
Probabilistic Answer Set Programming

Eduardo Menezes de Morais
Department of Computer Science

University of São Paulo
São Paulo, Brazil

Email: eduardo.morais@usp.br

Marcelo Finger
Department of Computer Science

University of São Paulo
São Paulo, Brazil

Email: mfinger@ime.usp.br

Abstract—This paper introduces a technique called Proba-
bilistic Answer Set Programming (PASP), that allows modeling
complex theories and checking its satisfiability with respect to
a set of probabilistic data. We propose an algorithm for PASP
processing based on a Turing reduction method to ASP.

Keywords-logic programming; probabilistic logic; probabilis-
tic satisfiability (PSAT); answer set programming (ASP).

I. INTRODUCTION

This paper presents a well principled extension of Answer
Set Programming (ASP, [1], [2]) to deal with probabilis-
tic constraints. This extension is based on the interaction
between logic and probability originally due to Boole [3]
and which is now known as Probabilistic Logic [4] or
Probabilistic Satisfiability (PSAT, [5]). Recent work has
shown that PSAT has industrial applications [6], but for its
use in larger problems a better modeling tool is necessary.
One possible such tool is PASP.

The goal of this paper is to provide a clear semantics and
an effective algorithm to a probabilistic extension of ASP.
Due to space limitations, we present only one algorithm for
PASP processing; more details can be found in [7].

ASP is a variation of Logic Programming that employs
stable model semantics to deal with negation-as-failure,
and has been successfully employed in applications ranging
from typical AI problems to Software Engineering and
Computational Biology.

PASP should be a tool for finding solutions to problems
that combines “hard” constraints, that is, logical constraints
that can never be broken in a solution, and “soft” constraints
that could be broken but ideally would be satisfied. In [6]
we see a similar application using PSAT. Since it is easier
to model complex theories in ASP than in SAT, with PASP
would allow modeling larger and more difficult problems.

The rest of this work is developed as follows. Background
on ASP and PSAT is presented briefly in Sections II and III.
More details can be found in [7]. The PASP problem is de-
fined in Section IV and a solution method and experimental
results in Sections V and VI.

II. ANSWER SET PROGRAMMING

Answer Set Programming is a non-monotonic, declara-
tive programming paradigm for solving hard combinatorial

problems.
The concept of Answer Sets (or stable models for the

case without classical negation) was created by Gelfond and
Lifschitz in [1] in an attempt to clarify the semantics of
negation in logic programming languages. The idea of using
the concept of Answer Sets not only as an auxiliary tool
for Prolog, but as a proper logic programming paradigm,
was introduced by [2]. And so, Answer Set Programming
(ASP) was born.

While an ASP program can have variables and functions,
it must be grounded before it’s Answer Sets can be found.
A Grounded ASP program is a finite set of rules of the
form ℎ ← 𝐿1, . . . , 𝐿𝑚, not 𝐿𝑚+1, . . . , not 𝐿𝑛, where ℎ
and each 𝐿𝑖 is a literal (i.e. an atom, 𝑎, or its classical
negation, also called explicit negation, ¬𝑎). The symbol
not represents default negation or negation as a failure
to prove. In a rule 𝑟, “ℎ” is the head, represented by
𝐻𝑒𝑎𝑑(𝑟) and “𝐿1, . . . , 𝐿𝑚, not 𝐿𝑚+1, . . . , not 𝐿𝑛” is the
body, represented by 𝐵𝑜𝑑𝑦(𝑟). The literals 𝐿1, . . . , 𝐿𝑚

form the positive body, 𝐵𝑜𝑑𝑦+(𝑟) and 𝐿𝑚+1, . . . , 𝐿𝑛 form
the negative body of the rule, 𝐵𝑜𝑑𝑦−(𝑟).

Rules without heads are called restrictions, “←
𝐿1, . . . , 𝐿𝑚, not 𝐿𝑚+1, . . . , not 𝐿𝑛”.

A set of literals 𝑀 is a model of program 𝑃 if for every
rule 𝑟 of the program, if 𝐵𝑜𝑑𝑦+(𝑟) ⊆𝑀 and 𝐵𝑜𝑑𝑦−(𝑟) ⊈
𝑀 , then 𝐻𝑒𝑎𝑑(𝑟) ∈ 𝑀 . A model can’t have both an atom
𝑎 and ¬𝑎. We say a model 𝑀∗ is a minimal model if it’s
minimal relative to set inclusion, that is, there is no model
𝑀 such that 𝑀 ⊂ 𝑀∗. Programs where in all rules the
negative body is empty have an unique minimal model [8].
That is not true in general for an arbitrary program.

To define an Answer Set of a grounded ASP program, first
we must define the reduction of a program.

Definition 1 (from [1]). Let 𝑀 be a finite set of atoms of
𝑃 , the program 𝑃𝑀 , obtained from 𝑃 by removing:
∙ all the rules that have a literal 𝐴 in their negative body

if 𝐴 ∈𝑀 ;
∙ the negative body of the remaining rules

is called reduction of 𝑃 by 𝑀 .

We can verify that the reduction of a program 𝑃 results
in a program where in all rules the negative body is empty.

2013 Brazilian Conference on Intelligent Systems

978-0-7695-5092-3/13 $26.00 © 2013 IEEE

DOI 10.1109/BRACIS.2013.33

150

Authorized licensed use limited to: b-on: Universidade de Evora. Downloaded on May 27,2022 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.

Therefore, there is always an unique minimal model for the
reduction of a program.

Definition 2. Let 𝑃𝑀 be the reduction of the program 𝑃 by
𝑀 , 𝑀 is an Answer Set of 𝑃 if the minimal model of 𝑃𝑀

is 𝑀 .

An useful extension to the traditional ASP framework is
the weight constraint rule, introduced in [9].

First, let’s define weight constraints. A weight constraint
has the form:

𝐿 ≤ {ℎ1 = 𝑤1, . . . , not ℎ𝑛 = 𝑤𝑛} ≤ 𝑈. (1)

where ℎ𝑖 are literals or default negated literals, 𝐿 and 𝑈 are
integers, called lower limit and upper limit respectively,
and 𝑤1, . . . , 𝑤𝑛 are called weights associated to a literal,
also represented by 𝑤𝑒𝑖𝑔ℎ𝑡(ℎ𝑖).

Intuitively, a weight constraint is satisfied if the sum of
the weights of the satisfied literals is between 𝐿 and 𝑈 .

Example 3. Consider the weight constraints

𝐶1 : 2 ≤ {𝑎 = 1, 𝑏 = 2, not 𝑐 = 1} ≤ 3

𝐶2 : 1 ≤ {not 𝑎 = 2, 𝑏 = 1, 𝑐 = 1} ≤ 2

The set {𝑎, 𝑏} satisfies 𝐶2 and not 𝐶1.

A weight rule has the form:

𝐶0 ← 𝐶1, . . . , 𝐶𝑛 (2)

where 𝐶0, . . . 𝐶𝑛 are weight constraints and in 𝐶0 there
are no default negated literals. A weight constraint rule is
satisfied if when 𝐶1, . . . , 𝐶𝑛 are satisfied, 𝐶0 also is.

The reduction (Definition 1) of a weight constraint is a
little different. We remove the upper limit and the default
negated literals, subtracting the weights of the satisfied
default negations.

Definition 4. Let 𝑃 be a program with weight constraints
and 𝑀 a set of literals appearing on this program, the
reduction of a weight constraint 𝐶 of the form (1) is

𝐶𝑀 = 𝐿′ ≤ {ℎ𝑖 = 𝑤𝑖∣ℎ𝑖 ∈𝑀}
where

𝐿′ = 𝐿−
∑

ℎ𝑖 /∈𝑀
𝑤𝑒𝑖𝑔ℎ𝑡(not ℎ𝑖)

For the weight rules, we have:

Definition 5. Let 𝑀 be a set o literals, the reduction of a
weight rule of the form (2) is the set of rules.

𝑅𝑀 =

{
∅ if ∃𝐶𝑖≥1 :𝑀 ⊭ 𝐶𝑖

{ℎ← 𝐶𝑖𝑀 ∣ℎ ∈𝑀 ∩ 𝐶0} otherwise

where 𝑀 ⊭ 𝐶 symbolizes that 𝑀 does not satisfies the
constraint 𝐶 and 𝐶𝑖𝑀 is the collection of the reductions of
every weight constraint in the body of the rule.

We define a weight rule’s model and an Answer Set for
programs with weight rules in an analogous manner of their
regular counterparts, with the extra restriction that an Answer
Set for a program with weight rules must satisfy every rule’s
upper limit.

The reduction of a weight constraint discards the upper
limit but the Answer Set definition demands that it is
respected. The reason for this strange definition is to allow
for more efficient algorithms for discovering Answer Sets
while maintaining the behavior expected by the intuition.
Details can be seen in [10].

As seen in [11], weight rules (or disjunctive rules, that can
be written as weight rules) can increase the expressive power
of the language and finding Answer Sets in programs with
weight rules is

∑𝑃
2 -complete, while ASP without weight

rules is 𝑁𝑃 -complete.
A result that should be observed is:

Theorem 6 (from [7]). Given an ASP program 𝑆 with Ψ as
the set of all Answer Sets, by adding a new constraint rule,
the new program 𝑆′ will have Answer Sets Ψ′ ⊆ Ψ.

This theorem shows that by adding constraints to an ASP
program we do not add new Answer Sets, we only remove
those that violate the constraint. This holds for both regular
constraint rules and weight rules with an empty head. This
property will be used in the proposed PASP algorithm.

III. PSAT

The PSAT problem first appeared in 1854 studied by
George Boole in [3], and was later rediscovered by several
researchers.

The Probabilistic Satisfiability problem is the problem of
deciding if a set probabilities associated to set of logic for-
mulas is satisfiable, as defined in the following paragraphs.

Let’s consider the classic propositional logic in the usual
way. A PSAT instance is given by a set o formulas in propo-
sitional logic over a set of 𝑛 variables, 𝑆 = {𝑠1, . . . , 𝑠𝑘},
and a set of probabilities 𝑃 = {𝑝1, . . . , 𝑝𝑘} with 0 ≤ 𝑝𝑖 ≤ 1
for all 𝑖.

A discrete probability distribution over an enumerable
set 𝑋 is a function 𝜋 that associates each element of this
set with a probability in such a way that

∑
𝑥∈𝑋 𝜋(𝑥) = 1.

Given a probability distribution over all 𝑆 set’s formulas’
interpretations, we can define the probability of a formula
as the sum of the probabilities of the interpretations that
satisfy this formula. Formally, if 𝜋 is a probability distribu-
tion over the set of interpretations, 𝐼𝑆 , and 𝑖(𝑠) = 1 iff 𝑖
is a valid interpretation of the formula 𝑠 ∈ 𝑆, formula 𝑠’s
probability is:

𝑝(𝑠) =
∑
𝑖∈𝐼𝑠
{𝜋(𝑖)∣𝑖(𝑠) = 1} (3)

Intuitively, a formula’s probability is sum of the probabil-
ities of every “possible world” where the formula holds.

151

Authorized licensed use limited to: b-on: Universidade de Evora. Downloaded on May 27,2022 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.

Definition 7. Let 𝐼𝑆 = {𝑖1, . . . , 𝑖2𝑛} be the set of possible
interpretations over the variables of 𝑆, we say that the
probability association 𝑝(𝑠𝑖) = 𝑝𝑖 is satisfiable if there
exists a probability distribution 𝜋 over 𝐼𝑆 such that Equation
(3) holds.

Example 8. Consider the following PSAT instance:

𝑃 (𝑎 ∨ 𝑏 ∨ 𝑐) = 1

𝑃 (𝑎 ∧ 𝑏) = 0.61;𝑃 (𝑎 ∧ 𝑐) = 0.60;𝑃 (𝑏 ∧ 𝑐) = 0.59

And consider the interpretations 𝑣1 = {𝑎 = 𝑏 = 𝑐 = 1},
𝑣2 = {𝑎 = 𝑏 = 1; 𝑐 = 0}, 𝑣3 = {𝑎 = 𝑐 = 1; 𝑏 = 0} and
𝑣4 = {𝑎 = 0; 𝑏 = 𝑐 = 1}.

The probability distribution 𝜋 that associates the follow-
ing values to these interpretations: 𝜋(𝑣1) = 0.4;𝜋(𝑣2) =
0.21;𝜋(𝑣3) = 0.2;𝜋(𝑣4) = 0.19 is a solution to this PSAT
instance, as we can verify by replacing these values in the
equations below, that are instances of the Equation 3 for
each formula:

𝜋(𝑣1) + 𝜋(𝑣2) + 𝜋(𝑣3) + 𝜋(𝑣4) = 1 (4)

𝜋(𝑣1) + 𝜋(𝑣2) = 0.61 (5)

𝜋(𝑣1) + 𝜋(𝑣3) = 0.6 (6)

𝜋(𝑣1) + 𝜋(𝑣4) = 0.59 (7)

In matricial form, we have:⎡
⎢⎢⎢⎣
1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥⎥⎥⎦ ⋅

⎡
⎢⎢⎢⎣
0.4

0.21

0.2

0.19

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

0.61

0.60

0.59

⎤
⎥⎥⎥⎦ (8)

A PSAT instance can be expressed as a linear program-
ming problem defining the matrix 𝐴𝑘×2𝑛 = [𝑎𝑖𝑗], such that
𝑎𝑖𝑗 = 1 iff an interpretation 𝑗 satisfies the formula 𝑖 and
also defining the vector 𝑝𝑘×1 = [𝑝𝑖]. A PSAT instance is
satisfied if there exists a vector 𝜋 that is a solution to:

𝐴𝜋 = 𝑝

𝜋 ≥ 0∑
𝜋𝑖 = 1

(9)

The last restriction can be omitted by prefixing in 𝐴 and
𝑝 an entire line of ones.

If this system has a solution, thanks to Carathodory’s
lemma [12], it has a solution with only 𝑘 + 1 nonzero
elements, making PSAT a 𝑁𝑃 -complete problem.

It’s possible to transform any PSAT instance into an
Atomic Normal Form [13], possibly with new variables. In
this form, a PSAT instance is partitioned in two sets, (Γ,Ψ)
where Γ is a set of propositional formulas associated with
the probability 1 and Ψ only has probabilities associated
to atoms. This way we separate a PSAT problem in two
problems: a SAT problem and the problem of finding a
compatible probability distribution.

Example 9. The Example 8 in Atomic Normal Form is:

Γ =

⎧⎨
⎩

¬𝑥 ∨ 𝑎 ¬𝑦 ∨ 𝑎 ¬𝑧 ∨ 𝑏 𝑎 ∨ 𝑏 ∨ 𝑐

¬𝑥 ∨ 𝑏 ¬𝑦 ∨ 𝑐 ¬𝑧 ∨ 𝑐

¬𝑎 ∨ ¬𝑏 ∨ 𝑥 ¬𝑎 ∨ ¬𝑐 ∨ 𝑦 ¬𝑏 ∨ ¬𝑐 ∨ 𝑧

⎫⎬
⎭

Ψ = {𝑃 (𝑥) = 0.61;𝑃 (𝑦) = 0.60;𝑃 (𝑧) = 0.59}

Furthermore, we can observe that in the matrix repre-
sentation of a problem in the Atomic Normal Form, each
element of the 𝑛-th column represents the truth value of a
variable in Ψ in the 𝑛-th interpretation, except for the first
line. This property is better explained in [7]. In the Example
8, the value of the variables of Ψ in each interpretation are
𝑣1 = {𝑥 = 𝑦 = 𝑧 = 1}, 𝑣2 = {𝑥 = 1; 𝑦 = 𝑧 = 0},
𝑣3 = {𝑦 = 1;𝑥 = 𝑧 = 0}, and 𝑣4 = {𝑧 = 1;𝑥 = 𝑦 = 0}.
And indeed, the values in each column of the matrix of the
Equation 8 correspond to the values of the variables 𝑥, 𝑦
and 𝑧 respectively.

IV. PASP

In this paper, we extend Answer Set Programming with
information about probability. We call this extension Prob-
abilistic Answer Set Programming, or PASP.

A. Definition

Like PSAT, PASP is a decision problem where we must
decide whether a set of probabilities is satisfiable by the
rules of a program. The input of a PASP problem is a
grounded ASP program, 𝑆, without classical negation and
with a Herbrand base 𝐻𝐵𝑠 = {𝑎1, . . . , 𝑎𝑛}, and a set of
probabilities 𝑃 = {𝑝1, . . . , 𝑝𝑘}, 𝑘 ≤ 𝑛, associated to a
subset of 𝐻𝐵𝑆 . We assume the probabilities are rational
numbers.

The formal definition of satisfiability in PASP resembles
PSAT’s concept of satisfiability.

Definition 10. Let 2𝐻𝐵𝑆 = {𝑣1, . . . , 𝑣𝑁} be the set of all
subsets of 𝐻𝐵𝑆 (the candidates to Answer Set of 𝑆).

We say a set of probabilities 𝑃 = {𝑃 (𝑎𝑖) =
𝑝𝑖∣1 ≤ 𝑖 ≤ 𝑘} is satisfied by 𝑆 if there is
a probability distribution 𝜋 over 2𝐻𝐵𝑆 where 𝑝𝑖 =∑ {𝜋(𝑣𝑙)∣𝑎𝑖 ∈ 𝑣𝑙 and 𝑣𝑙 is Answer Set of 𝑆}.

If the set 𝑃 contains a single literal, PASP reduces to
finding one Answer Set with that literal.

Like the PSAT, we can write a PASP problem in matrix
form, defining 𝐴𝑘×2∥𝐻𝐵𝑆∥ = [𝑎𝑖𝑗], such that 𝑎𝑖𝑗 = 1 if the
𝑗-th atom subset contains the 𝑖-th atom; we force 𝜋𝑗 = 0
if the 𝑗-th column of 𝐴 is not an Answer Set of 𝑃 . This
way the criterion for deciding the satisfiability of a PASP
instance becomes:

𝐴𝜋 = 𝑝

𝜋 ≥ 0∑
𝜋𝑖 = 1

(10)

152

Authorized licensed use limited to: b-on: Universidade de Evora. Downloaded on May 27,2022 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.

Once again we can eliminate the last criteria by adding a
line of ones.

PASP closely relates to PSAT instances in Atomic Normal
Form. In both problems, probabilities are associated only
with atoms/literals and an instance can be partitioned in
two parts: a SAT/ASP problem and finding a compatible
probability distribution. Furthermore, the property that the
𝑛-th column represents the truth value of the variables in
the 𝑛-th interpretation still holds.

Proposition 11. If there exists an solution for a PASP
instance, there is a solution with at most 𝑘 + 1 nonzero
elements in 𝜋.

This Proposition follows directly from Carathodory’s
Lemma.

B. Related work

There have been other works that extend Answer Set
Programming with probabilities, such as P-log [14], [15].

The way P-log tackles probabilities is radically different
form PASP’s. P-log works with causal probabilities (in-
tuitively, probabilities that are independent of any factor
other that it’s cause), observations, and actions. Its focus
is knowledge representation and inference mechanism over
Bayesian networks.

On the other hand, PASP’s focus is hard and soft con-
straints and there is no probability independence or depen-
dence hypothesis.

Therefore, even though both PASP and P-log are both
methods of extending ASP with probabilities, their focus are
very different and they should be used for different tasks.

V. RESOLUTION METHODS

We present a PASP-solving algorithm based on linear
programming with column generation.

A. Solving via Linear Programming

This method is similar to one of the methods in [13], but
adapted to account for PASP’s peculiarities, such as non-
monotonicity.

Since a PASP instance can be written as a Linear Pro-
gramming problem without a cost function, we can reduce
the problem of solving the PASP instance to the problem of
finding a basic viable solution where the columns correspond
to Answer Sets.

For this end, we will use the first phase of the Simplex
algorithm [16]. We introduce 𝑛 + 1 artificial variables, 𝜓,
where 𝑛 is the size of the probability vector. Note that those
are not variables from ASP’s point of view, but from the
Linear Programming point of view.

In the Simplex algorithm we use the Identity matrix as a
basic matrix. While it’s possible to use it, a better choice in
dealing with probability constraints is a matrix of form (11).

𝐼∗ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1

0 1 . . . 1

...
...

. . .
...

0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ (11)

Since the matrix [𝐼∗∣𝜋] is in Echelon form [17], the
system always has a solution. If the probability vector is
decreasingly ordered, this solution is non-negative.

We need a way to select columns to enter the base so
that we can minimize the probability mass associated to
the artificial variables that are not Answer Sets,

∑
𝜓𝑖. The

selected column must represent an Answer Set and must
have negative reduced cost. In Section V-B we see methods
for selecting these columns. Considering the existence of
a 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑜𝑙𝑢𝑚𝑛 method, to be detailed later, Algorithm 1
presents this resolution method.

Algorithm 1 Method for solving PASP
Require: An ASP Program 𝑆, a set of 𝑘 positive literals 𝑙,

and a set of 𝑘 probabilities, 𝑝.
𝐵 ← 𝐼∗(𝑘+1)×(𝑘+1) /* Initial Base */
𝑐𝐵 ← [1 . . . 1]𝑘+1

for 𝑗 = 1 to 𝑘 do
if Satisfied (𝐵𝑗 , 𝑆) then
𝑐𝐵𝑗
← 0

end if
end for
𝜋𝐵 ← 𝐵−1𝑝 /* Initial Basic Feasible Solution */
while 𝑐′𝐵𝜋𝐵 > 0 do
𝑧 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐶𝑜𝑙𝑢𝑚𝑛(𝑆, 𝑙, 𝐵, 𝑐𝐵)
if 𝑧 = ∅ then

return UNSAT
end if
𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑎𝑠𝑒(𝐵, 𝑧, 𝜋, 𝑐𝐵)
𝜋 ← 𝐵−1𝑝 /* New Basic Feasible Solution */

end while
return 𝐵, 𝜋𝐵

The function 𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑎𝑠𝑒 replaces some column of 𝐵
with column 𝑧 and updates the cost vector, 𝑐𝐵 . This is a
standard procedure in linear programming algorithms and
represents that the Answer Set represented by column 𝑧 is
assigned a non-zero probability.

Satisfied verifies if the column 𝐵𝑗 represents an Answer
Set. This is made easier because the values in each column
represent the values of the variables in the corresponding set.
But since not all literals are associated with probabilities, to
implement Satisfied we cannot simply verify if a set is an
Answer Set of 𝑆. Instead we must use an ASP Solver to
find an Answer Set with or without a certain literal. Due the
non-monotonicity of ASP, according Theorem 6 a possible
way is to use the following restrictions.

153

Authorized licensed use limited to: b-on: Universidade de Evora. Downloaded on May 27,2022 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.

← 𝐿1

...

← 𝐿𝑚

← not 𝐿𝑚+1

...

← not 𝐿𝑘

where 𝐿1, . . . , 𝐿𝑚 are the literals that should not appear
on the Answer Set, i.e. the literals that are 0 in 𝐵𝑗 , and
𝐿𝑚+1, . . . , 𝐿𝑘 are the literals that must appear on the An-
swer Set, i.e. the literals that are 1. We add these restrictions
to the ASP program 𝑆, run the ASP Solver, and get the
result.

The main loop of Algorithm 1 persists while 𝑐′𝐵𝜋 is
positive. If stops if the problem is unsatisfiable or when a
zero cost has been reached. Let illustrate this process with
an example.

Example 12. Consider the following ASP program 𝑆:

0 ≤ {𝑎 = 1} ≤ 1.

𝑏, 𝑐 ← 𝑎.

𝑏 ← not 𝑎.

𝑐 ← not 𝑎.

Associated with the probabilities 𝑝(𝑏) = 0.7 and 𝑝(𝑐) = 0.4.
Let’s solve it using Algorithm 1. First we initialize the

matrix ⎡
⎢⎣
1 1 1

0 1 1

0 0 1

⎤
⎥⎦

The second line represents 𝑏 and the third line represents 𝑐,
the atoms with probabilities. We see that only the second
and third columns are consistent, for 𝑆 has an Answer Set
where 𝑏 occurs and 𝑐 does not (namely, {𝑎, 𝑏}) and where
both occur (namely, {𝑏, 𝑐}), but not where both 𝑏 and 𝑐 are
absent; thus the cost vector 𝑐𝐵 has the value [1, 0, 0]′. We
compute 𝜋 such that:⎡

⎢⎣
1 1 1

0 1 1

0 0 1

⎤
⎥⎦ .

⎡
⎢⎣
0.3

0.3

0.4

⎤
⎥⎦ =

⎡
⎢⎣

1

0.7

0.4

⎤
⎥⎦

which has a total cost 𝑐′𝐵 ⋅ 𝜋 = 0.3.
The implementation of 𝑆𝑒𝑙𝑒𝑐𝑡𝐶𝑜𝑙𝑢𝑚𝑛 will be describe

ahead. Assume it return the Answer Set {𝑎, 𝑐}. The function
𝐶ℎ𝑎𝑛𝑔𝑒𝐵𝑎𝑠𝑒 would swap the first column with column
[1, 0, 1]′ representing this Answer Set:⎡

⎢⎣
1 1 1

0 1 1

1 0 1

⎤
⎥⎦ .

⎡
⎢⎣
0.3

0.6

0.1

⎤
⎥⎦ =

⎡
⎢⎣

1

0.7

0.4

⎤
⎥⎦

that has a total cost of 0. Therefore, the problem is solved,
in this case with only one interaction.

𝑆𝑒𝑙𝑒𝑐𝑡𝐶𝑜𝑙𝑢𝑚𝑛 can be written as simply calculating the
reduced cost of all Answer Set of 𝑆, but let’s see a more
efficient method ahead.

B. Column generation

To obtain columns with negative reduced cost, we can use
a Turing Reduction [18] to ASP. This method is based on
the method in [5] to solve the PSAT problem.

To say an Answer Set 𝑗 have a negative reduced cost is
equivalent to say that 𝑐𝑗 = 𝑐𝑗−𝑐′𝐵𝐵−1𝐴𝑗 < 0. Since 𝑐𝑗 = 0
for all Answer Sets we only need that

𝑐′𝐵𝐵
−1𝐴𝑗 > 0 (12)

For this Answer Set.
To obtain such Answer Set we generate a new ASP

program 𝑆′ in whose Answer Sets also are Answer Sets of
𝑆 and furthermore, the reduced cost is negative. Because
of Theorem 6, if we can express this requirement as a
set of restrictions, we can simply concatenate 𝑆 with these
restrictions.

We show two ways of expressing the inequality (12) as a
set of restrictions.

1) Weight rules: Let 𝑢 be the vector 𝑐′𝐵𝐵
−1 and

𝑙1, . . . , 𝑙𝑘 be the value of 𝑆’s literals associated with proba-
bilities. Then the inequality 𝑐′𝐵𝐵

−1𝐴𝑗 > 0 can be expressed
as:

𝑢0 +

𝑘∑
𝑖=1

𝑢𝑖𝑙𝑖 > 0 (13)

𝑢0 always has a coefficient of 1 because of the value 1 in
the first position of the vector 𝐴𝑗 .

Considering the semantics of weight constraints, the rule
that must be add to 𝑆 so that any Answer Set of the resulting
program have negative reduced cost is:

← {𝑙1 = 𝑢1, . . . , 𝑙𝑘 = 𝑢𝑘} ≤ −𝑢0
Some ASP solvers only allow integer weights. Neverthe-

less, since 𝑢 = 𝑐′𝐵𝐵
−1, all elements of 𝑐𝐵 are 0 or 1,

𝐵−1 = 𝐴𝑑𝑗(𝐵)
𝑑𝑒𝑡(𝐵) (where 𝐴𝑑𝑗(𝐵) is the adjunct matrix of 𝐵

and 𝑑𝑒𝑡(𝐵) is it’s determinant) and the elements of 𝐴𝑑𝑗(𝐵)
are integers, if we multiply 𝑢 by 𝑑𝑒𝑡(𝐵) we obtain integer
weights.

2) Inequalities as SAT instances: It was shown in [19]
how to transform any binary linear inequality with integer
non-negative coefficients into propositional logic formulas
in linear time.

The coefficients on Inequality (13) can be turned into inte-
gers by multiplying then by 𝑑𝑒𝑡(𝐵), as shown in the previous
section. We need to know the maximum number of bits to
represent the coefficients. Using the Hadamard inequality
[20, problem 523] we know that the number of bits of sum
of the coefficients is limited by log2 𝑘

2(𝑘 + 1)
𝑘+1
2 /2𝑘.

154

Authorized licensed use limited to: b-on: Universidade de Evora. Downloaded on May 27,2022 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.

With these information, we can generate SAT formulas in
CNF that are satisfiable iff the reduced cost of the model is
negative. Let the generated formula be in the form:

(𝑎11 ∨ ⋅ ⋅ ⋅ ∨ 𝑎𝑛1) ∧ ⋅ ⋅ ⋅ ∧ (𝑎1𝑚 ∨ ⋅ ⋅ ⋅ ∨ 𝑎𝑗𝑚)
We express it in the 𝑆′ program as the restrictions bellow:

← not 𝑎11, . . . , not 𝑎𝑛1.
...

← not 𝑎1𝑚, . . . , not 𝑎𝑗𝑚.

VI. EXPERIMENTAL RESULTS

An implementation of the resolution method described in
V-A utilizing weight rules is available1 under GPLv3 license.

We run several tests to analyze the behavior of this
method. The tests were run on a computer with 12 Intel
Core i7 processors and 48Gb of RAM running Ubuntu
Linux 12.04. The test consists of randomly generated PASP
instances. The ASP rules where generated according to the
procedure show in [21] to create 3-𝐿𝑃 programs varying in
the number of literals and number of rules. The generated
probabilities vary in the number of literals with probabilities
and in their range. For each possible configuration, 200
instances were generated resulting in a total of 70,200 tests.

From all these tests, 7 instances, or 0.009% of the tested
instances, result in a degenerated matrix and loop forever.
Anti-cycling techniques for the simplex algorithm are well
know but the statistical insignificance of the cases where it
occurred led us to believe that an anti-cycling mechanism
was not needed for our tests.

�
��
�
��
�

�

�	

�	�

�	�

�	

�

�	

�	�

����� � ��������
� �
 � � � � �

��� !"� #$� %&'�

Figure 1. Dispersion graph of the tests with 150 literals

The complete results can be seen found [7]. In all
configurations a trend similar to what can be seen in the
Graph 1 appear. This trend is an “easy-hard-easy” pattern,
characteristic of phase transitions.

1at the repository git://gitorious.org/pasp/pasp-asp.git.

The phase transition is a phenomenon found in many
𝑁𝑃 -complete problems where a region surrounding certain
critical values of some parameter is much more difficult
than the adjacent regions, usually when the probability of a
“accepting” answer is 50%. In [21] we see that for 3-LP ASP
programs with 150 literals the harder instances are found
when the ratio between the number of rules and the number
of literals is close to 5, but this value does not correspond to
a 50% probability of being “accepted”. This seems to repeat
in the PASP case with 3-𝐿𝑃 programs.

From the 70,200 tests, only 175 PASP instances, 0.249%,
are satisfiable and almost all of then have a rule-literal ratio
of 0.5, not being significantly influenced by the value of the
probabilities.

Since, unless the probabilities equal 1, more than one
Answer Set is needed for a PASP instance to be satisfiable
and according to [21], the probability of the existence of
an Answer Set abruptly falls from 100% to 30% when the
rules and literals ration goes from 0 to 1, it’s possible that
showing the existence of a single Answer Set was most of
the work for these instances, which explains the similarity
between the time curves for ASP and PASP.

Therefore, for the tested instances, the run time was
dominated by the time of running a single ASP Solver
instance.

VII. CONCLUSION

In this work, we have defined the problem of probabilistic
answer set programming, proposed an algorithm for it and
shown the feasibility of its implementation.

Future work involves improving algorithms and modeling
of larger problems involving hard and soft constraints, in the
line of [6].

REFERENCES

[1] M. Gelfond and V. Lifschitz, “The stable model semantics
for logic programming,” in International Conference on
Logic Programming/Joint International Conference and
Symposium on Logic Programming, 1988, pp. 1070–1080.

[2] V. W. Marek and M. Truszczyński, “Stable models and an
alternative logic programming paradigm,” in In The Logic
Programming Paradigm: a 25-Year Perspective. Springer,
1999, pp. 375–398.

[3] G. Boole, An investigation of the laws of thought: on
which are founded the mathematical theories of logic and
probabilities. Walton and Maberly, 1854. [Online]. Avail-
able: http://books.google.com/books?id=SWgLVT0otY8C

[4] N. J. Nilsson, “Probabilistic logic,” Artif. Intell., vol. 28,
no. 1, pp. 71–87, 1986.

[5] M. Finger and G. De Bona, “A logic based algorithm for
solving probabilistic satisfiability,” in Proceedings of the
12th Ibero-American conference on Advances in artifi-
cial intelligence, ser. IBERAMIA’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 453–462.

155

Authorized licensed use limited to: b-on: Universidade de Evora. Downloaded on May 27,2022 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.

[6] M. Finger, R. L. Bras, C. Gomes, and B. Selman., “Solutions
for hard and soft constraints using optimized probabilistic
satisfiability,” Accepted for SAT2013, 2013.

[7] E. M. de Morais, “Probabilistic answer set programming
(in portuguese),” Master’s thesis, Instituto de Matemática e
Estatı́stica da Universidade de São Paulo, 2012.

[8] M. H. Van Emden and R. A. Kowalski, “The semantics of
predicate logic as a programming language,” J. ACM, vol. 23,
no. 4, pp. 733–742, Oct. 1976.

[9] I. Niemel, P. Simons, and T. Soininen, “Stable model se-
mantics of weight constraint rules,” in Proceedings of the
5th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR99), Volume 1730 of
lecture. Springer-Verlag. LNAI, 1999, pp. 317–331.

[10] T. Syrjnen, Lparse 1.0 User’s Manual, 2000, dispon-
vel em: ¡http://www.tcs.hut.fi/Software/smodels/lparse.ps¿.
Acesso em: 6 Nov. 2010.

[11] R. Ben-Eliyahu and R. Dechter, “Propositional sematics for
disjunctive logic programs.” in JICSLP’92, 1992, pp. 813–
827.

[12] V. Prasolov and V. Tikhomirov, Geometry. American
Mathematical Society, julho 2001.

[13] G. de Bona, “Probabilistic satisfiability (in portuguese),”
Master’s thesis, Instituto de Matemática e Estatı́stica da
Universidade de São Paulo, 2011.

[14] C. Baral, M. Gelfond, and N. Rushton, “Probabilistic rea-
soning with answer sets,” in LPNMR, ser. Lecture Notes in
Computer Science, V. Lifschitz and I. Niemel, Eds., vol. 2923.
Springer, 2004, pp. 21–33.

[15] ——, “Probabilistic reasoning with answer sets,” Theory
Pract. Log. Program., vol. 9, no. 1, pp. 57–144, Jan. 2009.

[16] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear
Optimization. Belmont, Massachusetts, EUA: Athena Sci-
entific, 1997.

[17] E. W. Weisstein, “Echelon form. From MathWorld—A Wol-
fram Web Resource,” 2012, http://mathworld.wolfram.com/
EchelonForm.html.

[18] H. Rogers, Theory of recursive functions and effective
computability, ser. McGraw-Hill series in higher mathemat-
ics. McGraw-Hill, 1967.

[19] J. P. Warners, “A linear-time transformation of linear inequal-
ities into conjunctive normal form,” Information Processing
Letters, vol. 68, no. 2, pp. 63–69, 1998.

[20] D. Faddeev and I. Somins’kyi, Book of Problems in Higher
Algebra. Vyshcha Shkola, 1971.

[21] Y. Zhao and F. Lin, “Answer set programming phase transi-
tion: A study on randomly generated programs,” in Logic
Programming, ser. Lecture Notes in Computer Science,
C. Palamidessi, Ed. Springer Berlin / Heidelberg, 2003,
vol. 2916, pp. 239–253.

156

Authorized licensed use limited to: b-on: Universidade de Evora. Downloaded on May 27,2022 at 10:35:04 UTC from IEEE Xplore. Restrictions apply.

