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THEORY OF GENERALIZED ANNOTATED LOGIC 
PROGRAMMING AND ITS APPLICATIONS* 

MICHAEL KIFER+*$ AND V. S. SUBRAHMANIAN 

D Annotated logics were introduced in [43] and later studied in [5,7,31,32]. In 
[32], annotations were extended to allow variables and functions, and it was 
argued that such logics can be used to provide a formal semantics for 
rule-based expert systems with uncertainty. In this paper, we continue to 
investigate the power of this approach. First, we introduce a new semantics for 
such programs based on ideals of lattices. Subsequently, some proposals for 
multivalued logic programming [5,7,18,32,40,47] as well as some for- 
malisms for temporal reasoning [l, 3,411 are shown to fit into this framework. 
As an interesting byproduct of the investigation, we obtain a new result 
concerning multivalued logic programming: a model theory for Fitting’s 
bilattice-based logic programming, which until now has not been characterized 
model-theoretically. This is accompanied by a corresponding proof theory. 

1. INTRODUCTION 

Large knowledge bases can be inconsistent in many ways. Nevertheless, certain 
“localizable” inconsistencies should not be allowed to significantly alter the intended 
meaning of such knowledge bases. As classical logic semantics decrees that inconsistent 
theories have no models (and hence are meaningless from a model-theoretic point of 
view), classical logic is not the appropriate formalism for reasoning about inconsistent 
knowledge bases. 

As a step towards the solution of this problem, annotated logic programs were 
introduced by Subrahmanian in [43] and were subsequently studied in [5,7] by Blair 
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and Subrahmanian. In [32,33], Kifer and Lozinskii extended the theory to a full-fledged 
logic, and it was shown that a sound and complete proof procedure exists. More 
efficient proof procedures have been recently obtained, and implementations of these 
theorem provers have been designed (cf. [ 12,261). Kifer and Li [3 l] extended annotated 
programs in a different direction by allowing variables and evaluable function terms to 
appear as annotations. We will call such programs generalized annotated programs 
(GAPS, for short). The utility of annotated logics for reasoning with inconsistency and 
for programming expert systems was well argued in [5,7,31-331. In this paper, we 
continue to investigate the power of this formalism. 

First, we extend the semantics of [7,31-331 to allow annotation variables over 
arbitrary semilattices of truth values (in [31] only a special lattice-the Cartesian 
product of two unit intervals-was considered and in [7,32,33], the notion of annota- 
tion variable was not present). Then, we present the model-theoretic, fixed-point, and 
operational semantics of GAPS. In Section 5.1, we show that van Emden’s quantitative 
logic programming [47] is a special case of GAPS. Then, in Section 5.2, we show how 
Fitting’s bilattice-based logic programming approach fits into the framework of GAPS. 
The consequence of this “fit” is that we can now characterize Fitting’s approach 
model-theoretically (no model-theoretic semantics was previously proposed for this 
approach). By translating [47] and [ 181 into GAPS, we obtain a sound and complete 
proof procedure for these theories, thus strengthening van Emden’s soundness and 
completeness theorems (which were obtained under some restrictions) and complement- 
ing Fitting’s results. Lastly, we demonstrate how to incorporate two versions of 
temporal logic programming in the framework of GAPS. In the first, we consider a 
discrete linear version of time, i.e., each instant of time is a time point; in the second, 
we consider an interval-based temporal logic. We show that GAPS are sufficiently 
expressive to be able to cope with a large body of temporal problems and, in particular, 
subsume some of the earlier proposals for temporal logic programming [3]. Although 
our approach cannot directly represent certain constructs used in temporal specifica- 
tions, we note that the implication problem in most full-fledged temporal logics is 
IIt-complete and, therefore, such logics cannot be adequately implemented on a 
computer, anyway. In contrast, the corresponding problem for temporal specifications 
in GAPS is semidecidable, and thus they are more suitable for a computer implementa- 
tion. 

We believe that this paper unifies and, in some cases, generalizes various results and 
treatments of multivalued logic programming. Furthermore, it presents new applica- 
tions of this formal setting. So far, research in multivalued logic programming has 
proceeded along three different directions: 

1. Annotated logics as described in [5,7,32,33]; 
2. Bilattice-based logics [ 17,231; and 
3. Quantitative rule sets [28,29,36,39,40,42,47]. 

Earlier studies of these three approaches quickly identified various distinctions between 
these frameworks. For example, one of the key insights behind bilattices was the 
interplay between the truth values assigned to sentences and the notion of implication in 
the language under consideration. Thus, rules (implications) had weights (or truth 
values) associated with them as a whole. The problem was to study how truth values 
should be propagated “across” implications. Annotated logics, on the other hand, 
appeared to associate truth values with each component of an implication rather than 
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the implication as a whole. The implication itself was then interpreted in a “classical 
logic” fashion. The two approaches had their own advantages and disadvantages: 
although associating truth values with implications, as in [23], has intuitive appeal, 
annotated logics provide a simpler formalism that is much closer to classical logic. 
Besides, in [33] it is shown that for many problems in nonmonotonic reasoning, it is 
easier to arrive at the intended semantics via nonmonotonic annotated logics, compared 
to the bilattice-based formalism of [23]. 

However, one of the principal results of this paper is to show that this dichotomy can 
be done away with. The GAP framework introduced here uses the “classical” 
definition of implication in the same way as in [7,32,43]. However, by appropriately 
generalizing the concept of an annotation, we are able to capture the propagation of 
truth values “across” implications (cf. Theorems 7 and 8), at least to the extent this 
propagation is treated in [17]. This is one of the key insights provided by this paper. 

Additionally, this paper demonstrates that the GAP framework can be used to 
implement a semidecidable fragment of temporal logics, which is a new application for 
GAPS. Ginsberg [24] has recently observed that there are various connections between 
bilattices and modal logics, temporal logics in particular. However, his treatment of 
temporal logics is very sketchy, and no semidecidable proof theory for a large enough 
fragment of such logics is given. 

2. GENERALIZED ANNOTATED LOGIC PROGRAMS 

We assume an upper semilattice Y of truth values, and denote the semilattice ordering 
on Y by I and the least upper bound operator by U . The semilattice need not be 
complete. It is often convenient to assume the existence of a greatest element in Y, 
denoted T , and some of our results will depend on this assumption. The greatest lower 
bound operator, when it exists, is denoted by n . Elements of 7 can be thought of as 
confidence factors [7,31], or degrees of belief [7,32,33], or, as we shall see later, as 
truth values similar to those used in multivalued logics. In addition, sometimes it will be 
assumed that _7 has a unique least element, denoted I ; in these cases, this assumption 
will be made explicitly. 

For each i L 1, we postulate that there is a family 5 of total continuous (hence 
monotonic) functions, each of type Y i + Y, called annotation functions. We denote 
9= U ir, q and assume that all functions f in 9 are computable in the sense that 
there is a uniform procedure Pf such that if f is n-ary and p,, . . . , pn are given as 
input to Pf, then f(pl,. . . , p,J is output by Pr in a finite amount of time. We also 
assume that each 5 contains a j-ary function uj, derived from the semilattice 
operator U , which, given inputs p,, . . . , pj, returns the least upper part bound of 

j/l,, * * f, pj} . Slightly abusing the notation, we will often write U instead of Uj . Apart 
from the interpreted annotation functions, the language contains usual uninterpreted 
functions, constants, and predicate symbols, as commonly used in logic programs. We 
also postulate two disjoint sets of variable symbols--object variables and annotation 
variables. 

Definition I. An annotation is either an element of Y, an annotation variable, or a 
complex annotation term. Annotation terms are defined recursively as follows: 
members of Y and variable annotations are annotation terms. In addition, if f~ 9n 
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and x,,..., x, are annotation terms, then f( x,, . . . , x,) is a complex annotation 
term. 
If A is a usual atomic formula of predicate calculus (built out of object variables and 
uninterpreted predicate, function, and constant symbols) and 1y is an annotation, then 
A: is annotated atom. An annotated atom containing no occurrences of object 
variables is ground. 
If (YE 7 then A: (Y is constant-annotated (or c-annotated, for brevity). When (Y 
is an annotation variable, then A: CI is said to be variable-annotated (v-annotated). 
If (Y is a complex annotation term then A: (Y is term-annotated (t-annotated). 

De$nition 2. If A: p is an annotated atom and B, 
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clause C. Similarly, if P is a GAP, then we denote the set of all strictly ground 
instances of clauses in P by SGZ( P). 

3. GENERAL AND RESTRICTED SEMANTICS 

In this section, we propose two alternative model-theoretic semantics for GAPS. The 
first corresponds closely to that in [31,34], whereas the second is ideal-theoretic in 
nature, first proposed in [33]. 

Definition 5. An ideal of an upper semilattice is any subset S such that: 

l S is downward closed, i.e., s~S and t I s imply teS; and 
. S is closed with respect to finite least upper bounds, i.e. s, tES implies s LJ t ES. 

An ideal S is principal if for some p E f, S = { s 1 s I p} . S is called the principal 
ideal generated by p and is denoted by I( p 11. The set of all ideals of Y is denoted 
by Y(Y), and the set of principal ideals of Y will be denoted by 9:9(Y). 0 

Example 1. Ideals are not necessarily closed under infinite least upper bounds. For 
example, consider the complete lattice [0, l] (the unit interval of reals) ordered by the 
familiar “ I ” relation. Then the right-open interval 

[OJ) = {XlOlX< l} 

is an ideal that is not closed under the infinite least upper bound operator. 0 
It is easily seen that J(Y) forms a complete lattice with the intersection operation 

serving as the greatest lower bound and the union operator serving as the least upper 
bound; the order on Y(Y) is determined by the usual set inclusion E . Furthermore, 
there is a homomorphic embedding of upper semilattices Yw .9(Y) (that preserves 
finite least upper bounds) that maps elements of 7 into the corresponding principal 

ideals of X(Y). 

Definition 6. Let Y be a language of annotated logic. The Herbrand Base of Y, 
B,, is the set of all ground atomic formulas of Y (without annotations). 
A general Herbrand interpretation (or just interpretation, for short) Z is a mapping 
from the Herbrand Base of Y to J(Y). Since Z is a function into a partially 
ordered set of Y(Y), we can define a partial order on interpretations in the usual 

way: II J if and only if for every pcB,, Z(p) C J(p). 
A restricted Herbrand interpretation (r-interpretation, for short) of Y is any map 
from B, to 97 Equivalently, an r-interpretation of Y is a map from B, to 
99(Y), the set of principal ideals of Y (this explains the name “restricted” for 
such interpretations). 0 

Note here the distinction between the two notions of interpretations. Restricted 
Herbrand interpretations assign a single truth value, i.e., essentially a principal ideal 
to ground atoms; in contrast, general interpretations assign arbitrary ideals to atoms. 
Therefore, every r-interpretation is also a general interpretation, but not vice versa. In 
the sequel, we will be freely switching between the two views of r-interpretations; i.e., 
we will think of them either as mappings B,* 57 or B,- 99 (T), depending on 
which of the views is more convenient at the moment. Following [32,33], we could 
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also define interpretations with arbitrary domains, but since in this paper we are mainly 
concerned with logic programming, we will restrict our attention to Herbrand interpre- 
tations only. 

We assume that there is a unary operator 7: Y+ ?, conceptually interpreted as 
negation. For the technical purposes of this paper, we do not need to impose any 
restrictions on 1. However, sometimes one may wish 7 to satisfy certain epistemologi- 
cal criteria, such as 1 being a symmetric mapping, and the like. The proof theory for 
GAPS in Section 4 does not depend on these assumptions. 

Definition 7 (Satisfaction). Suppose Z is a general interpretation, p E Y is a c-annota- 
tion in Y and A is a ground atom. Then 

1. 
2. 
3. 
4. 
5. 
6. 
7. 

8. 

9. 

If A is a ground atom, ZI= A: p if and only if ~EZ( A), where ZL E Y. 
II= 7A: JJ if and only if T(~)EZ( A). 
Zr=F,&F, if and only if Zi=F, and ZEF,. 
II= F,vF, if and only if Z!=F, or ZI=F,. 
Ii= F,+F2 if and only if II= Fl or ZI# F2. 
ZI=F,++F, ifandonlyif Zk(F,+F,)and ZE(F~+-F,). 
Z I= (Vx) F if and only if Z K F( x / t) for all ground terms t. Here x is an object 
or annotation variable, and t must be of the same sort as x (i.e., either a usual 
ground first-order term, or an element of Y). F( x / t) denotes the replacement 
of all free occurrences of x in F by t. 
Z E (3 x) F if and only if Z E F( x / t) for some ground term t, where x is an 
object or annotation variable. ’ 
If F is not a closed formula, then Z E F if and only if II= (V)F, where (V)F 
denotes the universal closure of F. 

Definition 8 (r-Satisfaction). Suppose Z is an r-interpretation, Z.LE? is a c-annotation 
in Y and L is a ground literal. Then: 

1. If A is a ground atom, Zk’A: p if and only if Z(A) 1 p. 
2. II=’ 1 A: p if and only if T(P) I Z( A). 

The remaining cases (3)-(9) are defined in exactly the same way as for general 
satisfaction. 
As usual, an interpretation Z (or r-interpretation J) is said to be a model (resp., 
r-model) of a formula F if and only if Z E F (resp., J I=’ F). Z is a model of a set 
of formulas P (of a GAP, in particular) if and only if it is a model of each of the 
formulas in P. Also, if P is a set of formulas and 4 is a formula, we write P != C#J 
(or P E=’ 4) if and only if whenever II= P (resp., II=’ P) then Z I= q5 (resp., 
ZE’c#J). 

In annotated logics, there are at least two different (but related) notions of negation 
[32,33]. The ontological negation is close to the standard negation in predicate 
calculus; for annotated logics, it was first studied in [32]. On the other hand, the 
negation defined in (2) of Definition 7 is close to the negation used in multivalued 
logics. For annotated logics, it was first introduced in [5,7,43]; it was dubbed 

‘If t is an annotation ground term, it can be identified with a constant in _‘T, since all annotation functions 
are evaluable. 
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epistemic negation in [32]. One of the advantages of epistemic negation is that, given a 

c-annotated literal 7 A: CL, there is a c-annotation p = -(p) such that 7 A : p is 
logically equivalent to A: p. This type of negation is monotonic and, therefore, is 
more tractable. The other negation, ontological [32], defines satisfaction of negated 
atoms as follows: II= - A: I_L if and only if Zt# A: Z.L In this case, there is usually no p 
such that A: p and - A: ~1 are logically equivalent. As a result, ontological negation is 
computationally more expensive. However, the primary reason for our use of epistemic 
negation in this paper is not computational, but the fact that the negation in Fitting’s 
theory of logic programming over bilattices [ 181 directly translates into the epistemic 
negation of GAPS (see Section 5.2). Also, it is easy to see that the implication, A + B, 
can be expressed via ontological negation as follows: A V - B. However, “ + ” is not 
expressible, via V, A, and the epistemic negation 1. Therefore, since the ontological 
negation is not used in this paper, we had to define the implication “ + ” separately. 
Properties of ontological negation are discussed in detail in [13,32,33]. 

The above definition tells us what the models of a GAP are. Note that if some 
annotation term, r, appears in the head of a rule A: {+ Body and r has an annotation 
variable, x, which does not appear as an annotation in Body, then because of the 
monotonicity of annotation functions (i.e., functions in the q’s) and due to the way the 
semantics is defined, we can replace all occurrences of x in { by T while preserving 
program equivalence (recall that x is implicitly universally quantified). Consider the 
following example: 

Example 2. Suppose P is the following program over the unit interval [O, 11 of 
truth values: 

p: x+q:o.3 

q:o.4+ 

It is easy to see that this program is model-theoretically equivalent (using either general 
or restricted models) to: 

p:l+q:O.3 

q:0.4+- 

(recall that when Y= [0, l] then T = 1). 0 

Thus, we can assume without loss of generality that, in every clause, variables 
occurring in the annotation of the clause head also appear as annotations of the 
body literals. We will make this assumption throughout this paper. For the facts 
(clauses with an empty body) appearing in GAPS, this implies that c-annotations can 
always be assumed, which is done until the end of the paper. 

Following the usual development of the semantics of logic programs, we associate 
two operators Tp and R, with any GAP P: Tp maps interpretations to interpretations, 
and R, maps r-interpretations to r-interpretations. They are defined as follows: 

Definition 9. Suppose Z is an interpretation and A E B, . Then Tp( I)( A) = the least 
ideal of Y containing the set { f(p,, . . . , p,) 1 A: f(p,, . . . , p,,) + 
B* ,. /L,&. . .&LB,,: /.L~ is in SGZ(P), and II= (B,: cc,&. . .&LB,,: pJ}. It is easy to 
see that intersection of an arbitrary number of ideals is an ideal, and therefore for 
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every subset S C Y there is a unique least ideal containing S. Note also that 
T,(Z)(A) is a subset, not an element, of Y. Cl 

Definition IO. Suppose I is an r-interpretation and A cBy. Assume also that Y is a 
complete semilattice. Then RP(Z)( A) = U (f(p,, . . . , p,) 1 A: f(p,, . . . , p,) + 
B. ,.@L...&B,:/L, is in SGZ(P), It= (B,: p,&. . .&B,: CL,,)}. 

Notice that if Z is an r-interpretation (hence also an interpretation), then RP(Z)( A) 
= U Tp( I)( A) for each atom A, where U is the least upper bound operator (we 
postulate that U { ) = I ). Later we will establish a much more general result regard- 
ing the relationship between Tp and R, that will be subsequently used in Section 5 to 
establish the relationship between GAPS and van Emden’s [47] and Fitting’s [28] 
works. 

One intuition behind the ideal-theoretic definition is the following: Consider an 
interpretation Z and a ground atom A. If there is a clause in SGZ( P) with head A : p 
and whose body is satisfied by I, then we may use Z to “conclude” that there is a 
derivation of A: ~1 by using modus ponens. We collect all such p’s together as a set 
called Pp( I)( A), say. Now, using the finitary inference rule 

we may conclude in a finitary way that Pp( I)( A) should be closed under finite lubs. 
The main difference between R, and Tp is that R, would also allow infinite lubs to 
be present. It is precisely because of this finitary/infinitary distinction that Tp possesses 
some desirable properties (to be discussed shortly) that R, does not possess. The 
question of which semantics is more intuitive depends on whether one believes that 
taking infinite lubs is a justified inference step. In any case, Theorem 3 below shows 
that for most practical purposes the two semantics yield the same results. 

Theorem 1. Suppose P is a GAP, Z is an interpretation and J is an r-interpretation. 
Then 

l Z is a model of P if and only if Tp( I) I I; 
l J is an r-model of P if and only if RP( J) I J; 
l Tp is monotonic; 

l R, is monotonic. 

PROOF. A simple modification of the standard proof, e.g., from [35], with the use of 
the monotonicity property of annotated functions in 9. 0 

In what follows, we will often use a special “least” interpretation, A, which assigns 
the empty ideal { } to every atom. In case of restricted interpretations, the least 
r-interpretation may not exist, unless we require Y to have the least element I . In the 
latter case, the least r-interpretation, denoted Ar, assigns I to every atom in B,. 

Let us define the iterations of Tp as follows: T,TO = A. If (Y is a successor ordinal, 
then T,ta = Tp(Tpf(cx - 1)); if Q is a limit ordinal, then T,tcu = LJgcol TPfP. In 
the preceding sentence, (o - 1) denotes the immediate predecessor of the successor 
ordinal (Y. The iterations of R, are defined similarly with the exception that R,tO = 



GENERALIZED ANNOTATED LOGIC PROGRAMMING 343 

A,. We will see that as in the “classical” logic programming, Tp is continuous, and 
the equation TPf w = lfp( Tp) holds, but this is not always the case with R,. 

Theorem 2. Let P be a GAP. Then 

1. Tp is continuous; 
2. Tp t w = Ifp(T,) = the least model of P; 
3. For all annotated ground atoms A: CL, PEA: p if and only if t~~T~fu( A). 

PROOF. The only nonobvious thing is the continuity of Tp. The rest of the claims 
follow from continuity in a standard way. 

To show continuity, let I,, Z2, . . . be a directed sequence of interpretations of P 

(i.e., every finite subsequence Z;,, . . . , Z;, has an upper bound Z1: Z, 1 Zi,, j = 

1 . . 9 k). We have to show that Tp(U Zi) = U ( Tp( Ii)). It is easily seen from the 
definitions that for any set of interpretations, { .Zk), their least upper bound, U Jk, is 
such an interpretation J that for every ground atom A, J(A) is the least ideal 
containing the set U .Zi( A). 

Since Tp is monotonic, T,( Zk) I T,(U Zi) for all k. Since, for every A, T&J Zi)( A) 
is an ideal, we conclude that Tp(u Zi) 1 u (T,( Ii)). 

In the other direction, let A be a ground atom such that ZLE Tp(U Zi)( A). Then there 
must be a strict ground instance of a rule in P of the form A: f (cl,, . . . , p,) + 
B- ,. CL,&. . .&B,: CL,,, where p = f(p,, . . . , p,) and the literals Bj: pj are satisfied by 
U Zi. This means that for every j = 1, . . . , n, there are vj,, . . . , ujkj in Y such that 

1. each of the Bj: vi1 is true in some Zi; and 
2. /Lj= u {Uj,, . . . ,Vjkj}. 

Since the set Zi of interpretations is directed, there is some Zi, that satisfies all the 
Bj: vjl. Because of (1) above, Zi,t= B,: v,,,,,&. . .&B,: v,,,, for any m,, . . . , m, such 
that 1 I m, I k,, . . . , 1 I m, I k,. Hence, 

(1) 

Therefore, by continuity of f (all annotation functions are continuous, by definition), 

A:f&,...,/Q= 

A:f(U{v,L,...,v,k,),...,U {v,,,, . . . . v,/J)= 

A: ‘Jf(v,,,,,, . . . , v,,,,,). 

Thus, because of Equation (1) and since T,(ZiO), being an ideal, is closed under finite 
least upper bounds, we derive that f ( p,, . . . , pJ EU ( Tp( Zi))( A), which concludes the 
proof. 0 

Corollary I. If A is a ground atom such that p E Tp t o(A) then there is an integer n 
such that ~cT~fn(A). 

PROOF. Since T,t n E Tpf( n + 1) for all n 2 0, it follows that ( TPf w)(A) = 
U (Tpf n)( A) (i.e., a plain union of sets instead of the least upper bound U ). 
Therefore p must belong to one of the T,,f n( A)‘s. 0 
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Unlike Tp, R, may not be continuous, as illustrated in the following example: 

Example 3. Suppose Y is the interval of real numbers [0, l] with the usual 
ordering, and consider the following program: 

p:O+- 

1+x 

pZ2ep:X 

q: 1 +p: 1, 

where x is an annotation variable. It is easy to see that the interpretation T,,f i, 
0 I i I w, always assigns the empty ideal { ) to q. Hence, ( TPf w)(q) = { }. Now, 
according to the restricted semantics, 

(R,tw)(p) = {aI al l}, (2) 

while according to the general semantics, 

(TJw)(p) = {al a< 1). (3) 

Therefore, the r-semantics yields (Rp(Rp t w))(q) = Y, because of the third rule, 
whereas by the general semantics we have ( Tp( Tpf o))(q) = { }. This shows that 
R,tw is not a fixpoint of R, in the r-semantics; however, in the general semantics, 
Tp t w is a fixpoint of Tp, by Theorem 2. Notice that the only difference between 

Equations (2) and (3) is that “ 5 ” is used in (2), whereas in (3) “ C ” is employed. 
n 

Thus, we see that one of the major differences between R, and Tp is that the latter is 
continuous and hence attains a fixed-point at the w-th step of its upward iteration, 
whereas R, does not possess either of these properties. Interestingly, this profound 
difference is merely due to the fact that we used different notions of least upper bound 
(of infinite sets of annotations) to define Tp and R,. In the remainder of this section, 
we give a simple characterization of when R, attains a fixed-point at w. 

Blair and Subrahmanian [5,7] have shown that /fp( RP) = R, t o whenever P is 
c-annotated, and Y is a lattice. It follows immediately from that proof that the same 
result holds when no annotation variables appear in rule bodies. In parallel, Kifer and 
Li [31] showed that Ifp( RP) = R,t w holds at the other end of the spectrum: when P 
contains only v-annotations in rule bodies (in which case R, is even continuous). This 
implies that R, exhibits undesirable behavior only when c- and v-annotations are 
intermixed in rule bodies. 

Apart from the two important cases considered in [5,7,31], there is a large class of 
programs for which R, is not necessarily continuous, but still R,t w = lfp( RP) 
holds. Let us call the latter equation the @point reachability requirement. Reachabil- 
ity of tbe least fixed point in at most w iterations is important for a practical logic 
programming system, since otherwise it may often mean that no effective proof theory 
for the respective class of programs is likely to exist. In the following we identify a 
large class of programs for which the fixpoint reachability property of R, holds. 

First we need to introduce one additional operator, denoted II , that maps general 
interpretations to r-interpretations. Given an interpretation, J, we define (II J)(A) = 
U (~1 peJ(A)}, for every atom A of B,. Here U is the operator that yields the 
unique least upper bound of a set (assuming that U { } = I ). This operator will be 
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used to establish a relationship between R, and Tr. Its usefulness in this context 

becomes apparent if we recall that RP( I)( A) = U Tr( I)( A)-a property that immedi- 
ately follows from the definition. 

Dejnition II. A program P is acceptable if and only if the following property holds 
for every c-annotated literal 1 in the body of P: 

. If II (Trf w) I= I’ for some ground instance I’ of I, then Tr? w I= 1’. 0 

It is easily seen that all programs whose clause bodies are either entirely c-annotated 
or entirely v-annotated are acceptable. In the first case, this is because ( Tp t w)( A) is 
a finitely generated ideal for every atom A, and all such ideals are obviously 
principal. Hence II (Trf w) = Trf o. In the second case, the acceptability follows 
because the condition in Definition 11 is vacuously satisfied (as there are no 
c-annotations in the body of P). 

Example 4. Consider again the program P of Example 3. Here (Tr t w)(p) = 
{a(a<l} and thus (Trtw)t#p:l. On the other hand, lI(T,tw)(p)={aIasl} 
and hence II ( Tp t w) I= p: 1. Since p: 1 is a c-annotated literal in the body of a clause in 
P, P is not acceptable. 0 

Theorem 3. Zf P is acceptable and Y has a least element I then 

Surprisingly, this theorem hinges on the assumption about I as much as it 
does on the assumption about acceptability of P. To see this, consider a 
semilattice without I , e.g., Y= {t, f,T} . Assume that t, f are incomparable 
to each other, but both are smaller than T . Then the program ( p: X+ q: X} 
has two minimal models: { p: t, q: t} and { p: f, q: f), none of which is the least 
r-model. We thus assume the existence of I until the end of this section. 
Likewise, we require Y to be a complete semilattice in order for R, to be 
well-defined. 

PROOF (of Theorem 3). By (1) of Lemma 1 below and by (1) of Theorem 2, it follows 
that R,t o = II (up(T,)). By (2) of Lemma 1, R,tw is a fixpoint of R,; it is the 
least such fixpoint because of the monotonicity of R, (Theorem 1). The claim about the 
least r-model being equal to all the rest, also easily follows from Theorem 1. 0 

Lemma I. Let P be an acceptable GAP and Y be a complete upper semilattice 
with the least element I . Then 

1. R,tw = I.I (T,tw). 

2. Rp(kptw) = R,tw. 

PROOF. For Claim (l), we will show that R,t w 1 LI ( Tp t w) and vice versa. 
To see that R,tw= U (Tptw) we first prove by induction that R,tiz Trti, for 

all i. The base case is immediate: 

T,tO = A I Ar = R,tO. 
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For the inductive case, 

7J(k+ 1) = T,(T,M) IRP(TPfk) IR,(RJk) =RJ(k+ 1). (4) 

In Equation (4), the first inclusion follows because 7”(Z)(A) C R,(Z)(A) for all 
atoms A and the second one follows by the inductive assumption and because of the 
monotonicity of R,. We now obtain that for all k, T,tk( A) 5 R,t w( A) and, 
finally, that R,tw(A) 2 U (Tptw)(A). 

In the other direction, we show that for all i, 

u (TJw)(A) (R,ti)(A). (5) 

would then that for A, 

~(TPtw)(A)~~{(Rpti)(A)~i=1,2,...)=Rptw. 

We prove (5) by induction on i. The base case is trivial, since AI = U A, by 
definition. For the inductive step, assume that U ( Tpt w)( A) 2 (R,t k)(A) for all A; 
we will show that this equality holds for k + 1 as well. 

By thedefinitionof R,, Rp(Rptk)(A)= U {f(p ,,..., pa)1 A:f(p ,,.. .,g,)+ 
B. ,. p,&. . .&B,: pn is in SGZ(P), R,t k I= (B,: p,&. . . &B,: p,)}. By the inductive 
assumption, for every such rule-instance in SGZ( P), II ( Tp t w) I= (B,: p,& . . . &LB,: 
p,,). Because of the acceptability of P, for each i there is a sequence y: 5 p: I . . . 
suchthatU{pj)j=1,2,. . . } = pLi and ( Tp t w) I= (B,: pi&. . . &B,: pi) (acceptabil- 
ity is needed to ensure that local implication holds also in cases when some of the pi are 
annotation constants appearing in the body of P). 

Now, since annotation functions are continuous, L. { f(p{, . . . , pjn) 1 j = 1,2, . . . } 

=f(cc,, * * .,p,). Therefore Rp(Rptk)(A)G u(Tpfw)(A). 
For Claim (2), R,(R,t w) L R,t w follows from the monotonicity of R, and 

since R, t w 2 R, t i, for all i. The other inclusion is proved similarly to the earlier 
proofthat Rp(Rptk)(A)EU(Tpfw)(A), inClaim(1). 0 

4. CONSTRAINED QUERIES AND GAPS 

Following [44], we are now going to develop an SLD-style proof theory for GAPS 
based on the general semantics. 

Dejinition 12. Suppose P is a GAP and C,, . . . , C, are renamed versions of clauses 
in P such that no pair Ci and Cj of clauses shares common variables, Further, let 
each C,, 1 I rs n, be of the form 

A,: p,+-B;: p;&. . .&B;,: l”‘m,, 

where p, is an annotation term and each & is an annotation variable or a constant. 
Suppose further that A,, . . . , A, are unifiable via an mgu 8 and p = 

U{P,,..., p,} . Then the clause 

[ A ,:p~B;:&,&...&B’ ,,:~~l~,&...&B::~~&...&B~~:Clnrn A0 
is called a reductant of P [32]. Here, the expression U { p,, . . . , p,} is evaluated 
only if all the pi’s are c-annotations; otherwise the complex term-annotation 

U{P,,..., pn} becomes the annotation in the head of the reductant. Note, in 
particular, that the clauses Ci, Cj above may be different renamings of the same 
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clause from P. Furthermore, it should be clear that each clause in P is a reductant 
of itself. 

Example 5. Suppose 7 is the lattice 9-0 9 9$ in Figure 1. This lattice has been 
used extensively in reasoning about knowledge bases which may contain inconsistent 
information (cf. [6,46]). Intuitively, I represents the Kleene’s truth value “unknown,” 
whereas T represents the truth value “inconsistent. ” Let P be the program: 

p(X):t+q(X, Y):f 

p(b):f+r(Z,a):t. 

Then 

p(b):T+ q(6, Y):f,r(Z,a):t 

is a reductant of P via the mgu 8 = { X 1 b). 

Theorem 4. If C is a reductant of P, then P k C. 

PROOF. As C is a reductant of P, it is obtained from clauses C,, . . . , C,,, where each 
C, is a renamed version of a clause in P and no pair Ci and Cj shares common 
variables. Hence, C is of the form 

( A ,:P~B::cL:&...&B~,:~‘,,&...&BI”:cL;&...&B~”: ClRm,) 0 

wherep=U{p,,..., p,}, each Cj, 1 ~j 5 n is of the form 

Aj: pj+B/: @.z.. .&B;,: /LA,, 

and {A,, . . . , A,} are unifiable via an mgu 0. Suppose now that Z is a model of P, 
and Ca is a strict ground instance of C such that 

ZE (B;,: &&. . .&BP: &&. . .&Bin: $,$o. 

Hence, Z satisfies the body of CjO u for all 1 ~j I i. Z is a model of P and hence a 
model of each Cj (as the Cj’s are only renamed versions of clauses in P). Hence, 
Z(A,Ba)2pj for all lrjli, and thus Z(A,Ba)2p=U(p,,...,pi}. This com- 
pletes the proof. •i 

Proposition 1. Suppose P is a GAP and A: p is an annotated atom. If PI= A: CL, then 

T 

FIGURE 1. The four-valued lattice 9-e 4 9 
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there is a reductant of P having the form: 

A:~+B,:@...&B,,:/L, 

suchthat prpand Pi=B,:p,&...dzB,:p,,. 

PROOF. Suppose PI= A: p where A is a ground atom. By Theorem 2, PET,,? w( A), 
and by Corollary 1 there is an integer k such that PE( Tp t k)(A). We proceed by 
induction on k. 

Base case: k = 1. In this case, PE( T,tl)( A). Hence, there are clauses 

C,,. * . , C,, r L 1, in SGI( P), of the form (empty bodies): 

A:p,+ 
. . . 

A: pre 

suchthat p~p=U{p,,...,p,}. Since A:p + is the reductant of the above clauses, 
the base case follows. 

Inductive step: k = i + 1. The proof proceeds along the lines of the Base Case. 0 

Example 6 (S. Morishita). Suppose F is the power set of {a, b} and is ordered 
under’inclusion. Consider the program P: 

p: V+q(X): V 

q(a): {a} + 

q(b): {w- 

Clearly, P L p: {a, b} . The clause 

P:u {b w--q(&): wqw: v, 

is a reductant of P involving two different renamings of the first clause. Without being 
able to take reductants, the proof theory given in this section would not be complete, as 
it would be impossible to prove p: {a, b} from P. 

Definition 13. A query is a statement of the form ? - A,: p,& . . . & A,: pk, where 
the Ai: pi’s are atoms annotated by a constant or a variable.’ 
Unless explicitly stated otherwise, we will assume that queries are not necessarily 
c-annotated, i.e. they may contain annotation variables. If Q is a query ? - 
A,: p,&. . . & A,: pk then (3)Q will denote the existential closure of the conjunction 
of its body literals, (3)( A,: p,&. . .&A,: pk). 

Definition 14. A constrained query Q is a statement of the form: 

?-A,:p,&.. . & A,: pk & ConstraintQ, 

where 

A &...&A,:p, 1: Pl 

is the query-part of Q and ConstraintQ is its constraint-part. Here, each pi is 

‘Notice that, as usual, a query can be viewed as a headless clause +( A,: p,&. .&A,: pk). This 
explains our restriction on query annotations, since only c- and v-annotations are allowed in clause Bodies. 

3A k-ary predicate p over I is decidable if there is an algorithm d such that for every tuple 
(K,, . . , IC,)E~~, d can correctly decide whether p(K,, , K k) is true over Y or not. In particular, we 
assume that constraints do not involve quantifiers. 
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either a constant from F or an annotation variable. In the most general case, 
Constrainto can be any conjunction of decidable predicates3 over F, but in all 
specific theories considered in Sections 5 and 6, constraints will be of the form 

T,LK,&... &T, 2 K&Y, = fl,&. . . &CY, = &, 

where the ri’s, K~‘s, ak’s, /3,‘s may be arbitrary term annotations (clearly, 5 and 
= are decidable predicates over any lattice with a computable U ). 0 

Similarly, we can define constrained clauses of the form 

A: $+-B,: u,&. . .&B,: ~,,,&Constraintc, 

which is a clause in the old sense, augmented by a constraint, Constraint,. The notion 
of satisfaction of such clauses by an interpretation is immediate. 

Definition 15. Suppose C is a constrained clause A: rl, + B,: ul&. . . &B,: CL,,,& 
Constraint, and Q is a query ? - A,: p,&. . . &A,: p,&Constrainto such that: 

1. C and Q have no (annotation or object) variables in common; and 
2. Ai and A are unifiable via mgu 0. 

Then the resolvent of Q and C with respect to Ai is the constrained query Q 

below: 

?- [A,:p,&.. .&A~_,:~~_,&B,:cLI&...&B,:cc~&A~+I:~~+~ 

X&.. . &A,: pk] 8& (Constraint, & 11,~ pi & Constrainto). 

(6) 

In the above, if 0 is not required to be a most general unifier (i.e., 0 is allowed to be 
any unifier), then Q’ is called an unrestricted resolvent of C and Q with respect to 
Ai. 0 

A constraint C is solvable with respect to the semilattice F and the set B of 
interpreted annotation functions if and only if there is an assignment u of elements in F 
to the annotation variables of C, such that C has a solution with respect to F and F 
(Ca is evaluated using the intended interpretation of the annotation functions in 9). 

There is an important class of constraints, called normal constraints, which we define 
next. A constraint (7, 1 K , & . . . & 7, 2 K J is normal if 

1. Each ~~ is an annotation variable or a constant; 
2. If K i is a variable, then it does not occur in r,, . . . , TV. 

Queries, clauses, and GAPS constrained by normal constraints are called normal 
queries, clauses, and GAPS, respectively. 

Lemma 2. Suppose F is a lattice (not necessarily complete). Then 

1 .I If C and Q are a normal clause and a normal query, respectively, then the 
resolvent of Q and C is a normal query. 

2. Satisfiability of any normal constraint is decidable. 

PROOF. 

(1) Notice that pi in Equation (6) does not appear in Constraint, and in $, since 
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(2) 

variables have been reqamed before performing the resolution step. Similarly, 
none of the right-hand sides of inequalities in ConstraintQ appears in $. 
Therefore, if both Constraint, and ConstraintQ in the above equation are 
normal, the constraint in the resolvent, (Constraint, & $J 1 p& ConstraintQ), 
is also normal. Observe that the order of constraints in Equation (6) above is 
crucial. 
Let C be a normal constraint of the form 7, r K ,& . . . &rn L K n. Without loss 
of generality, we assume that the inequalities in C with identical variable in the 
right-hand side are grouped together, i.e., if K i and K j are the same variable, 
then for all s, i 5 s I j, K s is the same variable as K i and K j. This grouping can 
be achieved by the following re-grouping operation: Suppose C has a subse- 
quence of conjuncts . . . &r’ LX&. . . &r* 2 y&. . . &r3 LX. . . . Because of 
normality of C, x does not appear in T*, and hence the whole block of 
inequalities between 71 2 x and 73 2 x can be moved in front of 7’ 2 x. 
Clearly, the resulting constraint will still be normal and equivalent to C. 
Repeating this process, we will achieve the desired grouping of conjuncts in C. 

The test for satisfiability of C in Y now follows: 

a. If C is an empty constraint, return (satisfiable}. 

b. Let i, 1 1 be the maximal integer such that K i, is the same symbol as K ,. 

Substitute T for each of the variables occurring in 7,, . . . , 7i0 (the substitution 
must be done throughout C). Since C is normal, none of these variables appears 
on the right-hand side of C. Let the resulting constraint and annotation terms be 
also denoted by C and oh’s, respectively. Notice that now each of the 71, . . . , 7i, 

can be evaluated to an element of Y. 
c. If K, is a constant then 

If 7,?K,&... 8~7~~ 2 K i, is false in Y 

then return(unsatisfiable) 

/* The if-condition is verifiable since the 7i’s are ground */ 

/* Otherwise */ 

SetCt07i,+,~Ki,+,&...&7,1K. 

Rearrange indices of the 7i’S and K~‘S in C so that they will start with 1, and then 
go to (a). 

d. If K 1 is a variable then replace it by the greatest lower bound of 71, . . . , 7i,, 

which exists since it was assumed that F is a lattice. This replacement should be 
done everywhere in C. Then delete the conjuncts 7, 1 K ,& . . . & 7i, 2 K i. from 
C, as in (c), and go to (a). 

Correctness of this algorithm follows immediately from the fact that all functions 
used in the 7j in C are monotonic (see assumptions at the beginning Qf Section 2). 
Termination of the algorithm follows from the assumption that all functions in B are 
computable. Cl 

It is easy to see that the above result can be strengthened somewhat by replacing the 
requirement that 7 must be a lattice by a weaker requirement that every finite subset of 
F has a (not necessarily greatest) lower bound. However, then we will have to restrict 
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C to be not only a normal constraint but also such that all conjuncts ri 1 K i, where K i is 
a constant, appear in front of C. Indeed, it is easy to verify that F needs be a lattice 
only in step (d) of Lemma 2 and that this step will go through under the modified 
requirements. The next result says that if Y is finite then the requirement of normality 
can be dropped altogether. 

Lemma 3. For finite semilattices .7, satisfiability of every constraint is decidable. 

PROOF. Suppose C is a constraint over F. Let GRD be the set of all instances of this 
constraint obtained by (uniformly) replacing all occurrences of annotation variables by 
annotation constants (in particular, constraints in GRD are free of annotation variables). 
As 7 is finite, GRD is a finite set of ground constraints (since constraints contain no 
quantifiers, by definition). Now, C is solvable if and only if some constraint in GRD is 
solvable. But for ground constraints satisfaction is obviously decidable since they are 
conjunctions of ground atoms involving decidable predicates only. 0 

Of course the algorithm of Lemma 3 is impractical and we just used it as a decidability 
argument; efficient algorithms for constraint solving over F are presented in [22]. 

Definition 16. A deduction of a constrained query Q,, from a GAP P is a sequence: 

Q,,,(C,>e,), Q,, . . .T Q,,tC,,e,,), Qn+, 

such that: 

1. Qi+, is a resolvent of Qi and Cj via mgu 13~; and 
2. Ci is a reductant of P that contains no variables in common with Qi. 

When the 0,‘s in the above deduction are required to be unifiers but not necessarily 
mgu’s (i.e., the Qi’s, i L 1, are only required to be unrestricted resolvents), then the 
above deduction is called an unrestricted deduction. 

Definition 17. The deduction !X = Qu,(C,, e,), Q,, . . . , Q,,(C,, e,), Q,, , of the 
query Q. from P is a refutation if and only if 

1. Qn+,, the resolvent of Q, and C,, has an empty query-part (i.e., Q,, , is just a 
constraint); and 

2. Qn+, is solvable with respect to the lattice Y and the set of annotation functions 
9. 

In what follows, we will use SOL(%) to denote the set of solutions of the 
constraint-part of Q, + , . Unrestricted refutation is defined similarly (where “deduc- 
tion” must be replaced by “unrestricted deduction”). 

The implementation of the above refutation procedure hinges upon two things: 

l The ability to solve lattice constraints; and 
l The ability to restrict the choice of reductants. 

Studying the ways of solving constraints is beyond the scope of this paper; [22] deals 
with efficient serial and parallel algorithms for this task. The need to use reductants of 
P rather than just the clauses of P is another major obstacle. Indeed, the main appeal 
of SLD-resolution is that the choice of clauses that need to be considered is restricted to 
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the current goal and the program clauses. However, if reductants are to be used, one 
may generate an infinite number of them out of a finite set of program clauses. 
Therefore, for GAPS, SLD-resolution with reduction is no better than the general 
resolution. Fortunately, for a large class of semilattices, we can effectively limit the 
number of reductants to be considered in refutations. 

Definition 18. An upper semilattice Y is n-wide if for every finite4 set EE Y, there 
is a finite subset E, C E of at most n elements such that U E, = U E. 
A n-reductant of a program P is a reductant involving no more than n clauses 
of P. 
Many popular semilattices have finite width. Clearly, all finite semilattices are of this 
kind. Among the infinite ones, the semilattice of the form [0, 11” has width n (here 

(a,, . . . , a,) U (b, , . . . , b,) = (a, U b,, . . . , a,, U b,)). In particular, [0, l] and 
[0, l]* are frequently used in expert systems. To show that, e.g., [0, l]* is two-wide, 
let (Y, = [a,, b,], . . . , ak = [ ak, bk] be a finite set of pairs of real numbers in the 
interval [0, 11. Let a, (respectively, bj) be the maximal element among the a,, . . . , ak 
(respectively, b,, . . . , 
[0, I]* is two-wide. 

bk). Then, (YOU oj = U ((Y,, . . . , a,}, which proves that 

As we shall see, if Y is n-wide, then in building refutations it suffices to consider 
n-reductants only. This limits the choice of clauses to resolve with to a finite set of 
n-reductants. 

Theorem 5 (Soundness). Suppose P is a GAP and Q is a constrained query such 
that 

Qo,(‘Gvt’,), Q,, I.. 3 Q,,(C,,,e,,), Qn+, 

is a refutation of Q,, from the GAP of P. Let a be any solution for the 
constraint-part of Q, + , . Then Qoa is an annotation-variable-free query ob- 
tained by replacing ail annotation variables in Q. by the annotation constants 
specified in u. We claim that: 

PI= (v)(Qo+,b -** 8, 

(recall that (v)Qo denotes a conjunction of body literals of query Q,, univer- 
sally quan@ed) . 

PROOF. We proceed by induction on n, the length of the refutation of Q, from P. 
Base case: n = 1. Then Q,, contains exactly one annotated atom, denoted A: CL. 

Hence, C,, is of the form 

D 0: PO+ 

such that All, = DOB0 and the constraint (p. 1 p) is solvable. Let u be any solution of 
this constraint and let I be a model of P. Then I is a model of Co (as P entails all its 
reductants) and, in particular, 

II= (v)(&: P) 

4Finiteness is crucial here; we do not care if infinite sets do not have the property described in this 
definition. 



GENERALIZED ANNOTATED LOGIC PROGRAMMING 353 

where p is obtained from pa by instantiating all annotation variables to T , the top 

element of Y. In particular, 

IE (v) A,B: p 

and as p = p,,a L pa (due to the monotonicity of annotation functions in F). it follows 

that 

IL (v) A8,: /L. 

Inductive step: n > 1. In this case, 

Q,,(C,,e,),Q,,...,Q,,(C,,e,),Q,+, 
is a refutation of Q1, where the query Q,, , is a pure constraint. Let u be any solution 

of the constraint-part of Q, + , . Suppose Q. is 

?-A,:p,&...&A,:pk&ConstraintQO. 

If CO is of the form 

A: p+B,: p,&. . .&LB,: p, 

and A8, = A&l,, (i.e., Q,, and C,, resolve on atom Ai: pi), then Q, is of the form: 

?-(A,:~~&...&Ai_~:~~_~&B,:p~&...&Br:pr&Ai+~:~i+~ 

x&. . .&A n: PLn)eo& ( ConstraintQo & p 2 pi). 

By the inductive hypothesis, we may assume that 

at= (v)(QIue,. . .e,). 

Suppose now that Z is a model of P. Then, as 

1~ (v)(Q,ce, . . . en), 

it follows that 

zt=(~)(B,:p,u&...&B,:~,a)e I... en. 

Hence, since ZE C,, (as CO is a reductant of P): 

I!=(v)Ae,...e,:pu. 

As Ad, = AieO, we conclude that: 

z~++4,e,...e,:~~. 

(7) 

Recall that the constraint-part of Qi (and hence of Q,,,) contains the constraint 
p 2 pi. As u is a solution of the constraint Q, + , , it follows that pa 2 piu holds true in 
Y. Thus, 

1++4~e~...e,:~~. 

Finally, this and (7) imply 

z~(v)~,~e,...e,, 

which completes our proof. 0 

Lemma 4 (Mgu Lemma). Suppose P is a GAP and Q is a query. Suppose there is 
an unrestricted refutation % of Q such that UESOL($R) (SOL was defined in 
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Definition 17). Then there is a refutation 8’ of Q such that UESOL(W). 

PROOF. Similar to the proof of the mgu lemma in classical logic programming (Lloyd, 

[351). 0 

Lemma 5 (Lifting Lemma). Suppose P is a GAP and Q is a normal query. Suppose 
u is an assignment of c-annotations to some (not necessarily ah) annotation 
variables in Q and let 0 be a substitution for object variables. If there is a 
refutation % of Qae from P, then there is a refutation %’ of Q from P. 

PROOF. Similar to the proof of the classical lifting lemma (cf. Lloyd [35]). 0 

Theorem 6 (Completeness Theorem). Suppose that Y is a lattice, P is a GAP and 
Q is a normal query. Suppose P E (j)Q. Then there is a refutation of Q from P. 
Moreover, if F is n-wide then Q can be refuted solely using n-reductants of P. 

PROOF. Suppose Q is 

?-A,:cL,&...&A~:~~&C~, 

where C, is the constraint-part of Q. As Pi= (g)Q, it follows from Theorem 2 that 
TpT w I= @)Q and hence, there is an integer n such that Trf n I= (3)Q. We first 
proceed by induction on n to show that there is an unrestricted refutation of Q from 
P. 

Base case: m = 1. In this case, k = 1 and there is a reductant C of P of the form: 

such that the constraint C, = (Ce & p r CL,) is solvable. Hence, Q,(C, e), Q, , where 
Q, is the goal ? - C,, is an unrestricted refutation of Q from P. 

Inductive step: m = n + 1. Suppose now that Trt(n + 1) I= (3)Q. In particular, 
there is a variable-free instance Qae of Q (here, u is an assignment of c-annotations to 
annotation variables and 0 is a ground substitution for object variables) such that 
T, t(n + 1) I= Que. By the definition of T, (Definition 9), this implies that for each 
1 I i 5 k, there is a reductant of P, denoted C;, having a ground instance of the form 

Ai:pi+Bf: $f&. . JzB$$;~ 

such that T,tn~(Bf:lC~&...&B~i:\Lf,) and (p,zp,&...&~~lp~&C& is solv- 
able. 

Furthermore, if Y is n-wide, then we can choose each Ci above to be a 
n-reductant. Indeed, in Definition 9, in order to obtain Tp( I)( A) one needs to take all 
possible finite least upper bounds of the elements of the set 

{f(u ,,..., g,)lA:f(p ,,..., CL,)+-B,:p,&...&B,:&,isinSGI(P),and 

It= (B,: p,&. . .&B,: /Jo)}, 

which amounts to taking all possible reductants of SGI( P). However, if ? is n-wide, 
one only needs to take least upper bounds of up to n elements of the above set, which 
amounts to taking n-reductants only. 

As C, is normal, and as annotation variables are renamed prior to resolution, 

(P,1c1,&...&P k 1 pk & CQ) is a normal query. Hence, for all 1 5 i I k and for all 
1 5 j II ri, we may assume, by the induction hypothesis, that there is an unrestricted 
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refutation, denoted 8; of Bj: $j. Then, the k resolution steps that involve Q and the 

clauses C,, . . . , C, above, followed by 

is an unrestricted refutation of Quo from P. By the Lifting Lemma, there is an 
unrestricted refutation of Q from P. This completes the proof of the inductive step. 
Thus, we know that there is an unrestricted refutation of Q from P. By the Mgu 
Lemma, it now follows that there is a refutation of Q from P. q 

It should be noted that there is no similar completeness result for r-entailment, even 
in the case of acceptable GAPS. 

Example 7. Consider the following program P: 

p:o 

x+1 

p:2cp:x 

The query ? -p: 1 cannot be refuted by the above proof procedure, even though 
P I==’ p: 1. Notice that P t# p: 1 and so this argument is applicable to the restricted 

semantics but not to the general one. •i 

In fact, Example 7 shows that Herbrand’s theorem does not hold for r-entailment 
even for acceptable GAPS, which indicates that there is no sufficiently general proof 
procedure for the restricted semantics. 

We see that there is a close relationship between annotated logic programming and 
constraint logic programming [30]. As will be shown later, there is also a close 
connection between annotated programs and certain fragments of temporal logics. Thus, 
there is hope that in the future a single unifying framework for multivalued, temporal, 
and constraint logic programming will emerge. 

In related works, Morishita [36] and Subrahmanian [44] have also studied multival- 
ued logic programming where annotations were associated with clauses, rather than 
with individual atoms. Morishita’s framework is as follows: Associated with each atom 
is a lattice, and associated with each clause is a function that maps the product of the 
lattices associated with the atoms in the body of the clause to the lattice associated with 
the head. Soundness of the proof procedure is established for queries that have a finite 
AND/OR tree associated with them (cf. [36, Theorem 4.111). This restriction is not 
needed in our work. It must also be pointed out that our ideal-theoretic semantics differs 
from Morishita’s semantics. Hence, our completeness result applies to Example 7, 
whereas Morishita’s completeness result is inapplicable to that example. Results on 
query processing procedures for programs whose clauses are c-annotated were obtained 
in Subrahmanian [44] and Kifer and Lozinskii [32,33]. 

5. MULTIVALUED LOGICS AND GAPS 

The principal aim of this section is to show that quantitative logic programming as 
proposed by van Emden [47] and also the bilattice-based logic programs of Fitting [ 181, 
all fit into the framework of GAPS. 
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5.1. van Emden’s Quantitative Deduction 

A quantitative rule [47] is of the form: 

r: A+B,&...&Bk, 

where re(O, 11. A quantitative rule set (QRS) is a collection of finitely many rules. 
Interpretations map ground atoms into the unit interval [0, 11. Interpretations of QRSs, 
as defined in [47], are the same as r-interpretations of GAPS over the lattice Y= [0, l] 
(with the standard ordering on [0, 11). Throughout this section, the word “interpre- 
tation” will mean “r-interpretation.” Associated with a QRS, P, is an operator S, 
that maps interpretations to interpretations, and is defined as follows: 

S,(I)(A)=U{rxk)r:A+B,&.. . &B,, is a ground instance of a clause in P 

andmin{Z(B,),...,Z(B,)} =k}. 

If P is a QRS, then it can be translated into a GAP, tr(P), as follows: 

tr(P)=(A:rxmin(T, ,..., T,}+B,:T,&...&B,,:T,I 

where r: A+B,&...&B, isaclausein P}. 

Note that according to this translation, all QRSs get translated into GAPS whose bodies 
contain only v-annotated literals. Hence, for any QRS P, b(P) is an acceptable GAP 
and thus Z&z.) has the fixpoint reachability property. 

Theorem 7. Suppose P is a QRS. Then S, = RtrCPj. 

PROOF. The proof is a direct consequence of the definition of tr( P). 0 

Theorem 7 shows, in particular, that Ifp(S,) = vp( RtrCPj), and since tr( P) is 
always acceptable, we also have that Ifp(S,) = JJ Vp(Z&). 

Furthermore, for finite programs (i.e., programs with a finite set of rules and facts) 
we can show that Ll lfp( T&) = Ifp(T,,&. Indeed, because of the special form of 
their annotation functions, the rules in tr(P) never produce new annotation constants 
when applied in the computation of TtrCPj t w. Therefore, for any atom A, 
(7&t w)(A) will be a finitely generated ideal. Since every such ideal is principal, the 
II operator has no effect on lfp(T,,,,,,). Furthermore, note that the clauses in tr( P) 
have empty constraint-parts and thus are normal. 

As a consequence of the fact that lfp(S,) = /fp(T,,,,,), one can study the least 
model of a QRS P by studying the least model of the GAP tr( P), and the remark about 
normality of tr( P) in the previous paragraph implies that the proof procedure for GAPS 
described in the preceding section yields a sound and complete proof procedure for 
answering existential queries to QRS. This improves upon van Emden’s “weak 
soundness and completeness” results in two ways: 

1. van Emden’s evaluation procedure [47] works under the conditions that the 
AND/OR tree associated with a program P and a query Q is finite. No such 
restriction is needed here. 

2. van Emden’s proof procedure applies to ground queries. The procedure for GAPS 
described in this paper applies to nonground existential queries as well. 

Thus, the theorems about GAPS given in the previous section shed new light on the 
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operational aspects of van Emden’s QRSs. However, unlike QRSs, GAPS are not 
restricted to the interval [0, l] of truth values, and the results are applicable to any 
multi-valued logic based on a complete lattice that possesses Henkin’s existential 

property. 

5.2. Bilattice-valued Logics 

For the purpose of this section, we assume that the reader is familiar with the basics of 
Fitting’s theory of bilattice-based logic programming developed in [ 181. Bilattices, due 
to Ginsberg [23], provide an elegant epistemological framework for studying multival- 
ued logics. Intuitively, a bilattice (also known as an interlaced bilattice) is a set ‘$l 
having two orderings: the knowledge order, sk , and the truth order, I, , such that 
(!?z,+,n,, U,)and(!R, 5,) nt , U t ) are both complete lattices. In addition, meets 
and joins with respect to I, are monotone with respect to I, and vice versa. Fitting 
[ 17, 181 has developed a theory of fixpoints for logic programs whose associated set of 
truth values forms a bilattice. 

In Fitting’s formulation, the syntax of a bilattice logic program is similar to that of 
an ordinary logic program, except that the body of a clause may be an arbitrary 
first-order formula constructed out of A r, V, (“and” and “or” with respect to I,), 
A~, V, (“and” and “or.” relative to I~), and 7. Negation is interpreted as a unary 
function on truth values such that CL, I, pz if and only if 1~~ sk 7p2, and CL, I, ~1~ if 
and only if 1~~ sr 1~~. 

Unlike annotated clauses that essentially have a two-valued satisfaction relation, in 
bilattice-based logics, formulae may assume any truth value from 8. The fundamental 
role of the truth order is to allow defining the logical connectives A t, V, , and 7 without 
having to bother with specifics of the set of truth values 8. In contrast, the truth order 
plays no role in the semantics of annotated logics. The fundamental role of the 
knowledge order is to give meaning to logical implication, and it is used in a similar 
way by both annotated and bilattice-based logics. In a sense, the results of this section 
show that Fitting’s theory of bilattice-based logic programming uses the knowledge 
order in a more essential way than the truth order. 

Interpretations of Fitting’s programs are the same as r-interpretations of GAPS. In 
other words, they are functions from the Herbrand base of P to % . These functions are 
extended to arbitrary formulas by distributing them through the connectives A ~, V, , 

A,, v,, and 7. Associated with a program, P, is an operator V, that maps 
interpretations to interpretations as follows: 

V,(I)(A) = U (~1 A+L,&.. .&L, isagroundinstance 

ofaclausein Pandp=Z(L,&...&L,)}. 

Given a bilattice-based logic program, we can translate it into a GAP, denoted 
M(P), clausewise as follows: Let C denote a clause A +Body(L,, . . . , L,) in P, 
where Body( L,, . . . , L,) is a Fitting’s formula involving atomic literals L,, . . . , L, 
(different occurrences are considered as different literals). Then the corresponding 
clause, bl(C), has the form 

A:&ody(l ,,..., L,)(T,,...,T,)cL,:T,&...&L,:T,, 

where T,,..., T2 are annotation variables and the function fBodycl,, , L,j is defined 
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as follows: 

1. If Bou’y(L,, . . . , L,) = Bou’y,(L,, . . . , Lp)V1 Bou’~~(L~+r,. . . , L,) then 

.&@(T,, . . f 9 T,) =fBody,V19 * *. 7 T,)Ut fBody*G+l7~~~ 9 m 
2. If Body(L,, . . . , L,) = Body,(L,, . . . , Lk)Vk Body2(Lk+,, . . . , L,) then 

fe,&?(~, 9 f * . 7 TJ =fBody,(q 9 . . . 9 Tk) u, fBody,ui+ 13 * * . 9 T,) 
3. If Body(L,, . . . , L,) = Body,(L,, . . . , L,)A,Body,(L,+,, . . . , L,) then 

f&,,U’,, . . ., T,) =f~odJT,r. . ., Tdnt fsoc,JTk+,, . . .v T,) 
4. If Body(L,, . . . , L,) = Body,(L,, . . . , L,)A,Body,(L,+,, . . . , L,) then 

fBo,-JT,, . . . , T,) =.&,dy,V,, . . ., Td’-‘k fm,&+,r . . .t T,) 
5. If Body( L,, . . . , L,) = 7 Body,( L,, . . . , L,) then 

fBo,,JT,, . . . , T,) = 7fBody,(T,, . . ., Td. 

In the above, v and A are logical connectives, while U and n are meet and join on ‘% 
relative to the appropriate orderings ( st or I, ). Furthermore, for the purpose of this 
translation, we assume that the GAP bl( P) uses the same negation operator 7 : $3 --) 93 
as the one used by the bilattice-based program P. 

Note that according to this translation, if P is a bilattice program, then bl(P) is a 
GAP such that all literals occurring in clause bodies are v-annotated. Hence, bl(P) is 
acceptable. 

As mentioned earlier, the truth-order plays no role in the semantics of GAPS, while 
it does in the semantics of multivalued programs. However, as can be seen from the 
definition of bl(C), the truth-order of bilattices is encoded in the annotation functions 
of clauses of bl(C). This explains why GAPS can successfully simulate multivalued 

bilattice-based programs. 

Theorem 8. Suppose P is a bilattice-based logic program. Then V, = R,,,(,, . 

PROOF. The proof is a straightforward consequence of the translation of P into a GAP. 
It is clear that the annotation functions in the GAP bl(P) have been designed precisely 
so that they would simulate the computation of truth values for the rule heads in the 
bilattice-based program P. q 

Since rule bodies in b&P) are v-annotated, such programs are acceptable and we 
have /fp( VP) = LI Ifp(TblCpj). In general, this equality does not guarantee the existence 
of a complete proof theory for bilattice-based logic programs. However, for distribu- 
tive bilattices such a proof procedure does exist. 

A distributive bilattice [la] is a bilattice satisfying all twelve distributive laws for 
various combinations of the operators l-J, , U, , nk , and n, . 

Now, as in the case of van Emden’s QRSs, finite programs will result in only a finite 
number of annotations being mentioned in bl(P). Since in a distributive bilattice one 
can always convert any expression involving U, , U, , nk , and RI into a normal form 
(e.g., a disjunctive normal form with k-operators inside and t-operators outside), such 
expressions can yield only a finite number of annotation constants, given a finite number 
of such constants as an input. Therefore, arguing as in the previous subsection, we 
conclude that H has no effect on Ifp( TblCpj), i.e. Ifp( VP) = Ifp(T,,,,,). Furthermore, 
as with QRS, we can observe that constraints arising in bl( P) are normal and therefore 
the proof procedure developed for GAPS applies. 

As a consequence, once again, just as in the case of van Emden’s QRSs 1471, we can 
study the semantics of bilattice logic programming by studying the semantics of the 
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corresponding GAPS, and we can use the corresponding proof procedure to answer 
queries. There are several advantages in doing so: 

1. Fitting did not define the notion of a model for his logic programs. However, 
when bilattice-based logic programs are converted into GAPS, this notion be- 
comes clear: Z is a model of a clause C in a bilattice-based program if and only if 
Z is an r-model of the translation of C into a generalized annotated clause (see 
below). 

2. We can use the operational semantics of GAPS developed in the previous section 
to process queries to bilattice-based programs. In [19], Fitting described a 
tableau-based proof procedure for his logic programs. This procedure is restricted 
to the case of the four-valued bilattice depicted in Figure 1. Since this bilattice is 
distributive, our results about the proof theory subsume the corresponding results 
in [19]. 

Now, the models of Fittings’s logic program can be defined as follows: 

Definition 19. We say that Z is a model of a ground clause 
A e Body 

in a bilattice-based program if and only if I( A) L k Z( Body). Z is a model of a 
nonground such a clause, C, if and only if Z is a model of each ground instance of 
C. As usual, Z is a model of a bilattice-based logic program, P, if and only if Z is a 
model of each clause in P. 

Theorem 9. Let Z be an interpretation of a bilattice-based program P. Then Z is a 
model of P if and only if V,(Z) 5 Z if and only if Z is an r-model of bl( P). 0 

As a consequence of the last two theorems, the models of a bilattice logic program P 
are also the models of the GAP bl( P), and their least models coincide. Thus, bilattice 
model theory can be studied through the model theory of GAPS. Moreover, in the case 
of finite databases and distributive bilattices, processing of existential queries to bilattice 
logic programs can be converted into the equivalent problem of processing existential 
queries for GAPS. 

There is at least one intriguing result due to Fitting that does not fit in our 
framework. This is the elegant theorem that states the connection between the least 
fixed-point of V, relative to the I~ ordering, and the greatest fixed-point of the V, 
operator in the I, ordering. This result cannot be obtained in the GAP framework 
simply because our formalization assumes only one ordering on ,7, namely I, . 

6. TEMPORAL REASONING 

There are several different kinds of temporal logics. One of the fundamental differences 
of opinion between temporal logicians concerns the issue of the nature of time. Various 
representations of time are possible; each representation is accompanied by a host of 
philosophical and epistemological arguments. Here, we will consider two widely 
accepted representations: 

1 Linear time stretching either finitely or infinitely back. 
2. Interval-based time where one considers “time periods” rather than “time 

points.” 
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6.1. Reasoning about Linear Time using GAPS 

Let us assume that S is the set of all integers and that ?!Y is some subset of 9 that is 
upward closed under I , i.e., if XE @Y and x ly, then YE g. Thus, 9 may be I 
itself (in which case we are assuming that the world has been around infinitely long) or 
9 may be, say, the set of all non-negative integers (in which case we are subscribing to 

the theory that the world was created at some time). So, in any case, let us assume that 
?!I’ is fixed. 

A temporal Herbrand interpretation Z assigns a truth value to a ground atom, A, 
at each time point. Thus, Z may say that A is true at times 1,3,5, . . . and false at 
times2,4,6 ,.... Intuitively, we may view an interpretation Z as a mapping from the 
Herbrand Base, BL, of our language L, to the power set, 9( ‘3’ ), of g. The epistemic 
interpretation of this is as follows: 

A is true at time t according to interpretation Z if and only if tEZ( A). 

Now we can reason about time in the framework of GAPS by taking as our set Y of 
truth values, the set 9( 8”) ordered by subset inclusion. Given any truth value p, i.e., 
p is a subset of 9, define an annotation function succ as follows: 

succ( p) = {t + 11 &/A}, 

Thus, if proposition p is assigned p by interpretation I, i.e. interpretation Z says that 
p is true at all those times in p, and if Z assigns succ(Z~) to q then Z says that q is true 
at a time point (t + 1) if p is true at time point t. For instance, the clause 

get-out-of-way : succ( p) + see-car-coming : p 

says that if you see a car coming at you at a certain moment then get out of its way at 
the next time moment. To say that p is true at all even times, we write 

p: succ(succ((lI)) *p: CX. 

Baudinet [3] has developed a semantic framework for temporal logic programming, 
with 9 taken to be the set of non-negative integers. According to this framework, a 
temporal logic program can be considered as a (possibly infinite) set of clauses of the 
form: 

C: O'oA, + OilA,&. . . &OinAn, 

where 0 is the modal operator next and Oi is a shorthand for j applications of 0. If A 
is an atom and i 2 0, then O’A is called a next-atom. An interpretation is just a 
collection of ground next-atoms. 

The above clause C can be translated into the following c-annotated clause an(C): 

A,:{i,}+A,:{i,)&...&A.:{i,}. 

For a temporal program, P, an(P) = {an(C) ) CE P} . 
To compare GAPS with [3], let & be the set of all non-negative integers { 0, 1, . . . } , 

and Y= 9 ( ?Y ) be the lattice of all sets of non-negative integers ordered by inclusion, 
which we call the temporal lattice. Thus, for instance, Baudinet’s interpretation 
{ 00 A} that says that A is true at time 2 and all other propositions are false at all 
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times is captured by our multivalued interpretation Z defined as: 

Z(A) = (2) andforall B#A,Z(B) = ( } 

Formally, let Z be a collection of Baudinet’s next-atoms. The translation of Z into an 
r-interpretation, an(Z), for annotated logic is: 

(an(Z))(A) = {iIO’AEZ}. 

Baudinet then defines an operator, denoted Z,, that maps sets of ground next-atoms to 
sets of ground next-atoms as follows: 

Z,( Z) = ( O’A 1 O’A + I?,& . . . &B, is a ground instance 

ofaclausein Pand {B ,,..., B,) CZ}. 

Likewise, in the context of annotated logics, we may consider the R,,,Cp) operator 
defined on GAPS: 

Theorem 10. For any temporal program, P, and a Baudinet’s interpretation, I, 

4G4Z)) = LJan(Z)). 0 

The above theorem establishes that one way of studying Baudinet’s temporal logic 
programming is within the framework of GAPS. For instance, as in Section 5, we can 
argue that for finite programs RPnCP) = TPncPj and this allows us to use the theorems in 
Section 4 to define a proof procedure for answering existential queries to temporal 
programs. 

A more expressive temporal logic was proposed by Abadi and Manna in [l]. There, 
besides the “next” operator, 0, other modalities, such as “eventuality”, 0, and 
“always true”, 0, are allowed. The full temporal logic of [l] is, according to the 
authors, computationally expensive, and a fragment amenable to an efficient implemen- 
tation by means of SLD resolution was proposed. This fragment consists of clauses of 
the following form. First, rule bodies are drawn from the class of formulas, 37, which 
contains all next-atoms, and is closed under conjunction and under the application of 0. 
The initial clauses, i.e., clauses that are true at time 0 are of the form 

1 B+A; or 
2. q B+A, 

where A E 93 and B is a next-atom. The permanent clauses, i.e., rules that are always 
true, have the form q ( B +A), where, as before, A E g and B is a next-atom. 

Let 9 and Y be the same as before. We have already shown how the next-atoms 
are represented using annotations. The necessity operator, Cl, corresponds to the 
topmost element TE Y (which represents the whole set @Y). For instance, 0 A is 
represented as A: T . Finally, our annotated rules correspond to the permanent rules 
of [l]. 

We show below some simple examples of information that can be represented using 
the GAP formalism. Suppose in the sequel that g is the set of all integers. For 
example, to say that if X is a president at time T, then X must have been rich at time 
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(T- 1) (think of time units as “years”), we can say: 

rich(X) : previous( CL) +president( X) : p, 

where 

previous(p) = {t - 1) tep} 

is an annotation function. In TEMPLOG ([1]), we could express this as: 

0 (ric/z( X) + Opresident( X)) . 

The statement: “if sometime she becomes a president then she must be rich” is written 
as 

q l(rich(X)+-Opresident(X)) 

in TEMPLOG, and as 

rich(X) : (0) epresident( X) : p 

in our logic. 
On the other hand, the statement “if X is a life-long president, then X is a ruthless 

murderer,” written as 

Cl (murderer ( X) + Cl president ( X)) 

in temporal logic, is not allowed in TEMPLOG. In contrast, representing this as a GAP 

is straightforward: 

murderer(X) : T+ president ( X) : T 

In general, since we allow arbitrary computable functions (subject to the restrictions of 
Section 4) in rule heads while both Baudinet and Abadi and Manna restrict the rule 
heads to be next-atoms (i.e., c-annotated literals, in our setting), GAPS can express 
several fancy temporal problems that are beyond the scope of [l, 31. Also, we do not 
restrict bodies of temporal programs to be 0 -free, since atoms of the form A : T are 
perfectly acceptable. 

There are, however, situations where GAPS are weaker than [l]. For instance, GAPS 
cannot express a clause with the following body: 0( PA Oq). Likewise, we cannot 
represent directly the initial clauses of Abadi and Manna, since GAP rules are 
permanently true. 

This difficulty could be overcome by using metaprogramming techniques (e.g., 
[45]). In these formalisms, formulae can be encoded by terms, and thus can be reasoned 
about. For instance, if (B + A) is an encoding of a clause B + A, then we could write 
clause(( B +A)): (0)) stating that the respective clause is true at time 0, which 
corresponds to the initial clause B + A of [ 11. We will not discuss this issue any further 
in this paper. More information about encodings and logics for meta-reasoning can be 
found in [14,27,37,38,45]. 

6.2. Multivalued Temporal Reasoning 

One advantage of the GAP formalism as opposed to Baudinet’s and Abadi and Manna’s 
is that it also allows one to deal with “epistemically inconsistent worlds,” i.e., 
interpretations in which at certain times t the information about certain ground atoms is 
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inconsistent. More generally, assume that now our domain of truth values is the set of 
functions from CV to some complete lattice Y’, i.e. 

For instance, we can take Y’ to be the four-valued Belnap’s lattice [4] shown in Figure 
1, or we can take 7’ to be the set [0, l] x [0, l] often used for modeling uncertainty in 
expert systems [7,18,31]. An interpretation is a map from B, to Y. The underlying 
intuition is that an interpretation I assigns to any ground atom A, a function fA from 
CY to Y. If p is the four-valued Belnap’s lattice of Figure 1, and fA(3) = T , fA(4) = t 
then we can think of this as an assertion that at time 3, A was inconsistently defined, 
but at time 4 it became true. 

4.3. Interval Based Temporal Logic 

Let us assume that time is linearly represented by the set of all nonnegative integers. In 
an interval based temporal logic, we can use closed intervals of integers as truth values. 

We use the notation: 

[a,b] = {n)a925b}. 

Let 8 be the set 

‘% = { [ a, b] 1 a I b and II, b are non-negative integers} . 

The intervals in !R are partially ordered by inclusion and we denote this ordering by 
5%. Let us take Y to be the set of subsets of ‘% such that every (YE Y satisfies the 
following two properties: 

1 If [a, ~]EQ and [c, d] C [a, b] then [c, ~]ECX; 
2.If [a, b] C UCY, where IJCY is the union of all intervals in o, then [a, ~]ECY. 

Intuitively, assignment of a set (Y = {[u,, b,], . . . , [ aj, bj], . . . } to an atom A by an 
interpretation I means that A is true in each of the intervals [ uj, bj]. This epistemic 
interpretation of elements of Y makes the above conditions self-explanatory: if an event 
takes place over a time interval then it also takes place over a subinterval; if an event 
takes place over a group of time intervals then this event also takes place over any 
interval that is covered by the group. In fact, it is easy to see that the second condition 
above implies the first one. 

There exist several popular orderings of power-domains over partial orders, The one 
that is particularly useful to model time is the following: for CY, /3~ Y, (Y I, p if and 
only if for every interval L E (Y there exists an interval J ~0 such that t 5% 3. 

To see that GAPS can represent some forms of interval temporal reasoning, we show 
that the logic of Shoham [41] can be expressed within the GAP framework. Shoham 
extends classical propositional logic to an interval modal logic by adding six new modal 
connectives as follows: 

1 (A) is true in the interval [r,, f2] if and only if there exists t, at, (here a denotes 
the regular order on integers) such that p is true in the interval [t,, fJ. 
Intuitively, modality (A) represents the intuition that p is true in some interval 
immediately following the current interval. 

2. (B)p is true in [t,, f2] if and only if there exists a t, such that t, _a t, a t, and p is 
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true in the interval [t, , f3]. Intuitively, (B) represents the idea that p is true in 
some subinterval of the current interval that starts at the same time as the current 
interval. 

3. (E)p is true in the interval [t,, f2] if and only if there is a t, such that t, at,! t, 
and p is true in the interval [t,, t2]. In other words, (E), becomes true earlier 
than p and remains true while p was true. 

4. (@p is true in [I 1, t,] if and only if there exists a t, such that t, a t I and p is true 
in the interval [t,, t,]. Here (x) means that p is true at some interval ending 
immediately before the current interval starts. 

5. (@p is true in the interval [t,, tZ] if and only if there exists a t, such that t2 a t, 
and p is true in [t, , t3]. Intuitively, the (B) modality represents the intuition that 
p-is true in some interval of which the current interval is the beginning. 

6. (E)p is true in the interval [t,, tZ] if and only if there exists a t, such that t,a t, 
and p is true in [t,, t2]. Intuitively, the (E) modality represents the intuition that 
p is true in some interval of which the current one is the end. 

Given any n-ary predicate symbol p, we can express these six modalities as GAPS by 
using the following clauses: 

P&XI >..., x,): @-P(X1,. . .> X,):p&end(a) =start(p)&end(or) <@. 

P~B)(X,,...,Xn):QIeP(X*,..., X,):p&start(a)=start(/3)&P<a. 

pcEl(X ,,..., X,):CY+-p(X ,,..., X,):b&end(ol) =end(fi)&PCol. 

p&xx,,. . .7 x,): -p(X,,. . .9 X,):p&end(fl) =start(a)&end(O) <a. 

P~B)(X,,...,Xn):OLeP(X,,..., X,):/3&start(a)=start(P)&a<P. 

P@)(X,,. . . , x,): -p(X,,. . ., X,):p&end(cr) =end(p)&acP. 

In the above, X,. . . , X,, are object variables and CY, /3 are annotation variables. 
Annotation functions end and start are defined as follows: 

start(a) = {[a, a] 1 [a, b] is a maximum interval in CY} ; 

end(O)={[b,~]l[~,b] is a maximum interval in /3}. 

An interval [a, b] ECYE F is maximum if it is not properly contained in another 
interval in (Y. Also note that satisfiability of constraints in the above clauses is decidable 
since this is a very simple case of linear programming, and thus the proof theory for 

GAPS applies. 
The above translation precisely captures the intended meaning of the modal operators 

of Shoham [41] but, in general, we cannot simulate full-fledged interval-based temporal 
logics. This, of course, does not come as a surprise, since even the propositional 
temporal logic ITL has an undecidable validity problem [25]. 

7. CONCLUSIONS 

There are many alternative formalisms for multivalued and temporal logic program- 
ming. However, the relationship between these different formalisms is not well under- 
stood. In this paper, we have made a first contribution towards the understanding of 
different methodologies for logic programming based on non-standard logics. 
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We have shown that annotated logics can serve as common grounds for several of 
the multivalued and temporal formalisms. Besides the theoretical interest, this has 
numerous practical benefits. First, already known results about GAPS can be used to 
obtain a direct characterization of certain kinds of temporal reasoning. Second, GAPS 
can be used to identify semidecidable fragments of temporal logics by translating them 
into GAPS, as suggested in this paper (recall that the implication problem for GAPS is 
recursively enumerable). This is important because, we believe, logics with nonrecur- 
sively enumerable implication problem cannot be effectively implemented on a com- 
puter. Third, it gives a proof theory to formalisms based on multivalued logics, such as 
[ 18,471, which can be naturally translated into GAPS. Finally, when all else fails, one 
may prefer to program in terms of GAPS directly rather than using different formalisms 
(subsumed by GAPS) for different purposes. 

We thank Mel Fitting and Raymond Ng for useful suggestions on preliminary versions of this paper. 
S. Morishita pointed out a mistake in an earlier version of Theorem 6. We are also grateful to the anonymous 
referees for many helpful suggestions. 
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