s(ASP) & s(CASP) Best Practices

April 29, 2021

Introduction

The approach to programming in s(ASP) is somewhere between the strategies used for SAT-based asp
and the strategies for prolog. In addition, s(ASP) is a young technology with many rough edges. This
document discusses the parts of s(ASP) that is different from SAT-based asp and prolog or still in need of
work, requiring workarounds.

Variable Domains

Unspecified Domains

SAT-based asp solvers depend on the program being finitely groundable, and require safe programs. A safe
program requires that a variable used in a negated call must also appear in a positive goal.

node (0) .
node (1) .
node (2) .

hidden(0) .
visible(N) :- node(N), not hidden(N) .

Since s(ASP) does not ground the program, and variables can remain unbound, we do not need the program
to be safe.

‘ visible(N) :- not hidden(N).

Now, visible/2 will be true for all values of N except zero.

Finite Domains

Like with prolog, s(ASP) does not have a built-in concept of a domain. We can implement a domain by
creating a predicate that is true if the argument is in that domain.

s(ASP) & s(CASP) Best Practices

veg(tomato) .
veg(lettuce) .
veg(onion) .

meat (beef) .
meat (chicken) .
meat (pork) .

ingredient (X) :- veg(X).
ingredient (X) :- meat(X).

In the above example, we create three domains. The domain of vegetables, the domain of meats, and the
domain of ingredients. We can use these predicates to restrict a variable to a specific domain.

dish(hamburger) .
dish(salad).

in(hamburger, beef).
in(hamburger, lettuce).
in(hamburger, tomato).
in (hamburger, onion).
in(salad, lettuce).
in(salad, tomato).
in(salad, onion).

-vegetarian(D) :- dish(D), meat(I), in(D,I).

Here we restrict D to the dish domain. So, we can read it as “a dish is not vegetarian if there exists some
meat in the dish.” This works well. However, since the concept of a domain does not exist in the language
these “domain” predicates are just ordinary predicates. This does not present a problem in Prolog, but in
s(ASP) this can lead to a slight disconnect between the logic of the program, and how we view the program.
As an example, suppose we wanted to restrict a variable to vegetarian dishes. We may do a query like this:
?7- not -vegetarian(D). However, the first result we receive is D is unbound and constrained to not be
hamburger and salad. That is, a dish we know nothing about is vegetarian. Logically, this makes sense.
Since in absence of any additional information we follow an open world assumption: any dish that we do
not specify will not have any ingredients, and therefore no meat. From our point of view, however, we may
be viewing the dish domain to be a finite domain containing only what we have specified. We may expect
that D be restricted to the dish domain.

The solution for this is to never directly call the NAF-negation of a predicate containing a “finite domain”
variable in the head, and restrict the variable before calling it.

vegetarian(D) :- dish(D), not -vegetarian(D).

Now, D will be ground (restricted to the dish domain) before the call to not -vegetarian(D).

2 April 29, 2021

s(ASP) & s(CASP) Best Practices

Constraints

The general strategy for a SAT-based asp solver is “generate and test”. Some rules generate possible worlds,
and constraints in the form of odd loops or, more commonly, headless rules filter out (kill) unwanted worlds.
The general strategy for s(ASP) is to make use of “local” constraints. Local constraints involve killing the
world as it is generated. Since s(ASP) is a goal-directed language, local constraints may decrease the
amount of backtracking needed. To fully understand how to use local constraints you must first understand
how s(ASP) handles global constraints.

Global Constraints

Global constraints can be specified through an odd loop or a headless rule. An odd loop is a cycle formed
by rules for with the success of some goal depends on its own negation. This of course is a contradiction.
In stable models if there is a contradiction, then there is no model. However, if one of the rules involved in
the cycle evaluates to false, then the cycle is broken.

® 8= @y
q.
r :- not p.

The above program has no model. The truth value of p depends on its negation (the same is true for r).
However, if we remove the fact for q, the resulting program now has a stable model. With this we can say
that the odd loop enforces a constraint. In this case the constraint is that g must be false.

® 8= @yF.
@e
r :- s,not p.

This code has an odd loop that enforces the constraint “q or s must be false”. Headless rules provide a
shorthand for writing such constraints. For instance the same constraint can be specified as:

2= @8,

As a simple example of using global constraints, consider the graph coloring problem.

color(N,C) :- node(N), color(C), not other_color(N,C).
other_color(N,C) :- color(C), color(C2), C\=C2, color(N,C2).

:— edge(N1,N2), color(N1,C), color(N2,C).

The color/2 and other_color/2 form an even cycle, and can be viewed as forming all possible coloring
of the graph. The headless rule states that neighbors cannot have the same color, so kill all such colorings.
For each odd loop and headless rule s(ASP) generates a nmr check. This check negates the body of each
rule and adds a new rule for just the head. This can be interpreted as the body of the rule is false or the
head is true through some other means. Then the nmr check is appended to the query. To complicate
matters further, since s(ASP) is executed ungrounded, the nmr check must be wrapped in a forall for each
variable in the head. Consider this simple program:

April 29, 2021 3

s(ASP) & s(CASP) Best Practices

p(X) :- q(¥), not p(Y).

The nmr check for this would look like:

chk 11(X,Y) :- not q(¥).
chk_11(X,Y) :- q(Y), p(Y).
chk 11(X,Y) :- p(X).

chk_1(X) :- forall(Y, chk_ 11(X,Y)).

nmr :- forall(X,chk_1(X)).

Headless rules do not need the outer forall, but will have a forall for each variable that appears. The nmr
check generated by the graph coloring program is:

chk 11(N1,N2,C) :- not edge(N1,N2).

chk 11(N1,N2,C) :- edge(N1,N2), not color(Ni,C).

chk 11(N1,N2,C) :- edge(N1,N2), color(N1,C), not color(N2,C).
chk 1 :- forall(N1, forall(N2, forall(C, chk 11(N1,N2,C)))).

nmr :- chk_1.

Local Constraints

Consider the following graph:

edge(0,1).

edge(2,3).
edge(3,4).
edge(4,5).
edge(5,6) .

If we want to know the color of node zero we can write a simple query:

?- color(0,C).

The color of node 0 depends only on the color of node 1, but the global constraint must be enforced for
all nodes. This, of course, is the desired behavior if the entire graph cannot be colored. But, if there is a
coloring, we do not care what that coloring actually is. So we are doing more work than necessary. In fact,

4 April 29, 2021

s(ASP) & s(CASP) Best Practices

is some situations we may not even care if there is a solution for the entire graph as long as the part we
are working with is consistent. In this situation it would be better to use a local constraint.

The same constraint needs to be enforced, but instead of killing a model after generation we will kill such
models during generation. A general strategy of converting a global constraint to a local constraint is to
use the global constraint as the body of a new rule. The predicate in the head of the rule can also be used
to give the constraint a name. Let's take a look at what the local constraint for the graph coloring might
look like.

same_as_neighbors(N,C) :- edge(N,N2), color(N2,C).

This constraint can be read as: “for all nodes N and color C, if there exists a neighbor of N assigned color
C, then assigning N the color C will make it the same as one of its neighbors.” We have localized the global
constraint by parametrizing it. We have specified when our global constraint will be violated. Now we need
to enforce the constraint. We can do this by appending not same_as neighbors(N,C) to the end of the
color rule:

color(N,C) :- node(N), color(C), not other color(N,C), not same_as neighbors(N,C).
other_color(N,C) :- color(C), color(C2), C\=C2, color(N,C2).

Now when we query color(0,N), we only need to consider node 0's neighbors. This is not entirely
equivalent to the global constraint that enforces the constraint for all nodes. As implied earlier, if the rest
of the graph does not have a coloring, the query will still succeed. We can create the equivalent of the
global constraint by creating a new rule and adding its head to our query or to a rule we will call.

global constraint violated :- same_as neighbors(N,C) .

This will do essentially the same thing as a headless rule, but we can move the constraint to any point in
the computation. In fact, we may even use the local constraint rule with a headless rule to recreate the
global constraint. In this way we get all the features of a global constraint, but the expressiveness of local
constraints.

:— same_as_neighbors(N,C).

Workarounds

The s(ASP) system is a young technology, and as such has many areas that need improvement. This section
covers some area of concerns that can affect the execution of programs.

Large Sequence of Facts

Often times we want to create a domain by specifying a large number of ground facts. These ground values
are the members of the domain. The s(CASP) is a meta-interpreter in ciao prolog, and therefore indexes
on the first argument. So, just like in prolog these values can be found quickly. However, when calling the
dual rule, we must constrain a variable against all values. If we call the negation with a ground value, we
must compare it to all the values.

April 29, 2021 5

s(ASP) & s(CASP) Best Practices

id(0).
id(1).
id(2).

?- not id(3).

The dual for code/1 is equivalent to 3\=0, 3\=1, 3\=2. This is linear in the number of facts. So, we
want to avoid such negation. It is, however, not so straight forward. We rarely call the negation of a domain
predicate, but we may call the negation of a predicate that depends on the set of facts.

logged in(Id) :- id(Id), property(logged in, Id).

The query 7- logged_in(7) . can be proved efficiently using indexing. However, the execution of 7- not
logged in(7). will be linear in the number of id's in the system. We can make use of the same trick
introduced in[subsection “Finite Domains”] We do not directly call the negation of a predicate that depends
on a large set of facts.

‘ -logged_in(Id) :- id(id), not logged-in(Id).

Avoiding Forall

In prolog (and in s(ASP)), a variable in the body of a rule that does not appear in the head can be considered
to be existentially quantified. This takes on a slightly different interpretation due to the goal directed nature
of prolog and s(ASP).

\ p(X) - q(X,Y).

We can interpret this rule as “for all X, if we can prove there exists a Y such that q(X,Y) is true, then
p(X) is true”. The distinction from mathematical logic comes from the word “prove”. We do not have
to do anything extra, however. If q(X,Y) succeeds, then we have proved the existence of a value for Y.
However, s(ASP) has negation implemented as dual rules. This complicates things. Since the negation of
an existential quantifier is a universal quantifier, and since we must prove the existence of a value for such
an existentially quantified variable (called body variable in s(ASP) terminology), it's dual must prove that
all possible values fail. We can interpret the dual for this example as “for all X, if we can prove that for
every Y not q(X,Y) is true, then not p(X) is true”.

This introduces another point of inefficiency. The forall algorithm is as follows. Given an unbound, uncon-
strained variable, say X, and a goal containing that variable, say g(X):

1. Call g(X), failing when X is bound.

2. If the call succeeds leaving X unbound but prohibiting it from being bound to certain values: for each
element, e, of X's prohibited list, call g(X) with X bound to e

3. If the original goal and every call in step 2 succeeds, then the forall succeeds. Otherwise, it fails.

Now consider the following program:

6 April 29, 2021

s(ASP) & s(CASP) Best Practices

person(adam) .
person(bill).

person(zachary) .

owned(Object) :- person(Person), has(Person, Object).

In this code we specify a domain via a long list of facts, and the final rule states that “an Object is owned
if there exists a person that has it". The dual of owned would look something like:

not_owned(Object) :- forall(Person, n_ownedl(Object, Person)).
n_ownedl(0Object, Person) :- not person(Person).
n_ownedl(0Object, Person) :- person(Person), not has(Person, Object).

So if we want to check if an object is not owned, we must execute this forall. Following the algorithm we
get:

e n ownedl(Object, Person) succeeds with Person constrained against adam, bill, ...,zachary

e foreach Person = adam, Person = bill, ..., Person = zachary: not n_ownedl(Object, Person)
succeeds. (has/2 has no rules).

There are no nice workarounds for this problem. Currently, the best way to mitigate the cost is to ensure
that a minimum number of foralls are used in your code. That means encoding the knowledge with the
thought of avoiding foralls. For this example, if | do not need the set of facts, except for situations similar
to the owned/1 predicate, we can use lists:

persons([adam, bill, ... , zachary]).
owned(0Object, Persons) :- persons(P), filter has(P, Object, Persons).

owned(0Object) :- owned(Object, P), P\=[].
-owned(0Object) :-owned(Object, []).

Disunification of Nonground Terms

Currently, s(ASP) expects that at least on of the arguments used in disunification be ground. In the
original s(ASP) code, disunification of two nonground terms causes a fatal error. This is to comply with
the semantics. The s(CASP) system instead fails, allowing the system to backtrack. This does not comply
strictly to the semantics, but allows the computation to continue and provide a more meaningful answer.
The only workaround is to keep it in mind as we code. Since disunifications can be generated automatic,
it is difficult (perhaps impossible) to eliminate the problem.

same (X,X) .

The dual will be equivalent to:

April 29, 2021 7

s(ASP) & s(CASP) Best Practices

‘ not same(X, Y) :- X\=Y.

To make matters more complicated, same/2) could be negated in a nmr check even if we never explicitly
use the negation.

Encoding Knowledge

Find All

In Prolog, the findall predicate can be used to find all successful bindings for a goal. This, however, is not
so straight forward for s(ASP). Since s(ASP) allows for cycles, this complicates things. At the moment
there are three ways we can implement such behavior. One way is to simply pre-supply the list.

If we have a predicate, people/1, we can make its argument a list of constants instead of having a fact
per constant.

people([fred, janet, bill, gary, sarah]).

Now we can loop through the list of people as with any data.

students([1,[1).
students([H|T], [H|IT2]) :- student(H), students(T,T2).
students([H|T], T2) :- not student(H), students(T,T2).

Another way is to implement the behavior of findall directly.

findall students(Acc, Out) :- people(H), student(H),
not member(Acc, H), findall_students([H|Acc], Out).
findall students(Acc, Out) :- people(H), student(H), member(Acc, H),
findall_students(Acc, Out).
findall students(Acc, Out) :- people(H), not student(H),
findall students(Acc, Out).

findall_students (Acc,Acc).

This will work, but introduces a caveat. Consider the following predicate that intends to check all students
are passing:

all passing :- findall students([], Students), all _passing(Students).
all passing([]).
all passing([H|T]) :- passing(H), all passing(T).

Now assume the first student is passing, but one of the later ones is not passing. The goal 7~ all passing.
will succeed. This is because, after collecting all the students, all passing(Students) fails. This causes

8 April 29, 2021

s(ASP) & s(CASP) Best Practices

execution to backtrack back into findall students to before the failing student is added to the list,
proceeding to the rule that always succeeds. Now we produced a list of all students except the failing one.
The final way to get this behavior is to use the prolog findall predicate exposed by s(CASP). This is an
“unsupported” feature, and if the code to prove the goal is not essentially prolog, the behavior is undefined.

April 29, 2021 9

	Introduction
	Variable Domains
	Unspecified Domains
	Finite Domains

	Constraints
	Global Constraints
	Local Constraints

	Workarounds
	Large Sequence of Facts
	Avoiding Forall
	Disunification of Nonground Terms

	Encoding Knowledge
	Find All

