
Zugzwang
Logic and Artificial Intelligence

Francisco Coelho
fc@uevora.pt

November 21, 2022

Abstract

A major limitation of logical representations is the implicit as-
sumption that the Background Knowledge (BK) is perfect. This as-
sumption is problematic if data is noisy, which is often the case. Here
we aim to explore how ASP specifications with probabilistic facts can
lead to characterizations of probability functions on the specification’s
domain.

1 Introduction and Motivation
Answer Set Programming (ASP) is a logic programming paradigm based on
the Stable Model semantics of Normal Logic Programs (NP) that can be
implemented using the latest advances in SAT solving technology. ASP is
a truly declarative language that supports language constructs such as dis-
junction in the head of a clause, choice rules, and hard and weak constraints.

The Distribution Semantics (DS) is a key approach to extend logical
representations with probabilistic reasoning. Probabilistic Facts (PF) are
the most basic stochastic DS primitive and they take the form of logical
facts, a, labelled with a probability, such as p :: a; Each probabilistic fact
represents a boolean random variable that is true with probability p and false
with probability 1− p. A (consistent) combination of the PFs defines a total
choice c = {p :: a, . . .} such that

P(C = x) =
∏
a∈c

p
∏
a ̸∈c

(1− p). (1)

1

Our goal is to extend this probability, from total choices, to cover the
specification domain. We can foresee two key applications of this extended
probability:

1. Support any probabilistic reasoning/task on the specification domain.

2. Also, given a dataset and a divergence measure, now the specification
can be scored (by the divergence w.r.t. the empiric distribution of the
dataset), and sorted amongst other specifications. This is a key ingre-
dient in algorithms searching, for example, an optimal specification of
the dataset.

This goal faces a critical problem concerning situations where multiple
standard models result from a given total choice, illustrated by the following
example. The specification

0.3 :: a,

b ∨ c← a.
(2)

has three stable models, a, ab and ac. While it is straightforward to set
P (a) = 0.7, there is no further information to assign values to P (ab) and
P (ac). At best, we can use a parameter x such that

P (ab) = 0.3x,

P (ac) = 0.3(1− x).

This uncertainty in inherent to the specification, but can be mitigated
with the help of a dataset: the parameter x can be estimated from the
empirical distribution.

In summary, if an ASP specification is intended to describe some observ-
able system then:

1. The observations can be used to estimate the value of the parameters
(such as x above and others entailed from further clauses).

2. With a probability set for the stable models, we want to extend it to
all the samples (i.e. consistent sets of literals) of the specification.

3. This extended probability can then be related to the empirical distri-
bution, using a probability divergence, such as Kullback-Leibler; and
the divergence value used as a performance measure of the specification
with respect to the observations.

2

4. If that specification is only but one of many possible candidates then
that performance measure can be used, e.g. as fitness, by algorithms
searching (optimal) specifications of a dataset of observations.

Currently, we are on the step two above: Extending a probability function
(with parameters such as x), defined on the stable sets of a specification, to
all the events of the specification. This extension must, of course, respect
the axioms of probability so that probabilistic reasoning is consistent with
the ASP specification.

2 Extending Probabilities
Given an ASP specification, we consider the atoms a ∈ A and literals, z ∈ L,
events e ∈ E ⇐⇒ e ⊆ L and worlds w ∈ W (consistent events), total
choices c ∈ C ⇐⇒ c = a ∨ ¬a and stable models s ∈ S.

Our path, traced by equations (1) and (3 — 8), starts with the probability
of total choices, P(C = c), expands it to stable models, P(S = s), and then
to worlds P(W = w) and events P(E = e).

1. Total Choices. This case is given by P(C = c), from equation 1.
Each total choice C = c (together with the facts and rules) entails
some stable models, s ∈ Sc, and each stable model S = s contains a
single total choice cs ⊆ s.

2. Stable Models. Given a stable model s ∈ S, and variables/values
xs,c ∈ [0, 1],

P(S = s | C = c) =

{
xs,c if s ∈ Sc,

0 otherwise
(3)

such that
∑

s∈Sc
xs,c = 1.

3. Worlds. Each world W = w either:

(a) Is a stable model. Then

P(W = w | C = c) = P(S = s | C = c) . (4)

(b) Contains some stable models. Then

P(W = w | C = c) =
∏
s⊂w

P(S = s | C = c) . (5)

3

(c) Is contained in some stable models. Then

P(W = w | C = c) =
∑
s⊃w

P(S = s | C = c) . (6)

(d) Neither contains nor is contained by a stable model. Then

P(W = w) = 0. (7)

4. Events. For each event E = e,

P(E = e | C = c) =

{
P(W = e | C = c) e ∈ W ,

0 otherwise.
(8)

Since stable model are minimal, there is no proper chain s1 ⊂ w ⊂ s2 so
each world folds into exactly one ot the four cases of point 3 above.

Equation (3) expresses the lack of knowledge about the probability as-
signment when a single total choice entails more than one stable model. In
this case, how to distribute the respective probability? Our answer to this
problem consists in assigning an unknown probability, xs,c, conditional on the
total choice, c, to each stable model s. This approach allow the expression
of an unknown quantity and future estimation, given observed data.

The stable model case, in equation (4), identifies the probability of a
stable model as a world with its probability as defined previously in equation
(3), as a stable model.

Equation 5 results from conditional independence of the stable models
s ⊂ w. Conditional independence of stable worlds asserts a least informed
strategy that we make explicit:
Assumption 1. Stable models are conditionally independent, given their
total choices.

Consider the stable models ab, ac from the example above. They result
from the clause b ∨ c ← a and the total choice a. These formulas alone
impose no relation between b and c (given a), so none should be assumed.
Dependence relations are discussed in Subsection (2.1).

I’m not sure about what to say here. todo

P(W = w | C = c) =
∑
s⊃w

P(S = s | C = c) .

But! P(W = w | C = c) already separates P(W) into disjoint
A world that neither contains nor is contained in a stable model describes

a case that, according to the specification, should never be observed. So the
respective probability is set to zero, per equation (7).

4

2.1 Dependence
Dependence relations in the underlying system can be explicitly expressed in
the specification.

For example, b← c∧d, where d is an atomic choice, explicitly expressing
this dependence between b and c. One would get, for example, the specifica-
tion

0.3 :: a, b ∨ c← a, 0.2 :: d, b← c ∧ d.

with the stable models ad, ad, adb, adc, adb.
The interesting case is the subtree of the total choice ac. Notice that no

stable model s contains adc because (1) adb is a stable model and (2) no
stable model contains adc, because if adc ⊂ s then b ∈ s and adb ⊂ s.

Following the case of equations (4) and (7) this sets{
P(W = adc | C = ad) = 0,

P(W = adb | C = ad) = 1

which concentrates all probability mass from the total choice ad in the adb
branch, including the node W = adbc. This leads to the following cases:

x P(x | C = ad)
ad 1
adb 1
adc 0
adbc 1

so, for C = ad, P(b) = 2/3,P(c) = 1/3,P(b, c) = 1/3 ̸= P(b) P(c).
Todo

Prove the four world cases (done), support the product (done)
and sum (tbd) options, with the independence assumptions.

3 Developed Example
We continue with the specification from equation 2.

Step 1: Total Choices. The total choices, and respective stable models,
are

Total Choice (c) P(C = c) Stable Models (s)
a 0.3 ab and ac.
a = ¬a 0.3 = 0.7 a.

Step 2: Stable Models. Suppose now that

5

Stable Models (s) Total Choice (c) P(S = c | C = c)
a 1.0 a.
ab 0.8 a.
ac 0.2 = 0.8 a.

Step 3: Worlds. Following equations 4 — 7 we get:
Occ. (o) S.M. (s) Relation T.C. (c) P(W = w)
∅ all contained a, a 1.0
a ab, ac contained a 0.8× 0.3 + 0.2× 0.3 = 0.3
b ab contained a 0.8× 0.3 = 0.24
c ac contained a 0.2× 0.3 = 0.06
a a stable model a 1.0× 0.3 = 0.3

b none independent none 0.0
c none …
ab ab stable model a 0.24
ac ac stable model a 0.06

ab none …
ac none …
ab a contains a 1.0
ac a …
ab a …
ac a …
abc ab, ac contains a 0.8× 0.2 = 0.016

References
1. Victor Verreet, Vincent Derkinderen, Pedro Zuidberg Dos Martires,

Luc De Raedt, Inference and Learning with Model Uncertainty in Prob-
abilistic Logic Programs (2022)

2. Andrew Cropper, Sebastijan Dumancic, Richard Evans, Stephen H.
Muggleton, Inductive logic programming at 30 (2021)

3. Fabio Gagliardi Cozman, Denis Deratani Mauá, The joy of Probabilis-
tic Answer Set Programming: Semantics - complexity, expressivity,
inference (2020)

4. Fabrizio Riguzzi, Foundations of Probabilistic Logic Programming Lan-
guages, Semantics, Inference and Learning. Rivers Publishers (2018)

5. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub, Answer Set Solving in Practice, Morgan & Claypool Publishers
(2013)

6

	Introduction and Motivation
	Extending Probabilities
	Dependence

	Developed Example

