% Column and row domains. col(1 .. n). row(1 .. n). % One queen on some row per colum. 1 { queen(I, J) : row(J) } 1 :- col(I). % One queen on some columns per row. 1 { queen(I, J) : col(I) } 1 :- row(J). % Number descending diagonals. diag1(I, J, I - J + n) :- col(I), row(J). % Number ascending diagonals. diag2(I, J, I + J - 1) :- col(I), row(J). % % Negative Restrictions :- D = 1 .. 2 * n - 1, not { queen(I, J) : diag1(I, J, D) } 1. :- D = 1 .. 2 * n - 1, not { queen(I, J) : diag2(I, J, D) } 1. % % Output this predicate. %#show queen/2. %#show diag1/3. %#show diag2/3.