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Introduction

Answer Set Programming
ER

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases

logic programming (with negation)

(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NP"P)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas, and users
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KR's shift of paradigm

(eg. Prolog)
Provide a representation of the problem
A solution is given by a derivation of a query

(eg. SATisfiability testing)
Provide a representation of the problem
A solution is given by a model of the representation

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Introduction

KR's shift of paradigm

Theorem Proving based approach (eg. Prolog)

Provide a representation of the problem
A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

Provide a representation of the problem
A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI'92)

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Introduction

Model Generation based Problem Solving
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propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories
first-order theories
first-order theories
first-order theories
auto-epistemic theories
default theories
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Introduction

Answer Set Programming in general
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Introduction

Answer Set Programming in practice
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Introduction

ASP versus LP

ASP | Prolog
Model generation Query orientation
Bottom-up Top-down
Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms
(Turing +) NP(NP) Turing
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Introduction

ASP versus SAT
ASP \ SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language =

Complex reasoning modes Satisfiability testing
Satisfiability Satisfiability
Enumeration /Projection =
Intersection /Union —
Optimization —

(Turing +) NP(NP) NP
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Introduction

Answer Set Programming

in a Hazelnutshell

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
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Introduction

Declarativity versus Scalability

ASP does separate a problem’s representation from the algorithms used
for solving it

ASP does not separate a problem’s representation from its induced
combinatorics

Boolean constraint technology is rather sensitive to search parameters

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges
in Answer Set Solving. In Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday, pages 74-90. Spring(e_r\n 2011
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Modeling

The n-queens problem

m Place n queens on an n x n
chess board

m Queens must not attack one
another
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Modeling

Basic encoding

queensB.1p

queen(1l..n,1..n) }.
:- not { queen(I,J) } ==
:- queen(I,J), queen(I,JJ), J != JJ.
:- queen(I,J), queen(II,J), I != II.
:- queen(I,J), queen(II,JJ), (I,J) !'= (II,JJ), I-J == II-JJ
:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J == II+JJ.
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Modeling

Advanced encoding

queensA.lp
{ queen(I,1..n) } == 1 :- I = 1..n.
{ queen(1..n,J) } == 1 :- J = 1..n.
:- { queen(D-J,J) } >= 2, D = 2..2%n.
:- { queen(D+J,J) } >= 2, D = 1-n..n-1.
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Modeling

Corrupted encoding
queensC.1p

{ queen(l1..n,1..n,1..n) }.

:- not { queen(I,J,K) } ==

:- queen(I,J,K), queen(I,JJ,K), J !'= JJ.

:- queen(I,J,K), queen(II,J,K), I != II.

:- queen(I,J,K), queen(II,JJ,K), (I,J)!'=(II,JJ), I-J==II-JJ.
:- queen(I,J,K), queen(II,JJ,K), (I,J)!'=(II,JJ), I+J==II+JJ.

queen(I,J) :- queen(I,J,K).
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Modeling

Grounding size

via wc --lines

n | queensB.1lp | queensA.1lp | queensC.1p
10 3053 310 30413
20 25493 830 509613
30 87333 1550 2619613
40 208573 2470 8342413
50 409213 3590 20460013
60 709253 4910 42554413
70 1128693 6430 79007613
80 1687533 8150 135001613
90 2405773 10070 217255513

100 3303413 12190 331350013

Torsten Schaub (KRRQUP)
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Modeling

Challenge one

Fact

ASP Modeling (still) requires Craft, Experience, and Knowledge
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Modeling

Challenge one

Fact
ASP Modeling (still) requires Craft, Experience, and Knowledge

Challenge
Theory and Tools for Non-Ground Pre-processing — Just like SQL !
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Outline
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Solving Conflict-driven search

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

m Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

m (Unit) propagation
m (Chronological) backtracking

m in ASP, eg smodels

m Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
m Conflict analysis (via resolution)
Learning + Backjumping + Assertion

m in ASP, eg clasp
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Solving Conflict-driven search

DPLL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal

amo r
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Solving Conflict-driven search

CDCL-style solving

loop
propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
ERENZ4S // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
G'\“ Potassc
a22 Potassco
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Solving Conflict-driven search

Challenge two

Fact

Boolean constraint technology is rather sensitive to search parameters
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Solving Conflict-driven search

Challenge two

Fact

Boolean constraint technology is rather sensitive to search parameters

Challenge

Robust ASP solving technology — Taming the oracle !
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Solving Conflict-driven search

Inside clasp, or the encoding’s impact
queens{B,A}.1p, n=8
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Solving Conflict-driven search

Inside clasp, or the encoding’s impact
queens{B,A}.1p, n=8

queensB.1p queensA.lp

Like the pictures...?
w Check out Arne Konig's talk on Tuesday at 16:00+ during TechComm 3
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Solving  Solver configurations

Outline
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Solving  Solver configurations

Configurations

clasp version 2.1.3

--configuration=<arg> : Configure default configuration [frumpy]
<arg>: frumpyl|jumpy|handy|crafty|trendy|chatty
frumpy: Use conservative defaults
jumpy : Use aggressive defaults
handy : Use defaults geared towards large problems
crafty: Use defaults geared towards crafted problems
trendy: Use defaults geared towards industrial problems
chatty: Use 4 competing threads initialized via the default portfolio

[ 1 =}
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Solving  Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |-—trendy |--chatty
50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)
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Solving  Solver configurations

Comparing configurations

on queensA.lp

n |——frumpy |--jumpy |--handy |--crafty |-—trendy |--chatty
50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 0.212 14.522 0.271 19.883 0.347
200 0.415 15.026 0.667 32.476 0.753
500 3.199 7.471 6.104

(times in seconds, cut-off at 60 seconds)
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Solving Parallel solving

clasp's default portfolio for parallel solving

via clasp --print-portfolio

[CRAFTY]: --heuristic=vsids --restarts=x,128,1.5 --deletion=3,75,10.0 --del-init-r=1000,9000 --del-grow=1.1,20.

[TRENDY] : heuristic=vsids --restarts=d,100,0.7 --deletion=3,50 --del-init=500,19500 --del-grow=1.1,20.0,x,10C
[FRUMPY] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[JUMPY]: --heuristic=vsids --restarts=1,100 --del-init-r=1000,20000 --del-algo=basic,2 --deletion=3,75 --del-g
[STRONG] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[HANDY]: --heuristic=vsids --restarts=d,100,0.7 --deletion=2,50,20.0 --del-max=200000 --del-algo=sort,2 --del-
[S2]: --heuristic=vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counte
[S4]: --heuristic=vsids --restarts=1,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 -
[SLOW]: --heuristic=berkmin --berk-max=512 --restarts=f,16000 --lookahead=atom,50

[VMTF]: --heuristic=vmtf --str=no --contr=0 --restarts=x,100,1.3 --del-init-r=800,9200

[SIMPLE]: --heuristic=vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[LUBY-SP]: --heuristic=vsids --restarts=1,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[LOCAL-R]: --berk-max=512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0
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m clasp’s portfolio is fully customizable
m configurations are assigned in a round-robin fashion to threads
during parallel solving
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[CRAFTY]: --heuristic=vsids --restarts=x,128,1.5 --deletion=3,75,10.0 --del-init-r=1000,9000 --del-grow=1.1,20.
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[JUMPY]: --heuristic=vsids --restarts=1,100 --del-init-r=1000,20000 --del-algo=basic,2 --deletion=3,75 --del-g
[STRONG] : --heuristic=berkmin --restarts=x,100,1.5 --deletion=1,75 --del-init-r=200,40000 --del-max=400000 --de
[HANDY]: --heuristic=vsids --restarts=d,100,0.7 --deletion=2,50,20.0 --del-max=200000 --del-algo=sort,2 --del-
[S2]: --heuristic=vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counte
[S4]: --heuristic=vsids --restarts=1,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 -
[SLOW]: --heuristic=berkmin --berk-max=512 --restarts=f,16000 --lookahead=atom,50

[VMTF]: --heuristic=vmtf --str=no --contr=0 --restarts=x,100,1.3 --del-init-r=800,9200

[SIMPLE]: --heuristic=vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[LUBY-SP]: --heuristic=vsids --restarts=1,128 --save-p --otfs=1 --init- --contr=0 --opt-heu=3

[LOCAL-R]: --berk-max=512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

m clasp’s portfolio is fully customizable

m configurations are assigned in a round-robin fashion to threads

during parallel solving

m —-chatty uses four threads with CRAFTY, TRENDY, FRUMPY, and J(ILMPY
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Solving Automatic solver engineering

Correlation of clasp configurations
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Solving  Automatic solver engineering

Algorithm engineering

Algorithm
Configuration:
piclasp

Algorithm
Schedules:
aspeed

Algorithm
Selection:
claspfolio
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Solving  Automatic solver engineering

Algorithm engineering
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Solving Automatic solver engineering

piclasp

Task

Identify an individual configuration for solving a specific problem class
(having a homogeneous instance set)
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Solving Automatic solver engineering
piclasp

Task

Identify an individual configuration for solving a specific problem class
(having a homogeneous instance set)

Approach

Use an algorithm configurator (eg SMAC or ParamiLS) for finding a
well performing configuration
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Solving Automatic solver engineering

piclasp's search space

Clasp - Search Options:

--heuristic=<arg> : Configure decision heuristic
<arg>: Berkmin|Vmtf|Vsids|Unit|None
Berkmin: Apply BerkMin-like heuristic

Vmtf : Apply Siege-like heuristic
Vsids : Apply Chaff-like heuristic
Unit  : Apply Smodels-like heuristic (Default if --no-lookback)
None : Select the first free variable
--[no-J]init-moms : Initialize heuristic with MOMS-score
--score-other=<n> : Score 0=nol|l=loop|2=all other learnt nogoods
--sign-def=<n> : Default sign: O=typel1=no|2=yes|3=rnd
——[no-Isign-fix : Disable sign heuristics and use default signs only
berk-max=<n> : Consider at most <n> nogoods in Berkmin heuristic
[no-]berk-huang : Enable/Disable Huang-scoring in Berkmin
[no-]berk-once : Score sets (instead of multisets) in Berkmin
—-vmtf-mtf=<n> : In Vmtf move <n> conflict-literals to the front
--vsids-decay=<n> : In Vsids use 1.0/0.<n> as decay factor
--[no-Inant : In Unit count only atoms in NAnt(P)
——opt-heuristic[=0..3]: Use opt. in 1=sign|2=model|3=both heuristics
--save-progress [=<n>] : Use RSat-like progress saving on backjumps > <n>
--rand-freq=<p> : Make random decisions with probability <p>
--init-watches=0..2 : Configure watched literal initialization [1]
Watch O=first|i=random|2=least watched literals in nogoods
--seed=<n> : Set random number generator’s seed to <n>

--lookahead[=<arg>|no] : Configure failed-literal detection (fld)
<arg>: <type>[,<n 1..umax>] / Implicit: atom

<type>: Run fld via atom|body|hybrid lookahead PR

<n> : Disable fld after <n> applications ([-1]=no limit) POtdSS(’O
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Solving Automatic solver engineering

aspeed

Task

Synthesize a timeout- and time-minimal schedule of configurations for
solving a heterogeneous set of problem instances
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Solving Automatic solver engineering

aspeed

Task

Synthesize a timeout- and time-minimal schedule of configurations for
solving a heterogeneous set of problem instances

Approach

Use ASP (and runtime data) for finding such a schedule
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Solving Automatic solver engineering

aspeed’s basic encoding

solver(S) :- time(_,S,_).

time(S,T) :- time(_,S,T).
unit(1..N) :- units(N).

{ slice(U,S,T) : time(S,T) : T <= K : unit(U) } 1 :- solver(S), kappa(K).
:- not [ slice(U,S,T) = T ] K, kappa(K), unit(U).

slice(S,T) :- slice(_,S,T).

solved(I,S) :- slice(S,T), time(I,S,T).

solved(I,S) :- solved(J,S), order(I,J,S).

solved(I) :— solved(I,_).

#maximize { solved(I) @ 2 }.
#minimize [ slice(S,T) = T*T @ 1 ].

[ 1 =}
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Solving Automatic solver engineering

A resulting schedule

100 200 300 400 500 600 700 800
time

default clasp-prepro
clasp-vsids clasp-luby
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Solving Automatic solver engineering

claspfolio

Task

Select an individual configuration for solving a specific problem instance
(from a heterogeneous instance set)
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Solving Automatic solver engineering

claspfolio

Task

Select an individual configuration for solving a specific problem instance
(from a heterogeneous instance set)

Approach

Use instance features to select a promising configuration from a portfolio
via trained classifiers

[ 1 =}
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Solving  Automatic solver engineering

claspre features

Number of atoms Number of choices
Number of rule types Number of types of learnt
nogoods

Number of deleted nogoods
Average backjump length
Tightness
Equivalences between atoms
and bodies
Number of constraint types

All in all 32 + 25 . 2 features are calculated
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Solving  Automatic solver engineering

claspre features

m Plain instance features

m Number of atoms Number of choices
m Number of rule types Number of types of learnt
[ [ nogoods

Number of deleted nogoods
Average backjump length
Tightness
Equivalences between atoms
and bodies
Number of constraint types
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Solving Automatic solver engineering

claspre features

m Plain instance features

m Number of atoms
m Number of rule types
...

m Features after preprocessing

m Tightness
m Equivalences between atoms
and bodies

m Number of constraint types
n ...
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Solving Automatic solver engineering

claspre features

m Plain instance features m Search features after restarting
m Number of atoms m Number of choices
m Number of rule types m Number of types of learnt
[ [ nogoods

. m Number of deleted nogoods
m Features after preprocessing

m Average backjump length
m Tightness [ T
m Equivalences between atoms
and bodies
m Number of constraint types
"
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Solving Automatic solver engineering
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Torsten Schaub

(KRRQUP)

Solving Automatic solver engineering

Feature space in practice

Experiencing ASP at Work

clasp/5-n1
clasp/14-n1
clasp/13-n1

clasp/11-n1
clasp/21-nl
clasp/23-n1
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Solving Automatic solver engineering

claspfolio's architecture

‘ Instances ‘ Solvers ‘

Compute Features [ Assess Performance ]
Train Models
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Solving Automatic solver engineering

claspfolio’s architecture

‘ Instances ‘ ‘ Solvers ‘

Compute Features [ Assess Performance ]
(New) Instance Tzt NMieatks

[ Compute Features ]—{ Score Solvers J

Learning

[ Run best scored Solver J
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Solving Automatic solver engineering

claspfolio’s architecture

‘ Instances ‘ ‘ Solvers ‘

Compute Features [ Assess Performance ]
(New) Instance Tzt NMieatks

[ Compute Features ]—{ Score Solvers J

Learning

[ Run best scored Solver J
Producing
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Solving Domain-specific heuristics
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Solving Domain-specific heuristics

hclasp

m hclasp allows for incorporating domain-specific heuristics

m input language for expressing domain-specific heuristics
m solving capacities for integrating domain-specific heuristics
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Solving Domain-specific heuristics

hclasp

m hclasp allows for incorporating domain-specific heuristics

m input language for expressing domain-specific heuristics
m solving capacities for integrating domain-specific heuristics

m Example
m Extend your encoding, enc.1p, by a heuristic rule like

_heuristic(occ(A,T) ,factor,T) :- action(A),time(T).

and the heuristic information via a #show statement
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Solving Domain-specific heuristics

hclasp

m hclasp allows for incorporating domain-specific heuristics

m input language for expressing domain-specific heuristics
m solving capacities for integrating domain-specific heuristics

m Example
m Extend your encoding, enc.1p, by a heuristic rule like

_heuristic(occ(A,T),factor,T) :- action(A),time(T).
and the heuristic information via a #show statement

m Ground the program (as usual) and make hclasp notice your
heuristic modifications

$ gringo enc.lp | hclasp --heuristic=domain
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Solving Domain-specific heuristics

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences
if no conflict then
if all variables assigned then return variable assignment

else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit
G'\“ Potassc
2 Potassco
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Solving Domain-specific heuristics

Inside decide

h:A—[0,+00) and

s: A—{T,F}
h(a) := « x h(a) + B(a) for each ae A
U:=A\ (AT U AF)
C := argmax,¢yh(a)
a:=71(C)
A

(& Potassco
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Solving Domain-specific heuristics
Inside decide

m Heuristic functions

h:A—[0,4+00) and s: A— {T,F}

h(a) := a x h(a) + p(a) for each a € A
U:=A\ (AT U AF)

C := argmax, h(a)

a:=71(C)

A=AU{a— s(a)}
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Solving Domain-specific heuristics

Inside decide

m Heuristic functions
h:A—[0,4+00) and s: A— {T,F}
m Algorithmic scheme
h(a) := a x h(a) + B(a) for each ae A

U:= A\ (AT U AF)
= argmax,ch(a)
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Solving Domain-specific heuristics

Heuristic language elements

m Heuristic predicate _heuristic

(atom, a, and integer, v)
for initializing the heuristic value of a with v
for amplifying the heuristic value of a by factor v
for ranking all atoms; the rank of a is v
for attributing the sign of v as truth value to a

_heuristic(occurs(move) ,factor,5)
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Solving Domain-specific heuristics

Heuristic language elements

m Heuristic predicate _heuristic

m Heuristic modifiers (atom, a, and integer, v)
init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of ais v
sign for attributing the sign of v as truth value to a
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Solving Domain-specific heuristics

Heuristic language elements

m Heuristic predicate _heuristic

m Heuristic modifiers (atom, a, and integer, v)

init for initializing the heuristic value of a with v
factor for amplifying the heuristic value of a by factor v
level for ranking all atoms; the rank of ais v
sign for attributing the sign of v as truth value to a

m Heuristic atoms

_heuristic(occurs(move) ,factor,5)
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Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).
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Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).
_heuristic(occurs(A,T),factor,2) :- action(A), time(T).
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Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).
_heuristic(occurs(A,T),level,1) :- action(A), time(T).
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Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).
_heuristic(occurs(A,T),factor,T) :- action(A), time(T).
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Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).

_heuristic(A,level,V) :- _heuristic(A,true, V).
_heuristic(A,sign, 1) :- _heuristic(A,true, V).
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Solving Domain-specific heuristics

Simple STRIPS planner

time(1..t).
holds(P,0) :- init(P).

1 { occurs(A,T) : action(A) } 1 :- time(T).
:— occurs(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).
holds(F,T) :- occurs(A,T), add(A,F).
nolds(F,T) :- occurs(A,T), del(A,F).

:— query(F), not holds(F,t).

_heuristic(A,level,V) :- _heuristic(A,false,V).
_heuristic(A,sign,-1) :- _heuristic(A,false,V).
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Solving

Domain-specific heuristics

Planning Competition Benchmarks

_heuristic(holds(F,T-1),true, t-T+1)
_heuristic(holds(F,T-1),false,t-T+1)
fluent(F), time(T), not holds(F,T).

:— holds(F,T).

Problem base configuration ~heuristic base c. (SAT) | _heur. (SAT)
Blocks'00| 134.4s (180/61) 9.2s (239/3) | 163.2s (59) 2.6s (0)
Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s () 0.0s ()
Freecell’00| 288.7s (147/115) | 184.2s (194/74) | 226.4s (47) | 52.0s (0)
Logistics'00| 145.8s (148/61) | 115.3s (168/52) | 113.9s (23) | 15.5s (3)
Depots'02| 400.3s (51/184) | 297.4s (115/135) | 389.0s (64) | 61.6s (0)
Driverlog’02| 308.3s (108/143) | 189.6s (169/92) | 245.8s (61) 6.1s (0)
Rovers'02| 245.8s (138/112) | 165.7s (179/79) | 162.9s (41) 5.7s ()]
Satellite'02| 398.4s (73/186) | 229.9s (155/106) | 364.6s (82) | 30.8s (0)
Zenotravel'02| 350.7s  (101/169) | 239.0s (154/116) | 224.5s (53) 6.3s ()
Total| 252.8s (1225/1031) | 158.9s (1652/657) | 187.2s (430) | 17.1s [€)
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Solving

Domain-specific heuristics

Planning Competition Benchmarks

_heuristic(holds(F,T-1) ,true, t-T+1)
_heuristic(holds(F,T-1),false,t-T+1)
fluent (F), time(T), not holds(F,T).

:— holds(F,T).

Problem base configuration _heuristic base c. (SAT) | _heur. (SAT)
Blocks'00| 134.4s _ (180/61) 925 (239/3) | 163.2s (59) | 265 (0)
Elevator’00 3.1s (279/0) 0.0s  (279/0) 3.4s  (0) 0.0s (0)
Freecell’00| 288.7s (147/115) | 184.2s (194/74) | 226.4s (47) | 52.0s (0)
Logistics’00| 145.8s  (148/61) | 115.3s (168/52) | 113.9s (23) | 1555  (3)
Depots’'02| 400.3s  (51/184) | 297.4s (115/135) | 389.0s (64) | 61.6s (0)
Driverlog'02| 308.3s (108/143) | 189.6s (169/92) | 245.8s (61) | 6.1s  (0)
Rovers'02| 245.8s (138/112) | 165.7s (179/79) | 162.9s (41) 5.7s ()]
Satellite’02| 398.4s  (73/186) | 229.9s (155/106) | 364.6s (82) | 30.8s  (0)
Zenotravel'02| 350.7s (101/169) | 239.0s (154/116) | 2245s (53) | 6.3s  (0)
Total| 252.8s (1225/1031) | 158.0s (1652/657) | 187.2s (430) | 17.1s (3
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Solving

Domain-specific heuristics

Planning Competition Benchmarks

_heuristic(holds(F,T-1) ,true, t-T+1)
_heuristic(holds(F,T-1),false,t-T+1)
fluent (F), time(T), not holds(F,T).

:— holds(F,T).

Problem base configuration _heuristic base c. (SAT) | _heur. (SAT)
Blocks'00| 134.4s _ (180/61) 925 (239/3) | 163.2s (59) | 2.6s  (0)
Elevator’00 3.1s (279/0) 0.0s  (279/0) 3.4s  (0) 0.0s (0)
Freecell’00| 288.7s (147/115) | 184.2s (194/74) | 226.4s (47) | 52.0s (0)
Logistics’00| 145.8s  (148/61) | 115.3s (168/52) | 113.9s (23) | 1555  (3)
Depots’'02| 400.3s  (51/184) | 297.4s (115/135) | 389.0s (64) | 61.6s (0)
Driverlog'02| 308.3s (108/143) | 189.6s (169/92) | 245.8s (61) | 6.1s  (0)
Rovers'02| 245.8s (138/112) | 165.7s (179/79) | 162.9s (41) 5.7s ()]
Satellite’02| 398.4s  (73/186) | 229.9s (155/106) | 364.6s (82) | 30.8s  (0)
Zenotravel'02| 350.7s (101/169) | 239.0s (154/116) | 2245s (53) | 6.3s  (0)
Total| 252.8s (1225/1031) | 158.0s (1652/657) | 187.2s (430) | 17.1s _ (3)
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Optimizing

Outline

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

Optimizing
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Optimizing

Challenge three (or: one+two)

Fact

Many real-world applications involve optimization
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Optimizing

Challenge three (or: one+two)

Fact

Many real-world applications involve optimization

Challenge

Theory and Tools for versatile optimization methods
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Optimizing

Alternative ways of optimization

Branch-and-Bound optimization in clasp
Hierarchical Branch-and-Bound optimization in clasp
Unsatisfiability-based optimization in unclasp
Incremental optimization in iclingo
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Optimizing

Alternative ways of optimization

Branch-and-Bound optimization in clasp
Hierarchical Branch-and-Bound optimization in clasp
Unsatisfiability-based optimization in unclasp
Incremental optimization in iclingo

Saturation-based optimization in metasp (via claspD)

Heuristic-driven optimization in hclasp
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Optimizing

Alternative ways of optimization

m Branch-and-Bound optimization in clasp
m SAT ...SAT
Hierarchical Branch-and-Bound optimization in clasp

Unsatisfiability-based optimization in unclasp

Incremental optimization in iclingo

Saturation-based optimization in metasp (via claspD)
Heuristic-driven optimization in hclasp
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Optimizing

Alternative ways of optimization

Branch-and-Bound optimization in clasp
m SAT ...SAT

m Hierarchical Branch-and-Bound optimization in clasp
m SAT ...SAT SAT ...SAT SAT ...SAT

m Unsatisfiability-based optimization in unclasp
m( ...) SAT

m Incremental optimization in iclingo

] SAT

Saturation-based optimization in metasp (via claspD)

Heuristic-driven optimization in hclasp
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Optimizing

Alternative ways of optimization

m Branch-and-Bound optimization in clasp

m SAT ...SAT
m Hierarchical Branch-and-Bound optimization in clasp
m SAT ...SAT SAT ...SAT SAT ...SAT
m Unsatisfiability-based optimization in unclasp
m( ...) SAT
m Incremental optimization in iclingo
] SAT

m Saturation-based optimization in metasp (via claspD)

m (SATo ...) SATo
m Heuristic-driven optimization in hclasp
m SAT
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Reacting

Outline

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

Reacting
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Reacting

Challenge four (or: one+one+two)

Fact

Intelligence is build around us and in our pockets
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Reacting

Challenge four (or: one+one+two)

Fact

Intelligence is build around us and in our pockets

Challenge

Incremental and reactive ASP solving technology
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Reacting

Going online

Planning and reasoning about action with iclingo

Sliding windows in stream reasoning with oclingo
Interactive query-answering with oclingo

Cognitive robotics with ROSoClingo
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Summary

Outline

Conflict-driven search

Solver configurations

Parallel solving

Automatic solver engineering
Domain-specific heuristics

@ Summary
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Summary

Declarativity

ASP separates a problem’s representation
from the algorithms used for solving it
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potassco.sourceforge.net

Summary

Summary
Declarativity
ASP separates a problem’s representation
from the algorithms used for solving it
Scalability

There is no free lunch !
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Summary

Summary
Declarativity
ASP separates a problem’s representation
from the algorithms used for solving it
Scalability

There is no free lunch !

Challenges

Modeling
Solving
Optimizing
Reacting
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Challenges
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potassco.sourceforge.net

Summary

Summary
Declarativity
ASP separates a problem’s representation
from the algorithms used for solving it
Scalability

There is no free lunch !

Challenges Visit us !
potassco.sourceforge.net
= Modeling m free ASP systems
u SO|V.ing . m open source software
m Optimizing m teaching material
m Reacting
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potassco.sourceforge.net

Summary

Potassco is a composition of people

Benjamin Andres o Christian Anger o Farid Benhammadi o

Philippe Besnard o Paul Borchert o Christian Drescher o

Steve Dworschak o Johannes Fichte o André Floter o Martin Gebser o
Mona Gharib o Susanne Grell o Jean Gressmann o Torsten Grote o
Holger Jost o Roland Kaminski o Benjamin Kaufmann o

Kathrin Konczak o Murat Knecht o Arne Konig o Thomas Linke o
Benjamin Lipfert o Oliver Matheis o André Neumann o

Pascal Nicolas o Philipp Obermeier o Max Ostrowski o Javier Romero
o Orkunt Sabuncu o Vladimir Sarsakov o Marius Schneider o

Sven Thiele o Richard Tichy o Santiago Videla o Philippe Veber o
Kewen Wang o Philipp Wanko o Matthias Weise o Peter-Uwe Zettiér
o Stefan Ziller
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Summary

Potassco is a composition of people

Benjamin Andres o Christian Anger o Farid Benhammadi o

Philippe Besnard o Paul Borchert o Christian Drescher o

Steve Dworschak o Johannes Fichte o André Floter o Martin Gebser o
Mona Gharib o Susanne Grell o Jean Gressmann o Torsten Grote o
Holger Jost o Roland Kaminski o Benjamin Kaufmann o

Kathrin Konczak o Murat Knecht o Arne Konig o Thomas Linke o
Benjamin Lipfert o Oliver Matheis o André Neumann o

Pascal Nicolas o Philipp Obermeier o Max Ostrowski o Javier Romero
o Orkunt Sabuncu o Vladimir Sarsakov o Marius Schneider o

Sven Thiele o Richard Tichy o Santiago Videla o Philippe Veber o
Kewen Wang o Philipp Wanko o Matthias Weise o Peter-Uwe Zettiér
o Stefan Ziller

Dankeschon! Et mercil @ Potasse
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