956.

K. Taylor. Inverse resolution of normal clauses. In [Mug93],
pages 165-177.

P. Torasso, editor. Proceedings of the 3rd Conference of the Ital-
ian Association for Artificial Intelligence (AI*IA-93), Vol. 728 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin,
1993.

H. Tamaki and T. Sato. Unfold/fold transformation of logic pro-
grams. In S-~. Tgrnlund, editor, Proceedings of the 2rid Interna-
tional Logic Programming Conference, pages 127-138. Uppsala
University, Uppsala, 1984

BIBLIOGRAPHY 389

[Tur36]

[UB94]

[UM82]

[Val84]

[Va185]

[vc71]

[Ver75]

[Ver77]

[VL93]

[Wah96]

A. M. ~ihring. On computable numbers, with an application to
the Entscheidungproblem. In Proceedings of the London Mathe-
matical Society, Vol. 42, pages 230-265. 1936. Correction, ibidem
(vol. 43), pages 544-546.

T. Urban~i5 and 1. Bratko. Reconstructing human skill with
machine learning. In A. G. Cohn, editor, Proceedings of the 11th
European Conference on Artificial Intelligence (ECAI-9~), pages
498-502. Wiley, Chichester, 1994.

P. Utgoff and T. M. Mitchell. Acquisition of appropriate bias
for inductive concept learning. In Proceedings of the National
Conference on Artificial Intelligence, pages 414-417. Morgan
Kaufmann, Los Altos, CA, 1982.

L. G. Valiant. A theory of the learnable. Communications of
the ACM, 27(11):1134-1142, 1984.

L. G. Valiant. Learning disjunctions of conjunctions. In Proceed-
ings of the 9th International Joint Conference on Artificial In-
telligence (IJCAI-85), pages 560-566. Morgan Kaufmann, 1985.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their probabilities.
Theory of Probability and its Applications, 16(2):264-280, 1971.

S. Vere. Induction of concepts in the predicate calculus. In Pro-
ceedings of the ~th International Joint Conference on Artificial
Intelligence (IJCAI-75), pages 351-356. Morgan Kaufmann, Los
Altos, CA, 1975.

S. Vere. Induction of relational productions in the presence of
background information. In Proceedings of the 5th International
Joint Conference on Artificial Intelligence (IJCAI-77). Morgan
Kaufmann, Los Altos, CA, 1977.

W. Van Laer. Inductief afleiden van logische regels. Master's
thesis, Katholieke Universiteit Leuven, 1993. In Dutch.

W. Wahlster, editor. Proceedings of the 12th European Con-
ference on Artificial Intelligence (ECAI-96). Wiley, Chichester,
1996.

[Wir89]

[WR27]

R. Wirth. Completing logic programs by inverse resolution. In
[Mor89], pages 239-250.

A. N. Whitehead and B. Russell. Principia Mathematica. Cam-
bridge University Press, Cambridge, UK, 1927. First published
in 1910-1913.

390 BIBLIOGRAPHY

[Wro93]

[Wro94]

[Yam95]

[Yam96]

S. Wrobel. On the proper definition of minimality in specializa-
tion and theory revision. In [Bra93], pages 65-82.

S. Wrobel, editor. Proceedings of the ~th International Workshop
on Inductive Logic Programming (ILP-9~), Vol. 237 of GMD-
Studien. Bad Honnef/Bonn, 1994. Gesellschaft fiir Mathematik
und Datenverarbeitung.

A. Yamamoto. Learning logic programs using definite equal-
ity theories as background knowledge, tEICE Transactions on
Information gA Systems, E78-D(5):539-544, 1995.

A. Yamamoto. Improving [heories for inductive logic program-
ming systems with ground reduced programs. Forschungsbericht
AIDA-96-19, Technische Hoehschule Darmstadt, 1996.

A u t h o r I n d e x

Ad~, H., 171, 197, 346, 347,357
Aha, D., 357
Akiba, S., 197
Alexin, Z., 357
Angluin, D., 175,331
Anthony, M., 332
Apt, K., ix, x, 65, 106, 115: 118n,

120, 133, 142, 149, 150,
153-155,159

Arikawa, S., 175
Arimura, H., 225n, 337
Aristotle, 174
Austin, G., 175

Bacon, F., 174
Bain, M., 76, 354n
Banerji, R., 175, 354
Bergadano, F., x, 171, 197, 346,

347, 357, 358
Bezem, M., 106
Biggs, N., 332
Blum, L., 193
Blum, M., 193
Blumer, A., 326
Bol, R., 142, 149
Boole, G., 3
Boolos, G., 18, 33, 56, 168
BostrSm, H., 208,210, 357
Boswell, R., 355
Bratko, I., 154, 155,352, 353,355,

358
Brazdil, P., 176
Bruner, J., 175
Bruynooghe, M., 197,300,316,355,

356

Buntine, W., xii, 176, 197, 279n,
280, 289, 291,294, 354

Califf, M., 358
Cameron-Jones, R., 300,354
Carnap, R., 174
Cestnik, B., 355
Chang, C. L., ix, 65, 76, 77n, 90,

91, 93, 94
Chervonenkis, A., 325
Church, A., 56
Clark, K., 106, 128
Clark, P., 355
Clocksin, W., 154, 155
Cohen, B., 176
Cohen, W., 334,337,339,340,347,

358
Colmerauer, A., 154
Cormen, T., 55,326,338n

Daidoji, M., 358
Dawes, M., 300
De Raedt, L., x, 172,197, 266,300,

316, 341, 347, 355, 356,
359

Dehaspe, L., 347, 358
Dimopoulos, Y., 173
Doets, K., ix, 106, l14n, 115, 133,

153n
Dolgak, B., 358
D~eroski, S., x, 172, 176,300, 334,

337-339, 341, 352, 353,
355, 358, 359

Eder, E., 65
Ehrenfeucht, A., 326

392 A UTHOR INDEX

Emde, W., x, 356, 359
Emden, M. van, 106

Feng, C., 176, 336n, 355
Fermiiller, C. G., 248
Flach, P., 172, 175n, 197, 347
Frazier, M., 334
Frege, G., 18
Friseh, A., 337

Gamberger, D., 353
Garey, M., 246n, 326,338n
Genesereth, M., 909 92
Giordana, A., x
Gold, E. M., 175,194, 321
Goodman, N., 174
Goodnow, J., 175
Gottlob, G., 248, 266, 267
Grobelnik, M., 316, 355
Gunetti, D., x, 197, 347,357, 358
Gyimdthy, T., 357

Hanschke, P., 125
Haussler, D., 326
Helft, N., 172
Hempel, C., 174, 175n
Herbrand, J., 45
Hill, R., 106
Hopcroft, J., 55, 338n
Horn, A., 105
Horvs T., x, 338,339
Hume, D. (philosopher), 1.74
Hume, D. (researcher), 197

Idestam-Almquist, P., 197,208,210,
266,357

Inoue, K., 90, 94
Ishizaka, H., 225n, 337

Jaffar, J., 153, 359
Jeffrey, R., 18, 33, 56, 168
Jevons, S., 174
Jezernik, A~, 358
Johnson, D., 246n, 326,338n

Kakas, A., 173

Kearns, M., 330,332
Kietz, J-U., x, 246n, 334, 338,356
King, R., 357,358
Komorowski, H., 210
Kononenko, I., 355
Kowalski, R., 55, 76, 90, 94, 105n,

173
Kri~man, V., 358
Kuehner, D., 90, 94, 105n

Laag, P. van der, 220, 243, 261,
266, 300, 311

Laird, P., 220, 305,331
Lapointe, S., 357
Lassez, J-L., 65, 153
Lavra~, N., x, 176, 300, 352, 353,

355,358
Lee, R. C. T., ix, 65, 76, 77n, 90,

91, 93, 94
Leiserson, C., 55, 326,338n
Lewis, R., 358
Li, M., 338, 353
Ling, C., 197,300,334, 357
Lloyd, J., ix, 65, 105, 114n, 118n,

i19, 133, 142, 149, 150,
153, 157n, 158

Loveland, D., 90, 94
Liibbe, M., 246n
Luckham, D., 94

Maher, M., 65,359
Marcinkowski, J., 125
Marriott~ K., 65
Martelli, A., 65
Matwin, S., 357
Mellish, C., 154, 155
Mendelson, E, 18
Miehalski, R.~ 354
Mill, J. S., 174
Minieozzi, E., 90, 94, 98
Minsky:, M., t64
Mitchell, T., 169, 171
Mizoguchi, F., 358
Montanari~ U., 65
Mooney, R., 358

AUTHOR INDEX 393

Morik, K., x, 356
Muggleton, S., x, xii, 76, 164, 176,

197, 220n, 266,267, 273,
300,325n, 336n, 337-339,
354, 355, 357-359

Narayan, M., 197
Natarajan, B., 322, 326,329, 332
N@dellec, C., 171,346,347
Niblett, T., 261,285,311,355
Nienhuys-Cheng, S-H., 76,197,209,

220, 243, 261, 266, 300,
311,326, 339

Nilsson, N., 90, 92
Norvig, P., 164

Ohwada, H., 358
Otsuki, S., 225n

Pacholski, L., 125
Page, C. D., 267, 273, 325n, 334,

337, 358
Paterson, M., 65
Peirce, C. S., 173, 174
Pettorossi, A., 207n
Pirnat, V., 358
Plotkin, G., ix, 175, 176,219,226,

228, 243, 248, 252, 280,
283

Polman, M., 326,339
Popper, K., 174, 175n
Proietti, M., 207n
Puget, J-F., 197, 350

Quinlan, J. R., 176,300, 354

Reichenbach, H., 174
Reiter, R., 90, 94, 98, 127
Reynolds, J., ix, 175,219,226,228,

240,260
Rieger, A., 347
Rissanen, J., 353
Rivest, R., 55, 326, 338n
Robinson, J. A., 66, 76, 91~ 93
Rouveirol, C., 171, 197, 346, 347,

350,351,354, 359

Ruck, B., 358
Russell, B., 18, 174
Russell, S., 164, 337-339

Sablon, G., 197
Saitta, L., x
Sammut, C., 175, 197, 354
Sato, T., 197, 210,213
Schmidt-Schauss, M., 88
Sebag, M., 359
Shapiro, E., ix, xii, 154, 155, 159,

168, 175, 176, 179, 184-
186, 192, 205, 220, 261,
299, 300, 306, 310,354

Shepherdson, J., l18n
Shinohara, T., 175,225n, 337
Shirato, S., 358
Skolem, T., 39
Slagle, J. R., 76, 93, 94
Sloan, R., 332, 338,339
Smith, B., 175
Sommer, E., 347
Srinivasan, A., 354n, 358
Stahl, I., 348-350,354
St~rk, R., 106
Sterling, R., 154, 155, 159
Sternberg, M., 357, 358

Tamaki, H., 210, 213
Tarski, A., 18
Tausend, B., 171,346,347
Taylor, K., 197
Teusink, F., 159
Toni, F., 173
Torre, L. van tier, 243, 300
Turin, G., 338,339
Turing, A., 56

Ullman, J., 55, 338n
Urban~i~, T., 358
Utgoff, P., t71

Valiant, L., 321,331
Van Laer, W., 316
Vapnik, V., 325

394 AUTHOR INDEX

VarSek, A., 358
Vazirani, U., 330, 332
Vere, S., 175
Vits P., 338,353

Walley, W., 358
Warmuth~ M., 326
Wegman~ M., 65
Wettschereck, D., 359
Whitehead, A. N., 18
Wirth, R., 197
Wolf, R. de, 76, 209, 243, 266
Wrobel, S., x, 225n, 356
Wiirtz, J., 125

Yamamoto, A., x, 175~ 334, 357n

Subject Index

0-subsumption, 77, see subsump-
tion

abduction, 173
accuracy, 357
admissible (pair of languages), 182,

183
admissible PAC algorithm, 324
adversarial noise, 331, see mali-

cious noise
AI, see artificial intelligence
algorithm, 55
allowed clause, 142,335, 347
allowed set of clauses, 142, 153,

335
alphabet, 4, 18
Anti-Unification Algorithm, 228,244
antisymmetric relation, 220
application of ILP, xiii, 346, 354,

357,358
approximately correct, 323
AQ, 354
arithmetical computation, 358
arity, 18
artificial intelligence, 30, 55, 164,

174
ASSISTANT, 355
atom, 4, 20, 219, 225, 300
atomic generalization, 243
atomic order, 243
attribute-value learning, 175, 176,

355

background knowledge, xi, xii, 163,
165, 279, 281, 287, 290,
304, 352

in inverse resolution, 199
in PAC learning, 333

Backtracing Algorithm, 176, 188,
356, 357

correctness of, 190
basecase query, 339
batch learning, 171,354-357
Bayes' Theorem, 359
bias, 171,346
bias shift, 172
binary resolvent, 293
binding, 59
blocked goal, 142
body (of a clause), 106, 135
bottom element (_k), 226
bottom-up approach to ILP, xii,

170, 197, 354, 355
bound variable, 21

center clause, 94
chain of refinements, 300
Church's Theorem, 56
CIGOL, 176, 198,354
CLAUDIEN, 300,356, 358
clausal language (C), 36
clause, ix, xi, 36, 59, 165, 175

alternative notations, 51
as a set of literals, 91,246
as atom, 244
names of variables in, 40
tautology, 45
universally quantified, 39, 53

Clause Set, 347, 357
CLINT, X, 347, 355
closed formula, 22, 28

396 S U B J E C T I N D E X

restriction to, 29
closed recursive clause, 338
Closed World Assumption (CWA),

127, 145, 149
CN2,355
CoX-complete axiomatization, 182
Compactness Theorem, 33
compatible clauses, 243,312
complementary pair, 45, 66, 68
complete (with respect to exam-

ples), 166,184
completed definition of a predicate

symbol, 148
completeness, 58

of computed answers, 118,122,
125

of linear resolution, 98, 99
of negation as finite failure,

153
of SLD-resolution, 109,111
of UDS specialization, 216
of unconstrained resolution, 83,

84
completion, 145, 149, 166n
complexity class NP, 246n, 338
complexity class P, 338
complexity class PSPACE, 338
complexity class RP, 338
composite formula, 4, 20
composition, 61
computable, 55, l14n
computation rule, 120~ 141

first in, first out, 119,132
independence of, 121

computed answer, 114, 141
concept, 179, 323
concept class, 323
Condition *, 114, 139
confidence parameter, 324,326n
confirmatory problem setting, 172
CONFUCIUS~ 176
conjunction, 6, 15
connected clause, 335,347
connective, 4, 18

informal explanation of, 6
interpretation of, 8

consistent, 12, 31
consistent (with respect to exam-

ples), 166, 184
constant, !8
constrained atom, 335
consgrained clause, 335, 347
constrained set of clauses, 335
constraint logic programming, 359
constraint predicate, 335
contingent, 12, 31
contradiction, 12, 31
conventional atom, 226
correct (with respect to examples),

166, 184, 328n
in PAC learning, 328

correct answer, 114, 150
connterexample, 331
cover, xii, 205,223, 225

finite chain of, 234
cover-refinement operator, 316
covering, 290
covering approach, 354
CaUSTACEAN, 357
cut (!), 157
CWA, see Closed World Assump-

tion
cycle, 257
cyclical background knowledge, 337

data mining, xi, 172, 1'77
De Morgan's laws, 14
decidable, 56, see also undecidable

implication for function-free clauses,
270

implication for ground clauses,
270

in polynomial time, 342
propositional logic, 30, 56

decision procedure, 56
decision tree, 164, 176,354, 355
deduction, 76, 77, 128, 283

how to find, 88
undecidable, 88

SUBJECT INDEX 397

Deduction Theorem, 11, 32
definite goal, 106
definite program, 111, 127, 150,

166, 167, 207, 319, 327n
definite program clause, 106, 200,

289
definition of a predicate symbol,

147,335
denumerable set, 168
depth of a term or clause, 267
derivation, 57, 66, 71, 73, 76
determinate clause, 335
disagreement set, 63
disjunction, 6, 15
domain, 22, 24, 179
domain (in PAC learning), 323
downward cover, xii, 223,301

complete set of, 224
finite chain of, 236, 239
of atom, 232, 236, 237, 240,

302
of sets under implication, 317
under implication, 278
under subsumption, 259
with background knowledge,

281
downward refinement operator, xii,

205,300, 355,356
PI, 318
PL, 305, 317, 349, 350
pA, 301
Pr, 312
complete, 300
for finite set, 310
for Horn clauses, 304, 312
ideal, 300

does not exist, 304
locally finite, 300
proper, 300

DucE, 176
duplication of literals, 307

E-Herbrand interpretation, 147
elementary substitution, 233, 305
empty clause (D), 36

is a contradiction, 68
empty substitution, 59
enumerably infinite set, 168
enumeration, 168, 181,184
equality axioms, 146
equality theory, 146
equivalence, 12, 31

connective, 7
equivalence class, 220
equivalence query, 331
equivalence relation, 220
equivalent

in a quasi-order, 221
error parameter, 323, 326n
evaluable representation, 327
example, 165, 172, 323
existential quantifier, 18, 23

interpretation of, 27
existential query, 339
explanatory problem setting, 168
expression, 59
extension of a relation, 179

fact of interpretation, 180
factor, 70, 200
failure branch, 123
fair SLD-tree, 132
fair SLDNF-tree, 141
false, 9, 29
falsify, 9, 29
ffga program, 337
FILP, X
Finite Downward Cover Chain Al-

gorithm, 235
finitely failed SLD-tree, 131, 132,

153
finitely failed SLDNF-tree, 138,140
first-order language, 21
first-order logic, xi, 3, 17
fitting, 328
flattening, 346, 350,360

preserves implication, 352,363
preserves subsumption, 352,361

Flattening Algorithm, 351
floundering, 134, 138,141,142,156

398 S U B J E C T I N D E X

FOIL, 176, 300, 354
forest background knowledge, 337
formula, 31
free variable, 21
function symbol, 18, 34, 350
function-free, 265, 267, 272, 289,

296,335, 346, 350

g-subsumption, see generalized sub-
sumption

general program, 135, see normal
program

generality order, xii, 191,205,219,
225

generalization, xi, 169, 225, 299
generalized subsumption, 280,289,

290
generative clause, 335, 347
genetic algorithm, 164
glb, see greatest lower bound
GOLEM, 176, 286, 355, 357, 358
Gottlob's Lemma, 267
grammar (for language bias), 347
greatest lower bound (glb), 221,

225
greatest specialization (GS)i xii,

225
in first-order logic, 275
of atoms, 227
under implication (GSI), 275,

276
for Horn clauses, 276

under subsumption (GSS), 251
for Horn clauses, 251

ground atom, 46
ground formula, 22
ground instance, 59
ground substitution, 59
ground term, 22, 46
GS, see greatest specialization
GSI, see greatest specialization un-

der implication
GSS, see greatest specialization un-

der subsumption

h-easiness, 193
head (of a clause), 106, 135
Herbrand base, 46
Herbrand interpretation, xi, 35, 47,

172, 273, 290,340
Herbrand model, 48, 112
Herbrand pre-interpretation, 46
Herbrand universe, 46
Herbrand's Theorem, 79
hierarchical program, 153
higher-order logic, 18n
Horn clause, xi, 55n, 102, 105, 106
Horn language (7-/), 106
hypothesis language (Oh), 180

ID3, 354
identification from equivalence queries,

331
identification in the limit, 194, 321
identity substitution, 59
iff (if, and only if), 11
i j-determinate clause, 336,347,355
ij-nondeterminate clause, 336
ILP, see inductive logic program-

ming
imperfect data, 352
implementation of ILP, xiii, 346,

354
implication, xi, xii, 10, 11, 30, 49,

50, 55, 191,265,273,280,
287, 304, 317, 352, 363

connective, 6, 11
for atoms, 226
is a quasi-order, 265n
non-clausal, 87

[MPUT, 357
incomparable, 221
incompatible clauses, 243, 312
incompleteness

of input resolution, 100, 101
of SLDNF-resolution, 153

inconsistent, 12, 31
incremental learning, 171,354, 355
induction, ix, 163, 197
inductive inference, 175

S U B J E C T I N D E X 399

inductive logic programming, ix,
36, 55,154, 164,167, 173,
175,222,225, 345

history of, 174
infinite branch, 123
initial pre-SLDNF-tree, 138
input clause, 100, 107
input deduction, 100, 128
input derivation, 100
input refutation, 100
input resolution, 100
instance, 59, 61
instance of a concept, 179
instance set, 268
integrity constraint, 356
intension of a relation, 179
interactive learning, 171,354, 355
interpretation, xi, 7, 23, 26
invalid, 12, 31
reverse reduction, 249
Inverse Reduction Algorithm, 250,

311,315
inverse resolution, xii, 176, 197,

207, 220n, 319, 349,354
for program restructuring, 348

inverse substitution, 238
ITOU, 354

JIGSAW, 357
jk-clausal theory, 341

k-ary recursive clause, 338
k-clause program, 335
k-literal clause, 335
k-literal program, 335
knowledge discovery, 172
Kolmogorov complexity, 353

label of an example, 323
language bias, xiii, 171,346

shift, 347, 349
lattice, 222

for atoms, 231
under implication, 276
under subsumption, 255, 256

learnability theory, 321
least generalization (LG), xii, 175,

205,225
in first-order logic, 275
of atoms, 230
summary of results, 297
under atomic generalization (LGA),

244, 252,253
under generalized subsumption

(LGGS), 280n, 294, 295
under implication (LGI), 265,

266, 272, 273,279
computability of, 275
for Horn clauses, 267
special, 272

under relative implication (LGRI),
289

for Horn clauses, 288
under relative subsumption (LGRS),

285, 286, 355
for Horn clauses, 287

under subsumption (LGS), 251,
254, 265, 274, 279, 286,
355

for Horn clauses, 255
least Herbrand model, 112, 129,

213
as a concept, 327n, 333
polynomial time algorithm for,

342
least upper bound (lub), 221,225
length (of a set of examples), 328
length (of an example), 323
length parameter, 324
level-saturation method, 88, 124
LG, see least generalization
LGGS, see least generalization un-

der generalized subsump-
tion

LGI, see least generalization under
implication

LGI Algorithm, 274
LGRI, see least generalization un-

der relative implication

400 S U B J E C T I N D E X

LGRS, s ee least generalization un-
der relative subsumption

LGS, s ee least generalization un-
der subsumption

LGS Algorithm, 255, 274
Lifting Lemma, 82

for linear resolution, 96
for SLD-resolution, 109

linear deduction, 95, 128
linear derivation, 94
linear refutation, 94
linear resolution, xi, 93, 100
linearly recursive clause, 338
link-depth of a clause, 336
linked clause, 336
LINUS, x, 176, 300
literal, 36
logic programming, ix, xi, 55,164,

176,345, 359
logical consequence, 10, 11, 30, 49
logical implication, 12, s ee impli-

cation
lower bound, 221,225
lub, s ee least upper bound

machine learning, ix, 164, 321,345
main tree in SLDNF-tree, 133,140
malicious noise, 331
MARVIN, 176, 354
matrix (in prenex form), 36
maximal lower bound (mlb), 223,

225
complete set of, 224

maximal specialization (MS), 225
under implication (MSI)

for Horn clauses, 276
m a x s i z e , 261
MDL, see Minimum Description

Length
membership query, 330, 331
MG, s ee minimal generalization
MGI, s ee minimal generalization

under implication
mgu, s ee most general unifier
minimal generalization (MG), 225

under implication (MGI), 273
for Horn clauses, 267

minimal upper bound (mub), 223,
225

complete set of, 224
Minimum Description Length, 353,

354n
Mis, 176, 192, 300,354
_~tIL-SMART, X
mlb, s ee maximal lower bound
MOBAL, X, 356
mode declaration, 339
model, 9, 30, 48
Model Inference Algorithm, 193~

306,354
model inference problem, xii, 168,

176, 179, 184,299
modus ponens, 57
most general atom, 233
most general literal, 305
most general unifier (mgu), 63
MS, see maximal specialization
mub, s ee minimal upper bound
multiple-predicate learning, 170,354-

357
mute~genesis, 358

n-step refinemenL 300
name (in a representation), 327
necessary condition, 11
negation, 6
negation as (finite) failure, 128
negative example, 165, 172, 180,

323
negative literal, 36
neural network, 164
n e w s i z e , 261,311
noise, xiii, 170-172,177, 346,352

in PAC learning, 331
noise rate, 332
non-interactive learning, 171,354-

357
non-recursive clause, 277,335,347
non-recursive program, 335

S U B J E C T I N D E X 401

nonmonotonic problem setting, 172,
173,340

nonmonotonie rule, 128, 141
nonmonotonic setting, xi, 177
normal form, 35
normal goal, 133
normal problem setting, xi, 167,

168,280, 327n, 333
non-existence of solution for,

168
normal program, 130, 135, 166n
notational conventions, 15, 33, 53

observational language (Co), 180
occur check, 64
OL-resolution, 94

not refutation-complete, 94n
one-step refinement, 300
optimal cover-refinement operator,

316
oracle, 181, 184, 186, 330
ordered clause, 246,307
overly general (with respect to ex-

amples), 167
overly specific (with respect to ex-

amples), 167

PAC algorithm, 324
PAC learning, xiii, 321,347

in nonmonotonic ILP setting,
34O

in normal ILP setting, 333
in propositional logic, 332
is worst case analysis, 325
under simple distributions, 338

PAC predicting, 330
parent clauses, 70
partial order, 220

induced by quasi-order, 221
place, see position
polynomial sample PAC learnable,

325,326, 328
polynomial time fitting, 328
polynomial time identification from

equivalence queries, 331

polynomial time PAC learnable,
328, 329

polynomial time PAC predictable,
330

polynomial VC dimension, 326
polynomially evaluable representa-

tion, 327
position, 228
positive example, 165, 172, 180,

323
positive literal, 36
post-processing, 170
power set, 168
pre-interpretation, 24
pre-processing, 170
pre-SLDNF-tree, 138

via 7~, 141
predicate invention, xiii, 172, 177,

203, 346, 347,354
utility of, 349

predicate symbol, 18
predicate topology, 356
prenex, 36
prenex conjunctive normal form,

35, 36
transformation to, 37

probability distribution, 323
probably approximately correct, 321,

324
probably approximately correct learn-

ing, see PAC learning
problem setting of ILP, 207
PROGOL, 300, 357, 358
program clause, 130, 134
program transformation, 207n, 347
projection, 326
PROLOG, xi, 105, 113, 130, 154,

176
computation rule, 155
cut operator, 157
declarative side, 155, 159
depth-first search, 155
lists, 154
procedural side, 155, 159

402 SUBJECT INDEX

syntax, 154
proof procedure, xi, 56, 57
propositional language, 5, 8
propositional logic, xi, 3, 17, 332

embedded in first-order logic,
19, 26, 68

punctuation symbol, 4, 18

quasi-order, 220, 300
query, 330

:g-computed answer, 120
random classification noise, 332
range restricted clause, 335, 347
RDT, 356
real numbers, 177,358
reeursive atom, 338
recursive clause, 277, 338
reduced clause, 247, 310
Reduction Algorithm, 248
reduction of clause, 247
refinement graph, 301

for optimal cover-refinement
operatoL 316

refinement operator, xii, 1'76, 191,
220,300

in predicate invention, 349
reflexive relation, 220
refutation, 67, 71, 73
refutation completeness, x, xi, 58,

76, 84
of linear resolution, 98
of SLD-resolution, 109
of unconstrained resolution, 84

relation, 179,220
relative implication, 280, 287
relative s~bsumption, 280,281,287,

294
renaming substitution, 62
representation, 327

by definite programs, 333
by theories, 340

resolution, xi, 57, 58, 65, 93, 197,
317

alternative definitions of, 91

restriction to clauses, 66
resolvent, 70
restriction of a substitution, 59
RIBL, 359
rule schema, 356

safe computation rule, 142, 156
sample complexity, 322, 324
satisfiable, 12, 31
satisfy, 9, 29
scope, 21
search bias, 171,346
search heuristics, 346, 358
search space, 169
selection (of two clauses), 252
self-saturated clause, 273
semantic resolution, 93
semantics, 4, 5, 22
semi-decidable, 56n
shatters, 325
side clause, 94
SIM, 300
simple expression, 59
single-predicate learning, 170,334,

354, 355, 357
size, 240, 260, 310

difficulty with, 261
size of a concept, 327
Skolem constants, 41
Skolem functions, 41
Skolem standard form, 42
Skolem substitution, 83
Skolemization, 41
Skolemized form, 41
SL-resolntion, 94
SLD finite failure set, 129, 131
SLD-deduction, 107, 128, 293
SLD-derivation, 107, 141

of infinite length, 123
SLD-refutation~ 107

via 7g, 120
SLD-resolution, xi, 94, 102, 105n,

198
SLD4ree, 123, 128, 141

effect of unfolding on, 208

SUBJECT INDEX 403

via TO, 123
SLDNF-derivation, 140
SLDNF-refutation, 140

via 7r 141
SLDNF-resolution, xi, 58n, 130
SLDNF-tree, 133, 140, 155

via 7r 141
SOL-resolution, 94
soundness, 58

of computed answers, 116,122,
125

of deduction, 77
of derivation, 73
of negation as finite failure,

151
of resolution, 66, 72
of SLDNF-resolution, 152

specialization, xi, 169, 225,299
under subsumption, 305, 307

specialization problem, xii, 207
SPECTRE, 357
SPECTaE ~I, 357
standard form, 35, 39, 40, 42

non-equivalence of, 43
of set of formulas, 43
preserves unsatisfiability, 45

standardized apart, 69, 114
statistical query, 332n
statistics, 359
stochastic definite program, 359
subsidiary tree, 133, 138
substitution, 59

as a mapping, 60
subsume-equivalence class, 246
subsume-equivalent, 246
subsumption, xii, 76, 77, 175, 19t,

209, 215, 246, 265, 280,
282, 291, 294, 304, 305,
317,352, 361

for atoms, 226
is a quasi-order, 246
is decidable, 246
is NP-complete, 246n
proper, 246

weaker than implication, 265
Subsumption Theorem, x, xi, 58,

76, 84, 287, 318
for linear resolution, 99
for SLD-resolution, 111,209
for unconstrained resolution,

78, 83, 86
succeeds, 140
success branch, 123
success set, 113
successful SLDNF-tree, 138, 140
sufficient condition, 11
symmetric difference, 323
symmetric relation, 220
syntax, 4, 15, 18

T-implication, 266
target concept, 321
tautology, 12, 31, 45, 77
term, 19
term assignment, 22, 25
term occurrence, 228
term set, 268
term-related clause, 339
test set, 357
theorem proving, ix, 58n
theory, 166
theory revision, 169n
time complexity, 322, 326,328

with background knowledge,
334

too strong (with respect to exam-
ples), 167

too weak (with respect to exam-
ples), 167

top clause, 94, 107
top element (T), 226
top-down approach to ILP, xii, 170,

354, 356, 357
TRACY, x, 357
training set, 357
transitive relation, 220
true, 9, 29
truth table, 8, 13
truth value, 7, 9, 27, 29, 127, 153n

404 S U B J E C T I N D E X

Turing machine, 326
type, 358
type 1 program (unfolding), 210

preserves MH, 213
type 2 program (unfolding), 210

preserves equivalence, 213

U-learning, 325n
UDS specialization, xii, 209, 215,

319
uncountable set, 168
undecidable, 56, see also decidable

clausal implication, 88
Horn clause implication, 125
language bias shift problem,

349
logical implication, 56
satisfiability of set of Horn clauses,

125
unfolding, xii, 197n, 208,210, 357
unifiable, 63
Unification Algorithm, 64, 227

Unification Theorem, 65
unifier, 63
universal distribution, 338
universal quantification, 39
universal quantifier, 18, 23, 287

interpretation of, 27
unsatisflable, 12, 3i, 43, 45
unsoundness

of cut, 158
of floundering, 142
of PROLOG, 156

upper bound, 221, 225
upward cover, xii, 223

complete set of, 224
finite chain of, 239
of atom, 234, 239, 240
under implication, 277
under subsumption, 257
with background knowledge,

281
upward refinement operator, xii,

300
5.4,302

5r, 316
5u, 309
complete, 300
for finite set, 310
for Horn clauses, 304
ideal, 300

does not exist, 304
locally finite, 300
proper, 300

V-operator, 200, 201,205
valid, 12, 31
validation bias, 171,346
Vapnik-Chervonenkis dimension, see

VC dimension
variable, 18
variable assignment, 25, 28
variable-depth, 336
variant, 62
VC dimension, 325,328

W-operator, 203, 205, 349, 354
weak confirmation, 172
well-formed formula, xi, 4, 20

Lecture Notes in Artificial Intelligence (LNAI)

Vol. 1071: P. Miglioli, U. Moscato, D. Mundici, M.
Ornaghi (Eds.), Theorem Proving with Analytic Tableaux
and Related Methods. Proceedings, 1996. X, 330 pages.
1996.

Vol. 1076: N. Shadbolt, K. O'Hara, G. Schreiber (Eds.),
Advances in Knowledge Acquisition. Proceedings, 1996.
XII, 371 pages. 1996.

Vol. I079: Z. W. Rag, M. Michalewicz (Eds.), Founda-
tions of Intelligent Systems. Proceedings, 1996. XI, 664
pages. 1996.

Vol. 1081: G. McCalla (Ed.), Advances in Artificial In-
telligence. Proceedings, 1996. XII, 459 pages. 1996.

Vol. 1083: K. Sparck Jones, J.R. Galliers, Evaluating
Natural Language Processing Systems. XV, 228 pages.
1996.

Vol. 1085: D.M. Gabbay, H.J. Ohlbach (Eds.), Practical
Reasoning. Proceedings, 1996. XV, 721 pages. 1996.

Vol. 1087: C. Zhang, D. Lukose (Eds.), Distributed Arti-
ficial Intelligence. Proceedings, 1995. VIII, 232 pages.
1996.

Vol. 1093: L. Dorst, M. van Lambalgen, F. Voorbraak
(Eds.), Reasoning with Uncertainty in Robotics. Proceed-
ings, 1995. VIII, 387 pages. 1996.

Vol. 1095: W. McCune, R. Padmanabhan, Automated
Deduction in Equational Logic and Cubic Curves. X, 231
pages. 1996.

Vol. 1104: M.A. McRobbie, J.K. Slaney (Eds.), Auto-
mated Deduction -Cade-13. Proceedings, 1996. XV, 764
pages, t 996.

Vol. I 1 l 1 : J. J. Alferes, L. Moniz Pereira, Reasoning with
Logic Programming. XXI, 326 pages. 1996.

Vol. 1114: N. Foo, R. Goebel (Eds.), PRICAI'96: Topics
in Artificial Intelligence. Proceedings, 1996. XXI, 658
pages. 1996.

Vol. t l t5: P.W. Eklund, G. Ellis, G. Mann (Eds.), Con-
ceptual Structures: Knowledge Representat ion as
Interlingua. Proceedings, 1996. XIII, 321 pages. 1996.

Vol. 1126: J.J. Alferes, L. Moniz Pereira, E. Orlowska
(Eds.), Logics in Artificial Intelligence. Proceedings,
1996. IX, 417 pages. 1996.

Vol. 1137: G. G6rz, S. H611dobler (Eds.), KI-96: Advances
in Artificial Intelligence. Proceedings, 1996. XI, 387
pages. 1996.

Vol. 1147: L. Mielet, C. de la Higuera (Eds.), Grammati-
cal Inference: Learning Syntax from Sentences. Proceed-
ings, 1996. VIII, 327 pages. 1996.

Vol. 1152: T. Furuhashi, Y. Uchikawa (Eds.), Fuzzy
Logic, Neural Networks, and Evolutionary Computation.
Proceedings, 1995. VIII, 243 pages. 1996.

Vol. 1159: D.L. Borges, C.A.A. Kaestner (Eds.), Ad-
vances in Artificial Intelligence. Proceedings, 1996. XI,
243 pages. 1996.

Vol. 1 t60: S. Arikawa, A.K. Sharma (Eds.), Algorithmic
Learning Theory. Proceedings, 1996. XVII, 337 pages.
1996.

Vol. 1168: I. Smith, B. Faltings (Eds.), Advances in Case-
Based Reasoning. Proceedings, 1996. IX, 531 pages. 1996.

Vol. 1171 : A. Franz, Automatic Ambiguity Resolution in
Natural Language Processing. XIX, 155 pages. 1996.

Vol. 1177: J.P. Miiller, The Design of Intelligent Agents.
XV, 227 pages. 1996.

Vol. 1187: K. Schlechta, Nonmonotonic Logics. IX, 243
pages. 1997.

Vol. 1188: T.P. Martin, A.L. Ralescu (Eds.), Fuzzy Logic
in Artificial Intelligence. Proceedings, 1995. VIII, 272
pages. 1997.

Vol. 1193: J.P. Miiller, M.J. Wooldridge, N.R. Jennings
(Eds.), Intelligent Agents III. XV, 401 pages. 1997.

Vol. 1195: R. Trappl, P. Petta (Eds.), Creating Personali-
ties for Synthetic Actors. VII, 251 pages. 1997.

Vol. 1198: H. S. Nwana, N. Azarmi (Eds.), Software
Agents and Soft Computing: Towards Enhancing Ma-
chine Intelligents. XIV, 298 pages, t 997.

Vol. 1202: P. Kandzia, M. Klusch (Eds.), Cooperative
Information Agents. Proceedings, 1997. IX, 287 pages.
1997.

Vol. 1208: S. Ben-David (Ed.), Computational Learning
Theory. Proceedings, 1997. VIII, 331 pages. 1997.

Vol. 1209: L. Cavedon, A. Ran, W. Wobcke (Eds.), Intel-
ligent Agent Systems. Proceedings, 1996. IX, t 88 pages.
1997.

Vol. 1211: E. Keravnou, C. Garbay, R. Baud, J. Wyatt
(Eds.), Artificial Intelligence in Medicine. Proceedings,
1997. XIII, 526 pages. 1997.

Vol. 1216: J. Dix, L. Moniz Pereira, T.C. Przymusinski
(Eds.), Non-Monotonic Extensions of Logic Program-
ming. Proceedings, 1996. XI, 224 pages. 1997.

Vol. 1221: G. WeiB (Ed.), Distributed Artificial Intelli-
gence Meets Machine Learning. Proceedings, 1996. X,
294 pages. 1997.

Vol. 1224: M. van Someren, G. Widmer (Eds.), Machine
Learning: ECML-97. Proceedings, 1997. XI, 361 pages.
1997.

Vol. 1227: D. Galmiche (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. Proceedings,
1997. XI, 373 pages. 1997.

Vol. 1228: S.-H. Nienhuys-Cheng, R. de Wolf, Founda-
tions of Inductive Logic Programming. XVII, 404 pages.
1997.

Lecture Notes in Computer Science

Vol. 1194: M. Sipper, Evolution of Parallel Cellular
Machines. XIII, 199 pages. 1997.

Vol. 1195: R. Trappl, P. Petta (Eds.), Creating
Personalities for Synthetic Actors. VII, 251 pages. 1997.
(Subseries LNA1).

Vol, 1196: L. Vulkov, J. Wa~niewski, P. Yatamov (Eds.L
Numerical Analysis and Its Applications. Proceedings,
1996. XIII, 608 pages. 1997.

Vol. 1197: F. d'Amore, P.G. Franciosa, A. Marchetti-
Spaccamela (Eds.), Graph-Theoretic Concepts in
Computer Science. Proceedings, 1996. XI, 410 pages~
1997.

Vol. 1198: H.S. Nwana, N. Azarmi (Eds.), Software
Agents and Soft Computing: Towards Enhancing Machine
Intelligence. XIV, 298 pages. 1997. (Suhseries LNAI).

Vol. 1199: D.K. Panda, C.B. Stunkel (Eds.),
Communication and Architectural Support for Network-
Based Parallel Computing. Proceedings, 1997. X, 269
pages. 1997.

Vol. 1200: R. Reischuk, M. Morvan (Eds.), STACS 97.
Proceedings, 1997. XIII, 614 pages. 1997.

Vol. 1201: O, Maler (Ed.), Hybrid and Real-Time
Systems. Proceedings, 1997. IX, 417 pages. 1997.

VoI, 1202: P. Kandzia, M. Klusch (Eds.), Cooperative
Information Agents. Proceedings, 1997. IX, 287 pages.
1997. (Subseries LNAI).

Vol. I203: G. Bongiovanni, D.P. Bovet, G. Di Battista
(Eds.), Algorithms and Complexity. Proceedings, 1997~
VIII, 311 pages. 1997.

Vol. 1204: H. M6ssenb6ck (Ed.), Modular Programming
Languages. Proceedings, 1997. X, 379 pages. 1997.

Vol. 1205: J. Toccaz, E. Grimson, R. M6sges (Eds.),,
CVRMed-MRCAS'97. Proceedings, 199'7. XIX, 834
pages, 1997.

Vol. 1206: J. Bigiin, G. Chonet, G. Borgefors (Eds.),
Audio- and Video-based Biometric Person Authentication.
Proceedings, 1997. XII, 450 pages. 1997.

Vol. 1207: J. Gallagher (Ed.), Logic Program Synthesis
and Transformation. Proceediugs~ 1996, VII, 325 pages.
1997.

Vol. I208: S. Ben-David (Ed.), Computational Learning
Theory, Proceedings, 1997. VIII, 33l pagea. 1997.
(Subseries LNAI).

Vol. 1209: L. Cavedon, A. Ran, W. Wobcke (Eds.),
Intelligent Agent Systems. Proceedings, 1996. IX, 188
pages. 1997. (Subseries LNAt).

Vol. 1210: P. de Groote, J.R. Hindley (Eds.), Typed
Lambda Calculi and Applications. Proceedings, 1997.
VIII, 405 pages. 1997.

Vol. 1211: E. Keravnou, C. Garbay, R. Baud, L Wyatt
(Eds.), Artificial Intelligence in Medicine. Proceedings,
1997. XIII, 526 pages. 1997. (Subseries LNAI).

VoL 1212: J. P. Bowen, M.G. Hinchey, D. Till (Eds.),
ZUM '97: The Z Formal Specification Notation.
Proceedings, 1997. X, 435 pages. 1997.

VoL 1213: P. J. Angeline, R. G. Reynolds, J. R.
McDonnell, R. Eberhart (Eds.), Evolutionary
Programming VI. Proceedings, 1997. X, 457 pages. 1997.

Vol. 1214: M. Bidoit, M. Dauchet (Eds.), TAPSOFT '97:
Theory and Practice of Software Development.
Proceedings, 1997. XV, 884 pages. 1997.

Vol. 1215: J. M, L. M. Palma, J. Dongarra (Eds.), Vector
and Parallel Processing - VECPAR'96. Proceedings,
1996. XL 471 pages. 1997.

Vol. 1216: J. Dix, L. Moniz Pereira, T.C. Przymusinski
(Eds.), Non-Monotonic Extensions of Logic
Programming. Proceedings, 1996. XI, 224 pages. 1997.
(Subseries LNAI).

Vol. I217: E. Brinksma (Ed.), Tools and Algorithms for
the Construction and Analysis of Systems. Proceedings,
1997. X, 433 pages. 1997.

VoL 1218: G. PAun, A. Salomaa (Eds.), New Trends in
Formal Langaages. IX, 465 pages. 1997.

Vol. 1219: K. Rothermel, R. Popescu-Zeletin (Eds.),
Mobile Agents, Proceedings, 1997, VIII, 223 pages. 1997.

Vol. 1220: P. Brezany, Input/Output Intensive Massively
Parallel Computing. XIV, 288 pages. 1997.

Vol. 1221: G, Weir5 (Ed.), Distributed Artificial
Intelligence Meets Machine Learning. Proceedings, t 996.
X, 294 pages. 1997. (Suhseries LNAI).

Vol. 1222: J. Vitek, C. Tschudin (Eds.), Mobile Object
Systems. Proceedings, 1996. X, 319 pages. 1997.

Vol. I223: M. Peliilo, E.R. Hancock (Eds.), Energy
Minimization Methods in Computer Vision and Pattern
Recognition. Proceedings, 1997. XII, 549 pages. I997.

Vol. 1224: M. van Someren, G. Widmer (Eds.)o Machine
Learning: ECML-97. Proceedings, 1997. XI, 361 pages.
1997. (Snbseries LNAI).

Vol, 1225: B. Hertzberger, P. Sloot (Eds.), High-
Performance Computing and Networking. Proceedings~
1997. XXI, 1066 pages. 1997.

Vol, 1226: B. Reusch (Ed.), Computational Intelligence.
Proceedings. 1997. XIII, 609 pages. 1997.

Vol. 1227: D, Galmiche (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods, Proceedings,
1997. XI, 373 pages. 1997. (Snbseries LNAI).

Vol. 1228: S.-H. Nienhuys-Cheng, R. de Wolf,
Foundations of Inductive Logic Programming. XVtI, 404
pages. 1997. (Suhseries LNAI).

