# Probabilistic ASP ## Weighted Approach 1. **Total Choices.** $N(C = x) = \prod_{a \in x} w_a \prod_{\neg a \in x} (1 - w_a)$. 2. **Stable Models.** $N(S = x | C = c) = \alpha_{x,c}$, where the set of parameters $\alpha_{x,c}$ is such that: $$ \begin{cases} \alpha_{x,c} \geq 0, & \forall c, x\cr \alpha_{x,c} = 0, & \forall x \not\supseteq c \cr \sum_{x} \alpha_{x,c} = 1, & \forall c. \end{cases} $$ 3. **Worlds.** $N(W = x)$ 1. If $x$ is a _total choice_: $ N(W = x) = \prod_{a \in x} w_a \prod_{\neg a \in x} (1 - w_a). $$