Experiencing Answer Set Programming at Work
Today and Tomorrow

Torsten Schaub

University of Potsdam

(3% Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 1/61

Introduction
Modeling
Solving
Optimizing
Reacting

@ Summary

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Outline

(&8 Potassco
2/ 61

Introduction
Modeling

Solving
m Conflict-driven search
m Solver configurations
m Parallel solving
m Automatic solver engineering
m Domain-specific heuristics
Optimizing
Reacting

@ Summary

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Outline

(38 Potassco
3/61

Introduction

Outline

Introduction

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 4 /61

“What is the problem?”

Problem

Computer

Introduction

Informatics

“How to solve the problem?”

Solution

Torsten Schaub (KRRQUP)

Output

Experiencing ASP at Work

(EE\?Potassco
5/ 61

“What is the problem?”

Problem

Computer

Introduction

Informatics

versus “How to solve the problem?”

Solution

Torsten Schaub (KRRQUP)

Output

Experiencing ASP at Work

(38 Potassco
5/ 61

“What is the problem?”

Problem

Introduction

Traditional programming

versus “How to solve the problem?”

Solution

Computer

Torsten Schaub (KRRQUP)

Output

Experiencing ASP at Work

(38 Potassco
5/ 61

Introduction

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem Solution
Programming Interpreting
Program Output

Executing

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 5/ 61

Introduction

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem Solution

Interpreting

Computer Output

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 5/ 61

Introduction

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem Solution
Modeling Interpreting
Representation Output
Solving

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 5/ 61

Introduction

Declarative problem solving

Problem Solution
Modeling Interpreting
Representation Output
Solving

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 5/61

Introduction

Answer Set Programming
ER

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NP"P)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas, and users

@E’ Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 6 /61

Introduction

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities

ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas, and users

(Ei\i Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 6 /61

Introduction

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities
m ASP has its roots in
(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 6 /61

Introduction

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities

m ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

m ASP allows for solving all search problems in NP (and NPP)
in a uniform way

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 6 /61

Introduction

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities

m ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

m ASP allows for solving all search problems in NP (and NPP)
in a uniform way

m ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 6 /61

Introduction

Answer Set Programming
in a Nutshell

m ASP is an approach to declarative problem solving, combining
m a rich yet simple modeling language
m with high-performance solving capacities

m ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

m ASP allows for solving all search problems in NP (and NPP)
in a uniform way

m ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

m ASP embraces many emerging application areas, and users

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 6 /61

KR's shift of paradigm

(eg. Prolog)
Provide a representation of the problem
A solution is given by a derivation of a query

(eg. SATisfiability testing)
Provide a representation of the problem
A solution is given by a model of the representation

Represent planning problems as propositional theories so that
models not proofs describe solutions

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 7 /61

Introduction

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 7 /61

Introduction

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 7 /61

Introduction

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI'92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 7 /61

Introduction

Model Generation based Problem Solving

Representation

Solution

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Torsten Schaub (KRRQUP)

Experiencing ASP at Work

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models
expansions
extensions

(EE\E’Potassco
8/ 61

Introduction

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem | assignment
propositional horn theories smallest model
propositional theories models

propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

Torsten Schaub (KRRQUP)

Experiencing ASP at Work

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models
expansions
extensions

(38 Potassco
8/ 61

Introduction

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem | assignment
propositional horn theories smallest model
propositional theories models SAT
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models
auto-epistemic theories expansions
default theories extensions
(88 Potassco

Torsten Schaub (KRRQUP)

Experiencing ASP at Work

8 / 61

Introduction

Model Generation based Problem Solving

Representation Solution

constraint satisfaction problem | assignment

propositional horn theories smallest model

propositional theories models SAT

propositional theories minimal models

propositional theories stable models

propositional programs minimal models

propositional programs supported models

propositional programs stable models

first-order theories models

first-order theories minimal models

first-order theories stable models

first-order theories Herbrand models

auto-epistemic theories expansions NMR

default theories extensions NMR
(88 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work

8 / 61

Introduction

Model Generation based Problem Solving

Representation Solution

constraint satisfaction problem | assignment

propositional horn theories smallest model

propositional theories models SAT

propositional theories minimal models

propositional theories stable models

propositional programs minimal models

propositional programs supported models

propositional programs stable models ASP

first-order theories models

first-order theories minimal models

first-order theories stable models

first-order theories Herbrand models

auto-epistemic theories expansions NMR

default theories extensions NMR
(88 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work

8 / 61

Introduction

Answer Set Programming in general

Representation Solution
propositional theories stable models ASP
propositional programs stable models ASP
first-order theories stable models ASP

(88 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 8 /61

Introduction

Answer Set Programming in general

Representation Solution
propositional theories stable models ASP
propositional programs stable models ASP
first-order theories stable models ASP

(88 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 8 /61

Introduction

Answer Set Programming in practice

Representation

Solution

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories

first-order programs

Torsten Schaub (KRRQUP)

Experiencing ASP at Work

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models

minimal models
stable models
Herbrand models

expansions
extensions
stable Herbrand models
@Potassco
8 /61

Introduction

ASP versus LP

ASP | Prolog
Model generation Query orientation
Bottom-up Top-down
Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms
(Turing +) NP(NP) Turing

[1 =}
(88 Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 9 /61

Introduction

ASP versus SAT
ASP \ SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language =

Complex reasoning modes Satisfiability testing
Satisfiability Satisfiability
Enumeration /Projection =
Intersection /Union —
Optimization —

(Turing +) NP(NP) NP

[1 =}
(88 Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 10 / 61

Problem

Modeling

Logic
Program

Introduction

Grounder

ASP solving

Solution

Interpreting

Solver

Torsten Schaub (KRRQUP)

Stable
Models

Solving

Experiencing ASP at Work

(38 Potassco
11/ 61

Problem

Modeling

KR

Logic
Program

Introduction

Rooting ASP solving

Grounder

Solution

Interpreting

Solver

LP

Torsten Schaub (KRRQUP)

DB

Solving SAT

Experiencing ASP at Work

Stable
Models

DB+KR+LP

(38 Potassco
11/ 61

Introduction

Answer Set Programming

in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

(38 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 12 / 61

Introduction

Answer Set Programming
in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 12 / 61

Introduction

Answer Set Programming
in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SMT”"

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 12 / 61

Introduction

Declarativity versus Scalability

ASP does separate a problem’s representation from the algorithms used
for solving it

ASP does not separate a problem’s representation from its induced
combinatorics

Boolean constraint technology is rather sensitive to search parameters

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges
in Answer Set Solving. In Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday, pages 74-90. Spring(e_r\n 2011

&2 Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 13 / 61

Introduction

Declarativity versus Scalability

Declarativity

ASP does separate a problem's representation from the algorithms used
for solving it

ASP does not separate a problem’s representation from its induced
combinatorics

Boolean constraint technology is rather sensitive to search parameters

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges
in Answer Set Solving. In Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday, pages 74-90. Spring@r\c 2011

&2 Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 13 / 61

Introduction

Declarativity versus Scalability

Declarativity
ASP does separate a problem’s representation from the algorithms used
for solving it

Scalability

ASP does not separate a problem’s representation from its induced
combinatorics
Boolean constraint technology is rather sensitive to search parameters

(828 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 13 / 61

Introduction

Declarativity versus Scalability

Declarativity
ASP does separate a problem’s representation from the algorithms used
for solving it

Scalability

ASP does not separate a problem’s representation from its induced
combinatorics
Boolean constraint technology is rather sensitive to search parameters

Followup to: M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges

in Answer Set Solving. In Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday, pages 74-90. Spring(r%r_\b 2011
i2: Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 13 / 61

Modeling

Outline

Modeling

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 14 / 61

Modeling

The n-queens problem

m Place n queens on an n x n
chess board

m Queens must not attack one
another

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 15 / 61

Modeling

The n-queens problem

m Place n queens on an n x n
chess board

m Queens must not attack one
another

(38 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 15 / 61

Modeling

Basic encoding

queensB.1p

queen(1l..n,1..n) }.
:- not { queen(I,J) } ==
:- queen(I,J), queen(I,JJ), J != JJ.
:- queen(I,J), queen(II,J), I != II.
:- queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I-J == II-JJ
:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J == II+JJ.

(&8 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 16 / 61

Modeling

Advanced encoding

queensA.lp
{ queen(I,1..n) } == 1 :- I = 1..n.
{ queen(1..n,J) } == 1 :- J = 1..n.
:- { queen(D-J,J) } >= 2, D = 2..2%n.
:- { queen(D+J,J) } >= 2, D = 1-n..n-1.
(8§ Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 17 / 61

Modeling

Corrupted encoding
queensC.1p

{ queen(l1..n,1..n,1..n) }.

:- not { queen(I,J,K) } ==

:- queen(I,J,K), queen(I,JJ,K), J !'= JJ.

:- queen(I,J,K), queen(II,J,K), I != II.

:- queen(I,J,K), queen(II,JJ,K), (I,J)!'=(II,JJ), I-J==II-JJ.
:- queen(I,J,K), queen(II,JJ,K), (I,J)!'=(II,JJ), I+J==II+JJ.

queen(I,J) :- queen(I,J,K).

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 18 / 61

Modeling

Grounding size

via wc --lines

n | queensB.1lp | queensA.1lp | queensC.1p
10 3053 310 30413
20 25493 830 509613
30 87333 1550 2619613
40 208573 2470 8342413
50 409213 3590 20460013
60 709253 4910 42554413
70 1128693 6430 79007613
80 1687533 8150 135001613
90 2405773 10070 217255513

100 3303413 12190 331350013

Torsten Schaub (KRRQUP)

Experiencing ASP at Work

@? Potassco
19 / 61

Modeling

Challenge one

Fact

ASP Modeling (still) requires Craft, Experience, and Knowledge

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 20 / 61

Modeling

Challenge one

Fact
ASP Modeling (still) requires Craft, Experience, and Knowledge

Challenge

Theory and Tools for Non-Ground Pre-processing

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 20 / 61

Modeling

Challenge one

Fact
ASP Modeling (still) requires Craft, Experience, and Knowledge

Challenge
Theory and Tools for Non-Ground Pre-processing — Just like SQL !

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 20 / 61

Solving

Outline

Solving
m Conflict-driven search
Solver configurations
Parallel solving
Automatic solver engineering
Domain-specific heuristics

(38 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 21 /61

Solving Conflict-driven search

Outline
Introduction
Modeling
Solving
m Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering

Domain-specific heuristics
Optimizing
Reacting
@ Summary

(8 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 22 /61

Solving Conflict-driven search

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

m Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

m (Unit) propagation
m (Chronological) backtracking

m in ASP, eg smodels

m Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
m Conflict analysis (via resolution)
Learning + Backjumping + Assertion

m in ASP, eg clasp

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 23 /61

Solving Conflict-driven search

DPLL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 24 / 61

Solving Conflict-driven search

CDCL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
ERENZ4S // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
G'\“ Potassc
a22 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 25 / 61

Preprocessing

Program
Builder

Preprocessor |

Logic
Program

Torsten Schaub (KRRQUP)

Solving

Conflict-driven search

Multi-threaded architecture of clasp

r —
Coordination

-

N
SharedContext ParallelContext
Propositional ﬁ Threads][S1[Sa] - IS4
Variables
| Z N lCounterHT[W[---[Sl
[Atoms <] Bodies | [Queue |[Pi[Pa[- P,
Static Nogoods Shared Nogoods
Implication Graph Nogood A
Distributor)
- i s
(Solver 1...n ot R
onflict
Resolution Recorded Nogoods
Decision -
Heuristic Propagation
Assignment Unit Post
Atoms/Bodies Propagation Propagation
ASSCO

Experiencing ASP at Work

26 / 61

Preprocessing

Program
Builder

Preprocessor |

Logic
Program

Torsten Schaub (KRRQUP)

Solving

Conflict-driven search

Multi-threaded architecture of clasp

r —
Coordination

-

N
SharedContext ParallelContext
Propositional ﬁ Threads][S1[Sa] - IS4
Variables
| Z N lCounterHT[W[---[Sl
[Atoms <] Bodies | [Queue |[Pi[Pa[- P,
Static Nogoods Shared Nogoods
Implication Graph Nogood A
Distributor)
- i s
(Solver 1...n ot R
onflict
Resolution Recorded Nogoods
Decision -
Heuristic Propagation
Assignment Unit Post
Atoms/Bodies Propagation Propagation
ASSCO

Experiencing ASP at Work

26 / 61

Preprocessing

Program
Builder

Preprocessor |

Solving

Conflict-driven search

Multi-threaded architecture of clasp

r —
Coordination

Logic
Program

-

S
SharedContext ParallelContext
Propositional % ThreadsHSﬂSg[- . '[Sn‘
Variables
L Vi N\ lCounterHT[W[---[Sl
[Atoms [<—{ Bodies | [Queue |[Pi[Pa[- P,
Static Nogoods Shared Nogoods
Implication Graph Nogood EEEEEEEEEEEN
Distributor)
= i)
(Solver 1. .n ot 3
onflict
R e Recorded Nogoods
Decision y
Heuristic Propagation
Assignment Unit Post
Atoms/Bodies Propagation Propagation
ASSCO

Torsten Schaub (KRRQUP)

Experiencing ASP at Work

26 / 61

Preprocessing

Program
Builder

Preprocessor |

Logic
Program

Torsten Schaub (KRRQUP)

Solving

Conflict-driven search

Multi-threaded architecture of clasp

r —
Coordination

=

N
SharedContext ParallelContext
Propositional ﬁ Threads][S1[Sa] - IS4
VELELIES
| Z N lCounterHT[W[---[Sl
[Atoms <] Bodies | [Queue |[Pi[Pa[- P,
Static Nogoods Shared Nogoods
Implication Graph Nogood A
Distributor)
- i s
(Solver 1...n ot)
onflict
Resolution Recorded Nogoods
Decision -
Heuristic Propagation
Assignment Unit Post
Atoms/Bodies Propagation Propagation
ASSCO

Experiencing ASP at Work

26 / 61

Solving Conflict-driven search

Challenge two

Fact

Boolean constraint technology is rather sensitive to search parameters

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Solving Conflict-driven search

Challenge two

Fact

Boolean constraint technology is rather sensitive to search parameters

Challenge
Robust ASP solving technology

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 27 / 61

Solving Conflict-driven search

Challenge two

Fact

Boolean constraint technology is rather sensitive to search parameters

Challenge

Robust ASP solving technology — Taming the oracle !

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 27 / 61

Solving Conflict-driven search

Inside clasp, or the encoding’s impact
queens{B,A}.1p, n=8

[1 =}
(3% Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 28 / 61

Solving Conflict-driven search

Inside clasp, or the encoding’s impact
queens{B,A}.1p, n=8

queensB.1p

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Solving Conflict-driven search

Inside clasp, or the encoding’s impact
queens{B,A}.1p, n=8

queensB.1p queensA.lp

(\?Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 28 / 61

Solving Conflict-driven search

Inside clasp, or the encoding’s impact
queens{B,A}.1p, n=8

queensB.1p queensA.lp

Like the pictures...?
w Check out Arne Konig's talk on Tuesday at 16:00+ during TechComm 3

)
(3% Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 28 / 61

Solving Solver configurations

Outline

Introduction
Modeling
Solving

Conflict-driven search
m Solver configurations
Parallel solving
Automatic solver engineering
Domain-specific heuristics

Optimizing
Reacting
@ Summary

am0
(3% Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 29 / 61

Solving Solver configurations

Configurations

clasp version 2.1.3

--configuration=<arg> : Configure default configuration [frumpy]
<arg>: frumpyl|jumpy|handy|crafty|trendy|chatty
frumpy: Use conservative defaults
jumpy : Use aggressive defaults
handy : Use defaults geared towards large problems
crafty: Use defaults geared towards crafted problems
trendy: Use defaults geared towards industrial problems
chatty: Use 4 competing threads initialized via the default portfolio

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 30/ 61

Solving Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |-—trendy |--chatty
50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 31 /61

Solving Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |-—trendy |--chatty
50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 0.212 14.522 0.271 19.883 0.347
200 0.415 15.026 0.667 32.476 0.753
500 3.199 7.471 6.104

(times in seconds, cut-off at 60 seconds)

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 31/61

Solving Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |-—-trendy |--chatty
50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 31/61

Solving Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |-—trendy |--chatty
50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 0.212 14.522 0.271 19.883 0.347
200 0.415 15.026 0.667 32.476 0.753
500 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 31 /61

Solving Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |-—trendy |--chatty
50 (% 0.063 0.023 3.416 0.030 1.805 0.061
100 @.364 0.099 7.891 0.136 7.321 0.121
150 €,000 0.212 14.522 0.271 19.883 0.347
200 60 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 31 /61

Solving Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |--trendy |--chatty
50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 31 /61

Solving Parallel solving

Outline

Introduction
Modeling
Solving

Conflict-driven search
Solver configurations
m Parallel solving
Automatic solver engineering
Domain-specific heuristics

Optimizing
Reacting
@ Summary

am0
(3% Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 32 /61

Solving Parallel solving

clasp's default portfolio for parallel solving

via clasp --print-portfolio

[CRAFTY]: --heuristic=vsids --restarts=x,128,1.5 --deletion=3,75,10.0 --del-init-r=1000,9000 --del-grow=1.1,20.

[TRENDY] : heuristic=vsids --restarts=d,100,0.7 --deletion=3,50 --del-init=500,19500 --del-grow=1.1,20.0,x,10C
[FRUMPY] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[JUMPY]: --heuristic=vsids --restarts=1,100 --del-init-r=1000,20000 --del-algo=basic,2 --deletion=3,75 --del-g
[STRONG] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[HANDY]: --heuristic=vsids --restarts=d,100,0.7 --deletion=2,50,20.0 --del-max=200000 --del-algo=sort,2 --del-
[S2]: --heuristic=vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counte
[S4]: --heuristic=vsids --restarts=1,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 -
[SLOW]: --heuristic=berkmin --berk-max=512 --restarts=f,16000 --lookahead=atom,50

[VMTF]: --heuristic=vmtf --str=no --contr=0 --restarts=x,100,1.3 --del-init-r=800,9200

[SIMPLE]: --heuristic=vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[LUBY-SP]: --heuristic=vsids --restarts=1,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[LOCAL-R]: --berk-max=512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 33 /61

Solving Parallel solving

clasp's default portfolio for parallel solving

via clasp —--print-portfolio

[CRAFTY]: --heuristic=vsids --restarts=x,128,1.5 --deletion=3,75,10.0 --del-init-r=1000,9000 --del-grow=1.1,20.

[TRENDY] : heuristic=vsids --restarts=d,100,0.7 --deletion=3,50 --del-init=500,19500 --del-grow=1.1,20.0,x,10C
[FRUMPY] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[JUMPY]: --heuristic=vsids --restarts=1,100 --del-init-r=1000,20000 --del-algo=basic,2 --deletion=3,75 --del-g
[STRONG] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[HANDY]: --heuristic=vsids --restarts=d,100,0.7 --deletion=2,50,20.0 --del-max=200000 --del-algo=sort,2 --del-
[S2]: --heuristic=vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counte
[S4]: --heuristic=vsids --restarts=1,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 -
[SLOW]: --heuristic=berkmin --berk-max=512 --restarts=f,16000 --lookahead=atom,50

[VMTF]: --heuristic=vmtf --str=no --contr=0 --restarts=x,100,1.3 --del-init-r=800,9200

[SIMPLE]: --heuristic=vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[LUBY-SP]: --heuristic=vsids --restarts=1,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[LOCAL-R]: --berk-max=512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

m clasp’s portfolio is fully customizable
m configurations are assigned in a round-robin fashion to threads
during parallel solving

Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 33 /61

Solving Parallel solving

clasp's default portfolio for parallel solving

via clasp —--print-portfolio

[CRAFTY]: --heuristic=vsids --restarts=x,128,1.5 --deletion=3,75,10.0 --del-init-r=1000,9000 --del-grow=1.1,20.
[TRENDY] : --heuristic=vsids --restarts=d,100,0.7 --deletion=3,50 --del-init=500,19500 --del-grow=1.1,20.0,x,10C
[FRUMPY] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[JUMPY]: --heuristic=vsids --restarts=1,100 --del-init-r=1000,20000 --del-algo=basic,2 --deletion=3,75 --del-g
[STRONG] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[HANDY]: --heuristic=vsids --restarts=d,100,0.7 --deletion=2,50,20.0 --del-max=200000 --del-algo=sort,2 --del-
[S2]: --heuristic=vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counte
[S4]: --heuristic=vsids --restarts=1,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 -
[SLOW]: --heuristic=berkmin --berk-max=512 --restarts=f,16000 --lookahead=atom,50

[VMTF]: --heuristic=vmtf --str=no --contr=0 --restarts=x,100,1.3 --del-init-r=800,9200

[SIMPLE]: --heuristic=vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[LUBY-SP]: --heuristic=vsids --restarts=1,128 --save-p --otfs=1 --init- --contr=0 --opt-heu=3

[LOCAL-R]: --berk-max=512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

m clasp’s portfolio is fully customizable

m configurations are assigned in a round-robin fashion to threads

during parallel solving

m —-chatty uses four threads with CRAFTY, TRENDY, FRUMPY, and J(ILMPY

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Solving Automatic solver engineering

Qutline

Introduction
Modeling
Solving

Conflict-driven search

Solver configurations

Parallel solving

m Automatic solver engineering

Domain-specific heuristics
Optimizing
Reacting
@ Summary

(8 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 34 /61

Solving Automatic solver engineering

Correlation of clasp configurations

Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 35/ 61

Solving Automatic solver engineering

Algorithm engineering

Algorithm
Configuration:
piclasp

Algorithm
Schedules:
aspeed

Algorithm
Selection:
claspfolio

(EE\E Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 36 / 61

Solving Automatic solver engineering

Algorithm engineering

.m0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 36 / 61

Solving Automatic solver engineering

piclasp

Task

Identify an individual configuration for solving a specific problem class
(having a homogeneous instance set)

(38 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 37 /61

Solving Automatic solver engineering
piclasp

Task

Identify an individual configuration for solving a specific problem class
(having a homogeneous instance set)

Approach

Use an algorithm configurator (eg SMAC or ParamiLS) for finding a
well performing configuration

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 37 /61

Solving Automatic solver engineering

piclasp's search space

Clasp - Search Options:

--heuristic=<arg> : Configure decision heuristic
<arg>: Berkmin|Vmtf|Vsids|Unit|None
Berkmin: Apply BerkMin-like heuristic

Vmtf : Apply Siege-like heuristic
Vsids : Apply Chaff-like heuristic
Unit : Apply Smodels-like heuristic (Default if --no-lookback)
None : Select the first free variable
--[no-J]init-moms : Initialize heuristic with MOMS-score
--score-other=<n> : Score 0=nol|l=loop|2=all other learnt nogoods
--sign-def=<n> : Default sign: O=typel1=no|2=yes|3=rnd
——[no-Isign-fix : Disable sign heuristics and use default signs only
berk-max=<n> : Consider at most <n> nogoods in Berkmin heuristic
[no-]berk-huang : Enable/Disable Huang-scoring in Berkmin
[no-]berk-once : Score sets (instead of multisets) in Berkmin
—-vmtf-mtf=<n> : In Vmtf move <n> conflict-literals to the front
--vsids-decay=<n> : In Vsids use 1.0/0.<n> as decay factor
--[no-Inant : In Unit count only atoms in NAnt(P)
——opt-heuristic[=0..3]: Use opt. in 1=sign|2=model|3=both heuristics
--save-progress [=<n>] : Use RSat-like progress saving on backjumps > <n>
--rand-freq=<p> : Make random decisions with probability <p>
--init-watches=0..2 : Configure watched literal initialization [1]
Watch O=first|i=random|2=least watched literals in nogoods
--seed=<n> : Set random number generator’s seed to <n>

--lookahead[=<arg>|no] : Configure failed-literal detection (fld)
<arg>: <type>[,<n 1..umax>] / Implicit: atom

<type>: Run fld via atom|body|hybrid lookahead PR

<n> : Disable fld after <n> applications ([-1]=no limit) POtdSS(’O

Torsten Schaub (KRRQUP) Experiencing ASP at Work 38 /61

Solving Automatic solver engineering

aspeed

Task

Synthesize a timeout- and time-minimal schedule of configurations for
solving a heterogeneous set of problem instances

(38 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 39 /61

Solving Automatic solver engineering

aspeed

Task

Synthesize a timeout- and time-minimal schedule of configurations for
solving a heterogeneous set of problem instances

Approach

Use ASP (and runtime data) for finding such a schedule

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 39 /61

Solving Automatic solver engineering

aspeed’s basic encoding

solver(S) :- time(_,S,_).

time(S,T) :- time(_,S,T).
unit(1..N) :- units(N).

{ slice(U,S,T) : time(S,T) : T <= K : unit(U) } 1 :- solver(S), kappa(K).
:- not [slice(U,S,T) = T] K, kappa(K), unit(U).

slice(S,T) :- slice(_,S,T).

solved(I,S) :- slice(S,T), time(I,S,T).

solved(I,S) :- solved(J,S), order(I,J,S).

solved(I) :— solved(I,_).

#maximize { solved(I) @ 2 }.
#minimize [slice(S,T) = T*T @ 1].

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 40 / 61

Solving Automatic solver engineering

A resulting schedule

100 200 300 400 500 600 700 800
time

default clasp-prepro
clasp-vsids clasp-luby

Potassco
Torsten Schaub (KRR@UP) Experiencing ASP at Work 41 / 61

Solving Automatic solver engineering

claspfolio

Task

Select an individual configuration for solving a specific problem instance
(from a heterogeneous instance set)

(38 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 42 / 61

Solving Automatic solver engineering

claspfolio

Task

Select an individual configuration for solving a specific problem instance
(from a heterogeneous instance set)

Approach

Use instance features to select a promising configuration from a portfolio
via trained classifiers

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 42 / 61

Solving Automatic solver engineering

claspre features

Number of atoms Number of choices
Number of rule types Number of types of learnt
nogoods

Number of deleted nogoods
Average backjump length
Tightness
Equivalences between atoms
and bodies
Number of constraint types

All in all 32 + 25 . 2 features are calculated

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 43 / 61

Solving Automatic solver engineering

claspre features

m Plain instance features

m Number of atoms Number of choices
m Number of rule types Number of types of learnt
[[nogoods

Number of deleted nogoods
Average backjump length
Tightness
Equivalences between atoms
and bodies
Number of constraint types

All in all 32 + 25 - 2 features are calculated

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 43 / 61

Solving Automatic solver engineering

claspre features

m Plain instance features

m Number of atoms
m Number of rule types
...

m Features after preprocessing

m Tightness
m Equivalences between atoms
and bodies

m Number of constraint types
n ...

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 43 / 61

Solving Automatic solver engineering

claspre features

m Plain instance features m Search features after restarting
m Number of atoms m Number of choices
m Number of rule types m Number of types of learnt
[[nogoods

. m Number of deleted nogoods
m Features after preprocessing

m Average backjump length
m Tightness [T
m Equivalences between atoms
and bodies
m Number of constraint types
"

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 43 / 61

Solving Automatic solver engineering

claspre features

m Plain instance features m Search features after restarting
m Number of atoms m Number of choices
m Number of rule types m Number of types of learnt
[[nogoods

. m Number of deleted nogoods
m Features after preprocessing

m Average backjump length
m Tightness [T
m Equivalences between atoms
and bodies
m Number of constraint types
"

All in all 32 + 25 - 2 features are calculated

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 43 / 61

Torsten Schaub

(KRRQUP)

Solving Automatic solver engineering

Feature space in practice

Experiencing ASP at Work

clasp/5-n1
clasp/14-n1
clasp/13-n1

clasp/11-n1
clasp/21-nl
clasp/23-n1

dotassco
44 / 61

Solving Automatic solver engineering

claspfolio's architecture

‘ Instances ‘ Solvers ‘

Compute Features [Assess Performance]
Train Models

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Torsten Schaub (KRRQUP)

Solving Automatic solver engineering

claspfolio’s architecture

‘ Instances ‘ ‘ Solvers ‘

o~
Compute Features [Assess Performance]

Learning

Experiencing ASP at Work

Solving Automatic solver engineering

claspfolio’s architecture

‘ Instances ‘ ‘ Solvers ‘

Compute Features [Assess Performance]
(New) Instance Tzt NMieatks

[Compute Features]—{ Score Solvers J

Learning

[Run best scored Solver J

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Solving Automatic solver engineering

claspfolio’s architecture

‘ Instances ‘ ‘ Solvers ‘

Compute Features [Assess Performance]
(New) Instance Tzt NMieatks

[Compute Features]—{ Score Solvers J

Learning

[Run best scored Solver J
Producing

Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 45 / 61

Solving Domain-specific heuristics

Outline

Introduction
Modeling
Solving

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
m Domain-specific heuristics

Optimizing
Reacting
@ Summary

Torsten Schaub (KRRQUP) Experiencing ASP at Work 46 / 61

Solving Domain-specific heuristics

hclasp

m hclasp allows for incorporating domain-specific heuristics

m input language for expressing domain-specific heuristics
m solving capacities for integrating domain-specific heuristics

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Solving Domain-specific heuristics

hclasp

m hclasp allows for incorporating domain-specific heuristics

m input language for expressing domain-specific heuristics
m solving capacities for integrating domain-specific heuristics

m Example
m Extend your encoding, enc.1p, by a heuristic rule like

_heuristic(occ(A,T) ,factor,T) :- action(A),time(T).

and the heuristic information via a #show statement

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 47 / 61

Solving Domain-specific heuristics

hclasp

m hclasp allows for incorporating domain-specific heuristics

m input language for expressing domain-specific heuristics
m solving capacities for integrating domain-specific heuristics

m Example
m Extend your encoding, enc.1p, by a heuristic rule like

_heuristic(occ(A,T),factor,T) :- action(A),time(T).
and the heuristic information via a #show statement

m Ground the program (as usual) and make hclasp notice your
heuristic modifications

$ gringo enc.lp | hclasp --heuristic=domain

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 47 / 61

Solving Domain-specific heuristics

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences
if no conflict then
if all variables assigned then return variable assignment

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit
G'\“ Potassc
2 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 48 / 61

Solving Domain-specific heuristics

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences
if no conflict then
if all variables assigned then return variable assignment

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit
(8§ Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 48 / 61

Solving Domain-specific heuristics

Inside decide

h:A—[0,+00) and

s: A—{T,F}
h(a) := « x h(a) + B(a) for each ae A
U:=A\ (AT U AF)
C := argmax,¢yh(a)
a:=71(C)
A

(& Potassco
Torsten Schaub (KRRQUP)

49 / 61

Experiencing ASP at Work

Solving Domain-specific heuristics
Inside decide

m Heuristic functions

h:A—[0,4+00) and s: A— {T,F}

h(a) := a x h(a) + p(a) for each a € A
U:=A\ (AT U AF)

C := argmax, h(a)

a:=71(C)

A=AU{a— s(a)}

am0
(3% Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 49 / 61

Solving Domain-specific heuristics

Inside decide

m Heuristic functions
h:A—[0,4+00) and s: A— {T,F}
m Algorithmic scheme
h(a) := a x h(a) + B(a) for each ae A

U:= A\ (AT U AF)
= argmax,ch(a)

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 49 / 61

Solving Domain-specific heuristics

Heuristic language elements

m Heuristic predicate _heuristic

(atom, a, and integer, v)
for initializing the heuristic value of a with v
for amplifying the heuristic value of a by factor v
for ranking all atoms; the rank of a is v
for attributing the sign of v as truth value to a

_heuristic(occurs(move) ,factor,5)

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 50 / 61

Solving Domain-specific heuristics

Heuristic language elements

m Heuristic predicate _heuristic

m Heuristic modifiers (atom, a, and integer, v)
init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of ais v
sign for attributing the sign of v as truth value to a

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 50 / 61

Solving Domain-specific heuristics

Heuristic language elements

m Heuristic predicate _heuristic

m Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of ais v
sign for attributing the sign of v as truth value to a

m Heuristic atoms

_heuristic(occurs(move) ,factor,5)

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 50 / 61

Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).

(38 Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 51 /61

Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).
_heuristic(occurs(A,T),factor,2) :- action(A), time(T).

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 51 /61

Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).
_heuristic(occurs(A,T),level,1) :- action(A), time(T).

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 51 /61

Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).
_heuristic(occurs(A,T),factor,T) :- action(A), time(T).

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 51 /61

Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).

_heuristic(A,level,V) :- _heuristic(A,true, V).
_heuristic(A,sign, 1) :- _heuristic(A,true, V).

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 51 /61

Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).

_heuristic(A,level,V) :- _heuristic(A,false,V).
_heuristic(A,sign,-1) :- _heuristic(A,false,V).

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 51 /61

Solving

Domain-specific heuristics

Planning Competition Benchmarks

_heuristic(holds(F,T-1),true, t-T+1)
_heuristic(holds(F,T-1),false,t-T+1)
fluent(F), time(T), not holds(F,T).

:— holds(F,T).

Problem base configuration ~heuristic base c. (SAT) | _heur. (SAT)
Blocks'00| 134.4s (180/61) 9.2s (239/3) | 163.2s (59) 2.6s (0)
Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s () 0.0s ()
Freecell’00| 288.7s (147/115) | 184.2s (194/74) | 226.4s (47) | 52.0s (0)
Logistics'00| 145.8s (148/61) | 115.3s (168/52) | 113.9s (23) | 15.5s (3)
Depots'02| 400.3s (51/184) | 297.4s (115/135) | 389.0s (64) | 61.6s (0)
Driverlog’02| 308.3s (108/143) | 189.6s (169/92) | 245.8s (61) 6.1s (0)
Rovers'02| 245.8s (138/112) | 165.7s (179/79) | 162.9s (41) 5.7s ()]
Satellite'02| 398.4s (73/186) | 229.9s (155/106) | 364.6s (82) | 30.8s (0)
Zenotravel'02| 350.7s (101/169) | 239.0s (154/116) | 224.5s (53) 6.3s ()
Total| 252.8s (1225/1031) | 158.9s (1652/657) | 187.2s (430) | 17.1s [€)

(& Potassco

Torsten Schaub (KRRQUP) Experiencing ASP at Work 52 /61

Solving

Domain-specific heuristics

Planning Competition Benchmarks

_heuristic(holds(F,T-1) ,true, t-T+1)
_heuristic(holds(F,T-1),false,t-T+1)
fluent (F), time(T), not holds(F,T).

:— holds(F,T).

Problem base configuration _heuristic base c. (SAT) | _heur. (SAT)
Blocks'00| 134.4s _ (180/61) 925 (239/3) | 163.2s (59) | 265 (0)
Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00| 288.7s (147/115) | 184.2s (194/74) | 226.4s (47) | 52.0s (0)
Logistics’00| 145.8s (148/61) | 115.3s (168/52) | 113.9s (23) | 1555 (3)
Depots’'02| 400.3s (51/184) | 297.4s (115/135) | 389.0s (64) | 61.6s (0)
Driverlog'02| 308.3s (108/143) | 189.6s (169/92) | 245.8s (61) | 6.1s (0)
Rovers'02| 245.8s (138/112) | 165.7s (179/79) | 162.9s (41) 5.7s ()]
Satellite’02| 398.4s (73/186) | 229.9s (155/106) | 364.6s (82) | 30.8s (0)
Zenotravel'02| 350.7s (101/169) | 239.0s (154/116) | 2245s (53) | 6.3s (0)
Total| 252.8s (1225/1031) | 158.0s (1652/657) | 187.2s (430) | 17.1s (3

Torsten Schaub

(KRRQUP)

Experiencing ASP at Work

@? Potassco
52 / 61

Solving

Domain-specific heuristics

Planning Competition Benchmarks

_heuristic(holds(F,T-1) ,true, t-T+1)
_heuristic(holds(F,T-1),false,t-T+1)
fluent (F), time(T), not holds(F,T).

:— holds(F,T).

Problem base configuration _heuristic base c. (SAT) | _heur. (SAT)
Blocks'00| 134.4s _ (180/61) 925 (239/3) | 163.2s (59) | 2.6s (0)
Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00| 288.7s (147/115) | 184.2s (194/74) | 226.4s (47) | 52.0s (0)
Logistics’00| 145.8s (148/61) | 115.3s (168/52) | 113.9s (23) | 1555 (3)
Depots’'02| 400.3s (51/184) | 297.4s (115/135) | 389.0s (64) | 61.6s (0)
Driverlog'02| 308.3s (108/143) | 189.6s (169/92) | 245.8s (61) | 6.1s (0)
Rovers'02| 245.8s (138/112) | 165.7s (179/79) | 162.9s (41) 5.7s ()]
Satellite’02| 398.4s (73/186) | 229.9s (155/106) | 364.6s (82) | 30.8s (0)
Zenotravel'02| 350.7s (101/169) | 239.0s (154/116) | 2245s (53) | 6.3s (0)
Total| 252.8s (1225/1031) | 158.0s (1652/657) | 187.2s (430) | 17.1s _ (3)

Torsten Schaub

(KRRQUP)

Experiencing ASP at Work

@? Potassco
52 / 61

Optimizing

Outline

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

Optimizing

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 53 /61

Optimizing

Challenge three (or: one+two)

Fact

Many real-world applications involve optimization

[1 =}
(3 Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 54 / 61

Optimizing

Challenge three (or: one+two)

Fact

Many real-world applications involve optimization

Challenge

Theory and Tools for versatile optimization methods

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 54 / 61

Optimizing

Alternative ways of optimization

Branch-and-Bound optimization in clasp
Hierarchical Branch-and-Bound optimization in clasp
Unsatisfiability-based optimization in unclasp
Incremental optimization in iclingo

Torsten Schaub (KRRQUP) Experiencing ASP at Work

(38 Potassco
55 / 61

Optimizing

Alternative ways of optimization

Branch-and-Bound optimization in clasp
Hierarchical Branch-and-Bound optimization in clasp
Unsatisfiability-based optimization in unclasp
Incremental optimization in iclingo

Saturation-based optimization in metasp (via claspD)

Heuristic-driven optimization in hclasp

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 55 / 61

Optimizing

Alternative ways of optimization

m Branch-and-Bound optimization in clasp
m SAT ...SAT
Hierarchical Branch-and-Bound optimization in clasp

Unsatisfiability-based optimization in unclasp

Incremental optimization in iclingo

Saturation-based optimization in metasp (via claspD)
Heuristic-driven optimization in hclasp

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 55 / 61

Optimizing

Alternative ways of optimization

Branch-and-Bound optimization in clasp
m SAT ...SAT

m Hierarchical Branch-and-Bound optimization in clasp
m SAT ...SAT SAT ...SAT SAT ...SAT

m Unsatisfiability-based optimization in unclasp
m(...) SAT

m Incremental optimization in iclingo

] SAT

Saturation-based optimization in metasp (via claspD)

Heuristic-driven optimization in hclasp

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 55 / 61

Optimizing

Alternative ways of optimization

m Branch-and-Bound optimization in clasp

m SAT ...SAT
m Hierarchical Branch-and-Bound optimization in clasp
m SAT ...SAT SAT ...SAT SAT ...SAT
m Unsatisfiability-based optimization in unclasp
m(...) SAT
m Incremental optimization in iclingo
] SAT

m Saturation-based optimization in metasp (via claspD)

m (SATo ...) SATo
m Heuristic-driven optimization in hclasp
m SAT

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 55 / 61

Reacting

Outline

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

Reacting

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 56 / 61

Reacting

Challenge four (or: one+one+two)

Fact

Intelligence is build around us and in our pockets

[1 =}
(3 Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 57 / 61

Reacting

Challenge four (or: one+one+two)

Fact

Intelligence is build around us and in our pockets

Challenge

Incremental and reactive ASP solving technology

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 57 / 61

Reacting

Going online

Planning and reasoning about action with iclingo

Sliding windows in stream reasoning with oclingo
Interactive query-answering with oclingo

Cognitive robotics with ROSoClingo

Torsten Schaub (KRRQUP) Experiencing ASP at Work

(38 Potassco
58 / 61

Reacting

Going online

Planning and reasoning about action with iclingo

Sliding windows in stream reasoning with oclingo
Interactive query-answering with oclingo

Cognitive robotics with ROSoClingo

“Ke Jia” robots
(X. Chen, UST China)

Torsten Schaub (KRRQUP) Experiencing ASP at Work

(88 Potassco
58 / 61

Reacting

Going online

Planning and reasoning about action with iclingo

Sliding windows in stream reasoning with oclingo
Interactive query-answering with oclingo

Cognitive robotics with ROSoClingo

“Ke Jia” robots
(X. Chen, UST China)

Torsten Schaub (KRRQUP) Experiencing ASP at Work

(88 Potassco
58 / 61

Summary

Outline

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

@ Summary

am0
(& Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 59 / 61

Summary

Declarativity

ASP separates a problem’s representation
from the algorithms used for solving it

Torsten Schaub (KRRQUP) Experiencing ASP at Work

Summary

(38 Potassco
60 / 61

potassco.sourceforge.net

Summary

Summary
Declarativity
ASP separates a problem’s representation
from the algorithms used for solving it
Scalability

There is no free lunch !

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 60 / 61

potassco.sourceforge.net

Summary

Summary
Declarativity
ASP separates a problem’s representation
from the algorithms used for solving it
Scalability

There is no free lunch !

Challenges

Modeling
Solving
Optimizing
Reacting

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 60 / 61

potassco.sourceforge.net

Summary

Summary
Declarativity
ASP separates a problem’s representation
from the algorithms used for solving it
Scalability

There is no free lunch !
Challenges

[
m Solving
m Optimizing
m Reacting

(88 Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 60 / 61

potassco.sourceforge.net

Summary

Summary
Declarativity
ASP separates a problem’s representation
from the algorithms used for solving it
Scalability

There is no free lunch !

Challenges Visit us !
potassco.sourceforge.net
= Modeling m free ASP systems
u SO|V.ing . m open source software
m Optimizing m teaching material
m Reacting

[1 =}
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 60 / 61

potassco.sourceforge.net

Summary

Potassco is a composition of people

Benjamin Andres o Christian Anger o Farid Benhammadi o

Philippe Besnard o Paul Borchert o Christian Drescher o

Steve Dworschak o Johannes Fichte o André Floter o Martin Gebser o
Mona Gharib o Susanne Grell o Jean Gressmann o Torsten Grote o
Holger Jost o Roland Kaminski o Benjamin Kaufmann o

Kathrin Konczak o Murat Knecht o Arne Konig o Thomas Linke o
Benjamin Lipfert o Oliver Matheis o André Neumann o

Pascal Nicolas o Philipp Obermeier o Max Ostrowski o Javier Romero
o Orkunt Sabuncu o Vladimir Sarsakov o Marius Schneider o

Sven Thiele o Richard Tichy o Santiago Videla o Philippe Veber o
Kewen Wang o Philipp Wanko o Matthias Weise o Peter-Uwe Zettiér
o Stefan Ziller

amo r
(8§ Potassco
Torsten Schaub (KRRQUP) Experiencing ASP at Work 61 / 61

Summary

Potassco is a composition of people

Benjamin Andres o Christian Anger o Farid Benhammadi o

Philippe Besnard o Paul Borchert o Christian Drescher o

Steve Dworschak o Johannes Fichte o André Floter o Martin Gebser o
Mona Gharib o Susanne Grell o Jean Gressmann o Torsten Grote o
Holger Jost o Roland Kaminski o Benjamin Kaufmann o

Kathrin Konczak o Murat Knecht o Arne Konig o Thomas Linke o
Benjamin Lipfert o Oliver Matheis o André Neumann o

Pascal Nicolas o Philipp Obermeier o Max Ostrowski o Javier Romero
o Orkunt Sabuncu o Vladimir Sarsakov o Marius Schneider o

Sven Thiele o Richard Tichy o Santiago Videla o Philippe Veber o
Kewen Wang o Philipp Wanko o Matthias Weise o Peter-Uwe Zettiér
o Stefan Ziller

Dankeschon! Et mercil @ Potasse

Torsten Schaub (KRRQUP) Experiencing ASP at Work 61 / 61

	Introduction
	Modeling
	Solving
	Conflict-driven search
	Solver configurations
	Parallel solving
	Automatic solver engineering
	Domain-specific heuristics

	Optimizing
	Reacting
	Summary

