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Abstract Inductive logic programming (ILP) is a form of logic-based machine learning.

The goal of ILP is to induce a hypothesis (a logic program) that generalises given training

examples and background knowledge. As ILP turns 30, we survey recent work in the field.

In this survey, we focus on (i) new meta-level search methods, (ii) techniques for learning

recursive programs that generalise from few examples, (iii) new approaches for predicate

invention, and (iv) the use of different technologies, notably answer set programming

and neural networks. We conclude by discussing some of the current limitations of ILP

and discuss directions for future research.

1 Introduction

Inductive logic programming (ILP) [75, 78] is a form of machine learning (ML). As with

other forms of ML, the goal of ILP is to induce a hypothesis that generalises training

examples. However, whereas most forms of ML use vectors/tensors to represent data

(examples and hypotheses), ILP uses logic programs (sets of logical rules). Moreover,

whereas most forms of ML learn functions, ILP learns relations.

To illustrate ILP1 suppose you want to learn a string transformation program from

the following examples.
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Most forms of ML would represent these examples as a table, where each row would

be an example and each column would be a feature, such as a one-hot-encoding repre-

sentation of the string. By contrast, in ILP, we would represent these examples as logical

atoms, such as f([i,n,d,u,c,t,i,v,e], e), where f is the target predicate that we

want to learn (the relation to generalise). We would also provide auxiliary information

(features) in the form of background knowledge (BK), also represented as a logical the-

ory (a logic program). For instance, for the string transformation problem, we could pro-

vide BK that contains logical definitions for string operations, such as empty(A), which

holds when the list A is empty; head(A,B), which holds when B is the head of the list A;

and tail(A,B), which holds when B is the tail of the list A. Given the aforementioned

examples and BK, an ILP system could induce the hypothesis (a logic program):

f(A,B):- tail(A,C),empty(C),head(A,B).

f(A,B):- tail(A,C),f(C,B).

Each line of the program is a rule. The first rule says that the relation f(A,B) holds

when the three literals tail(A,C), empty(C), and head(A,B) hold. In other words, the

first rule says that B is the last element of A when the tail of A is empty and B is the head

of A. The second rule is recursive and says that the relation f(A,B) holds when the two

literals tail(A,C) and f(C,B) hold. In other words, the second rule says that f(A,B)

holds when the same relation holds for the tail of A.

1.1 Why ILP?

Compared to most ML approaches, ILP has several attractive features [25, 17]:

Data efficiency. Many forms of ML are notorious for their inability to generalise from

small numbers of training examples, notably deep learning [70, 13]. As Evans and Grefen-

stette [39] point out, if we train a neural system to add numbers with 10 digits, it might

generalise to numbers with 20 digits, but when tested on numbers with 100 digits, the

predictive accuracy drastically decreases [91, 53]. By contrast, ILP can induce hypothe-

ses from small numbers of examples, often from a single example [69, 82].

Background knowledge. ILP learns using BK represented as a logic program. Using logic

programs to represent data allows ILP to learn with complex relational information,

such as constraints about causal networks [50], the axioms of the event calculus when

learning to recognise events [55, 56], and using a theory of light to understand images

[82]. Moreover, because hypotheses are symbolic, hypotheses can be added the to BK,

and thus ILP systems naturally support lifelong and transfer learning [69, 15, 16].

Expressivity. Because of the expressivity of logic programs, ILP can learn complex rela-

tional theories, such as cellular automata [51, 40], event calculus theories [55, 56], Petri

nets [5], and general algorithms [19]. Because of the symbolic nature of logic programs,

ILP can reason about hypotheses, which allows it to learn optimal programs, such as

minimal time-complexity programs [22] and secure access control policies [65].
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Expainability. Because of logic’s similarity to natural language, logic programs can be

easily read by humans, which is crucial for explainable AI. For instance, Muggleton et al

[85] provide the first demonstration of ultra-strong ML [73], where a learned hypothesis

is expected to not only be accurate but to also demonstrably improve the performance

of a human when provided with the learned hypothesis.

1.2 Recent advances

Some of the aforementioned advantages come from recent developments, which we sur-

vey in this paper2. To aid the reader, we coarsely compare old and new ILP systems, where

new represents systems from the past decade. We use FOIL [89], Progol [76], TILDE [9],

and HYPER [12] as representative old systems and ILASP [62], Metagol [21], ∂ ILP [39],

and Popper [19] as representative new systems. This comparison, shown in Table 1, is,

of course, vastly oversimplified, and there are many exceptions. In the rest of this paper,

we survey these developments (each row in the table) in turn. After discussing these new

ideas, we discuss recent application areas (Section 5.2) before concluding by proposing

directions for future research.

Old ILP New ILP

Search method Top-down and Bottom-up Meta-level

Recursion Limited Yes

Predicate invention No Limited

Hypotheses First-order Higher-order, ASP

Optimality No Yes

Technology Prolog Prolog, ASP, NNs

Table 1 A simplified comparison of old and new ILP systems.

The fundamental ILP problem is to efficiently search a large hypothesis space. Most

older ILP approaches search in either a top-down or bottom-up fashion. These methods

rely on notions of generality (typically using theta-subsumption [88]), where one pro-

gram is more general or more specific than another. A third new search approach has

recently emerged called meta-level ILP [50, 84, 49, 66, 19]. We discuss these approaches

in turn.

1.3 Top-down and bottom-up

Top-down approaches [89, 9, 12] start with a general hypothesis and then specialise it.

HYPER, for instance, searches a tree in which the nodes correspond to hypotheses and

each child of a hypothesis in the tree is more specific than or equal to its predecessor

in terms of theta-subsumption. An advantage of top-down approaches is that they can

often learn recursive programs (although not all do). A disadvantage is that they can be

2 This paper extends the paper of Cropper et al [25].
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prohibitively inefficient because they can generate many hypotheses that do not cover

the examples.

Bottom-up approaches, by contrast, start with the examples and generalise them

[74, 77, 79, 51]. For instance, Golem [79] generalises pairs of examples based on rela-

tive least-general generalisation [86]. Bottom-up approaches can be seen as being data-

or example-driven. An advantage of these approaches is that they are typically fast. As

Bratko [12] points out, disadvantages include (i) they typically use unnecessarily long

hypotheses with many clauses, (ii) it is difficult for them to learn recursive hypotheses

and multiple predicates simultaneously, and (iii) they do not easily support predicate

invention.

Progol [76], which inspired many other ILP approaches [102, 90, 1, 100], combines

both top-down and bottom-up approaches. Starting with an empty program, Progol

picks an uncovered positive example to generalise. To generalise an example, Progol

uses mode declarations to build the bottom clause [76], the logically most-specific clause

that explains the example. The bottom clause bounds the search from below (the bottom

clause) and above (the empty set). Progol then uses an A* algorithm to generalise the

bottom clause in a top-down (general-to-specific) manner and uses the other examples

to guide the search.

1.3.1 Meta-level

Top-down and bottom-up approaches refine and revise a single hypothesis. A third ap-

proach has recently emerged called meta-level ILP [50, 84, 49, 66, 19]. There is no stan-

dard definition for meta-level ILP. Most approaches encode the ILP problem as a meta-

level logic program, i.e. a program that reasons about programs. Meta-level approaches

then often delegate the search for a hypothesis to an off-the-shelf solver [14, 21, 62,

54, 100, 40, 19] after which the meta-level solution is translated back to a standard

solution for the ILP task. In other words, instead of writing a procedure to search in

a top-down or bottom-up manner, most meta-level approaches formulate the learning

problem as a declarative search problem. For instance, ASPAL [14] translates an ILP task

into a meta-level ASP program which describes every example and every possible rule in

the hypothesis space. ASPAL then delegates the search to an ASP system to find a subset

of the rules that covers all the positive but none of the negative examples.

The main advantage of meta-level approaches is that they can more easily learn re-

cursive programs and optimal programs [14, 62, 21, 54, 40, 19], which we discuss in

Sections 2 and 4 respectively. Moreover, whereas classical ILP systems were almost en-

tirely based on Prolog, meta-level approaches use diverse techniques and technologies,

such as ASP solvers [14, 62, 54, 19, 40], which we expand on in Section 5. The devel-

opment of meta-level ILP approaches has, therefore, diversified ILP from the standard

clause refinement approach of earlier ILP systems.

Most meta-level approaches encode the ILP learning task as a single static meta-level

program [14, 62, 54, 40]. A major issue with this approach is that the meta-level program

can be very large so these approaches can struggle to scale to problems with non-trivial

domains and to programs with large clauses. Two related approaches try to overcome

this limitation by continually revising the meta-level program.

ILASP3 [61] employs a counter-example-driven select-and-constrain loop. ILASP3

first pre-computes every clause in the hypothesis space defined by a set of given mode

declarations [76]. ILASP3 then starts its select-and-constrain loop. With each iteration,

ILASP3 uses an ASP solver to find the best hypothesis (a subset of the rules) it can.
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If the hypothesis does not cover one of the examples, ILASP3 finds a reason why and

then generates constraints (boolean formulas over the rules) which it adds to the meta-

level program to guide subsequent search. Another way of viewing ILASP3 is that it

uses a counter-example-guided approach and translates an uncovered example e into a

constraint that is satisfied if and only if e is covered.

Popper [19] adopts a similar approach but differs in that it (i) does not precompute

every possible rule in the hypothesis space, and (ii) translates a hypothesis into a set of

constraints, rather than an uncovered example. Popper works in three repeating stages:

generate, test, and constrain. Popper first constructs a meta-level logic program where

its models correspond to hypotheses. In the generate stage, Popper asks an ASP solver

to find a model (a hypothesis). In the test stage, Popper tests the hypothesis against the

examples. A hypothesis fails when it is incomplete (does not entail all the positive ex-

amples) or inconsistent (entails a negative example). If a hypothesis fails, Popper learns

constraints from the failure, which it then uses to restrict subsequent generate stages. For

instance, if a hypothesis is inconsistent, then Popper generates a generalisation constraint

to prune all generalisations of the hypothesis and adds the constraint to the meta-level

program, which eliminates models and thus prunes the hypothesis space. This process

repeats until Popper finds a complete and consistent program.

For more information about meta-level learning, we suggest the work of Inoue [49]

and Law et al [66].

2 Recursion

Learning recursive programs has long been considered a difficult problem for ILP [81,

17]. The power of recursion is that an infinite number of computations can be described

by a finite recursive program [107]. To illustrate the importance of recursion, reconsider

the string transformation problem from the introduction. Without recursion, an ILP sys-

tem would need to learn a separate clause to find the last element for each list of length

n, such as this program for when n = 3:

f(A,B):- tail(A,C),empty(C),head(A,B).

f(A,B):- tail(A,C),tail(C,D),empty(D),head(C,B).

f(A,B):- tail(A,C),tail(C,D),tail(D,E),empty(E),head(D,B).

This program does not generalise to lists of arbitrary lengths. Moreover, most ILP systems

would need examples of lists of each length to learn such a program. By contrast, an ILP

system that supports recursion can learn the compact program:

f(A,B):- tail(A,C),empty(C),head(A,B).

f(A,B):- tail(A,C),f(C,B).

Because of the symbolic representation and the recursive nature, this program gener-

alises to lists of arbitrary length and which contain arbitrary elements (e.g. integers and

characters). In general, without recursion, it can be difficult for an ILP system to gener-

alise from small numbers of examples [24].

Older ILP systems struggle to learn recursive programs, especially from small num-

bers of training examples. A common limitation with existing approaches is that they

rely on bottom clause construction [76]. In this approach, for each example, an ILP sys-

tem creates the most specific clause that entails the example, and then tries to generalise
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the clause to entail other examples. However, this sequential covering approach requires

examples of both the base and inductive cases.

Interest in recursion has resurged with the introduction of meta-interpretive learn-

ing (MIL) [83, 84, 27] and the MIL system Metagol [21]. The key idea of MIL is to use

metarules [23], or program templates, to restrict the form of inducible programs, and

thus the hypothesis space3. A metarule is a higher-order clause. For instance, the chain

metarule is P(A, B)←Q(A, C), R(C , B), where the letters P, Q, and R denote higher-order

variables and A, B and C denote first-order variables. The goal of a MIL system, such as

Metagol, is to find substitutions for the higher-order variables. For instance, the chain

metarule allows Metagol to induce programs such as f(A,B):- tail(A,C),head(C,B)4 .

Metagol induces recursive programs using recursive metarules, such as the tailrec metarule

P(A,B)← Q(A,C), P(C,B).

Following MIL, many meta-level ILP systems can learn recursive programs [62, 39,

54, 19]. With recursion, ILP systems can now generalise from small numbers of exam-

ples, often a single example [69]. Moreover, the ability to learn recursive programs has

opened up ILP to new application areas, including learning string transformations pro-

grams [69], answer set grammars [64], and general algorithms [19].

3 Predicate invention

A key characteristic of ILP is the use of BK. BK is similar to features used in most forms of

ML. However, whereas features are tables, BK contains facts and rules (extensional and

intensional definitions) in the form of a logic program. For instance, when learning string

transformation programs, we may provide helper background relations, such as head/2

and tail/2. For other domains, we may supply more complex BK, such as a theory of

light to understand images [82] or higher-order operations, such as map/3, filter/3,

and fold/4, to solve programming puzzles [27].

As with choosing appropriate features, choosing appropriate BK is crucial for good

learning performance. ILP has traditionally relied on hand-crafted BK, often designed by

domain experts. This approach is limited because obtaining suitable BK can be difficult

and expensive. Indeed, the over-reliance on hand-crafted BK is a common criticism of

ILP [39].

Rather than expecting a user to provide all the necessary BK, the goal of predicate

invention (PI) [77, 104] is for an ILP system to automatically invent new auxiliary pred-

icate symbols. This idea is similar to when humans create new functions when manually

writing programs, as to reduce code duplication or to improve readability. Whilst PI has

attracted interest since the beginnings of ILP [77], and has subsequently been repeatedly

stated as a major challenge [58, 81, 60], most ILP systems do not support it.

A key challenge faced by early ILP systems was deciding when and how to invent a

new symbol. As Kramer [59] points out, PI is difficult because it is unclear how many

arguments an invented predicate should have, how the arguments should be ordered,

etc. Several PI approaches try to address this challenge, which we discuss in turn.

3 The idea of using metarules to restrict the hypothesis space has been widely adopted by many ap-
proaches [106, 3, 96, 39, 5, 54]. However, despite their now widespread use, there is little work deter-
mining which metarules to use for a given learning task ([23] is an exception), which future work must
address.

4 Metagol can induce longer clauses though predicate invention, which is described in Section 3.



Inductive logic programming at 30 7

3.1 Placeholders

A classical approach to PI is to predefine invented symbols through mode declarations,

which Leban et al [67] call placeholders. However, this placeholder approach is limited

because it requires that a user manually specify the arity and argument types of a sym-

bol [62], which rather defeats the point, or requires generating all possible invented

predicates [39, 40], which is computationally expensive.

3.2 Metarules

Interest in automatic PI (where a user does not need to predefine an invented symbol) has

resurged with the introduction of MIL. MIL avoids the issues of older ILP systems by using

metarules to define the hypothesis space and in turn reduce the complexity of inventing

a new predicate symbol. For instance, the chain metarule (P(A, B) ← Q(A, C), R(C , B))

allows Metagol to induce programs such as f(A,B):- tail(A,C),tail(C,D), which

would drop the first two elements from a list. To induce longer clauses, such as to drop

first three elements from a list, Metagol uses the same metarule but invents a predicate

symbol to chain their application, such as to induce the program:

f(A,B):- tail(A,C),inv1(C,B).

inv1(A,B):- tail(A,C),tail(C,B).

To learn this program, Metagol invents the predicate symbol inv1 and induces a def-

inition for it using the chain metarule. Metagol uses this new predicate symbol in the

definition for the target predicate f.

A side-effect of this metarule-driven approach is that problems are forced to be de-

composed into reusable solutions. For instance, to learn a program that drops the first

four elements of a list, Metagol learns the following program, where the invented pred-

icate symbol inv1 is used twice:

f(A,B):- inv1(A,C),inv1(C,B).

inv1(A,B):- tail(A,C),tail(C,B).

PI has been shown to help reduce the size of target programs, which in turns reduces

sample complexity and improves predictive accuracy [15]. Several new ILP systems sup-

port PI using a metarule-guided approach [39, 54, 47].

3.3 Pre/post-processing

Metarule-driven PI approaches perform PI during the learning task. A recent trend is

to perform PI as a pre- or post-processing step to improve knowledge representation

[36, 37, 15, 47].

CUR2LED [36] performs PI by clustering constants and relations in the provided BK,

turning each identified cluster into a new BK predicate. The key insight of CUR2LED is

not to use a single similarity measure, but rather a set of various similarities. This choice

is motivated by the fact that different similarities are useful for different tasks, but in

the unsupervised setting the task itself is not known in advance. CUR2LED performs PI

by producing different clusterings according to the features of the objects, community

structure, and so on.
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ALPs [37] perform PI using an auto-encoding principle: they learn an encoding logic

program that maps the provided data to a new, compressive latent representation (de-

fined in terms of the invented predicates), and a decoding logic program that can recon-

struct the provided data from its latent representation. This approach shows improved

performance on supervised tasks, even though the PI step is task-agnostic.

Knorf [35] pushes the idea of ALPs even further. Knorf compresses a program by

removing redundancies in it. If the learnt program contains invented predicates, Knorf

revises them and introduces new ones that would lead to a smaller program. The refac-

tored program is smaller in size and contains less redundancy in clauses, both of which

lead to improved performance. The authors experimentally demonstrate that refactoring

improves learning performance in lifelong learning and that Knorf substantially reduces

the size of the BK program, reducing the number of literals in a program by 50% or more.

3.4 Lifelong Learning

An approach to acquiring BK is to learn it in a lifelong learning setting. The general idea

is to reuse knowledge gained from solving one problem to help solve a different problem.

MetagolDF is an ILP system [69] which given a set of tasks, uses Metagol to try to

learn a solution for each task using at most one clause. If Metagol finds a solution for a

task, it adds the solution to the BK and removes the task from the set. MetagolDF then

asks Metagol to find solutions for the rest of the tasks but can now (i) use an additional

clause, and (ii) reuse solutions from previously solved tasks. This process repeats until

MetagolDF solves all the tasks or reaches a maximum program size. In this approach,

MetagolDF automatically identifies easier problems, learn programs for them, and then

reuses the solutions to help learn programs for more difficult problems. The authors

experimentally show that their multi-task approach performs substantially better than

a single-task approach because learned programs are frequently reused and leads to a

hierarchy of induced programs.

MetagolDF saves all learned programs (including invented predicates) to the BK,

which can be problematic because too much irrelevant BK is detrimental to learning

performance [103]. To address this problem, Forgetgol [16] introduces the idea of for-

getting. In this approach, Forgetgol continually grows and shrinks its hypothesis space

by adding and removing learned programs to and from its BK. The authors show that

forgetting can reduce both the size of the hypothesis space and the sample complexity

of an ILP learner when learning from many tasks.

3.5 Limitations

The aforementioned techniques have improved the ability of ILP to invent high-level

concepts. However, PI is still difficult and there are many challenges to overcome. The

challenges are that (i) many systems struggle to perform PI at all, and (ii) those that do

support PI mostly need much user-guidance, metarules to restrict the space of invented

symbols or that a user specifies the arity and argument types of invented symbols.

By developing better approaches for PI, we can make progress on existing challeng-

ing problems. For instance, in inductive general game playing [26], the task is to learn

the symbolic rules of games from observations of gameplay, such as learning the rules
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of connect four. The target solutions, which come from the general game playing com-

petition [44], often contain auxiliary predicates. For instance, the rules for connect four

are defined in terms of definitions for lines which are themselves defined in terms of

columns, rows, and diagonals. Although these auxiliary predicates are not strictly nec-

essary to learn the target solution, inventing such predicates significantly reduces the

size of the solution, which in turns makes them easier to learn. Although new methods

for PI can invent high-level concepts, they are not yet sufficiently powerful enough to

perform well on the IGGP dataset. Making progress in this area would constitute a major

advancement in ILP.

ILP systems have traditionally induced definite and normal logic programs, typically

represented as Prolog programs. A recent development has been to use different hypoth-

esis representations.

3.6 Datalog

Datalog is a syntactical subset of Prolog which disallows complex terms as arguments

of predicates and imposes restrictions on the use of negation. Datalog is a truly declara-

tive language, whereas in Prolog reordering clauses can change the program. Moreover,

Datalog query is guaranteed to terminate, though this guarantee is at the expense of not

being a Turing-complete language, which Prolog is. Several works [3, 39, 54] induce

Datalog programs. The general motivation for reducing the expressivity of the repre-

sentation language from Prolog to Datalog is to allow the problem to be encoded as a

satisfiability problem, particularly to leverage recent developments in SAT and SMT. We

discuss the advantages of this approach more in Section 5.1.

3.7 Answer Set Programming

ASP [42] is a logic programming paradigm based on the stable model semantics of nor-

mal logic programs that can be implemented using the latest advances in SAT solving

technology. Law et al [63] discuss some of the advantages of learning ASP programs,

rather than Prolog programs, which we reiterate. When learning Prolog programs, the

procedural aspect of SLD-resolution must be taken into account. For instance, when

learning Prolog programs with negation, programs must be stratified; otherwise program

may loop under certain conditions. By contrast, as ASP is a truly declarative language, no

such consideration need be taken into account when learning ASP programs. Compared

to Datalog and Prolog, ASP supports addition language constructs, such as disjunction

in the head of a clause, choice rules, and hard and weak constraints. A key difference

between ASP and Prolog is semantics. A definite logic program has only one model (the

least Herbrand model). By contrast, an ASP program can have one, many, or even no

stable models (answer sets). Due to its non-monotonicity, ASP is particularly useful for

expressing common-sense reasoning [61].

To illustrate the benefits of learning ASP programs, we reuse an example from Law

et al [66]. Given a sufficient examples of Hamiltonian graphs, ILASP [62] can learn a

program to definite them:
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0 in(V0, V1) 1 :- edge(V0, V1).

reach(V0) :- in(1, V0).

reach(V1) :- reach(V0), in(V0, V1).

:- not reach(V0), node(V0).

:- V1 != V2, in(V0, V2), in(V0, V1).

This program illustrates useful language features of ASP. The first rule is a choice rule

and the last two rules are hard constraints.

Approaches to learning ASP programs can mostly be divided into two categories:

brave learners, which aim to learn a program such that at least one answer set covers the

examples, and cautious learners, which aim to find a program which covers the examples

in all answer sets. ILASP is notable because it supports both brave and cautious learning,

which are both needed to learn some ASP programs [63]. Moreover, ILASP differs from

most Prolog-based ILP systems because it learns unstratified ASP programs, including

programs with normal rules, choice rules, and both hard and weak constraints, which

classical ILP systems cannot. Learning ASP programs allows for ILP to be used for new

problems, such as inducing answer set grammars [64].

3.8 Higher-order programs

Imagine learning a droplasts program, which removes the last element of each sublist in

a list, e.g. [alice,bob,carol] 7→ [alic,bo,caro]. Given suitable input data, Metagol can learn

this first-order recursive program:

f(A,B):- empty(A),empty(B).

f(A,B):- head(A,C),tail(A,D),head(B,E),tail(B,F),f1(C,E),f(D,F).

f1(A,B):- reverse(A,C),tail(C,D),reverse(D,B).

Although semantically correct, the program is verbose. To learn smaller programs, Metagolho

[27] extends Metagol to support learning higher-order programs, where predicate sym-

bols can be used as terms. For instance, for the same droplasts problem, Metagolho learns

the higher-order program:

f(A,B):- map(A,B,f1).

f1(A,B):- reverse(A,C),tail(C,D),reverse(D,B).

To learn this program, Metagolho invents the predicate symbol f1, which is used twice in

the program: as term in the map(A,B,f1) literal and as a predicate symbol in the f1(A,B)

literal. Compared to the first-order program, this higher-order program is smaller be-

cause it uses map/3 (predefined in the BK) to abstract away the manipulation of the list

and to avoid the need to learn an explicitly recursive program (recursion is implicit in

map/3). Metagolho has been shown to reduce sample complexity and learning times and

improve predictive accuracies [27].

3.9 Probabilistic logic programs

A major limitation of logical representations, such as Prolog and its derivatives, is the

implicit assumption that the BK is perfect. That is, most ILP systems assume that atoms
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are true or false, leaving no room for uncertainty. This assumption is problematic if data

is noisy, which is often the case.

Integrating probabilistic reasoning into logical representations is a principled way to

handle such uncertainty in data. This integration is the focus of statistical relational arti-

ficial intelligence (StarAI) [29, 32]. In essence, StarAI hypothesis representations extend

BK with probabilities or weights indicating the degree of confidence in the correctness

of parts of BK. Generally, StarAI techniques can be divided in two groups: distribution

representations and maximum entropy approaches.

Distribution semantics approaches [98], including Problog [30] and PRISM [99], ex-

plicitly annotate uncertainties in BK. To allow such annotation, they extend Prolog with

two primitives for stochastic execution: probabilistic facts and annotated disjunctions.

Probabilistic facts are the most basic stochastic primitive and they take the form of logical

facts labelled with a probability p. Each probabilistic fact represents a Boolean random

variable that is true with probability p and false with probability 1− p. For instance,

the following probabilistic fact states that there is 1% chance of an earthquake in Naples.

0.01::earthquake(naples).

An alternative interpretation of this statement is that 1% of executions of the proba-

bilistic program would observe an earthquake. The second type of stochastic primitive

is an annotated disjunction. Whereas probabilistic facts introduce non-deterministic be-

haviour on the level of facts, annotated disjunctions introduce non-determinism on the

level of clauses. Annotated disjunctions allow for multiple literals in the head, where

only one of the head literals can be true at a time. For instance, the following annotated

disjunction states that a ball can be either green, red, or blue, but not a combination of

colours:

1
3::colour(B,green);

1
3::colour(B,red);

1
3::colour(B,blue) :- ball(B).

By contrast, maximum entropy approaches annotate uncertainties only at the level of a

logical theory. That is, they assume that the predicates in the BK are labelled as either

true or false, but the label may be incorrect. These approaches are not based on logic

programming, but rather on first-order logic. Consequently, the underlying semantics are

different: rather than consider proofs, these approaches consider models or groundings

of a theory. This difference primarily changes what uncertainties represent. For instance,

Markov Logic Networks (MLN) [95] represent programs as a set of weighted clauses.

The weights in MLN do not correspond to probabilities of a formula being true but,

intuitively, to a log odds between a possible world (an interpretation) where the clause

is true and a world where the clause is false. For instance, a clause that is true in 80% of

the worlds would have a weight of 1.386 (log 0.8
0.2 )

The techniques from learning such probabilistic programs are typically direct exten-

sions of ILP techniques. For instance, ProbFOIL [31] extends FOIL [89]with probabilistic

clauses. Similarly, SLIPCOVER [8] is a bottom-up approach, similar to Aleph [102] and

Progol [76]. Huynh and Mooney [48] use Aleph to find interesting clauses and then learn

the corresponding weights. Kok and Domingos [57] use relational pathfinding over BK to

identify useful clauses. That is, they interpret the BK as a hypergraph in which constants

form vertices and atoms form hyper-edges and perform random walks. Frequently oc-

curring walks, or their subparts, are then turned into clauses. Such random walks could

be seen as an approximate way to construct bottom clauses.
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4 Optimality

There are often multiple (sometimes infinitely many) hypotheses that explain the data.

Deciding which hypothesis to choose has long been a difficult problem. Older ILP systems

were not guaranteed to induce optimal programs, where optimal typically means with

respect to the size of the induced program or the coverage of examples. A key reason for

this limitation was that most search techniques learned a single clause at a time, leading

to the construction of sub-programs which were sub-optimal in terms of program size

and coverage. For instance, programs induced by Aleph offer no guarantee of optimality

with respect to the program size and coverage.

Newer ILP systems try to address this limitation. As with the ability to learn recursive

programs, the main development is to take a global view of the induction task by using

meta-level search techniques. In other words, rather than induce a single clause at a time

from a single example, the idea is to induce multiple clauses from multiple examples.

For instance, ILASP uses ASP’s optimisation abilities to provably learn the program with

the fewest literals.

The ability to learn optimal programs opens up ILP to new problems. For instance,

learning efficient logic programs has long been considered a difficult problem in ILP

[78, 81], mainly because there is no declarative difference between an efficient program,

such as mergesort, and an inefficient program, such as bubble sort. To address this issue,

Metaopt [22] extends Metagol to support learning efficient programs. Metaopt maintains

a cost during the hypothesis search and uses this cost to prune the hypothesis space.

To learn minimal time complexity logic programs, Metaopt minimises the number of

resolution steps. For instance, imagine trying to learn a find duplicate program, which

finds any duplicate element in a list e.g. [p,r,o,g,r,a,m] 7→ r, and [i,n,d,u,c,t,i,o,n] 7→ i.

Given suitable input data, Metagol can induce the program:

f(A,B):- head(A,B),tail(A,C),element(C,B).

f(A,B):- tail(A,C),f(C,B).

This program goes through the elements of the list checking whether the same element

exists in the rest of the list. Given the same input, Metaopt induces the program:

f(A,B):- mergesort(A,C),f1(C,B).

f1(A,B):- head(A,B),tail(A,C),head(C,B).

f1(A,B):- tail(A,C),f1(C,B).

This program first sorts the input list and then goes through the list to check whether

for duplicate adjacent elements. Although larger, both in terms of clauses and literals,

the program learned by Metaopt is more efficient O(n log n) than the program learned

by Metagol O(n2). Metaopt has been shown to learn efficient robot strategies, efficient

time complexity logic programs, and even efficient string transformation programs.

FastLAS [65] is an ASP-based ILP system that takes as input a custom scoring function

and computes an optimal solution with respect to the given scoring function. The authors

show that this approach allows a user to optimise domain-specific performance metrics

on real-world datasets, such as access control policies.

5 Technologies

Older ILP systems mostly use Prolog for reasoning. Recent work considers using different

technologies.
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5.1 Constraint satisfaction and satisfiability

There have been tremendous recent advances in SAT [46]. To leverage these advances,

much recent work in ILP uses related techniques, notably ASP [14, 83, 62, 55, 56, 100,

54, 40, 19]. The main motivations for using ASP are to leverage (i) the language benefits

of ASP (Section 3.7), and (ii) the efficiency and optimisation techniques of modern ASP

solvers, such as CLASP [43], which supports conflict propagation and learning. With

similar motivations, other approaches encode the ILP problem as SAT [1] or SMT [3]

problems. These approaches have been shown able to reduce learning times compared to

standard Prolog-based approaches. However, some unresolved issues remain. A key issue

is that most approaches encode an ILP problem as a single (often very large) satisfiability

problem. These approaches therefore often struggle to scale to very large problems [27],

although preliminary work attempts to tackle this issue [19].

5.2 Neural networks

With the rise of deep learning, several approaches have explored using gradient-based

methods to learn logic programs. These approaches all replace discrete logical reasoning

with a relaxed version that yields continuous values reflecting the confidence of the

conclusion.

The various neural approaches can be characterised along four orthogonal dimen-

sions. The first dimension is whether the neural network implements forward or back-

ward inference. While some [96] use backward (goal-directed) chaining with a neural

implementation of unification, most approaches [39, 108, 33] use forward chaining. The

second dimension is whether the network is designed for big data problems [108, 96]

or for data-efficient learning from a handful of data items [39]. Few neural systems to

date are capable of handling both big data and small data, with the notable exception

of [33]. The third dimension is whether the neural system jointly learns embeddings

(mapping symbolic constants to continuous vectors) along with the logical rules [96].

The advantage of jointly learning embeddings is that it enables fuzzy unification be-

tween constants that are similar but not identical. The challenge for these approaches

that jointly learn embeddings is how to generalize appropriately to constants that have

not been seen at training time. The fourth dimension is whether or not the neural sys-

tem is designed to allow explicit human-readable logical rules to be extracted from the

weights of the network. While most neural ILP systems [108, 96, 39] do produce explicit

logic programs, some [33] do not. It is perhaps moot whether implicit systems that do

not produce explicit programs count as ILP systems at all – but note that even in the im-

plicit neural systems, the weight sharing of the neural net is designed to achieve strong

generalisation by performing the same computation on all tuples of objects.

Currently, most neural approaches to ILP require the use of metarules or templates

to make the search space tractable. This severely limits the applicability of these ap-

proaches, as the user cannot always be expected to provide suitable metarules for a new

problem. The only approach that avoids the use of metarules or templates is Neural Logic

Machines [33].

We now survey recent application areas for ILP.

Scientific discovery. Perhaps the most prominent application of ILP is in scinefitic discov-

ery. ILP has, for instance, been used to identify and predict ligands (substructures re-
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sponsible for medical activity) [52] and infer missing pathways in protein signalling net-

works [50]. There has been much recent work on applying ILP in ecology [10, 105, 11].

For instance, Bohan et al [10] use ILP to generate plausible and testable hypotheses for

trophic relations (‘who eats whom’) from ecological data.

Program analysis. Due to the expressivity of logic programs as a representation lan-

guage, ILP systems have found successful applications in software design. ILP systems

have proven effective in learning SQL queries [3, 101], programming language seman-

tics [7], and code search [101].

Robotics. Robotics applications often require incorporating domain knowledge or impos-

ing certain requirements on the learnt programs. For instance, The Robot Engineer [97]

uses ILP to design tools for robot and even complete robots, which are tests in simulations

and real-world environments. Metagolo [20] learns robot strategies considering their re-

source efficiency and Antanas et al [4] recognise graspable points on objects through

relational representations of objects.

Games. Inducing game rules has a long history in ILP, where chess has often been the

focus [80]. Legras et al [68] show that Aleph and TILDE can outperform an SVM learner

in the game of Bridge. Law et al [62] use ILASP to induce the rules for Sudoku and show

that this more expressive formalism allows for game rules to be expressed more com-

pactly. Cropper et al [26] introduce the ILP problem of inductive general game playing:

the problem of inducing game rules from observations, such as Checkers, Sokoban, and

Connect Four.

Data curation and transformation. Another successful application of ILP is in data cura-

tion and transformation, which is again largely because ILP can learn executable pro-

grams. The most prominent example of such tasks are string transformations, such as

the example given in the introduction. There is much interest in this topic, largely due to

success in synthesising programs for end-user problems, such as string transformations

in Microsoft Excel [45]. String transformation have become a standard benchmark for

recent ILP papers [69, 27, 15, 18]. Other transformation tasks include extracting values

from semi-structured data (e.g. XML files or medical records), extracting relations from

ecological papers, and spreadsheet manipulation [24].

Learning from trajectories. Learning from interpretation transitions (LFIT) [51] auto-

matically constructs a model of the dynamics of a system from the observation of its

state transitions. Given time-series data of discrete gene expression, it can learn gene

interactions, thus allowing to explain and predict states changes over time [94]. LFIT

has been applied to learn biological models, like Boolean Networks, under several se-

mantics: memory-less deterministic systems [51, 92], and their multi-valued extensions

[93, 71]. Martínez et al [71] combine LFIT with a reinforcement learning algorithm to

learn probabilistic models with exogenous effects (effects not related to any action) from

scratch. The learner was notably integrated in a robot to perform the task of clearing the

tableware on a table. In this task external agents interacted, people brought new table-

ware continuously and the manipulator robot had to cooperate with mobile robots to

take the tableware to the kitchen. The learner was able to learn a usable model in just

five episodes of 30 action executions. Evans et al [40] apply the Apperception Engine
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to explain sequential data, such as cellular automata traces, rhythms and simple nurs-

ery tunes, image occlusion tasks, game dynamics, and sequence induction intelligence

tests. Surprisingly, they show that their system can achieve human-level performance on

the sequence induction intelligence tests in the zero-shot setting (without having been

trained on lots of other examples of such tests, and without hand-engineered knowledge

of the particular setting). At a high level, these systems take the unique selling point of

ILP systems (the ability to strongly generalise from a handful of data), and apply it to

the self-supervised setting, producing an explicit human-readable theory that explains

the observed state transitions.

In a survey paper from a decade ago, Muggleton et al [81] proposed directions for fu-

ture research. In the decade since, there have been major advances on many of the topics,

notably in predicate invention (Section 3), using higher-order logic as a representation

language (Section 3.2) and to represent hypotheses (Section 3.8), and applications in

learning actions and strategies (Section 5.2). Despite the advances, there are still many

limitations in ILP that future work should address.

5.3 Limitations and future research

Better systems. Muggleton et al [81] argue that a problem with ILP is the lack of well-

engineered tools. They state that whilst over 100 ILP systems have been built, less than a

handful of systems can be meaningfully used by ILP researchers. In the decade since the

authors highlighted this problem, little progress has been made: most ILP systems are not

easy to use. In other words, ILP systems are still notoriously difficult to use and you often

need a PhD in ILP to use any of the tools. Even then, it is still often only the developers

of a system that know how to properly use it. By contrast, driven by industry, other

forms of ML now have reliable and well-maintained implementations, such as PyTorch

and TensorFlow, which has helped drive research. A frustrating issue with ILP systems

is that they use many different language biases or even different syntax for the same

biases. For instance, the way of specifying a learning task in Progol, Aleph, TILDE, and

ILASP varies considerably despite them all using mode declarations, If it is difficult for

ILP researchers to use ILP tools, then what hope do non-ILP researchers have? For ILP

to be more widely adopted both inside and outside of academia, we must develop more

standardised, user-friendly, and better-engineered tools.

Language biases. As Cropper et al [25] state, one major issue with ILP is choosing an

appropriate language bias. For instance, Metagol uses metarules (Section 3.2) to restrict

the syntax of hypotheses and thus the hypothesis space. If a user can provide suitable

metarules, then Metagol is extremely efficient. However, if a user cannot provide suitable

metarules (which is often the case), then Metagol is almost useless. This same brittle-

ness applies to ILP systems that employ mode declarations [76]. In theory, a user can

provide very general mode declarations, such as only using a single type and allowing

unlimited recall. In practice, however, weak mode declarations often lead to very poor

performance. For good performance, users of mode-based systems often need to manu-

ally analyse a given learning task to tweak the mode declarations, often through a process

of trial and error. Moreover, if a user makes a small mistake with a mode declaration,

such as giving the wrong argument type, then the ILP system is unlikely to find a good

solution. Even for ILP experts, determining a suitable language bias is often a frustrating

and time-consuming process. We think the need for an almost perfect language bias is
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severely holding back ILP from being widely adopted. We think that an important direc-

tion for future work in ILP is to develop techniques for automatically identifying suitable

language biases. Although there is some work on mode learning [72, 41, 87] and work

on identifying suitable metarules [23], this area of research is largely under-researched.

Better datasets. Interesting problems, alongside usable systems, drive research and at-

tract interest in a research field. This relationship is most evident in the deep learn-

ing community which has, over a decade, grown into the largest AI community. This

community growth has been supported by the constant introduction of new problems,

datasets, and well-engineered tools. Challenging problems that push the state-of-the-art

to its limits are essential to sustain progress in the field; otherwise, the field risks stag-

nation through only small incremental progress. ILP has, unfortunately, failed to deliver

on this front: most research is still evaluated on 20-year old datasets. Most new datasets

that have been introduced often come from toy domains and are designed to test specific

properties of the introduced technique. To an outsider, this sends a message that ILP is

not applicable to real-world problems. We think that the ILP community should learn

from the experiences of other AI communities and put significant efforts into develop-

ing datasets that identify limitations of existing methods as well as showcase potential

applications of ILP.

Relevance. New methods for predicate invention (Section 3) have improved the abilities

of ILP systems to learn large programs. Moreover, these techniques raise the potential

for ILP to be used in lifelong learning settings. However, inventing and acquiring new BK

could lead to a problem of too much BK, which can overwhelm an ILP system [103, 16].

On this issue, a key under-explored topic is that of relevancy. Given a new induction

problem with large amounts of BK, how does an ILP system decide which BK is relevant?

One emerging technique is to train a neural network to score how relevant programs are

in the BK and to then only use BK with the highest score to learn programs [6, 38].

However, the empirical efficacy of this approach has yet to be demonstrated. Moreover,

these approaches have only been demonstrated on small amounts of BK and it is unclear

how they scale to BK with thousands of relations. Without efficient methods of relevance

identification, it is unclear how efficient lifelong learning can be achieved.

Handling mislabelled and ambiguous data. A major open question in ILP is how best to

handle noisy and ambiguous data. Neural ILP systems [96, 39] are designed from the

start to robustly handle mislabelled data. Although there has been work in recent years

on designing ILP systems that can handle noisy mislabelled data, there is much less work

on the even harder and more fundamental problem of designing ILP systems that can

handle raw ambiguous data. ILP systems typically assume that the input has already been

preprocessed into symbolic declarative form (typically, a set of ground atoms represent-

ing positive and negative examples). But real-world input does not arrive in symbolic

form. Consider e.g. a robot with a video camera, where the raw input is a sequence

of pixel images. Converting each pixel image into a set of ground atoms is a challeng-

ing non-trivial achievement that should not be taken for granted. For ILP systems to be

widely applicable in the real world, they need to be redesigned so they can handle raw

ambiguous input from the outset [39, 34].
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Probabilistic ILP. Real-world data is often noisy and uncertain. Extending ILP to deal with

such uncertainty substantially broadens its applicability. While StarAI is receiving grow-

ing attention, learning probabilistic programs from data is still largely under-investigated

due to the complexity of joint probabilistic and logical inference. When working with

probabilistic programs, we are interested in the probability that a program covers an

example, not only whether the program covers the example. Consequently, probabilis-

tic programs need to compute all possible derivations of an example, not just a single

one. Despite added complexity, probabilistic ILP opens many new challenges. Most of the

existing work on probabilistic ILP considers the minimal extension of ILP to the prob-

abilistic setting, by assuming that either (i) BK facts are uncertain, or (ii) that learned

clauses need to model uncertainty. These assumptions make it possible to separate struc-

ture from uncertainty and simply reuse existing ILP techniques. Following this minimal

extension, the existing work focuses on discriminative learning in which the goal is to

learn a program for a single target relation. However, a grand challenge in probabilistic

programming is generative learning. That is, learning a program describing a genera-

tive process behind the data, not a single target relation. Learning generative programs

is a significantly more challenging problem, which has received very little attention in

probabilistic ILP.

Explainability. Explainability is one of the claimed advantages of a symbolic represen-

tation. Recent work [85, 2] evaluates the comprehensibility of ILP hypotheses using

Michie’s [73] framework of ultra-strong machine learning, where a learned hypothesis

is expected to not only be accurate but to also demonstrably improve the performance

of a human being provided with the learned hypothesis. [85] empirically demonstrate

improved human understanding directly through learned hypotheses. However, more

work is required to better understand the conditions under which this can be achieved,

especially given the rise of PI.

5.4 Summary

As ILP approaches 30, we think that the recent advances surveyed in this paper have

opened up new areas of research for ILP to explore. Moreover, we hope that the next

decade sees developments on the numerous limitations we have discussed so that ILP

can have a significant impact on AI.
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