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Definition

Statistical relational learning aka. probabilistic inductive logic programming
deals with machine learning and data mining in relational domains where obser-
vations may be missing, partially observed, or noisy. In doing so, it addresses one
of the central questions of artificial intelligence — the integration of probabilistic
reasoning with machine learning and first order and relational representations —
and deals with all related aspects such as reasoning, parameter esimtation, and
structure learning.

Motivation and Background

One of the central questions of artificial intelligence is concerned with com-
bining expressive knowledge representation formalisms such as relational and
first-order logic with principled probabilistic and statistical approaches to in-
ference and learning. While traditionally relational and logical representations,
probabilistic and statistical reasoning, and machine learning have been studied
independently of one another, statistical relational learning investigates them
jointly, cf. Figure 1. A major driving force is the explosive growth in the amount
of heterogeneous data that is being collected in the business and scientific world
in domains such as bioinformatics, transportation systems, communication net-
works, social network analysis, citation analysis, and robotics. Characteristic for
these domains is that they provide uncertain information about varying num-
bers of entities and relationships among the entities, that is, about relational
domains. Traditional machine learning approaches are able to cope either with
uncertainty or with relational representations but typically not with both.
Many formalisms and representations have been developed in statistical re-
lational learning. For instance, Eisele [1] has introduced a probabilistic variant
of Comprehensive Unification Formalism (CUF). In a similar manner, Muggle-
ton [2] and Cussens [3] have upgraded stochastic grammars towards stochastic
logic programs. Sato [4] has introduced probabilistic distributional semantics for
logic programs. Taskar et al. [5] have upgraded Markov networks towards re-
lational Markov networks, and Domingos and Richardson [6] towards Markov
logic networks. Neville and Jensen [7] have extended dependency networks to-
wards relational dependency networks. Another research stream has investigated
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Fig. 1. Statistical Relational Learning aka. probabilistic inductive logic programming
combines probability, logic, and learning.

logical and relational extensions of Bayesian networks. It includes Poole’s in-
dependent choice Logic [8], Ngo and Haddawy’s probabilistic logic programs [9],
Jager’s relational Bayesian networks [10], Koller, Getoor, and Pfeffer’s proba-
bilistic relational models [11,12], and Kersting and De Raedt’s Bayesian logic
programs [13].

The benefits of employing logical abstraction and relations within statistical

learning are manyfold:

Relations among entities allow one to use information about one entity to
help reach conclusions about other, related entities.

Variables, that is, placeholders for entities allow one to make abstraction of
specific entities.

Unification allows one to share information among entities. Thus, instead of
learning regularities for each single entity independently, statistical relational
learning aims at finding general regularities among groups of entities.

The learned knowledge is often declarative and compact, which makes it
easier for people to understand and to validate.

In many applications, there is a rich background theory available, which
can efficiently and elegantly be represented as a set of general regularities.
This is important because background knowledge may improve the quality
of learning as it focuses the learning on the relevant patterns, that is, it
restricts the search space.

When learning a model from data, relational and logical abstraction allow
one to reuse experience in that learning about one entity improves the pre-
diction for other entities; and this may even generalize to objects that have
never been observed before.

Thus, relational and logical abstraction make statistical learning more robust
and efficient. This has proven to be beneficial in many fascinating real-world ap-
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plications in citation analysis, web mining, natural language processing, robotics,
bio- and chemo-informatics, electronic games, and activity recognition.

Theory

Whereas most of the existing works on statistical relational learning have started
from a statistical and probabilistic learning perspective and extended probabilis-
tic formalisms with relational aspects, statistical relational learning can elegantly
be introduced by starting from inductive logic programming [14, 15], which is
often also called multi-relational data mining (MRDM) [16]. Inductive logic pro-
gramming is a research field at the intersection of machine learning and logic
programming. It forms a a formal framework and has introduced practical al-
gorithms for inductively learning relational descriptions (in the form of logic
programs) from examples and background knowledge. So, the only difference to
statistical relational learning is that it does not explicitly deal with uncertainty.

Essentially, there only two changes to apply to inductive logic programming
approaches in order to arrive at statistical relational learning:

1. clauses (that is, logical formulae that can be interpreted as rules; cf. below)
are annotated with probabilistic information such as conditional probabili-
ties, and

2. the covers relation (which states the conditions under which a hypothesis
considers an example as positive) becomes probabilistic.

A probabilistic covers relation softens the hard covers relation employed in tra-
ditional inductive logic programming and is defined as the probability of an
example given the hypothesis and the background theory.

Definition 1 (Probabilistic Covers Relation). A probabilistic covers rela-
tion takes as arguments an example e, a hypothesis H and possibly the background
theory B, and returns the probability value P(e | H, B) between 0 and 1 of the
example e given H and B, i.e., covers(e, H,B) = P(e | H, B) .

It specifies the likelihood of the example given the hypothesis and the background
theory. Different choices of the probabilistic covers relation lead to different
statistical relational learning approaches; this is akin to the learning settings in
inductive logic programming.

Statistical Relational Languages

There is a multitude of different languages and formalisms for statistical rela-
tional learning. For an overview of these languages we refer to [17,18]. Here,
we choose two formalisms that are representatives of the two main streams in
statistical relational learning. First, we discuss Markov logic [6], which upgrades
Markov network towards first order logic, and secondly, we discuss ProbLog
[19], which is a probabilistic Prolog based on Sato’s distribution semantics [4].
While Markov logic is a typical example of knowledge based model construction,
ProbLog is a probabilistic programming language.
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Case Study: Markov Logic Networks Markov logic combines first-order
logic with Markov networks. The idea is to view logical formulae as soft con-
straints on the set of possible worlds, that is, on the interpretations (an inter-
pretation is a set of facts). If an interpretation does not satisfy a logical formula,
it becomes less probable, but not necessarily impossible as in traditional logic.
Hence, the more formulae an interpretation satisfies, the more likely it becomes.
In a Markov logic network, this is realized by associating a weight to each for-
mula that reflects how strong the constraint is. More precisely, a Markov logic
network consists of a set of weighted clauses® H = {cy, ..., ¢, }. The weights w;
of the clauses then specify the strength of the clausal constraint.

Ezample 1. Consider the following example (adopted from [6]). Friends & Smok-
ers is a small Markov logic network that computes the probability of a person
having lung cancer on the basis of her friends smoking. This can be encoded
using the following weighted clauses:

1.5 : cancer(P) < smoking(P)
1.1 : smoking(X) « friends(X, Y), smoking(Y)
1.1 : smoking(Y) « friends(X,Y), smoking(X)

The first clause states the soft constraint that smoking causes cancer. So, inter-
pretations in which persons that smoke have cancer are more likely than those
where they do not (under the assumptions that other properties remain con-
stant). The second and third clauses state that friends of smokers are typically
also smokers.

A Markov logic network together with a Herbrand domain (in the form of a
set of constants {di,...,d}) then induces a grounded Markov network, which
defines a probability distribution over the possible Herbrand interpretations.
The nodes, that is, the random variables in the grounded network, are the
atoms in the Herbrand base, that is, the facts of the form p(d}, - - - ,d},) where p is
a predicate or relation and the d} are constants. Furthermore, for every ground
instance c;0 of a clause ¢; in H, there will be an edge between any pair of
atoms af, b6 that occurs in ¢;6. The Markov network obtained for the constants
anna and bob is shown in Fig. 2. To obtain a probability distribution over the
Herbrand intepretations, we still need to define the potentials. The probability

distribution over intepretations I is

P = J[ &) (1)

c:clause

where the f. are defined as
fo(I) = enetiwe (2)

3 Markov logic networks, in principle, also allow one to use arbitrary logical formulae,
not just clauses. However, for reasons of simplicity, we only employ clauses and make
some further simplifications.
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Fig. 2. The Markov network for the constants ann and bob. Adapted from [6].

and n.(I) denotes the number of substitutions # for which ¢f is satisfied by I, and
Z is a normalization constant. The definition of a potential as an exponential
function of a weighted feature of a clique is common in Markov networks; cf.
graphical models. The reason is that the resulting probability distribution is
easier to manipulate.

Note that for different (Herbrand) domains, different Markov networks will
be produced. Therefore, one can view Markov logic networks as a kind of tem-
plate for generating Markov networks, and, hence, Markov logic is based on
knowledge-based model construction. Notice also that Markov logic networks
define a probability distribution over interpretations, and nicely separate the
qualitative from the quantitive component.

Case Study: ProbLog Many formalisms do not explicitly encode a set of
conditional independency assumptions, as in Bayesian or Markov networks, but
rather extend a (logic) programming language with probabilistic choices. Stochas-
tic logic programs [2,20] directly upgrade stochastic context-free grammars to-
wards definite clause logic, whereas PRISM [4], Probabilistic Horn Abduction [8]
and the more recent Independent Choice Logic (ICL) [21] specify probabilities
on facts from which further knowledge can be deduced. As a simple representa-
tive of this stream of work, we introduce the probabilistic Prolog called ProbLog
[19].

The key idea underlying Problog is that some facts f for probabilistic pred-
icates are annotated with a probability value. This value indicates the degree
of belief, that is the probability, that any ground instance f@ of f is true. It is
also assumed that the f6 are marginally independent. The probabilistic facts are
then augmented with a set of definite clauses defining further predicates (which
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should be disjoint from the probabilistic ones). An example adapted from [19] is
given below.

Ezxample 2. Consider the facts

0.9 : edge(a,c) —
0.7 : edge(c, b) —
0.6 : edge(d, c) «—
0.9 : edge(d, b) «—

which specify that with probability 0.9 there is an edge from a to c. Consider
also the following (simplified) definition of path/2.

path(X,Y) < edge(X,Y)

path(X,Y) < edge(X, Z), path(Z,Y)

One can now define a probability distribution on (ground) proofs as follows.
The probability of a ground proof is the product of the probabilities of the
(ground) clauses (here, facts) used in the proof. For instance, the only proof for
the goal « path(a, b) employs the facts edge(a, c) and edge(c, b); these facts are
marginally independent, and hence the probability of the proof is 0.9 - 0.7. The
probabilistic facts used in a single proof are sometimes called an explanation.

It is now tempting to define the probability of a ground atom as the sum
of the probabilities of the proofs for that atom. However, this does not work
without additional restrictions, as shown in the following example.

Ezample 3. The fact path(d, b) has two explanations:

— {edge(d, c), edge(c, b)} with probability 0.6 x 0.7 = 0.42, and
— {edge(d, b)} with probability 0.9.

Summing the probabilities of these explanations gives a value of 1.32, which is
clearly impossible.

The reason for this problem is that the different explanations are not mutually
exclusive, and therefore their probabilities may not be summed. The probability
P(path(d, b) = true) is, however, equal to the probability that a proof succeeds,
that is

P(path(d,b) = true) = P[(e(d,c) Ae(c,b)) Ve(d, b)]

which shows that computing the probability of a derived ground fact reduces
to computing the probability of a boolean formula in disjunctive normal form
(DNF), where all random variables are marginally independent of one another.
Computing the probability of such formulae is an NP-hard problem, the disjoint-
sum problem. Using the inclusion-exclusion principle from set theory, one can
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compute the probability as

P(path(d, b) = true) = P[(e(d, c) Ae(c,b)) Ve(d,b)]
= P(e(d,c) Ae(c,b)) + P(e(d, b))
—P((e(d, c) Ae(c, b)) Ae(d, b))

=0.6x07+0.9—-0.6x0.7x0.9=0.942

There exist more effective ways to compute the probability of such DNF formu-
lae; cf. [19], where binary decision diagrams are employed to represent the DNF
formula.

The above example shows how the probability of a specific fact is defined
and can be computed. The distribution at the level of individual facts (or goals)
can easily be generalized to a possible world semantics, specifying a probability
distribution on interpretations. It is formalized in the distribution semantics of
[4], which is defined by starting from the set of all probabilistic ground facts
F for the given program. For simplicity, we shall assume that this set is finite,
though Sato’s results also hold for the infinite case. The distribution semantics
then starts from a probability distribution Pr(S) defined on subsets S C F:

pr(s)= [T P(H - P() 3)

fes fes

Each subset S is now interpreted as a set of logical facts and combined with the
definite clause program R that specifies the logical part of the probabilistic logic
program. Any such combination S U R possesses a unique least Herbrand model
M (C), which corresponds to a possible world. The probability of such a possible
world is then the sum of the probabilities of the subsets S yielding that possible
world, that is:

Py (M) = Z Pr(S) (4)

SCF:M(SUR)=M

For instance, in the path example, there are 16 possible worlds, which can be
obtained from the 16 different truth assignments to the facts, and whose proba-
bilities can be computed using Equation (4). As for graphical models, the prob-
ability of any logical formulae can be computed from a possible world semantics
(specified here by Py ).

Because computing the probability of a fact or goal under the distribution
semantics is hard, systems such as PRI1sM [4] and Probabilistic Horn Abduction
(PHA) [8] impose additional restrictions that can be used to improve the effi-
ciency of the inference procedure. The key assumption is that the explanations
for a goal are mutually exclusive, which overcomes the disjoint-sum problem. If
the different explanations of a fact do not overlap, then its probability is simply
the sum of the probabilities of its explanations. This directly follows from the
inclusion-exclusion formulae as under the exclusive-explanation assumption the
conjunctions (or intersections) are empty
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Learning

Essentially, any statistical relational approach can be viewed as lifting a tra-
ditional inductive logic programming setting by associating probabilistic infor-
mation to clauses and by replacing the deterministic coverage relation by a
probabilistic one. In contrast to traditional graphical models such as Bayesian
networks or Markov networks, however, we can also employ ” counterexamples”
for learning. Consider a simple kinship domain. Assume rex is a male person.
Consequently, he cannot be the daughter of any other person, say ann. Thus,
daughter(rex, ann) can be listed as a negative example although we will never
observe it. ”Counterexamples” conflict with the usual view on learning examples
in statistical learning.

In statistical learning, we seek to find that hypothesis H*, which is most
likely given the learning examples:

P(E|H) - P(F)

H* = arg max P(H|E) = arg max PE)

with  P(FE)>0.
Thus, examples F in traditional statistical learning are always observable, that
is, P(F) > 0. However, in statistical relational learning, as in inductive logic pro-
gramming, we may also employ ”counterexamples” such as daughter(rex, ann),
which have probability ”0”, and that actually never can be observed.

Definition 2 (SRL Problem). Given a set E = E, U E; of positive and neg-
ative examples E, and E; (with E,NE; = () over some example language Lg, a
probabilistic covers relation covers(e, H, B) = P(e | H, B), a probabilistic logical
language Ly for hypotheses, and a background theory B, find a hypothesis H* in
Ly such that H* = arg maxy score(F, H, B) and the following constraints hold:
Ve, € E, : covers(ep,, H*,B) >0 and ¥V e; € E; : covers(e;, H*,B) = 0. The
score is some objective function, usually involving the probabilistic covers relation
of the observed examples such as the observed likelihood HepeEp covers(ep,, H*, B)
or some penalized variant thereof.

This learning setting unifies inductive logic programming and statistical learning
in the following sense: using a deterministic covers relation (either 1 or 0), it
yields the classical inductive logic programming learning problem; sticking to
propositional logic and learning from positive examples, that is, P(E) > 0, only
yields traditional statistical learning.

To come up with algorithms solving the SRL problem, say for density estima-
tion, one typically distinguishes two subtasks because H = (L, A) is essentially
a logical theory L annotated with probabilistic parameters A:

1. Parameter estimation where it is assumed that the underlying logic program
L is fixed, and the learning task consists of estimating the parameters A that
maximize the likelihood.

2. Structure learning where both L and A have to be learned from the data.

Below, we will sketch basic parameter estimation and structure learning tech-
niques, and illustrate them for each setting.



Statistical Relational Learning 9

Parameter Estimation The problem of parameter estimation is concerned
with estimating the values of the parameters A\ of a fixed probabilistic program
H = (L, \) that best explains the examples E. So, X is a set of parameters
and can be represented as a vector. As already indicated above, to measure the
extent to which a model fits the data, one usually employs the likelihood of the
data, i.e, P(E | L, \), though other scores or variants could be used as well.
When all examples are fully observable, maximum likelihood reduces to fre-
quency counting. In the presence of missing data, however, the maximum like-
lihood estimate typically cannot be written in closed form. It is a numerical
optimization problem, and all known algorithms involve nonlinear optimization
The most commonly adapted technique for probabilistic logic learning is the
Expectation-Maximization (EM) algorithm [22,23]. EM is based on the obser-
vation that learning would be easy (i.e., correspond to frequency counting), if
the values of all the random variables would be known. Therefore, it estimates
these values, maximizes the likelihood based on the estimates, and then iterates.
More specifically, EM assumes that the parameters have been initialized (e.g., at
random) and then iteratively performs the following two steps until convergence:

(E-Step) On the basis of the observed data and the present parameters of
the model, it computes a distribution over all possible completions of each
partially observed data case.

(M-Step) Treating each completion as a fully observed data case weighted by
its probability, it computes the improved parameter values using (weighted)
frequency counting.

The frequencies over the completions are called the expected counts. Examples
for parameter estimation of probabilistic relational model can be found in [17,
18].

Structure Learning The problem is now to learn both the structure L and
the parameters A\ of the probabilistic program H = (L, ) from data. Often,
further information is given as well. As in inductive logic programming, the
additional knowledge can take various different forms, including a language bias
that imposes restrictions on the syntax of L, and an initial hypothesis (L, \) from
which the learning process can start.

Nearly all (score-based) approaches to structure learning perform a heuristic
search through the space of possible hypotheses. Typically, hill-climbing or beam-
search is applied until the hypothesis satisfies the logical constraints and the
score(H, E) is no longer improving. The steps in the search-space are typically
made using refinement operators, which make small, syntactic modification to
the (underlying) logic program.

At this point, it is interesting to observe that the logical constraints of-
ten require that the positive examples are covered in the logical sense. For
instance, when learning ProbLog programs from entailment, the observed ex-
ample clauses must be entailed by the logic program.Thus, for a probabilistic
program H = (Ly,Ap) and a background theory B = (Lp, Ap) it holds that
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Ve, € E, : P(elH,B) > 0 if and only if covers(e,Ly,Lp) = 1, where Ly
(respectively Lp) is the underlying logic program (logical background theory)
and covers(e, Ly, L) is the purely logical covers relation, which is either 0 or 1.

Applications

Applications of statistical relational learning can be found in many areas such as
web search and mining, text mining, bioinformatics, natural language processing,
robotics, and social network analysis, among other. Due to space restrictions, we
will only name few of these exciting applictions.

For instance, Getoor et al. have used statistical relational models to estimate
the result size of complex database queries [24]. Segal et al. have employed prob-
abilistic relational models for clustering gene expression data [25] and to discover
cellular processes from gene expression data [26]. Getoor et al. have used proba-
bilistic relational models to understand tuberculosis epidemiology [27]. McGov-
ern et al. 28] have estimated probabilistic relational trees to discover publication
patterns in high-energy physics. Probabilistic relational trees have also been used
to learn to rank brokers with respect to the probability that they would com-
mit a serious violation of securities regulations in the near future [29]. Anguelov
et al.[30] have used relational Markov networks for segmentation of 3D scan
data. They have also been used to compactly represent object maps [31] and
to estimate trajectories of people [31]. Kersting et al. have employed relational
hidden Markov models for protein fold recognition [32]. Poon and Domingos [33]
have shown how to use Markov logic to perform joint unsupervised coreference
resolution. Xu et al. have used non-parametric relational models for analysing
social networks [34]. Kersting and Xu have used relational Gaussian processes for
learning to rank search results [35]. Recently, Poon and Domingos have shown
how to perform unsupervised semantic parsing using Markov logic networks [36].

Current and Future Directions

We have provided an overview of the new and exciting area of statistical re-
lational learning. It combines principles of probabilistic reasoning, logical rep-
resentation and statistical learning into a coherent whole. The techniques of
probabilistic logic learning were analyzed starting from an inductive logic pro-
gramming perspective by lifting the coverage relation to a probabilistic one and
annotating the logical formulae. Different choices of the probabilistic coverage
relation lead to different representational formalisms, two of which were intro-
duced.

Statistical relational learning is an active area of research within the machine
learning and the artificial intelligence community. First, there is the issue of ef-
ficient inference and learning. Most current inference algorithms for statistical
relational models require explicit state enumeration, which is often impractical:
the number of states grows very quickly with the number of domain objects and
relations. Lifted inference algorithms seek to avoid explicit state enumeration and
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directly work at the level of groups of atoms, eliminating all the instantiations
of a set of atoms in a single step, in some cases independently of the number
of these instantiations. Despite various approaches to lifted inference [37—44],
it largely remains a challenging problem. For what concerns learning, advanced
principles of both statistical learning and logical and relational learning can be
employed for learning the parameters and the structure of probabilistic logics
such as statistical predicate invention [45] and boosting [46]. Recently, people
started to investigate learning from weighted examples, see e.g. [47] and to link
statistical relational learning to support vector machines, see e.g. [48]. Second,
there is the issue of closed-world versus open-world assumption, i.e., do we
know how many objects there are, see e.g. [49] Third, there is interest in dealing
with continuous values within statistical relational learning, see e.g. [50-53]. This
is mainly motivated by the fact that most real-world application actually contain
continuous values. Non-parametric Bayesian approaches to statistical relational
learning have also been developed, see e.g. [54-57], to overcome the typically
strong parametric assumptions underlying current statistical relational learning.
People have also started to investigate relational variants of classical statis-
tical learning tasks such as matrix factorizations, see e.g. [58]. Finally, while
statistical relational learning approaches have been used successfully in a num-
ber of applications, they do not yet cope with the dynamic environments in
an effective way.

Recommended Readings

In addition to the references embedded in the text above, we also recommend [17,
18,15] and the SRL tutorials at major artificial intelligencel and machine learn-
ing conferences.
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