
J. LOGIC PROGRAMMING 1992: 12:335-367 335

THEORY OF GENERALIZED ANNOTATED LOGIC
PROGRAMMING AND ITS APPLICATIONS*

MICHAEL KIFER+*$ AND V. S. SUBRAHMANIAN

D Annotated logics were introduced in [43] and later studied in [5,7,31,32]. In
[32], annotations were extended to allow variables and functions, and it was
argued that such logics can be used to provide a formal semantics for
rule-based expert systems with uncertainty. In this paper, we continue to
investigate the power of this approach. First, we introduce a new semantics for
such programs based on ideals of lattices. Subsequently, some proposals for
multivalued logic programming [5,7,18,32,40,47] as well as some for-
malisms for temporal reasoning [l, 3,411 are shown to fit into this framework.
As an interesting byproduct of the investigation, we obtain a new result
concerning multivalued logic programming: a model theory for Fitting’s
bilattice-based logic programming, which until now has not been characterized
model-theoretically. This is accompanied by a corresponding proof theory.

1. INTRODUCTION

Large knowledge bases can be inconsistent in many ways. Nevertheless, certain
“localizable” inconsistencies should not be allowed to significantly alter the intended
meaning of such knowledge bases. As classical logic semantics decrees that inconsistent
theories have no models (and hence are meaningless from a model-theoretic point of
view), classical logic is not the appropriate formalism for reasoning about inconsistent
knowledge bases.

As a step towards the solution of this problem, annotated logic programs were
introduced by Subrahmanian in [43] and were subsequently studied in [5,7] by Blair

*A preliminary report on this research has appeared in [34].
‘This work was supported in part by the NSF grant IRI-8903507.
tDepartment of Computer Science, SUNY at Stony Brook, Stony Brook, NY 11794. E-mail:

kiferQsbcs.sunysb.edu.
Address correspondence to V. S. Subrahmanian, Department of Computer Science, University of

Maryland, College Park, MD 20742. E-mail: vsQcs.umd.edu.
Received March 1990; accepted October 1990.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1992

655 Avenue of the Americas, New York, NY 10010 0743-1066/92/SO5.00

336 MICHAEL KIFER AND V. S. SUBRAHMANIAN

and Subrahmanian. In [32,33], Kifer and Lozinskii extended the theory to a full-fledged
logic, and it was shown that a sound and complete proof procedure exists. More
efficient proof procedures have been recently obtained, and implementations of these
theorem provers have been designed (cf. [12,261). Kifer and Li [3 l] extended annotated
programs in a different direction by allowing variables and evaluable function terms to
appear as annotations. We will call such programs generalized annotated programs
(GAPS, for short). The utility of annotated logics for reasoning with inconsistency and
for programming expert systems was well argued in [5,7,31-331. In this paper, we
continue to investigate the power of this formalism.

First, we extend the semantics of [7,31-331 to allow annotation variables over
arbitrary semilattices of truth values (in [31] only a special lattice-the Cartesian
product of two unit intervals-was considered and in [7,32,33], the notion of annota-
tion variable was not present). Then, we present the model-theoretic, fixed-point, and
operational semantics of GAPS. In Section 5.1, we show that van Emden’s quantitative
logic programming [47] is a special case of GAPS. Then, in Section 5.2, we show how
Fitting’s bilattice-based logic programming approach fits into the framework of GAPS.
The consequence of this “fit” is that we can now characterize Fitting’s approach
model-theoretically (no model-theoretic semantics was previously proposed for this
approach). By translating [47] and [181 into GAPS, we obtain a sound and complete
proof procedure for these theories, thus strengthening van Emden’s soundness and
completeness theorems (which were obtained under some restrictions) and complement-
ing Fitting’s results. Lastly, we demonstrate how to incorporate two versions of
temporal logic programming in the framework of GAPS. In the first, we consider a
discrete linear version of time, i.e., each instant of time is a time point; in the second,
we consider an interval-based temporal logic. We show that GAPS are sufficiently
expressive to be able to cope with a large body of temporal problems and, in particular,
subsume some of the earlier proposals for temporal logic programming [3]. Although
our approach cannot directly represent certain constructs used in temporal specifica-
tions, we note that the implication problem in most full-fledged temporal logics is
IIt-complete and, therefore, such logics cannot be adequately implemented on a
computer, anyway. In contrast, the corresponding problem for temporal specifications
in GAPS is semidecidable, and thus they are more suitable for a computer implementa-
tion.

We believe that this paper unifies and, in some cases, generalizes various results and
treatments of multivalued logic programming. Furthermore, it presents new applica-
tions of this formal setting. So far, research in multivalued logic programming has
proceeded along three different directions:

1. Annotated logics as described in [5,7,32,33];
2. Bilattice-based logics [17,231; and
3. Quantitative rule sets [28,29,36,39,40,42,47].

Earlier studies of these three approaches quickly identified various distinctions between
these frameworks. For example, one of the key insights behind bilattices was the
interplay between the truth values assigned to sentences and the notion of implication in
the language under consideration. Thus, rules (implications) had weights (or truth
values) associated with them as a whole. The problem was to study how truth values
should be propagated “across” implications. Annotated logics, on the other hand,
appeared to associate truth values with each component of an implication rather than

GENERALIZED ANNOTATED LOGIC PROGRAMMING 337

the implication as a whole. The implication itself was then interpreted in a “classical
logic” fashion. The two approaches had their own advantages and disadvantages:
although associating truth values with implications, as in [23], has intuitive appeal,
annotated logics provide a simpler formalism that is much closer to classical logic.
Besides, in [33] it is shown that for many problems in nonmonotonic reasoning, it is
easier to arrive at the intended semantics via nonmonotonic annotated logics, compared
to the bilattice-based formalism of [23].

However, one of the principal results of this paper is to show that this dichotomy can
be done away with. The GAP framework introduced here uses the “classical”
definition of implication in the same way as in [7,32,43]. However, by appropriately
generalizing the concept of an annotation, we are able to capture the propagation of
truth values “across” implications (cf. Theorems 7 and 8), at least to the extent this
propagation is treated in [17]. This is one of the key insights provided by this paper.

Additionally, this paper demonstrates that the GAP framework can be used to
implement a semidecidable fragment of temporal logics, which is a new application for
GAPS. Ginsberg [24] has recently observed that there are various connections between
bilattices and modal logics, temporal logics in particular. However, his treatment of
temporal logics is very sketchy, and no semidecidable proof theory for a large enough
fragment of such logics is given.

2. GENERALIZED ANNOTATED LOGIC PROGRAMS

We assume an upper semilattice Y of truth values, and denote the semilattice ordering
on Y by I and the least upper bound operator by U . The semilattice need not be
complete. It is often convenient to assume the existence of a greatest element in Y,
denoted T , and some of our results will depend on this assumption. The greatest lower
bound operator, when it exists, is denoted by n . Elements of 7 can be thought of as
confidence factors [7,31], or degrees of belief [7,32,33], or, as we shall see later, as
truth values similar to those used in multivalued logics. In addition, sometimes it will be
assumed that _7 has a unique least element, denoted I ; in these cases, this assumption
will be made explicitly.

For each i L 1, we postulate that there is a family 5 of total continuous (hence
monotonic) functions, each of type Y i + Y, called annotation functions. We denote
9= U ir, q and assume that all functions f in 9 are computable in the sense that
there is a uniform procedure Pf such that if f is n-ary and p,, . . . , pn are given as
input to Pf, then f(pl,. . . , p,J is output by Pr in a finite amount of time. We also
assume that each 5 contains a j-ary function uj, derived from the semilattice
operator U , which, given inputs p,, . . . , pj, returns the least upper part bound of

j/l,, * * f, pj} . Slightly abusing the notation, we will often write U instead of Uj . Apart
from the interpreted annotation functions, the language contains usual uninterpreted
functions, constants, and predicate symbols, as commonly used in logic programs. We
also postulate two disjoint sets of variable symbols--object variables and annotation
variables.

Definition I. An annotation is either an element of Y, an annotation variable, or a
complex annotation term. Annotation terms are defined recursively as follows:
members of Y and variable annotations are annotation terms. In addition, if f~ 9n

338 MICHAEL KIFER AND V. S. SUBRAHMANIAN

and x,,..., x, are annotation terms, then f(x,, . . . , x,) is a complex annotation
term.
If A is a usual atomic formula of predicate calculus (built out of object variables and
uninterpreted predicate, function, and constant symbols) and 1y is an annotation, then
A: is annotated atom. An annotated atom containing no occurrences of object
variables is ground.
If (YE 7 then A: (Y is constant-annotated (or c-annotated, for brevity). When (Y
is an annotation variable, then A: CI is said to be variable-annotated (v-annotated).
If (Y is a complex annotation term then A: (Y is term-annotated (t-annotated).

De$nition 2. If A: p is an annotated atom and B,

GENERALIZED ANNOTATED LOGIC PROGRAMMING 339

clause C. Similarly, if P is a GAP, then we denote the set of all strictly ground
instances of clauses in P by SGZ(P).

3. GENERAL AND RESTRICTED SEMANTICS

In this section, we propose two alternative model-theoretic semantics for GAPS. The
first corresponds closely to that in [31,34], whereas the second is ideal-theoretic in
nature, first proposed in [33].

Definition 5. An ideal of an upper semilattice is any subset S such that:

l S is downward closed, i.e., s~S and t I s imply teS; and
. S is closed with respect to finite least upper bounds, i.e. s, tES implies s LJ t ES.

An ideal S is principal if for some p E f, S = { s 1 s I p} . S is called the principal
ideal generated by p and is denoted by I(p 11. The set of all ideals of Y is denoted
by Y(Y), and the set of principal ideals of Y will be denoted by 9:9(Y). 0

Example 1. Ideals are not necessarily closed under infinite least upper bounds. For
example, consider the complete lattice [0, l] (the unit interval of reals) ordered by the
familiar “ I ” relation. Then the right-open interval

[OJ) = {XlOlX< l}

is an ideal that is not closed under the infinite least upper bound operator. 0
It is easily seen that J(Y) forms a complete lattice with the intersection operation

serving as the greatest lower bound and the union operator serving as the least upper
bound; the order on Y(Y) is determined by the usual set inclusion E . Furthermore,
there is a homomorphic embedding of upper semilattices Yw .9(Y) (that preserves
finite least upper bounds) that maps elements of 7 into the corresponding principal

ideals of X(Y).

Definition 6. Let Y be a language of annotated logic. The Herbrand Base of Y,
B,, is the set of all ground atomic formulas of Y (without annotations).
A general Herbrand interpretation (or just interpretation, for short) Z is a mapping
from the Herbrand Base of Y to J(Y). Since Z is a function into a partially
ordered set of Y(Y), we can define a partial order on interpretations in the usual

way: II J if and only if for every pcB,, Z(p) C J(p).
A restricted Herbrand interpretation (r-interpretation, for short) of Y is any map
from B, to 97 Equivalently, an r-interpretation of Y is a map from B, to
99(Y), the set of principal ideals of Y (this explains the name “restricted” for
such interpretations). 0

Note here the distinction between the two notions of interpretations. Restricted
Herbrand interpretations assign a single truth value, i.e., essentially a principal ideal
to ground atoms; in contrast, general interpretations assign arbitrary ideals to atoms.
Therefore, every r-interpretation is also a general interpretation, but not vice versa. In
the sequel, we will be freely switching between the two views of r-interpretations; i.e.,
we will think of them either as mappings B,* 57 or B,- 99 (T), depending on
which of the views is more convenient at the moment. Following [32,33], we could

340 MICHAEL KIFER AND V. S. SUBRAHMANIAN

also define interpretations with arbitrary domains, but since in this paper we are mainly
concerned with logic programming, we will restrict our attention to Herbrand interpre-
tations only.

We assume that there is a unary operator 7: Y+ ?, conceptually interpreted as
negation. For the technical purposes of this paper, we do not need to impose any
restrictions on 1. However, sometimes one may wish 7 to satisfy certain epistemologi-
cal criteria, such as 1 being a symmetric mapping, and the like. The proof theory for
GAPS in Section 4 does not depend on these assumptions.

Definition 7 (Satisfaction). Suppose Z is a general interpretation, p E Y is a c-annota-
tion in Y and A is a ground atom. Then

1.
2.
3.
4.
5.
6.
7.

8.

9.

If A is a ground atom, ZI= A: p if and only if ~EZ(A), where ZL E Y.
II= 7A: JJ if and only if T(~)EZ(A).
Zr=F,&F, if and only if Zi=F, and ZEF,.
II= F,vF, if and only if Z!=F, or ZI=F,.
Ii= F,+F2 if and only if II= Fl or ZI# F2.
ZI=F,++F, ifandonlyif Zk(F,+F,)and ZE(F~+-F,).
Z I= (Vx) F if and only if Z K F(x / t) for all ground terms t. Here x is an object
or annotation variable, and t must be of the same sort as x (i.e., either a usual
ground first-order term, or an element of Y). F(x / t) denotes the replacement
of all free occurrences of x in F by t.
Z E (3 x) F if and only if Z E F(x / t) for some ground term t, where x is an
object or annotation variable. ’
If F is not a closed formula, then Z E F if and only if II= (V)F, where (V)F
denotes the universal closure of F.

Definition 8 (r-Satisfaction). Suppose Z is an r-interpretation, Z.LE? is a c-annotation
in Y and L is a ground literal. Then:

1. If A is a ground atom, Zk’A: p if and only if Z(A) 1 p.
2. II=’ 1 A: p if and only if T(P) I Z(A).

The remaining cases (3)-(9) are defined in exactly the same way as for general
satisfaction.
As usual, an interpretation Z (or r-interpretation J) is said to be a model (resp.,
r-model) of a formula F if and only if Z E F (resp., J I=’ F). Z is a model of a set
of formulas P (of a GAP, in particular) if and only if it is a model of each of the
formulas in P. Also, if P is a set of formulas and 4 is a formula, we write P != C#J
(or P E=’ 4) if and only if whenever II= P (resp., II=’ P) then Z I= q5 (resp.,
ZE’c#J).

In annotated logics, there are at least two different (but related) notions of negation
[32,33]. The ontological negation is close to the standard negation in predicate
calculus; for annotated logics, it was first studied in [32]. On the other hand, the
negation defined in (2) of Definition 7 is close to the negation used in multivalued
logics. For annotated logics, it was first introduced in [5,7,43]; it was dubbed

‘If t is an annotation ground term, it can be identified with a constant in _‘T, since all annotation functions
are evaluable.

GENERALIZED ANNOTATED LOGIC PROGRAMMING 341

epistemic negation in [32]. One of the advantages of epistemic negation is that, given a

c-annotated literal 7 A: CL, there is a c-annotation p = -(p) such that 7 A : p is
logically equivalent to A: p. This type of negation is monotonic and, therefore, is
more tractable. The other negation, ontological [32], defines satisfaction of negated
atoms as follows: II= - A: I_L if and only if Zt# A: Z.L In this case, there is usually no p
such that A: p and - A: ~1 are logically equivalent. As a result, ontological negation is
computationally more expensive. However, the primary reason for our use of epistemic
negation in this paper is not computational, but the fact that the negation in Fitting’s
theory of logic programming over bilattices [181 directly translates into the epistemic
negation of GAPS (see Section 5.2). Also, it is easy to see that the implication, A + B,
can be expressed via ontological negation as follows: A V - B. However, “ + ” is not
expressible, via V, A, and the epistemic negation 1. Therefore, since the ontological
negation is not used in this paper, we had to define the implication “ + ” separately.
Properties of ontological negation are discussed in detail in [13,32,33].

The above definition tells us what the models of a GAP are. Note that if some
annotation term, r, appears in the head of a rule A: {+ Body and r has an annotation
variable, x, which does not appear as an annotation in Body, then because of the
monotonicity of annotation functions (i.e., functions in the q’s) and due to the way the
semantics is defined, we can replace all occurrences of x in { by T while preserving
program equivalence (recall that x is implicitly universally quantified). Consider the
following example:

Example 2. Suppose P is the following program over the unit interval [O, 11 of
truth values:

p: x+q:o.3

q:o.4+

It is easy to see that this program is model-theoretically equivalent (using either general
or restricted models) to:

p:l+q:O.3

q:0.4+-

(recall that when Y= [0, l] then T = 1). 0

Thus, we can assume without loss of generality that, in every clause, variables
occurring in the annotation of the clause head also appear as annotations of the
body literals. We will make this assumption throughout this paper. For the facts
(clauses with an empty body) appearing in GAPS, this implies that c-annotations can
always be assumed, which is done until the end of the paper.

Following the usual development of the semantics of logic programs, we associate
two operators Tp and R, with any GAP P: Tp maps interpretations to interpretations,
and R, maps r-interpretations to r-interpretations. They are defined as follows:

Definition 9. Suppose Z is an interpretation and A E B, . Then Tp(I)(A) = the least
ideal of Y containing the set { f(p,, . . . , p,) 1 A: f(p,, . . . , p,,) +
B* ,. /L,&. . .&LB,,: /.L~ is in SGZ(P), and II= (B,: cc,&. . .&LB,,: pJ}. It is easy to
see that intersection of an arbitrary number of ideals is an ideal, and therefore for

342 MICHAEL KIFER AND V. S. SUBRAHMANIAN

every subset S C Y there is a unique least ideal containing S. Note also that
T,(Z)(A) is a subset, not an element, of Y. Cl

Definition IO. Suppose I is an r-interpretation and A cBy. Assume also that Y is a
complete semilattice. Then RP(Z)(A) = U (f(p,, . . . , p,) 1 A: f(p,, . . . , p,) +
B. ,.@L...&B,:/L, is in SGZ(P), It= (B,: p,&. . .&B,: CL,,)}.

Notice that if Z is an r-interpretation (hence also an interpretation), then RP(Z)(A)
= U Tp(I)(A) for each atom A, where U is the least upper bound operator (we
postulate that U {) = I). Later we will establish a much more general result regard-
ing the relationship between Tp and R, that will be subsequently used in Section 5 to
establish the relationship between GAPS and van Emden’s [47] and Fitting’s [28]
works.

One intuition behind the ideal-theoretic definition is the following: Consider an
interpretation Z and a ground atom A. If there is a clause in SGZ(P) with head A : p
and whose body is satisfied by I, then we may use Z to “conclude” that there is a
derivation of A: ~1 by using modus ponens. We collect all such p’s together as a set
called Pp(I)(A), say. Now, using the finitary inference rule

we may conclude in a finitary way that Pp(I)(A) should be closed under finite lubs.
The main difference between R, and Tp is that R, would also allow infinite lubs to
be present. It is precisely because of this finitary/infinitary distinction that Tp possesses
some desirable properties (to be discussed shortly) that R, does not possess. The
question of which semantics is more intuitive depends on whether one believes that
taking infinite lubs is a justified inference step. In any case, Theorem 3 below shows
that for most practical purposes the two semantics yield the same results.

Theorem 1. Suppose P is a GAP, Z is an interpretation and J is an r-interpretation.
Then

l Z is a model of P if and only if Tp(I) I I;
l J is an r-model of P if and only if RP(J) I J;
l Tp is monotonic;

l R, is monotonic.

PROOF. A simple modification of the standard proof, e.g., from [35], with the use of
the monotonicity property of annotated functions in 9. 0

In what follows, we will often use a special “least” interpretation, A, which assigns
the empty ideal { } to every atom. In case of restricted interpretations, the least
r-interpretation may not exist, unless we require Y to have the least element I . In the
latter case, the least r-interpretation, denoted Ar, assigns I to every atom in B,.

Let us define the iterations of Tp as follows: T,TO = A. If (Y is a successor ordinal,
then T,ta = Tp(Tpf(cx - 1)); if Q is a limit ordinal, then T,tcu = LJgcol TPfP. In
the preceding sentence, (o - 1) denotes the immediate predecessor of the successor
ordinal (Y. The iterations of R, are defined similarly with the exception that R,tO =

GENERALIZED ANNOTATED LOGIC PROGRAMMING 343

A,. We will see that as in the “classical” logic programming, Tp is continuous, and
the equation TPf w = lfp(Tp) holds, but this is not always the case with R,.

Theorem 2. Let P be a GAP. Then

1. Tp is continuous;
2. Tp t w = Ifp(T,) = the least model of P;
3. For all annotated ground atoms A: CL, PEA: p if and only if t~~T~fu(A).

PROOF. The only nonobvious thing is the continuity of Tp. The rest of the claims
follow from continuity in a standard way.

To show continuity, let I,, Z2, . . . be a directed sequence of interpretations of P

(i.e., every finite subsequence Z;,, . . . , Z;, has an upper bound Z1: Z, 1 Zi,, j =

1 . . 9 k). We have to show that Tp(U Zi) = U (Tp(Ii)). It is easily seen from the
definitions that for any set of interpretations, { .Zk), their least upper bound, U Jk, is
such an interpretation J that for every ground atom A, J(A) is the least ideal
containing the set U .Zi(A).

Since Tp is monotonic, T,(Zk) I T,(U Zi) for all k. Since, for every A, T&J Zi)(A)
is an ideal, we conclude that Tp(u Zi) 1 u (T,(Ii)).

In the other direction, let A be a ground atom such that ZLE Tp(U Zi)(A). Then there
must be a strict ground instance of a rule in P of the form A: f (cl,, . . . , p,) +
B- ,. CL,&. . .&B,: CL,,, where p = f(p,, . . . , p,) and the literals Bj: pj are satisfied by
U Zi. This means that for every j = 1, . . . , n, there are vj,, . . . , ujkj in Y such that

1. each of the Bj: vi1 is true in some Zi; and
2. /Lj= u {Uj,, . . . ,Vjkj}.

Since the set Zi of interpretations is directed, there is some Zi, that satisfies all the
Bj: vjl. Because of (1) above, Zi,t= B,: v,,,,,&. . .&B,: v,,,, for any m,, . . . , m, such
that 1 I m, I k,, . . . , 1 I m, I k,. Hence,

(1)

Therefore, by continuity of f (all annotation functions are continuous, by definition),

A:f&,...,/Q=

A:f(U{v,L,...,v,k,),...,U {v,,,, v,/J)=

A: ‘Jf(v,,,,,, . . . , v,,,,,).

Thus, because of Equation (1) and since T,(ZiO), being an ideal, is closed under finite
least upper bounds, we derive that f (p,, . . . , pJ EU (Tp(Zi))(A), which concludes the
proof. 0

Corollary I. If A is a ground atom such that p E Tp t o(A) then there is an integer n
such that ~cT~fn(A).

PROOF. Since T,t n E Tpf(n + 1) for all n 2 0, it follows that (TPf w)(A) =
U (Tpf n)(A) (i.e., a plain union of sets instead of the least upper bound U).
Therefore p must belong to one of the T,,f n(A)‘s. 0

344 MICHAEL KIFER AND V. S. SUBRAHMANIAN

Unlike Tp, R, may not be continuous, as illustrated in the following example:

Example 3. Suppose Y is the interval of real numbers [0, l] with the usual
ordering, and consider the following program:

p:O+-

1+x

pZ2ep:X

q: 1 +p: 1,

where x is an annotation variable. It is easy to see that the interpretation T,,f i,
0 I i I w, always assigns the empty ideal {) to q. Hence, (TPf w)(q) = { }. Now,
according to the restricted semantics,

(R,tw)(p) = {aI al l}, (2)

while according to the general semantics,

(TJw)(p) = {al a< 1). (3)

Therefore, the r-semantics yields (Rp(Rp t w))(q) = Y, because of the third rule,
whereas by the general semantics we have (Tp(Tpf o))(q) = { }. This shows that
R,tw is not a fixpoint of R, in the r-semantics; however, in the general semantics,
Tp t w is a fixpoint of Tp, by Theorem 2. Notice that the only difference between

Equations (2) and (3) is that “ 5 ” is used in (2), whereas in (3) “ C ” is employed.
n

Thus, we see that one of the major differences between R, and Tp is that the latter is
continuous and hence attains a fixed-point at the w-th step of its upward iteration,
whereas R, does not possess either of these properties. Interestingly, this profound
difference is merely due to the fact that we used different notions of least upper bound
(of infinite sets of annotations) to define Tp and R,. In the remainder of this section,
we give a simple characterization of when R, attains a fixed-point at w.

Blair and Subrahmanian [5,7] have shown that /fp(RP) = R, t o whenever P is
c-annotated, and Y is a lattice. It follows immediately from that proof that the same
result holds when no annotation variables appear in rule bodies. In parallel, Kifer and
Li [31] showed that Ifp(RP) = R,t w holds at the other end of the spectrum: when P
contains only v-annotations in rule bodies (in which case R, is even continuous). This
implies that R, exhibits undesirable behavior only when c- and v-annotations are
intermixed in rule bodies.

Apart from the two important cases considered in [5,7,31], there is a large class of
programs for which R, is not necessarily continuous, but still R,t w = lfp(RP)
holds. Let us call the latter equation the @point reachability requirement. Reachabil-
ity of tbe least fixed point in at most w iterations is important for a practical logic
programming system, since otherwise it may often mean that no effective proof theory
for the respective class of programs is likely to exist. In the following we identify a
large class of programs for which the fixpoint reachability property of R, holds.

First we need to introduce one additional operator, denoted II , that maps general
interpretations to r-interpretations. Given an interpretation, J, we define (II J)(A) =
U (~1 peJ(A)}, for every atom A of B,. Here U is the operator that yields the
unique least upper bound of a set (assuming that U { } = I). This operator will be

GENERALIZED ANNOTATED LOGIC PROGRAMMING 34.5

used to establish a relationship between R, and Tr. Its usefulness in this context

becomes apparent if we recall that RP(I)(A) = U Tr(I)(A)-a property that immedi-
ately follows from the definition.

Dejnition II. A program P is acceptable if and only if the following property holds
for every c-annotated literal 1 in the body of P:

. If II (Trf w) I= I’ for some ground instance I’ of I, then Tr? w I= 1’. 0

It is easily seen that all programs whose clause bodies are either entirely c-annotated
or entirely v-annotated are acceptable. In the first case, this is because (Tp t w)(A) is
a finitely generated ideal for every atom A, and all such ideals are obviously
principal. Hence II (Trf w) = Trf o. In the second case, the acceptability follows
because the condition in Definition 11 is vacuously satisfied (as there are no
c-annotations in the body of P).

Example 4. Consider again the program P of Example 3. Here (Tr t w)(p) =
{a(a<l} and thus (Trtw)t#p:l. On the other hand, lI(T,tw)(p)={aIasl}
and hence II (Tp t w) I= p: 1. Since p: 1 is a c-annotated literal in the body of a clause in
P, P is not acceptable. 0

Theorem 3. Zf P is acceptable and Y has a least element I then

Surprisingly, this theorem hinges on the assumption about I as much as it
does on the assumption about acceptability of P. To see this, consider a
semilattice without I , e.g., Y= {t, f,T} . Assume that t, f are incomparable
to each other, but both are smaller than T . Then the program (p: X+ q: X}
has two minimal models: { p: t, q: t} and { p: f, q: f), none of which is the least
r-model. We thus assume the existence of I until the end of this section.
Likewise, we require Y to be a complete semilattice in order for R, to be
well-defined.

PROOF (of Theorem 3). By (1) of Lemma 1 below and by (1) of Theorem 2, it follows
that R,t o = II (up(T,)). By (2) of Lemma 1, R,tw is a fixpoint of R,; it is the
least such fixpoint because of the monotonicity of R, (Theorem 1). The claim about the
least r-model being equal to all the rest, also easily follows from Theorem 1. 0

Lemma I. Let P be an acceptable GAP and Y be a complete upper semilattice
with the least element I . Then

1. R,tw = I.I (T,tw).

2. Rp(kptw) = R,tw.

PROOF. For Claim (l), we will show that R,t w 1 LI (Tp t w) and vice versa.
To see that R,tw= U (Tptw) we first prove by induction that R,tiz Trti, for

all i. The base case is immediate:

T,tO = A I Ar = R,tO.

346 MICHAEL KIFER AND V. S. SUBRAHMANIAN

For the inductive case,

7J(k+ 1) = T,(T,M) IRP(TPfk) IR,(RJk) =RJ(k+ 1). (4)

In Equation (4), the first inclusion follows because 7”(Z)(A) C R,(Z)(A) for all
atoms A and the second one follows by the inductive assumption and because of the
monotonicity of R,. We now obtain that for all k, T,tk(A) 5 R,t w(A) and,
finally, that R,tw(A) 2 U (Tptw)(A).

In the other direction, we show that for all i,

u (TJw)(A) (R,ti)(A). (5)

would then that for A,

~(TPtw)(A)~~{(Rpti)(A)~i=1,2,...)=Rptw.

We prove (5) by induction on i. The base case is trivial, since AI = U A, by
definition. For the inductive step, assume that U (Tpt w)(A) 2 (R,t k)(A) for all A;
we will show that this equality holds for k + 1 as well.

By thedefinitionof R,, Rp(Rptk)(A)= U {f(p ,,..., pa)1 A:f(p ,,.. .,g,)+
B. ,. p,&. . .&B,: pn is in SGZ(P), R,t k I= (B,: p,&. . . &B,: p,)}. By the inductive
assumption, for every such rule-instance in SGZ(P), II (Tp t w) I= (B,: p,& . . . &LB,:
p,,). Because of the acceptability of P, for each i there is a sequence y: 5 p: I . . .
suchthatU{pj)j=1,2,. . . } = pLi and (Tp t w) I= (B,: pi&. . . &B,: pi) (acceptabil-
ity is needed to ensure that local implication holds also in cases when some of the pi are
annotation constants appearing in the body of P).

Now, since annotation functions are continuous, L. { f(p{, . . . , pjn) 1 j = 1,2, . . . }

=f(cc,, * * .,p,). Therefore Rp(Rptk)(A)G u(Tpfw)(A).
For Claim (2), R,(R,t w) L R,t w follows from the monotonicity of R, and

since R, t w 2 R, t i, for all i. The other inclusion is proved similarly to the earlier
proofthat Rp(Rptk)(A)EU(Tpfw)(A), inClaim(1). 0

4. CONSTRAINED QUERIES AND GAPS

Following [44], we are now going to develop an SLD-style proof theory for GAPS
based on the general semantics.

Dejinition 12. Suppose P is a GAP and C,, . . . , C, are renamed versions of clauses
in P such that no pair Ci and Cj of clauses shares common variables, Further, let
each C,, 1 I rs n, be of the form

A,: p,+-B;: p;&. . .&B;,: l”‘m,,

where p, is an annotation term and each & is an annotation variable or a constant.
Suppose further that A,, . . . , A, are unifiable via an mgu 8 and p =

U{P,,..., p,} . Then the clause

[A ,:p~B;:&,&...&B’ ,,:~~l~,&...&B::~~&...&B~~:Clnrn A0
is called a reductant of P [32]. Here, the expression U { p,, . . . , p,} is evaluated
only if all the pi’s are c-annotations; otherwise the complex term-annotation

U{P,,..., pn} becomes the annotation in the head of the reductant. Note, in
particular, that the clauses Ci, Cj above may be different renamings of the same

GENERALIZED ANNOTATED LOGIC PROGRAMMING 341

clause from P. Furthermore, it should be clear that each clause in P is a reductant
of itself.

Example 5. Suppose 7 is the lattice 9-0 9 9$ in Figure 1. This lattice has been
used extensively in reasoning about knowledge bases which may contain inconsistent
information (cf. [6,46]). Intuitively, I represents the Kleene’s truth value “unknown,”
whereas T represents the truth value “inconsistent. ” Let P be the program:

p(X):t+q(X, Y):f

p(b):f+r(Z,a):t.

Then

p(b):T+ q(6, Y):f,r(Z,a):t

is a reductant of P via the mgu 8 = { X 1 b).

Theorem 4. If C is a reductant of P, then P k C.

PROOF. As C is a reductant of P, it is obtained from clauses C,, . . . , C,,, where each
C, is a renamed version of a clause in P and no pair Ci and Cj shares common
variables. Hence, C is of the form

(A ,:P~B::cL:&...&B~,:~‘,,&...&BI”:cL;&...&B~”: ClRm,) 0

wherep=U{p,,..., p,}, each Cj, 1 ~j 5 n is of the form

Aj: pj+B/: @.z.. .&B;,: /LA,,

and {A,, . . . , A,} are unifiable via an mgu 0. Suppose now that Z is a model of P,
and Ca is a strict ground instance of C such that

ZE (B;,: &&. . .&BP: &&. . .&Bin: $,$o.

Hence, Z satisfies the body of CjO u for all 1 ~j I i. Z is a model of P and hence a
model of each Cj (as the Cj’s are only renamed versions of clauses in P). Hence,
Z(A,Ba)2pj for all lrjli, and thus Z(A,Ba)2p=U(p,,...,pi}. This com-
pletes the proof. •i

Proposition 1. Suppose P is a GAP and A: p is an annotated atom. If PI= A: CL, then

T

FIGURE 1. The four-valued lattice 9-e 4 9

348 MICHAEL IUFER AND V. S. SUBRAHMANIAN

there is a reductant of P having the form:

A:~+B,:@...&B,,:/L,

suchthat prpand Pi=B,:p,&...dzB,:p,,.

PROOF. Suppose PI= A: p where A is a ground atom. By Theorem 2, PET,,? w(A),
and by Corollary 1 there is an integer k such that PE(Tp t k)(A). We proceed by
induction on k.

Base case: k = 1. In this case, PE(T,tl)(A). Hence, there are clauses

C,,. * . , C,, r L 1, in SGI(P), of the form (empty bodies):

A:p,+
. . .

A: pre

suchthat p~p=U{p,,...,p,}. Since A:p + is the reductant of the above clauses,
the base case follows.

Inductive step: k = i + 1. The proof proceeds along the lines of the Base Case. 0

Example 6 (S. Morishita). Suppose F is the power set of {a, b} and is ordered
under’inclusion. Consider the program P:

p: V+q(X): V

q(a): {a} +

q(b): {w-

Clearly, P L p: {a, b} . The clause

P:u {b w--q(&): wqw: v,

is a reductant of P involving two different renamings of the first clause. Without being
able to take reductants, the proof theory given in this section would not be complete, as
it would be impossible to prove p: {a, b} from P.

Definition 13. A query is a statement of the form ? - A,: p,& . . . & A,: pk, where
the Ai: pi’s are atoms annotated by a constant or a variable.’
Unless explicitly stated otherwise, we will assume that queries are not necessarily
c-annotated, i.e. they may contain annotation variables. If Q is a query ? -
A,: p,&. . . & A,: pk then (3)Q will denote the existential closure of the conjunction
of its body literals, (3)(A,: p,&. . .&A,: pk).

Definition 14. A constrained query Q is a statement of the form:

?-A,:p,&.. . & A,: pk & ConstraintQ,

where

A &...&A,:p, 1: Pl

is the query-part of Q and ConstraintQ is its constraint-part. Here, each pi is

‘Notice that, as usual, a query can be viewed as a headless clause +(A,: p,&. .&A,: pk). This
explains our restriction on query annotations, since only c- and v-annotations are allowed in clause Bodies.

3A k-ary predicate p over I is decidable if there is an algorithm d such that for every tuple
(K,, . . , IC,)E~~, d can correctly decide whether p(K,, , K k) is true over Y or not. In particular, we
assume that constraints do not involve quantifiers.

GENERALIZED ANNOTATED LOGIC PROGRAMMING 349

either a constant from F or an annotation variable. In the most general case,
Constrainto can be any conjunction of decidable predicates3 over F, but in all
specific theories considered in Sections 5 and 6, constraints will be of the form

T,LK,&... &T, 2 K&Y, = fl,&. . . &CY, = &,

where the ri’s, K~‘s, ak’s, /3,‘s may be arbitrary term annotations (clearly, 5 and
= are decidable predicates over any lattice with a computable U). 0

Similarly, we can define constrained clauses of the form

A: $+-B,: u,&. . .&B,: ~,,,&Constraintc,

which is a clause in the old sense, augmented by a constraint, Constraint,. The notion
of satisfaction of such clauses by an interpretation is immediate.

Definition 15. Suppose C is a constrained clause A: rl, + B,: ul&. . . &B,: CL,,,&
Constraint, and Q is a query ? - A,: p,&. . . &A,: p,&Constrainto such that:

1. C and Q have no (annotation or object) variables in common; and
2. Ai and A are unifiable via mgu 0.

Then the resolvent of Q and C with respect to Ai is the constrained query Q

below:

?- [A,:p,&.. .&A~_,:~~_,&B,:cLI&...&B,:cc~&A~+I:~~+~

X&.. . &A,: pk] 8& (Constraint, & 11,~ pi & Constrainto).

(6)

In the above, if 0 is not required to be a most general unifier (i.e., 0 is allowed to be
any unifier), then Q’ is called an unrestricted resolvent of C and Q with respect to
Ai. 0

A constraint C is solvable with respect to the semilattice F and the set B of
interpreted annotation functions if and only if there is an assignment u of elements in F
to the annotation variables of C, such that C has a solution with respect to F and F
(Ca is evaluated using the intended interpretation of the annotation functions in 9).

There is an important class of constraints, called normal constraints, which we define
next. A constraint (7, 1 K , & . . . & 7, 2 K J is normal if

1. Each ~~ is an annotation variable or a constant;
2. If K i is a variable, then it does not occur in r,, . . . , TV.

Queries, clauses, and GAPS constrained by normal constraints are called normal
queries, clauses, and GAPS, respectively.

Lemma 2. Suppose F is a lattice (not necessarily complete). Then

1 .I If C and Q are a normal clause and a normal query, respectively, then the
resolvent of Q and C is a normal query.

2. Satisfiability of any normal constraint is decidable.

PROOF.

(1) Notice that pi in Equation (6) does not appear in Constraint, and in $, since

MICHAEL KIFER AND V. S. SUBRAHMANIAN

(2)

variables have been reqamed before performing the resolution step. Similarly,
none of the right-hand sides of inequalities in ConstraintQ appears in $.
Therefore, if both Constraint, and ConstraintQ in the above equation are
normal, the constraint in the resolvent, (Constraint, & $J 1 p& ConstraintQ),
is also normal. Observe that the order of constraints in Equation (6) above is
crucial.
Let C be a normal constraint of the form 7, r K ,& . . . &rn L K n. Without loss
of generality, we assume that the inequalities in C with identical variable in the
right-hand side are grouped together, i.e., if K i and K j are the same variable,
then for all s, i 5 s I j, K s is the same variable as K i and K j. This grouping can
be achieved by the following re-grouping operation: Suppose C has a subse-
quence of conjuncts . . . &r’ LX&. . . &r* 2 y&. . . &r3 LX. . . . Because of
normality of C, x does not appear in T*, and hence the whole block of
inequalities between 71 2 x and 73 2 x can be moved in front of 7’ 2 x.
Clearly, the resulting constraint will still be normal and equivalent to C.
Repeating this process, we will achieve the desired grouping of conjuncts in C.

The test for satisfiability of C in Y now follows:

a. If C is an empty constraint, return (satisfiable}.

b. Let i, 1 1 be the maximal integer such that K i, is the same symbol as K ,.

Substitute T for each of the variables occurring in 7,, . . . , 7i0 (the substitution
must be done throughout C). Since C is normal, none of these variables appears
on the right-hand side of C. Let the resulting constraint and annotation terms be
also denoted by C and oh’s, respectively. Notice that now each of the 71, . . . , 7i,

can be evaluated to an element of Y.
c. If K, is a constant then

If 7,?K,&... 8~7~~ 2 K i, is false in Y

then return(unsatisfiable)

/* The if-condition is verifiable since the 7i’s are ground */

/* Otherwise */

SetCt07i,+,~Ki,+,&...&7,1K.

Rearrange indices of the 7i’S and K~‘S in C so that they will start with 1, and then
go to (a).

d. If K 1 is a variable then replace it by the greatest lower bound of 71, . . . , 7i,,

which exists since it was assumed that F is a lattice. This replacement should be
done everywhere in C. Then delete the conjuncts 7, 1 K ,& . . . & 7i, 2 K i. from
C, as in (c), and go to (a).

Correctness of this algorithm follows immediately from the fact that all functions
used in the 7j in C are monotonic (see assumptions at the beginning Qf Section 2).
Termination of the algorithm follows from the assumption that all functions in B are
computable. Cl

It is easy to see that the above result can be strengthened somewhat by replacing the
requirement that 7 must be a lattice by a weaker requirement that every finite subset of
F has a (not necessarily greatest) lower bound. However, then we will have to restrict

GENERALIZED ANNOTATED LOGIC PROGRAMMING 351

C to be not only a normal constraint but also such that all conjuncts ri 1 K i, where K i is
a constant, appear in front of C. Indeed, it is easy to verify that F needs be a lattice
only in step (d) of Lemma 2 and that this step will go through under the modified
requirements. The next result says that if Y is finite then the requirement of normality
can be dropped altogether.

Lemma 3. For finite semilattices .7, satisfiability of every constraint is decidable.

PROOF. Suppose C is a constraint over F. Let GRD be the set of all instances of this
constraint obtained by (uniformly) replacing all occurrences of annotation variables by
annotation constants (in particular, constraints in GRD are free of annotation variables).
As 7 is finite, GRD is a finite set of ground constraints (since constraints contain no
quantifiers, by definition). Now, C is solvable if and only if some constraint in GRD is
solvable. But for ground constraints satisfaction is obviously decidable since they are
conjunctions of ground atoms involving decidable predicates only. 0

Of course the algorithm of Lemma 3 is impractical and we just used it as a decidability
argument; efficient algorithms for constraint solving over F are presented in [22].

Definition 16. A deduction of a constrained query Q,, from a GAP P is a sequence:

Q,,,(C,>e,), Q,, . . .T Q,,tC,,e,,), Qn+,

such that:

1. Qi+, is a resolvent of Qi and Cj via mgu 13~; and
2. Ci is a reductant of P that contains no variables in common with Qi.

When the 0,‘s in the above deduction are required to be unifiers but not necessarily
mgu’s (i.e., the Qi’s, i L 1, are only required to be unrestricted resolvents), then the
above deduction is called an unrestricted deduction.

Definition 17. The deduction !X = Qu,(C,, e,), Q,, . . . , Q,,(C,, e,), Q,, , of the
query Q. from P is a refutation if and only if

1. Qn+,, the resolvent of Q, and C,, has an empty query-part (i.e., Q,, , is just a
constraint); and

2. Qn+, is solvable with respect to the lattice Y and the set of annotation functions
9.

In what follows, we will use SOL(%) to denote the set of solutions of the
constraint-part of Q, + , . Unrestricted refutation is defined similarly (where “deduc-
tion” must be replaced by “unrestricted deduction”).

The implementation of the above refutation procedure hinges upon two things:

l The ability to solve lattice constraints; and
l The ability to restrict the choice of reductants.

Studying the ways of solving constraints is beyond the scope of this paper; [22] deals
with efficient serial and parallel algorithms for this task. The need to use reductants of
P rather than just the clauses of P is another major obstacle. Indeed, the main appeal
of SLD-resolution is that the choice of clauses that need to be considered is restricted to

352 MICHAEL KIFER AND V. S. SUBRAHMANIAN

the current goal and the program clauses. However, if reductants are to be used, one
may generate an infinite number of them out of a finite set of program clauses.
Therefore, for GAPS, SLD-resolution with reduction is no better than the general
resolution. Fortunately, for a large class of semilattices, we can effectively limit the
number of reductants to be considered in refutations.

Definition 18. An upper semilattice Y is n-wide if for every finite4 set EE Y, there
is a finite subset E, C E of at most n elements such that U E, = U E.
A n-reductant of a program P is a reductant involving no more than n clauses
of P.
Many popular semilattices have finite width. Clearly, all finite semilattices are of this
kind. Among the infinite ones, the semilattice of the form [0, 11” has width n (here

(a,, . . . , a,) U (b, , . . . , b,) = (a, U b,, . . . , a,, U b,)). In particular, [0, l] and
[0, l]* are frequently used in expert systems. To show that, e.g., [0, l]* is two-wide,
let (Y, = [a,, b,], . . . , ak = [ak, bk] be a finite set of pairs of real numbers in the
interval [0, 11. Let a, (respectively, bj) be the maximal element among the a,, . . . , ak
(respectively, b,, . . . ,
[0, I]* is two-wide.

bk). Then, (YOU oj = U ((Y,, . . . , a,}, which proves that

As we shall see, if Y is n-wide, then in building refutations it suffices to consider
n-reductants only. This limits the choice of clauses to resolve with to a finite set of
n-reductants.

Theorem 5 (Soundness). Suppose P is a GAP and Q is a constrained query such
that

Qo,(‘Gvt’,), Q,, I.. 3 Q,,(C,,,e,,), Qn+,

is a refutation of Q,, from the GAP of P. Let a be any solution for the
constraint-part of Q, + , . Then Qoa is an annotation-variable-free query ob-
tained by replacing ail annotation variables in Q. by the annotation constants
specified in u. We claim that:

PI= (v)(Qo+,b -** 8,

(recall that (v)Qo denotes a conjunction of body literals of query Q,, univer-
sally quan@ed) .

PROOF. We proceed by induction on n, the length of the refutation of Q, from P.
Base case: n = 1. Then Q,, contains exactly one annotated atom, denoted A: CL.

Hence, C,, is of the form

D 0: PO+

such that All, = DOB0 and the constraint (p. 1 p) is solvable. Let u be any solution of
this constraint and let I be a model of P. Then I is a model of Co (as P entails all its
reductants) and, in particular,

II= (v)(&: P)

4Finiteness is crucial here; we do not care if infinite sets do not have the property described in this
definition.

GENERALIZED ANNOTATED LOGIC PROGRAMMING 353

where p is obtained from pa by instantiating all annotation variables to T , the top

element of Y. In particular,

IE (v) A,B: p

and as p = p,,a L pa (due to the monotonicity of annotation functions in F). it follows

that

IL (v) A8,: /L.

Inductive step: n > 1. In this case,

Q,,(C,,e,),Q,,...,Q,,(C,,e,),Q,+,
is a refutation of Q1, where the query Q,, , is a pure constraint. Let u be any solution

of the constraint-part of Q, + , . Suppose Q. is

?-A,:p,&...&A,:pk&ConstraintQO.

If CO is of the form

A: p+B,: p,&. . .&LB,: p,

and A8, = A&l,, (i.e., Q,, and C,, resolve on atom Ai: pi), then Q, is of the form:

?-(A,:~~&...&Ai_~:~~_~&B,:p~&...&Br:pr&Ai+~:~i+~

x&. . .&A n: PLn)eo& (ConstraintQo & p 2 pi).

By the inductive hypothesis, we may assume that

at= (v)(QIue,. . .e,).

Suppose now that Z is a model of P. Then, as

1~ (v)(Q,ce, . . . en),

it follows that

zt=(~)(B,:p,u&...&B,:~,a)e I... en.

Hence, since ZE C,, (as CO is a reductant of P):

I!=(v)Ae,...e,:pu.

As Ad, = AieO, we conclude that:

z~++4,e,...e,:~~.

(7)

Recall that the constraint-part of Qi (and hence of Q,,,) contains the constraint
p 2 pi. As u is a solution of the constraint Q, + , , it follows that pa 2 piu holds true in
Y. Thus,

1++4~e~...e,:~~.

Finally, this and (7) imply

z~(v)~,~e,...e,,

which completes our proof. 0

Lemma 4 (Mgu Lemma). Suppose P is a GAP and Q is a query. Suppose there is
an unrestricted refutation % of Q such that UESOL($R) (SOL was defined in

354 MICHAEL KIFER AND V. S. SUBRAHMANIAN

Definition 17). Then there is a refutation 8’ of Q such that UESOL(W).

PROOF. Similar to the proof of the mgu lemma in classical logic programming (Lloyd,

[351). 0

Lemma 5 (Lifting Lemma). Suppose P is a GAP and Q is a normal query. Suppose
u is an assignment of c-annotations to some (not necessarily ah) annotation
variables in Q and let 0 be a substitution for object variables. If there is a
refutation % of Qae from P, then there is a refutation %’ of Q from P.

PROOF. Similar to the proof of the classical lifting lemma (cf. Lloyd [35]). 0

Theorem 6 (Completeness Theorem). Suppose that Y is a lattice, P is a GAP and
Q is a normal query. Suppose P E (j)Q. Then there is a refutation of Q from P.
Moreover, if F is n-wide then Q can be refuted solely using n-reductants of P.

PROOF. Suppose Q is

?-A,:cL,&...&A~:~~&C~,

where C, is the constraint-part of Q. As Pi= (g)Q, it follows from Theorem 2 that
TpT w I= @)Q and hence, there is an integer n such that Trf n I= (3)Q. We first
proceed by induction on n to show that there is an unrestricted refutation of Q from
P.

Base case: m = 1. In this case, k = 1 and there is a reductant C of P of the form:

such that the constraint C, = (Ce & p r CL,) is solvable. Hence, Q,(C, e), Q, , where
Q, is the goal ? - C,, is an unrestricted refutation of Q from P.

Inductive step: m = n + 1. Suppose now that Trt(n + 1) I= (3)Q. In particular,
there is a variable-free instance Qae of Q (here, u is an assignment of c-annotations to
annotation variables and 0 is a ground substitution for object variables) such that
T, t(n + 1) I= Que. By the definition of T, (Definition 9), this implies that for each
1 I i 5 k, there is a reductant of P, denoted C;, having a ground instance of the form

Ai:pi+Bf: $f&. . JzB$$;~

such that T,tn~(Bf:lC~&...&B~i:\Lf,) and (p,zp,&...&~~lp~&C& is solv-
able.

Furthermore, if Y is n-wide, then we can choose each Ci above to be a
n-reductant. Indeed, in Definition 9, in order to obtain Tp(I)(A) one needs to take all
possible finite least upper bounds of the elements of the set

{f(u ,,..., g,)lA:f(p ,,..., CL,)+-B,:p,&...&B,:&,isinSGI(P),and

It= (B,: p,&. . .&B,: /Jo)},

which amounts to taking all possible reductants of SGI(P). However, if ? is n-wide,
one only needs to take least upper bounds of up to n elements of the above set, which
amounts to taking n-reductants only.

As C, is normal, and as annotation variables are renamed prior to resolution,

(P,1c1,&...&P k 1 pk & CQ) is a normal query. Hence, for all 1 5 i I k and for all
1 5 j II ri, we may assume, by the induction hypothesis, that there is an unrestricted

GENERALIZED ANNOTATED LOGIC PROGRAMMING 355

refutation, denoted 8; of Bj: $j. Then, the k resolution steps that involve Q and the

clauses C,, . . . , C, above, followed by

is an unrestricted refutation of Quo from P. By the Lifting Lemma, there is an
unrestricted refutation of Q from P. This completes the proof of the inductive step.
Thus, we know that there is an unrestricted refutation of Q from P. By the Mgu
Lemma, it now follows that there is a refutation of Q from P. q

It should be noted that there is no similar completeness result for r-entailment, even
in the case of acceptable GAPS.

Example 7. Consider the following program P:

p:o

x+1

p:2cp:x

The query ? -p: 1 cannot be refuted by the above proof procedure, even though
P I==’ p: 1. Notice that P t# p: 1 and so this argument is applicable to the restricted

semantics but not to the general one. •i

In fact, Example 7 shows that Herbrand’s theorem does not hold for r-entailment
even for acceptable GAPS, which indicates that there is no sufficiently general proof
procedure for the restricted semantics.

We see that there is a close relationship between annotated logic programming and
constraint logic programming [30]. As will be shown later, there is also a close
connection between annotated programs and certain fragments of temporal logics. Thus,
there is hope that in the future a single unifying framework for multivalued, temporal,
and constraint logic programming will emerge.

In related works, Morishita [36] and Subrahmanian [44] have also studied multival-
ued logic programming where annotations were associated with clauses, rather than
with individual atoms. Morishita’s framework is as follows: Associated with each atom
is a lattice, and associated with each clause is a function that maps the product of the
lattices associated with the atoms in the body of the clause to the lattice associated with
the head. Soundness of the proof procedure is established for queries that have a finite
AND/OR tree associated with them (cf. [36, Theorem 4.111). This restriction is not
needed in our work. It must also be pointed out that our ideal-theoretic semantics differs
from Morishita’s semantics. Hence, our completeness result applies to Example 7,
whereas Morishita’s completeness result is inapplicable to that example. Results on
query processing procedures for programs whose clauses are c-annotated were obtained
in Subrahmanian [44] and Kifer and Lozinskii [32,33].

5. MULTIVALUED LOGICS AND GAPS

The principal aim of this section is to show that quantitative logic programming as
proposed by van Emden [47] and also the bilattice-based logic programs of Fitting [181,
all fit into the framework of GAPS.

356 MICHAEL KIFER AND V. S. SUBRAHMANIAN

5.1. van Emden’s Quantitative Deduction

A quantitative rule [47] is of the form:

r: A+B,&...&Bk,

where re(O, 11. A quantitative rule set (QRS) is a collection of finitely many rules.
Interpretations map ground atoms into the unit interval [0, 11. Interpretations of QRSs,
as defined in [47], are the same as r-interpretations of GAPS over the lattice Y= [0, l]
(with the standard ordering on [0, 11). Throughout this section, the word “interpre-
tation” will mean “r-interpretation.” Associated with a QRS, P, is an operator S,
that maps interpretations to interpretations, and is defined as follows:

S,(I)(A)=U{rxk)r:A+B,&.. . &B,, is a ground instance of a clause in P

andmin{Z(B,),...,Z(B,)} =k}.

If P is a QRS, then it can be translated into a GAP, tr(P), as follows:

tr(P)=(A:rxmin(T, ,..., T,}+B,:T,&...&B,,:T,I

where r: A+B,&...&B, isaclausein P}.

Note that according to this translation, all QRSs get translated into GAPS whose bodies
contain only v-annotated literals. Hence, for any QRS P, b(P) is an acceptable GAP
and thus Z&z.) has the fixpoint reachability property.

Theorem 7. Suppose P is a QRS. Then S, = RtrCPj.

PROOF. The proof is a direct consequence of the definition of tr(P). 0

Theorem 7 shows, in particular, that Ifp(S,) = vp(RtrCPj), and since tr(P) is
always acceptable, we also have that Ifp(S,) = JJ Vp(Z&).

Furthermore, for finite programs (i.e., programs with a finite set of rules and facts)
we can show that Ll lfp(T&) = Ifp(T,,&. Indeed, because of the special form of
their annotation functions, the rules in tr(P) never produce new annotation constants
when applied in the computation of TtrCPj t w. Therefore, for any atom A,
(7&t w)(A) will be a finitely generated ideal. Since every such ideal is principal, the
II operator has no effect on lfp(T,,,,,,). Furthermore, note that the clauses in tr(P)
have empty constraint-parts and thus are normal.

As a consequence of the fact that lfp(S,) = /fp(T,,,,,), one can study the least
model of a QRS P by studying the least model of the GAP tr(P), and the remark about
normality of tr(P) in the previous paragraph implies that the proof procedure for GAPS
described in the preceding section yields a sound and complete proof procedure for
answering existential queries to QRS. This improves upon van Emden’s “weak
soundness and completeness” results in two ways:

1. van Emden’s evaluation procedure [47] works under the conditions that the
AND/OR tree associated with a program P and a query Q is finite. No such
restriction is needed here.

2. van Emden’s proof procedure applies to ground queries. The procedure for GAPS
described in this paper applies to nonground existential queries as well.

Thus, the theorems about GAPS given in the previous section shed new light on the

GENERALIZED ANNOTATED LOGIC PROGRAMMING 357

operational aspects of van Emden’s QRSs. However, unlike QRSs, GAPS are not
restricted to the interval [0, l] of truth values, and the results are applicable to any
multi-valued logic based on a complete lattice that possesses Henkin’s existential

property.

5.2. Bilattice-valued Logics

For the purpose of this section, we assume that the reader is familiar with the basics of
Fitting’s theory of bilattice-based logic programming developed in [181. Bilattices, due
to Ginsberg [23], provide an elegant epistemological framework for studying multival-
ued logics. Intuitively, a bilattice (also known as an interlaced bilattice) is a set ‘$l
having two orderings: the knowledge order, sk , and the truth order, I, , such that
(!?z,+,n,, U,)and(!R, 5,) nt , U t) are both complete lattices. In addition, meets
and joins with respect to I, are monotone with respect to I, and vice versa. Fitting
[17, 181 has developed a theory of fixpoints for logic programs whose associated set of
truth values forms a bilattice.

In Fitting’s formulation, the syntax of a bilattice logic program is similar to that of
an ordinary logic program, except that the body of a clause may be an arbitrary
first-order formula constructed out of A r, V, (“and” and “or” with respect to I,),
A~, V, (“and” and “or.” relative to I~), and 7. Negation is interpreted as a unary
function on truth values such that CL, I, pz if and only if 1~~ sk 7p2, and CL, I, ~1~ if
and only if 1~~ sr 1~~.

Unlike annotated clauses that essentially have a two-valued satisfaction relation, in
bilattice-based logics, formulae may assume any truth value from 8. The fundamental
role of the truth order is to allow defining the logical connectives A t, V, , and 7 without
having to bother with specifics of the set of truth values 8. In contrast, the truth order
plays no role in the semantics of annotated logics. The fundamental role of the
knowledge order is to give meaning to logical implication, and it is used in a similar
way by both annotated and bilattice-based logics. In a sense, the results of this section
show that Fitting’s theory of bilattice-based logic programming uses the knowledge
order in a more essential way than the truth order.

Interpretations of Fitting’s programs are the same as r-interpretations of GAPS. In
other words, they are functions from the Herbrand base of P to % . These functions are
extended to arbitrary formulas by distributing them through the connectives A ~, V, ,

A,, v,, and 7. Associated with a program, P, is an operator V, that maps
interpretations to interpretations as follows:

V,(I)(A) = U (~1 A+L,&.. .&L, isagroundinstance

ofaclausein Pandp=Z(L,&...&L,)}.

Given a bilattice-based logic program, we can translate it into a GAP, denoted
M(P), clausewise as follows: Let C denote a clause A +Body(L,, . . . , L,) in P,
where Body(L,, . . . , L,) is a Fitting’s formula involving atomic literals L,, . . . , L,
(different occurrences are considered as different literals). Then the corresponding
clause, bl(C), has the form

A:&ody(l ,,..., L,)(T,,...,T,)cL,:T,&...&L,:T,,

where T,,..., T2 are annotation variables and the function fBodycl,, , L,j is defined

358 MICHAEL KIFER AND V. S. SUBRAHMANIAN

as follows:

1. If Bou’y(L,, . . . , L,) = Bou’y,(L,, . . . , Lp)V1 Bou’~~(L~+r,. . . , L,) then

.&@(T,, . . f 9 T,) =fBody,V19 * *. 7 T,)Ut fBody*G+l7~~~ 9 m
2. If Body(L,, . . . , L,) = Body,(L,, . . . , Lk)Vk Body2(Lk+,, . . . , L,) then

fe,&?(~, 9 f * . 7 TJ =fBody,(q 9 . . . 9 Tk) u, fBody,ui+ 13 * * . 9 T,)
3. If Body(L,, . . . , L,) = Body,(L,, . . . , L,)A,Body,(L,+,, . . . , L,) then

f&,,U’,, . . ., T,) =f~odJT,r. . ., Tdnt fsoc,JTk+,, . . .v T,)
4. If Body(L,, . . . , L,) = Body,(L,, . . . , L,)A,Body,(L,+,, . . . , L,) then

fBo,-JT,, . . . , T,) =.&,dy,V,, . . ., Td’-‘k fm,&+,r . . .t T,)
5. If Body(L,, . . . , L,) = 7 Body,(L,, . . . , L,) then

fBo,,JT,, . . . , T,) = 7fBody,(T,, . . ., Td.

In the above, v and A are logical connectives, while U and n are meet and join on ‘%
relative to the appropriate orderings (st or I,). Furthermore, for the purpose of this
translation, we assume that the GAP bl(P) uses the same negation operator 7 : $3 --) 93
as the one used by the bilattice-based program P.

Note that according to this translation, if P is a bilattice program, then bl(P) is a
GAP such that all literals occurring in clause bodies are v-annotated. Hence, bl(P) is
acceptable.

As mentioned earlier, the truth-order plays no role in the semantics of GAPS, while
it does in the semantics of multivalued programs. However, as can be seen from the
definition of bl(C), the truth-order of bilattices is encoded in the annotation functions
of clauses of bl(C). This explains why GAPS can successfully simulate multivalued

bilattice-based programs.

Theorem 8. Suppose P is a bilattice-based logic program. Then V, = R,,,(,, .

PROOF. The proof is a straightforward consequence of the translation of P into a GAP.
It is clear that the annotation functions in the GAP bl(P) have been designed precisely
so that they would simulate the computation of truth values for the rule heads in the
bilattice-based program P. q

Since rule bodies in b&P) are v-annotated, such programs are acceptable and we
have /fp(VP) = LI Ifp(TblCpj). In general, this equality does not guarantee the existence
of a complete proof theory for bilattice-based logic programs. However, for distribu-
tive bilattices such a proof procedure does exist.

A distributive bilattice [la] is a bilattice satisfying all twelve distributive laws for
various combinations of the operators l-J, , U, , nk , and n, .

Now, as in the case of van Emden’s QRSs, finite programs will result in only a finite
number of annotations being mentioned in bl(P). Since in a distributive bilattice one
can always convert any expression involving U, , U, , nk , and RI into a normal form
(e.g., a disjunctive normal form with k-operators inside and t-operators outside), such
expressions can yield only a finite number of annotation constants, given a finite number
of such constants as an input. Therefore, arguing as in the previous subsection, we
conclude that H has no effect on Ifp(TblCpj), i.e. Ifp(VP) = Ifp(T,,,,,). Furthermore,
as with QRS, we can observe that constraints arising in bl(P) are normal and therefore
the proof procedure developed for GAPS applies.

As a consequence, once again, just as in the case of van Emden’s QRSs 1471, we can
study the semantics of bilattice logic programming by studying the semantics of the

GENERALIZED ANNOTATED LOGIC PROGRAMMING 359

corresponding GAPS, and we can use the corresponding proof procedure to answer
queries. There are several advantages in doing so:

1. Fitting did not define the notion of a model for his logic programs. However,
when bilattice-based logic programs are converted into GAPS, this notion be-
comes clear: Z is a model of a clause C in a bilattice-based program if and only if
Z is an r-model of the translation of C into a generalized annotated clause (see
below).

2. We can use the operational semantics of GAPS developed in the previous section
to process queries to bilattice-based programs. In [19], Fitting described a
tableau-based proof procedure for his logic programs. This procedure is restricted
to the case of the four-valued bilattice depicted in Figure 1. Since this bilattice is
distributive, our results about the proof theory subsume the corresponding results
in [19].

Now, the models of Fittings’s logic program can be defined as follows:

Definition 19. We say that Z is a model of a ground clause
A e Body

in a bilattice-based program if and only if I(A) L k Z(Body). Z is a model of a
nonground such a clause, C, if and only if Z is a model of each ground instance of
C. As usual, Z is a model of a bilattice-based logic program, P, if and only if Z is a
model of each clause in P.

Theorem 9. Let Z be an interpretation of a bilattice-based program P. Then Z is a
model of P if and only if V,(Z) 5 Z if and only if Z is an r-model of bl(P). 0

As a consequence of the last two theorems, the models of a bilattice logic program P
are also the models of the GAP bl(P), and their least models coincide. Thus, bilattice
model theory can be studied through the model theory of GAPS. Moreover, in the case
of finite databases and distributive bilattices, processing of existential queries to bilattice
logic programs can be converted into the equivalent problem of processing existential
queries for GAPS.

There is at least one intriguing result due to Fitting that does not fit in our
framework. This is the elegant theorem that states the connection between the least
fixed-point of V, relative to the I~ ordering, and the greatest fixed-point of the V,
operator in the I, ordering. This result cannot be obtained in the GAP framework
simply because our formalization assumes only one ordering on ,7, namely I, .

6. TEMPORAL REASONING

There are several different kinds of temporal logics. One of the fundamental differences
of opinion between temporal logicians concerns the issue of the nature of time. Various
representations of time are possible; each representation is accompanied by a host of
philosophical and epistemological arguments. Here, we will consider two widely
accepted representations:

1 Linear time stretching either finitely or infinitely back.
2. Interval-based time where one considers “time periods” rather than “time

points.”

360 MICHAEL KIFER AND V. S. SUBRAHMANIAN

6.1. Reasoning about Linear Time using GAPS

Let us assume that S is the set of all integers and that ?!Y is some subset of 9 that is
upward closed under I , i.e., if XE @Y and x ly, then YE g. Thus, 9 may be I
itself (in which case we are assuming that the world has been around infinitely long) or
9 may be, say, the set of all non-negative integers (in which case we are subscribing to

the theory that the world was created at some time). So, in any case, let us assume that
?!I’ is fixed.

A temporal Herbrand interpretation Z assigns a truth value to a ground atom, A,
at each time point. Thus, Z may say that A is true at times 1,3,5, . . . and false at
times2,4,6 ,.... Intuitively, we may view an interpretation Z as a mapping from the
Herbrand Base, BL, of our language L, to the power set, 9(‘3’), of g. The epistemic
interpretation of this is as follows:

A is true at time t according to interpretation Z if and only if tEZ(A).

Now we can reason about time in the framework of GAPS by taking as our set Y of
truth values, the set 9(8”) ordered by subset inclusion. Given any truth value p, i.e.,
p is a subset of 9, define an annotation function succ as follows:

succ(p) = {t + 11 &/A},

Thus, if proposition p is assigned p by interpretation I, i.e. interpretation Z says that
p is true at all those times in p, and if Z assigns succ(Z~) to q then Z says that q is true
at a time point (t + 1) if p is true at time point t. For instance, the clause

get-out-of-way : succ(p) + see-car-coming : p

says that if you see a car coming at you at a certain moment then get out of its way at
the next time moment. To say that p is true at all even times, we write

p: succ(succ((lI)) *p: CX.

Baudinet [3] has developed a semantic framework for temporal logic programming,
with 9 taken to be the set of non-negative integers. According to this framework, a
temporal logic program can be considered as a (possibly infinite) set of clauses of the
form:

C: O'oA, + OilA,&. . . &OinAn,

where 0 is the modal operator next and Oi is a shorthand for j applications of 0. If A
is an atom and i 2 0, then O’A is called a next-atom. An interpretation is just a
collection of ground next-atoms.

The above clause C can be translated into the following c-annotated clause an(C):

A,:{i,}+A,:{i,)&...&A.:{i,}.

For a temporal program, P, an(P) = {an(C)) CE P} .
To compare GAPS with [3], let & be the set of all non-negative integers { 0, 1, . . . } ,

and Y= 9 (?Y) be the lattice of all sets of non-negative integers ordered by inclusion,
which we call the temporal lattice. Thus, for instance, Baudinet’s interpretation
{ 00 A} that says that A is true at time 2 and all other propositions are false at all

GENERALIZED ANNOTATED LOGIC PROGRAMMING 361

times is captured by our multivalued interpretation Z defined as:

Z(A) = (2) andforall B#A,Z(B) = (}

Formally, let Z be a collection of Baudinet’s next-atoms. The translation of Z into an
r-interpretation, an(Z), for annotated logic is:

(an(Z))(A) = {iIO’AEZ}.

Baudinet then defines an operator, denoted Z,, that maps sets of ground next-atoms to
sets of ground next-atoms as follows:

Z,(Z) = (O’A 1 O’A + I?,& . . . &B, is a ground instance

ofaclausein Pand {B ,,..., B,) CZ}.

Likewise, in the context of annotated logics, we may consider the R,,,Cp) operator
defined on GAPS:

Theorem 10. For any temporal program, P, and a Baudinet’s interpretation, I,

4G4Z)) = LJan(Z)). 0

The above theorem establishes that one way of studying Baudinet’s temporal logic
programming is within the framework of GAPS. For instance, as in Section 5, we can
argue that for finite programs RPnCP) = TPncPj and this allows us to use the theorems in
Section 4 to define a proof procedure for answering existential queries to temporal
programs.

A more expressive temporal logic was proposed by Abadi and Manna in [l]. There,
besides the “next” operator, 0, other modalities, such as “eventuality”, 0, and
“always true”, 0, are allowed. The full temporal logic of [l] is, according to the
authors, computationally expensive, and a fragment amenable to an efficient implemen-
tation by means of SLD resolution was proposed. This fragment consists of clauses of
the following form. First, rule bodies are drawn from the class of formulas, 37, which
contains all next-atoms, and is closed under conjunction and under the application of 0.
The initial clauses, i.e., clauses that are true at time 0 are of the form

1 B+A; or
2. q B+A,

where A E 93 and B is a next-atom. The permanent clauses, i.e., rules that are always
true, have the form q (B +A), where, as before, A E g and B is a next-atom.

Let 9 and Y be the same as before. We have already shown how the next-atoms
are represented using annotations. The necessity operator, Cl, corresponds to the
topmost element TE Y (which represents the whole set @Y). For instance, 0 A is
represented as A: T . Finally, our annotated rules correspond to the permanent rules
of [l].

We show below some simple examples of information that can be represented using
the GAP formalism. Suppose in the sequel that g is the set of all integers. For
example, to say that if X is a president at time T, then X must have been rich at time

362 MICHAEL KIFER AND V. S. SUBRAHMANIAN

(T- 1) (think of time units as “years”), we can say:

rich(X) : previous(CL) +president(X) : p,

where

previous(p) = {t - 1) tep}

is an annotation function. In TEMPLOG ([1]), we could express this as:

0 (ric/z(X) + Opresident(X)) .

The statement: “if sometime she becomes a president then she must be rich” is written
as

q l(rich(X)+-Opresident(X))

in TEMPLOG, and as

rich(X) : (0) epresident(X) : p

in our logic.
On the other hand, the statement “if X is a life-long president, then X is a ruthless

murderer,” written as

Cl (murderer (X) + Cl president (X))

in temporal logic, is not allowed in TEMPLOG. In contrast, representing this as a GAP

is straightforward:

murderer(X) : T+ president (X) : T

In general, since we allow arbitrary computable functions (subject to the restrictions of
Section 4) in rule heads while both Baudinet and Abadi and Manna restrict the rule
heads to be next-atoms (i.e., c-annotated literals, in our setting), GAPS can express
several fancy temporal problems that are beyond the scope of [l, 31. Also, we do not
restrict bodies of temporal programs to be 0 -free, since atoms of the form A : T are
perfectly acceptable.

There are, however, situations where GAPS are weaker than [l]. For instance, GAPS
cannot express a clause with the following body: 0(PA Oq). Likewise, we cannot
represent directly the initial clauses of Abadi and Manna, since GAP rules are
permanently true.

This difficulty could be overcome by using metaprogramming techniques (e.g.,
[45]). In these formalisms, formulae can be encoded by terms, and thus can be reasoned
about. For instance, if (B + A) is an encoding of a clause B + A, then we could write
clause((B +A)): (0)) stating that the respective clause is true at time 0, which
corresponds to the initial clause B + A of [11. We will not discuss this issue any further
in this paper. More information about encodings and logics for meta-reasoning can be
found in [14,27,37,38,45].

6.2. Multivalued Temporal Reasoning

One advantage of the GAP formalism as opposed to Baudinet’s and Abadi and Manna’s
is that it also allows one to deal with “epistemically inconsistent worlds,” i.e.,
interpretations in which at certain times t the information about certain ground atoms is

GENERALIZED ANNOTATED LOGIC PROGRAMMING 363

inconsistent. More generally, assume that now our domain of truth values is the set of
functions from CV to some complete lattice Y’, i.e.

For instance, we can take Y’ to be the four-valued Belnap’s lattice [4] shown in Figure
1, or we can take 7’ to be the set [0, l] x [0, l] often used for modeling uncertainty in
expert systems [7,18,31]. An interpretation is a map from B, to Y. The underlying
intuition is that an interpretation I assigns to any ground atom A, a function fA from
CY to Y. If p is the four-valued Belnap’s lattice of Figure 1, and fA(3) = T , fA(4) = t
then we can think of this as an assertion that at time 3, A was inconsistently defined,
but at time 4 it became true.

4.3. Interval Based Temporal Logic

Let us assume that time is linearly represented by the set of all nonnegative integers. In
an interval based temporal logic, we can use closed intervals of integers as truth values.

We use the notation:

[a,b] = {n)a925b}.

Let 8 be the set

‘% = { [a, b] 1 a I b and II, b are non-negative integers} .

The intervals in !R are partially ordered by inclusion and we denote this ordering by
5%. Let us take Y to be the set of subsets of ‘% such that every (YE Y satisfies the
following two properties:

1 If [a, ~]EQ and [c, d] C [a, b] then [c, ~]ECX;
2.If [a, b] C UCY, where IJCY is the union of all intervals in o, then [a, ~]ECY.

Intuitively, assignment of a set (Y = {[u,, b,], . . . , [aj, bj], . . . } to an atom A by an
interpretation I means that A is true in each of the intervals [uj, bj]. This epistemic
interpretation of elements of Y makes the above conditions self-explanatory: if an event
takes place over a time interval then it also takes place over a subinterval; if an event
takes place over a group of time intervals then this event also takes place over any
interval that is covered by the group. In fact, it is easy to see that the second condition
above implies the first one.

There exist several popular orderings of power-domains over partial orders, The one
that is particularly useful to model time is the following: for CY, /3~ Y, (Y I, p if and
only if for every interval L E (Y there exists an interval J ~0 such that t 5% 3.

To see that GAPS can represent some forms of interval temporal reasoning, we show
that the logic of Shoham [41] can be expressed within the GAP framework. Shoham
extends classical propositional logic to an interval modal logic by adding six new modal
connectives as follows:

1 (A) is true in the interval [r,, f2] if and only if there exists t, at, (here a denotes
the regular order on integers) such that p is true in the interval [t,, fJ.
Intuitively, modality (A) represents the intuition that p is true in some interval
immediately following the current interval.

2. (B)p is true in [t,, f2] if and only if there exists a t, such that t, _a t, a t, and p is

364 MICHAEL KIFER AND V. S. SUBRAHMANIAN

true in the interval [t, , f3]. Intuitively, (B) represents the idea that p is true in
some subinterval of the current interval that starts at the same time as the current
interval.

3. (E)p is true in the interval [t,, f2] if and only if there is a t, such that t, at,! t,
and p is true in the interval [t,, t2]. In other words, (E), becomes true earlier
than p and remains true while p was true.

4. (@p is true in [I 1, t,] if and only if there exists a t, such that t, a t I and p is true
in the interval [t,, t,]. Here (x) means that p is true at some interval ending
immediately before the current interval starts.

5. (@p is true in the interval [t,, tZ] if and only if there exists a t, such that t2 a t,
and p is true in [t, , t3]. Intuitively, the (B) modality represents the intuition that
p-is true in some interval of which the current interval is the beginning.

6. (E)p is true in the interval [t,, tZ] if and only if there exists a t, such that t,a t,
and p is true in [t,, t2]. Intuitively, the (E) modality represents the intuition that
p is true in some interval of which the current one is the end.

Given any n-ary predicate symbol p, we can express these six modalities as GAPS by
using the following clauses:

P&XI >..., x,): @-P(X1,. . .> X,):p&end(a) =start(p)&end(or) <@.

P~B)(X,,...,Xn):QIeP(X*,..., X,):p&start(a)=start(/3)&P<a.

pcEl(X ,,..., X,):CY+-p(X ,,..., X,):b&end(ol) =end(fi)&PCol.

p&xx,,. . .7 x,): -p(X,,. . .9 X,):p&end(fl) =start(a)&end(O) <a.

P~B)(X,,...,Xn):OLeP(X,,..., X,):/3&start(a)=start(P)&a<P.

P@)(X,,. . . , x,): -p(X,,. . ., X,):p&end(cr) =end(p)&acP.

In the above, X,. . . , X,, are object variables and CY, /3 are annotation variables.
Annotation functions end and start are defined as follows:

start(a) = {[a, a] 1 [a, b] is a maximum interval in CY} ;

end(O)={[b,~]l[~,b] is a maximum interval in /3}.

An interval [a, b] ECYE F is maximum if it is not properly contained in another
interval in (Y. Also note that satisfiability of constraints in the above clauses is decidable
since this is a very simple case of linear programming, and thus the proof theory for

GAPS applies.
The above translation precisely captures the intended meaning of the modal operators

of Shoham [41] but, in general, we cannot simulate full-fledged interval-based temporal
logics. This, of course, does not come as a surprise, since even the propositional
temporal logic ITL has an undecidable validity problem [25].

7. CONCLUSIONS

There are many alternative formalisms for multivalued and temporal logic program-
ming. However, the relationship between these different formalisms is not well under-
stood. In this paper, we have made a first contribution towards the understanding of
different methodologies for logic programming based on non-standard logics.

GENERALIZED ANNOTATED LOGIC PROGRAMMING 365

We have shown that annotated logics can serve as common grounds for several of
the multivalued and temporal formalisms. Besides the theoretical interest, this has
numerous practical benefits. First, already known results about GAPS can be used to
obtain a direct characterization of certain kinds of temporal reasoning. Second, GAPS
can be used to identify semidecidable fragments of temporal logics by translating them
into GAPS, as suggested in this paper (recall that the implication problem for GAPS is
recursively enumerable). This is important because, we believe, logics with nonrecur-
sively enumerable implication problem cannot be effectively implemented on a com-
puter. Third, it gives a proof theory to formalisms based on multivalued logics, such as
[18,471, which can be naturally translated into GAPS. Finally, when all else fails, one
may prefer to program in terms of GAPS directly rather than using different formalisms
(subsumed by GAPS) for different purposes.

We thank Mel Fitting and Raymond Ng for useful suggestions on preliminary versions of this paper.
S. Morishita pointed out a mistake in an earlier version of Theorem 6. We are also grateful to the anonymous
referees for many helpful suggestions.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Abadi, M., and Manna, Z. Temporal Logic Programming, in: Proceedings of the 4th
IEEE Symposium on Logic Programming, 1987.
Apt, K. R., Blair, H. A., and Walker, A., Towards a Theory of Declarative Knowledge, in:
Foundations of Deductive Databases and Logic Programming, J. Minker (ed.), Mor-
gan-Kauffman, Los Altos, California, 1988.

Baudinet, M., Temporal Logic Programming is Complete and Expressive, in: Proceedings
of the ACM Conference on Principles of Programming Languages, 1989.
Belnap, N. D., A Useful Four-Valued Logic, in: G. Epstein and J. M. Dunn (eds.),
Modern Uses of Many-valued Logic, G. Epstein and J. M. Dunn (eds.), D. Reidel, 1977
Amsterdam.

Blair, H. A., and Subrahmanian, V. S., Paraconsistent Logic Programming, Theoret.
Comput. Sci. 68:135-154 (1989).
Blair, H. A., and Subrahmanian, V. S., Strong Completeness Results for Paraconsistent
Logic Programming, Technical Report, Syracuse University, 1989.

Blair, H. A., and Subrahmanian, V. S., Paraconsistent Foundations for Logic Programming,
J. Non-Classical Logic 5:45-73 (1988).
Farinas de1 Cerro, L., Molog: A System That Extends Prolog with Modal Logic, New
Generation Computing, 4:35-50, Tokyo, 1986.

da Costa, N. C. A., On the Theory of Inconsistent Formal Systems, Notre Dame J.
Formal Logic 15:497-510 (1974).
da Costa, N. C. A., and Alves, E. H., A Semantical Analysis of the Calculi C,, Notre
Dame J. Formal Logic 18:621-630 (1977).
da Costa, N. C. A., and Alves, E. H., Relations between Paraconsistent Logic and
Many-valued Logic, Bull. Section Logic 10:185-191 (1981).

da Costa, N. C. A., Henschen, L. J., Lu, J. J., and Subrahmanian, V. S., Automatic
Theorem Proving in Paraconsistent Logics: Theory and Implementation, in: Proceedings of
the 10th International Conference on Automated Deduction, Lecture Notes in Com-
puter Science, 1990.
da Costa, N. C. A., Subrahmanian, V. S., and Vago, C., The Paraconsistent Logics PY,
Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 37: 139- 148.

366 MICHAEL KIFER AND V. S. SIJBRAHMANIAN

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Feferman, S., Toward Useful Type-Free Theories, J. Symbolic Logic 49:75-l 11 (1984).

Fitting, M. C., Bilattices and the Theory of Truth, J. Philosophical Logic, to appear.

Fitting, M. C., Enumeration Operators and Modular Logic Programming, J. Logic
Programming 4:11-21 (1987).
Fitting, M. C., Logic Programming on a Topological Bilattice, Fundamenta Znformaticae
11:209-218 (1988).

Fitting, M. C., Bilattices and the Semantics of Logic Programming, J. Logic Program-
ming, 11:91-116 (1991).
Fitting, M. C., Negation as Refutation, in: Proceedings of the 4th Symposium on Logic in
Computer Science, 1989.
Gabbay, D. M., Modal and Temporal Logic Programming, in: Temporal Logic in
Computer Science, A. Galton, (ed.), Academic Press, Orlando, FL, 1987.

Galton, A., Temporal Logic in Computer Science, Academic Press, Orlando, FL, 1987.

Ganguly, D. D., and Ranka, S., A Space Efficient Coding Algorithm for Lattice Computa-
tions, draft manuscript.

Ginsberg, M. Multivalued Logics: A Uniform Approach To Reasoning in Artificial Intelli-
gence, Comput. Zntell. 4:265-316 (1988).
Ginsberg, M., Bilattices and Modal Operators, in: Proceedings of the 1990 International
Conference on Theoretical Aspects of Reasoning about Knowledge, Morgan Kaufmann,
Los Altos, California, 1990.

Halpem, J. Y., Manna, Z., and Moszkowski, B., A High-Level Semantics Based on Interval
Logic, in: Proceedings of International Colloquium an Automata, Languages, and
Programming, Springer, New York, 1983.

Henschen, L. J., Lu, J. J., and Subrahmanian, V. S., An Improved Resolution Procedure for
Paraconsistent Logics, Tech. Report, Northwestern University, 1990.

Hill, P. M., and Lloyd, J. W., Analysis of Meta-Programs, Technical Report CS-88-08,
University of Bristol, England, 1988.

Ishizuka, M., Inference Methods Based on Extended Dempster and Shafer’s Theory with
Uncertainty/Fuzziness, New Generation Comput. 1: 159- 168 (1983).

Ishizuka, M., and Kanai, N., PROLOG-ELF Incorporating Fuzzy Logic, New Generation
Computing, 1985, 3~479-486, Tokyo.

Jaffar, J., and Lassez, J.-L., Constraint Logic Programming, POPL-87, Munich, Ger-
many, 1987.

Kifer, M., and Li, A., On the Semantics of Rule-Based Expert Systems with Uncertainty, in:
M. Gyssens, J. Paredaens, and D. Van Gucht (eds.), Second International Conference on
Database Theory, Springer Verlag LNCS 326, Bruges, Belgium, 1988.

Kifer, M., and Lozinskii, E. L., RI: A Logic for Reasoning with Inconsistency, in:
Proceedings of the Fourth Symposium on Logic in Computer Science, Asilomar,
California, 1989.

Kifer, M., and Lozinskii, E. L., A Logic for Reasoning with Inconsistency, J. Automated
Reasoning, to appear.

Kifer, M., and Subrahmanian, V. S., On the Expressive Power of Annotated Logic
Programs, in: Proceedings of the 1989 North American Conference on Logic Program-
ming, MIT Press, Cambridge, Massachusetts, 1989.
Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, New York, 1987.

Morishita, S., A Unified Approach to Semantics of Multi-Valued Logic Programs, Technical
Report RT 5006, IBM Tokyo, Tokyo, Japan, 1990.

Perlis, D., Languages with Self-Reference I: Foundations, Arttf. Zntell. 25~301-322
(1985).
Perlis, D., Languages with Self-Reference II: Knowledge, Belief, and Modality, Artif.
Zntell. 34:179-212 (1988).
Rine, D. C., Some Relationships Between Logic Programming and Multiple-Valued Logic,
in: Proceedings of the IEEE International Symposium on Multiple- Valued Logic, 1986.

GENERALIZED ANNOTATED LOGIC PROGRAMMING 367

40.

41.

42.

43.

44.

45.

46.

47.

Shapiro, E., Logic Programs with Uncertainties: A Tool for Implementing Expert Systems,
in: Proceedings of IJCAI ‘83, William Kauffman, 1983.

Shoham, Y., Reasoning About Change, MIT Press, Cambridge, Massachusetts, 1988.

Shortliffe, E., Computer-Based Medical Consultation: MYCIN, Elsevier Science, New
York, 1976.

Subrahmanian, V. S., On the Semantics of Quantitative Logic Programs, in: Proceedings of

the 4th IEEE Symposium on Logic Programming, Computer Society Press, Washington,
D.C., 1987.

Subrahmanian, V. S., Mechanical Proof Procedures for Many Valued Lattice Based Logic
Programming, J. of Non-Classical Logic, 7:7-41 (1990).

Subrahmanian, V. S., Foundations of Me&logic Programming, in: J. Lloyd (ed.), Proceed-
ings of the Workshop on Meta-Programming in Logic Programming, Bristol, England, 1988.

Subrahmanian, V. S., Paraconsistent Disjunctive Databases, to appear in Theoretical
Computer Science Journal, 1992.
van Emden, M. H., Quantitative Deduction and its Fixpoint Theory, J. Logic Program-
ming 4~37-53 (1986).

