
Probabilistic Answer Set
Programming
A Research Draft

Francisco Coelho

NOVA LINCS &
High Performance Computing Chair &

Departamento de Informática, Universidade de Évora

May 23, 2022

In short. a word wall. I’m sorry.

• Machine Learning has important limitations:
• The one table, conditionally independent rows

assumption.
• Background knowledge is hard to include.
• Training requires “large” amounts of data.
• Models are hard do interpret.

• Inductive Logic Programming is based on first order
logic — solves all the problems above but is sensible to
noise.
• Distribution Semantics defines the probability of a

proposition from probabilities of the (marginally
independent) facts.
• Answer Set Programs resets the common syntax and

semantic of logic programs; A “program” defines stable
models, not a computation neither a variable substitution.

///////Goals Wish list

Extend distribution semantics to answer sets
• Within a theoretical framework.
• Computationally applicable to “real world” scenarios.
• Easy to include background knowledge.
• Perform common tasks such as marg, mle, map, etc.
• Learn program “parameters” and “structure” from noisy

samples — possibly using templates.
• Related to Bayesian Networks, HMMs, etc.

1 Development

2 Conclusions

The seed on an idea
We want to define the joint distribution of the stable
models.

1 A boolean random variable can be described by a
disjunction a;¬a.

2 This ASP program has two stable models: a and ¬a.
3 A program with n such facts ai ;¬ai has 2n stable

models, the distinct combinations of those choices.
4 If each ai has probability pi then the probability of

a stable model W would be

P(W) =
∏

ai∈W

pi
∏

¬ai∈W

(1− pi).

But this is wrong.
Even assuming that those facts are marginally independent —
which we will do.

The seed on an idea
We want to define the joint distribution of the stable
models.

1 A boolean random variable can be described by a
disjunction a;¬a.

2 This ASP program has two stable models: a and ¬a.
3 A program with n such facts ai ;¬ai has 2n stable

models, the distinct combinations of those choices.
4 If each ai has probability pi then the probability of

a stable model W would be

P(W) =
∏

ai∈W

pi
∏

¬ai∈W

(1− pi).

But this is wrong.
Even assuming that those facts are marginally independent —
which we will do.

Problem 1: Disjuntive Clauses
The ASP program with probabilistic facts

b ∨ ¬b
h1 ∨ h2 ← b

has three stable models: {¬b} , {b, h1} and {b, h2}.
How to assign a probability to each model?

Possible approaches:
1 Pre-assign a conditional distribution of the head:

P(h1, h2|b).

2 Bayesian learn from observations:

P(h1, h2|b, z) ∝ P(b, z |h1, h2)P(h1, h2).

3 Start with the former as prior and update with the latter.

Problem 1: Disjuntive Clauses
The ASP program with probabilistic facts

b ∨ ¬b
h1 ∨ h2 ← b

has three stable models: {¬b} , {b, h1} and {b, h2}.
How to assign a probability to each model?
Possible approaches:

1 Pre-assign a conditional distribution of the head:

P(h1, h2|b).

2 Bayesian learn from observations:

P(h1, h2|b, z) ∝ P(b, z |h1, h2)P(h1, h2).

3 Start with the former as prior and update with the latter.

Questions to address

• How to match an observation z with a clause case h, b?
• How do observations update the probabilities?
• Why match observations with clauses and not with

stable models?
• Is this just bayesian networking?
• How to frame this in a sound theoretic setting?
• Is this enough to compute the joint distribution of the

atoms?

Counters
Instead of setting and updating probabilities, we associate
counters to disjunctive clauses and their cases.

Questions to address

• How to match an observation z with a clause case h, b?
• How do observations update the probabilities?
• Why match observations with clauses and not with

stable models?
• Is this just bayesian networking?
• How to frame this in a sound theoretic setting?
• Is this enough to compute the joint distribution of the

atoms?

Counters
Instead of setting and updating probabilities, we associate
counters to disjunctive clauses and their cases.

Bayesian updates: Matching observations

• An observation is a subset of the literals from a program1.
• A consistent observation has no subset {p,¬p}.
• A consistent observation z is relevant for the clause

h ← b if b ⊆ z .
• A disjunctive clause

h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm

has n cases: {hi , b1, . . . , bm} , i = 1 : n.
• The consistent observation z matches the case {h, b∗} if
{h, b∗} ⊆ z .

The above definitions also apply to facts i.e. clauses with an
empty body and constraints i.e. clauses with no head.

1The set of atoms, a, of the program and their classic negations, ¬a.

Bayesian updates: Clauses Update
A consistent observation relevant for a clause
h1 ∨ · · · ∨ hn ← b should:
• Increase the probability of any matched case.
• Decrease the probability of any unmatched case.

Update algorithm
1 Associate three counters, r , u, n, to each clause h ← b.
2 Associate a counter, mi , to each case hi , b of each

clause.
3 Initial values result from prior knowledge.
4 Each consistent observation increments:

• The r counters of relevant clauses.
• The u counters of unmatched relevant clauses.
• The n counters of not relevant clauses.
• The mi counters of matched cases hi , b.
• Clause counters must verify r ≤ u +

∑
i mi .

Bayesian updates: Clauses Update
A consistent observation relevant for a clause
h1 ∨ · · · ∨ hn ← b should:
• Increase the probability of any matched case.
• Decrease the probability of any unmatched case.

Update algorithm
1 Associate three counters, r , u, n, to each clause h ← b.
2 Associate a counter, mi , to each case hi , b of each

clause.
3 Initial values result from prior knowledge.
4 Each consistent observation increments:

• The r counters of relevant clauses.
• The u counters of unmatched relevant clauses.
• The n counters of not relevant clauses.
• The mi counters of matched cases hi , b.
• Clause counters must verify r ≤ u +

∑
i mi .

Updates and counters: An example
Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

What can be computed?
• P(¬b) = 2

12 because ¬b matched 2 of 12 relevant
observations.
• P(h1|b) = 4

6 because h1 matched 4 of 6 relevant
observations.
• P(b) can’t be computed without further information. E.g.

supposing that observations are independent then

P(b) = 7 + 6
12 + 0 + 6 + 5

.

Updates and counters: An example
Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

Counters of b ∨ ¬b
0 observations where not relevant
(because the body is ⊤);
There where 12 relevant
observations;
Of those, b was matched by 7,
¬b by 2 and 3 observations
matched neither (|=∼b,∼¬b).

Counters of h1 ∨ h2 ← b
There where 11 = 6 + 5
observations, 6 relevant to this
clause;
From these, 4 matched h1, 3
matched h2 and 2 matched no
case.

What can be computed?
• P(¬b) = 2

12 because ¬b matched 2 of 12 relevant
observations.
• P(h1|b) = 4

6 because h1 matched 4 of 6 relevant
observations.
• P(b) can’t be computed without further information. E.g.

supposing that observations are independent then

P(b) = 7 + 6
12 + 0 + 6 + 5

.

Updates and counters: An example
Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

What can be computed?
• P(¬b) = 2

12 because ¬b matched 2 of 12 relevant
observations.
• P(h1|b) = 4

6 because h1 matched 4 of 6 relevant
observations.
• P(b) can’t be computed without further information. E.g.

supposing that observations are independent then

P(b) = 7 + 6
12 + 0 + 6 + 5

.

Updates and counters: An example

Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

Note. . .
Counters are local to clauses and, for distinct clauses, may
result from distinct sources. E.g. the relevant counter of
h1 ∨ h2 ← b and the match counter of b in b ∨ ¬b.

Updates and counters: An example

Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

Note. . .

Updates and counters: An example

Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

Note. . .
Some observations may have neither b nor ¬b:

P(b) + P(¬b) < 1.

Updates and counters: An example

Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

Note. . .
Since h1 and h2 are not independent,∑

m

P(m) ≈ 1.02 > 1.

Updates and counters: An example

Given the following ASP program with annotated counters,

b ∨ ¬b counters: 7, 2; 12, 3, 0
h1 ∨ h2 ← b counters: 4, 3; 6, 2, 5

Note. . .
What is missing to compute the joint distribution of the
program’s atoms

P(H1,H2,B)?

Shortcomming 2: Default Negation

• How to deal with rules with ∼a parts?
• Should missing elements on observations be replaced with
∼a atoms?

1 Development

2 Conclusions

Background Material

Machine Learning

Models are numeric functions: y ≈ fθ(x), θi , xj , y ∈ R.
• Amazing achievements.
• Noise tolerant.
• (as of today) Huge enterprise funding .

but
• (essentially) Academically solved.
• Models trained from “large” amounts of samples.
• Hard to add background knowledge.
• Models are hard to interpret.
• Single table, independent rows assumption.

Inductive Logic Programming

Models are logic program: pθ(x , y), θi , xj , y ∈ A.
• Amazing achievements, at scale.
• Models trained from “small” amounts of samples.
• Compact, readable models.
• Background knowledge is easy to incorporate and edit.

but
• as of today, Little enterprise commitment.
• as of today, Mostly academic interest.
• Noise sensitive.

Distribution Semantics
Assigns probability to (marginally independent) facts and
derives probability of ground propositions.
Let F be set of facts, S ⊆ F , R a set of definite clauses and p
a proposition:

PF (S) =
∏
f∈S

P(f)
∏
f ̸∈S

(
1− P(f)

)
P(W) =

∑
S⊆F : W=M(S∪R)

PF (S)

P(p) =
∑

S : S∪R ⊢ p
PF (S) =

∑
W : p∈W

P(W)

• Amazing achievements, at scale.
• Lots of tools and research.
• The best of both “worlds”?

Answer Set Programming

A “program” defines stable models i.e. minimal sets of derived
ground atoms2.
• Pure declarative language, unlike Prolog.
• Uses generate & test methods instead of proofs .
• Uses both default ∼p and classical negation ¬p3

• Clauses can be disjunctive a; b ← c, d.

2Alternative /////fact definition: X is a stable model of P if X = Cn(PX).
3Classic negation ¬a in ASP results from replacing the occurrences of

¬a by a new atom a¬ and adding the restriction ← a¬, a.

1 Development

2 Conclusions

1 Development

2 Conclusions

	Motivation
	Development
	Conclusions
	Background Material
	Stable Sets
	References

