
Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

CM& cLaypoolMorgan publishers&

SYNTHESIS LECTURES ON
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING #19

Copyright © 2013 by Morgan & Claypool

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub

www.morganclaypool.com

ISBN: 9781608459711 paperback
ISBN: 9781608459728 ebook

DOI 10.2200/S00457ED1V01Y201211AIM019

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Lecture #19
Series Editors: Ronald J. Brachman, Yahoo! Labs

William W. Cohen, Carnegie Mellon University

Peter Stone, University of Texas at Austin

Series ISSN
Synthesis Lectures on Artificial Intelligence and Machine Learning
Print 1939-4608 Electronic 1939-4616

www.morganclaypool.com

Contents
List of Figures . xiii

List of Tables . xv

List of Lists . xvii

List of Algorithms . xix

Preface . xxi

About this book . xxiii

1 Motivation .1

1.1 Quickstart . 4

1.2 References and further reading . 9

2 Introduction . 11

2.1 Logical preliminaries and terminology . 11

2.2 Basic syntax and semantics . 13

2.3 Language extensions . 16
2.3.1 First-order variables . 16
2.3.2 Core language . 17
2.3.3 Optimization statements . 22
2.3.4 Two (and a half) kinds of negation . 23
2.3.5 True language extensions . 24

2.4 Computational aspects . 26
2.4.1 Computation from first principles . 26
2.4.2 Reasoning modes . 29
2.4.3 Computational complexity . 30

2.5 References and further reading . 31

3 Basic modeling . 35

3.1 Problem encoding . 35
3.2 Modeling methodology . 39
3.3 Advanced problem encoding . 45
3.4 References and further reading . 49

4 Grounding . 51

4.1 Basic grounding algorithms . 52
4.2 Turing machine . 58
4.3 Meta programming . 61
4.4 References and further reading . 66

5 Characterizations . 69

5.1 Axiomatic characterization . 69
5.2 Operational characterization . 74
5.3 Proof-theoretic characterization . 78
5.4 Nogood-based characterization . 82
5.5 References and further reading . 89

6 Solving . 91

6.1 Boolean constraint solving . 91
6.2 Setting the stage . 93
6.3 Conflict-driven nogood learning . 94
6.4 Nogood propagation . 99
6.5 Unfounded set checking . 102
6.6 Conflict analysis . 107
6.7 References and further reading . 110

7 Systems . 113

7.1 Grounding with gringo . 113
7.1.1 Architecture . 113
7.1.2 gringo’s input language . 114
7.1.3 Making grounding more transparent . 118
7.1.4 The smodels format . 121
7.1.5 Outlook . 123

7.2 Solving with clasp . 123

7.2.1 Interfaces and preprocessing . 124
7.2.2 Reasoning modes . 125
7.2.3 Propagation and search . 126
7.2.4 Multi-threaded architecture . 128
7.2.5 Making solving more transparent . 134
7.2.6 Fine-tuning . 136
7.2.7 Outlook . 138

7.3 More Potassco systems . 138
7.3.1 claspd . 138
7.3.2 claspar . 139
7.3.3 claspfolio . 140
7.3.4 clingo . 140
7.3.5 clingcon . 141
7.3.6 iclingo . 143
7.3.7 oclingo . 147

7.4 References and further reading . 149

8 Advanced modeling . 153

8.1 Pimping queens . 153
8.2 Stemming blocks . 157

8.2.1 Sequential planning . 158
8.2.2 Parallel planning . 168

8.3 Speeding salesmen . 170
8.4 Vade mecum gum . 172
8.5 References and further reading . 174

9 Conclusions . 175

9.1 Omissions . 175
9.2 Challenges . 177
9.3 Arming Tweety with jet engines . 178

A ASP in a nutshell . 181

Bibliography . 183

Index . 207

1 Selected dependencies for reading. xxiv

1.1 Declarative problem solving. 1

1.2 ASP solving process. 3

1.3 Towers of Hanoi: initial and goal situation. 4

3.1 Directed graph G8 having 6 nodes and 17 edges. 36

3.2 A coloring of Graph G8. 39

3.3 Board corresponding to the stable model of Logic program P10 40

3.4 Boards corresponding to five stable models of Logic program P11 41

3.5 Boards corresponding to five stable models of Logic program P12. 43

3.6 Boards corresponding to five stable models of Logic program P13. 44

3.7 Boards corresponding to the stable models of Logic program P14 45

3.8 Graph G8 from Figure 3.1 annotated with edge costs. 46

3.9 A minimum-cost round trip through Graph G8. 49

4.1 Predicate-rule dependency graph of Logic program P21 together with a
topological order of its strongly connected components. 56

4.2 A 3-state Busy Beaver machine. 60

5.1 Positive atom dependency graph of Logic program P7. 71

5.2 Positive atom dependency graph of Logic program P24. 72

5.3 Positive atom dependency graphy of Logic program P25. 73

5.4 Tableau rules for normal programs. 79

5.5 Complete tableau for P1 and the empty assignment. 80

5.6 Tableau branch for P7 and the empty assignment. 81

5.7 Unit propagation on �P7 ∪ ∧P7. 87

5.8 Nogoods for an example weight constraint. 88

Figures

6.1 Basic decision algorithm for backtracking based Boolean constraint solving
(DPLL). 91

6.2 Basic decision algorithm for conflict-driven Boolean constraint learning
(CDCL). 92

7.1 Architecture of ASP grounder gringo. 113

7.2 Predicate-rule dependency graph of the Towers of Hanoi encoding in
Listing 1.4. 121

7.3 Architecture of clasp 2. 129

7.4 Accumulated atom score when solving the Towers of Hanoi problem. 137

7.5 Architecture of ASP solver claspfolio. 140

7.6 Architecture of the hybrid ASP system clingcon. 141

7.7 Architecture of the incremental ASP system iclingo. 143

7.8 Architecture of the reactive ASP system oclingo. 148

8.1 Some initial and goal situations for blocks world planning. 158

2.1 Notational conventions according to level of description . 11

4.1 Tracing the instantiation of P22 . 54

4.2 Tracing the instantiation of P21 following the topological order in Figure 4.1 . . . 57

4.3 Tracing the instantiation of rule s(X) ← ∼r(X), p(X, Y), q(Y) in
Component 12 of P21 . 59

5.1 Set �P26 of nogoods and associated tableau rules . 84

5.2 Models of CF (P26), CF x(P26), and corresponding solutions for �P26 86

6.1 Tracing the computation of stable model {a, c} of P7 . 96

6.2 Tracing the computation of stable model {a, c, d} of P24 . 97

6.3 Tracing the computation of stable model {a, c, d} of P24 . 97

6.4 Tracing the computation of stable model {b, c, d, e} of P25 98

6.5 Tracing the computation of stable model {b, c, d, e} of P25 99

6.6 Tracing the computation of stable model {b, c, d, e} of P25 100

6.7 Trace of UnfoundedSet(P25, A) . 106

6.8 Conf lictAnalysis at decision level 2 in Table 6.5 . 109

7.1 The smodels format . 122

8.1 Experiments contrasting different encodings of the n-queens problem 156

8.2 Empirically contrasting blocks world encodings . 161

8.3 Empirically contrasting blocks world encodings, using --heuristic=vsids . . 168

8.4 Empirically contrasting traveling salesperson encodings . 172

Tables

1.1 The problem of traveling out of Berlin in ASP (roads.lp) . 3
1.2 The solution of traveling out of Berlin in ASP . 4
1.3 Towers of Hanoi problem instance (tohI.lp) . 5
1.4 Towers of Hanoi problem encoding (tohE.lp) . 6
1.5 Solving the Towers of Hanoi problem . 8
3.1 Program P8 representing Graph 3.1 (graph.lp) . 36
3.2 Program P9 encoding graph coloring (color.lp) . 36
3.3 Grounding Program P8 ∪ P9 . 37
3.4 Grounding and solving Program P8 ∪ P9 . 38
3.5 Program P10 addressing the n-queens problem, Part I (queensI.lp) 39
3.6 Grounding and solving Program P10 (for n=5) . 40
3.7 Program P11 addressing the n-queens problem, Part II (queensII.lp) 40
3.8 Grounding and solving Program P11 . 41
3.9 Program P12 addressing the n-queens problem, Part III (queensIII.lp) 41
3.10 Grounding and solving Program P12 . 42
3.11 Program P13 addressing the n-queens problem, Part IV (queensIV.lp) 42
3.12 Grounding and solving Program P13 . 43
3.13 Program P14 solving the n-queens problem (queens.lp) . 43
3.14 Grounding and solving Program P14 . 44
3.15 Program P15 representing edge costs of Graph G8 (costs.lp) 46
3.16 Program P16 addressing the round trip (Hamiltonian cycle) problem (ham.lp) 46
3.17 Grounding and solving Program P8 ∪ P15 ∪ P16 . 47
3.18 Program P17 minimizing edge costs for instances of cycle/2 (min.lp) 48
3.19 Grounding and solving Program P8 ∪ P15 ∪ P16 ∪ P17 . 48
4.1 A 3-state Busy Beaver machine in ASP facts (beaver.lp) . 59
4.2 An ASP encoding of a universal Turing machine (turing.lp) 60
4.3 Grounding programs beaver.lp and turing.lp . 61
4.4 A simple program for illustrating meta programming (easy.lp) 62
4.5 Grounding Program easy.lp . 62
4.6 Reifying Program easy.lp . 62
4.7 A (restricted) meta encoding (meta.lp) . 64
4.8 Grounding reified Program easy.lp with meta encoding meta.lp 65
4.9 Solving reified Program easy.lp with meta encoding meta.lp 66
7.1 Grounding Towers of Hanoi with extended grounder statistics (--gstats) 118

Listings

7.2 Internal program representation of the Towers of Hanoi encoding in Listing 1.4 . . . 119
7.3 Verbosely grounding Towers of Hanoi (--verbose) . 120
7.4 The ground program in Listing 4.5 (on Page 62) . 121
7.5 Internal output of grounding Program easy.lp (in Listing 4.4 on Page 62) 121
7.6 Solving Towers of Hanoi with extended solver statistics (--stats=2) 134
7.7 A hybrid ASP encoding for pouring water into buckets on a balance 142
7.8 Incremental Towers of Hanoi problem instance (tohIinc.lp) 144
7.9 An incremental ASP encoding of the Towers of Hanoi puzzle (tohEinc.lp) 144
7.10 Incrementally solving the Towers of Hanoi problem . 145
7.11 An ASP encoding for simple elevator control (elevator.lp) 148
8.1 Second attempt at solving the n-queens problem (queens2.lp) 153
8.2 Third attempt at solving the n-queens problem (queens3.lp) 155
8.3 Fourth attempt at solving the n-queens problem (queens4.lp) 155
8.4 Another attempt at solving the n-queens problem (queens5.lp) 156
8.5 Initial and goal situation (world.lp) . 157
8.6 Solving the blocks world problem, initial attempt (blocks0.lp) 158
8.7 Solving the blocks world problem, first improvement (blocks1.lp) 159
8.8 Solving the blocks world problem, second improvement . 161
8.9 Solving the blocks world problem, third improvement . 162
8.10 Solving the blocks world problem, fourth improvement, Part I 163
8.11 Solving the blocks world problem, fourth improvement, Part II 166
8.12 Solving the blocks world problem, fourth improvement, Part III 166
8.13 Solving the blocks world problem, fifth improvement . 167
8.14 Solving the blocks world problem, parallel version (blocks3P.lp) 168
8.15 Traveling salesperson, simple encoding (tsp.lp) . 170
8.16 Traveling salesperson, advanced minimization . 170

1 NaiveInstantiation . 53
2 PositiveBodyInstantiation . 58

3 CDNL-ASP . 93
4 NogoodPropagation . 101
5 UnfoundedSet . 104
6 Conf lictAnalysis . 108

7 iSolve . 147

Algorithms

Preface
The roots of this book lie in a series of lectures on answer set programming (ASP) started in 2001
at the University of Potsdam. Back then, ASP was still in its infancy and its future was far from
clear. With ASP, the area of nonmonotonic reasoning was melting into logic programming, and
the relationship to Boolean constraint solving, in particular, satisfiability testing was just about to
be discovered. ASP’s driving force was the ASP solver smodels along with its grounder lparse that
provided effective means to experiment with ASP and to bridge the gap between theory and practice.
And even more systems were emerging at the time. This spirit made us launch a course on ASP in
order to leave behind glassy students’ eyes worrying whether they should bother about the flying
capacities of Tweety the penguin. And indeed, there appeared this spark, nourished by the mystery
of “automated problem solving,” that drew the interest of students with various backgrounds. In
some years, our ASP lectures had more students than our AI class!

Although this book was put together by the last author, it reflects the joint effort of all authors
conducted over the last years. Hence, he is the one to blame for bad writing! In fact, the course leading
up to this book would have never taken off without the groundbreaking tutorials of Vladimir Lifs-
chitz, Ilkka Niemelä, and Wolfgang Faber at the time. Of course, we are indebted to our colleagues
and co-authors who accompanied our research over the last decade, Alessandra Mileo, Andreas
Schwill, André Flöter, André Neumann, Anne Siegel, Arne König, Benjamin Andres, Benjamin
Lüpfert, Bettina Schnor, Bob Mercer, Carito Guziolowski, Christian Anger, Christian Drescher,
Christian Haubelt, Christophe Bobda, Enrico Ellguth, Farid Benhammadi, Gerhard Brewka, Hans
Tompits, Holger Jost, Jacques Nicolas, Javier Romero, Jean Gressmann, Jim Delgrande, Joachim
Selbig, Joohyung Lee, Jörg Pührer, Kathrin Konczak, Katsumi Inoue, Kewen Wang, Lars Schnei-
denbach, Marina De Vos, Marius Schneider, Martin Brain, Maurice Pagnucco, Max Ostrowski,
Miroslaw Truszczynski, Mona Gharib, Murat Knecht, Oliver Matheis, Orkunt Sabuncu, Pascal
Nicolas, Paul Borchert, Peter-Uwe Zettiér, Philipp Obermeier, Philippe Besnard, Philippe Veber,
RichardTichy, Roberto Bisiani, Sabine Hübner, Stefan Brüning, Stefan Woltran, Stefan Ziller, Steve
Dworschak, Sven Thiele, Thibaut Henin, Thomas Krennwallner, Thomas Leupold, Thomas Linke,
Tobias Schubert, Tomi Janhunen, Torsten Grote, Vladimir Sarsakov, Wolfgang Severin, Yan Zhang,
Yuliya Lierler, Yves Moinard, and presumably many more, who slipped our minds. Also, we are truly
grateful to the Deutsche Forschungsgemeinschaft (DFG) for supporting our basic research over the
last decade.

Finally, it goes without saying that our work would have been impossible without the constant
support of those close to us, our friends, families, and beloved ones.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
November 2012

About this book
The goal of this book is to enable people to use answer set programming (ASP) for problem solving
while understanding the functioning of the underlying solving machinery. To this end, we focus on
modeling and solving techniques and restrict ourselves to giving essential theoretical foundations.
In fact, the distinguishing feature of ASP is its attractive combination of a rich yet simple modeling
language with high-performance solving capacities stemming from the area of Boolean constraint
solving.We take up the latter to provide a uniform view on both constituents and to facilitate insights
into their interaction. For illustrating ASP’s modeling and solving capacities, we take advantage of
the suite of ASP systems provided at potassco.sourceforge.net. This also guides our formal
development, which is driven by the elaboration of the underlying logical and algorithmic principles.

The outline of the book is as follows.

Chapter 1 starts by motivating the approach of answer set programming (ASP) and by contrasting
it to traditional logic programming and satisfiability testing. Moreover, it provides a quick start
to the ASP systems at potassco.sourceforge.net for the reader wanting to practically
experience ASP on the go.

Chapter 2 lays the essential foundations for the remaining chapters. We begin with a brief intro-
duction to our terminology and the basic definitions underlying ASP. The principal part is
dedicated to the syntax and semantics of ASP’s modeling language. The remainder deals with
computational issues and derives a first algorithm from ASP’s basic definitions.

Chapter 3 takes up the modeling language presented in the previous chapter and introduces ASP’s
modeling methodology along with its solving process by carefully developing solutions to some
well-known examples.

Chapter 4 describes the basic functioning of the first part of ASP’s solving process, the systematic
instantiation of first-order variables, referred to as grounding. We sketch the underlying algo-
rithms and illustrate the obtained expressive power by encoding a universal Turing machine
and presenting meta programming techniques in ASP.

Chapter 5 lays the theoretical foundations for understanding the multitude of inferences involved
in ASP solving. We consider in turn alternative characterizations of stable models. Starting
from an axiomatic viewpoint, we successively make the underlying inferences more and more
precise, ultimately distilling a formal characterization capturing the inferences drawn by the
solving algorithms presented in the next chapter.

potassco.sourceforge.net
potassco.sourceforge.net
potassco.sourceforge.net

Chapter 6 builds upon the constraint-based characterization of stable models developed in the
last chapter for developing an algorithmic framework relying on modern Boolean constraint
technology involving conflict-driven learning.

Chapter 7 describes the grounder gringo and the solver clasp. Both systems serve not only as illustra-
tive models but also provide us with insights into the architecture and functioning of advanced
ASP technology. The chapter is complemented by a survey of further ASP systems furnished
by the suite of ASP systems at potassco.sourceforge.net that build upon gringo and
clasp.

Chapter 8 continues the introduction to ASP modeling in Chapter 3 and elaborates upon advanced
modeling techniques in view of the grounding, solving, and system expertise built up in the
intermediate chapters. We identify several modeling patterns and discuss their impact on the
ASP solving process. Although such knowledge is not needed for basic ASP modeling, it is
highly beneficial in view of scalability.

Chapter 9 concludes this book by summarizing its key aspects and designating some future research
challenges.

Each chapter closes with a section surveying the respective bibliography and indicating further
reading.

The chapters can roughly be classified into three categories: Fundamental Chapters 2 and 5,
Chapters 3 and 8 on modeling in ASP, and Chapters 4, 6, and 7 on ASP’s solving process. Although
the material in this book is laid out for sequential reading,other paths are possible.Readers specifically

2.3 3 8

2.1 2.2 4 7.1

2.4 5.4 6 7.2

Figure 1: Selected dependencies for reading.

interested in grounding or solving, respectively, can follow the dependencies in Figure 1 leading from
Section 2.1 to Chapter 4/Section 7.1 for grounding or Chapter 6/Section 7.2 for solving (indicated
by dashed boxes). Readers interested in modeling need little prerequisites to get a good acquaintance
with the basic modeling methodology of ASP presented in Chapter 3. However, the study of the
advanced modeling techniques in Chapter 8 benefits from some familiarity with the ASP solving
process in order to understand their interaction.

potassco.sourceforge.net
potassco.sourceforge.net

The material presented in this book is accompanied by a package of slides.Both have been used
in a hebdomadary lecture of two hours per week. This and more material is available at potassco.
sourceforge.net/teaching.html.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
November 2012

potassco.sourceforge.net/teaching.html
potassco.sourceforge.net/teaching.html
potassco.sourceforge.net/teaching.html

C H A P T E R 1

Motivation
Answer Set Programming is an approach to declarative problem solving.Rather than solving a problem
by telling a computer how to solve the problem, the idea is simply to describe what the problem is
and leave its solution to the computer. This approach is illustrated in Figure 1.1.1 Starting from

Problem

Representation Output

Solution

Modeling

Solving

Interpreting

Figure 1.1: Declarative problem solving.

the original problem, traditional programming results in an executable computer program. On the
contrary, modeling aims at creating a formal representation of the original problem. Instead of merely
executing a resulting computer program, the obtained problem representation is used in solving
to extract an implicit state space that is explored by sophisticated search algorithms for finding a
solution to the original problem.

The basic idea of Answer Set Programming (ASP) is to express a problem in a logical format
so that the models of its representation provide the solutions to the original problem. The resulting
models are referred to as answer sets. The actual notion of a model is determined by the logic of
choice. Although this broad view attributes to ASP the character of a general logical constraint
processing paradigm, the term ASP is nowadays mainly associated with theories in the syntax of
logic programs under the stable models semantics as introduced by Michael Gelfond and Vladimir
Lifschitz in 1988. While such programs resemble Prolog programs, they are however treated by
quite different computational mechanisms. Indeed ASP can be regarded as a much better fit to the
original motivation of logic programming by strictly separating logic from control.

Comparing ASP to a traditional logic programming language such as Prolog reveals some key
differences. Prolog is based on top-down query evaluation in the tradition of Automated Theorem

1Entities diverging from traditional programming are given in italic.

2 1. MOTIVATION

Proving. Variables are dealt with via unification and (nested) terms are used as basic data structures.
A solution is usually extracted from the instantiation of the variables in a successful query. As
mentioned, solutions are captured by models in ASP, and instead computed in a bottom-up fashion.
Variables are systematically replaced by using database techniques. Hence tuples and (flat) terms
are the preferred data structures. More generally, Prolog constitutes a full-fledged programming
language and thus equips a user with control over program execution, whereas ASP fully decouples
a problem’s specification from how its solution is found.

Even though the formal roots of ASP indeed lie in Logic Programming, it was tailored right
from the beginning to problem solving in the field of Knowledge Representation and Reasoning.
The accompanying desire for transparent and elaboration-tolerant representation languages along
with the significant advance in Boolean Constraint Solving were then the two major impetuses to
ASP’s distinguished combination of a rich yet simple modeling language with high-performance
solving capacities.

The effectiveness of modern ASP solvers would have been impossible without the great
progress in Boolean Constraint Solving, mainly conducted in the area of propositional Satisfiability
Testing (SAT). As well, the breakthrough in model-oriented problem solving was pioneered in the
context of SAT: Kautz and Selman represented planning problems in 1992 as propositional theories
so that models (not proofs) described solutions and demonstrated that this approach was competitive
with state-of-the-art planning systems at the time. Logically, the difference between ASP and SAT
boils down to the logic of choice and its associated notion of modelhood. Informally, stable models
can be regarded as distinguished (classical) models of a theory, in which each true atom must be
provable.This constructive flavor of ASP translates into more succinct problem representations than
available in SAT. From a representational viewpoint, this semantic difference reduces to closed world
reasoning, that is, considering propositions as false unless proven otherwise. From the perspective
of computational complexity, both ASP and SAT allow for expressing search problems in NP.
The disjunctive extension of ASP also captures problems in NPNP . System-wise the focus of SAT
lies in solving, while ASP is moreover concerned with modeling. As a consequence, ASP solving
comprises an initial grounding phase in which first-order problem representations are translated
into a propositional format. This propositionalization is accomplished by highly efficient grounders
based on Database technology.

Putting things together, the overall ASP solving process can be summarized as in Figure 1.2.
A problem is modeled in the syntax of (first-order) logic programs. Then, ASP solving proceeds
in two steps. First, a grounder generates a finite propositional representation of the input program.
After that, a solver computes the stable models of the propositional program. Finally, the solution
is read off the resulting stable models. Let us illustrate this process by means of the simplistic yet
authentic program in Listing 1.1.

3

Problem

Logic
Program

Stable
Models

Solution

Grounder Solver

Modeling

Solving

Interpreting

Figure 1.2: ASP solving process.

Listing 1.1: The problem of traveling out of Berlin in ASP (roads.lp)

1 road(berlin ,potsdam).
2 road(potsdam ,werder).
3 road(werder ,brandenburg).
4 road(X,Y) :- road(Y,X).

6 blocked(werder ,brandenburg).

8 route(X,Y) :- road(X,Y), not blocked(X,Y).
9 route(X,Y) :- route(X,Z), route(Z,Y).

11 drive(X) :- route(berlin ,X).

13 #hide.
14 #show drive /1.

A logic program consists of facts (as in Lines 1–3 and 6) and rules (as in Lines 4, 8, 9, and 11), each of
which is terminated by a period ‘.’.The connectives ‘:-’ and ‘,’ can be read as if and and, respectively.
A statement commencing with ‘not’ is satisfied unless its enclosed proposition is found to be true.
Lines 13 and 14 are directives to the grounder and solver, respectively, and thus do not belong to the
actual program. In our example, the facts in Lines 1–3 are meant to provide road information among
cities, represented by constants berlin, brandenburg, potsdam, and werder. Line 4 tells us that
each road can be taken in both directions. For this purpose, we use variables denoted by uppercase
letters X and Y that range over the aforementioned constant symbols. Line 6 indicates an obstruction
between Werder and Brandenburg. According to the rule in Line 8, roads are routes unless they are
blocked. Alternatively, routes can be composed from other routes (Line 9). The predicate drive
tells us which cities are reachable from Berlin. Finally, Lines 13 and 14 direct the solver to project

4 1. MOTIVATION

models onto the satisfied instances of predicate drive. In Listing 1.2,2 it is shown how the logic
program roads.lp is processed by the ASP grounder gringo and passed to the ASP solver clasp.
(The argument 0 makes the solver compute all stable models.)

Listing 1.2: The solution of traveling out of Berlin in ASP

$ gringo roads.lp | clasp 0
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
drive(berlin) drive(werder) drive(potsdam)
SATISFIABLE

Models : 1
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.010s

Looking at the obtained answer, we observe that only Berlin, Potsdam, and Werder are reachable
destinations (due to the blocked road between Werder and Brandenburg).

1.1 QUICKSTART
The concepts introduced in this book constitute the major ingredients of the ASP systems

gathered at potassco. sourceforge. net . Hence before taking the reader on a guided
tour through our conceptual toolbox, we wish to relieve her impatience a bit and provide a sneak
preview into the usage of our systems. This should also furnish her some basic experimental
skills that allow her to explore things on the go. Enjoy!

As an introductory example, we consider a simple Towers of Hanoi puzzle consisting of three
pegs and four disks of different size. As shown in Figure 1.3, the goal is to move all disks from the
left peg to the right one. Only the topmost disk of a peg can be moved at a time. Furthermore, a disk

1
2
3
4

a b

1
2
3
4

c

Figure 1.3: Towers of Hanoi: initial and goal situation.

2The symbol $ stands for a computer terminal’s command prompt.

potassco.sourceforge.net

1.1. QUICKSTART 5

cannot be moved to a peg already containing a disk of smaller size. Although there is an efficient
algorithm to solve our simple puzzle, we do not exploit it and below merely specify conditions for
sequences of moves being solutions.

Problem representation Following good practice in ASP, we separately provide an instance and
an encoding (applying to every instance) of the following problem: given an initial placement of
the disks, a goal situation, and a number n, decide whether there is a sequence of n moves that
achieves the goal. We show that this problem can be elegantly specified in ASP and solved by
domain-independent tools like gringo and clasp.

Problem instance We describe the pegs and disks of a Towers of Hanoi puzzle via facts over
the unary predicates peg/1 and disk/1.3 Disks are numbered by consecutive integers starting at 1,
where a disk with a smaller number is considered to be larger than a disk with a greater number.
The names of the pegs can be arbitrary; in our case, we use a, b, and c. Furthermore, the predicates
init_on/2 and goal_on/2 describe the initial and the goal situation, respectively.Their arguments,
the number of a disk and the name of a peg,determine the location of a disk in the respective situation.
Finally, the constant moves/0 specifies the number of moves in which the goal must be achieved.
The Towers of Hanoi puzzle shown in Figure 1.3 can be described by the facts in Listing 1.3.

Listing 1.3: Towers of Hanoi problem instance (tohI.lp)

1 #const moves =15.

3 peg(a;b;c).
4 disk (1..4).
5 init_on (1..4,a).
6 goal_on (1..4,c).

The very first line is an extra-logical directive to the grounder,4 providing default value 15 for constant
moves. Note that the ; in the Line 3 is syntactic sugar expanding the statement into three facts:
peg(a), peg(b), and peg(c). Similarly, 1..4 used in Lines 4–6 refers to an interval abbreviating
distinct facts over the four values: 1, 2, 3, and 4. Observe that the initial and the goal situation are
specified by associating disks with pegs, while relative locations of disks are given implicitly: among
disks sharing a peg, the disk with the greatest number rests on top of the one with the second greatest
number, provided the latter exists, and so on. In summary, the given facts describe the Towers of
Hanoi puzzle in Figure 1.3 along with the requirement that the goal ought to be achieved with 15
moves.

Problem encoding We now proceed by encoding Towers of Hanoi via rules containing vari-
ables (whose names start with uppercase letters). Such an encoding is independent of a particular

3We use p/n to indicate that predicate p has arity n.
4Alternatively, such definitions can be supplied (or overridden) via the command line option --const of gringo.

6 1. MOTIVATION

instance. Typically, an encoding can be logically partitioned into “generating,” “defining,” and “test-
ing” parts (see Section 3.2). An additional “displaying” part allows for projecting the output to atoms
characterizing a solution, thereby suppressing auxiliary predicates. We follow this methodology and
mark the respective parts via comment lines beginning with % in Listing 1.4.

Listing 1.4: Towers of Hanoi problem encoding (tohE.lp)

1 % generating part
2 1 { move(D,P,T) : disk(D) : peg(P) } 1 :- T = 1.. moves.

4 % defining part
5 move(D,T) :- move(D,_,T).
6 on(D,P,0) :- init_on(D,P).
7 on(D,P,T) :- move(D,P,T).
8 on(D,P,T+1) :- on(D,P,T), not move(D,T+1), T < moves.
9 blocked(D-1,P,T+1) :- on(D,P,T), T < moves.

10 blocked(D-1,P,T) :- blocked(D,P,T), disk(D).

12 % testing part
13 :- move(D,P,T), blocked(D-1,P,T).
14 :- move(D,T), on(D,P,T-1), blocked(D,P,T).
15 :- not 1 { on(D,P,T) } 1, disk(D), T = 1.. moves.

17 :- goal_on(D,P), not on(D,P,moves).

19 % displaying part
20 #hide.
21 #show move /3.

Note that the variables D, P, and T are used to refer to disks, pegs, and the number of a move,
respectively. While all occurrences of these variables refer within each rule to the same variable, the
token _ (not followed by any letter) stands for an anonymous variable that does not recur anywhere.
(This is as if a new variable name is invented on each occurrence of _.) In contrast, moves is a
constant indicating the length of the sequence of moves.

The generating part, describing solution candidates, consists of the rule in Line 2. It expresses
that exactly one move of a disk D to some peg P must be executed at each point T in time (other
than 0).The head of the rule (left of :-) is a so-called cardinality constraint (detailed in Section 2.3).
It consists of a set of literals, expanded using the predicates behind the colons (detailed in Section 2.3),
along with a lower and an upper bound. The cardinality constraint is satisfied if the number of true
elements is between the lower and the upper bound (both inclusive). In our case, both bounds are 1.
Since the cardinality constraint occurs as the head of a rule, it allows for deriving (“guessing”) atoms
over the predicate move/3. In the body (right of :-), we use the assignment ‘T = 1..moves’ to
refer to each time point T from 1 to the maximum, given by moves. We have thus characterized all

1.1. QUICKSTART 7

sequences of moves as solution candidates for Towers of Hanoi. Up to now, we have not yet imposed
any further conditions, for instance, that a larger disk must not be moved on top of a smaller one.

The defining part in Lines 5–10 contains rules deriving auxiliary predicates providing prop-
erties of a solution candidate at hand. (Such properties are investigated in the testing part described
below.) The rule in Line 5 simply projects moves to disks and time points. The resulting predicate
move/2 can be used whenever the target peg is irrelevant. In this way, one of its atoms subsumes
three possible cases. Furthermore, the predicate on/3 captures the state of a Towers of Hanoi puzzle
at each time point. To this end, the rule in Line 6 identifies the locations of disks at time point 0 by
inspecting the initial state. State transitions are modeled by the rules in Lines 7 and 8. While the
former specifies the direct effect of a move at time point T, that is, the considered disk D is relocated
to the target peg P, the latter describes inertia: the location of a disk D carries forward from time
point T to T+1 if D is not moved at T+1. Observe that ‘T < moves’ in Line 8 prevents the derivation
of disk locations beyond the maximum time point.

Finally, we employ some more sophisticated concepts to facilitate the tests in Lines 13 and 14.
For this purpose, we define the auxiliary predicate blocked/3 to indicate that a smaller disk (with
a number greater than D-1) is located on a peg P. The rule in Line 9 derives this condition for
time point T+1 from on(D,P,T), provided that T is not the maximum time point. The rule in
Line 10 further propagates the status of being blocked along larger disks.5 Note that we also mark
‘D-1 = 0’, not referring to any disk, as blocked, which is convenient for eliminating redundant
moves in the testing part described below. To illustrate this approach, let us inspect the initial
situation displayed in Figure 1.3. Given the facts over init_on/2 in Listing 1.3, the rule in Line 6
yieldson(1,a,0),on(2,a,0),on(3,a,0), and on(4,a,0).Provided that ‘0 < moves’,we further
derive blocked(0,a,1),blocked(1,a,1),blocked(2,a,1), and blocked(3,a,1) via the rule
in Line 9 (and 10).This tells us that, apart from disk 4, any location on peg a is occupied and should
thus not be used in moves at time point 1. In particular, note that the movable disk 4 ought not be
put back to peg a because its adjacent location 3 is blocked there (due to disk 4 itself).

The testing part consists of the integrity constraints in Lines 13–15 and 17. Such rules have
no head atom. Logically, such an empty head can be understood as a contradiction; hence, the body
atoms cannot all be satisfied simultaneously. Integrity constraints serve as rules of denial eliminating
unintended solution candidates. The first integrity constraint in Line 13 asserts that a disk D must
not be moved to a peg P, if D-1 is blocked at time point T. This excludes moves putting a larger disk
on top of a smaller one (whose number is greater). And since the adjacent location D-1 is blocked
on the former peg of D (in view of the rule in Line 9), it also prevents putting a disk back on its
previous location. Similarly, the integrity constraint in Line 14 expresses that a disk D cannot be
moved at time point T, if it is blocked by some smaller disk on the same peg P. Note that we use
move(D,T) here because the target of an illegal move does not matter in this context. The integrity
constraint in Line 15 asserts that, for every disk D and time point T, there is exactly one peg P such

5The interested reader may observe that the extension of blocked/3 is linear in the number of disks, while an encoding relying
on pairwisely comparing positions would lead to a quadratic behavior.

8 1. MOTIVATION

that on(D,P,T) holds. Although this condition is implied by the definition of on/3 in Lines 7 and 8
with respect to the moves in a solution, making such knowledge explicit via an integrity constraint
turns out to improve the solving efficiency. Finally, the integrity constraint in Line 17 addresses the
goal situation that must be achieved at maximum time point moves.

Lastly, the two directives of the displaying part in Lines 20 and 21 indicate that only atoms
over the predicate move/3 are to be printed. It suppresses all predicates used to describe problem
instances as well as atoms stemming from auxiliary predicates move/2, on/3, and blocked/3. This
is for more convenient reading of a solution, given that it is fully determined by atoms over move/3
(see also Section 7.1).

Problem solving We are now ready to solve our Towers of Hanoi puzzle. To compute a stable
model representing a solution, we may invoke the following command. 6

$ gringo tohI.lp tohE.lp | clasp

The filenames tohI.lp and tohE.lp refer to the programs in Listings 1.3 and 1.4, respectively.
An alternative to this is offered by clingo, combining clasp and gringo in a monolithic system.

$ clingo tohI.lp tohE.lp

The output of feeding the result of the grounder gringo into the solver clasp looks (somewhat)
as shown in Listing 1.5.

Listing 1.5: Solving the Towers of Hanoi problem

$ gringo tohI.lp tohE.lp | clasp
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
move(4,b, 1) move(3,c, 2) move(4,c, 3) move(2,b, 4) move(4,a, 5) \
move(3,b, 6) move(4,b, 7) move(1,c, 8) move(4,c, 9) move(3,a,10) \
move(4,a,11) move(2,c,12) move(4,b,13) move(3,c,14) move(4,c,15)
SATISFIABLE

Models : 1+
Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

The first line provides version information concerning the ASP solver clasp. No such information
is given by the grounder gringo because its output is read by the solver. Similarly, the next two
lines provide status information of clasp. Once “solving” has finished, ‘Answer: 1’ indicates that

6All systems, clasp, gringo, and clingo are freely available at potassco.sourceforge.net.

potassco.sourceforge.net

1.2. REFERENCES AND FURTHER READING 9

the (output) atoms of the first stable model follow in the line below. We use here the symbol \ to
indicate that all atoms over move/3 actually belong to a single line. Note that the order in which
atoms are printed does not have any meaning (and the same applies to the order in which stable
models are found). Here, we show the instances of move/3 in the order of time points, so that we can
easily read off the following solution: first move disk 4 to peg b, second move disk 3 to peg c, third
move disk 4 to peg c, and so on. Below this solution, the solver reports the problem’s satisfiability
status, viz. SATISFIABLE 7 in our example. The 1+ in the line starting with Models tells us that one
stable model has been found.8 The two final lines report various timing statistics, distinguishing wall
clock and CPU time. More information about available options, for instance, how to get extended
statistics output, can be obtained via option --help. See also Section 7.2 on how to interpret clasp’s
extended statistics.

Recapitulation For solving our Towers of Hanoi puzzle, we first provided facts representing an
instance.Although we did not discuss the choice of predicates, an appropriate instance representation
is already part of the modeling in ASP and not always as straightforward as here.9 Second, we
provided an encoding of the problem applying to any instance. The encoding consisted of parts
generating solution candidates, deriving their essential properties, testing that no solution condition
is violated, and finally projecting the output to characteristic atoms. With the encoding at hand,
we could use off-the-shelf ASP tools to solve our instance, and the encoding can be reused for any
further instance that may arise in the future.

1.2 REFERENCES AND FURTHER READING
The first monograph on ASP was written by Baral in (2003); further comprehensive accounts can be
found in Eiter et al. (2009), Ferraris and Lifschitz (2005), Gelfond (2008), Lifschitz (1996, 2004).
The handbooks of Knowledge Representation and Reasoning (Lifschitz et al., 2008), Satisfiability
Testing (Biere et al., 2009), and Constraint Programming (Rossi et al., 2006), respectively, provide
rich sources on ASP-related technology. The same applies to the standard literature on Logic Pro-
gramming (Lloyd, 1987) and Database Systems (Ullman, 1988).

The term Answer Set Programming was coined in the late nineties in Lifschitz (1999),
Marek and Truszczyński (1999), Niemelä (1999). ASP is sometimes also referred to as AnsPro-
log or simply A-Prolog (Baral, 2003, Gelfond, 2002, Gelfond and Leone, 2002). A recent account
of ASP is given by Brewka et al. (2011).

The concept of elaboration tolerance was advocated by John McCarthy in (1998); it is defined
as “the ability to accept changes to a person’s or a computer program’s representation of facts about a subject
without having to start all over.”

7Other possibilities include UNSATISFIABLE and UNKNOWN, the latter in case of an abort.
8The + indicates that the solver has not exhaustively explored the search space (but stopped upon finding a stable model), so that
further stable models may exist.

9When trying to solve a problem and finding it cumbersome to specify appropriate rules, it may be worthwhile to recheck the
instance format and alter it to something more appropriate.

10 1. MOTIVATION

The field of Logic Programming was initiated by the work of Alain Colmerauer and Robert
Kowalski in the mid-seventies. The separation of logic and control in Logic Programming was
formulated by the slogan “Algorithm = Logic + Control ” (Kowalski, 1979). Although both Prolog and
ASP strive for declarativeness, Prolog aims at being a full-fledged programming language and thus
allows the programmer to influence the program’s execution via the order of its rules and their body
literals.

Historically, there is also a strong connection between Logic Programming and Deductive
Databases, as witnessed by Minker (1988).

The representational edge of ASP over SAT is due to its more stringent semantics.
Niemelä showed in (1999) that SAT can be translated modularly into ASP but not vice versa.
Lifschitz and Razborov (2006) proved (subject to complexity-theoretic assumptions) that every
vocabulary-preserving translation from ASP to SAT must be exponential (in the worst case) but not
vice versa. For a thorough analysis in terms of complexity theory, we refer the reader to Dantsin et al.
(2001), Schlipf (1995).

Closed world reasoning is a salient feature of commonsense reasoning; it is fundamental to
Database Systems (Reiter, 1978) and Logic Programming (Lloyd, 1987), where it is at the heart of
negation-as-failure. A broad exploration of the phenomenon along with its various formal accounts
is explored in depth in the area of Nonmonotonic Reasoning (Besnard, 1989, Ginsberg, 1987,
Marek and Truszczyński, 1993).

The interpretation of closed world reasoning in terms of (inductive) definitions is worked
out in Denecker and Ternovska (2008) and leads to a solving paradigm closely related to
ASP (Mariën et al., 2004). Interesting combinations of modeling and solving in SAT are provided
by kodkod (Torlak and Jackson, 2007), a constraint solver for first-order logic with relations, and
npspec (Cadoli and Schaerf, 2005), a Datalog-like language based on minimal models semantics.

Although the stable models semantics was originally proposed as a semantics for logic pro-
grams (Gelfond and Lifschitz, 1988, 1991), it was strongly influenced by systems for Nonmono-
tonic Reasoning, in particular, Autoepistemic (Moore, 1985) and Default Logic (Reiter, 1980).
(See also Section 5.5.) The equivalent default models semantics was independently proposed by
Bidoit and Froidevaux in (1987). While the intuition of the former stemmed from Autoepis-
temic Logic (see also Gelfond (1987)), the latter semantics was derived from Default Logic.
The relationship to Autoepistemic Logic is established in Gelfond and Lifschitz (1988). Also,
Gelfond and Lifschitz show in (1991) that logic programs under stable models semantics constitute
a fragment of Default Logic. A similar reduction was given in Bidoit and Froidevaux (1987).

The light constructive nature of the stable models semantics was established by Pearce in
(1996), leading to the encompassing framework of Equilibrium Logic (Pearce, 2006). The latter is
based on the strongest super-intuitionistic logic that is properly contained in classical logic, called
the logic of Here-and-There (Gödel, 1932, Heyting, 1930).

C H A P T E R 2

Introduction
This chapter gives the formal foundations for the material presented in this book. We lay out salient
concepts and fix corresponding notations. We start by providing some terminology for essential
logical concepts in Section 2.1; less broadly used concepts are introduced where needed. Section 2.2
provides a compact introduction to the basic propositional syntax and semantics of ASP. We then
successively extend the core syntax with several language constructs in view of improving the ease of
modeling. Similarly, we build upon the core semantics in Section 2.4 for developing a first scheme for
computing the stable models of a logic program. The final section provides some historical remarks
and gives references for further reading.

2.1 LOGICAL PRELIMINARIES AND TERMINOLOGY

We presuppose some acquaintance with the basics of Logic and Logic Programming.We thus restrict
ourselves to the introduction of relevant notation and refer the interested reader for introductory
material to the literature (see Section 2.5).

Although we use standard notation to refer to logical concepts, we adapt it to the various
levels of description in order to stress the respective view (see Table 2.1).

Table 2.1: Notational conventions according to level of description
default classical

true, false if and or iff negation negation

source code :- , | not -
logic program ← , ; ∼ ¬
formula �, ⊥ → ∧ ∨ ↔ ∼ ¬

We consider languages having a signature composed of symbols for predicates, functions, and
variables. We usually denote

• predicate symbols by lowercase letters, such as a, b, . . . for predicates of zero arity (also called
propositions), and otherwise use p, q, . . . or strings starting with a lowercase letter, such as
hot or hasCookie,

• function symbols by lowercase letters, such as c, d, . . . for constants, and otherwise f, g, . . . ,
or size, and

12 2. INTRODUCTION

• variable symbols by uppercase letters, such as X, Y, Z, or strings starting with an uppercase
letter, like Mother .

Each predicate and function symbol has an associated arity, n, which is sometimes made explicit by
writing p/n or f/n, respectively.

Terms and atoms are defined in the usual way. Variable-free terms and atoms are said to be
ground. A ground instance of an atom is obtained by replacing all of its variables by ground terms.
We often identify ground atoms with propositions and also denote them by lowercase letters, like
a, b,

We let T and F stand for the Boolean truth values. A (total) two-valued interpretation,
mapping all ground atoms to T and F , is represented by the set of its true atoms. For instance,
the interpretation {p(1) �→ T , p(2) �→ F , a �→ T }, is represented by {p(1), a}. This allows us to
consider an interpretation to be smaller than another, if one is a subset of another.

For capturing partial interpretations, we use three-valued interpretations and represent them
as pairs, consisting of all true and false ground atoms, while leaving the remaining undefined ones
implicit. For example, the three-valued interpretation ({p(1)}, {a}) assigns T to p(1) and F to a,
respectively, and regards all other ground atoms as undefined. A three-valued interpretation is total
(and two-valued), if it assigns either T or F to all ground atoms; otherwise, it is said to be partial.

For addressing computational issues, we rely on Boolean assignments. An ordered assignment
A over a domain, dom(A), is a sequence (σ1, . . . , σn) of entries σi of the form T vi or F vi , where
vi ∈ dom(A) for 1 ≤ i ≤ n. An assignment’s domain consists of logical entities, usually going beyond
the set of atoms. We often refer to them as propositional variables. An entry T v or F v expresses that
v is assigned T or F , respectively. We denote the complement of an entry σ by σ , that is, T v = F v

and F v = T v. Analogously, an unordered assignment is a set (rather than a sequence) of entries.
We sometimes abuse notation and identify an ordered assignment with its unordered counterpart
given by the set of its contained entries. Given this, we access the true and the false (propositional)
variables in A via AT = {v ∈ dom(A) | T v ∈ A} and AF = {v ∈ dom(A) | F v ∈ A}. We say that
A is contradictory if AT ∩ AF �= ∅; otherwise, A is non-contradictory. Furthermore, A is total if it
is non-contradictory and AT ∪ AF = dom(A). Note that an unordered assignment A over atoms
can be regarded as a partial interpretation (T , F) where T a ∈ A iff a ∈ T and F a ∈ A iff a ∈ F

for all ground atoms a.
A minimal element of a partially ordered set is an element that is not greater than any other

element; maximal elements are defined analogously. We often consider power sets ordered by set
inclusion, and refer to the minimal elements as being ⊆-minimal.

Finally, we often make use of graph-theoretic concepts. A (directed) graph is an ordered pair
(V , E) comprising a set V of vertices together with a set E ⊆ V × V of edges. A path in a graph is
a sequence of vertices such that there is an edge for each succeeding pair of vertices in the sequence.
A directed graph is strongly connected, if all its vertices are pairwisely connected by some path. The
strongly connected components of a directed graph are its maximal strongly connected subgraphs.
Such a component is non-trivial, if it contains some edge.

2.2. BASIC SYNTAX AND SEMANTICS 13

Further (logical) concepts are introduced where needed.

2.2 BASIC SYNTAX AND SEMANTICS
We give a compact formal introduction to propositional logic programs under stable models seman-
tics. Most concepts are developed in more detail in the remainder of the book.

A propositional normal logic program over a set A of ground atoms is a finite set of normal
rules of the form

a0 ← a1, . . . , am, ∼am+1, . . . ,∼an (2.1)

where 0 ≤ m ≤ n and each ai ∈ A is a ground atom for 0 ≤ i ≤ n. A literal is an atom a or its
default negation1 ∼a.

As a first simple example, consider Logic program P1.

P1 =
⎧⎨
⎩

a ←
c ← ∼b, ∼d

d ← a, ∼c

⎫⎬
⎭

For a rule r as in (2.1), let

head (r) = a0 be the head of r , and
body(r) = {a1, . . . , am, ∼am+1, . . . ,∼an} be the body of r .

The intuitive reading of r is that head (r) must be true if body(r) holds, that is, if a1, . . . , am are
(provably) true and if am+1, . . . , an are (possibly) false. If body(r) = ∅, r is called a fact, and we often
omit ‘←’ when writing facts.

Given a set X of literals, let X+ = {p ∈ A | p ∈ X} and X− = {a ∈ A | ∼a ∈ X}. For
body(r), we then have that body(r)+ = {a1, . . . , am} and body(r)− = {am+1, . . . , an}. A rule r is said
to be positive, if body(r)− = ∅.Accordingly,a program is called positive, if all its rules are positive.The
set of atoms occurring in a logic program P is denoted by atom(P), and body(P) = {body(r) | r ∈ P }
is the set of all bodies of rules in P . For rule bodies sharing the same head a, we define furthermore
bodyP (a) = {body(r) | r ∈ P, head (r) = a}.

A set X ⊆ A of ground atoms is a model of a propositional logic program P , if head (r) ∈ X

whenever body(r)+ ⊆ X and body(r)− ∩ X = ∅ for every r ∈ P . For instance, Program P1 has six
models, among which we find {a, c} and {a, b, c, d}.

In ASP, the semantics of P is given by its stable models (Gelfond and Lifschitz, 1988). To this
end, the reduct, P X, of P relative to a set X of atoms is defined by

P X = {head (r) ← body(r)+ | r ∈ P, body(r)− ∩ X = ∅}.
1As common in Database Systems and Logic Programming, default negation refers to the absence of information, while “classical”
negation stipulates the presence of the negated information, or informally, ∼a stands for a �∈ X while ¬a requires ¬a ∈ X for
some interpretation X (see also Section 2.3.4).

14 2. INTRODUCTION

Note that P X is a positive program, thus possessing a unique ⊆-minimal model. Given this, X is a
stable model of P , if X is the ⊆-minimal model of P X.

For illustration, consider the two aforementioned models of P1, namely {a, c} and {a, b, c, d},
and check whether they are stable.

X P X
1 ⊆ -minimal model of P X

1

{a, c} P
{a,c}
1 = {a ←, c ←} {a, c}

{a, b, c, d} P
{a,b,c,d}
1 = {a ←} {a}

We observe that {a, c} is indeed a stable model of P1, while {a, b, c, d} is not.
Pragmatically, the reduct P X of a program P relative to a set X of atoms is obtained by

1. deleting each rule having a negative literal ∼a in its body with a ∈ X and then

2. eliminating all negative literals of the form ∼a in the bodies of the remaining rules.

This view emphasizes that atoms preceded by ‘∼ ’ are evaluated in the traditional way with respect
to the model candidate X.

We can rephrase the definition of a stable model in a more compact way by using the (conse-
quence) operator Cn to yield the smallest model of a positive program. With it, the stable models,
X, of a logic program P can be characterized as fixpoints of the equation Cn(P X) = X. This char-
acterization intuitively reflects that X is stable under “applying rules from P .” While all atoms in the
model {a, c} of P1 are stable under applying the rules in P1, in {a, b, c, d} the truth of the atoms b,
c, and d cannot be justified. In this sense, each atom in a stable model is “provable” by rules from P ,
hinting at the above mentioned constructive flavor of ASP. Hence, negative literals must only be true,
while positive ones must also be provable. This informal observation is made precise in Chapter 5;
see also Section 2.4 below.

Note that any stable model of P is also a (⊆-minimal) model of P , whereas the converse does
not hold in general. A positive program has a unique stable model, given by its smallest model. Also,
for all stable models X and Y of a normal program, we have X �⊂ Y . More pragmatically, we note
that X ⊆ Cn(P X) ⊆ head (P X), that is, stable models are formed from programs’ heads. In view of
this, {a, b, c, d} cannot be a stable model of P1 because it already fails to be a subset of head (P1).

Let us use the previous characterization to show that a logic program may have zero, one, or
multiple stable models. To see this, consider the following three examples inspecting the respective
set of candidate models given as traditional truth tables.

The first program, P2, has the single stable model {b}.

P2 = {a ← a, b ← ∼a}

This program has three models, {a}, {b}, and {a, b}. The first and last model are not stable because
neither admits a “non-circular derivation” of a from the reduct P

{a}
2 and P

{a,b}
2 , respectively. To see

2.2. BASIC SYNTAX AND SEMANTICS 15

this, let us consider in turn all candidate sets, X ⊆ atom(P2), the resulting reducts, P X
2 , and their

smallest models, Cn(P X
2).

X P X
2 Cn(P X

2)

∅ P ∅
2 = {a ← a, b ← } Cn(P ∅

2) = {b}
{a} P

{a}
2 = {a ← a } Cn(P

{a}
2) = ∅

{b} P
{b}
2 = {a ← a, b ← } Cn(P

{b}
2) = {b}

{a, b} P
{a,b}
2 = {a ← a } Cn(P

{a,b}
2) = ∅

We see that among all four candidate sets only {b} satisfies the equation {b} = Cn(P
{b}
2), and it thus

constitutes the only stable model of P2.
Next, consider Program P3, whose two rules can be interpreted as describing a choice between

a and b.

P3 = {a ← ∼b, b ← ∼a}
As with P2, Program P3 has three models, {a}, {b}, and {a, b}. Unlike the above, the first two among
them are stable.

X P X
3 Cn(P X

3)

∅ P ∅
3 = {a ← , b ← } Cn(P ∅

3) = {a, b}
{a} P

{a}
3 = {a ← } Cn(P

{a}
3) = {a}

{b} P
{b}
3 = { b ← } Cn(P

{b}
3) = {b}

{a, b} P
{a,b}
3 = { } Cn(P

{a,b}
3) = ∅

Pairs of rules as in P3 provide us with non-deterministic language constructs and form the basis of
choice rules, introduced in Section 2.3.2.

The two previous examples suggest that stable models take the format of rules into account.
Although both P2 and P3 have the same models, the different format of the program induces different
“derivations” which in turn lead to different stable models.

Finally, we give a program admitting no stable model.

P4 = {a ← ∼a}
Although, P4 lacks a stable model, it has a single model containing a.

X P X
4 Cn(P X

4)

∅ P ∅
3 = {a ← } Cn(P ∅

3) = {a}
{a} P

{a}
3 = { } Cn(P

{a}
3) = ∅

Rules as in P4 play an important practical role in implementing integrity constraints, as detailed in
Section 2.3.2.

16 2. INTRODUCTION

2.3 LANGUAGE EXTENSIONS

After the introduction to the basic propositional fragment of ASP, we now successively extend the
language of ASP while focusing on the smodels format. We start with a brief account of first-order
variables in ASP and show how they can be (semantically) eliminated. In the remainder, we then
concentrate on the propositional case. For this, we presuppose from Section 2.3.2 on that A is a
set of ground atoms and often leave it implicit. The remaining sections 2.3.2 to 2.3.5 introduce the
salient language constructs constituting ASP’s modeling language.

2.3.1 FIRST-ORDER VARIABLES
Following the tradition of Logic Programming, we view rules with first-order variables as schemes
representing their sets of ground instances. To be more precise, a rule is ground, if it contains no
variables. The set grd (r) of ground instances of a rule r is the set of all ground rules obtained by
replacing all variables in r by ground terms. Accordingly, the ground instantiation of a program P

is given by grd (P) = ⋃
r∈P grd (r).

For instance, the program, P ,

arc(1,1).
arc(1,2).
edge(X,Y) :- arc(X,Y), arc(Y,X).

yields the ground program, grd (P),

arc(1,1).
arc(1,2).
edge(1,1) :- arc(1,1), arc(1,1).
edge(2,2) :- arc(2,2), arc(2,2).
edge(1,2) :- arc(1,2), arc(2,1).
edge(2,1) :- arc(2,1), arc(1,2).

Note that the last three ground rules are superfluous and can thus be removed from grd (P). That
is, the above ground program has the same stable model as the first three ground rules, comprising
arc(1,1), arc(1,2), and edge(1,1). The effective computation of compact representations of
grd (P) is the subject of Chapter 4.

The semantics of programs with variables is then a direct extension of the propositional case.
Given a (normal) logic program P over a set of (non-ground) atoms A, a set X ⊆ grd (A) of ground
atoms is a stable model of P , if X is the ⊆-minimal model of grd (P)X.

Given that a program P with variables can be regarded as an abbreviation for grd (P), we
henceforth concentrate on the propositional case.

2.3. LANGUAGE EXTENSIONS 17

2.3.2 CORE LANGUAGE
This section introduces the essential modeling language of ASP, sufficient for expressing all search
problems in NP. To this end, we mainly focus on logic programs consisting of

• normal rules,

• choice rules,

• cardinality rules, and

• weight rules.

Together with optimization statements introduced in the following section, this collection constitutes
the basic language constructs accepted by ASP solvers like smodels and clasp (see also Section 7.1.4).
Except for optimization statements, all language extensions are complexity-preserving. Hence, we
generally fix their meaning via translations reducing them to normal logic programs rather than
providing genuine semantics.

A compact formal account on the core language of ASP (extended by disjunction) is given in
Appendix A.

Integrity constraints An integrity constraint is of the form

← a1, . . . , am, ∼am+1, . . . ,∼an (2.2)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n.
An integrity constraint rules out stable models satisfying its body literals. Their purpose is to

eliminate unwanted solution candidates. No atoms are derivable through integrity constraints. For
instance, the integrity constraint

:- edge(3,7), color(3,red), color(7,red).

can be used in a graph coloring problem to express that vertices 3 and 7 must not both be colored
red if they are connected.

An integrity constraint can be translated into a normal rule. To this end, the constraint in
(2.2) is mapped onto the rule

x ← a1, . . . , am, ∼am+1, . . . ,∼an, ∼x

where x is a new symbol, that is, x �∈ A.
To illustrate this, let us extend P3 from Page 15 by integrity constraints as follows.

P3 ∪ {← a} = {a ← ∼b, b ← ∼a} ∪ {← a}
P3 ∪ {← ∼a} = {a ← ∼b, b ← ∼a} ∪ {← ∼a}

18 2. INTRODUCTION

From the two stable models of P3, the first program only admits {b}, while the second one yields {a}.
The same stable models are obtained from Program P3 ∪ {x ← a, ∼x} and P3 ∪ {x ← ∼a, ∼x},
respectively.

In general, the addition of integrity constraints to a logic program can neither produce new
stable models nor alter existing ones; rather it can only lead to their elimination.

Choice rules A choice rule is of the form2

{a1, . . . , am} ← am+1, . . . , an, ∼an+1, . . . ,∼ao (2.3)

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o.
The idea of a choice rule is to express choices over subsets of atoms. Any subset of its head

atoms can be included in a stable model, provided the body literals are satisfied. Thus, for instance,
the program P = { a ←, {b} ← a} has two stable models, {a} and {a, b}. For another example, at
a grocery store you may or may not buy pizza, wine, or corn.

{ buy(pizza), buy(wine), buy(corn) } :- at(grocery).

A choice rule of form (2.3) can be translated into 2m + 1 rules

a′ ← am+1, . . . , an, ∼an+1, . . . ,∼ao

a1 ← a′, ∼a1 . . . am ← a′, ∼am

a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am. Applying this transformation to the choice rule {b} ← a

in our example program P yields

a ← b′ ← a

b ← b′, ∼b

b ← ∼b

This program has two stable models, {a, b′, b} and {a, b′, b}, whose intersections with the atoms in
the original program correspond to the stable models indicated above.

Cardinality rules A cardinality rule is of the form

a0 ← l { a1, . . . , am, ∼am+1, . . . ,∼an } (2.4)

where 0 ≤ m ≤ n and each ai is an atom for 0 ≤ i ≤ n; l is a non-negative integer.
Cardinality rules allow for controlling the cardinality of subsets of atoms via the lower bound

l. That is, the head atom belongs to a stable model, if the latter satisfies at least l body literals. For
example, Program P = { a ←, c ← 1 {a, b} } has the stable model {a, c}. Here is a less artificial
example of a cardinality rule, describing that one passes Course 42, provided one passes two out of
three assignments.
2The inclusion of default negated literals among the head literals of plain choice rules is without effect. No matter whether a literal
∼a is chosen or not, it cannot contribute to a stable model.

Francisco Coelho
Interessante

2.3. LANGUAGE EXTENSIONS 19

pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.

Also, cardinality rules can be translated into normal programs. To this end, we replace a rule
of form (2.4) by

a0 ← ctr(1, l)

where atom ctr(i, j) represents the fact that at least j of the literals having an equal or greater index
than i, are in a stable model.

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i, k+1) ← ctr(i + 1, k), ai

ctr(i, k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j, k+1) ← ctr(j + 1, k), ∼aj

ctr(j, k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←
For illustration, let us apply this transformation to the cardinality rule c ← 1 {a, b} in the last

program P . We get the following program.

a ← c ← ctr(1, 1)

ctr(1, 2) ← ctr(2, 1), a

ctr(1, 1) ← ctr(2, 1)

ctr(2, 2) ← ctr(3, 1), b

ctr(2, 1) ← ctr(3, 1)

ctr(1, 1) ← ctr(2, 0), a

ctr(1, 0) ← ctr(2, 0)

ctr(2, 1) ← ctr(3, 0), b

ctr(2, 0) ← ctr(3, 0)

ctr(3, 0) ←
This program yields the stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}. Reduced to the
original atoms, we thus get {a, c}.

Note that unlike the above translations, the one for cardinality rules is quadratic in space.This
is why many ASP solvers employ a dedicated treatment once the number of literals gets too large
(see Section 7.2).

Interestingly, cardinality rules could be used as an alternative base construct instead of normal
rules. To see this, observe that any normal rule of form (2.1) can be expressed as a cardinality rule of
the form

a0 ← n { a1, . . . , am, ∼am+1, . . . , ∼an }.
Next, we generalize cardinality rules for expressing more general forms of cardinality con-

straints, and we provide semantics via translations into simpler forms of programs.

20 2. INTRODUCTION

At first, we consider cardinality rules with upper bounds.

a0 ← l { a1, . . . , am, ∼am+1, . . . ,∼an } u (2.5)

Such rules extend the syntax of cardinality rules in (2.4) by adding another non-negative integer, u,
serving as an upper bound on the cardinality of the satisfied body literals. The single constraint in
the body of (2.5) is commonly referred to as a cardinality constraint.

A cardinality rule with an upper bound can be expressed by the following three rules (intro-
ducing new symbols b and c).

a0 ← b, ∼c

b ← l { a1, . . . , am, ∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am, ∼am+1, . . . ,∼an }

(2.6)

So far, all cardinality constraints occurred in rule bodies only. We next consider rules with
cardinality constraints as heads. Such a rule is of the form

l {a1, . . . , am, ∼am+1, . . . ,∼an} u ← an+1, . . . , ao, ∼ao+1, . . . ,∼ap (2.7)

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p; l and u are non-negative integers.
For example, we can express that vertex 42 must be colored with exactly one color, among red, green,
and blue, as follows.

1 { color(v42,red), color(v42,green), color(v42,blue) } 1 :- vertex(v42).

Rule (2.7) amounts to an (extended) choice rule whose selection is limited by the associated
lower and upper bound. This is also reflected by its transform. Making this precise, a rule of form
(2.7) can be represented as follows.

b ← an+1, . . . , ao, ∼ao+1, . . . ,∼ap

{a1, . . . , am} ← b

c ← l {a1, . . . , am, , ∼am+1, . . . ,∼an} u

← b, ∼c

(2.8)

The first two rules give the choice rule obtained by dropping both bounds in (2.7); also negative head
literals are dropped because they do not give rise to deriving any atoms. In contrast, atoms occurring
positively in the head can be derived by choice. The third rule checks whether the selection of
head atoms respects the cardinality imposed by l and u. Finally, the integrity constraint eliminates
selections invalidating the bounds.

At last, let us combine the above translations and consider full-fledged cardinality rules, in
the sense that cardinality constraints can be used instead of atoms in normal rules. This leads us to
rules of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un (2.9)

2.3. LANGUAGE EXTENSIONS 21

where for 0 ≤ i ≤ n each li Si ui is a cardinality constraint. Note that a normal rule as in (2.1) can
be expressed in the form of (2.9) as

1 {a0} ← 1 {a1}, . . . 1 {am}, {am+1} 0, . . . , {an} 0.

Alternatively, we may express {ai} 0 as 1 {∼ai} for m < i ≤ n.
Such a general rule as in (2.9) can be represented by the following rules for 0 ≤ i ≤ n.

a ← b1, . . . , bn, ∼c1, . . . ,∼cn ← a, ∼b0

← a, c0

S0
+ ← a

bi ← li Si

ci ← ui+1 Si

where a, bi, ci are fresh symbols not appearing in the underlying set of atoms A.

Weight rules A weight rule is defined in analogy to (2.4) as a rule of form

a0 ← l { a1 = w1, . . . , am = wm, ∼am+1 = wm+1, . . . ,∼an = wn } (2.10)

where 0 ≤ m ≤ n and each ai is an atom for 0 ≤ i ≤ n; and l and wi are integers for 1 ≤ i ≤ n. A
weighted literal, �i = wi , associates each literal �i with a weight wi .

The meaning of weight rules along with the resulting notions of weight constraints can be
given in analogy to cardinality rules and the various forms of rules including cardinality constraints,
respectively. The major difference lies in extending the definition of the ctr/2 predicate. Rather than
incrementing counters by one, the weight of the respective literal must be added. All remaining
definitions follow analogously.

A more direct perspective on such language extensions is given by their satisfaction. For
example, a cardinality constraint l { a1, . . . , am, ∼am+1, . . . ,∼an } u is satisfied by an interpretation
X, if the number of its literals belonging to X is between l and u (inclusive), in other words,
if l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u. Obviously, cardinality constraints can be
regarded as special weight constraints, in which all literals have weight 1.

Accordingly, a general weight constraint is of the form

l { a1 = w1, . . . , am = wm, ∼am+1 = wm+1, . . . ,∼an = wn } u (2.11)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n; and l, u and wi are integers for 1 ≤ i ≤ n.
The meaning of a weight constraint can also be captured through its satisfaction by a stable model:
a weight constraint as in (2.11) is satisfied by an interpretation X, if

l ≤
(∑

1≤i≤m,ai∈X wi + ∑
m<i≤n,ai �∈X wi

)
≤ u.

This definition stresses the fact that cardinality and weight constraints amount to constraints on count
and sum aggregate functions. Note that in general the meaning of a weight constraint is defined via
an appropriate reduct. A crisp formal account on weight constraints is given in Appendix A.

Here is an example of a weight constraint about choosing courses providing a certain number
of credits.

22 2. INTRODUCTION

10 { course(db)=6, course(ai)=6, course(project)=8, course(xml)=3 } 20

Although weight constraints may look like a simple generalization of cardinality constraints,
the possibility of including both positive and negative weights for atoms can lift computational
complexity by one level in the polynomial time hierarchy. Such elevated complexity is due to the
loss of “constructiveness” in the verification of stable models, where the derivation of an atom with
negative (or positive) weight may undercut a formerly established lower (or upper) bound.

See also Section 7.1 on the treatment of aggregates in the ASP grounder gringo.

Conditional literals A conditional literal is of the form � : �1 : · · · : �n for 0 ≤ i ≤ n. The purpose
of this simple yet powerful language construct is to govern the instantiation of the “head literal” �

through the literals �1, . . . , �n. In this respect, a conditional literal � : �1 : · · · : �n can be regarded
as the list of elements in the set {� | �1, . . . , �n}.

For example, given three facts color(red), color(green), and color(blue), the condi-
tional literal in the cardinality constraint

1 { color(v42,C) : color(C) } 1 :- vertex(v42).

expands to the cardinality constraint

1 { color(v42,red), color(v42,green), color(v42,blue) } 1 :- vertex(v42).

However, the final form of the expanded conditional literal is context-dependent. For instance, given
the above facts, the integrity constraint

:- color(v42,C) : color(C).

results in

:- color(v42,red), color(v42,green), color(v42,blue).

Similarly, conditional literals can be used in optimization statements (see Section 2.3.3) and dis-
junctive rule heads (see Section 2.3.5). A sophisticated use of conditional literals in various contexts
is shown in Listing 4.7 on Page 64 as well as Listing 8.10 on Page 163.

2.3.3 OPTIMIZATION STATEMENTS
For solving (multi-criteria) optimization problems, ASP allows for expressing cost functions subject
to minimization and/or maximization. Such objective functions are expressed in ASP in terms of
optimization statements. In fact, maximization is defined analogously to minimization, so that we
concentrate on the latter in the sequel.

A minimize statement is of the following form:

minimize{ �1 = w1@p1, . . . , �n = wn@pn }. (2.12)

2.3. LANGUAGE EXTENSIONS 23

As with weight constraints, every �i is a literal (that is, of form ai or ∼ai) and every wi an integer
weight for 1 ≤ i ≤ n; in addition, pi provides an integer priority level. Priorities allow for repre-
senting lexicographically ordered minimization objectives, greater levels being more significant than
smaller ones. A maximize statement of the form maximize{�1 = w1@p1, . . . , �n = wn@pn} can
be represented by the minimize statement minimize{�1 = −w1@p1, . . . , �n = −wn@pn}.

A minimize statement is a directive that instructs the ASP solver to compute optimal stable
models by minimizing a weighted sum of elements. For example, when configuring a computer, we
may want to maximize hard disk capacity, while minimizing price.3

#maximize[hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=1000@1].
#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

The priority levels indicate that (minimizing) price is more important than (maximizing) capacity.
We observe that in practice minimize (and maximize) statements are preceded by # in order to
indicate that they are directives and do not belong to the program as such.

A minimize statement distinguishes optimal stable models of a program P in the following
way. For any X ⊆ A and integer p, let �X

p denote the sum of weights w over all occurrences of
weighted literals � = w@p in (2.12) such that � is satisfied by X. A stable model X of P is dominated
if there is a stable model Y of P such that �Y

p < �X
p and �Y

p′ = �X
p′ for all p′ > p, and optimal

otherwise.

2.3.4 TWO (AND A HALF) KINDS OF NEGATION
The addition of a second kind of negation, resembling classical negation, is mainly motivated by a
desire to ease knowledge representation. Pragmatically, the introduction of negation amounts to the
addition of new language symbols for all atoms, along with the addition of rules fixing the relation
of these new atoms to their original counterparts.

Given that an atom a is satisfied by a stable model whenever a ∈ X, the difference between a
classically negated literal ¬a and a default negated one, ∼a, intuitively boils down to the difference
between ¬a ∈ X and a �∈ X, respectively. A popular example illustrating this distinction is given by
the two programs

P = {cross ← ∼ train} and P ′ = {cross ← ¬train}.

While informally the first program suggests crossing the tracks whenever we do not know whether a
train approaches, the second one advises doing so whenever we know that no train arrives. Accord-
ingly, P has the stable model {cross}, whereas P ′ yields the empty stable model. We must add the
fact ¬train ← to P ′ to obtain the same conclusion.

To make things precise,we extend our set of atomsAbyA = {¬a | a ∈ A} such thatA ∩ A =
∅. That is, ¬a is the classical negation of a and vice versa. The semantics of classical negation is

3In gringo, optimization statements deal with multisets, enclosed in brackets like [and].

24 2. INTRODUCTION

enforced by the addition of the following set of rules4

P ¬ = {a ← b, ¬b | a ∈ (A ∪ A), b ∈ A}.
For illustration, let us extend once more Program P3 from Page 15.

P3 ∪ {c ← b, ¬c ← b} = {a ← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}.
The resulting program, viz. P3 ∪ {c ← b, ¬c ← b} ∪ P ¬, has a single stable model {a}. Note that
the second stable model {b} of P3 is eliminated by the contradiction, c and ¬c, obtained from b.

Strictly speaking, the stable models obtained from programs with classical negation are no
models because a stable model of the transformed program may contain an atom and its negation.
For instance, the program P3 ∪ {c ←, ¬c ←} ∪ P ¬ yields the stable model A ∪ A. In fact, a
transformed program has either only stable models free of complementary literals or the single
stable model A ∪ A.

Finally, the appearance of default negation in rule heads can be reduced to normal programs.
To this end, we must also extend our set A of atoms by Ã = {̃a | a ∈ A} such that A ∩ Ã = ∅.
The stable models of a program P with default negation in the head are then provided by the stable
models (projected to A) of the following normal program.

P̃ = {r ∈ P | head (r) �= ∼a}
∪ {← body(r) ∪ {∼ ã} | r ∈ P, head (r) = ∼a} (2.13)
∪ {ã ← ∼a | r ∈ P, head (r) = ∼a}.

This translation also works for disjunctive logic programs, as illustrated below.

2.3.5 TRUE LANGUAGE EXTENSIONS
Finally, let us deal with language constructs that cannot be reduced to normal logic programs because
they allow for capturing problems in NPNP (see Section 2.4.3 below).For brevity,however,we restrict
ourselves to brief introductions to the syntax and semantics of disjunctive logic programs and general
propositional theories.

A disjunctive logic program consists of rules of the form

a1 ; . . . ; am ← am+1, . . . , an, ∼an+1, . . . ,∼ao (2.14)

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o.
For example, we can express that vertex 42 must be colored with one color, among red, green,

and blue, as follows.

color(v42,red) | color(v42,green) | color(v42,blue) :- vertex(v42).

4Existing ASP systems implement a different semantics by setting P¬ to { ← b, ¬b | b ∈ A}. This eliminates the putative “stable
model” A ∪ A.

2.3. LANGUAGE EXTENSIONS 25

Alternatively, this rule can be written by using conditional literals in the following way.

color(v42,C) : color(C) :- vertex(v42).

For a disjunctive rule r as in (2.14), let us redefine head (r) = {a1, . . . , am} (cf. Section 2.2).
A set X ⊆ A of ground atoms is a model of a propositional logic program P , if head (r) ∩ X �= ∅
whenever body(r)+ ⊆ X and body(r)− ∩ X = ∅ for every r ∈ P . Given this, a set X of ground atoms
is a stable model of P , if X is some ⊆-minimal model of P X.

Note that the reduct of a disjunctive program may have several minimal models. Furthermore
observe that disjunction in ASP is neither strictly inclusive nor exclusive but subject to minimization.
To see this, consider the following positive program.

P5 = {a ; b ←}

Among the three models of the program, only {a} and {b} are ⊆-minimal and thus stable models of
P5. Adding the facts { a ←, b ← } to P5 yields a single stable model {a, b}. An inclusive disjunction
can be modeled with a cardinality rule as in (2.7) by setting l = 1 and u = n; similarly, an exclusive
disjunction is obtained by setting l = 1 and u = 1 in (2.7).

In view of the translation in (2.13), we may even consider disjunctive rules of the form

a1 ; . . . ; am ; ∼am+1 ; . . . ; ∼an ← an+1, . . . , ao, ∼ao+1, . . . , ∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p. Such rules can be reduced to
disjunctive rules of form (2.14) by adapting the translation in (2.13).5

P̃ = {head (r)+ ← body(r) ∪ {∼ ã | a ∈ head (r)−} | r ∈ P }
∪ {ã ← ∼a | r ∈ P, a ∈ head (r)−}.

For illustration, consider the following program.

P6 = {a ; ∼a ←}

The extended translation from (2.13) results in the disjunctive program

P̃6 = {a ← ∼ ã} ∪ {ã ← ∼a}.

Program P̃6 has two stable models, {a} and {ã}, whose projection on A, namely {a} and ∅, gives the
stable models of P6.

Finally, let us look at propositional theories under stable models semantics. The satisfaction
relation X |= φ between a set X of atoms and a (set of) formula(s) φ is defined as in propositional
logic (treating ∼ like ¬). The reduct, φX, of a formula φ relative to a set X of atoms is defined

5We slightly abuse notation and represent a disjunctive head in set notation.

26 2. INTRODUCTION

recursively as follows.

φX = ⊥ if X �|= φ

φX = φ if φ ∈ X

φX = (ψX ◦ μX) if X |= φ and φ = (ψ ◦ μ) for ◦ ∈ {∧, ∨, →}
φX = � if X �|= ψ and φ = ∼ψ

The reduct, �X, of a propositional theory � relative to a set X of atoms is defined as �X = {φX |
φ ∈ �}. Note that the reduct is a positive formula, that is, it is free of negation. As above, a set X of
ground atoms is a stable model of �, if X is some ⊆-minimal model of �X.

Any stable model of � is a also a model of �. However, stable models are in general not
minimal models. Interestingly, if X is a stable model of �, then it is the smallest model of �X. This
is due to the stronger reduct, whose evaluation is not limited to negative formulas. As an example,
consider a ∨ b. We get (a ∨ b){a} = a ∨ ⊥ whose only minimal model is {a}, establishing the fact
that {a} is a stable model of a ∨ b. Similarly, we get that {b} is the second stable model of a ∨ b

(cf. Program P5 above). For another example, consider a ∨ ∼a. We get (a ∨ ∼a){a} = a ∨ ⊥ and
thus {a} as stable model. Analogously, we obtain (a ∨ ∼a)∅ = ⊥ ∨ � yielding the empty stable
model (cf. Program P6 above). Unlike this, the formula ∼∼a ∨ ∼a admits the empty stable model
∅ only. To see this, observe that ∅ is the smallest model of both (∼∼a ∨ ∼a){a} = � ∨ ⊥ and
(∼∼a ∨ ∼a)∅ = ⊥ ∨ �, respectively. This nicely illustrates that double negated literals are not
equivalent to their base atoms.

Finally, we note that under the stable models semantics any propositional theory can be
reduced to an equivalent set of disjunctive rules of form (2.14).

2.4 COMPUTATIONAL ASPECTS
To begin with, we develop an initial approach to ASP solving from the definition of stable models
in the context of normal logic programs. The next two sections provide brief summaries of ASP’s
reasoning modes and basic complexity results.

2.4.1 COMPUTATION FROM FIRST PRINCIPLES
We begin with a brief development of an algorithm for computing stable models in terms of the
preceding formal concepts.

The smallest model, Cn(P), of a positive program P can be computed via its associated
consequence operator TP . For a set of atoms X, we define

TP X = {head (r) | r ∈ P and body(r) ⊆ X}. (2.15)

Iterated applications of TP are written as T
j
P for j ≥ 0, where

T 0
P X = X and T i

P X = TP T i−1
P X for i ≥ 1.

2.4. COMPUTATIONAL ASPECTS 27

For any positive program P , we have Cn(P) = ⋃
i≥0 T i

P ∅. Since TP is monotonic, Cn(P) is the
smallest fixpoint of TP .

For illustration, consider the following positive program

P = { a ←, b ← a, c ← a, b, e ← f }
along with the computation of its consequences, Cn(P), via iterated applications of TP .

T 0
P ∅ = ∅

T 1
P ∅ = {a} = TP T 0

P ∅ = TP ∅
T 2

P ∅ = {a, b} = TP T 1
P ∅ = TP {a}

T 3
P ∅ = {a, b, c} = TP T 2

P ∅ = TP {a, b}
T 4

P ∅ = {a, b, c} = TP T 3
P ∅ = TP {a, b, c}

To see that Cn(P) = {a, b, c} is the smallest fixpoint of TP , note that TP {a, b, c} = {a, b, c} and
TP X �= X for every X ⊂ {a, b, c}.

The computation of the smallest model Cn(P X) of a program’s reduct P X via operator
TP Xnicely illustrates the constructive nature of stable models. Given that stable models equal
Cn(P X), each of their atoms must be derived by successively applying rules (and ultimately facts) in
P X. This is made precise in Section 5.1.

For computing stable models of normal programs, we decompose their fixpoint characteri-
zation for developing an approximation scheme. To this end, we approximate a stable model X by
two sets of atoms L and U such that L ⊆ X ⊆ U . That is, L and U constitute lower and upper
bounds on X, respectively. One may view L and (A \ U) as the true and false atoms in a partial
three-valued interpretation of the program, respectively. Now, for sets X and Y of ground atoms and
a logic program P , a key observation is that

X ⊆ Y implies P Y ⊆ P X implies Cn(P Y) ⊆ Cn(P X).

Given a stable model X of P , this entails the following properties:

• If L ⊆ X, then X ⊆ Cn(P L).

• If X ⊆ U , then Cn(P U) ⊆ X.

• If L ⊆ X ⊆ U , then L ∪ Cn(P U) ⊆ X ⊆ U ∩ Cn(P L).

The last property provides a recipe for iteratively tightening the lower and upper bounds:

repeat

replace L with L ∪ Cn(P U)

replace U with U ∩ Cn(P L)

until L and U do not change anymore.

28 2. INTRODUCTION

We observe that L becomes larger (or remains the same) and U becomes smaller (or remains the
same) at each iteration. Nonetheless, the property L ⊆ X ⊆ U is invariant for each stable model X

of P . Thus, the above recipe tightens the approximation while preserving all enclosed stable models.
If we get L �⊆ U at some point, the original bounds encompassed no stable model. However, once
we obtain L = U , then L is a stable model of P .

For illustration, consider Program P7 below.

P7 =
{

a ← c ← a, ∼d e ← b, ∼f

b ← ∼a d ← ∼c, ∼e e ← e

}

Starting with L0 = ∅ and U0 = atom(P7) = {a, b, c, d, e, f } results in the following.6

P ∅
7 =

{
a ← c ← a e ← b

b ← d ← e ← e

}
Cn(P ∅

7) = {a, b, c, d, e}
P

{a,b,c,d,e,f }
7 =

{
a ←

e ← e

}
Cn(P

{a,b,c,d,e,f }
7) = {a}

Consequently, we get L1 = {a} and U1 = {a, b, c, d, e}, showing that a belongs to all and f to no
stable models of P7, respectively. The new bounds yield the following reduced programs and their
sets of consequences.

P
{a}
7 =

{
a ← c ← a e ← b

d ← e ← e

}
Cn(P

{a}
7) = {a, c, d}

P
{a,b,c,d,e}
7 =

{
a ← e ← b

e ← e

}
Cn(P

{a,b,c,d,e}
7) = {a}

This results in L2 = {a} and U2 = {a, c, d}. The latter reflects that in addition to f neither b nor e

belong to any stable model of P7. We get the following reducts along with their smallest models.

P
{a}
7 =

{
a ← c ← a e ← b

d ← e ← e

}
Cn(P

{a}
7) = {a, c, d}

P
{a,c,d}
7 =

{
a ← e ← b

e ← e

}
Cn(P

{a,c,d}
7) = {a}

We finally reached a fixpoint resulting in L3 = {a} and U3 = {a, c, d}. These bounds correspond to
the partial interpretation ({a}, {b, e, f }), making explicit which atoms belong to each and no stable
model of P7, respectively.

The above recipe allows us to compute the (deterministic) consequences of a program relative
to some given bounds. In other words, it provides a blueprint for designing a propagation algorithm.
To this end, let expand P (L, U) denote the result obtained by computing a fixpoint with the above
recipe starting from bounds L and U . In our example, we thus have expand P7

(∅, atom(P7)) =
({a}, {a, c, d}). Given that each stable model X of P7 (trivially) satisfies the condition ∅ ⊆ X ⊆
atom(P7), the aforementioned preservation of stable models guaranteed by expand P implies also the

6We index L and U to indicate the respective iteration step.

2.4. COMPUTATIONAL ASPECTS 29

strengthened condition {a} ⊆ X ⊆ {a, c, d}. This leaves us with four candidate models, depending
on the membership of c and d, respectively.

The idea is now to proceed by case analysis. To this end, we choose either c or d and consider
in turn all candidate sets including and excluding the chosen atom. For example, let us decide to
(non-deterministically) choose c. Then, we first explore model candidates containing c by adding it
to the lower bound. Proceeding analogously as above, we obtain

• expand P7
({a} ∪ {c}, {a, c, d}) = ({a, c}, {a, c})

• expand P7
({a}, {a, c, d} \ {c}) = ({a, d}, {a, d})

In both cases, we get a stable model of P7, yielding {a, c} and {a, d}, respectively. These
two-valued models correspond to the total three-valued interpretations ({a, c}, {b, d, e, f }) and
({a, d}, {b, c, e, f }), respectively. In both computations, a, b, d, e, and f constitute deterministic
consequences because their truth assignment was computed within expand P , whereas the respective
truth assignment to c is regarded as a non-deterministic consequence because c was chosen arbitrar-
ily. The computation of deterministic consequences is also referred to as propagation. The process of
deciding upon non-deterministic consequences is simply called choice.

The successive alternation of propagation and choice constitutes a general computation
scheme in Constraint Programming. Building upon the above approximation strategy encapsulated
in expand P , we can instantiate this general scheme in the following search algorithm. As above, let
L ⊆ U ⊆ atom(P) for some logic program P .

solveP (L, U)

(L, U) ← expand P (L, U) // propagation

if L �⊆ U then failure // failure

if L = U then output L // success

else choose a ∈ U \ L // choice

solveP (L ∪ {a}, U)

solveP (L, U \ {a})
The call solveP (∅, atom(P)) leads to outputting all stable models of P . We observe that the above
algorithm traverses a search tree spanned by the chosen atoms and the following case analysis. This
amounts to a time complexity of O(2|atom(P)|). The actual number of choices among atom(P) is
influenced by the strength of the propagation and the quality of the choices because one choice may
result in more deterministic consequences than another.

2.4.2 REASONING MODES
Although determining whether a program has a stable model is the fundamental decision problem in
ASP, more reasoning modes are needed for covering the variety of reasoning problems encountered

30 2. INTRODUCTION

in applications. Also, in practice, one is often less interested in solving decision problems but rather
in solving the corresponding search problems.

The most prominent problems solved by ASP solvers are the following. To capture these, let
SM (P) denote the set of stable models of a given program P .

Satisfiability Compute some X ∈ SM (P)

(implicitly deciding whether a stable model exists).

Unsatisfiability Show that SM (P) = ∅.

Enumeration Enumerate (n elements of) SM (P).

Projection Enumerate (n elements of) {X ∩ B | X ∈ SM (P)} for B ⊆ A.

Intersection Compute
⋂

X∈SM (P) X.

Union Compute
⋃

X∈SM (P) X.

Optimization Compute some (or: Enumerate n elements of) X ∈ arg minX∈SM (P) ν(X)

where ν is an objective function subject to minimization, as expressed by optimization state-
ments in P .

2.4.3 COMPUTATIONAL COMPLEXITY
This section briefly summarizes complexity results for the basic decision problems in ASP.

In what follows, let a be an atom and X be a set of atoms.

• For a positive normal logic program P :

– Deciding whether X is the stable model of P is P-complete.

– Deciding whether a is in the stable model of P is P-complete.

• For a normal logic program P :

– Deciding whether X is a stable model of P is P-complete.

– Deciding whether a is in a stable model of P is NP-complete.

• For a normal logic program P with optimization statements:

– Deciding whether X is an optimal stable model of P is co-NP-complete.

– Deciding whether a is in an optimal stable model of P is �P
2 -complete.

• For a positive disjunctive logic program P :

– Deciding whether X is a stable model of P is co-NP-complete.

2.5. REFERENCES AND FURTHER READING 31

– Deciding whether a is in a stable model of P is NPNP -complete.

• For a disjunctive logic program P :

– Deciding whether X is a stable model of P is co-NP-complete.

– Deciding whether a is in a stable model of P is NPNP -complete.

• For a disjunctive logic program P with optimization statements:

– Deciding whether X is an optimal stable model of P is co-NPNP -complete.

– Deciding whether a is in an optimal stable model of P is �P
3 -complete.

• For a propositional theory �:

– Deciding whether X is a stable model of � is co-NP-complete.

– Deciding whether a is in a stable model of � is NPNP -complete.

The above complexity results apply to propositional programs only. For capturing the com-
plexity of the first-order case, we note that the ground instantiation grd (P) of a first-order program
P is exponential in the size of P . Hence, roughly speaking, we obtain the analogous results by
replacing the base NP by NEXPTIME for capturing programs with variables.

2.5 REFERENCES AND FURTHER READING
Introductory textbooks on Logic and Logic Programming can be found in (Enderton, 1972,
Gallier, 1986, Lloyd, 1987). A basic tutorial on Logic Programming leading to ASP can be found
in (Lifschitz, 2004).

A positive rule is also referred to as being definite; it corresponds to a disjunction with exactly
one positive literal, which itself is called a definite clause. Horn clauses are clauses with at most one
positive atom. Clearly, each definite clause is a Horn clause but not vice versa. Informally, Horn
clauses can be seen as an extension of definite clauses with integrity constraints. A set of definite
(Horn) clauses has a ⊆-smallest model (or none). Given a positive program P , its set of consequences
Cn(P) corresponds to the smallest model of the set of definite clauses corresponding to P (see also
the definition of

←−
CF (P) on Page 69). For details, we refer the reader to Lifschitz (2004), Lloyd

(1987).
The stable models semantics was defined by Michael Gelfond and Vladimir Lifschitz in (1988),

and further elaborated in (1991). The term answer set was introduced in Gelfond and Lifschitz
(1990), when extending the stable models semantics to logic programs with classical negation. Such
programs admit “stable models” containing both or neither of an atom and its classical negation;
hence they were referred to as answer sets.

An alternative reduct was defined by Faber et al. (2004); it amounts to the one given in Linke
(2001),which was itself derived from the characterization of “default extensions” through “generating
rules” in Default Logic (Reiter, 1980).

32 2. INTRODUCTION

The development of the algorithms expand P and solveP from the definition of stable models
is due to Lifschitz (2004). The algorithmic scheme of solveP follows that of the well-known Davis-
Putman-Logemann-Loveland (DPLL) procedure (Davis and Putnam, 1960, Davis et al., 1962) for
SAT. The first implementation computing the stable models of a logic program is called smodels and
due to Niemelä and Simons (1995), Simons et al. (2002); it is detailed in the dissertation of Simons
(2000). Our naming of the above propagation procedure credits the one in smodels, which is called
expand. Interestingly, expand is composed of two subprocedures atleast and atmost. While atleast
corresponds to the (Fitting) operator �P described in Section 5.2, atmost computes the greatest
unfounded set, referred to as UP in Section 5.2.

Even and odd cycles in networks constitute an omnipresent pattern in informatics (and natural
sciences). Examples of this in ASP are given in Program P2 and P3. While the two rules in P2 form
an even cycle (in the underlying atom dependency graph) inducing two alternative solutions, the
single rule in P3 induces an odd cycle denying a solution.

Viewing rules with first-order variables as schemas representing their sets of ground instances
is common in Logic Programming (Lloyd, 1987). The semantic counterpart of this is provided by
concepts developed by Jacques Herbrand. In view of this, the set of terms and atoms are also called
Herbrand universe and Herbrand base, respectively. A first-order interpretation whose underlying
domain is the Herbrand universe is called a Herbrand interpretation. Each Herbrand interpretation
corresponds to a subset of the Herbrand base. See (Lloyd, 1987) for a formal account of these
concepts.

A theory on least and greatest fixpoints for monotone operators on lattices is given in Tarski
(1955). The Knaster-Tarski Theorem tells us that each monotone operator on a complete lattice has
a least fixpoint. See Eiter et al. (2009), Lifschitz (2004) for brief introductions.

The material of Section 2.3.2 is largely based on the work of Simons et al. comprehensively
published in (2002). In fact, choice and cardinality rules as well as cardinality and weight constraints
were introduced with the lparse/smodels systems (cf. Niemelä and Simons (1997), Syrjänen). The
same applies to optimization statements. The semantics of choice, cardinality, and weight rules is
defined from first principles in Simons et al. (2002), as well as basic translations from which we
derived the ones in Section 2.3.

Weak constraints and tuple-oriented forms of cardinality and weight constraints are due
to Leone et al. (2006), and implemented originally within the ASP system dlv.They are also available
in (the experimental) gringo version 3.0.92 and will be included in the upcoming gringo series 4.

Explicit priority levels are supported in recent versions of the grounder gringo (Gebser et al.).
This avoids a dependency of priorities on input order, which is considered by lparse (Syrjänen) if
several minimize statements are provided. Priority levels are also supported by dlv (Leone et al.,
2006) in weak constraints. Furthermore, we admit negative weights in minimize statements, where
they cannot raise semantic problems (cf. Ferraris (2005)) going along with the rewriting of weight
constraints suggested in Simons et al. (2002).

2.5. REFERENCES AND FURTHER READING 33

Conditional literals were introduced with the grounder lparse (Syrjänen); see Syrjänen (2004)
for a formal introduction.

The elimination of default negation in the head is due to Janhunen (2001).
Many other forms of preferences for specifying optimal stable models can be found in the

literature. An overview is given in Delgrande et al. (2004). Gebser et al. (2011h) show how minimize
(and maximize) statements can be used for expressing inclusion and Pareto-based preference criteria.

Disjunctive logic programs under stable models semantics were introduced in
Gelfond and Lifschitz (1991). The addition of default negation to disjunctive heads is due to
Lifschitz and Woo (1992).

The stable models semantics for propositional theories was defined in Ferraris (2005).
Cabalar and Ferraris (2007) show that propositional theories are (strongly) equivalent to disjunctive
logic programs.

Dantsin et al. (1997) give a survey of complexity results in logic programming. A fine-grained
account of subclasses of programs is given in Truszczynski (2011). See also Simons et al. (2002) and
Leone et al. (2006) for details on computational complexity. The lifting of complexity results from
the ground to the non-ground case is described in Leone et al. (2006).

C H A P T E R 3

Basic modeling
This chapter uses three well-known examples to illustrate some basic principles of modeling in
ASP. First, we use graph coloring to show how problem classes and instances are encoded as logic
programs. Then, we stepwisely develop a solution to the n-queens problem for illustrating ASP’s
modeling methodology along with the workflow underlying ASP’s solving process. Finally, we deal
with the traveling salesperson problem in order to provide some interesting modeling and solving
details.

3.1 PROBLEM ENCODING

For solving a problem class C for a problem instance I in ASP, we encode

1. the problem instance I as a set PI of facts and

2. the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted from the stable models of PI ∪ PP.
An encoding PC is uniform, if it can be used to solve all its problem instances. That is, PC encodes
the solutions to C for any set PI of facts. Note that propositional logic admits no uniform encodings
in general; rather each problem instance needs to be encoded separately.

As a first illustrative example, let us consider graph coloring. More precisely, given a graph
(V , E), assign each node in V one of n colors such that no two nodes in V connected by an edge in
E have the same color. A problem instance is given by the graph, whereas the problem class consists
in finding assignments of colors to nodes subject to the given constraint. As an example, consider
Graph G8 depicted in Figure 3.1.

G8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2
3
4
5
6

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1, 2) (1, 3) (1, 4)

(2, 4) (2, 5) (2, 6)

(3, 1) (3, 4) (3, 5)

(4, 1) (4, 2)

(5, 3) (5, 4) (5, 6)

(6, 2) (6, 3) (6, 5)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.1)

36 3. BASIC MODELING

1 2

3

4

5

6

Figure 3.1: Directed graph G8 having 6 nodes and 17 edges.

This graph is represented by predicates node/1 and edge/2 in Program P8 given in Listing 3.1.

Listing 3.1: Program P8 representing Graph 3.1 (graph.lp)

1 node (1..6).

3 edge (1,2). edge (1,3). edge (1,4).
4 edge (2,4). edge (2,5). edge (2,6).
5 edge (3,1). edge (3,4). edge (3,5).
6 edge (4,1). edge (4,2).
7 edge (5,3). edge (5,4). edge (5,6).
8 edge (6,2). edge (6,3). edge (6,5).

The two dots .. in node(1..6) allow us to represent the six instances of node/1 in a compact way
(see below).

The 3-colorability problem is encoded in Program P9 given in Listing 3.2.

Listing 3.2: Program P9 encoding graph coloring (color.lp)

1 col(r). col(g). col(b).

3 1 {color(X,C) : col(C)} 1 :- node(X).
4 :- edge(X,Y), color(X,C), color(Y,C).

6 #hide.
7 #show color /2.

Line 1 provides the available colors. (Arguably this information could also be included in the problem
instance.) Lines 3 and 4 encode the actual colorability problem. The first rule expresses that each

3.1. PROBLEM ENCODING 37

node X must be colored with exactly one color among red, blue, and green. Without the integrity
constraint in Line 4 this would result in all possible colorings, including those painting a whole graph
with the same color. Such colorings are however ruled out in Line 4 by stipulating that connected
nodes must be colored differently. Finally, Lines 6 and 7 are directives advising the solver to project
stable models onto instances of predicate color/2.

Looking at the rules in Line 3 and 4, we note that each variable is bound via an occurrence in
a positive literal. Among them, we distinguish local and global variables. For instance, variable C in
Line 3 is local to the encompassing cardinality constraint; it is bound by col(C) and varies over all
instantiations of col(C). All other variables are global with respect to each rule and must be bound
by a positive body literal. For instance, X acts as a global variable in Line 3; it is bound through the
positive body literal node(X). Accordingly, one rule instance is produced for each instantiation of
node(X) (unless simplifications apply). Rules satisfying these requirements are said to be safe, as
detailed in Chapter 4.

Following the ASP solving process in Figure 1.2 on Page 3, let us now instantiate the combined
Program P8 ∪ P9. This first processing step is displayed in Listing 3.3. 1

Listing 3.3: Grounding Program P8 ∪ P9

$ gringo --text color.lp graph.lp

col(r). col(g). col(b).

edge (1 ,2). edge (1 ,3). edge (1 ,4). edge (2 ,4). edge (2 ,5). edge (2 ,6).
edge (3 ,1). edge (3 ,4). edge (3 ,5). edge (4 ,1). edge (4 ,2). edge (5 ,3).
edge (5 ,4). edge (5 ,6). edge (6 ,2). edge (6 ,3). edge (6 ,5).

node (1). node (2). node (3). node (4). node (5). node (6).

1 #count {color(6,b),color(6,g),color(6,r)} 1.
1 #count {color(5,b),color(5,g),color(5,r)} 1.
1 #count {color(4,b),color(4,g),color(4,r)} 1.
1 #count {color(3,b),color(3,g),color(3,r)} 1.
1 #count {color(2,b),color(2,g),color(2,r)} 1.
1 #count {color(1,b),color(1,g),color(1,r)} 1.

:-color(1,b),color(2,b). :-color(2,b),color(4,b). :-color(3,b),color(1,b).
:-color(1,b),color(3,b). :-color(2,b),color(5,b). :-color(3,b),color(4,b).
:-color(1,b),color(4,b). :-color(2,b),color(6,b). :-color(3,b),color(5,b).
:-color(1,g),color(2,g). :-color(2,g),color(4,g). :-color(3,g),color(1,g).
:-color(1,g),color(3,g). :-color(2,g),color(5,g). :-color(3,g),color(4,g).
:-color(1,g),color(4,g). :-color(2,g),color(6,g). :-color(3,g),color(5,g).
:-color(1,r),color(2,r). :-color(2,r),color(4,r). :-color(3,r),color(1,r).
:-color(1,r),color(3,r). :-color(2,r),color(5,r). :-color(3,r),color(4,r).
:-color(1,r),color(4,r). :-color(2,r),color(6,r). :-color(3,r),color(5,r).

:-color(4,b),color(1,b). :-color(5,b),color(3,b). :-color(6,b),color(2,b).
:-color(4,b),color(2,b). :-color(5,b),color(4,b). :-color(6,b),color(3,b).
:-color(4,g),color(1,g). :-color(5,b),color(6,b). :-color(6,b),color(5,b).

1The resulting output has been reformatted for the sake of conciseness.

38 3. BASIC MODELING

:-color(4,g),color(2,g). :-color(5,g),color(3,g). :-color(6,g),color(2,g).
:-color(4,r),color(1,r). :-color(5,g),color(4,g). :-color(6,g),color(3,g).
:-color(4,r),color(2,r). :-color(5,g),color(6,g). :-color(6,g),color(5,g).

:-color(5,r),color(3,r). :-color(6,r),color(2,r).
:-color(5,r),color(4,r). :-color(6,r),color(3,r).
:-color(5,r),color(6,r). :-color(6,r),color(5,r).

#hide.
#show color /2.

Line 1 shows the command prompt, $, followed by the command launching the grounder gringo on
the files color.lp and graph.lp containing programs P9 and P8, respectively. The option --text
tells gringo to print the ground program in a human readable way. We observe that the grounder
proceeds in a “bottom-up” fashion by first outputting all factual information. The following six
ground cardinality constraints result from the ground instantiation of Rule 3 in Listing 3.2. One
such constraint is generated for each node. The respective instance of the node/1 predicate in the
original body was evaluated and subsequently eliminated. Also, the grounder made the fact explicit
that cardinality constraints are count aggregates, indicated by #count. Similarly, ground integrity
constraints are obtained from the integrity constraint in Line 4 of Listing 3.2. We obtain 51 ground
rules in view of 17 edges and 3 colors. Again, true parts, viz. instances of edge/2, have been simplified
away. The last two lines just repeat the solver directives from Listing 3.2.

For computing the stable models of the resulting ground program, it is passed in machine
readable format (by omitting the gringo option --text) to the ASP solver clasp.

Listing 3.4: Grounding and solving Program P8 ∪ P9

$ gringo color.lp graph.lp | clasp 0
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)
Answer: 2
color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)
Answer: 3
color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)
Answer: 4
color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)
Answer: 5
color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)
Answer: 6
color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)
SATISFIABLE

Models : 6
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

3.2. MODELING METHODOLOGY 39

The option 0 instructs clasp to compute all stable models. In our example, we obtain six of them,
each representing a different coloring of Graph G8 in Figure 3.1. The coloring of G8 expressed by
the fifth stable model is given in Figure 3.2.

1 2

3

4

5

6

Figure 3.2: A coloring of Graph G8.

3.2 MODELING METHODOLOGY
The basic approach to writing encodings in ASP follows a generate-and-test methodology, also
referred to as guess-and-check, inspired by intuitions on NP problems. A “generating” part is meant
to non-deterministically provide solution candidates, while a “testing” part eliminates candidates
violating some requirements. (Note that this decomposition is only a methodological one; it is
neither syntactically enforced nor computationally relevant.) Both parts are usually amended by
“defining” parts providing auxiliary concepts. In addition, one may specify optimization criteria via
lexicographically ordered objective functions, as described in Section 2.3.3.

In fact, the coloring encoding in Listing 3.2 is an exemplar for this methodology. The rule in
Line 3 generates solution candidates, among which the integrity constraint in Line 4 tests whether
they constitute valid solutions.

For further illustrating this methodology, let us stepwisely develop a solution to the n-queens
problem. For this, we want to place n queens on an n × n chess board such that no two queens attack
each other.

To begin with, we define in Listing 3.5 the underlying board consisting of n rows and n

columns.

Listing 3.5: Program P10 addressing the n-queens problem, Part I (queensI.lp)

1 row (1..n).
2 col (1..n).

40 3. BASIC MODELING

This simple program has a single stable model (for each given value of n), as shown in Listing 3.6.

Listing 3.6: Grounding and solving Program P10 (for n=5)

$ gringo queens0.lp --const n=5 | clasp 0
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
row (1) row(2) row(3) row (4) row (5) col (1) col (2) col (3) col (4) col (5)
SATISFIABLE

Models : 1
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

Note that the option ‘--const n=5’ tells the grounder to replace the constant n in Program P10 by
5. This gives our representation of a 5 × 5-chess board, as illustrated in Figure 3.3. The argument 0
makes the solver enumerate all stable models, although there is only one, as indicated by its output
‘Models : 1’.

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Figure 3.3: Board corresponding to the stable model of Logic program P10

Next, let us populate the board in Figure 3.3. In view of our methodology, we generate solution
candidates by placing queens on the board. This is accomplished by the choice rule in Line 4 of
Listing 3.7. From now on, we project stable models on instances of the queen/2 predicate, as
indicated in Line 6.

Listing 3.7: Program P11 addressing the n-queens problem, Part II (queensII.lp)

1 row (1..n).
2 col (1..n).

4 { queen(I,J) : col(I) : row(J) }.

6 #hide. #show queen /2.

3.2. MODELING METHODOLOGY 41

Program P11 has 33554432 stable models. For brevity, let us instruct the solver clasp to enumerate
only five of them. The result is shown in Listing 3.8. The obtained stable models are illustrated in
Figure 3.4.

Listing 3.8: Grounding and solving Program P11

$ gringo queens1.lp --const n=5 | clasp 5
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1

Answer: 2
queen (1,1)
Answer: 3
queen (2,1)
Answer: 4
queen (2,1) queen (1,1)
Answer: 5
queen (3,1)
SATISFIABLE

Models : 5+
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

5Z0Z0Z
40Z0Z0
3Z0Z0Z
20Z0Z0
1Z0Z0Z

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
20Z0Z0
1L0Z0Z

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
20Z0Z0
1ZQZ0Z

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
20Z0Z0
1LQZ0Z

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
20Z0Z0
1Z0L0Z

1 2 3 4 5

Figure 3.4: Boards corresponding to five stable models of Logic program P11

Unlike Listing 3.6, where clasp indicates that there is exactly one stable model of P10, it tells us via
5+ that more than five stable models of P11 could be enumerated. In fact, the enumeration of all
models would at some point also yield a chessboard full of queens. However, most of these solution
candidates are invalid. In fact, all five examples fail to place the necessary number of queens.

To this end, we add an integrity constraint eliminating all boards with either fewer or more
than n queens. The resulting program, P12, is given in Listing 3.9.

Listing 3.9: Program P12 addressing the n-queens problem, Part III (queensIII.lp)

1 row (1..n).
2 col (1..n).

42 3. BASIC MODELING

4 { queen(I,J) : col(I) : row(J) }.
5 :- not n { queen(I,J) } n.

7 #hide. #show queen /2.

Actually, the same effect is obtained by replacing Lines 4 and 5 of Listing 3.9 with

n { queen(I,J) : row(I) : col(J) } n.

We simply opted for the modular change in view of a successive development of our example.
In fact, Line 5 reveals a particularity of gringo’s grounding procedure. Strictly speaking, the

instantiation of variables I and J is unrestricted within the cardinality constraint. However, this is
tolerated by gringo because the instantiation of queen/2 is delineated in Line 4. Hence, the bound
established in Line 4 is also applied to the instantiation of I and J in queen(I,J) in Line 5 (unless
further restrictions are given).

Although Program P12 eliminates many invalid solutions obtained from P11, it still possesses
53130 stable models. In analogy to the above, we compute five of them in Listing 3.10 and illustrate
them in Figure 3.5.

Listing 3.10: Grounding and solving Program P12

$ gringo queens2.lp --const n=5 | clasp 5
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
queen (5,1) queen (4,1) queen (3,1) queen (2,1) queen (1,1)
Answer: 2
queen (1,2) queen (4,1) queen (3,1) queen (2,1) queen (1,1)
Answer: 3
queen (1,2) queen (5,1) queen (3,1) queen (2,1) queen (1,1)
Answer: 4
queen (1,2) queen (5,1) queen (4,1) queen (2,1) queen (1,1)
Answer: 5
queen (1,2) queen (5,1) queen (4,1) queen (3,1) queen (1,1)
SATISFIABLE

Models : 5+
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

We observe that all five example solutions have multiple queens in the same line and/or row. For
eliminating such solution candidates, we add two integrity constraints forbidding horizontal and
vertical attacks. The resulting program, P13, is given in Listing 3.11.

Listing 3.11: Program P13 addressing the n-queens problem, Part IV (queensIV.lp)

1 row (1..n).

3.2. MODELING METHODOLOGY 43

5Z0Z0Z
40Z0Z0
3Z0Z0Z
20Z0Z0
1LQLQL

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
2QZ0Z0
1LQLQZ

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
2QZ0Z0
1LQL0L

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
2QZ0Z0
1LQZQL

1 2 3 4 5

5Z0Z0Z
40Z0Z0
3Z0Z0Z
2QZ0Z0
1L0LQL

1 2 3 4 5

Figure 3.5: Boards corresponding to five stable models of Logic program P12.

2 col (1..n).

4 { queen(I,J) : col(I) : row(J) }.
5 :- not n { queen(I,J) } n.
6 :- queen(I,J), queen(I,JJ), J != JJ.
7 :- queen(I,J), queen(II ,J), I != II.

9 #hide. #show queen /2.

In total, we obtain 120 stable models from P13, among which we compute and illustrate again five
examples in Listing 3.12 and Figure 3.6, respectively.

Listing 3.12: Grounding and solving Program P13

$ gringo queens3.lp --const n=5 | clasp 5
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
queen (5,5) queen (4,4) queen (3,3) queen (2,2) queen (1,1)
Answer: 2
queen (5,5) queen (4,4) queen (3,3) queen (1,2) queen (2,1)
Answer: 3
queen (5,5) queen (4,4) queen (2,3) queen (1,2) queen (3,1)
Answer: 4
queen (5,5) queen (4,4) queen (1,3) queen (2,2) queen (3,1)
Answer: 5
queen (5,5) queen (4,4) queen (1,3) queen (3,2) queen (2,1)
SATISFIABLE

Models : 5+
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

We still observe that the five selected solution candidates are invalid because of multiple queens
in diagonals. As above, we add two integrity constraints forbidding diagonal attacks. This yields
Program P14 given in Listing 3.13.

Listing 3.13: Program P14 solving the n-queens problem (queens.lp)

44 3. BASIC MODELING

5Z0Z0L
40Z0L0
3Z0L0Z
20L0Z0
1L0Z0Z

1 2 3 4 5

5Z0Z0L
40Z0L0
3Z0L0Z
2QZ0Z0
1ZQZ0Z

1 2 3 4 5

5Z0Z0L
40Z0L0
3ZQZ0Z
2QZ0Z0
1Z0L0Z

1 2 3 4 5

5Z0Z0L
40Z0L0
3L0Z0Z
20L0Z0
1Z0L0Z

1 2 3 4 5

5Z0Z0L
40Z0L0
3L0Z0Z
20ZQZ0
1ZQZ0Z

1 2 3 4 5

Figure 3.6: Boards corresponding to five stable models of Logic program P13.

1 row (1..n).
2 col (1..n).

4 { queen(I,J) : col(I) : row(J) }.
5 :- not n { queen(I,J) } n.
6 :- queen(I,J), queen(I,JJ), J != JJ.
7 :- queen(I,J), queen(II ,J), I != II.
8 :- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I-J == II-JJ.
9 :- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J == II+JJ.

11 #hide. #show queen /2.

In fact, Lines 6 to 9 contain arithmetic functions + and - as well as comparison predicates !=
and ==. (To guarantee their safe instantiation, each contained variable must be bound by a positive
body literal.) Once instantiated, the corresponding expressions are evaluated by the grounder and
resulting simplifications are applied. For instance, no ground rule is produced from Line 6 whenever
J and JJ are instantiated with the same term; otherwise the inequality holds and is removed from
the resulting ground rule.

Finally, Program P14 has ten stable models, all of which are now solutions to the 5-queens
problem. The computation is given in Listing 3.14, and the resulting solutions are illustrated in
Figure 3.7.

Listing 3.14: Grounding and solving Program P14

$ gringo queens.lp --const n=5 | clasp 0
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
queen (4,5) queen (1,4) queen (3,3) queen (5,2) queen (2,1)
Answer: 2
queen (2,5) queen (5,4) queen (3,3) queen (1,2) queen (4,1)
Answer: 3
queen (2,5) queen (4,4) queen (1,3) queen (3,2) queen (5,1)
Answer: 4
queen (4,5) queen (2,4) queen (5,3) queen (3,2) queen (1,1)
Answer: 5

3.3. ADVANCED PROBLEM ENCODING 45

queen (5,5) queen (2,4) queen (4,3) queen (1,2) queen (3,1)
Answer: 6
queen (1,5) queen (4,4) queen (2,3) queen (5,2) queen (3,1)
Answer: 7
queen (5,5) queen (3,4) queen (1,3) queen (4,2) queen (2,1)
Answer: 8
queen (1,5) queen (3,4) queen (5,3) queen (2,2) queen (4,1)
Answer: 9
queen (3,5) queen (1,4) queen (4,3) queen (2,2) queen (5,1)
Answer: 10
queen (3,5) queen (5,4) queen (2,3) queen (4,2) queen (1,1)
SATISFIABLE

Models : 10
Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

5Z0ZQZ
4QZ0Z0
3Z0L0Z
20Z0ZQ
1ZQZ0Z

1 2 3 4 5

5ZQZ0Z
40Z0ZQ
3Z0L0Z
2QZ0Z0
1Z0ZQZ

1 2 3 4 5

5ZQZ0Z
40Z0L0
3L0Z0Z
20ZQZ0
1Z0Z0L

1 2 3 4 5

5Z0ZQZ
40L0Z0
3Z0Z0L
20ZQZ0
1L0Z0Z

1 2 3 4 5

5Z0Z0L
40L0Z0
3Z0ZQZ
2QZ0Z0
1Z0L0Z

1 2 3 4 5

5L0Z0Z
40Z0L0
3ZQZ0Z
20Z0ZQ
1Z0L0Z

1 2 3 4 5

5Z0Z0L
40ZQZ0
3L0Z0Z
20Z0L0
1ZQZ0Z

1 2 3 4 5

5L0Z0Z
40ZQZ0
3Z0Z0L
20L0Z0
1Z0ZQZ

1 2 3 4 5

5Z0L0Z
4QZ0Z0
3Z0ZQZ
20L0Z0
1Z0Z0L

1 2 3 4 5

5Z0L0Z
40Z0ZQ
3ZQZ0Z
20Z0L0
1L0Z0Z

1 2 3 4 5

Figure 3.7: Boards corresponding to the stable models of Logic program P14

All in all, we have seen how the successive addition of integrity constraints narrows down the
solution candidates. Apart from illustrating the generate-and-test methodology of ASP, it shows its
elaboration tolerance.

3.3 ADVANCED PROBLEM ENCODING

Finally, we consider the well-known traveling salesperson problem. The task is to decide whether
there is a round trip visiting each node in a graph exactly once (also known as a Hamiltonian cycle)
such that accumulated edge costs do not exceed some budget. We tackle a slightly more general
variant of the problem by not a priori fixing the budget. Rather, we want to compute a round trip
with a minimum budget.

46 3. BASIC MODELING

For this purpose, let us reconsider Graph G8 but associate costs with edges. Figure 3.8 shows
the augmented graph from Figure 3.1. Symmetric edges have the same costs here, but differing costs
would be possible as well.

1 2

3

4

5

6

2

3

1 2

2
4

2

2

3

2

1

Figure 3.8: Graph G8 from Figure 3.1 annotated with edge costs.

To accommodate edge costs, we augment the graph representation expressed in Program P8

(cf. Listing 3.1) by the facts in Program P15 given in Listing 3.15.

Listing 3.15: Program P15 representing edge costs of Graph G8 (costs.lp)

1 cost (1,2,2). cost (1,3,3). cost (1,4,1).
2 cost (2,4,2). cost (2,5,2). cost (2,6,4).
3 cost (3,1,3). cost (3,4,2). cost (3,5,2).
4 cost (4,1,1). cost (4,2,2).
5 cost (5,3,2). cost (5,4,2). cost (5,6,1).
6 cost (6,2,4). cost (6,3,3). cost (6,5,1).

Program P15 contains an instance of cost/3 for each (directed) edge in Figure 3.8.
As mentioned above, the first subproblem consists of finding a round trip, giving a candi-

date for a minimum-cost round trip. Following our generate-and-test methodology, we encode this
subproblem via the following rules.

Listing 3.16: Program P16 addressing the round trip (Hamiltonian cycle) problem (ham.lp)

1 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
2 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

4 reached(Y) :- cycle(1,Y).
5 reached(Y) :- cycle(X,Y), reached(X).

3.3. ADVANCED PROBLEM ENCODING 47

7 :- node(Y), not reached(Y).

9 #hide. #show cycle /2.

Solution candidates are represented by instances of predicate cycle/2, chosen among all edges of
Graph G8. Accordingly, Line 9 projects stable models on the respective instances.

The “generating” rules in Lines 1 and 2 make sure that each node in a graph must have exactly
one outgoing and exactly one incoming edge, respectively. These edges are captured by means of
predicate cycle/2. Let us make this more precise by inserting the available edges for node 1. This
yields the following instantiation of Lines 1 and 2:

1 { cycle (1,2), cycle (1,3), cycle (1,4) } 1.
1 { cycle (3,1), cycle (4,1) } 1.

The first rule groups all outgoing edges of node 1, while the second does the same for its incoming
edges. Together both rules provide us with six possibilities to get across node 1.

The two rules in Lines 4 and 5 are “defining” rules, which (recursively) determine which nodes
are reached by a cycle candidate produced in the “generating” part. Note that the rule in Line 4 builds
on the assumption that the cycle “starts” at node 1, that is, any successor Y of 1 is reached by the cycle.
The second rule in Line 5 states that, from a reached node X, an adjacent node Y can be reached
via a further edge in the cycle. Notably, the definition of reached/1 in Lines 4 and 5 relies on an
adequate treatment of positive recursion (among ground instances of reached/1).2 That is, only
derivable atoms are made true, while all others are set to false. This feature makes sure that all nodes
are reached by a global cycle from node 1, thus, excluding isolated subcycles. In fact, the “test” in
Line 7 ensures that each node in a given graph is reached, that is, the instances of cycle/2 in a
stable model must be edges of a round trip.

Graph G8 admits six round trips, as shown in Listing 3.17.

Listing 3.17: Grounding and solving Program P8 ∪ P15 ∪ P16

$ gringo graph.lp costs.lp ham.lp | clasp 0
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
cycle (6,3) cycle (5,4) cycle (4,1) cycle (3,5) cycle (2,6) cycle (1,2)
Answer: 2
cycle (6,5) cycle (5,3) cycle (4,1) cycle (3,4) cycle (2,6) cycle (1,2)
Answer: 3
cycle (6,2) cycle (5,6) cycle (4,1) cycle (3,5) cycle (2,4) cycle (1,3)
Answer: 4
cycle (6,3) cycle (5,6) cycle (4,1) cycle (3,4) cycle (2,5) cycle (1,2)
Answer: 5
cycle (6,5) cycle (5,3) cycle (4,2) cycle (3,1) cycle (2,6) cycle (1,4)
Answer: 6

2Such positive recursion makes the resulting ground program non-tight (cf. Section 5.1).

48 3. BASIC MODELING

cycle (6,3) cycle (5,6) cycle (4,2) cycle (3,1) cycle (2,5) cycle (1,4)
SATISFIABLE

Models : 6
Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

We have so far ignored edge costs, and stable models of Program P16 correspond to round
trips only. In order to find a minimum-cost journey among the six round trips of G8, we add an
“optimizing” part to Program P16. This part is expressed by a single minimize statement given in
Program P17.

Listing 3.18: Program P17 minimizing edge costs for instances of cycle/2 (min.lp)

11 #minimize [cycle(X,Y) = C : cost(X,Y,C)].

Here, edges belonging to the cycle are weighted according to their costs. After grounding, the
minimization in Line 11 ranges over 17 instances of cycle/2, one for each (weighted) edge in G8.
For instance, instantiating the weighted (conditional) literal ‘cycle(X,Y) = C : cost(X,Y,C)’
in view of the fact cost(2,6,4) in Listing 3.15 yields the ground weighted literal ‘cycle(2,6) =
4’.

Finally, we explain how the unique minimum-cost round trip (depicted in Figure 3.9) can be
computed. The catch is that we are now interested in optimal stable models, rather than arbitrary
ones. In order to determine the optimum, we can start by gradually decreasing the costs associated
with stable models until we cannot find a strictly better one. In fact, clasp successively enumerates
better stable models with respect to the provided optimization statements. Any stable model is
printed as soon as it has been computed, and the last one is necessarily optimal. If there are multiple
optimal stable models, an arbitrary one among them is computed. This proceeding is shown in
Listing 3.19.

Listing 3.19: Grounding and solving Program P8 ∪ P15 ∪ P16 ∪ P17

$ gringo graph.lp costs.lp ham.lp min.lp | clasp 0
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
cycle (6,3) cycle (5,4) cycle (4,1) cycle (3,5) cycle (2,6) cycle (1,2)
Optimization: 14
Answer: 2
cycle (6,5) cycle (5,3) cycle (4,1) cycle (3,4) cycle (2,6) cycle (1,2)
Optimization: 12
Answer: 3
cycle (6,3) cycle (5,6) cycle (4,1) cycle (3,4) cycle (2,5) cycle (1,2)
Optimization: 11
OPTIMUM FOUND

3.4. REFERENCES AND FURTHER READING 49

Models : 1
Enumerated: 3
Optimum : yes

Optimization: 11
Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

Given that no answer is obtained after the third one, we know that 11 is the optimum value. However,
there might be further stable models sharing the same optimum that have not yet been computed.
In order to find them too, we can use the command line option --opt-all=11 to enumerate all
stable models having an objective value less or equal to 11. For the graph in Figure 3.8, the optimal
stable model is unique. It is illustrated in Figure 3.9.

1 2

3

4

5

6

2

3

1 2

2
4

2

2

3

2

1

Figure 3.9: A minimum-cost round trip through Graph G8.

3.4 REFERENCES AND FURTHER READING
The methodology of partitioning a program into a generating, defining, testing, optimizing, and
displaying part was coined in Lifschitz (2002). More modeling examples following this paradigm
can be found in Eiter et al. (2009), Gebser et al., Leone et al. (2006). Early approaches to mod-
eling in ASP can be found in Baral (2003), Marek and Truszczyński (1999), Niemelä (1999).
Modeling aspects from the perspective of Knowledge Representation and Reasoning are discussed
in Baral and Gelfond (1994). A best-practice experience is described in Brain et al. (2009).

C H A P T E R 4

Grounding
The goal of grounding is to produce a finite and succinct propositional representation of a first-order
program. Before addressing the actual grounding process, let us discuss some arising issues.

To begin with, consider Program P18.

P18 =
⎧⎨
⎩

p(a, b)

p(b, c)

p(X, Z) ← p(X, Y), p(Y, Z)

⎫⎬
⎭

The signature of P18 consists of predicate symbol p/2, constant symbols a/0, b/0, c/0, and variable
symbolsX, Y, Z.Hence, for constructing the ground instantiation grd (P18),we have to systematically
consider all replacements of the three variables by constants a, b, and c. In the case of the last rule
in P18 we thus have to deal with twenty-seven ground rules, as witnessed by the exhaustive listing
of grd (P18) below.

grd (P18) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(a, b)

p(b, c)

p(a, a)←p(a, a), p(a, a) p(b, a)←p(b, a), p(a, a) p(c, a)←p(c, a), p(a, a)

p(a, a)←p(a, b), p(b, a) p(b, a)←p(b, b), p(b, a) p(c, a)←p(c, b), p(b, a)

p(a, a)←p(a, c), p(c, a) p(b, a)←p(b, c), p(c, a) p(c, a)←p(c, c), p(c, a)

p(a, b)←p(a, a), p(a, b) p(b, b)←p(b, a), p(a, b) p(c, b)←p(c, a), p(a, b)

p(a, b)←p(a, b), p(b, b) p(b, b)←p(b, b), p(b, b) p(c, b)←p(c, b), p(b, b)

p(a, b)←p(a, c), p(c, b) p(b, b)←p(b, c), p(c, b) p(c, b)←p(c, c), p(c, b)

p(a, c)←p(a, a), p(a, c) p(b, c)←p(b, a), p(a, c) p(c, c)←p(c, a), p(a, c)

p(a, c) ← p(a, b), p(b, c) p(b, c)←p(b, b), p(b, c) p(c, c)←p(c, b), p(b, c)

p(a, c)←p(a, c), p(c, c) p(b, c)←p(b, c), p(c, c) p(c, c)←p(c, c), p(c, c)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

However, all but one of the twenty-seven rule instances are redundant. For example, rule p(c, b) ←
p(c, b), p(b, b) can never apply, given that there is neither a possibility to derive p(c, b) nor p(b, b).
Hence, this rule can be discarded. In fact, grd (P18) can equivalently be represented by the two facts
and the single rule underlined in grd (P18). That is, these three rules yield the same stable models as
the twenty-nine listed above.

Next, consider Program P19.

P19 =
{

q(f (a))

p(X) ← q(X)

}

52 4. GROUNDING

The signature of P19 contains function symbols a/0 and f/1, leading to the infinite set of terms
{a, f (a), f (f (a)), . . . }. Consequently, rule p(X) ← q(X) results in infinitely many ground instan-
tiations in grd (P19).

grd (P19) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q(f (a))

p(a) ← q(a)

p(f (a)) ← q(f (a))

p(f (f (a))) ← q(f (f (a)))

p(f (f (f (a)))) ← q(f (f (f (a))))

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Similar to the above, only one ground instance of p(X) ← q(X) is essential to grd (P19). As a result,
the infinite set of rules in grd (P19) can be equivalently represented by the two rules underlined above.

In contrast to this, we obtain no finite representation of grd (P20).

P20 =
{

q(f (a))

p(X) ← ∼q(X)

}

As above, P20 induces the infinite set of terms {a, f (a), f (f (a)), . . . }. Unlike the above, however,
only one of the infinitely many ground instances of p(X) ← ∼q(X) can be discarded.

grd (P20) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q(f (a))

p(a) ← ∼q(a)

p(f (a)) ← ∼q(f (a))

p(f (f (a))) ← ∼q(f (f (a)))

. . .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

In fact, P20 has a single but infinite stable model, which is induced by all rules but p(f (a)) ←
∼q(f (a)) in grd (P20). For practical reasons, such programs must be rejected.

4.1 BASIC GROUNDING ALGORITHMS
Given a (first-order) logic program P , we are interested in finding a finite subset P ′ of grd (P)

such that the stable models of P ′ and grd (P) coincide. Although this is often possible, it cannot be
determined in general, as we have seen above.

Let us now turn to the computation of finite and succinct representations of ground normal
programs (whenever possible). To this end, the concept of safety plays a crucial role: a normal rule
is safe if each of its variables also occurs in some positive body literal. Accordingly, a normal logic
program is safe, if all its rules are safe. Observe that programs P18 and P19 are safe, while P20 is not.
Note that a safe normal rule is ground whenever its positive body literals are. In fact, if there are no
function symbols of non-zero arity, such a program is guaranteed to have an equivalent finite ground
program.

4.1. BASIC GROUNDING ALGORITHMS 53

Algorithm 1: NaiveInstantiation

Input : A safe (first-order) normal logic program P

Output : A ground normal logic program P ′

1 D := ∅
2 P ′ := ∅
3 repeat
4 D′ := D

5 foreach r ∈ P do
6 B := body(r)+
7 foreach θ ∈ �(B, D) do
8 D := D ∪ {head (r)θ}
9 P ′ := P ′ ∪ {rθ}

10 until D = D′

For a more substantial example, consider the safe program P21 (extending P18).

P21 =

⎧⎪⎪⎨
⎪⎪⎩

d(a) p(a, b) p(X, Z) ← p(X, Y), p(Y, Z)

d(c) p(b, c) q(X) ← ∼r(X), d(X)

d(d) p(c, d) r(X) ← ∼q(X), d(X)

q(a) q(b) s(X) ← ∼r(X), p(X, Y), q(Y)

⎫⎪⎪⎬
⎪⎪⎭

Each rule’s variables are bound by one of the underlined positive body literals. Given that the set
of terms consists of constants only, P21 has thus a finite grounding. In contrast, the safe program
{p(a), p(f (X)) ← p(X)} results in an infinite grounding.

We next provide a simplistic instantiation procedure for safe logic programs. For this, we
need the following concepts. A (ground) substitution is a mapping from variables to (ground) terms.
Given two sets B and D of atoms, a substitution θ is a match of B in D, if Bθ ⊆ D. A good match
is an inclusion-minimal one because it deals with variables occurring in B only. For instance, both
{X �→ 1} and {X �→ 2} are good matches of {p(X)} in {p(1), p(2), p(3)}, while {X �→ 1, Y �→ 2}
is not a good match. Given a set B of (first-order) atoms and a set D of ground atoms, we define
the set �(B, D) of good matches for all elements of B in D as

�(B, D) = {θ | θ is a ⊆-minimal match of B in D}.
This definition is motivated by the fact that a safe rule is ground once all of its positive body literals
are ground.

With the above, we are ready to give our simplistic instantiator in Algorithm 1. The idea is to
evaluate a logic program P in a bottom-up fashion by successively building its ground instantiation

54 4. GROUNDING

P ′ along with a domain of instantiation D. Let us illustrate Algorithm 1 by building a succinct
representation of the ground program of P18 ∪ {p(c, d)}.

P22 =

⎧⎪⎪⎨
⎪⎪⎩

p(a, b)

p(b, c)

p(c, d)

p(X, Z) ← p(X, Y), p(Y, Z)

⎫⎪⎪⎬
⎪⎪⎭

We trace our proceeding in Table 4.1. We initially select rule p(X, Z) ← p(X, Y), p(Y, Z) upon

Table 4.1: Tracing the instantiation of P22

�(B, D) D P ′
{∅} p(a, b) p(a, b) ←
{∅} p(b, c) p(b, c) ←
{∅} p(c, d) p(c, d) ←
{{X �→ a, Y �→ b, Z �→ c}, p(a, c) p(a, c) ← p(a, b), p(b, c)

{X �→ b, Y �→ c, Z �→ d}} p(b, d) p(b, d) ← p(b, c), p(c, d)

{{X �→ a, Y �→ c, Z �→ d}, p(a, d) p(a, d) ← p(a, c), p(c, d)

{X �→ a, Y �→ b, Z �→ d}} p(a, d) p(a, d) ← p(a, b), p(b, d)

entering the loop in Line 5. We then get �(∅, ∅) = ∅ because the empty domain offers no match
for the positive body literals p(X, Y) and p(Y, Z). Next, consider fact p(a, b) ← . As shown in
Table 4.1, we now obtain �(∅, ∅) = {∅} indicating that the rule can be grounded through the empty
substitution. Accordingly, we add atom p(a, b) to the instantiation domain D and rule p(a, b) ←
to the ground program P ′. Analogously, facts p(b, c) ← and p(c, d) ← are treated upon the next
two iterations of the loop in Lines 5–9.This concludes our first traversal of the original program and
we re-enter the outer loop in Line 3.This is indicated by a horizontal line in Table 4.1. As before, we
start by selecting rule p(X, Z) ← p(X, Y), p(Y, Z). Unlike the above, however, our instantiation
domain has grown to D = {p(a, b), p(b, c), p(c, d)}.Accordingly,we get for our rule’s positive body
{p(X, Y), p(Y, Z)} the two good matches {X �→ a, Y �→ b, Z �→ c} and {X �→ b, Y �→ c, Z �→
d}. The first match produces the ground rule p(a, c) ← p(a, b), p(b, c) whose head atom p(a, c)

is added to the instantiation domain. Similarly, we produce in the next iteration of the loop in
Lines 7–9 the ground rule p(b, d) ← p(b, c), p(c, d) along with atom p(b, d). The two remaining
ground rules are produced in an analogous way. Note that Algorithm 1 produces a ground program
consisting of seven rules only. Hence, sixty among the sixty-seven rules in grd (P22) turn out to be
irrelevant.

Extended rules are instantiated in a similar way. For instance, when instantiating conditional
literals like � : �1 : · · · : �n, literals �1, . . . , �n play the role of a rule body. The resulting instances of
� are expanded in view of the context of the conditional literal (see Section 2.3.2). Furthermore, the
instances of � are added to the instantiation domain D in Algorithm 1 whenever the literal occurs
within the head of a rule.

4.1. BASIC GROUNDING ALGORITHMS 55

Algorithm 1 is of course an over-simplification of real instantiation procedures. Foremost,
it necessitates the re-inspection of the entire program in Line 5. For example by strictly following
Algorithm 1, we had to re-inspect all facts upon each iteration. Real implementations, as in the
ASP grounders dlv or gringo, carefully avoid re-grounding rules by using the well-known database
technique of semi-naive evaluation. This technique is based on the idea of lazy evaluation. That is,
for producing new atoms during an iteration, only rules are considered which have a body atom that
was just instantiated in the previous iteration.

Additionally, certain optimizations are conducted during grounding. For example, once a fact
like q(a) ← is encountered when grounding P21, the truth of q(a) is used for partial evaluation.
If afterward a rule like s(b) ← ∼r(b), p(b, a), q(a) is about to be generated, it is simplified to
s(b) ← ∼r(b), p(b, a). Likewise, rules like q(a) ← ∼r(a), d(a) and r(a) ← ∼q(a), d(a) are
skipped right away. With these optimizations the ground program computed in Table 4.1 reduces
to seven facts whose heads directly yield the only stable model of P22. Moreover, the use of partial
evaluation allows for finitely grounding even larger classes of safe programs. To see this, consider
the following program.

P23 =
⎧⎨
⎩

p(a)

q(f (f (a)))

p(f (X)) ← p(X), ∼q(X)

⎫⎬
⎭

Applying Algorithm 1 together with partial evaluation yields the following finite ground instantia-
tion of P23.

P ′
23 =

⎧⎪⎪⎨
⎪⎪⎩

p(a)

q(f (f (a)))

p(f (a)) ← ∼q(a)

p(f (f (a))) ← ∼q(f (a))

⎫⎪⎪⎬
⎪⎪⎭

Although the ground rule p(f (f (f (a)))) ← p(f (f (a))), ∼q(f (f (a))) can be produced, its body
is falsified because q(f (f (a))) is true and the rule is skipped. Accordingly, the instantiation domain
stays unchanged and no further rules are produced. Similar simplifications taking into account the
falsity of atoms can only be done once no more rules with the respective head atom can be produced.
This can be accomplished via the graph-theoretic concepts introduced next.

For enabling a more fine-grained static program analysis, we define the predicate-rule depen-
dency graph of a logic program P as a directed graph (V , E) where

• V is the set of predicates and rules of P ,

• (p, r) ∈ E, if predicate p occurs in the body of rule r , and

• (r, p) ∈ E, if predicate p occurs in the head of rule r .

56 4. GROUNDING

An edge (p, r) ∈ E is negative, if predicate p occurs in the negative body of rule r . As an example,
consider the predicate-rule dependency graph of Program P21 in Figure 4.1. We enclose rules in
rectangles and predicates in oval boxes. Negative arcs are indicated by dashed arrows. (Dashed boxes
along with their annotated numbers are explained below.)

For capturing the structure within a predicate-rule dependency graph, we take advantage of
strongly connected components. In fact, contracting the strongly connected components of a graph
into single vertices results in a directed acyclic graph. In view of this, we define a dependency among
strongly connected components (U, A) and (W, B) of an encompassing graph (V , E) as follows:
(U, A) depends upon (W, B) in (V , E), if (W × U) ∩ E �= ∅.

The strongly connected components of the predicate-rule dependency graph of Program P21

are shown in Figure 4.1 as dashed boxes. The dependencies among them correspond to the edges

d(a) d(c) q(a) q(b)

d(d) d/1 q(X) ← ∼r(X), d(X) q/1

p(a, b) p(b, c) r(X) ← ∼q(X), d(X)

p(c, d) p/2 r/1

p(X,Z) ← p(X,Y), p(Y, Z) s(X) ← ∼r(X), p(X,Y), q(Y) s/1

1 2

3
4

5 6

7

8 9

10

11 12 13

Figure 4.1: Predicate-rule dependency graph of Logic program P21 together with a topological order of
its strongly connected components.

connecting their contained vertices. We observe that the resulting dependencies are acyclic and thus
confirm the above mentioned fact about the contracted graph.

The strongly connected components of a predicate-rule dependency graph are used to partition
a logic program. We get 13 such components in the graph given in Figure 4.1. These components
can now be separately grounded by following a topological order of their dependencies. That is, we
may apply Algorithm 1 in turn to the rules contained in each component while accumulating the
instantiation domain. To be more precise, this amounts to making the set D of atoms global and
deleting Line 1 in Algorithm 1.

In Figure 4.1 the chosen topological order is indicated via increasing integers next to the
components. The instantiation of P21 is illustrated in Table 4.2. Once Components 1 to 3 are
instantiated, the materialization of predicate d/1 is complete. At this point, we know that d(a), d(c),

4.1. BASIC GROUNDING ALGORITHMS 57

Table 4.2: Tracing the instantiation of P21 following the topological order in
Figure 4.1
SCC �(B, D) D P ′

1 {∅} d(a) d(a) ←
2 {∅} d(c) d(c) ←
3 {∅} d(d) d(d) ←
5 {∅} q(a) q(a) ←
6 {∅} q(b) q(b) ←
7 {{X �→ a}, q(a) ← ∼r(a), d(a)

{X �→ c}, q(c) q(c) ← ∼r(c), d(c)

{X �→ d}, q(d) q(d) ← ∼r(d), d(d)

{X �→ a}, r(a) ← ∼q(a), d(a)

{X �→ c}, r(c) r(c) ← ∼q(c), d(c)

{X �→ d}} r(d) r(d) ← ∼q(d), d(d)

8 {∅} p(a, b) p(a, b) ←
9 {∅} p(b, c) p(b, c) ←

10 {∅} p(c, d) p(c, d) ←
11 {{X �→ a, Y �→ b, Z �→ c}, p(a, c) p(a, c) ← p(a, b), p(b, c)

{X �→ b, Y �→ c, Z �→ d}} p(b, d) p(b, d) ← p(b, c), p(c, d)

{{X �→ a, Y �→ c, Z �→ d}, p(a, d) p(a, d) ← p(a, c), p(c, d)

{X �→ a, Y �→ b, Z �→ d}} p(a, d) ← p(a, b), p(b, d)

12 {{X �→ a, Y �→ b}, s(a) s(a) ← ∼r(a), p(a, b), q(b)

{X �→ a, Y �→ c}, s(a) ← ∼r(a), p(a, c), q(c)

{X �→ a, Y �→ d}, s(a) ← ∼r(a), p(a, d), q(d)

{X �→ b, Y �→ c}, s(b) s(b) ← ∼r(b), p(b, c), q(c)

{X �→ b, Y �→ d}, s(b) ← ∼r(b), p(b, d), q(d)

{X �→ c, Y �→ d}} s(c) s(c) ← ∼r(c), p(c, d), q(d)

and d(d) are true, while d(b) is false.True literals are given in green, false ones in red, all others’ truth
values are to be determined by a solver. The fixed truth values can now be used for partial evaluation
during grounding. For instance, while instantiating Component 7, the previously established truth
of q(a) leads to the elimination of rules q(a) ← ∼r(a), d(a) and r(a) ← ∼q(a), d(a). Other rules
get simplified. For example, rule s(b) ← ∼r(b), p(b, c), q(c) in Component 12 is reduced by the
grounder to s(b) ← q(c) because ∼r(b) and p(b, c) are true. The instantiation of Components 5
and 6 establishes the truth of q(a) and q(b). The truth value of the remaining instances of q/1
cannot be determined by the grounder and must be left to the solver. As a consequence, only

58 4. GROUNDING

Algorithm 2: PositiveBodyInstantiation

Global : Set D of ground atoms
Input : A set B of positive body literals
Output : A set � of (ground) substitutions (providing �(B, D))

1 � := ∅
2 Procedure Instantiation(B ′, θ)

3 if B ′ = ∅ then
4 � := � ∪ {θ}
5 else
6 b := Select(B ′)
7 foreach good match θ ′ of {bθ} in D do
8 Instantiation(B ′\{b}, θ ∪ θ ′)

9 Instantiation(B, ∅)

rules q(c) ← ∼r(c) and q(d) ← ∼r(d) are considered during ASP solving, while facts q(a) ←
and q(b) ← are merely added to the computed stable models. The remaining components are
instantiated in an analogous way. In all, the ground program obtained from P21 yields twelve facts
and six rules, among which only the latter are subject to ASP solving.

Finally, let us describe the instantiation of individual rules. In fact, this amounts to solving a
constraint satisfaction problem and thus involves search. To this end, we use a simple backtracking
approach in Algorithm 2. The algorithm takes the positive body literals B of a rule and outputs
�(B, D), namely, all good matches of B in the global domain D. Note that Algorithm 2 builds
upon a recursive subroutine (in Lines 2–8) taking a substitution along with a (decreasing) set of
positive body literals. We illustrate Algorithm 2 in Table 4.3 by tracing the instantiation of rule
s(X) ← ∼r(X), p(X, Y), q(Y) in Component 12 of P21.The current domain is given by the entries
above Component 12 in the column headed D in Table 4.2. Among the positive body literals, we pick
q(Y) and match it with q(a).This leads to a recursive call with substitution {Y �→ a} and remaining
body literals {p(X, Y)}. However, we find no match for p(X, a) in D and must backtrack. Next,
we match q(Y) with q(b) and proceed recursively with {p(X, Y)} and {Y �→ b}. This time we can
match p(X, b) with p(a, b) and obtain {X �→ a, Y �→ b}.The remaining substitutions are obtained
analogously. As a result, we obtain six good matches for {p(X, Y), q(Y)} inducing the six instances
of rule s(X) ← ∼r(X), p(X, Y), q(Y) in Component 12 of P21 in Table 4.3.

4.2 TURING MACHINE
Next, let us demonstrate the expressiveness of grounding in the presence of unrestricted function
symbols. In fact, the latter makes the language Turing-complete, as we illustrate below by encoding

4.2. TURING MACHINE 59

Table 4.3: Tracing the instantiation of rule
s(X) ← ∼r(X), p(X, Y), q(Y) in Com-
ponent 12 of P21

q(Y) p(X, Y) S

{ q(a) ∅
q(b), { p(a, b) } { X �→ a, Y �→ b }
q(c), { p(a, c), { X �→ a, Y �→ c }

p(b, c) } { X �→ b, Y �→ c }
q(d) } { p(a, d), { X �→ a, Y �→ d }

p(b, d), { X �→ b, Y �→ d }
p(c, d) } { X �→ c, Y �→ d }

a universal Turing machine in terms of gringo’s input language. To this end, we represent a particular
instance, namely, a machine solving the 3-state Busy Beaver problem,1 by the facts in Listing 4.1;
its graphical specification is given in Figure 4.2.

Listing 4.1: A 3-state Busy Beaver machine in ASP facts (beaver.lp)

1 start(a).
2 blank (0).
3 tape(n,0,n).

5 trans(a,0,1,b,r).
6 trans(a,1,1,c,l).
7 trans(b,0,1,a,l).
8 trans(b,1,1,b,r).
9 trans(c,0,1,b,l).

10 trans(c,1,1,h,r).

Fact start(a) and blank(0) specify the starting state a and the blank symbol 0, respectively,
of the 3-state Busy Beaver machine. Furthermore, tape(n,0,n) provides the initial tape contents,
where 0 indicates a blank at the initial position of the read/write head and the n’s represent infinitely
many blanks to the left and to the right of the head.2 Finally, predicate trans/5 captures the
transition function of the Busy Beaver machine. A fact of the form trans(S,A,AN,SN,D) describes
that, if the machine is in state S and the head is on tape symbol A, it writes AN, changes its state to
SN, and moves the head to the left or right according to whether D is l or r.

Listing 4.2 shows an encoding of a universal Turing machine; it defines predicate conf/4
describing the configurations of the machine it runs (for instance, the one specified in Listing 4.1).

1Our version of the busy beaver machine puts a maximum number of non-blank symbols on the tape.
2The fact tape(l(. . . l(n,s−l). . . ,s−1),s0,r(s1,. . . r(sr,n). . .) represents the tape s−l . . . , s0, . . . , sr having the read/write
head at symbol s0.

60 4. GROUNDING

a

start

b

c h

0,1,r

0,1,l

1,1,l

1,1,r

0,1,l

1,1,r

0000. . . 0 0 0 . . .

Figure 4.2: A 3-state Busy Beaver machine.

Listing 4.2: An ASP encoding of a universal Turing machine (turing.lp)

1 conf(S,L,A,R) :- start(S), tape(L,A,R).

3 conf(SN,l(L,AN),AR,R) :- conf(S,L,A,r(AR ,R)), trans(S,A,AN ,SN,r).
4 conf(SN,l(L,AN),AR,n) :- conf(S,L,A,n), blank(AR), trans(S,A,AN ,SN ,r).
5 conf(SN,L,AL ,r(AN,R)) :- conf(S,l(L,AL),A,R), trans(S,A,AN ,SN,l).
6 conf(SN,n,AL ,r(AN,R)) :- conf(S,n,A,R), blank(AL), trans(S,A,AN ,SN ,l).

The rule in Line 1 determines the starting configuration in terms of a state S, the tape symbol A at the
initial position of the read/write head, and the tape contents L and R on its left and right, respectively.
The remaining four rules derive successor configurations relative to the transition function (given
by facts over trans/5). The first two of these rules model movements of the head to the right,
thereby distinguishing the cases that the tape contains some (explicit) symbol AR on the right of
the head or that its right-hand side is fully blank (n). In the former case, the symbol AN to write
is appended to the tape contents on the left of the new head position, represented by means of the
functional term l(L,AN), while AR becomes the symbol at the new head position and R the residual
contents on its right. Unlike this, the rule dealing with a blank tape on the right takes a blank as the
symbol at the new head position and n to represent infinitely many remaining blanks on its right.
Similarly, the last two rules specify the symmetric cases obtained for movements to the left. Note
that by using function symbols the encoding in Listing 4.2 allows for representing runs of machines
without limiting the tape space that can be investigated. Hence, whether gringo halts depends on the
machine to run. Notably, infinite loops in finite tape space are (implicitly) detected, since repeated
configurations do not induce new ground rules.

Invoking gringo with files containing the rules in Listing 4.1 and Listing 4.2 yields the fol-
lowing result.

4.3. META PROGRAMMING 61

Listing 4.3: Grounding programs beaver.lp and turing.lp

$ gringo --text beaver.lp turing.lp
start(a).
blank (0).
tape(n,0,n).
trans(a,0,1,b,r).
trans(a,1,1,c,l).
trans(b,0,1,a,l).
trans(b,1,1,b,r).
trans(c,0,1,b,l).
trans(c,1,1,h,r).
conf(a,n,0,n).
conf(b,l(n,1),0,n).
conf(a,n,1,r(1,n)).
conf(c,n,0,r(1,r(1,n))).
conf(b,n,0,r(1,r(1,r(1,n)))).
conf(a,n,0,r(1,r(1,r(1,r(1,n))))).
conf(b,l(n,1),1,r(1,r(1,r(1,n)))).
conf(b,l(l(n,1),1),1,r(1,r(1,n))).
conf(b,l(l(l(n,1),1),1),1,r(1,n)).
conf(b,l(l(l(l(n,1),1),1),1),1,n).
conf(b,l(l(l(l(l(n,1),1),1),1),1),0,n).
conf(a,l(l(l(l(n,1),1),1),1),1,r(1,n)).
conf(c,l(l(l(n,1),1),1),1,r(1,r(1,n))).
conf(h,l(l(l(l(n,1),1),1),1),1,r(1,n)).

In fact, the Turing machine is completely evaluated by gringo, which prints all feasible con-
figurations in the same order as a Turing machine would process them. This means that the last
line contains the configuration in which the machine reaches the final state. Here, the 3-state Busy
Beaver machine terminates after writing six times the symbol 1 to the tape.

The expressive power of Turing-computability should not lead to the idea that the grounder
is meant to address computable problems completely by itself. Rather, it provides the most gen-
eral setting for deterministic computations. In particular, this allows for eliminating many external
preprocessing steps involving imperative programming languages.

4.3 META PROGRAMMING
A major consequence of the expressive power of unrestricted function symbols is an easy use of
meta modeling techniques in ASP. Following ASP’s good practice of uniform encodings, the idea is
to re-express logic programs as facts and to combine them with a meta encoding (re-)defining the
meaning of the original language constructs. That is, once the original program is reified in terms of
facts, it provides data that can be freely treated by the meta encoding. In a way, this allows us to take
over the control from the underlying ASP systems and to enforce our own definition of language
constructs.

This approach is supported by the grounder gringo. To illustrate this, consider the program
easy.lp in Listing 4.4.

62 4. GROUNDING

Listing 4.4: A simple program for illustrating meta programming (easy.lp)

1 { p(1..3) }.
2 :- { p(X) } 2.
3 q(X) :- p(X), p(X+1), X>1.
4 p(X+1) :- q(X).

The human readable output obtained after grounding easy.lp (with option --text) is given in
Listing 4.5; the machine-oriented one is given in Listing 7.5 on Page 121.

Listing 4.5: Grounding Program easy.lp
0 $ gringo --text easy.lp
1 #count{p(1),p(2),p(3)}.
2 q(2):-p(2),p(3).
3 p(3):-q(2).
4 :-#count{p(3),p(2),p(1)}2.

Alternatively, gringo offers a reified output format (with option --reify). The one obtained
after grounding easy.lp (and some manual restructuring) is given in Listing 4.6.

Listing 4.6: Reifying Program easy.lp
0 $ gringo --reify easy.lp

2 rule(pos(sum(0,0,3)),pos(conjunction (0))).
3 rule(pos(atom(q(2))),pos(conjunction (1))).
4 rule(pos(atom(p(3))),pos(conjunction (2))).
5 rule(pos(false), pos(conjunction (3))).

7 wlist(0,0,pos(atom(p(1))) ,1).
8 wlist(0,1,pos(atom(p(2))) ,1).
9 wlist(0,2,pos(atom(p(3))) ,1).

11 set(1,pos(atom(p(2)))).
12 set(1,pos(atom(p(3)))).

14 set(2,pos(atom(q(2)))).

16 set(3,pos(sum (0 ,0 ,2))).

18 scc(0,pos(conjunction (1))).
19 scc(0,pos(atom(q(2)))).
20 scc(0,pos(conjunction (2))).
21 scc(0,pos(atom(p(3)))).

Let us explain the reified representation of the ground version of Program easy.lp by relating
it to its human readable counterpart. The four ground rules in Listing 4.5 are captured by the
facts in Lines 2–5 of Listing 4.6. We use the predicate rule/2 to link rule heads and bodies. By

4.3. META PROGRAMMING 63

convention, both are positive rule elements, as indicated via the functor pos/1; negative components
are furnished with neg/1.

For homogeneity, cardinality constraints are viewed as sum aggregates all of which con-
stituent literals have weight 1 (see Page 21). Thus, the first argument of the fact in Line 2, contain-
ing sum(0,0,3), tells us that the head of the captured rule is a sum aggregate. And that it imposes
via its first and third argument the trivial bounds 0 and 3 on a list of weighted literals. The second
argument of sum/3, here 0, identifies the list of contained weighted literals. The corresponding
literals are provided through facts over wlist/4 in Lines 7–9; they all share the first argument 0
as common identifier. While their respective second arguments, 0, 1, and 2, are simply indexes (en-
abling the representation of duplicates in multisets), the third ones provide the actual literals, p(1),
p(2), and p(3), each having the (default) weight 1, as reflected in their fourth arguments.

Again by convention, the body of each rule is a conjunction. For instance, the term
conjunction(0) in Line 2 refers to the set (of conjuncts) labeled 0. Given that the rule in Line 1
of Listing 4.5 is a fact, its body is empty, and thus its set of conjuncts is empty, too. This is different
with the three other conjunctions in Lines 3–5. For instance, conjunction(1) in Line 3 captures
the body consisting of atoms p(2) and p(3). These two conjuncts are represented via the predicate
set/2 in Line 11 and 12 of Listing 4.6. Similar to wlist/4, the first argument gives the com-
mon identifier, while the second one comprises the actual element. Similarly, Line 14 captures the
singleton body of the rule in Line 3 of Listing 4.5.

The fact rule(pos(false),pos(conjunction(3))) in Listing 4.6 accounts for the in-
tegrity constraint ‘:- #count {p(3),p(2),p(1)} 2’ in Listing 4.5. This is indicated by the
special-purpose constant false. The singleton body contains a positive cardinality constraint
with (trivial) lower bound 0 and upper bound 2 over the list labeled 0. This is captured by
set(3,pos(sum(0,0,2))) in Line 16. Note that recurrences of lists of weighted literals (and
sets) reuse labels introduced before, as done here by referring to 0. This is because gringo identifies
repetitions of structural entities and reuses labels. In addition to the rules of Listing 4.5, the elements
of non-trivial strongly connected components of the corresponding positive dependency graph are
obtained in Lines 18–21. To be more precise, the single non-trivial strongly connected component
of G(grd (easy.lp)) is ({q(2), p(3)}, {(q(2), p(3)), (p(3), q(2))}), where the two edges are es-
tablished via the rules in Lines 2 and 3 in Listing 4.5. The respective (positive) body elements are
represented by the terms pos(atom(q(2))) and pos(conjunction(1)) for the rule in Line 3 as
well as pos(atom(p(3))) and pos(conjunction(2)) for the rule in Line 2. The condition that
these terms refer to connectors of a common non-trivial strongly connected component, labeled 0,
is indicated by the four facts over scc/2 in Lines 18–21. Note that the existence of facts over scc/2
tells us that the program at hand comprises recursion among positive literals. This is referred to as
non-tightness (cf. Section 5.1).

Now that we have represented the original program in terms of facts, we can use an encoding
for either restoring the original meaning of the program or redefining certain language constructs

64 4. GROUNDING

at will. To see this, consider the “vanilla” meta encoding in Listing 4.7, which simply reestablishes
the original meaning of all language constructs.

Listing 4.7: A (restricted) meta encoding (meta.lp)

1 litb(B) :- rule(_,B).
2 litb(E) :- litb(pos(conjunction(S))), set(S,E).
3 litb(E) :- eleb(sum(_,S,_)), wlist(S,_,E,_).

5 eleb(P) :- litb(pos(P)).
6 eleb(N) :- litb(neg(N)).

8 hold(conjunction(S)) :- eleb(conjunction(S)),
9 hold(P) : set(S,pos(P)),

10 not hold(N) : set(S,neg(N)).

12 hold(sum(L,S,U)) :- eleb(sum(L,S,U)),
13 L #sum [hold(P) = W : wlist(S,Q,pos(P),W),
14 not hold(N) = W : wlist(S,Q,neg(N),W)] U.

16 hold(atom(A)) :- rule(pos(atom(A)), pos(B)), hold(B).

18 L #sum [hold(P) = W : wlist(S,Q,pos(P),W),
19 not hold(N) = W : wlist(S,Q,neg(N),W)] U
20 :- rule(pos(sum(L,S,U)),pos(B)), hold(B).

22 :- rule(pos(false), pos(B)), hold(B).

24 #hide. #show hold(atom(A)).

Our meta encoding consists of three parts. The first part in Line 1 to 6 extracts various rule el-
ements. Among them, only those occurring within bodies, identified via eleb/1, are relevant to
the generation of stable models specified in the second part in Lines 8 to 22. In fact, stable model
generation follows the structure of reified programs. At first, the satisfaction of conjunctions and
weight constraints is determined. For example, the rule in Lines 8–10 accounts for conjunctions. For
this, it checks whether all associated conjuncts hold. This is done by means of conditional literals,
enabling a generic format whose final (ground) form is determined during grounding. Similarly, the
rule in Lines 12–14 accounts for weight constraints by inspecting all included weighted literals. For
checking the sum of weights of all satisfied literals, the weight, W, of each literals is attached to the
corresponding hold/1 atoms. To guarantee that the resulting sum is between the bounds L and U,
a built-in #sum aggregate is used. If this condition is satisfied, hold(sum(L,S,U)) is obtained.

Once holding conjunctions and weight constraints are identified, further atoms occurring in
rule heads are derived, either singularly or within weight constraints. Line 16 accounts for regular
rules, whose head atom is obtained through hold(atom(A)), provided that the corresponding body
holds. The same is done in Lines 18–20, yet with rules having a weight constraint in their head. In

4.3. META PROGRAMMING 65

analogy to Lines 12–14, this is realized via the built-in #sum aggregate. Line 22 deals with integrity
constraints represented via the constant false in heads of reified rules.

The last part in Line 24 restricts the output of the meta encoding’s stable models to the
representations of original input atoms.

Now, we may compute the stable models of our program in Listing 4.4 (easy.lp) by com-
bining the facts in Listing 4.6 with the basic meta encoding in Listing 4.7 (meta.lp). However,
before doing so, let us inspect the resulting ground instantiation, given in human readable form in
Listing 4.8.3

Listing 4.8: Grounding reified Program easy.lp with meta encoding meta.lp
0 $ gringo --reify easy.lp | gringo - meta.lp --text

2 wlist(0,0,pos(atom(p(1))) ,1).
3 wlist(0,1,pos(atom(p(2))) ,1).
4 wlist(0,2,pos(atom(p(3))) ,1).
5 rule(pos(sum(0,0,3)),pos(conjunction (0))).
6 set(1,pos(atom(p(2)))).
7 set(1,pos(atom(p(3)))).
8 rule(pos(atom(q(2))) ,pos(conjunction (1))).
9 set(2,pos(atom(q(2)))).

10 rule(pos(atom(p(3))) ,pos(conjunction (2))).
11 set(3,pos(sum (0 ,0 ,2))).
12 rule(pos(false),pos(conjunction (3))).
13 scc(0,pos(conjunction (1))).
14 scc(0,pos(atom(q(2)))).
15 scc(0,pos(conjunction (2))).
16 scc(0,pos(atom(p(3)))).

18 litb(pos(atom(p(1)))). eleb(atom(p(1))).
19 litb(pos(atom(p(2)))). eleb(atom(p(2))).
20 litb(pos(atom(p(3)))). eleb(atom(p(3))).
21 litb(pos(atom(q(2)))). eleb(atom(q(2))).
22 litb(pos(conjunction (0))). eleb(conjunction (0)).
23 litb(pos(conjunction (1))). eleb(conjunction (1)).
24 litb(pos(conjunction (2))). eleb(conjunction (2)).
25 litb(pos(conjunction (3))). eleb(conjunction (3)).
26 litb(pos(sum (0 ,0 ,2))). eleb(sum (0 ,0 ,2)).

28 hold(conjunction (0)).
29 hold(conjunction (1)) :- hold(atom(p(3))) , hold(atom(p(2))).
30 hold(conjunction (2)) :- hold(atom(q(2))).
31 hold(conjunction (3)) :- hold(sum (0 ,0 ,2)).
32 hold(sum(0 ,0,2)) :-
33 0#sum[hold(atom(p(3)))=1 , hold(atom(p(2)))=1 , hold(atom(p (1)))=1]2.

35 0#sum[hold(atom(p(3)))=1 , hold(atom(p(2)))=1 , hold(atom(p (1)))=1]3.
36 hold(atom(q(2))) :- hold(conjunction (1)).
37 hold(atom(p(3))) :- hold(conjunction (2)).
38 :- hold(conjunction (3)).

40 #hide.

3Following Unix customs, the minus symbol - stands for the output of ‘gringo --reify easy.lp’.

66 4. GROUNDING

41 #show hold(atom(p(1))). #show hold(atom(p(2))).
42 #show hold(atom(q(2))). #show hold(atom(p(3))).

The first part of the obtained ground program consists of the reified program. That is, Lines 2–16
are identical to Listing 4.6 (apart from reordering). The second part results from instantiating the
meta encoding in view of the facts in Listing 4.6. Lines 18–26 are a consequence of instantiating
Lines 1–6 in Listing 4.7 and thus comprise all rule elements occurring within bodies. The actual
encoding of Program easy.lp is given in Lines 28–38. To be more precise, the rules in Lines 28–
31 tell us whether the bodies of the rules in Listing 4.5 hold. Analogously, the rule in Line 32/33
indicates whether the cardinality constraint #count {p(3),p(2),p(1)} 2 in the body of Line 4 in
Listing 4.5 holds.The remaining rules in Lines 35–38 account for the four ground rules in Listing 4.5
by drawing upon the previously determined status of rule bodies. Finally, Lines 40 to 42 project the
resulting stable models on instances of predicate hold/1.

The result of feeding the ground program in Listing 4.8 to the ASP solver clasp is shown in
Listing 4.9.

Listing 4.9: Solving reified Program easy.lp with meta encoding meta.lp
0 $ gringo --reify easy.lp | gringo - meta.lp | clasp
1 clasp version 2.0.5
2 Reading from stdin
3 Solving ...
4 Answer: 1
5 hold(atom(q(2))) hold(atom(p(3))) hold(atom(p(2))) hold(atom(p(1)))
6 SATISFIABLE

8 Models : 1
9 Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

10 CPU Time : 0.000s

In fact, each stable model of the meta encoding applied to the reification of a program corresponds
to a stable model of the program being reified. More precisely, a set X of atoms is a stable model of
a program iff its meta encoding yields a stable model Y such that X = {a | hold(atom(a)) ∈ Y }.
That is, hold(atom(a)) stands for an atom a.

4.4 REFERENCES AND FURTHER READING
Advanced grounders like dlv and gringo take advantage of (deductive) database technology, like
semi-naive database evaluation. Such techniques can be found in the standard database litera-
ture (Abiteboul et al., 1995, Ullman, 1988).

The very first broadly used ASP grounder is the lparse system (Syrjänen) written by Tommi
Syrjänen; its theoretical foundations are detailed in Syrjänen (2009). Together with the ASP
solver smodels, it coined the input and intermediate languages used by most ASP systems nowa-
days, including gringo and clasp. However, lparse’s input language imposed that programs are ω-
restricted (Syrjänen, 2001), which boiled down to binding each variable in a rule via a domain
predicate. (Intuitively, a predicate is a domain predicate if its domain can be fully evaluated by a

4.4. REFERENCES AND FURTHER READING 67

grounder; see Gebser et al. (2007d), Syrjänen (2001) for details.) Up to version 3, gringo accepted
the slightly extended class of λ-restricted programs (Gebser et al., 2007d). An even more general
class is introduced in Lierler and Lifschitz (2009). Beginning with version 3, gringo only requires
programs to be safe, similar to the ASP system dlv (Leone et al., 2006). The latter as well as its
recent upgrade, called dlv-complex (Calimeri et al., 2008), integrate grounding and solving capaci-
ties. While dlv’s solving approach is comparable to that of smodels, the underlying grounder is based
on similar techniques as used in gringo and thus offers the same level of expressiveness. Advanced
instantiation techniques can be found in Perri et al. (2007).

The meta programming techniques introduced in Section 4.3 were used in Gebser et al.
(2011h) to implemented complex preferences. Similarly, meta interpretation was employed
in Eiter et al. (2003) for implementing rule-based preferences, by Eiter and Polleres (2006) for
integrating guessing and testing programs, and in Gebser et al. (2008d), Oetsch et al. (2010) for
debugging.

C H A P T E R 5

Characterizations
This chapter lays the foundations for ASP solving. Thanks to the last chapter, we can from now on
restrict ourselves to propositional normal logic programs over sets of ground atoms. For simplicity,
we further assume that the underlying set of atoms equals the set of atoms occurring in a program at
hand. This makes sense because atoms not appearing in the program are false in any stable model.

In the following sections, we consider alternative characterizations of stable models. Start-
ing from an axiomatic viewpoint, we successively make the underlying inferences more and more
precise, ultimately distilling a formal characterization capturing the inferences drawn by the solving
algorithms presented in Chapter 6.

5.1 AXIOMATIC CHARACTERIZATION

In order to capture the notion of “negation-as-failure,” Clark proposed in (1978) the concept of
the completion of a logic program. The idea is to capture the semantics of a program with default
negation via a translation to classical logic. Although each atom is defined through a set of rules,
syntactically, each such rule provides only a sufficient condition for its head atom. The idea of the
completion is to turn such implications into a definition by adding the corresponding “necessary”
counterpart.

Formally, the completion of a logic program P is defined as follows.

CF (P) =
{
a ↔ ∨

B∈bodyP (a)BF (B) | a ∈ atom(P)
}

(5.1)

where BF (body(r)) = ∧
a∈body(r)+a ∧ ∧

a∈body(r)−¬a (5.2)

The definition of formula BF (body(r)) translates a rule body into a conjunction of literals, while
turning default into classical negation. The actual completion CF (P) in (5.1) gathers all bodies
implying an atom a within a disjunction, indicating whether one of the rules with head a is applicable.
This disjunction is then taken as the definition of atom a. In fact, every stable model of P is a model
of CF (P) but not vice versa. An alternative definition is given on Page 85.

For further elaboration, let us partition the completion CF (P) of a program P into two sets
of implications, viz.

←−
CF (P) and

−→
CF (P), as follows.

←−
CF (P) =

{
a ← ∨

B∈bodyP (a)BF (B) | a ∈ atom(P)
}

(5.3)
−→
CF (P) =

{
a → ∨

B∈bodyP (a)BF (B) | a ∈ atom(P)
}

(5.4)

70 5. CHARACTERIZATIONS

Clearly, CF (P) is logically equivalent to
←−
CF (P) ∪ −→

CF (P). Informally, the implications in
←−
CF (P)

characterize the classical models of the original program, while the ones in
−→
CF (P) are used to

complete the program by adding necessary conditions for all atoms.
Models of

←−
CF (P) are identical to models of P .The models of CF (P) are called the supported

models of P . Hence, every stable model of P is a supported model of P . And, by definition, every
supported model of P is also a model of P .

For illustration, consider again Program P7.

P7 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a ←
b ← ∼a

c ← a, ∼d

d ← ∼c, ∼e

e ← b, ∼f

e ← e

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

We obtain from P7 the following sets of implications.

←−
CF (P7) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a ← �
b ← ¬a

c ← a ∧ ¬d

d ← ¬c ∧ ¬e

e ← (b ∧ ¬f) ∨ e

f ← ⊥

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

−→
CF (P7) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a → �
b → ¬a

c → a ∧ ¬d

d → ¬c ∧ ¬e

e → (b ∧ ¬f) ∨ e

f → ⊥

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

We have seen in Section 2.4 that P7 has two stable models, namely {a, c} and {a, d}. In con-
trast,

←−
CF (P7) has twenty-one classical models, among which we find {a, c} and {a, d} but also

{a, b, c, d, e, f }.
Strengthening

←−
CF (P7) by adding

−→
CF (P7) results in the completion of P7.

CF (P7) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a ↔ �
b ↔ ¬a

c ↔ a ∧ ¬d

d ↔ ¬c ∧ ¬e

e ↔ (b ∧ ¬f) ∨ e

f ↔ ⊥

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

In contrast to
←−
CF (P7), the completion formula CF (P7) has only three classical models, viz. {a, c},

{a, d}, and {a, c, e}. These are the supported models of P7.
The interesting question is now why the completion fails to characterize the stable models

of P7. For this, let us take a closer look at the only non-stable model of CF (P7), viz. {a, c, e}. In
fact, the atom e cannot be derived in a non-circular way from P7. To see this, observe that b is

5.1. AXIOMATIC CHARACTERIZATION 71

not derivable. Hence, e cannot be derived by rule e ← b, ∼f , which leaves us with e ← e only,
providing a “circular derivation” for e.

Indeed, circular derivations are causing the mismatch between supported and stable models.
In fact, all atoms in a stable model can be “derived” from a program in a finite number of steps.
Atoms in a cycle (not being “supported from outside the cycle”) cannot be “derived” from a program
in a finite number of steps. But they do not contradict the completion of a program. Let us make
this precise in what follows.

Let X be a stable model of logic program P . Then, for every atom a ∈ X there is a finite
sequence of (positive) rules 〈r1, . . . , rn〉 such that

1. head (r1) = a,

2. body(ri)+ ⊆ {head (rj) | i < j ≤ n} for 1 ≤ i ≤ n,

3. ri ∈ P X for 1 ≤ i ≤ n.

That is, each atom of X has a non-circular derivation from P X. Obviously, there is no finite sequence
of rules providing such a derivation for e from P

{a,c,e}
7 .

The origin of (potential) circular derivations can be read off the positive atom dependency graph
of a logic program P given by

G(P) = (atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head (r) = b}).

A logic program P is said to be tight, if G(P) is acyclic. Notably, for tight programs, stable and
supported models coincide.

Theorem 5.1 Let P be a tight normal logic program and X ⊆ atom(P).
Then, X is a stable model of P iff X |= CF (P).

Looking at the positive atom dependency graph of Program P7 in Figure 5.1, we observe
that P7 is not tight. This explains the discrepancy among its stable and supported models. Note
that eliminating rule e ← e from P7 yields a tight program whose stable and supported models

a c d

b e f

Figure 5.1: Positive atom dependency graph of Logic program P7.

72 5. CHARACTERIZATIONS

coincide. For another non-tight example, consider Program P24, whose dependency graph is given
in Figure 5.2.

P24 =
{

a ← ∼b c ← a, b d ← a e ← ∼a, ∼b

b ← ∼a c ← d d ← b, c

}

P24 has the two stable models {a, c, d} and {b}. The first stable model is interesting because it

d a c e

b

Figure 5.2: Positive atom dependency graph of Logic program P24.

contains c and d, which constitute a cycle in G(P24). The reason for this is that d is “externally
supported” by d ← a. Such a support is missing for c and d in the second stable model, and thus
both atoms are false. On the other hand, {b, c, d} is a supported yet not a stable model of P24.

The next interesting question is now whether there is a propositional formula whose models
correspond to the stable models of a program. If we consider the completion of a program, CF (P),
then the problem boils down to eliminating the circular support of atoms in the supported models
of P . The idea is then to add formulas to CF (P) prohibiting circular support of sets of atoms. Note
that a circular support between two atoms is possible, whenever there is a path from one atom to
another and vice versa in a program’s positive atom dependency graph.

This leads us to the concept of a loop.1 A set ∅ ⊂ L ⊆ atom(P) is a loop of a logic program P ,
if it induces a non-trivial strongly connected subgraph of G(P) (the positive atom dependency graph
of P).That is, each pair of atoms in L is connected by a path of non-zero length in (L, E ∩ (L × L))

where G(P) = (atom(P), E). We denote the set of all loops of P by loop(P). The number of loops
in loop(P) may be exponential in |atom(P)|. Note that a program P is tight iff loop(P) = ∅.

In our examples, we get loop(P7) = {{e}} and loop(P24) = {{c, d}}, as can be easily verified by
looking at Figure 5.1 and 5.2. For an example richer in loops, consider Program P25.

P25 =
{

a ← ∼b c ← a d ← b, c e ← b, ∼a

b ← ∼a c ← b, d d ← e e ← c, d

}

The corresponding dependency graph G(P25) is given in Figure 5.3. Observe that {c, d}, {d, e}, and
{c, d, e} are all non-empty sets of atoms whose elements reach one another via paths of non-zero
length. Hence, we have that loop(P25) = {{c, d}, {d, e}, {c, d, e}}.

In fact, we have seen above that the inclusion of a loop in a stable model requires the existence
of an external support.This can be made precise as follows. For L ⊆ atom(P), we define the external
1The term loop is used here in a more general way, and not only as an edge connecting a vertex to itself, as common in graph theory.

5.1. AXIOMATIC CHARACTERIZATION 73

b

a c d e

Figure 5.3: Positive atom dependency graphy of Logic program P25.

supports of L in logic program P as

ESP (L) = {r ∈ P | head (r) ∈ L, body(r)+ ∩ L = ∅}.
For example, we have ESP25({d, e}) = {d ← b, c, e ← b, ∼a}. From a technical perspective, how-
ever, it is sufficient to consider the respective bodies. Hence, we define the external bodies of L in P

as EBP (L) = body(ESP (L)). We get EBP25({d, e}) = {{b, c}, {b, ∼a}}.
With this, we can build formulas to exclude unsupported loops from stable models. The

(disjunctive) loop formula of L for P is

LFP (L) = (∨
a∈La

) → (∨
B∈EBP (L)BF (B)

)
≡ (∧

B∈EBP (L)¬BF (B)
) → (∧

a∈L¬a
)
.

The loop formula of L forces all atoms in L to be false whenever L is not externally supported. We
define LF (P) = {LFP (L) | L ∈ loop(P)}.

The loop {e} in Program P7 induces the loop formula e → b ∧ ¬f , requiring that e is derived
via the rule e ← b, ∼f . In P24,we get ESP24({c, d}) = {c ← a, b, d ← a} yielding the loop formula
c ∨ d → (a ∧ b) ∨ a, or simplified c ∨ d → a. Similarly, the loop formula c ∨ d → a ∨ e stipulates
that the inclusion of loop {c, d} into a stable model of P25 must be supported by applying c ← a

or d ← e. For loop {d, e} of P25, we get the formula d ∨ e → (b ∧ c) ∨ (b ∧ ¬a) or equivalently
(¬b ∨ ¬c) ∧ (¬b ∨ a) → ¬d ∧ ¬e. And finally loop {c, d, e} results in the loop formula c ∨ d ∨
e → a ∨ b.

Adding the loop formulas of a program to its completion provides us with the desired char-
acterization of stable models in terms of classical propositional formulas.

Theorem 5.2 Let P be a normal logic program and X ⊆ atom(P).
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P).

In fact, the same result can be obtained with various requirements on loops. A supported
model X of a logic program P is a stable model of P if one of the following conditions holds.

• X |= {LFP (U) | U ⊆ atom(P)}
• X |= {LFP (U) | U ⊆ X}

74 5. CHARACTERIZATIONS

• X |= {LFP (L) | L ∈ loop(P)}, that is, X |= LF (P)

• X |= {LFP (L) | L ∈ loop(P), L ⊆ X}
Conversely, if X is not a stable model of P , then there is a loop L ⊆ X \ Cn(P X) such that X �|=
LFP (L).

To see this, consider the supported model {b, c, d} of P24. In fact, we have Cn(P {b,c,d}) = {b},
showing that no atom in the loop {c, d} is derivable from P {b,c,d}. This is also reflected by the fact
that the supported model {b, c, d} falsifies loop formula c ∨ d → a. Unlike this, the loop formula
is satisfied by the stable model {a, c, d} of P24. And Cn(P {a,c,d}) = {a, c, d} derives all elements of
loop {c, d}.

To summarize, let us reconsider Program P7. We have seen on Page 70 that P7, or equivalently←−
CF (P7), has twenty-one models. Adding

−→
CF (P7) eliminates eighteen non-supported models. That

is, P7’s completion CF (P7) admits three models, viz. {a, c}, {a, d}, and {a, c, e}. These models
constitute the supported models of P7. The only loop of P7, viz. {e}, must be externally supported by
rule e ← b, ∼f .We thus have LF (P7) = {e → b ∧ ¬f }. Among the three supported models of P7,
the last one falsifies LF (P7).Hence,{a, c} and {a, d} constitute the only models of CF (P7) ∪ LF (P7)

and thus correspond to the two stable models of P7.

5.2 OPERATIONAL CHARACTERIZATION
We now turn to an operational characterization of supported and stable models in terms of op-
erators on partial interpretations. The interest in such operators lies in the fact that they provide
specifications for propagation operations in ASP solvers. To this end, we represent partial interpre-
tations as three-valued interpretations. We define 〈T1, F1〉 � 〈T2, F2〉 if T1 ⊆ T2 and F1 ⊆ F2 and
〈T1, F1〉 � 〈T2, F2〉 = 〈T1 ∪ T2, F1 ∪ F2〉 for three-valued interpretations 〈T1, F1〉 and 〈T2, F2〉.

The idea of our first operational characterization is to extend the TP operator from Section 2.4
to normal logic programs. The idea is to turn a program’s completion into an operator, following the
implications in (5.3) and the contrapositions of (5.4):

• The head atom of a rule must be true, if the rule’s body is true.

• An atom must be false, if the body of each rule having it as head is false.

This leads us to the following program-specific operator on partial interpretations.

�P 〈T , F 〉 = 〈TP 〈T , F 〉, FP 〈T , F 〉〉 (5.6)

where

TP 〈T , F 〉 = {head (r) | r ∈ P, body(r)+ ⊆ T , body(r)− ⊆ F }
FP 〈T , F 〉 = {a ∈ atom(P) | body(r)+ ∩ F �= ∅ or body(r)− ∩ T �= ∅

for each r ∈ P such that head (r) = a}

5.2. OPERATIONAL CHARACTERIZATION 75

We define the iterative variant of �P analogously to TP as

�0
P 〈T , F 〉 = 〈T , F 〉 and �i+1

P 〈T , F 〉 = �P �i
P 〈T , F 〉.

As an example, consider Program P7 from Page 28 along with the iterated application of �P7
starting from the “empty” interpretation 〈∅, ∅〉:

�0
P7

〈∅, ∅〉 = 〈∅, ∅〉
�1

P7
〈∅, ∅〉 = �P7〈∅, ∅〉 = 〈{a}, {f }〉

�2
P7

〈∅, ∅〉 = �P7〈{a}, {f }〉 = 〈{a}, {b, f }〉
�3

P7
〈∅, ∅〉 = �P7〈{a}, {b, f }〉 = 〈{a}, {b, f }〉⊔

i≥0 �i
P7

〈∅, ∅〉 = 〈{a}, {b, f }〉

(5.7)

A partial interpretation 〈T , F 〉 is a �P -fixpoint of P , if �P 〈T , F 〉 = 〈T , F 〉. The distin-
guished role of fixpoints is reflected by the following properties.

• The partial interpretation
⊔

i≥0�
i
P 〈∅, ∅〉 is the �-least �P -fixpoint of P .

This is because �P 〈∅, ∅〉 is monotonic, that is, �i
P 〈∅, ∅〉 � �i+1

P 〈∅, ∅〉.
• Any other �P -fixpoint extends

⊔
i≥0�

i
P 〈∅, ∅〉.

• Total �P -fixpoints correspond to supported models of P .

In view of the last statement, �P7 has three total fixpoints, whose true atoms correspond to the
supported models of P7, viz. {a, c}, {a, d}, and {a, c, e}. The fact that the truth values of c, d, and e

vary explains why the �-smallest fixpoint, 〈{a}, {b, f }〉, must leave them undefined.
Nonetheless, �P can be used for approximating stable models of P and so for propagation in

ASP solvers.This is because �P is stable-model preserving.That is, whenever �P 〈T , F 〉 = 〈T ′, F ′〉,
we have T ′ ⊆ X and X ∩ F ′ = ∅ for any stable model X of P such that T ⊆ X and X ∩ F =
∅. However, �P is still insufficient because total fixpoints correspond to supported models, not
necessarily stable models. Clearly, the problem is the same as with program completion: �P cannot
exclude all circular derivations. Nevertheless, for tight programs, �P is sufficient for propagation.

In fact, the operator �P can be strengthened by means of the notion of an unfounded set. Such
sets can be viewed as loops lacking any external support and whose atoms thus should become false.
A set U ⊆ atom(P) is an unfounded set of a logic program P with respect to a partial interpretation
〈T , F 〉 if, for each rule r ∈ P , we have

1. head (r) �∈ U , or

2. body(r)+ ∩ F �= ∅ or body(r)− ∩ T �= ∅, or

3. body(r)+ ∩ U �= ∅.

76 5. CHARACTERIZATIONS

Intuitively, 〈T , F 〉 is what we already know about P . Rules satisfying Conditions 1 or 2 are not
usable for deriving any atoms in U . Condition 3 is the actual unfounded set condition treating
circular derivations: all rules still being usable to derive an atom in U require an(other) atom in U

to be true.
For illustration, let us consider the simple program P = {a ← b, b ← a}. Note that P has

two supported models,∅ and {a, b}. Hence, the �P -operator cannot assign false to a and b as needed
for discarding the non-stable model {a, b}. However, this can be achieved by identifying {a, b} as an
unfounded set of P . Let us start by browsing through all candidate unfounded sets. By definition,
the empty set is an unfounded set. Furthermore, {a} is

• not an unfounded set of P with respect to 〈∅, ∅〉,
• an unfounded set of P with respect to 〈∅, {b}〉, and

• not an unfounded set of P with respect to 〈{b}, ∅〉.
While the partial interpretation 〈∅, {b}〉 rules out the only external support of a provided by a ← b,
the two others leave this option open. We get the same for {b} with roles of a and b reversed. Finally,
{a, b} is an unfounded set of P with respect to any partial interpretation because both atoms have
no support external to {a, b}.

Similar considerations make us observe that {f } is an unfounded set of P7 with respect to
〈∅, ∅〉; {e} and {e, f } are unfounded sets of P7 with respect to 〈∅, {b}〉; {b, e} is an unfounded set of
P7 with respect to 〈{a}, ∅〉; and {b, c, e} is an unfounded set of P7 with respect to 〈{a, d}, ∅〉. And
finally we note that {c, d} is an unfounded set of P24 with respect to 〈{b}, {a}〉, but neither with
respect to 〈∅, ∅〉 nor 〈{a}, ∅〉.

The observation that the union of two unfounded sets is also an unfounded set provides us
with a unique set of negative conclusions from a partial interpretation. The greatest unfounded set of
a logic program P with respect to a partial interpretation 〈T , F 〉, denoted by UP 〈T , F 〉, is the union
of all unfounded sets of P with respect to 〈T , F 〉. Alternatively, we may define

UP 〈T , F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T).

Informally, UP 〈T , F 〉 gives all atoms that cannot possibly be derived under any circumstances from
P in the context of T and F . Observe that Cn({r ∈ P | body(r)+ ∩ F = ∅}T) contains all non-
circularly derivable atoms from P with respect to 〈T , F 〉. To see this, consider the following two
examples. Taking P7 and 〈{a}, ∅〉 results in

Cn(P
{a}
7) = Cn({a ←, c ← a, d ←, e ← b, e ← e}) = {a, c, d}

from which we get UP7〈{a}, ∅〉 = atom(P7) \ {a, c, d} = {b, e, f }.
Analogously, we obtain from P24 along with 〈{b}, {a}〉,

Cn({r ∈ P24 | body(r)+ ∩ {a} = ∅}{b}) = Cn({b ←, c ← d, d ← c, b}) = {b}

5.2. OPERATIONAL CHARACTERIZATION 77

and consequently UP24〈{b}, {a}〉 = atom(P24) \ {b} = {a, c, d, e}.
We observe that UP7〈{a}, ∅〉 = {b, e, f } while FP7〈{a}, ∅〉 = {b, f }, as shown in (5.7) above.

In fact, Condition 2 in the definition of an unfounded set corresponds to that of FP in operator �P .
For a logic program P , this observation leads us to a stronger version of �P by

• keeping the definition of TP from �P and

• replacing FP in �P by UP .

In words, an atom must be false, if it belongs to the greatest unfounded set.
As with �P , this results in a program-specific operator on partial interpretations.

�P 〈T , F 〉 = 〈TP 〈T , F 〉, UP 〈T , F 〉〉
By definition, we have �P 〈T , F 〉 � �P 〈T , F 〉 for any partial interpretation 〈T , F 〉.

As above, we define the iterative variant of �P as

�0
P 〈T , F 〉 = 〈T , F 〉 and �i+1

P 〈T , F 〉 = �P �i
P 〈T , F 〉.

In analogy to (5.7), let us consider the iterated application of �P7 starting from the “empty”
interpretation 〈∅, ∅〉:

�0
P7

〈∅, ∅〉 = 〈∅, ∅〉
�1

P7
〈∅, ∅〉 = �P7〈∅, ∅〉 = 〈{a}, {f }〉

�2
P7

〈∅, ∅〉 = �P7〈{a}, {f }〉 = 〈{a}, {b, e, f }〉
�3

P7
〈∅, ∅〉 = �P7〈{a}, {b, e, f }〉 = 〈{a}, {b, e, f }〉⊔

i≥0 �i
P7

〈∅, ∅〉 = 〈{a}, {b, e, f }〉

(5.8)

A partial interpretation 〈T , F 〉 is a �P -fixpoint of P , if �P 〈T , F 〉 = 〈T , F 〉. As with �P

above, we have the following properties.

• The partial interpretation
⊔

i≥0�
i
P 〈∅, ∅〉 is the �-least �P -fixpoint of P .

This is because �P 〈∅, ∅〉 is monotonic, that is, �i
P 〈∅, ∅〉 � �i+1

P 〈∅, ∅〉.
• Any other �P -fixpoint extends

⊔
i≥0�

i
P 〈∅, ∅〉.

• Total �P -fixpoints correspond to stable models of P .

In contrast to �P7 above, �P7 has only two total fixpoints. The true atoms of these fixpoints
correspond to the stable models {a, c} and {a, d} of P7. Like �P , also �P is stable-model preserving
and can therefore be used for approximating stable models of P . Unlike �P , however, operator �P is
sufficient for propagation because total fixpoints correspond to stable models. In practice, most ASP
solvers apply in addition to �P also backward propagation, originating from program completion
(although this is unnecessary from a formal point of view, as we see in the next section).

78 5. CHARACTERIZATIONS

5.3 PROOF-THEORETIC CHARACTERIZATION
We now introduce a more fine-grained instrument for characterizing inferences in ASP solvers.The
idea is to view stable-model computations as derivations in an inference system. To this end, we
describe calculi consisting of tableau rules for the construction of stable models of logic programs. A
tableau rule captures an elementary inference scheme in an ASP solver. A branch in a tableau cor-
responds to a successful or unsuccessful computation of a stable model. An entire tableau represents
a traversal of the search space.

Inferences in ASP rely on truth values of atoms and applicability of program rules, which can
be expressed by assignments over atoms and bodies. For a program P , we thus fix the domain of
assignments A to dom(A) = atom(P) ∪ body(P). Such a hybrid approach may result in exponentially
smaller tableaux (and thus search space traversals) than either a purely atom- or body-based approach,
as shown at the end of this section.

A tableau for a logic program P and an initial assignment A is a binary tree with the rules
of P and the entries of A at its root.2 Further nodes in the tree are restricted to entries of the form
T v or F v for v ∈ dom(A). They are generated by applying tableau rules in the standard way: given
a tableau rule and a branch in a tableau such that the prerequisites of the rule hold in the branch,
the tableau can be extended by appending entries to the end of the branch as specified by the rule.
Note that every branch corresponds to a pair (P, A). We draw on this relationship for identifying
branches below.

The tableau rules for normal programs P are shown in Figure 5.4. For convenience, they make
use of two conjugation functions, t and f . For an entry �, define:

t� =
{

T � if � ∈ dom(A)

F v if � = ∼v for v ∈ dom(A)

f� =
{

F � if � ∈ dom(A)

T v if � = ∼v for v ∈ dom(A)

In view of this, the FTB rule in (a) expresses that truth of a rule body can be deduced if the body’s
literals hold in a branch. Conversely, if the body is already assigned to false and all but one literal
hold, the remaining literal must necessarily be false; this contrapositive argument is formalized by
the BFB rule in (b). Likewise, the tableau rules FTA and FFB in (c) and (e) capture straightforward
conditions under which an atom must be assigned to true and a body to false, respectively. Their
contrapositives are given by BFA and BTB in (d) and (f). The remaining tableau rules in (g)–(k)
are subject to provisos. For an application of FFA in (g), deducing an unsupported atom a to be
false, (§) stipulates that B1, . . . , Bm comprise all bodies of rules with head a. Its contrapositive,
the BTA rule in (h), is also guided by (§). The outer structure of WFN [�] and WFJ [�] in (i)
and (j), aiming at unfounded sets, is similar to FFA and BTA, yet their proviso (†[�]) requires a
concerned atom a to belong to some set U ∈ � such that B1, . . . , Bm comprise all external bodies

2We refrain from marking rules in P by T as they are not subject to an assignment through A.

5.3. PROOF-THEORETIC CHARACTERIZATION 79

a ← �1, . . . , �n
t�1, . . . , t�n
T {�1, . . . , �n}

F {�1, . . . , �i−1, �i, �i+1, . . . , �n}
t�1, . . . , t�i−1, t�i+1, . . . , t�n

f�i

(a) Forward True Body (FTB) (b) Backward False Body (BFB)

a ← �1, . . . , �n
T {�1, . . . , �n}

T a

a ← �1, . . . , �n
F a

F {�1, . . . , �n}
(c) Forward True Atom (FTA) (d) Backward False Atom (BFA)

a ← �1, . . . , �i, . . . , �n
f�i

F {�1, . . . , �i, . . . , �n}
T {�1, . . . , �i, . . . , �n}

t�i

(e) Forward False Body (FFB) (f) Backward True Body (BTB)

FB1, . . . ,FBm
(§)

F a

T a

FB1, . . . ,FBi−1,FBi+1, . . . ,FBm
(§)

TBi

(g) Forward False Atom (FFA) (h) Backward True Atom (BTA)

FB1, . . . ,FBm
(†[Ξ])

F a

T a

FB1, . . . ,FBi−1,FBi+1, . . . ,FBm
(†[Ξ])

TBi

(i) Well-Founded Negation (WFN[Ξ]) (j) Well-Founded Justification (WFJ[Ξ])

(�[Γ])
T v | F v

(k) Cut (Cut[Γ])

(§) : a ∈ atom(P),bodyP (a) ⊆ {B1, . . . , Bm} ⊆ body(P)

(†[Ξ]) : a ∈ U,U ∈ Ξ, EBP (U) ⊆ {B1, . . . , Bm} ⊆ body(P)

(�[Γ]) : v ∈ Γ

Figure 5.4: Tableau rules for normal programs.

80 5. CHARACTERIZATIONS

of U in P . Two alternatives of interest for � are � = 2atom(P) and � = loop(P). Finally, (�[�])
guides applications of the Cut[�] rule in (k) by restricting (choice) variables v to members of �.
For a normal program P , we below consider different sets � ⊆ atom(P) ∪ body(P).3 Note that a
Cut application adds entries T v and F v as the left and the right child to the end of a branch, thus
reflecting non-determinism in assigning v. With every other tableau rule, its consequent is appended
to a branch, that is, applications are deterministic.

For illustration consider Program P1. An example (complete) tableau for P1 is given in
Figure 5.5. The applications of tableau rules are indicated by their names, e.g., (FTB) and
(Cut[atom(P1)]), respectively. We observe that both branches in Figure 5.5 comprise P1 (at the
root) along with total assignments over atom(P1) ∪ body(P1): the left branch represents stable model
{a, c}, as indicated by T a and T c, while the right one gives stable model {a, d}.

a ←
c ← ∼b,∼d

d ← a,∼c

T ∅ (FTB)

T a (FTA)

F b (FFA)

T c F c

T {∼b,∼d} (BTA) F {∼b,∼d} (BFA)

F d (BTB) T d (BFB)

F {a,∼c} (FFB) T {a,∼c} (FTB)

(Cut [atom(P1)])

Figure 5.5: Complete tableau for P1 and the empty assignment.

Let us now turn to the characterization of deterministic consequences. For some v ∈ dom(A),
we say that T v or F v can be deduced by a set T of tableau rules in a branch (P, A) if the entry
can be generated by applying some rule in T other than Cut. Accordingly, we let DT (P, A) denote
the set of entries deducible by T in (P, A). Moreover, D∗

T (P, A) represents the set of entries in a
smallest branch that extends (P, A) and is closed under T , that is,DT (P, D∗

T (P, A)) ⊆ D∗
T (P, A).

For an example, let us consider Program P7 along with an empty assignment. For T we simply take
all tableau rules in Figure 5.4 except for Cut. The stepwise formation of deterministic consequences
is illustrated in Figure 5.6. In formal terms, we thus get

D∗
T (P7, ∅) = {F f,T∅,T a,F {∼a},F b,F {b, ∼f },F e,F {e}}. (5.9)

Looking at assigned atoms only, we observe that the derived consequences correspond to those
obtained by the iterated application of operator �P7 in (5.8).

3The Cut rule may, in principle, introduce more general entries; this would however necessitate additional decomposition rules,
leading to extended tableau calculi.

5.3. PROOF-THEORETIC CHARACTERIZATION 81

a ←
b ← ∼a

c ← a,∼d

d ← ∼c,∼e

e ← b,∼f

e ← e

F f (FFA)

T ∅ (FTB)

T a (FTA)

F {∼a} (FFB)

F b (FFA)

F {b,∼f} (FFB)

F e (WFN [2 atom(P7)])

F {e} (FFB)

Figure 5.6: Tableau branch for P7 and the empty assignment.

Note that all deterministic tableau rules in Figure 5.4 are stable-model preserving; this also
applies to the Cut rule when considering both resulting branches. Different tableau calculi, viz.
particular rule sets, yield characteristic correspondences. For some examples, consider the following.4

�P 〈T , F 〉 ∼ D∗{FTB,FTA,FFB,FFA}(P, A)

�P 〈T , F 〉 ∼ D∗
{FTB,FTA,FFB,WFN [2atom(P)]}(P, A)

UnitP ropagation(CF (P) ∪ CA) ∼ D∗
{(a)−(h)}(P, A)

expand ′
P (L, U) ∼ D∗

{(a)−(h),WFN [2atom(P)]}(P, A)

Apart from the respective representation of assignments and interpretations,5 we see that the dif-
ference between operator �P and �P manifests itself in the choice between tableau rule FFA and
WFN. A more fine-grained analysis shows that TP , FP , and UP are captured by {FTA, FTB},
{FFA, FFB}, and {WFN [2atom(P)], FFB}, respectively. Note that FTB and FFB serve merely as
intermediate propagators for body assignments, while the specific atom-wise assignments are done
by FTA, FFA, and WFN [2atom(P)], respectively. Moreover, unit propagation from the completed
program — abbreviated by UnitP ropagation(CF (P) ∪ CA); see Page 83 for more details6 —
can be seen as an extension of operator �P by backward propagation, viz. tableau rules BTB, BTA,

4These correspondences are not exact in the sense that the given tableau calculi deal with both atoms and bodies and thus allow
for more inferences than obtainable in the purely atom-based approaches on the left.

5That is, we leave the exact correspondence of A to 〈T , F 〉, CA, and (L, U) implicit.
6We use CA as an informal placeholder capturing the assignment A.

82 5. CHARACTERIZATIONS

BFB, and BFA. Analogously, propagation as accomplished by the ASP solver smodels, referred to as7

expand ′
P (see also Page 32), amounts to an enhancement of �P by backward propagation.

Finally, let us see how tableau calculi allow us to characterize stable model computations. A
branch (P, A) is contradictory if A is contradictory, and non-contradictory otherwise. Moreover,
(P, A) is complete (with respect to a tableau calculus T) if it is contradictory or if A is total and
DT (P, A) ⊆ A. A tableau is complete if all its branches are complete. A complete tableau for a logic
program and the empty assignment such that all branches are contradictory is called a refutation for
the program (meaning that the program has no stable model). As an example, let us consider the
tableau calculus comprising the tableau rules {(a) − (h), WFN [2atom(P)]} along with Cut[atom(P)]:
given a normal logic program P , we have the following characterizations of stable models. 8

1. P has a stable model X iff every complete tableau for P and ∅ has a unique non-contradictory
branch (P, A) such that AT ∩ atom(P) = X.

2. P has no stable model iff every complete tableau for P and ∅ is a refutation.

Note that instead of Cut[atom(P)], also Cut[body(P)] and Cut[atom(P) ∪ body(P)] are sufficient
to complete tableaux for P and ∅. However, different proof complexities are obtained with respect to
such Cut variants. In fact, the proof system obtained with Cut[atom(P) ∪ body(P)] is exponentially
stronger than the ones with either Cut[atom(P)] or Cut[body(P)].The practical consequence of this
is that ASP solvers permitting both atoms and bodies as choice variables may traverse exponentially
smaller search spaces.

5.4 NOGOOD-BASED CHARACTERIZATION
We finally develop a uniform constraint-based framework capturing the whole spectrum of inferences
in ASP.This paves the way for harnessing advanced Boolean constraint technology for implementing
ASP solving. For representing such constraints, we take advantage of the concept of a nogood. This
allows us to view inferences in ASP as unit propagation.

In our setting, a nogood is a set {σ1, . . . , σm} of entries, expressing that any assignment con-
taining σ1, . . . , σm is inadmissible. Accordingly, a total assignment A is a solution for a set � of
nogoods if δ �⊆ A for all δ ∈ �.

For instance, given the domain {a, b}, the total (unordered) assignment {T a,F b} is a solution
for the nogoods {T a,T b} and {F a,F b}. Likewise, {F a,T b} is another solution. Importantly,
nogoods provide us with reasons explaining why entries must belong to a solution, and look-back
techniques can be used to analyze and recombine inherent reasons for conflicts (see Chapter 6 for
details).

In fact, deterministic tableau rules like the ones on Page 79 inherently induce nogoods, given
that such rules express the fact that their prerequisites necessarily imply their consequent. That is, a
7We use expand ′

P
in order to stress the extension to expandP in Section 2.4.

8As this calculus admits a (unique) non-contradictory complete branch (P, A) in some tableau iff (P, A) belongs to every complete
tableau for P and ∅, the statements remain valid when replacing “every” by “some.”

5.4. NOGOOD-BASED CHARACTERIZATION 83

tableau rule with prerequisites σ1, . . . , σn and consequent σ expresses the fact that {σ1, . . . , σn, σ } is
a nogood. Investigating all instances of deterministic tableau rules for a logic program P thus allows
for extracting a set � of nogoods such that any solution A for � corresponds to a non-contradictory
complete branch (P, A) in a tableau (and vice versa).

Once all inferences are captured in terms of nogoods, they can be drawn in a uniform way by
means of unit propagation: given a nogood δ and an assignment A, an entry σ �∈ A is unit-resulting
for δ with respect to A, if δ \ A = {σ }. That is, if all but one entry of a nogood are contained in an
assignment, the complement of the remaining entry must hold in any solution extending the current
assignment. For a set � of nogoods and an assignment A, unit propagation is the iterated process
of extending A with unit-resulting entries until no further entry is unit-resulting for any nogood in
�.9

To illustrate this, let us take up the above example. Given the partial (unordered) assignment
{T a} along with the nogood {T a,T b}, we observe that all entries in the nogood but T b are already
contained in the assignment. Hence, any solution extending the assignment {T a} must exclude
T b since otherwise it would contain the entire nogood {T a,T b}. In turn, all eligible extensions of
assignment {T a} must contain F b.This is expressed by the fact that F b is unit-resulting for nogood
{T a,T b} with respect to the assignment {T a}. Unit propagation then extends assignment {T a} by
F b, leading to the augmented assignment {T a,F b}. On the other hand, no entry is unit-resulting
for nogood {F a,F b} with respect to assignment {T a}.

The specification of Boolean constraints given below follows the axiomatic characterization
of stable models in Section 5.1. This definition distinguishes between the completion, CF (P),
and the loop formulas, LF (P), of a normal logic program P . In fact, models of CF (P) match
non-contradictory complete branches in tableaux containing the deterministic tableau rules (a)–
(h) in Figure 5.4. Furthermore, we have seen in Section 5.3 that augmenting these rules with
WFN [2atom(P)] (or equivalently WFN [loop(P)]) characterizes models of CF (P) ∪ LF (P), that
is, the stable models of P . The major difference between CF (P) and LF (P) is that the former
captures local conditions applying to individual atoms and rule bodies, while LF (P) aims at more
global conditions related to unfounded sets.

In the following, we specify nogoods such that their solutions correspond to stable models of
a given program. To begin with, the set of completion nogoods, �P , of a normal program P is defined
as follows.

�P = ⋃
B∈body(P),B={�1,...,�n}

{ {FB, t�1, . . . , t�n},
{TB,f�1}, . . . , {TB,f�n}

}
(5.10)

∪ ⋃
a∈atom(P),bodyP (a)={B1,...,Bk}

{ {T a,FB1, . . . ,FBk},
{F a,TB1}, . . . , {F a,TBk}

}
(5.11)

The completion nogoods �P can be derived by decomposing the completion CF (P) into a set
of clauses. To be more precise, the first set of body-oriented nogoods in (5.10) is obtained from
9In view of the proof-theoretic considerations at the end of the previous section, we keep considering entries over both atoms and
bodies of an underlying program.

84 5. CHARACTERIZATIONS

BF (body(r)) in (5.2), while the second set of atom-oriented ones in (5.11) can be derived from
CF (P) in (5.1). The major difference is that bodies are taken above as first-class objects while they
are dealt with implicitly in Section 5.1. See below for illustration.

The set �P can also be obtained by converting the tableau rules (a)–(h) in Figure 5.4 into
nogoods. To be more precise, the nogood {FB, t�1, . . . , t�n} expresses the fact that a body B

must not be false if all of its entries hold; the same exclusion is achieved by tableau rule FTB (or
BFB, provided that B �= ∅). The nogoods {TB,f�1}, . . . , {TB,f�n}, representing that B cannot
hold if one of its entries is false, comply with tableau rule FFB or, alternatively, BTB. If B is
empty, that is, if n = 0, there are no nogoods of this kind, and the corresponding tableau rules are
likewise inapplicable. Turning to an atom a, the nogood {T a,FB1, . . . ,FBk} denies solutions
containing a while all its supporting bodies are false. Tableau rule FFA (or BTA, provided that
bodyP (a) �= ∅) expresses the same. Finally, the nogoods {F a,TB1}, . . . , {F a,TBk} view program
rules as implications, complying with tableau rule FTA or, alternatively, BFA; if a has no supporting
rule, that is, if k = 0, there are no nogoods of this kind, and the corresponding tableau rules are
likewise inapplicable.

As an example, consider the following normal logic program.

P26 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ← ∼b

b ← ∼a

c ← a

c ← d

d ← c, ∼a

e ← c

e ← d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We consider entries and thus nogoods over atom(P26) ∪ body(P26). The tableau rules (a)–(h) in
Figure 5.4 correspond to the nogoods in �P26 as shown in Table 5.1.

Table 5.1: Set �P26 of nogoods and associated tableau rules

Tableau Rules Nogoods in �P26

FTB, BFB
{F {∼b},F b}, {F {∼a},F a}, {F {a},T a}, {F {d},T d},
{F {c},T c}, {F {c, ∼a},T c,F a}

FFB, BTB
{T {∼b},T b}, {T {∼a},T a}, {T {a},F a}, {T {d},F d},
{T {c},F c}, {T {c, ∼a},F c}, {T {c, ∼a},T a}

FTA, BFA
{F a,T {∼b}}, {F b,T {∼a}}, {F c,T {a}}, {F c,T {d}},
{F d,T {c, ∼a}}, {F e,T {c}}, {F e,T {d}}

FFA, BTA
{T a,F {∼b}}, {T b,F {∼a}}, {T c,F {a},F {d}},
{T d,F {c, ∼a}}, {T e,F {c},F {d}}

5.4. NOGOOD-BASED CHARACTERIZATION 85

Since each body occurring in P26 is non-empty and each atom has a supporting rule, every
nogood in �P26 reflects exactly one forward- and one backward-oriented tableau rule. The nogoods
in �P26 can be derived systematically by considering potential applications of the tableau rules (a)–
(h) in Figure 5.4 for each target variable v ∈ atom(P26) ∪ body(P26). As a consequence, a nogood like
{F {c, ∼a},T c,F a} captures three distinct inferences, one for each of its (complementary) entries.
They correspond to the following (instances of) tableau rules.

d ← c, ∼a

T c

F a

T {c, ∼a}

F {c, ∼a}
F a

F c

F {c, ∼a}
T c

T a

(a) FTB (b) BFB (b) BFB

In terms of unit propagation, these rules express that the entry in the consequent is unit-resulting
whenever the entries in the prerequisite belong to the current assignment.

Similarly, nogood {T c,F {a},F {d}} corresponds to the following three tableau rules.

F {a}
F {d}

(§)
F c

T c

F {a}
(§)

T {d}

T c

F {d}
(§)

T {a}
(§) : bodyP26

(c) = { {a}, {d} }

(g) FFA (h) BTA (h) BTA

Note that all three inferences are sanctioned by the proviso expressed in (§).
For realizing the direct relationship between the completion nogoods and the actual comple-

tion of a program, it is sufficient to re-express the latter by using auxiliary atoms turning bodies into
first-class objects. Alternatively, the completion of a logic program P can be defined with the help
of a set of auxiliary variables for bodies, viz. {vB | B ∈ body(P)}.

CF x(P) = {vB ↔ (
∧

a∈body(r)+a ∧ ∧
a∈body(r)−¬a) | r ∈ P }

∪ {a ↔ (
∨

B∈bodyP (a)vB) | a ∈ atom(P)}
Let us illustrate this by showing the correspondence between �P26 and the completion

CF x(P26) of P26. The (alternative) completion CF x(P26) is as follows.

CF x(P26) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a ↔ v{∼b} v{∼b} ↔ ¬b

b ↔ v{∼a} v{∼a} ↔ ¬a

c ↔ v{a} ∨ v{d} v{a} ↔ a

v{d} ↔ d

d ↔ v{c,∼a} v{c,∼a} ↔ c ∧ ¬a

e ↔ v{c} ∨ v{d} v{c} ↔ c

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

The models of CF x(P26) and corresponding solutions for �P26 are shown in Table 5.2. The equiv-

86 5. CHARACTERIZATIONS

Table 5.2: Models of CF (P26), CF x(P26), and corresponding solutions for �P26

Model of CF (P26) Model of CF x(P26) Solution for �P26

{a, c, e} {a, c, e} ∪ {T a,F b,T c,F d,T e} ∪
{v{∼b}, v{a}, v{c}} {T {∼b},F {∼a},T {a},F {d},

T {c},F {c, ∼a}}
{b} {b} ∪ {F a,T b,F c,F d,F e} ∪

{v{∼a}} {F {∼b},T {∼a},F {a},F {d},
F {c},F {c, ∼a}}

{b, c, d, e} {b, c, d, e} ∪ {F a,T b,T c,T d,T e} ∪
{v{∼a}, v{d}, v{c}, v{c,∼a}} {F {∼b},T {∼a},F {a},T {d},

T {c},T {c, ∼a}}

alences in CF x(P26) can be divided in the atom-oriented ones on the left and the body-oriented
ones on the right. This reflects the division of tableau rules into atom- and body-oriented rules in
Figure 5.4. For an atom-oriented example, consider the formula c ↔ v{a} ∨ v{d}. It is equivalent to
the clauses

c ∨ ¬v{a}, c ∨ ¬v{d}, and ¬c ∨ v{a} ∨ v{d} .

In turn, negating each clause and substituting each auxiliary variable vB by B yields the nogoods
{F c,T {a}}, {F c,T {d}}, and {T c,F {a},F {d}}. Similarly, the body-oriented formula v{c,∼a} ↔
c ∧ ¬a is equivalent to the clauses

¬v{c,∼a} ∨ c, ¬v{c,∼a} ∨ ¬a, and v{c,∼a} ∨ ¬c ∨ a .

Proceeding in analogy to the above, we obtain the nogoods {T {c, ∼a},F c}, {T {c, ∼a},T a}, and
{F {c, ∼a},T c,F a}.

Accordingly, we have the following counterpart to Theorem 5.1 characterizing stable models
of tight programs in terms of nogoods.

Theorem 5.3 Let P be a tight normal logic program and X ⊆ atom(P).
Then, X is a stable model of P iff X = AT ∩ atom(P) for a (unique) solution A for �P .

In order to extend the characterization of stable models by solutions for nogoods to non-tight
programs, P , we additionally need to reflect tableau rule WFN [2atom(P)] or WFN [loop(P)] from
Figure 5.4. To this end, we define the set of loop nogoods of P , �P , as follows.

�P = ⋃
U⊆atom(P),EBP (U)={B1,...,Bk} {{T a,FB1, . . . ,FBk} | a ∈ U} (5.12)

The nogoods in �P express that an atom a must not be true if it belongs to an unfounded set U .
The same exclusion is achieved by tableau rule WFN [2atom(P)] (or WFJ [2atom(P)], provided that

5.4. NOGOOD-BASED CHARACTERIZATION 87

EBP (U) �= ∅). Note that the definition in (5.12) is rather general in selecting subsets U ⊆ atom(P).
An alternative accommodating WFN [loop(P)] is to select U among loop(P).

In view of the correspondence between (deterministic) tableau rules in Figure 5.4 and �P ∪
�P , we derive the following counterpart to Theorem 5.2 in terms of nogoods.

Theorem 5.4 Let P be a normal logic program and X ⊆ atom(P).
Then, X is a stable model of P iff X = AT ∩ atom(P) for a (unique) solution A for �P ∪ �P .

Let us reconsider P26 along with the solutions for �P26 in Table 5.2. In fact, P26 is not tight
because loop(P26) = {{c, d}} due to rules c ← d and d ← c, ∼a. In view of EBP26({c, d}) = {{a}},
we obtain for U = {c, d} the loop nogoods {T c,F {a}} and {T d,F {a}}. In analogy to Table 5.1,
these nogoods capture all inferences obtainable from WFN [loop(P26)] and WFJ [loop(P26)]. Now,
checking the three solutions for �P26 in Table 5.2, we observe that the third one contains both
loop nogoods, while neither is included in the first two solutions. In other words, the first two
solutions of �P26 are also solutions for �P26 ∪ �P26 , while the third one violates �P26 . According
to Theorem 5.4, the corresponding sets of true atoms, {a, c, e} and {b}, respectively, are the stable
models of P26.

With the full set of nogoods at hand, we can now also provide the counterpart of the
tableau branch in Figure 5.6 in terms of unit propagation (see also (5.9)). The result is shown
in Figure 5.7. The left column gives the unit-resulting entry, σ , for the nogood, δ, in the mid-

σ δ ΔP7 ∪ ΛP7

F f {T f} ΔP7

T ∅ {F ∅} ΔP7

T a {F a,T ∅} ΔP7

F {∼a} {T {∼a},T a} ΔP7

F b {T b,F {∼a}} ΔP7

F {b,∼f} {T {b,∼f},F b} ΔP7

F e {T e,F {b,∼f}} ΛP7

F {e} {T {e},F e} ΔP7

Figure 5.7: Unit propagation on �P7 ∪ ∧P7.

dle column with respect to the previously obtained entries. At the same time, the left column
develops the growing assignment downward. The rightmost column indicates whether the prop-
agating nogood is a completion or a loop nogood. In total, we thus constructed the assignment
(F f,T∅,T a,F {∼a},F b,F {b, ∼f },F e,F {e}) by unit propagation on �P7 ∪ �P7 . Recall that
the assigned atoms correspond to the deterministic consequences obtained by the iterated application
of operator �P7 in (5.8) on Page 77.

88 5. CHARACTERIZATIONS

ByTheorem 5.4, the nogoods in �P ∪ �P describe a set of constraints that need to be checked
for identifying stable models. However, while the size of �P is linear in the size of P , the size of �P

is in general exponential. This is however no defect in the construction of �P but an implication
of (widely accepted assumptions in) complexity theory. Hence, most ASP solvers work on logic
programs as succinct representations of loop nogoods (or formulas, respectively) and check them
efficiently by determining unfounded sets relative to assignments. See Chapter 6 for details.

Although we do not detail this here, let us illustrate the generality of the constraint-based
approach by sketching how it captures weight constraints. As with rule bodies, the constraint-based
characterization is twofold. First, the assignment’s domain is extended so that weight constraints
can be assigned truth values. Second, the set of inferences induced by weight constraints is described
in terms of a set of nogoods.

As an example, consider the weight constraint on Page 22:

ω = 10 {course(db) = 6, course(ai) = 6, course(project) = 8, course(xml) = 3} 20

In this case, the Boolean variable ω is introduced and the above weight constraint is captured by the
set of nogoods in Figure 5.8. The nogoods in �ω containing Fω express (minimal) combinations

Δω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{Fω,T course(db),T course(ai),F course(project)},
{Fω,T course(db),T course(ai),F course(xml)},
{Fω,T course(db),T course(project),F course(ai)},
{Fω,T course(db),T course(project),F course(xml)},
{Fω,T course(ai),T course(project),F course(db)},
{Fω,T course(ai),T course(project),F course(xml)},
{Fω,T course(project),T course(xml),F course(db)},
{Fω,T course(project),T course(xml),F course(ai)},
{Tω,F course(db),F course(ai),F course(xml)},
{Tω,F course(db),F course(project)},
{Tω,F course(ai),F course(project)},
{Tω,T course(db),T course(ai),T course(project),T course(xml)}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Figure 5.8: Nogoods for an example weight constraint.

of entries over atoms in ω such that the lower and the upper bound of ω are definitely satisfied, so
that ω must not be assigned F . Similarly, the first three nogoods with Tω provide combinations
of entries under which the lower bound of ω cannot be established, and the last nogood expresses
that the upper of ω is violated when all atoms in ω are assigned T . Taken as a whole, the set �ω of
nogoods requires that the truth value assigned to ω matches the valuation of ω with respect to its
constituents. Conditions that rely on the valuation of ω, e.g., concerning rule bodies that include ω,
can then be formulated transparently by referring to Tω or Fω, respectively.

5.5. REFERENCES AND FURTHER READING 89

5.5 REFERENCES AND FURTHER READING

Clark introduced with the concept of completion in (1978) the first declarative account of negation-
as-failure, or in a broader sense, of closed world reasoning.

Non-circular derivations are a distinguishing feature of ASP’s forerunner, Default
Logic (Reiter, 1980) (in contrast to Autoepistemic Logic (Moore, 1985)). This feature was first
described by Schwind (1990) and referred to as groundedness. In ASP, the conceptually different
property of tightness was identified by Fages in (1994). As well, Theorem 5.1 was shown by Fages
(1994), providing a first step toward the characterization of stable models in terms of propositional
formulas in classical logic.

Lin and Zhao present in (2004) the fundamental characterization of stable models in terms of
propositional formulas (cf. Theorem 5.2; see also Section 1.2 on limitations of translations between
ASP and SAT). Lin (1991) characterizes stable models of logic programs in terms of Circum-
scription (McCarthy, 1980, 1986); see also Pearce et al. (2009). The concepts of loops and loop
formulas were identified in Lin and Zhao (2004) and further elaborated in Lee (2005). Unfounded
sets are linked to loops, as they provide a syntactic characterization of “interesting” unfounded
sets. Gebser and Schaub (2005), Gebser et al. (2011i) identify elementary loops that can be used to
confine unfounded set checking to necessary parts.

Operator �P was conceived by Fitting in (1985), and is thus often referred to as the Fitting
operator.With it,we may define the Fitting semantics of a logic program P as the partial interpretation⊔

i≥0�
i
P 〈∅, ∅〉. The Fitting semantics of P is not conflicting and generally not total.

The operator �P was invented by Van Gelder et al. (1991) along with the central concept
of an unfounded set. See Alviano et al. (2011), Leone et al. (1997) for more literature on un-
founded sets.The well-founded semantics of a logic program P is defined as the partial interpretation⊔

i≥0�
i
P 〈∅, ∅〉. As the Fitting semantics, the well-founded semantics of P is not conflicting and

generally not total. However, the well-founded semantics yields more consequences than Fitting’s,
that is,

⊔
i≥0 �i

P 〈∅, ∅〉 � ⊔
i≥0 �i

P 〈∅, ∅〉 for any program P .
As pointed out by Van Gelder (1993), we can define an anti-monotonic operator from the

basic ingredients of the original definition of stable models, namely, �P (X) = Cn(P X). With it, the
stable models of a program P can be characterized through fixpoints of operator �P . Given that �P

is anti-monotonic, its squared variant �2
P is monotonic. As discussed in Lifschitz (1996), all stable

models of P include all (well-founded) atoms belonging to the smallest fixpoint of �2
P , while they

exclude all (unfounded) atoms belonging to the complement of the greatest fixpoint of �2
P . For more

details on such alternating fixpoints, the interested reader is referred to Lifschitz (1996), Van Gelder
(1993).

A comprehensive introduction to tableau systems is provided by the Tableau Hand-
book (D’Agostino et al., 1999). The tableau-based characterization of ASP solving given in Sec-
tion 5.3 was introduced in Gebser and Schaub (2006a) and extended in Gebser and Schaub
(2007), Järvisalo and Oikarinen (2008); see also Gebser and Schaub (2012). As pointed out
in Hähnle (2001), DPLL is very similar to the propositional version of KE tableau calcu-

90 5. CHARACTERIZATIONS

lus (D’Agostino and Mondadori, 1994). Further related work includes tableau calculi for other
forms of Nonmonotonic Reasoning (Dix et al., 2001, Olivetti, 1999, Pearce et al., 2000). An al-
ternative transition-based framework for characterizing DPLL- and CDCL-based search pro-
cedures for SAT solving was introduced by Nieuwenhuis et al. (2006). This framework was em-
ployed by Lierler (2011) to characterize search procedures for ASP solving. General investi-
gations into propositional proof complexity (Cook and Reckhow, 1979), in particular, that of
(UN)SAT, can be found in (Beame and Pitassi, 1998). Recent results on CDCL (Beame et al., 2004,
Pipatsrisawat and Darwiche, 2011) indicate its relation to general resolution.

Nogoods constitute a traditional concept in Constraint Processing (CP) for characterizing
constraints in a complementary way (see Dechter (2003), Rossi et al. (2006)). Of course, clauses can
be viewed as particular syntactic representations of nogoods, just as other representations, like gates,
inequalities, rules, etc. Therefore, we employ nogoods for abstracting from the respective syntactic
entities in order to obtain a canonical means of characterization.

The notion of a unit-resulting entry is closely related to that of a unit clause in SAT solving
(cf.Biere et al. (2009)).Along the lines of SAT,we call the iterated process of extending an assignment
by unit-resulting entries unit propagation. The nogood-based characterization of stable models
given in Section 5.4 was introduced in Gebser et al. (2007a); see also Gebser et al. (2012b). This
characterization was extended to disjunctive logic programs in Drescher et al. (2008) and to weight
constraints in Gebser et al. (2009a). A more general study is given in Gebser and Schaub (2006b).

Further characterizations of stable models can be found in Lifschitz (2008).

C H A P T E R 6

Solving
The nogood-based characterization developed in Section 5.4 provides us with a uniform constraint-
based framework for different kinds of inferences in ASP. In particular, it allows us to implement
inferences in ASP as unit propagation on nogoods and thus to take advantage of advanced Boolean
constraint technology. To begin with, let us consider the two most popular algorithmic schemes in
Boolean Constraint Solving.

6.1 BOOLEAN CONSTRAINT SOLVING
The solve algorithm developed in Section 2.4 (on Page 29) follows the scheme of the well-known
Davis-Putnam-Logemann-Loveland (DPLL) algorithm. This algorithm was developed about five
decades ago and constitutes the traditional approach to SAT solving. The outline of DPLL is given
in Figure 6.1.The idea is to combine deterministic (unit) propagation with systematic backtracking,

loop

propagate // compute deterministic consequences

if no conflict then

if all variables assigned then return variable assignment

else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable

else

backtrack // undo assignments made after last decision

flip // assign complement of last decision literal

Figure 6.1: Basic decision algorithm for backtracking based Boolean constraint solving (DPLL).

in case of a conflict flipping the last non-deterministically assigned literal. Although the presentation
of DPLL differs from the one of solve in Section 2.4 (because Figure 6.1 is aligned with Figure 6.2),
it follows the same pattern. At first, all deterministic consequences are computed. Then, three cases
are distinguished. First, if all variables have been consistently assigned, the computation terminates
and outputs the stable model represented by the variable assignment. Second, if only some variables

92 6. SOLVING

have been consistently assigned (and the remaining ones are still unassigned), we choose a variable
and assign it a truth value. This assignment is a non-deterministic consequence. Third, if some
variables have been assigned inconsistently, we backtrack and reassign the previously chosen variable
the complementary truth value. A top-level conflict designates the special case in which a conflict
is obtained from deterministic consequences only (and only made explicit here to stay compatible
with Figure 6.2).

The search pattern of modern SAT solvers is referred to as Conflict-Driven Clause Learning
(CDCL). It is outlined in Figure 6.2. Like DPLL, it starts with the computation of deterministic

loop

propagate // compute deterministic consequences

if no conflict then

if all variables assigned then return variable assignment

else decide // non-deterministically assign some literal

else

if top-level conflict then return unsatisfiable

else

analyze // analyze conflict and add a conflict constraint

backjump // undo assignments until conflict constraint is unit

Figure 6.2: Basic decision algorithm for conflict-driven Boolean constraint learning (CDCL).

consequences, followed by the above described case analysis. However, the basic idea of CDCL
follows the principle of “learning from mistakes.” Rather than merely undoing the last choice,CDCL
starts with an analysis of the encountered conflict that aims at determining its origin. Once this is
accomplished, CDCL enriches the original problem specification by learning from the encountered
conflict and then returns to the source of this conflict.The major technical difference between CDCL
and DPLL lies in the look-back techniques utilized to recover from conflicts: CDCL applies an
analyze step that strengthens the input by adding a conflict constraint; it also performs a backjump to
a point where the conflict constraint is unit (yields some deterministic consequence by propagation).
That is, CDCL replaces (i) systematic backtracking by backjumping, and (ii) flips of former decision
literals by inferences through conflict constraints. We illustrate this in the sequel.

Next, let us instantiate the algorithmic scheme of CDCL with the nogood-based concepts of
Section 5.4 in order to accommodate ASP solving. In fact, once a logic program has been converted
into nogoods, the above CDCL scheme can be adapted in a straightforward way. However, as
motivated in Section 5.5, we present our conflict-driven learning algorithm for deciding stable

6.2. SETTING THE STAGE 93

Algorithm 3: CDNL-ASP

Input : A normal program P .
Output : A stable model of P or “no stable model.”

1 A := ∅ // assignment over atom(P) ∪ body(P)

2 ∇ := ∅ // set of recorded nogoods
3 dl := 0 // decision level

4 loop
5 (A, ∇) := NogoodPropagation(P, ∇, A) // deterministic consequences

6 if ε ⊆ A for some ε ∈ �P ∪ ∇ then // conflict

7 if max({dlevel (σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model
8 (δ, dl) := ConflictAnalysis(ε, P, ∇, A)
9 ∇ := ∇ ∪ {δ} // (temporarily) record conflict nogood

10 A := A \ {σ ∈ A | dl < dlevel (σ)} // backjumping

11 else if AT ∪ AF = atom(P) ∪ body(P) then // stable model
12 return AT ∩ atom(P)

13 else
14 σd := Select(P, ∇, A) // decision
15 dl := dl + 1
16 dlevel (σd) := dl
17 A := A ◦ σd

models existence in terms of nogoods and, in the following, call it Conflict-Driven Nogood Learning
for ASP (CDNL-ASP). The result is given as Algorithm 3 and explained in what follows.

6.2 SETTING THE STAGE
While the order of entries in a Boolean assignment does not affect its semantics, it is crucial for
algorithms analyzing the entries’ interdependencies. Hence, we now consider ordered assignments
like A = (σ1, . . . , σn). We associate for 1 ≤ i ≤ n with each entry σi in A a non-negative integer
dlevel (σi), called the decision level of σi . Furthermore, we let A[σi] = (σ1, . . . , σi−1) denote the
prefix of A relative to σi , and define A[σ] = A if σ /∈ A. Finally, we require that in any ordered
assignment distinct entries assign distinct variables. This implies that ordered assignments are non-
contradictory.

For an ordered assignment A = (σ1, . . . , σn) and an entry σ with an associated decision
level, dlevel (σ), we let A ◦ σ stand for the result of appending σ to A, that is, (σ1, . . . , σn, σ)

provided that max({dlevel (σ1), . . . , dlevel (σn)} ∪ {0}) ≤ dlevel (σ).That is, A ◦ σ contains σ as the

94 6. SOLVING

last entry with a decision level greater than or equal to dlevel (σn). For instance, appending F d with
dlevel (F d) = 2 to A = (T a,F b,T c) with dlevel (T a) = 0, dlevel (F b) = 1, and dlevel (T c) = 1
yields A ◦ F d = (T a,F b,T c,F d) along with all previous decision levels. Hence, decision levels
are increasing along the sequence of entries in an ordered assignment.

The concepts of unit-resulting entries and unit propagation carry over from unordered
to ordered assignments in the straightforward way. For instance, F d is unit-resulting for the
nogood {F b,T d} with respect to assignment (T a,F b,T c), but it is neither with respect to
(T a,F b,T c,T d) nor (T a,F b,T c,F d). For an ordered assignment A and an entry σ , we call
a nogood δ an antecedent of σ with respect to A if σ is unit-resulting for δ with respect to A[σ].
Hence, in the previous example, {F b,T d} is an antecedent of F d with respect to assignment
(T a,F b,T c). Extending this to sets � of nogoods, we say that σ is implied by � with respect to A,
if � contains some antecedent of σ with respect to A. The notion of implication identifies entries
that must necessarily be added to an assignment because the addition of their complement would
violate some nogood. Implied entries are crucial for the meaningful application of conflict analysis,
described in Section 6.6.

When given a normal program P , throughout this chapter, we assume that all variables
occurring in an associated set of nogoods belong to atom(P) ∪ body(P); in particular, this applies to
dynamic nogoods, which are denoted by ∇ below.

6.3 CONFLICT-DRIVEN NOGOOD LEARNING

We now present the basic decision algorithm for conflict-driven Boolean nogood learning. At this
abstract level, it applies to any set of nogoods, no matter whether they stem from a logic program, a
set of clauses, or any other Boolean domain.

Our main procedure for finding a stable model (or deciding that there is none) is shown in
Algorithm 3. Given a normal program P , the algorithm starts from an empty assignment A and
an empty set ∇ of recorded nogoods over atom(P) ∪ body(P). The latter set is used to accumulate
conflict and loop nogoods. The recorded nogoods in ∇ and the completion nogoods in �P are
exploited for (unit) propagation and conflict analysis. Moreover, we use the decision level dl for
counting the number of decision entries in A. The initial value of dl is 0. Decision entries are non-
deterministically chosen (in Line 14 in Algorithm 3), while entries derived (deterministically) by
propagation (in Line 5) are implied by �P ∪ ∇ with respect to A.

For computing a stable model of P , the main loop in Lines 4–16 of Algorithm 3 follow the
standard proceeding of CDCL. First, NogoodPropagation (detailed in Section 6.4) deterministically
extends A in Line 5, and possibly also records loop nogoods from �P in ∇. Afterward, one of the
following cases applies:

Conflict. If propagation led to the violation of some nogood ε ∈ �P ∪ ∇, as checked in Line 6,
there are two possibilities.

6.3. CONFLICT-DRIVEN NOGOOD LEARNING 95

• Either the conflict occurred independently of any previous decision, meaning that the
input program P has no stable model, or

• ConflictAnalysis (cf. Section 6.6) is performed in Line 8 to determine a conflict nogood δ,
recorded in ∇ in Line 9, along with a decision level dl to jump back to.

Note that we assume δ to be asserting, that is, some entry must be unit-resulting for δ after
backjumping in Line 10. This condition is guaranteed by ConflictAnalysis and makes sure
that after backjumping, Algorithm 3 traverses the search space differently than before (without
explicitly flipping any decision entry).

Solution. If propagation led to a total assignment A (not violating any nogood in �P ∪ ∇), as
checked in Line 11, the atoms true in A belong to a stable model of P and are returned in
Line 12.

Decision. If neither of the previous cases applies, A is partial, and a decision entry σd is selected
according to some heuristic in Line 14. We do not make any particular assumptions about the
heuristic used. We only require that the variable in σd is unassigned and occurs in the input
program P (either as an atom or a body). Also note that dlevel (σd) is set to the increment
of dl in Line 16, so that σd is appended to the end of A in Line 17.

As an initial example, let us trace the computation of stable model {a, c} of Program P7 in
Table 6.1.

P7 =
{

a ← c ← a, ∼d e ← b, ∼f

b ← ∼a d ← ∼c, ∼e e ← e

}

This and the following tables show the current assignment A at different stages of Algorithm 3.The
leftmost column provides the value of the current decision level dl , whose corresponding decision
literal is listed below σd . The only decision entry in Table 6.1 is T {a, ∼d}. All other entries in A

result from executing NogoodPropagation. That is, each entry under σ is unit-resulting for some
nogood δ ∈ �P7 ∪ ∇. The next two columns provide the specific group of nogoods comprising δ

and the line of Algorithm 3 at which the assignment A and/or some nogood δ are inspected. Finally,
the last column indicates the respective iteration of Algorithm 3’s main loop. When applicable, we
also indicate successful tests for violated nogoods and give the nogood δ recorded in ∇ along with
the decision level dl to backjump to (thus abusing the column headed ‘Origin’ to indicate the jump’s
destination). For instance, such information is given in the last two lines of Table 6.2 below.

In fact, the stable model {a, c} of P7 is found and returned after two iterations of the main loop
in Line 4 to 17 of Algorithm 3. The initial application of NogoodPropagation is identical to that
of unit propagation in Figure 5.7.1 Since the resulting assignment is still partial, we have to make a
non-deterministic choice in Line 14, leading to the assignment of T to body {a, ∼d}. The second
invocation of NogoodPropagation after re-entering the loop in Line 4 completes the assignment.
1See also the tableau derivation in Figure 5.6 on Page 81 as well as the iterated applications of operator �P7 in (5.8) on Page 77.

96 6. SOLVING

Table 6.1: Tracing the computation of stable model {a, c} of P7

A

dl σd σ δ Origin Line Loop

0 F f {F f } �P7 5 1
T∅ {T∅} �P7 5
T a {F a,T∅} �P7 5
F {∼a} {T {∼a},T a} �P7 5
F b {T b,F {∼a}} �P7 5
F {b, ∼f } {T {b, ∼f },F b} �P7 5
F e {T e,F {b, ∼f }} �P7 5
F {e} {T {e},F e} �P7 5

1 T {a, ∼d} 16
F d {T d,T {a, ∼d}} �P7 5 2
T c {F c,T {a, ∼d}} �P7 5
F {∼c, ∼e} {F d,T {∼c, ∼e}} �P7 5

This is detected in Line 11 and the stable model is put out in Line 12. The entries characterizing
stable model {a, c} are underlined in Table 6.1.

Next, let us reconsider Program P24 from Page 72.

P24 =
{

a ← ∼b c ← a, b d ← a e ← ∼a, ∼b

b ← ∼a c ← d d ← c, b

}

Although we have not yet detailed the subroutines of Algorithm 3, we give in Table 6.2 and 6.3 a
full-fledged computation of P24’s stable model {a, c, d}.

The first four iterations of the main loop of Algorithm 3 are illustrated in Table 6.2. At first,
propagation yields no result and thus no consequences are drawn at decision level 0.Then,variable c is
assigned T in Line 14. At the same time, the decision level is set to 1. Still no propagation takes place
in the second iteration resulting in the non-deterministic consequence F {∼a, ∼b}. With the third
iteration, NogoodPropagation extends the current assignment by F e to (T c,F {∼a, ∼b},F e).
Given that this assignment is conflict-free yet partial, we select F {∼b} and increment the decision
level to 3. The fourth loop starts with NogoodPropagation extending A with eight deterministic
consequences and adding loop nogood2 {T c,F {a},F {a, b}} to ∇. This nogood is contained in
the current assignment and thus causes a conflict in Line 6. Given that our current decision level
is well beyond 0, we let ConflictAnalysis transform the conflictual nogood into one being asserting
at the backjump level (see Section 6.6 for details). As a result, we learn the nogood {T c,F a} and
backjump to level 1 by removing from the assignment all entries belonging to levels 2 and 3.

2This loop nogood is created by NogoodPropagation after detecting that {c, d} has become an unfounded set (because its external
support was invalidated; see Section 6.5 for details).

6.3. CONFLICT-DRIVEN NOGOOD LEARNING 97

Table 6.2: Tracing the computation of stable model {a, c, d} of P24

A

dl σd σ δ Origin Line Loop

1 T c 16 1
2 F {∼a, ∼b} 16 2

F e {T e,F {∼a, ∼b}} �P24 5 3
3 F {∼b} 16

F a {T a,F {∼b}} �P24 5 4
F {a} {T {a},F a} �P24 5
F {a, b} {T {a, b},F a} �P24 5
T {∼a} {F {∼a},F a} �P24 5
T b {F {∼b},F b} �P24 5
T {d} {T c,F {a, b},F {d}} �P24 5
T {c, b} {F {c, b},T c,T b} �P24 5
T d {F d,T {c, b}} �P24 5

{T c,F {a},F {a, b}} �P24 6
{T c,F a} dl=1 8

Upon entering our main loop for the fifth time, we have the assignment (T c), decision level 1,
and recorded the loop nogood {T c,F {a},F {a, b}} as well as the conflict nogood {T c,F a}. This
situation is similar to the one encountered at the beginning of iteration two; it is reflected by the
first common lines in Table 6.2 and 6.3, respectively. That is, we are now back at decision level 1

Table 6.3: Tracing the computation of stable model {a, c, d} of P24

A

dl σd σ δ Origin Line Loop

1 T c 16 1
T a {T c,F a} ∇ 5 5
T {a} {F {a},T a} �P24 5
F {∼a} {T {∼a},T a} �P24 5
F {∼a, ∼b} {T {∼a, ∼b},T a} �P24 5
T d {F d,T {a}} �P24 5
T {d} {F {d},T d} �P24 5
F b {T b,F {∼a}} �P24 5
F {a, b} {T {a, b},F b} �P24 5
F {c, b} {T {c, b},F b} �P24 5
F e {T e,F {∼a, ∼b}} �P24 5

98 6. SOLVING

and possess the same assignment as before. However, the situation has changed due to the recorded
nogoods. While no propagation was possible in the second loop, ConflictAnalysis ensured that the
learned conflict nogood is asserting after backjumping. Indeed, we see that unlike before, Nogood-
Propagation now yields T a from {T c,F a}. This is in turn completed to a total assignment. This
assignment is detected in Line 11 and returned in Line 12 of Algorithm 3. Entries comprising true
atoms are underlined in Table 6.3.

For a more complex example, reconsider Program P25 from Page 72.

P25 =
{

a ← ∼b c ← a d ← b, c e ← b, ∼a

b ← ∼a c ← b, d d ← e e ← c, d

}

A computation of Algorithm 3 can proceed by successively picking decision entries T d, F {b, ∼a},
T c, and F {∼a} at levels 1, 2, 3, and 4, respectively. Clearly, there is exactly one decision entry per
level; each decision is immediately followed by a propagation step, performed before making the
next decision. As we see in Table 6.4, propagation cannot derive any entry at decision levels 1 and 2.

Table 6.4: Tracing the computation of stable model
{b, c, d, e} of P25

dl A δ Origin Line

1 T d 16
2 F {b, ∼a} 16
3 T c 16

T {c, d} {F {c, d},T c,T d} �P25 5
T e {F e,T {c, d}} �P25 5
T {e} {F {e},T e} �P25 5

4 F {∼a} 16
T a {F {∼a},F a} �P25 5
T {a} {F {a},T a} �P25 5
T {∼b} {T a,F {∼b}} �P25 5
F b {T b,F {∼a}} �P25 5
F {b, c} {T {b, c},F b} �P25 5
F {b, d} {T {b, d},F b} �P25 5

{T d,F {b, c},F {b, ∼a}} �P25 6
{T d,F {b, c},F {b, ∼a}} dl=2 8

After the third decision, the entries shown immediately below decision entry T c are unit-resulting
for the respective nogoods δ in �P25 with respect to A. Hence, they are added to A at decision level 3.
Since A is still partial, decision entry F {∼a} is picked at level 4. The following propagation step
yields a total assignment, which is actually a solution for �P25 . However, propagation also detects
that the set {d, e} is unfounded for P25 with respect to A. Hence, the corresponding loop nogoods

6.4. NOGOOD PROPAGATION 99

{T d,F {b, c},F {b, ∼a}} and {T e,F {b, c},F {b, ∼a}} are violated. Such violations are detected
within NogoodPropagation and lead to the recording of some loop nogood from �P25 in ∇. In
Table 6.4, we assume that {T d,F {b, c},F {b, ∼a}} is recorded, so that a conflict is encountered
in Line 6 of Algorithm 3. Note that F {b, c} is the single entry of this nogood assigned at decision
level 4. Hence, {T d,F {b, c},F {b, ∼a}} is already asserting and directly returned by Conflict-
Analysis in Line 8.The smallest decision level guaranteeing that the nogood is asserting is 2 because
it is the maximum decision level among dlevel (T d) and dlevel (F {b, ∼a}).3

Upon backjumping to decision level 2, all entries added to A at levels 3 and 4 are removed,
and only entries assigned at levels 1 and 2 are retained. This situation is reflected by the first two
lines of Table 6.4 and 6.5, representing assignment (T d,F {b, ∼a}). In analogy to the previous

Table 6.5: Tracing the computation of stable model
{b, c, d, e} of P25

dl A δ Origin Line

1 T d 16
2 F {b, ∼a} 16

T {b, c} {T d,F {b, c},F {b, ∼a}} ∇ 5
T b {T {b, c},F b} �P25 5
T a {F {b, ∼a},T b,F a} �P25 5
T {∼a} {T b,F {∼a}} �P25 5

{T {∼a},T a} �P25 6
{F {b, ∼a},T d} dl=1 8

example, the asserting nogood {T d,F {b, c},F {b, ∼a}} in ∇ enables the derivation of further
entries by unit propagation. This ultimately results in another conflict. However, this time the
completion nogood {T {∼a},T a} is violated. Starting from it, ConflictAnalysis determines the
asserting nogood {F {b, ∼a},T d}. As a consequence, Algorithm 3 returns to decision level 1, as
illustrated in Table 6.6. In contrast to Table 6.4,T {b, ∼a} is now unit-resulting for {F {b, ∼a},T d}.
A final propagation step leads to a total assignment not violating any nogood in �P25 ∪ ∇. (Notably,
the nogoods in �P25 are left implicit and merely tested within NogoodPropagation via an unfounded
set checking subroutine; see Section 6.5.) The associated stable model of P25, {b, c, d, e}, is returned
as the result. The corresponding entries are underlined in Table 6.6.

6.4 NOGOOD PROPAGATION
The subroutine NogoodPropagation for deterministically extending an assignment combines unit
propagation on completion nogoods in �P and recorded nogoods in ∇ (Lines 3–9 of Algorithm 4)
3The peculiarity that ConflictAnalysis may be launched with an asserting (loop) nogood results from the “unidirectional” propaga-
tion of loop nogoods in current ASP solvers: ASP solvers implement tableau rule WFN, but not its contrapositive WFJ, although
both tableau rules are logically based on loop nogoods.

100 6. SOLVING

Table 6.6: Tracing the computation of stable model
{b, c, d, e} of P25

dl A δ Origin Line

1 T d 16
T {b, ∼a} {F {b, ∼a},T d} ∇ 5
T b {T {b, ∼a},F b} �P25 5
F a {T {b, ∼a},T a} �P25 5
T {∼a} {T b,F {∼a}} �P25 5
F {∼b} {T {∼b},T b} �P25 5
F {a} {T {a},F a} �P25 5
T e {F e,T {b, ∼a}} �P25 5
T {e} {F {e},T e} �P25 5
T {b, d} {F {b, d},T b,T d} �P25 5
T c {F c,T {b, d}} �P25 5
T {b, c} {F {b, c},T b,T c} �P25 5
T {c, d} {F {c, d},T c,T d} �P25 5

with unfounded set checking (Lines 10–15). While unit propagation is always run to a fixpoint (or
a conflict), unfounded set checks are only done when the input program P is not tight.4

Note that the construction of � (in Line 5) guarantees that variables are unassigned before
a corresponding entry is inserted in Line 8. Along with the way dlevel (σ) is set in Line 7, any
assignment A computed by NogoodPropagation is ordered and all newly assigned entries σ are
implied by �P ∪ ∇ with respect to A.

The idea of integrating unfounded set checking with unit propagation is to trigger the con-
secutive falsification of unfounded atoms by recording loop nogoods from �P in ∇. To see this,
consider Normal program P27 along with assignment A = (T b,T {∼a},F a,F {∼b}).

P27 =
{

a ← ∼b c ← ∼b d ← c

b ← ∼a c ← d, e e ← d

}

We observe that U = {c, d, e} is an unfounded set for P27 with respect to A. Therefore, given
that EBP27(U) ⊆ AF , all literals F c, F d, and F e are unit-resulting for the three loop nogoods
{T c,F {∼b}}, {T d,F {∼b}}, and {T e,F {∼b}} in �P27 . While neither F c, F d, nor F e are unit-
resulting for a completion nogood in �P27 , all of them (along with F {c}, F {d}, and F {d, e})
are obtained by unit propagation from �P27 ∪ {{T c,F {∼b}}}. That is, the addition of a single
loop nogood from �P27 to ∇ may falsify the entire unfounded set by unit propagation. However,
whether a single loop nogood is sufficient to falsify a whole unfounded set depends on the program’s
structure. For instance, extending P27 with d ← e to P ′

27 inhibits the derivation of F d and F e by

4Otherwise, all unfounded sets U are already falsified, that is, U ⊆ AF .

6.4. NOGOOD PROPAGATION 101

Algorithm 4: NogoodPropagation

Input : A normal program P , a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

1 U := ∅ // unfounded set

2 loop
3 repeat
4 if δ ⊆ A for some δ ∈ �P ∪ ∇ then return (A, ∇) // conflict
5 � := {δ ∈ �P ∪ ∇ | δ \ A = {σ }, σ /∈ A} // unit-resulting nogoods
6 if � �= ∅ then let σ ∈ δ \ A for some δ ∈ � in
7 dlevel (σ) := max({dlevel (ρ) | ρ ∈ δ \ {σ }} ∪ {0})
8 A := A ◦ σ

9 until � = ∅
10 if loop(P) = ∅ then return (A, ∇)

11 U := U \ AF

12 if U = ∅ then U := UnfoundedSet(P, A)
13 if U = ∅ then return (A, ∇) // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

14 let a ∈ U in
15 ∇ := ∇ ∪ {{T a} ∪ {FB | B ∈ EBP (U)}} // record loop nogood

unit propagation because the (circular) support among d and e is not eliminated by falsifying c.
Although we still derive F {c}, that is, the rule d ← c becomes inapplicable, so that EBP ′

27
({d, e}) ⊆

(A ∪ {F c,F {c}})F , the nogoods in �P ′
27

∪ {{T c,F {∼b}}} do not suffice to imply F d and F e.

This shows that U \ (A ∪ {F c,F {c}})F = {c, d, e} \ {c} = {d, e} remains as a smaller unfounded
set.

The observation made in the previous example motivates the strategy of Algorithm 4 to
consecutively falsify the elements of an unfounded set U . At the start, no (non-empty) unfounded
set has been determined, and so U is initialized to be empty in Line 1. Provided that unit propagation
in Lines 3–9 finishes without conflict and that P is not tight, we remove all false atoms from U in
Line 11. In the first iteration of the outer loop, U stays empty, and our subroutine for unfounded
set detection is queried in Line 12. The crucial assumption is that UnfoundedSet(P, A) returns an
unfounded set U ⊆ atom(P) \ AF such that U is non-empty whenever some non-empty subset of
atom(P) \ AF is unfounded. Then, if a non-empty U is returned, we have EBP (U) ⊆ AF . Hence,
the addition of a loop nogood {T a} ∪ {FB | B ∈ EBP (U)} to ∇ for an arbitrary a ∈ U (in Line 15)
yields either a conflict (because T a ∈ A) or F a upon unit propagation. In the latter case, further
elements of U may be falsified by unit propagation in Lines 3–9. When we afterward reconsider

102 6. SOLVING

the previously determined unfounded set U , the removal of false atoms in Line 11 is guaranteed
to result in another (smaller) unfounded set U \ AF . Hence, if U \ AF is non-empty (checked in
Line 12 before computing any new unfounded set), NogoodPropagation proceeds by adding the
next loop nogood to ∇, which as before yields either a conflict or a unit-resulting entry. In this way,
once a non-empty unfounded set U has been detected, it is falsified element by element. Only after
expending all elements of U , a new unfounded set is computed.

All in all, NogoodPropagation terminates as soon as a conflict is encountered (in Line 4) or
with an assignment free of any (non-empty) unfounded subsets of atom(P) \ AF . If P is tight, the
latter is immediately verified in Line 10. Otherwise, the subroutine UnfoundedSet failed to detect
a non-empty unfounded set (of non-false atoms) before finishing in Line 13.

To illustrate how NogoodPropagation utilizes nogoods, reconsider the computation of
CDNL-ASP shown in Table 6.4. All implied entries are unit-resulting for nogoods in �P25 ∪ ∇
and successively derived by unit propagation. In particular at decision level 4, the implied entries σ

have antecedents δ in �P25 . All entries of each δ except for σ are already contained in A when σ

is inserted into A. The impact of loop nogoods in �P25 can be observed on the conflict encoun-
tered at decision level 4. Here, we have that U = {d, e} ⊆ AT is unfounded, so that A violates each
of the loop nogoods {T d,F {b, c},F {b, ∼a}} and {T e,F {b, c},F {b, ∼a}}. After detecting the
unfounded set U and recording {T d,F {b, c},F {b, ∼a}} in ∇, its violation gives rise to leaving
Algorithm 4 in Line 4.

To sum up, NogoodPropagation interleaves unit propagation with the recording of loop no-
goods. The latter is done only if the input program is not tight and if the falsity of unfounded
atoms cannot be derived by unit propagation via other available nogoods. In this way, the approach
clearly favors unit propagation over unfounded set computation. For one thing, unit propagation
does not contribute new dynamic nogoods to ∇, so that it is more “economic” than unfounded set
checking. For another, although unfounded set detection algorithms are of linear time complexity,
they need to analyze a logic program in a global fashion and may get stuck half-way, inspecting
substantial program parts without eventually detecting any unfounded sets of interest. In contrast
to this, unit propagation stays local by investigating only nogoods related to literals that become
assigned. Hence, the effort made to identify unit-resulting literals is much less than unfounded set
checking. But given that unfounded set checking is mandatory for soundness (with respect to total
assignments) and also helps to detect inherent conflicts early (with respect to partial assignments),
the subroutine described next is nonetheless an integral part of NogoodPropagation.

6.5 UNFOUNDED SET CHECKING

The subroutine for unfounded set detection is invoked on non-tight programs once unit propagation
reaches a fixpoint without any conflict or remaining unfalsified unfounded atoms. As a matter of
fact, a fixpoint of unit propagation allows us to focus on unfounded sets of non-false atoms contained
in non-trivial strongly connected components of a program’s dependency graph.

6.5. UNFOUNDED SET CHECKING 103

Given a program P along with its positive dependency graph G(P), we define for each
a ∈ atom(P) the set scc(a) as being composed of all atoms belonging to the same strongly connected
component as a in G(P). We call atom a cyclic, if its strongly connected component in G(P) is
non-trivial, and acyclic otherwise. In other words, a is cyclic when there is some rule r ∈ P such
that head (r) ∈ scc(a) and body(r)+ ∩ scc(a) �= ∅. In fact, unfounded set checking can concentrate
on cyclic atoms, since only they can belong to (unfounded) loops.

Beyond static information about strongly connected components, our UnfoundedSet algo-
rithm makes use of source pointers to indicate non-circular supports of atoms. The idea is to associate
every cyclic atom a ∈ atom(P) either with one of its rule bodies in bodyP (a) pointing itself to a
chain of rule bodies witnessing that a cannot be unfounded, or with one of the special-purpose sym-
bols ◦ and ×. The associated source pointer of a is denoted by source(a). Thus, as long as source(a)

remains “intact,” a can be ignored by unfounded set checks. In this way, source pointers enable lazy,
incremental unfounded set checking relative to recent changes of an assignment.

For an appropriate initialization, we define the initial source pointer configuration for a pro-
gram P as follows.

source(a) =
{ ◦ if a ∈ atom(P) is cyclic

× if a ∈ atom(P) is acyclic

While × expresses that an acyclic atom a does not need to be linked to any element of bodyP (a),
◦ indicates that a non-circular support for a cyclic atom a still needs to be determined. We assume
that the initial source pointer configuration for P is in place when invoking CDNL-ASP(P).

Given a program P and an assignment A, Algorithm 5 starts in Line 1 by collecting non-
false cyclic atoms a whose source pointers are either false (source(a) ∈ AF) or yet undetermined
(source(a) = ◦).The resulting set S delineates the initial scope of all atoms whose non-circular support
is in question. In the following Lines 2 to 5, the scope is successively extended by adding atoms
whose source pointers (positively) depend on it.5 In fact, the loop in Lines 6–17 aims at reestablishing
source pointers for the atoms in S via rules whose bodies do not (positively) rely on S. If successful,
these rules provide a non-circular support for the atoms in question. Otherwise, an unfounded set
is detected whenever source pointers cannot be reestablished.

Let us describe the second part of Algorithm 5 in more detail. As long as the scope S is non-
empty, some atom a ∈ S is picked in Line 6 as a starting point for the construction of a non-empty
unfounded set U . If EBP (U) ⊆ AF is found to hold in Line 9, the unfounded set U is immediately
returned. In this way, NogoodPropagation can in turn falsify the atoms in U by unit propagation.
Otherwise, some external body B ∈ EBP (U) \ AF is selected in Line 10 for inspection. If B+ shares
atoms with the scope S belonging to the same strongly connected component as the starting point a

(checked in Line 11), we add these common atoms to U in Line 16. As a side-effect, this eliminates
B from the external bodies of the augmented set U . On the other hand, if such atoms do not exist
in B+, the rule body B can non-circularly support all of its associated head atoms c ∈ U . Then, in

5For this, define source(a) = ∅ whenever source(a) �∈ P , that is, if source(a) = ◦ or source(a) = ×.

104 6. SOLVING

Algorithm 5: UnfoundedSet

Input : A normal program P and an assignment A.
Output : An unfounded set of P with respect to A.
Global : Source pointers {source(a) | a ∈ atom(P)}.

1 S := {a ∈ atom(P) \ AF | source(a) ∈ AF ∪ {◦}} // initialize scope S

2 repeat
3 T := {a ∈ atom(P) \ (AF ∪ S) | source(a)+ ∩ (scc(a) ∩ S) �= ∅}
4 S := S ∪ T // extend scope S

5 until T = ∅
6 while S �= ∅ do let a ∈ S in // select starting point a

7 U := {a}
8 repeat
9 if EBP (U) ⊆ AF then return U // (non-empty) unfounded set

10 let B ∈ EBP (U) \ AF in
11 if B+ ∩ (scc(a) ∩ S) = ∅ then // shrink U

12 foreach c ∈ U such that B ∈ bodyP (c) do
13 source(c) := B

14 U := U \ {c}
15 S := S \ {c}
16 else U := U ∪ (B+ ∩ (scc(a) ∩ S)) // extend U

17 until U = ∅
18 return ∅ // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

Lines 12–15, the source pointers of all such atoms c are consecutively set to B. And all such atoms c

are removed from both the unfounded set U under construction and the scope S.This loop continues
until either U becomes empty (in Line 17) or a (non-empty) unfounded set U is detected and returned
in Line 9. In the former case, the remaining atoms of S are investigated by recommencing the outer
loop. Finally, if the scope S runs empty, source pointers could be reestablished for all atoms contained
in S, and UnfoundedSet returns the empty unfounded set in Line 18.

In order to provide further insight, let us stress some major design principles underlying
Algorithm UnfoundedSet.

1. At each stage of the loop in Lines 6–17, all atoms of U belong to scc(a), where a is the atom
added first to U in Line 7. This is because further atoms, added to U in Line 16, are elements
of scc(a).

6.5. UNFOUNDED SET CHECKING 105

However, U ⊆ scc(a) does not necessarily imply a ∈ U for a (non-empty) unfounded set U

returned in Line 9.

2. At each stage of the loop in Lines 6–17, we have that U ⊆ S since all atoms added to U

in either Line 7 or 16 belong to S. Hence, we have c ∈ S whenever source(c) is set to an
external body B ∈ bodyP (c) in Line 13. Unlike this, we have B+ ∩ (scc(a) ∩ S) = ∅ as has
been checked before in Line 11.This makes sure that setting source(c) to B does not introduce
any cycles via source pointers.

3. Once detected, a (non-empty) unfounded set U is immediately returned in Line 9, and
NogoodPropagation takes care of falsifying all elements of U before checking for any fur-
ther unfounded set. This reduces overlaps with unit propagation on the completion nogoods
in �P , because it already handles singleton unfounded sets (and bodies relying on them).6

4. After establishing the initial source pointer configuration for a program, source pointers are
only set in Line 13 when reestablishing a potential non-circular support for an atom c. In fact,
the source pointer of an atom c in an unfounded set U returned in Line 9 needs not and is
not reset to ◦. Rather, we admit source(c) ∈ AF as long as c ∈ AF (derived within Nogood-
Propagation upon falsifying U). Thus, it is only when c becomes unassigned later on (after
backjumping), that its source pointer source(c) is reconsidered in Line 1. This amounts to lazy
unfounded set checking.

Let us illustrate Algorithm 5 on some invocations of UnfoundedSet(P25, A) made when
computing the stable model {b, c, d, e} of Program P25. To this end, we indicate in Table 6.7
internal states of UnfoundedSet(P25, A) when queried with P25 and fixpoints A of unit propagation
at decision levels 0, 2, and 4 in Table 6.4, respectively. Looking at the dependency graph G(P25) in
Figure 5.3 on Page 73, we observe that scc(c) = scc(d) = scc(e) = {c, d, e} while a and b are acyclic.
Hence, before the first launch of UnfoundedSet(P25, A) at decision level 0, we have to install the
initial source pointer configuration for P25:

source(a) = source(b) = × and
source(c) = source(d) = source(e) = ◦ .

According to Line 1 in Algorithm 5, we obtain the scope S = {c, d, e}. Next, let us choose atom e in
Line 6 and add it to U in Line 7. Following this, we select {c, d} ∈ EBP25({e}) in Line 10. The fact
that {c, d} ∩ (scc(e) ∩ S) equals {c, d} makes us augment U with both c and d in Line 16, resulting in
an intermediate state where U = {c, d, e}. Let us select next {b, ∼a} ∈ EBP25({c, d, e}) in Line 10,
for which we get {b} ∩ (scc(e) ∩ S) = ∅ in Line 11. Hence, source(e) is set to {b, ∼a} in Line 13,
and e is removed from U and S in Lines 14 and 15, respectively. In the same manner, the source
pointers of d and c are set in the following iterations of the loop in Lines 8–17 to {e} and {b, d},
respectively. Afterward, we have that U = S = ∅, so that the empty unfounded set (surrounded
6This amounts to inferences drawn by tableau rule FFA and BFA.

106 6. SOLVING

Table 6.7: Trace of UnfoundedSet(P25, A)
dl source(p) S U B ∈ EBP25(U) \ AF Line

0 {c, d, e} 1
{c, d, e} {e} 7
{c, d, e} {c, d, e} {c, d} 16

source(e) {c, d} {c, d} {b, ∼a} 13
source(d) {c} {c} {e} 13
source(c) ∅ ∅ {b, d} 13

2 F {b, ∼a} {e} 1
{e} {d, e} 4
{b, d} {c, d, e} 4

{c, d, e} {d} 7
{c, d, e} {c, d} {b, c} 16

source(c) {d, e} {d} {a} 13
source(d) {e} ∅ {b, c} 13

{e} {e} 7
source(e) ∅ ∅ {c, d} 13

4 F {b, c} {d} 1
{c, d} {d, e} 4

{d, e} {e} 7
{d, e} {d, e} {c, d} 16

by a box in Table 6.7) is returned in Line 18. Given that there is no non-empty unfounded set,
no entry is derived by unit propagation at decision level 0, as also indicated by omitting this level
in Table 6.4. Despite this, the execution of UnfoundedSet(P25, A) has led to the following source
pointer configuration for P25:

source(a) = source(b) = ×,

source(c) = {b, d},
source(d) = {e}, and
source(e) = {b, ∼a}.

We refrain from describing the invocation of UnfoundedSet(P25, (T d)) at decision level 1 in
Table 6.7 because it yields an empty scope.

Unlike this, the call of UnfoundedSet(P25, (T d,F {b, ∼a})) at decision level 2 is faced with a
falsified source pointer.We have that source(e) = {b, ∼a} ∈ AF , so that S = {e} is obtained in Line 1
of Algorithm 5. In Lines 2–5, we successively add d and c to S because source(d)+ ∩ S = {e} ∩ {e} �=
∅ and source(c)+ ∩ (S ∪ {d}) = {b, d} ∩ {d, e} �= ∅. Afterward, let us first add d to U in Line 7 and

6.6. CONFLICT ANALYSIS 107

select {b, c} ∈ EBP25({d}) in Line 10, leading to U = {d} ∪ ({b, c} ∩ (scc(d) ∩ S)) = {c, d}. When
investigating {a} ∈ EBP25({c, d}) and again {b, c} ∈ EBP25({d}) in the next two iterations of the
loop in Lines 8–17, we set source(c) to {a} and source(d) to {b, c}, respectively, resulting in U = ∅
and S = {e}. Since S �= ∅, another iteration of the loop in Lines 6–17 adds e to U and then removes it
from U and S along with setting source(e) to {c, d}. Given U = S = ∅, we get the empty unfounded
set (again surrounded by a box) as result in Line 18. As well, we get the following source pointer
configuration for P25:

source(a) = source(b) = ×,

source(c) = {a},
source(d) = {b, c}, and
source(e) = {c, d}.

At decision level 3, unfounded set checking is again without effect because no rule body and,
in particular, no source pointer is falsified.

However, at decision level 4, we have that source(d) = {b, c} ∈ AF , and thus we get S = {d}
in Line 1 of Algorithm 5. In an iteration of the loop in Lines 2–5, we further add e to S because
source(e)+ ∩ S = {c, d} ∩ {d} �= ∅, while c stays unaffected in view of source(c) = {a} /∈ AF . After
adding e to U in Line 7, U is further extended to {d, e} in Line 16, given that {c, d} ∈ EBP25({e})
and {c, d} ∩ (scc(e) ∩ S) = {d}. We have now obtained U = {d, e}, and we get that EBP25({d, e}) =
{{b, c}, {b, ∼a}} ⊆ AF . That is, the termination condition in Line 9 applies, and Unfounded-
Set(P25, A) returns the (non-empty) unfounded set {d, e} (and leaves the above source pointer
configuration intact).

To conclude the example, we observe in Table 6.5 that adding the loop nogood
{T d,F {b, c},F {b, ∼a}} to ∇ leads to a conflict at decision level 4. After backjumping to de-
cision level 2, NogoodPropagation encounters a conflict before launching UnfoundedSet(P25, A).
Hence, UnfoundedSet(P25, A) is only queried again with respect to the total assignment A derived
by unit propagation after returning to decision level 1. In view of source(c) = {a} ∈ AF , this final
invocation (not shown in Table 6.7) makes us reset source pointers to the configuration at decision
level 0:

source(a) = source(b) = ×,

source(c) = {b, d},
source(d) = {e}, and
source(e) = {b, ∼a}.

As this yields only the empty unfounded set (of non-false atoms), NogoodPropagation terminates
without conflict, and CDNL-ASP(P25) returns the stable model {b, c, d, e}.

6.6 CONFLICT ANALYSIS
The purpose of the subroutine for conflict analysis is to determine an asserting nogood, ensuring
that one of its entries is unit-resulting after backjumping. To this end, a violated nogood δ ⊆ A

108 6. SOLVING

Algorithm 6: Conf lictAnalysis

Input : A non-empty violated nogood δ, a normal program P , a set ∇ of nogoods, and
an assignment A.

Output : A derived nogood and a decision level.

1 loop
2 let σ ∈ δ such that δ \ A[σ] = {σ } in
3 k := max({dlevel (ρ) | ρ ∈ δ \ {σ }} ∪ {0})
4 if k = dlevel (σ) then
5 let ε ∈ �P ∪ ∇ such that ε \ A[σ] = {σ } in
6 δ := (δ \ {σ }) ∪ (ε \ {σ }) // resolution

7 else return (δ, k)

is resolved against antecedents ε of implied entries σ ∈ δ for obtaining a new violated nogood
(δ \ {σ }) ∪ (ε \ {σ }). Iterated resolution proceeds in inverse order of assigned entries, resolving first
over the entry σ ∈ δ assigned last in A, and stops as soon as δ contains exactly one entry assigned at
the decision level where the conflict is encountered. This entry is called the unique implication point
(UIP). The strategy of stopping once the first UIP is found is referred to as First-UIP scheme.

ConflictAnalysis is performed by Algorithm 6 according to the First-UIP scheme. In fact, the
loop in Lines 1–7 proceeds by resolving over the entry σ of the violated nogood δ assigned last in A

(given that δ \ A[σ] = {σ } is required in Line 2) until the assertion level, that is, the greatest level
dlevel (ρ) associated with entries ρ ∈ δ \ {σ }, is different from (and actually smaller than) dlevel (σ).
If so, nogood δ and assertion level k (determined in Line 3) are returned in Line 7. Since δ ⊆ A, we
have that σ is unit-resulting for δ after backjumping to decision level k. Otherwise, if k = dlevel (σ),
σ is an implied entry, so that some antecedent ε ∈ �P ∪ ∇ of σ can be chosen in Line 5 and used for
resolution against δ in Line 6. Note that there may be several antecedents of σ in �P ∪ ∇, and thus
the choice of ε in Line 5 is, in general, non-deterministic. Regarding the termination of Algorithm 6,
note that a decision entry σd (cf. Algorithm 3) is the first entry in A at level dlevel (σd), and σd is
also the only entry at dlevel (σd) that is not implied. Given that ConflictAnalysis is only applied to
nogoods violated at decision levels beyond 0, all conflict resolution steps are well-defined and stop
at the latest at a decision entry σd . However, resolving up to σd can be regarded as the worst case,
given that the First-UIP scheme aims at few resolution steps to obtain a nogood that is “close” to a
conflict at hand.

To illustrate Algorithm 6, let us inspect the resolution steps shown in Table 6.8. They are ap-
plied when resolving the violated nogood {T {∼a},T a} against the antecedents shown in Table 6.5.
This is done upon analyzing the conflict encountered at decision level 2. In Table 6.8, we box both
the entry σ of δ assigned last in A as well as its complement σ in an antecedent ε of σ ; further entries

6.6. CONFLICT ANALYSIS 109

Table 6.8: Conf lictAnalysis at decision level 2 in Table 6.5
δ ε{
T {∼a} ,T a

} {
T b, F {∼a}

}
{

T a ,T b
} {

F {b, ∼a},T b, F a
}

{
T b ,F {b, ∼a}

} {
T {b, c}, F b

}
{

T {b, c} ,F {b, ∼a}
} {

T d, F {b, c} ,F {b, ∼a}
}

{
F {b, ∼a} ,T d

}

assigned at decision level 2 are underlined. The final result of iterated resolution, {F {b, ∼a},T d},
contains F {b, ∼a} as the single entry assigned at decision level 2. Unlike this, the entry T d has
been assigned at level 1. In this example, the (first) UIP, F {b, ∼a}, happens to be the decision entry
at level 2.

In general, however, a first UIP is not necessarily a decision entry. For instance in Table 6.4,
the UIP F {b, c} in the asserting nogood {T d,F {b, c},F {b, ∼a}} is an implied entry. Also recall
that {T d,F {b, c},F {b, ∼a}} served as the starting point for ConflictAnalysis, containing a (first)
UIP without requiring any resolution step. This phenomenon is due to “unidirectional” propagation
of loop nogoods, given that unfounded set checks merely identify unfounded atoms, but not rule
bodies that must necessarily hold for (non-circularly) supporting some true atom. In Table 6.4, the
fact that T {b, c} is required from decision level 2 on is only recognized at level 4, where assigning
F {b, c} leads to a conflict. In view of this, Algorithm 5 can be understood as a checking routine
guaranteeing the soundness of CDNL-ASP, while its inference capabilities do not match (full) unit
propagation on loop nogoods.7

Despite the fact that conflict resolution in ASP can be done in the same fashion as in SAT, the
input format of logic programs makes it less predetermined. For one thing, the completion nogoods
in �P contain rule bodies as structural variables for the sake of a compact representation. For
another, the number of (relevant) inherent loop nogoods in �P may be exponential. Fortunately, the
satisfaction of �P can be checked in linear time (via Algorithm 5), so that an explicit representation
of its elements is not required. However, NogoodPropagation records loop nogoods from �P that
are antecedents to make them easily accessible in ConflictAnalysis.

7In other words, current ASP solvers implement tableau rule WFN but not its contrapositive WFJ, although both tableau rules are
logically based on loop nogoods.

110 6. SOLVING

6.7 REFERENCES AND FURTHER READING

The success story of ASP has its roots in the early availability of ASP solvers, beginning with the
smodels system (Simons et al., 2002), followed by dlv (Leone et al., 2006), SAT-based ASP solvers,
like assat (Lin and Zhao,2004) and cmodels (Giunchiglia et al., 2006), and more recently the conflict-
driven learning ASP solver clasp (Gebser et al., 2007a). While traditional ASP solvers like smodels
and dlv rely on DPLL-based algorithms, others build either directly or indirectly (via SAT solvers)
on CDCL-based methods.

The Davis-Putman-Logemann-Loveland (DPLL) procedure was introduced in
Davis and Putnam (1960), Davis et al. (1962).The first principles of Conflict-Driven Clause Learn-
ing (CDCL) were gradually developed by Bayardo and Schrag (1997), Marques-Silva and Sakallah
(1999), Moskewicz et al. (2001), and Zhang et al. (2001). Eén and Sörensson (2004) present
an excellent introduction to algorithms and data structures for implementing CDCL. See also
Darwiche and Pipatsrisawat (2009), Marques-Silva et al. (2009). Both DPLL and CDCL have
firm proof-theoretic foundations in propositional resolution (Beame and Pitassi, 1998, Beame et al.,
2004, Pipatsrisawat and Darwiche, 2011). While DPLL amounts to a restricted form of resolution,
called tree-like, CDCL (with restarts, deliberately discarding an assignment at hand in order
to start from scratch) has been shown to be polynomially equivalent to strictly more powerful
general resolution. An excellent source of SAT technology along with its formal foundations is
provided by the comprehensive SAT Handbook (Biere et al., 2009). The unique implication point
(UIP) traces back to Marques-Silva and Sakallah (1999). The First-UIP scheme is discussed
in Eén and Sörensson (2004), Marques-Silva et al. (2009), Zhang et al. (2001); its success has
been shown both empirically (Dershowitz et al., 2007, Ryan, 2004, Zhang et al., 2001) and
analytically (Audemard and Simon, 2009, Pipatsrisawat and Darwiche, 2011).

More unfounded set checking algorithms can be found in Anger et al. (2006), Calimeri et al.
(2006),Gebser et al. (2009a),Simons et al. (2002).SAT-based ASP solvers like assat (Lin and Zhao,
2004) and cmodels (Giunchiglia et al., 2006) add loop formulas to a posteriori eliminate supported
models containing some non-empty unfounded set. Stochastic unfounded set checks are investigated
in Lin et al. (2006). Unfounded-set-free stable model constructions are explored in Konczak et al.
(2006), Linke (2001).

In fact, the rise in complexity in the disjunctive setting reported in Section 2.4.3 is due to more
complex unfounded set checking. More precisely, Leone et al. (1997) show that deciding whether a
model is free of unfounded sets is co-NP-complete. Accordingly, solvers for disjunctive ASP solving
rely on two interacting solving components, one for generating stable model candidates and another
for unfounded set checking.Disjunctive ASP solving was pioneered by Inoue et al. (1992) and greatly
advanced by Leone et al. (2006). Alternative approaches are presented in Giunchiglia et al. (2006),
Janhunen et al. (2006). The extension of the above CDNL-based algorithms to a disjunctive setting
are described in Drescher et al. (2008).

Algorithm 3 solves the decision problem of stable model existence. Unlike DPLL-style proce-
dures, the transition from computing a single solution to computing multiple or all is non-trivial for

6.7. REFERENCES AND FURTHER READING 111

CDCL-based approaches. Although an iterative approach denying previous solutions by recording
their complement allows for re-using Algorithm 3 for solution enumeration, it is prone to a signifi-
cant blow-up in space. Instead, the above algorithmic framework has been extended for enumeration
in Gebser et al. (2007b) and projective enumeration in Gebser et al. (2009c). Both enumeration al-
gorithms run in polynomial space due to dedicated backtracking schemes abolishing the need of
(persistent) solution recording.

C H A P T E R 7

Systems
This chapter focuses on system-specific aspects for enlightening the inner working of ASP systems.
Following the workflow in ASP solving, we concentrate on the ASP grounder gringo and the ASP
solver clasp in the first two sections. While gringo can be regarded as a realization of the (simplistic)
grounding algorithms presented in Chapter 4, clasp follows the approach to conflict-driven ASP
solving described in Chapter 6. Both constitute central components of Potassco, the Potsdam Answer
Set Solving Collection, bundling various ASP tools developed at the University of Potsdam. Further
selected ASP systems from Potassco are detailed in the third section of this chapter.

All systems described below are freely available as open source packages at potassco.
sourceforge.net and distributed under GNU general public license.

7.1 GROUNDING WITH GRINGO
The ASP grounder gringo was initially conceived as an alternative to the ASP grounder lparse and
thus shares common input and output formats. While the first versions of gringo also imposed input
restrictions, guaranteeing finite ground instantiations, only safety is required from version 3 upward.

7.1.1 ARCHITECTURE
Let us begin by describing the high-level architecture of gringo by following its workflow in Fig-
ure 7.1. The parsing of the input language is done by means of lexer and parser generators. For

Logic
Program

Parsing Preprocessing Grounding Outputting

--lparse
--text
--reify

--ground

Figure 7.1: Architecture of ASP grounder gringo.

processing already ground programs, option --ground allows for bypassing the actual grounding
process. Otherwise, preprocessing starts by removing syntactic sugar, like interval .. or pooling ;
operators, and deals with grounder directives, like #const or #domain. Moreover, programs are
normalized. Among others things, nested terms in positive body literals and positive conditions
are factored out. For instance, p(X+X) is replaced with ‘p(I), I := X+X’. This process can be

potassco.sourceforge.net
potassco.sourceforge.net

114 7. SYSTEMS

understood by comparing Listings 1.3 and 1.4 on Pages 5 and 6 and Listing 7.2 below. After-
ward the program is grounded according to Chapter 4 and output in the selected format. While
--text provides human readable output, Option --reify turns the program into facts, as detailed
in Section 4.3. The default option --lparse results in a machine-oriented format, described below.

7.1.2 GRINGO’S INPUT LANGUAGE
The input language of gringo follows the syntax of the language constructs given in Section 2.3.This
includes normal, choice, cardinality, weight, and disjunctive rules, integrity, cardinality and weight
constraints, as well as optimization statements. Also, Section 2.3 contains examples illustrating
conditional literals and classical negation.

Hence, we concentrate in what follows on some particular features of gringo’s input language
complementing the previous chapters, and leave a comprehensive treatment to the user’s manual.

Aggregates An aggregate is a function on multisets of weights. In combination with comparisons,
we obtain aggregate atoms, whose truth values are determined by evaluating the enclosed aggregate.
The general form of an aggregate atom is as follows.

l #A [�1 = w1, . . ., �n = wn] u

As with weight constraints in (2.11), all �i are literals associated with weights wi that can be specified
via arithmetic functions. #A is the name of some function that is applied to the weights of holding
literals. Also, l and u are arithmetic functions (or even variables), determining a lower and an upper
bound for the result of applying #A. Finally, an aggregate atom is true if the result of applying #A
to the weights of holding literals is between l and u (both inclusive). Currently, gringo supports the
aggregate functions #sum (the sum of weights), #min (the minimum weight), #max (the maximum
weight), and #avg (the average of weights).

In addition, there are three more aggregates whose atoms obey a slightly different syntax:

l #count { �1, . . ., �n } u

#even { �1, . . ., �n }
#odd { �1, . . ., �n }

The #count aggregate is similar to #sum yet with each literal’s weight being 1. However, as indicated
by curly brackets, the literals of #count are understood as a set, so that duplicates are not counted
twice.

For instance, the following aggregate atoms express the same weight constraint.

1 #sum [a=1, not b=1] 1
1 #count {a, not b} 1
1 #count {a,a, not b,not b} 1

Likewise, the literals of parity aggregates #even and #odd,whose aggregate atoms hold if the number
of holding literals is even or odd, respectively, are understood as a set.

There are further shorthands that can be used when writing aggregates. With #sum, #min,
#max, and #avg, weights of literals can be omitted, in which case 1 is used by default, that is, �i = 1

7.1. GROUNDING WITH GRINGO 115

is equivalent to just �i . Furthermore, either or both of the bounds l and u (applicable to all aggregate
atoms but parity) can be omitted, in which case they are taken to be (trivially) satisfied, regardless of
an aggregate’s evaluation. Finally, the aggregates #sum and #count are used by default for multisets
of (weighted) literals in square brackets and sets of literals in curly brackets, respectively. For instance,
the following aggregate atoms are synonyms.

2 #sum [a, not b, c=2] 3
2 [a, not b, c=2] 3

Likewise, we can optionally omit #count in front of curly brackets:

1 #count {a, not b} 1
1 {a, not b} 1

By tolerating the omission of #sum and #count, weight and cardinality constraints can be written
in their traditional notations (without keywords).

For the multiset-based aggregates #sum, #min, #max, and #avg, it is worth noting that
they behave differently in case of multiple occurrences of the same literal. For instance, while
‘2 #sum [a=2] 2’ and ‘2 #sum [a,a] 2’ are synonyms, the following pairs of aggregate atoms
are different from one another.

2 #min [a=2] 2 and 2 #min [a,a] 2
2 #max [a=2] 2 and 2 #max [a,a] 2
2 #avg [a=2] 2 and 2 #avg [a,a] 2

That is, whether repetitions of a literal are cumulative or redundant depends on the aggregate being
used.

Having discussed aggregate atoms, let us note that there is a second way to use aggregates:
the values obtained by evaluating them can be assigned to variables. To this end, gringo allows
for the aggregates #sum, #min, #max, and #count to occur on the right-hand side of assignment
predicate := (or =). For instance, the following rules assign the obtained values to a variable.

sum(X) :- X := #sum [a=2,a=3].
min(X) :- X := #min [a=2,a=3].
max(X) :- X := #max [a=2,a=3].
cnt(X) :- X := #count {a,a}.

Assuming that atom a holds, we derive sum(5),min(2),max(3), and cnt(1) from the above rules.
Otherwise, we get sum(0), min(#supremum), max(#infimum), and cnt(0). Here, the special
constants #supremum and #infimum, obtained by applying #min and #max to the empty set of
weights, stand for +∞ and −∞, respectively.

Although it seems convenient to use assignments of aggregates’ values, this feature should be
used with care. If the (weighted) literals of an aggregate belong to domain predicates or built-ins,
gringo evaluates the aggregate during grounding, thereby obtaining a unique value to be assigned.
Otherwise, if the literals do not belong to domain predicates, the value of an aggregate is not known
during grounding, in which case gringo unwraps all possible outcomes of the aggregate’s evaluation.

116 7. SYSTEMS

The latter can lead to a significant blow-up in space, and encoding alternatives without aggregate
value assignments may be advantageous.

Having considered ground aggregate atoms, we refer the interested reader to gringo’s user
manual for details on non-ground aggregates.

Directives A directive is a meta statement instructing the grounder how to deal with certain parts
of the program.

The simplest such directives handle comments. A comment until the end of a line is initiated
by symbol %, and a comment within one or more lines is enclosed in %* and *%.

Other directives are preceded by the symbol #.
The “displaying” part of a program allows for suppressing atoms in the output by means of

#hide and #show directives. The meaning of the following statements are indicated via accompa-
nying comments.

#hide. % Suppress all atoms in output
#hide p/2. % Suppress all atoms of predicate p/2 in output
#hide p(X,Y) : q(X). % Suppress instances of p/2 satisfying condition

For selectively including atoms of a certain predicate in the output, one may use the #show directive.
Here are some examples:

#show p/2. % Include all atoms of predicate p/2 in output
#show p(X,Y) : q(X). % Include instances of p/2 satisfying condition

A typical usage of #hide and #show is to hide all predicates via #hide and to selectively re-add
atoms of certain predicates p/n to the output via ‘#show p/n’.

Constants appearing in a logic program may serve as placeholders for concrete values to
be provided by a user. The #const directive allows us to define a default value to be inserted
for a constant. Such a default value can still be overridden via command line option --const.
Syntactically, #const must be followed by an assignment having a (symbolic) constant on the left-
hand side and a term on the right-hand side. For instance, the declarations ‘#const x = 42’ and
‘#const y = f(x,h)’ make gringo turn the fact p(x,y) into p(42,f(42,h)).

#external directives are used to mark certain atoms as external input to the program. This
means that such atoms are exempt from simplification and are hence not removed from a program.
Typical use cases include the separate grounding of program modules (e.g., with asptools) or the
dynamic treatment of data streams (e.g., with oclingo).

There are two kinds of external directives, global and local external statements.
Global external statements have the form ‘#external p/n’ and mark complete predicates

irrespective of any arguments as external.This means that nothing is known about the predicate and
hence it cannot be used for instantiation. Consider the following example.

7.1. GROUNDING WITH GRINGO 117

#external q/1.
p(1). p(2).
r(X) :- q(X), p(X).

The external predicate q/1 is not used for simplification of the problem, and so two ground rules
(excluding facts) are obtained.

Local external statements have the form ‘#external p’. In contrast to global external direc-
tives, local ones specify which atoms are external and hence can be used for instantiation. Again,
consider a similar example.

#external q(X) : p(X).
p(1). p(2).
r(X) :- q(X).

The external predicate q/1 is used to bind variable X, yielding the same rules as in the example above.

Integrated scripting language In ASP solving, the grounder is in charge of deterministic compu-
tations on the input program. As such, it can be viewed as an extended deductive database system
comprising the expressive power of a Turing machine. Nonetheless, certain computations are hard
to express with a deductive machinery, and we have to resort to extra-logical means.

For this purpose, the scripting language lua is embedded in gringo. For example, the greatest
common divisor given by instances of predicate p/1 can be calculated via lua and captured in the
third argument of predicate q/3 as follows.

#begin_lua
function gcd(a,b)

if a == 0 then return b else return gcd(b%a,a) end
end

#end_lua.

p(2*3*5;2*3*7;2*5*7).

q(X,Y,gcd(X,Y)) :- p(X;Y), X < Y.

When passing this program to gringo, it calculates the numbers being arguments of predicate p/1, viz.
30, 42, and 70, while the implementation of the gcd function in lua is used to derive q(30,42,6),
q(30,70,10), and q(42,70,14).

Beyond sophisticated arithmetic, lua also allows for environment interaction. For instance, it
provides interfaces to read values from a database. In the following example, we use sqlite3, as it is
embedded in precompiled gringo binaries.

118 7. SYSTEMS

1 #begin_lua
2 local env = luasql.sqlite3 ()
3 local conn = env:connect ("db.sqlite3 ")
4 function query()
5 local cur = conn:execute (" SELECT * FROM test")
6 local res = {}
7 while true do
8 local row = {}
9 row = cur:fetch(row ,"n")

10 if row == nil then break end
11 res[#res + 1] = Val.new(Val.FUNC ,row)
12 end
13 cur:close()
14 return res
15 end
16 #end_lua.

18 p(X,Y) :- (X,Y) := @query ().

We define a lua function query to read data from an external database table test. Although we
do not delve into details here, we draw the reader’s attention to Line 11. If test contains tuples
〈1,a〉, 〈2,b〉, and 〈3,c〉, they are successively inserted into the array res. The collected tuples are
then taken to construct the facts p("1","a"), p("2","b"), and p("3","c").

Moreover, lua can be used within clingo for intercepting stable models or interacting between
grounding and solving when proceeding incrementally with iclingo.

7.1.3 MAKING GROUNDING MORE TRANSPARENT
gringo offers several features for making its grounding process more transparent. The following
examples use gringo version 3.

The first option of interest is --gstats providing statistics about the internal representation
of the input program.To illustrate this, we give in Listing 7.1 the statistics obtained when grounding
the Towers of Hanoi encoding in Listing 1.4 along with the instance in Listing 1.3 (cf. Page 6 and 5).

Listing 7.1: Grounding Towers of Hanoi with extended grounder statistics (--gstats)

$ gringo tohI.lp tohE.lp --gstats > /dev/null
=== Grounder Input Statistics ===
components : 20
non -trivial : 0

predicates : 8
visible : 1
average parameters : 2.1

7.1. GROUNDING WITH GRINGO 119

statements : 17
rules : 10
facts : 3
constraints : 4
optimize : 0

body literals : 31
literals in aggregates : 3
relations : 6
positive predicates : 17
negative predicates : 2

aggregates : 2
count : 2
sum : 0
avg : 0
even/odd : 0
min/max : 0

terms : 96
variable terms : 69
restricted terms : 7
constant terms : 20

Note that the statistics are output via the standard error stream in order to avoid interfering with the
actual grounding result that is sent to the standard output stream (and here hidden via a redirection
to /dev/null).

The internal representation of the encoding in Listing 1.4 (together with the instance in
Listing 1.3) is given in Listing 7.2.

Listing 7.2: Internal program representation of the Towers of Hanoi encoding in Listing 1.4

$ gringo tohI.lp tohE.lp --verbose > /dev/null
% disk(#I0):-# range (#I0 ,1 ,4).
% init_on (#I0 ,a):-# range(#I0 ,1 ,4).
% goal_on (#I0 ,c):-# range(#I0 ,1 ,4).
% 1 #count{move(D,P,T):peg(P):disk(D)} 1:-T:=#I0 ,# range (#I0 ,1 ,15).
% move(D,T):-move(D,_,T).
% on(D,P,0):- init_on(D,P).
% on(D,P,T):-move(D,P,T).
% on(D,P,T+1):-on(D,P,T),not move(D,T+1),T<15.
% blocked(D-1,P,T+1):-on(D,P,T),T<15.
% blocked(D-1,P,T):-blocked(D,P,T),disk(D).
% :-move(D,P,T),blocked (#I0 ,P,T),#I0:=D-1.
% :-move(D,T),on(D,P,#I0),blocked(D,P,T),#I0:=T-1.
% :-not 1 #count{on(D,P,T)} 1,disk(D),T:=#I0 ,# range (#I0 ,1 ,15).
% :-goal_on(D,P),not on(D,P ,15).

The major changes deal with the expansion of constant moves by 15 and of range definitions via the
internal predicate #range/3. For example, the resulting program has ten (non-factual) rules, three

120 7. SYSTEMS

facts, four (integrity) constraints along with two count aggregates, as detailed in Listing 7.1. Also,
we get 96 occurrences of terms among which we find 69 occurrences of variables.

Although all rules are prefixed with the comment character %, they are also written to standard
error for a clear separation from the grounding result. In fact, grounding with option --verbose
allows for getting a visual impression on how long it takes to ground individual rules.This is illustrated
in the abridged Listing 7.3.

Listing 7.3: Verbosely grounding Towers of Hanoi (--verbose)

$ gringo tohI.lp tohE.lp --verbose --text

[...]

% disk(#I0):-# range(#I0 ,1 ,4).
disk (1).
disk (2).
disk (3).
disk (4).

[...]

% 1 #count{move(D,P,T):peg(P):disk(D)} 1:-T:=#I0 ,# range (#I0 ,1 ,15).
1 #count{move(4,c, 1),move(3,c, 1), [...] ,move(2,a, 1),move(1,a, 1)} 1.
1 #count{move(4,c, 2),move(3,c, 2), [...] ,move(2,a, 2),move(1,a, 2)} 1.
1 #count{move(4,c, 3),move(3,c, 3), [...] ,move(2,a, 3),move(1,a, 3)} 1.
1 #count{move(4,c, 4),move(3,c, 4), [...] ,move(2,a, 4),move(1,a, 4)} 1.
1 #count{move(4,c, 5),move(3,c, 5), [...] ,move(2,a, 5),move(1,a, 5)} 1.
1 #count{move(4,c, 6),move(3,c, 6), [...] ,move(2,a, 6),move(1,a, 6)} 1.
1 #count{move(4,c, 7),move(3,c, 7), [...] ,move(2,a, 7),move(1,a, 7)} 1.
1 #count{move(4,c, 8),move(3,c, 8), [...] ,move(2,a, 8),move(1,a, 8)} 1.
1 #count{move(4,c, 9),move(3,c, 9), [...] ,move(2,a, 9),move(1,a, 9)} 1.
1 #count{move(4,c,10), move(3,c,10), [...] ,move(2,a,10), move(1,a ,10)} 1.
1 #count{move(4,c,11), move(3,c,11), [...] ,move(2,a,11), move(1,a ,11)} 1.
1 #count{move(4,c,12), move(3,c,12), [...] ,move(2,a,12), move(1,a ,12)} 1.
1 #count{move(4,c,13), move(3,c,13), [...] ,move(2,a,13), move(1,a ,13)} 1.
1 #count{move(4,c,14), move(3,c,14), [...] ,move(2,a,14), move(1,a ,14)} 1.
1 #count{move(4,c,15), move(3,c,15), [...] ,move(2,a,15), move(1,a ,15)} 1.

[...]

Another static view on the input program (as given in Listing 7.2) is ob-
tained by generating the underlying predicate-rule dependency graph. (The format fol-
lows the one described in Section 4.1.) This can be done by invoking the com-
mand gringo tohI.lp tohE.lp --dep-graph=tohDG.dot. This command produces the file
tohDG.dot containing the graph in Figure 7.2 in the format of the graph description language
DOT.

7.1. GROUNDING WITH GRINGO 121

Figure 7.2: Predicate-rule dependency graph of the Towers of Hanoi encoding in Listing 1.4.

7.1.4 THE SMODELS FORMAT
The smodels format provides an intermediate format for passing a ground logic program from an
ASP grounder to an ASP solver.To illustrate this, let us reconsider in Listing 7.4 the human readable
version of the ground form of Program easy.lp (copied from Listing 4.5).

Listing 7.4: The ground program in Listing 4.5 (on Page 62)

1 #count{p(1),p(2),p(3)}.
2 q(2):-p(2),p(3).
3 p(3):-q(2).
4 :-#count{p(3),p(2),p(1)}2.

The machine readable version of Listing 7.4 is given in Listing 7.5. By default, gringo outputs the
resulting ground program in smodels format (or via --lparse).

Listing 7.5: Internal output of grounding Program easy.lp (in Listing 4.4 on Page 62)
0 $ gringo easy.lp
1 3 3 2 3 4 0 0
2 1 5 2 0 3 4
3 1 4 1 0 5
4 2 6 3 0 3 4 3 2
5 1 1 1 1 6
6 0
7 2 p(1)

122 7. SYSTEMS

8 3 p(2)
9 4 p(3)

10 5 q(2)
11 0
12 B+
13 0
14 B-
15 1
16 0
17 1

In this format, each ground atom is identified through a unique positive integer. Number 0 is used
as a separator. Number 1 is an internal atom standing for _false (and preassigned to F , as detailed
below). Visible atoms are mapped to their symbolic representation via a symbol table (cf. Lines 7–
10). The visibility of atoms occurring in a program is controlled by #hide and #show directives. In
what follows, we use ι to represent the mapping of atoms to numbers, regardless of whether they are
visible or not. In our example, we have ι(_false) = 1, ι(p(1)) = 2, ι(p(2)) = 3, ι(p(3)) = 4, and
ι(q(2)) = 5.

The first part of a ground program in smodels format consists of its rules followed by 0 (see
Lines 1–6). Each line starts with a number identifying the type of rule, according to the schema
in Table 7.1. As indicated by the leading 3, the sequence ‘3 3 2 3 4 0 0’ in Line 1 accounts for

Table 7.1: The smodels format
Type/Format

Normal rule (2.1), Page 13
1 ι(a0) n n−m ι(am+1) . . . ι(an) ι(a1) . . . ι(am)

Cardinality rule (2.4), Page 18
2 ι(a0) n n−m l ι(am+1) . . . ι(an) ι(a1) . . . ι(am)

Choice rule (2.3), Page 18
3 m ι(a1) . . . ι(am) o−m o−n ι(an+1) . . . ι(ao) ι(am+1) . . . ι(an)

Weight rule (2.10), Page 21
5 ι(a0) l n n−m ι(am+1) . . . ι(an) ι(a1) . . . ι(am) wm+1 . . . wn w1 . . . wm

Minimize statement1(2.12), Page 22
6 0 n n−m ι(am+1) . . . ι(an) ι(a1) . . . ι(am) wm+1 . . . wn w1 . . . wm

Disjunctive rule (2.14), Page 24
8 m ι(a1) . . . ι(am) o−m o−n ι(an+1) . . . ι(ao) ι(am+1) . . . ι(an)

the choice rule obtained from #count{p(1),p(2),p(3)} (following the transformation in (2.8)
on Page 20). The second number, 3, tells us that we have the choice among three atoms, whose
identifiers, 2, 3, 4, follow in the sequence.The two trailing 0s indicate that there are no body literals.
As designated by the first number, 1, the sequence ‘1 5 2 0 3 4’ stands for a normal rule, viz.

1Assuming that �i = ai for 1 ≤ i ≤ m and �i = ∼ai for m + 1 ≤ i ≤ n.

7.2. SOLVING WITH CLASP 123

‘q(2) :- p(2),p(3)’. The second number gives the head identifier, ι(q(2)) = 5, followed by the
number of body literals, 2, among which we find 0 negative ones. The last two numbers give the
identifiers of the (positive) body literals, viz. ι(p(2)) = 3 and ι(p(3)) = 4. Analogously, ‘1 4 1 0 5’
stands for ‘p(3) :- q(2)’.

To capture the last rule in Listing 7.4, we must first convert it into admissible rule
types in smodels format. To this end, we use transformation (2.6) (on Page 20) for turning
‘:- #count{p(3),p(2),p(1)} 2’ into a cardinality rule along with an integrity constraint. Let
us indicate the intermediate result by the following pseudo code using the auxiliary variable _aux
with ι(_aux) = 6.

4 _aux :- 3 #count{p(3),p(2),p(1)}.
5 _false :- not _aux.

The two previous rules are captured by Lines 4 and 5 of Listing 7.5. To be more precise, the initial
number 2 tells us that ‘2 6 3 0 3 4 3 2’ captures a cardinality rule, having head identifier 6, 3
contained literals, among which 0 are negative, lower bound 3, and body literals having identifiers 4,
3, and 2. Although the last rule is a byproduct of the aforementioned transformation, it is instructive
to realize that it reflects the encryption of an integrity constraint. At first glance, ‘1 1 1 1 6’
captures a normal rule, having ι(_false) = 1 as head identifier along with a single negative body
literal, identified by ι(_aux) = 6. However, the special-purpose atom _false is always preassigned
to F , as can be read off the third part of Listing 7.5.

Actually the symbol table in Lines 7–10 (terminated by 0 in Line 11) in Listing 7.5 is followed
by so-called compute statements, preassigning truth values to atoms. Atom identifiers between B+
and 0 are assigned T , whereas the ones between B- and 0 are assigned F . In our case, only atom
identifier 1 is set to F , attributing all rules with head atom _false the character of an integrity
constraint. The final entry in Listing 7.5, viz. 1 in Line 17, indicates how many models should be
computed.

7.1.5 OUTLOOK
Our account of gringo including all examples deals with version 3.0.4. Currently, a new version of
gringo is implemented, which will lead to gringo series 4. Apart from an entire re-implementation,
this construction series will also feature a significantly extended and revised input language, among
other things, comprising the proposal for the ASP input language ASP-Core-2.

7.2 SOLVING WITH CLASP

The solver clasp is originally designed and optimized for conflict-driven ASP solving. To this end, it
features a number of sophisticated reasoning and implementation techniques, some specific to ASP

124 7. SYSTEMS

and others borrowed from CDCL-based SAT solvers. While clasp can also be used as a full-fledged
SAT, MaxSAT2, or PB3 solver, we illustrate its major features from the perspective of ASP solving.

Although we detail clasp’s architecture further below, it might be instructive to accompany
further reading by regarding Figure 7.3 on Page 129.

7.2.1 INTERFACES AND PREPROCESSING
For ASP solving, clasp reads propositional logic programs in smodels format.4 5 Choice rules as well as
cardinality and weight constraints are either compiled into normal rules during parsing, configured
via the option --trans-ext, or (by default) dealt with in an intrinsic fashion. Although we do not
detail this here, we note that the intrinsic treatment of cardinality and weight constraints augments
the source-pointer-based unfounded set algorithm in Section 6.5 and requires care during program
simplifications.

At the beginning, a logic program is subject to extensive preprocessing.The idea is to simplify
the program while identifying equivalences among its relevant constituents. These equivalences are
then used for building a compact program representation (in terms of Boolean constraints). Logic
program preprocessing is configured via option --eq, taking an integer value fixing the number of
iterations. (Interestingly, preprocessing is sometimes able to turn a non-tight program into a tight
one.) Once a program has been transformed into Boolean constraints, the nogoods among them
are (optionally) subject to further, mostly SAT-based preprocessing. This type of preprocessing is
invoked with option --sat-prepro and further parameters. Such techniques are however more
involved in ASP because variables relevant to unfounded set checking, optimization, or part of
cardinality and weight constraints cannot be simply eliminated. Note that both preprocessing steps
identify redundant variables that can be expressed in terms of the relevant ones included in the
resulting set of constraints.

A major yet internal feature of clasp is that it can be used in a stateful way. That is, clasp
may keep its state, involving program representation, recorded nogoods, heuristic values, etc., and
be invoked under additional (temporary) assumptions and/or by adding new atoms and rules. The
corresponding interfaces are fundamental for supporting incremental and reactive ASP solving as
realized in iclingo and oclingo, respectively. Furthermore, solving under assumptions is essential to
parallel solving, as done in clasp’s multi-threaded distributed search as well as its cluster-oriented
variant claspar.

2MaxSAT stands for the Maximum SAT problem.
3PB stands for Pseudo-Boolean.
4Currently, disjunctive logic programs are only handled by claspd (see Section 7.3.1).
5Further input formats accepted by clasp include (extended) dimacs, opb, and wbo.

7.2. SOLVING WITH CLASP 125

7.2.2 REASONING MODES
Although clasp’s primary use case is the computation of stable models, it also allows for computing
supported models of logic programs via option --supp-models.6 In addition, clasp provides a
number of reasoning modes, determining how to proceed when a model is found.

Enumeration Solution enumeration is non-trivial in the context of backjumping and conflict-
driven learning. A simple approach relies on recording solutions as nogoods and exempting them
from deletion. Although clasp supports this via option --enum-mode=record, it is prone to blow-up
in space in view of a possible exponential number of solutions. In contrast, the default enumeration
algorithm of clasp runs in polynomial space. Both enumeration approaches also allow for projecting
models to a subset of atoms, invoked with --project and configured via directives #hide and
#show. This option is of great practical value whenever one faces overwhelmingly many models,
involving solution-irrelevant variables having proper combinatorics. For example, the program con-
sisting of the choice rule {a,b,c} has eight stable models. When augmented with directive ‘#hide
c’, still eight solutions are obtained, yet including four duplicates. In contrast, invoking clasp with
--project yields only four stable models differing on a and/or b.

As detailed in Section 7.2.4, clasp offers a dedicated interface for enumeration. This allows
for abstracting from how to proceed once a model is found and thus makes the search algorithm
independent of the concrete enumeration strategy. Further reasoning modes implemented via the
enumeration interface admit computing the intersection or union of all stable models of a program
(by setting --enum-mode to cautious or brave, respectively). Rather than computing the whole
collection of (possibly) exponentially many stable models, the idea is to compute a first stable model,
record a constraint eliminating it from further solutions, then compute a second stable model,
strengthen the constraint to represent the intersection (or union) of the first two stable models, and
to continue like this until no more stable models are obtained. This process involves computing at
most as many stable models as there are atoms in an input program. Either the cautious or the brave
consequences are then given by the atoms captured by the final constraint.

Optimization An objective function is specified via #minimize and/or #maximize statements.
clasp offers several options for finding optimal solutions.First, the objective function can be initialized
via --opt-value. Second, clasp allows for computing one or all (via --opt-all) optimal solutions.
Such options are useful when one is interested in computing consequences belonging to all optimal
solutions (in combination with --enum-mode=cautious). To this end, one starts with searching
for an (arbitrary) optimal stable model and then re-launches clasp by bounding its search with the
obtained optimum. Doing the latter with cautious yields the atoms that belong to all optimal
stable models. Option --restart-on-model, making clasp restart after each (putatively optimal)
solution, turned out to be effective for ameliorating convergence to an optimum. Particular strategies
for lexicographic optimization serve the same purpose, especially on large and under-constrained

6To be more precise, option --supp-models disables unfounded set checking. Sometimes the grounder or preprocessing may
already eliminate some supported models such that they cannot be recovered later on.

126 7. SYSTEMS

multi-criteria optimization problems. Moreover, option --opt-heuristic can be used to alter sign
selection (see below) toward a better objective function value. Optimization is also implemented via
the aforementioned enumeration interface. When a solution is found, an optimization constraint
is updated with the corresponding objective function value.7 Then, the decision level violating
the constraint is identified and retracted, or if the constraint is violated at decision level 0, search
terminates. It is also worth mentioning that clasp propagates optimization constraints, that is, they
can imply (and provide reasons for) literals upon unit propagation. Finally, when optimization is
actually undesired and all solutions ought to be inspected instead, option --opt-ignore is available
to avoid modifying the input (by ignoring optimization statements).

An innovative feature of clasp 2 is hierarchical optimization (--opt-hierarch), build on top
of uniform optimization. Hierarchical optimization allows for solving multi-criteria optimization
problems by considering criteria according to their respective priorities. Such an approach is more
involved than standard branch-and-bound-based optimization because it must recover from unsatis-
fiable subproblems, one for each criterion.This is accomplished by dynamic optimization constraints
that may be disabled and reinitialized during search. Accordingly, learned nogoods relying on such
constraints must be retracted once the constraints get disabled. Another benefit of such dynamic
constraints is that they allow for decreasing an (upper) bound in a non-uniform way, and successively
re-increasing it upon unsatisfiability.

7.2.3 PROPAGATION AND SEARCH
Propagation in clasp relies on a general interface called (Boolean) Constraint and is thus not limited
to nogoods. However, dedicated data structures are used for binary and ternary nogoods, accounting
for the many short nogoods stemming from completion. More complex constraints are accessed via
watch lists for each literal, storing Boolean constraints that need to be updated when the variable
becomes true or false, respectively. While unit propagation of long nogoods is based on the two-
watched literal technique, a counter-based approach is used for propagating cardinality and weight
constraints. A literal implied by a Boolean constraint upon unit propagation stores a reference to
that constraint, which in turn can be queried for an antecedent.

Motivated by the nature of ASP problems, clasp first applies unit propagation to binary
and ternary nogoods, then longer nogoods, and finally other constraints. Moreover, as detailed in
Algorithm 4 (on Page 101), its propagation procedure gives a clear preference to unit propagation over
unfounded set computations.To this end, clasp abstracts from its various propagation mechanisms by
using post propagators. That is, it maintains a priority list of post propagators that are consecutively
processed after unit propagation. For instance, failed-literal detection, unfounded set checking, and
parallel search are implemented as post propagators. Similarly, they are used in clasp’s extension with
constraint processing, clingcon, to realize theory propagation.

Unfounded set detection follows Algorithm 5 and aims at small, rather than greatest, un-
founded sets. An intrinsic treatment of cardinality and weight constraints augments unfounded set

7At the implementation level, all optimization constraints are minimize constraints.

7.2. SOLVING WITH CLASP 127

detection by means of source pointers, still aiming at lazy unfounded set checking.The representation
of loop nogoods is controlled via option --loops. With value distinct, loop nogoods are gener-
ated for individual unfounded atoms, as shown in Algorithm 4. However, the default value common
makes clasp only compute one reason per unfounded set. Like nogoods derived from conflicts, they
are subject to unit propagation and deletion (see below). On the other hand, when --loops=no is
specified, loop nogoods are stored only as long as they serve as antecedents of falsified unfounded
atoms.

Decision heuristics The primary decision heuristics of clasp use look-back strategies derived from
corresponding approaches in SAT, viz., berkmin, vsids, and vmtf. Such heuristics privilege variables
involved in recent conflicts. To this end, they maintain an activity score for each variable, increased
upon conflict resolution and decayed periodically. The major difference between the approaches
of berkmin and vsids lies in the scope of variables considered during decision making. While vsids
selects a free variable that is globally most active, berkmin restricts the selection to variables belonging
to the most recently recorded yet undispelled dynamic nogood. Although the look-back heuristics
implemented in clasp are modeled after the corresponding CDCL-based approaches, clasp optionally
also scores variables contained in loop nogoods. In case of berkmin, it may also select a free variable
belonging to a recently recorded loop nogood. Finally, we note that clasp’s heuristic can also be based
upon look-ahead strategies extending unit propagation by failed-literal detection. This makes sense
when running clasp without conflict-driven nogood learning, operating similar to smodels. A limited
form of this is available by --initial-lookahead.

Once a decision variable has been selected, a sign heuristic decides about its truth value. The
main criterion for look-back heuristics is to satisfy the greatest number of conflict nogoods, that
is, to pick the literal that occurs in fewer of them.8 Initially and also for tie-breaking, clasp does
sign selection based on the type of a variable: atoms are preferably set to false, while bodies are
made true. This aims at maximizing the number of resulting implications. Another sign heuristic
implemented in clasp is progress saving. The idea is to remember truth values of retracted variables
upon backjumping (or restarting), except for those assigned at the last decision level. These saved
values are then used for sign selection. The intuition behind this strategy is that the literals assigned
prior to the last decision level did not lead to a conflict and may have satisfied some subproblem.
Hence, re-establishing them may help to avoid solving subproblems multiple times. Progress saving
is invoked with option --save-progress; its computational impact, however, depends heavily on
the structure of a problem at hand (cf. Section 7.2.6).

Restart policies The robustness of clasp is boosted by various restart strategies, namely, arithmetic,
geometric, Luby-style, and a nested policy. The first two start with an initial number of conflicts
after which clasp restarts; this threshold is then increased after each restart, either by addition or
multiplication, respectively. For this,--restarts takes two arguments,x and y, to make clasp follow
the restart sequences x + y × i or x × yi , respectively, where i counts the number of performed

8Satisfaction of nogoods is best understood in terms of the corresponding clauses.

128 7. SYSTEMS

restarts. The Luby-style policy schedules restarts according to a recurrent and progressively growing
sequence of numbers of conflicts, viz., x, x, (21×x), x, x, (21×x), (22×x), x, . . . for some unit x.
The nested policy makes restarts follow a two-dimensional pattern that increases geometrically in
two dimensions. For this purpose, it takes a third parameter z and repeats the geometric sequence
x × yi whenever it reaches the outer limit z × yj , where j counts how often the outer limit was
hit so far. Usually, restart strategies are based on the total number of encountered conflicts. Beyond
that, clasp features local restarts. Here, one counts the number of conflicts per decision level in order
to measure the difficulty of subproblems locally. Furthermore, a bounded approach to restarting
(and backjumping) is used when enumerating stable models. To complement its more determined
search, clasp also allows for initial randomized runs, typically with a small restart threshold, in the
hope to extract putatively interesting nogoods. Finally, it is worth noting that, despite the fact that
recent SAT solvers use rather aggressive restart strategies, clasp still defaults to a more conservative
geometric policy because it performs better on ASP-specific benchmarks.

Nogood deletion To limit the number of nogoods stored simultaneously, dynamic nogoods are pe-
riodically subject to deletion. Complementing look-back heuristics, clasp’s nogood deletion strategy
associates an activity with each recorded nogood, which is incremented whenever the nogood is used
for conflict resolution. The initial threshold on the number of stored nogoods is calculated from the
size of an input program and increased by a certain factor upon each restart. As soon as the current
threshold is exceeded, deletion is initiated and removes (by default) up to 75% of the recorded no-
goods. This can be modified via --dfrac. Nogoods that are currently locked (because they serve as
antecedents) or whose activities significantly exceed the average activity are exempt from deletion. In
addition, --dglue allows for keeping nogoods having a literal block distance smaller than or equal
to a specified threshold. The remaining nogoods have their activities decayed in order to account
for recency of usage. All in all, clasp’s nogood deletion strategy aims at limiting the overall number
of stored nogoods, while keeping the relevant and recently recorded ones. This likewise applies to
conflict and loop nogoods.

7.2.4 MULTI-THREADED ARCHITECTURE
A major extension of clasp series 2 lies in its parallel solving capacities. To this end, clasp follows a
coarse-grained, task-parallel approach via shared memory multi-threading. Given this, clasp allows
for parallel solving by search space splitting and/or competing strategies. While the former involves
dynamic load balancing in view of highly irregular search spaces, both modes aim at running searches
as independently as possible in order to take advantage of enhanced sequential algorithms. In fact,
a portfolio of solver configurations cannot only be used for competing but also in splitting-based
search.The latter is optionally combined with global restarts to escape from uninformed initial splits.

In what follows, we focus on the multi-threaded component and communication architecture
of clasp.

7.2. SOLVING WITH CLASP 129

Component architecture To explain the architecture and functioning of clasp’s multi-threaded ar-
chitecture, let us follow the workflow underlying its design.To this end, consider clasp’s architectural
diagram given in Figure 7.3.

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution
Conflict

Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2 . . . Sn

Counter T W . . . S

Queue P1 P2
. . .Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor
Nogood

Distributor

Logic
Program

Preprocessing

Program
Builder
Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Figure 7.3: Architecture of clasp 2.

At the start, only the main thread is active. Once a logic program is read in, all aforementioned
preprocessing stages are conducted by this thread. The outcome of the preprocessing phase is stored
in a SharedContext object that is initialized by the main thread and shared among all participating
threads. Among others, this object contains

• the set of relevant Boolean variables together with type information
(e.g., atom, body, aggregate, etc.),

130 7. SYSTEMS

• a symbol table, mapping (named) atoms from the program to internal variables,

• the positive atom-body dependency graph, restricted to its (non-trivial) strongly connected
components,

• the set of Boolean constraints, among them nogoods, cardinality and weight constraints,
optimization constraints, and

• an implication graph capturing inferences from binary and ternary nogoods.9

The richness of this information is typical for ASP, and it is much sparser in a SAT setting.
After its initialization in conjunction with the main solver, further (solver) threads are (con-

currently) attached to the SharedContext , where its constraints are “cloned.” Notably, each constraint
is aware of how to clone itself efficiently. Moreover, the Enumerator and NogoodDistributor objects
are used globally in order to coordinate various model enumeration modes and nogood exchange
among solver instances. We detail their functioning below.

Each thread contains one Solver object, implementing an extended version of Algorithm 3.
Every Solver stores

• local data,including assignment, watch lists, constraint database, etc.,

• local strategies, regarding heuristics, restarts, constraint deletion, etc.,

and it uses the NogoodDistributor to share recorded nogoods. As mentioned above, each solver
propagates first binary and ternary nogoods (shared through the aforementioned implication graph),
then longer nogoods and other constraints, before it finally applies any available post propagators.

ParallelContext controls concurrent solving with (up to 64) individually configurable threads
(via option --threads). When attaching a solver to the SharedContext , ParallelContext associates a
thread with the solver and adds dedicated post propagators to it. One high-priority post propagator is
added for message handling and another, very low-priority post propagator is supplied for integrating
information stemming from models10 and/or shared nogoods.

To control parallel search, ParallelContext maintains a set of atomic message flags:

• terminate signals the end of a computation,

• interrupt forces outside termination (e.g., when the user hits Ctrl+C),

• sync indicates that all threads shall synchronize, and

• split is set during splitting-based search whenever at least one thread needs work.

These flags are used to implement clasp’s two major parallel search strategies:

9Note that unary nogoods capture initial problem simplifications that need not be rechecked during search.
10This can regard an enumerated model to exclude, intersect, or union, as well as objective function values.

7.2. SOLVING WITH CLASP 131

• splitting-based search via distribution of guiding paths (that is, the sequence of all non-
deterministic choices) and dynamic load balancing via a split-request and -response protocol,
and

• competition-based search via freely configurable solver portfolios.

Notably, solver portfolios can also be used in splitting-based search, that is, different guiding paths
can be solved with different configurations. Their usage is invoked through option --portfolio;
an example specification is obtained with --create-template.

Communication architecture A salient transverse aspect of the multi-threaded architecture of clasp 2
is its communication infrastructure, used for implementing advanced reasoning procedures.To begin
with, the ParallelContext object keeps track of threads’ load, particularly in splitting-based search.
Moreover, the Enumerator controls enumeration-based reasoning modes, while the NogoodDistribu-
tor handles the exchange of recorded nogoods among solver threads. These communication-intense
components along with some implementation techniques are detailed below in increasing order of
complexness.

Thread coordination The basic communication architecture of clasp relies on message passing,
efficiently implemented by lock-free atomic integers. On the one hand, globally shared atomic
counters are stored in ParallelContext . For instance, all aforementioned control flags are stored in a
single shared atomic integer.On the other hand,each thread has a local message counter hosted by the
message handling post propagator.Message passing builds upon two basic methods:postMessage()
and hasMessage(). Posting a message amounts to a Compare-and-Swap11 on an atomic integer,
and checking for messages (via specialized post propagators) is equivalent to an atomic read. Of
particular interest is communication during splitting-based search. This is accomplished via a lock-
free work queue, an atomic work request counter, and a work semaphore in ParallelContext . Initially,
the work queue only contains the empty guiding path, and all threads “race” for this work package
by issuing a work request. A work request first tries to pop a guiding path from the work queue
and returns upon success. Otherwise, the work request counter is incremented and a split request is
posted, which results in raising the split flag. Afterward, a wait() is tried on the work semaphore.
If wait() fails because the number of idle threads now equals the total number of threads, the
requesting thread posts a terminate message and wakes up all waiting threads. Otherwise, the thread
is blocked until new work arrives. On the receiver side, the message handling post propagator of
each thread checks whether the split flag has been set. If so, and provided that the thread at hand
has work to split, its message handler proceeds as follows. At first, it decrements the work request
counter. (Note that the message handler thus declares the request as handled before actually serving
it in order to minimize over-splitting.) If the work request counter reached 0, the message handler
also resets the split flag. Afterward, the search space is split and a (short) guiding path is pushed

11Conditional writing is performed as atomic CPU instruction to achieve synchronization in multi-threading.

132 7. SYSTEMS

to the work queue in ParallelContext . At last, the message handler signals the work semaphore and
hence eventually wakes up a waiting thread.

Splitting-based search usually suffers from uninformed early splits of the search space. To
counterbalance this, ParallelContext supports an advanced global restart scheme based on a two-
phase strategy (configured through option --global-restarts). In the first phase, threads vote
upon effectuating a global restart based on some given criterion (currently, number of conflicts);
however, individual threads may veto a global restart. For instance, this may happen in enumeration
when a first model is found during this first restarting phase. Once there are enough votes, a global
restart is initiated in the second phase. For this, a sync message is posted and threads wait until all
solvers have reacted to this message. The last reacting thread decides on how to continue. If no veto
was issued, the global restart is executed.That is, threads give up their guiding paths, the work queue
is cleared, and the initial (empty) guiding path is again added to the work queue. Otherwise, the
restart is abandoned, and the threads simply continue with their current guiding paths.

If splitting-based search is not active (i.e., during competition-based search), the work queue
initially contains one (empty) guiding path for each thread, and additional work requests simply
result in the posting of a terminate message.

Nogood exchange Given that each thread implements conflict-driven search involving no-
good learning, the corresponding solvers may benefit from a controlled exchange of their recorded
information. However, such an interchange must be handled with great care because each indi-
vidual solver may already learn exponentially many nogoods, so that their additional sharing may
significantly hamper the overall performance.

To differentiate which nogoods to share, clasp 2 pursues a hybrid approach regarding both
nogood exchange and storage. As described above, the binary and ternary implication graph (as well
as the positive atom-body dependency graph) are shared among all solver threads. Otherwise, each
solver maintains its own local nogood database. The sharing of these nogoods is optional, as we
detail next.

The actual exchange of nogoods is controlled in clasp by separate distribution and integration
components for carefully selecting the spread constraints. This is supported by thread-local inter-
faces along with the global NogoodDistributor (see Figure 7.3). All components rely on interfaces
abstracting from the specific sharing mechanism used underneath.

The distribution of nogoods is configurable in two ways (by using option --distribute).
First, the exported nogoods can be filtered by their type, viz. conflict, loop, or short (i.e., binary and
ternary), or be exhaustive or inhibited. The difference between globally sharing short nogoods (via
the implication graph) and additionally “distributing” them lies in the proactiveness of the process.
While the mere sharing leaves it to each solver to discover nogoods added by others, their explicit
distribution furthermore communicates this information through the standard distribution process.
Second, the export of nogoods is subject to their respective literal block distance. Fewer distinct

7.2. SOLVING WITH CLASP 133

decision levels are regarded as advantageous since they are prone to prune larger parts of the search
space.12

The integration of nogoods is likewise configurable in two ways (by using option
--integrate). The first criterion captures the relevance of a nogood to the local search process.
First, the state of a nogood is assessed by checking whether it is satisfied, violated, open (i.e., neither
satisfied nor violated), or unit with respect to the current (partial) assignment. While violated and
unit nogoods are always considered relevant, open nogoods are optionally passed through a filter
using the solver’s current heuristic values to discriminate the relevance of the candidate nogood to the
current solving process. Finally, satisfied nogoods are either ignored or considered open depending
on the configuration of the corresponding filter and their state relative to the original guiding path.
The second integration criterion is expressed by a grace period influencing the size of the local import
queue and thereby the minimum time a nogood is retained. Once the local import queue is full, the
least recently added nogood is evicted and either transferred to the thread’s nogood database (where
it becomes subject to the thread’s nogood deletion policy) or immediately discarded. Currently, two
modes are distinguished: the thread transfers either all or only “heuristically active” nogoods from
its import queue while discarding all others.

Both distribution and integration are implemented as dedicated (complex) post propagators,
based upon a global distribution scheme implemented via an efficient lock-free Multi-Read-Multi-
Write (MRMW) list situated in ParallelContext .13 Distribution roughly works as follows. When
the solver of thread i records a nogood that is a candidate for sharing, it is first integrated into the
thread-local nogood database. In addition, the nogood’s reference counter is set to the total number
of threads plus one, and its target mask to all threads except i. At last, thread i appends the shared
nogood to the aforementioned MRMW list.

Conversely upon integration, thread j traverses the MRMW list, thereby ignoring all nogoods
whose target mask excludes j . Depending on the state of a nogood, the aforementioned filters decide
whether a nogood is relevant or not. All relevant nogoods are integrated into the search process of
thread j and added to its local import queue. The reference counter of a nogood is decremented
by each thread moving its read pointer beyond it. In addition, the sharing thread i decrements a
nogood’s reference counter when it no longer uses it. Hence, the reference counter of a shared nogood
can only drop to zero once it is no longer addressed by any read pointer. This makes it subject to
deletion.

Notably, the shared representation of a nogood is only created when the nogood is actually
distributed. Otherwise, its optimized (single-threaded) representation is used. Upon integration,
the “best” representation is selected, for instance, short nogoods are copied while longer ones are
physically shared.

12This criterion has empirically shown to be rather effective and largely superior to a selection by length.
13This choice is motivated by the fact that we aim at optimizing clasp for desktop computers, still mostly possessing few genuine

processing units. Other strategies are possible and an active subject of current research.

134 7. SYSTEMS

Complex reasoning modes In addition to model printing, all enumeration-based reasoning
modes of clasp 2 are controlled by the global Enumerator (see Figure 7.3). These reasoning modes
include regular and projected model enumeration, intersection and union of models, uniform and
hierarchical (multi-criteria) optimization, as well as combinations thereof, like computing the inter-
section of all optimal models.

As already mentioned, one global Enumerator is shared among all threads and is protected
by a lock. Whenever applicable, it hosts global constraints, like optimization constraints, that are
updated whenever a model is found. Additionally, the Enumerator adds a local enumeration-specific
constraint to each solver for storing thread-local data, e.g., current optima (see below). Once a model
is found, a dedicated message update-model is send to all threads, but threads only react to the most
recent one.

In fact, enumeration is combinable with both splitting and competing search strategies, ei-
ther by dedicated enumeration algorithms taking advantage of guiding paths or by using solution
recording in a competitive setting. The latter setting exploits the infrastructure for nogood exchange
in order to distribute solutions among solver threads. Once a solution is converted into a nogood,
it can be treated as usual, except that its integration is imperative and that it is exempt from dele-
tion. However, this approach suffers from exponential space complexity in the worst case. Unlike
this, splitting-based enumeration runs in polynomial space, following a distributed version of clasp’s
dedicated enumeration algorithm. In order to avoid uninformed splits at the beginning, all solver
threads may optionally start in a competitive setting. Once the first model is found, the Enumerator
enforces splitting-based search among all solver threads and disables global restarts. In addition to
the distribution of disjoint guiding paths, backtrack levels are dealt with locally in order to guarantee
an exhaustive and duplicate-free enumeration of all models.

In optimization, solver threads cooperate in enumerating one better model after another until
no better one is found, so that the last model is optimal. Whenever a better model is found, its
objective value is stored in the Enumerator .The threads react upon the following update-model mes-
sage by integrating the new value into their local optimization constraint representation14 and thus
into the search processes of their solvers. Optimization constraints provide methods for efficiently
re-computing their state after an update, so that restarting search is unnecessary in most cases.

Also, brave and cautious reasoning, computing the union and intersection of all models,
respectively, are implemented through a global constraint within the Enumerator .

7.2.5 MAKING SOLVING MORE TRANSPARENT
The command line option --stats of clasp allows for obtaining a multitude of statistics gathered
during the solving process. The output in Listing 7.6 extends the basic one shown in Listing 1.5
on Page 8; in both cases clasp is used to solve the Towers of Hanoi puzzle encoded in Listing 1.3
and 1.4.

14While the literals of an optimization constraint are stored globally, corresponding upper bounds are local to threads, and changes
are communicated through the Enumerator .

7.2. SOLVING WITH CLASP 135

Listing 7.6: Solving Towers of Hanoi with extended solver statistics (--stats=2)

$ gringo tohI.lp tohE.lp | clasp --stats=2
clasp version 2.0.5
Reading from stdin
Solving ...
Answer: 1
move(4,b, 1) move(3,c, 2) move(4,c, 3) move(2,b, 4) move(4,a, 5) \
move(3,b, 6) move(4,b, 7) move(1,c, 8) move(4,c, 9) move(3,a,10) \
move(4,a,11) move(2,c,12) move(4,b,13) move(3,c,14) move(4,c,15)
SATISFIABLE

Models : 1+
Time : 0.011s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
Choices : 345
Conflicts : 134
Restarts : 1

Atoms : 837
Rules : 1484 (1: 1319 2: 150 3: 15)
Bodies : 1263
Equivalences: 1685 (Atom=Atom: 87 Body=Body: 69 Other: 1529)
Tight : Yes

Variables : 1206 (Eliminated: 0 Frozen: 496)
Constraints : 1844 (Binary: 61.9% Ternary: 27.1% Other: 11.0%)
Lemmas : 134 (Binary: 12.7% Ternary: 24.6% Other: 62.7%)

Conflict : 134 (Average Length: 4.7)
Loop : 0 (Average Length: 0.0)
Other : 0 (Average Length: 0.0)
Deleted : 0

Backtracks : 0
Backjumps : 134 (Bounded: 0)
Skippable Levels : 341 (Skipped: 341 Rate: 100.0%)
Max Jump Length : 15 (Executed: 15)
Max Bound Length : 0
Average Jump Length : 2.5 (Executed: 2.5)
Average Bound Length: 0.0
Average Model Length: 1.0

The label Time provides overall wall clock time as measured by clasp; it starts with reading
the input file. Hence, the discrepancy between global wall clock time and Solving time stands for
the time needed for reading in the ground program. A large difference may indicate a grounding
problem. Of interest is also the relation between the number of Choices and Conflicts. While
similar numbers indicate a highly combinatorial problem, many more Choices than Conflicts
point to extensive backjumping.

The following group of figures concerns the input program. The number of rules is broken
down into rule types in smodels format (cf. Table 7.1 on Page 122). That is, the read ground program

136 7. SYSTEMS

contained 1319 normal, 150 cardinality, and 15 choice rules. The label Equivalences gives the
number of equivalences between atoms, bodies, and both of them detected during preprocessing.

The next group of indicators describes the Boolean constraints obtained from the program
as well as learned nogoods. In our example, the original 837 atoms and 1263 bodies are captured
by 1206 Boolean variables. Among them, 496 are excluded from SAT-style preprocessing due to
their specific role in ASP solving. Similarly, the 1484 rules of the input program induce 1844
Boolean constraints. Their majority consists of nogoods obtained from the program’s completion;
among them, more than 1100 binary nogoods (cf. (5.10) and (5.11) on Page 83). Further Boolean
constraints result from the dedicated treatment of aggregates. The label Lemmas summarizes the
distribution of learned nogoods. Given that our program is tight, no Loop nogoods are generated.
Similarly, clasp was run in single threaded mode, so that no nogoods were contributed by Other
threads. Thus, all 134 learned nogoods were obtained from Conflicts and never Deleted in our
simple case.

The last collection of figures reflects the search process. The format is meant to capture not
only the search for one stable model but moreover their enumeration. In our example, we observe
134 backjumps with a maximum of 15 and an average of 2.5 decision levels.

The statistics in Listing 7.6 summarize key features of the solving process. For obtaining
more structural information, we may appeal to visualization techniques providing insights into the
internal structure of a problem. As an example, we give in Figure 7.4 the (reduced) atom interaction
graph of the ground program obtained from the Towers of Hanoi problem encoded in Listing 1.3
and 1.4.The graph’s vertices consist of all atoms unassigned after preprocessing; two atoms are linked
whenever they jointly occur in some nogood.The color gives the accumulated heuristic score of each
variable. That is, red reflects a high involvement in conflicts, while green indicates a low conflict
score.The dynamic nature of the Towers of Hanoi puzzle induces a repetitive structure reflecting the
unfolding of the underlying transition function (from left to right). Interestingly, the largest number
of conflicts is observed in the “middle” of the problem representation. In fact, the two dark red spots
stand for two on/3 fluents. Other indicators than heuristic scores are possible and are made available
in a forthcoming visualization tool.

7.2.6 FINE-TUNING
Advanced Boolean constraint technology adds a multitude of degrees of freedom to ASP solving.
Currently, clasp has more than 60 options, half of which control the search strategy. Although
considerable efforts were taken to find default parameters jointly boosting robustness and speed, the
default setting still leaves room for drastic improvements on specific benchmarks by fine-tuning the
parameters. The question then arises how to deal with this vast “configuration space” and how to
conciliate it with the idea of declarative problem solving. Currently, there seems to be no alternative
to manual fine-tuning when addressing highly demanding applications.

However, it is crucial to realize that no solver configuration can compensate for a suboptimal
encoding. It is thus of the utmost importance to devote all attention to an elaborate encoding before
even looking for a good solver configuration.

7.2. SOLVING WITH CLASP 137

Figure 7.4: Accumulated atom score when solving the Towers of Hanoi problem.

As a rule of thumb, we usually start by investigating the following options:

--heuristic:Try vsids instead of clasp’s default berkmin-style heuristic. Sometimes the default
heuristic is too time consuming.

--trans-ext: This option determines the treatment of extended rules, such as cardinality and
weight rules.We recommend trying the dynamic transformation when the number of Frozen
variables is high. Also, it is often advisable when observing very long dynamic nogoods (see
also --recursive-str below).

--sat-prepro: SAT-style preprocessing techniques work best on tight programs with few car-
dinality and weight constraints. We recommend using this option when extended rules are
transformed into normal ones (via --trans-ext) and/or when the number of Frozen vari-
ables is small.

--restarts: Try aggressive restart policies, like L(uby),256 or the nested policy, or try disabling
restarts whenever a problem is deemed to be unsatisfiable.

--save-progress: Progress saving typically works nicely when the average backjump length is
high, that is, if the Choices/Conflicts ratio is larger than 10. It usually performs best in
combination with aggressive restarts.

138 7. SYSTEMS

--deletion:The need for aggressive nogood deletion relates to the size of a problem, indicated by
its number of Variables and Constraints, respectively. On rather large problems, where
either number exceeds 100000, we advocate more aggressive nogood deletion, while on smaller
ones, where both numbers are below 1000, we use less aggressive settings (combined with a
higher restart frequency).

--recursive-str enables minisat-like conflict nogood strengthening. We advocate using this
whenever one encounters very long dynamic nogoods.

Although fine-tuning may greatly improve the efficiency of clasp, it is hard to accomplish for
an unpracticed user, and after all, it takes us away from the ideals of declarative problem solving. To
this end, we advocate an extension of clasp, called claspfolio, that maps benchmark features to solver
configurations (via machine learning techniques; see Section 7.3.3).

7.2.7 OUTLOOK
Our treatment of clasp along with most examples deal with version 2.0.5 (and 2.0.6). Upon com-
pleting this book, clasp 2.1 was released. Most interesting from a user’s perspective is the provision
of several pre-configurations of clasp. They are engaged via the option --configuration. Many
hints from Subsection 7.2.6 are covered by the various configurations. Also, the --help option
of clasp 2.1 offers an increasing level of detail via an argument. An interesting extension concerns
Option --integrate, which now supports different topologies for nogood integration. More in-
formation can be found in the corresponding README at potassco.sourceforge.net.

7.3 MORE POTASSCO SYSTEMS
In what follows, we discuss some major extensions of gringo and clasp. While the first three sections
deal with pure solver extensions, the remaining ones deal with ASP systems combining grounding
and solving.

Even more Potassco systems are available at potassco.sourceforge.net, notably at
potassco.sourceforge.net/labs.html.

7.3.1 CLASPD

Many problems in Knowledge Representation and Reasoning have an elevated degree of complexity,
calling for expressive solving paradigms being able to capture problems at the second level of the
polynomial hierarchy. Such a problem is for instance to decide whether an atom belongs to an
inclusion-minimal stable model. They can be addressed by ASP solvers dealing with disjunctive
logic programs such as claspd.15

The actual search for stable models of disjunctive programs is divided into a generating
part, providing stable model candidates, and a testing part, verifying the provided candidates. Since

15Given that claspd evolved from an early version of clasp, it is about to be re-merged into clasp.

potassco.sourceforge.net
potassco.sourceforge.net
potassco.sourceforge.net/labs.html
potassco.sourceforge.net/labs.html
potassco.sourceforge.net/labs.html

7.3. MORE POTASSCO SYSTEMS 139

both of these tasks can be computationally complex, they are performed by associated inference
engines, implemented in claspd by feeding the core search module from clasp with particular Boolean
constraints. While the generator traverses the search space for stable models, communicating its
current state through an assignment to the tester, the latter checks for unfounded sets and reports
them back in terms of nogoods. An approximate unfounded set detecting procedure is integrated
into propagation and thus continuously applied during the generation of stable model candidates.
In contrast, exhaustive checks for so-called non-head-cycle-free components are performed only
selectively, for instance, if an assignment is total, due to their high computational cost.

7.3.2 CLASPAR

claspar is a distributed version of clasp constructed for ASP solving on clusters consisting of a
multitude of loosely connected computers. To this end, claspar is built upon the Message Passing
Interface (MPI), realizing communication and data exchange between computing units via message
passing. Interestingly, MPI abstracts from the actual hardware and lets us execute our system on
clusters as well as multi-processor and/or multi-core machines.

claspar aims at a simple and transparent approach taking advantage of the underlying perfor-
mance of clasp. For this, it relies on simple master-worker architectures, in which each worker consists
of an ASP solver along with an attached communication module.The solver is linked to its commu-
nication module via an elementary interface requiring only marginal modifications to the solver. All
major communication is initiated by the workers’ communication modules, exchanging messages
with the master in an asynchronous way. The specific communication structure can be configured
via the option --topology, allowing for flat and more complex hierarchical architectures.

As with multi-threaded clasp, its cluster-oriented extension claspar supports splitting-based
and competition-based search.Moreover, it allows for combining both strategies and having different
groups of solvers address distinct search spaces. Also, a portfolio of different clasp configurations can
be supplied to claspar via option --portfolio-file.The different configurations are then assigned
either randomly or in a round-robin fashion (via --portfolio-mode).

Also, claspar supports the exchange of nogoods, controlled by two options:

--nogood-sharing allows for configuring different strategies for nogood exchange, for instance,
depending upon different selection criteria of nogoods to be exchanged and the number of
nogoods per communication.

--nogood-distribution specifies the communication architecture for nogood exchange. This
can be local, depending on the master/worker topology, organized as a hypercube (work nodes
are arranged in a hypercube and nogoods are exchanged along the edges), and all to all as well
as no exchange at all.

140 7. SYSTEMS

7.3.3 CLASPFOLIO

Advanced Boolean constraint technology, as used in clasp, is sensitive to parameter configuration.
In fact, we are unaware of any true application on which clasp is run in its default settings. This
parameter sensitivity can be counterbalanced by a portfolio-based approach. To this end, we map a
collection of benchmark features onto an element of a portfolio of distinct clasp configurations. This
mapping is realized via machine learning techniques.

Given a logic program, the goal of claspfolio is to automatically select a suitable configuration
of clasp. In view of the huge configuration space, the attention is limited to some (manually) selected
configurations belonging to a portfolio. Each configuration consists of certain clasp options. To ap-
proximate the behavior of such a configuration, claspfolio applies a model-based approach predicting
solving performance from particular features of the input. The portfolio used by claspfolio contains
25 clasp configurations, included because of their complementary performance on a training set.
The options of these configurations mainly configure preprocessing, decision heuristics, as well as
deletion and restart policies. This provides us with a collection of solving strategies that have turned
out to be useful on a range of existing benchmarks. In fact, the hope is that some configuration is (a)
well-suited for a user’s application and (b) automatically selected by claspfolio in view of similarities
to the training set.

As shown in Figure 7.5, ASP solving with claspfolio consists of four parts. First, the ASP

gringo clasp Prediction clasp

Models claspfolio

Figure 7.5: Architecture of ASP solver claspfolio.

grounder gringo instantiates a logic program.Then, clasp is used to extract features and possibly even
solve (too simple) instances. If the instance was not solved by the initial run of clasp, the extracted
features are mapped to a score for each configuration in the portfolio. Finally, clasp is run for solving,
using the configuration with the highest score.

7.3.4 CLINGO

The ASP system clingo is a monolithic combination of the ASP grounder gringo and the ASP solver
clasp (currently version 1.3). As such, it offers an alternative to using a UNIX pipeline for passing
the result of grounding to the solver. Otherwise, clingo supports all features and options of gringo
and clasp.

7.3. MORE POTASSCO SYSTEMS 141

7.3.5 CLINGCON

Certain applications are more naturally modeled by mixing Boolean with non-Boolean constructs,
for instance, accounting for resources, fine timings, or functions over finite domains. In other words,
non-Boolean constructs make sense whenever the involved variables have large domains. This is
addressed by the hybrid ASP solver clingcon, combining the Boolean modeling capacities of ASP
with Constraint Processing (CP). To this end, clingcon adopts techniques from the area of SAT
Modulo Theories (SMT), combining conflict-driven learning with theory propagation by means of
a CP solver. For the latter, we have chosen gecode as black box constraint solver.

Although clingcon’s solving components, clasp and gecode, follow the approach of modern
SMT solvers, clingcon furthermore adheres to the tradition of ASP in supporting a corresponding
modeling language via the ASP grounder gringo. The resulting tripartite architecture of clingcon is
depicted in Figure 7.6. clingcon extends the input language of gringo with theory-specific language

Theory

Language

gringo clasp

Theory

Propagator
Theory

Solver

clingcon

Figure 7.6: Architecture of the hybrid ASP system clingcon.

constructs. Just as with regular atoms, the grounding capabilities of gringo can be used for dealing with
constraint atoms containing first-order variables. This allows for expressing constraints over integer
variables, involving arithmetic constraints as well as global constraints and optimization statements.
Information about these constraints is directly shared with the theory propagator and in turn the
theory solver, here gecode. The theory propagator is implemented as (another) post propagator in
clasp. Theory propagation as such is done through the theory solver.

clingcon follows the lazy approach of advanced SMT solvers by abstracting from the constraints
in a specialized theory. The idea is as follows. The ASP solver passes the portion of its (partial)
Boolean assignment associated with constraints to a CP solver, which then checks these constraints
against its theory via constraint propagation. As a result, it either signals unsatisfiability or, if possible,
extends the Boolean assignment by further constraint atoms. For conflict-driven learning within the
ASP solver, however, each assigned constraint atom must be justified by a set of (constraint) atoms
providing a reason for the underlying inference. Similarly, conflicts occurring within the CP solver
have to be justified by such a reason. Both issues are addressed by clingcon through dedicated filtering
techniques extracting reasons from a current Boolean assignment. This approach also follows the
one taken by SMT solvers in letting the ASP solver deal with the atomic, that is, Boolean structure
of a problem, while a CP solver addresses the “sub-atomic level” by dealing with the constraints
associated with constraint atoms.

142 7. SYSTEMS

To illustrate modeling with clingcon, consider the example in Listing 7.7.

Listing 7.7: A hybrid ASP encoding for pouring water into buckets on a balance

1 $domain (0..10000).
2 time (0..t).
3 bucket(a).
4 bucket(b).

6 1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

8 100 $<= amount(B,T) :- pour(B,T), T < t.
9 amount(B,T) $<= 300 :- pour(B,T), T < t.

10 amount(B,T) $== 0 :- not pour(B,T), bucket(B),time(T),T < t.

12 volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B),time(T),T < t.

14 down(B,T) :- volume(C,T) $< volume(B,T), bucket(B), bucket(C), time(T).
15 up(B,T) :- not down(B,T), bucket(B), time(T).

17 volume(a,0) $== 0.
18 volume(b,0) $== 100.

20 :- up(a,t).

This program describes a balance with two buckets,a and b, at each end. According to the cardinality
rule in Line 6, we must pour a certain amount of water into exactly one of the buckets at each time
point. The amount of added water may vary between 100 and 300 units. The balance is down at one
bucket’s side, if the bucket contains more water than the other; otherwise, it is up. Initially, bucket
a is empty while b contains 100 units. The goal is to find sequences of pour/2 actions making the
side of bucket a be down after t time steps.

The program contains regular and constraint atoms. The latter are distinguished via predicate
symbols preceded by $. Hence, the amount of water is completely abstracted from the ASP solver
and is exclusively handled by the constraint solver. Thus, the capacity can be modeled using any
precision and any domain size without increasing the size of the ground program. For example, after
instantiation, the ASP solver does not distinguish between the regular atom pour(b,1) and the
constraint atom

volume(b,2) $== volume(b,1) $+ amount(b,1).

It assigns Boolean values to both types of atoms. However, depending on the assigned truth value, the
CP solver must assign values to integer variables, volume(b,2), volume(b,1), and amount(b,1),
such that the equation evaluates to the assigned truth value.

7.3. MORE POTASSCO SYSTEMS 143

7.3.6 ICLINGO

Many real-world applications, like Automated Planning or Model Checking, have associated
PSPACE-decision problems. For instance, the plan existence problem of deterministic planning
is PSPACE-complete. But the problem of whether a plan exists whose length is bounded by some
constant is in NP. In the setting of ASP, such problems can thus be dealt with in a bounded way
by considering in turn one problem instance after another, gradually increasing the bound on the
solution size.

To illustrate this, let us consider again the Towers of Hanoi puzzle from Section 1.1. This
planning problem is solved by the ASP encoding in Listing 1.4 (on Page 6). An answer is usually
found by iterative deepening search.That is, one first checks whether the program has a stable model
for one move, if not, the same is done for two moves, and so on. Such an approach re-processes all
rules parametrized with step variable T multiple times, while the integrity constraint expressing the
goal condition in Line 17 of Listing 1.4 is dealt with only once for each bound.

Unlike this, iclingo computes stable models in an incremental fashion. The idea is to avoid
redundancy by gradually processing the extensions to a problem rather than repeatedly re-processing
the entire extended problem. The corresponding architecture is illustrated in Figure 7.7. It is dom-

gringo clasp

iclingo

Figure 7.7: Architecture of the incremental ASP system iclingo.

inated by a grounder-solver interaction, in which solver results trigger grounding of new program
parts.

To capture this, we consider incremental logic programs, consisting of a triple (B, P, Q)

of logic programs, among which P and Q contain a (single) parameter k ranging over the nat-
ural numbers. In view of this, we also denote P and Q by P [k] and Q[k]. The base program B

is meant to describe static knowledge, independent of parameter k. The role of P is to capture
knowledge accumulating with increasing k, whereas Q is specific for each value of k. Provided all
programs are “modularly composable,” we are interested in finding a stable model of the program
B ∪ ⋃

1≤j≤i P [k/j] ∪ Q[k/i] for some (minimum) integer i ≥ 1. In what follows, we write P [i]
(or Q[i]) rather than P [k/i] (or Q[k/i]).

For illustration, let us transform the Towers of Hanoi encoding into an incremental logic
program. Clearly, the problem instance in Listing 1.3 as well as the definition of the initial situation
belong to the static knowledge in B. As done in Listings 7.8 and 7.9, this is declared by the statement
#base.

144 7. SYSTEMS

Listing 7.8: Incremental Towers of Hanoi problem instance (tohIinc.lp)

1 #base.
2 peg(a;b;c).
3 disk (1..4).
4 init_on (1..4,a).
5 goal_on (1..4,c).

In our simple example, the cumulative part consists of all rules possessing step variableT in Listing 1.4.
As shown in Listing 7.9, this part is indicated by ‘#cumulative t’, declaring t as the incremental
parameter.

Listing 7.9: An incremental ASP encoding of the Towers of Hanoi puzzle (tohEinc.lp)

1 #base.
2 on(D,P,0) :- init_on(D,P).

4 #cumulative t.
5 1 { move(D,P,t) : disk(D) : peg(P) } 1.

7 move(D,t) :- move(D,_,t).
8 on(D,P,t) :- move(D,P,t).
9 on(D,P,t) :- on(D,P,t-1), not move(D,t).

10 blocked(D-1,P,t) :- on(D,P,t-1).
11 blocked(D-1,P,t) :- blocked(D,P,t), disk(D).

13 :- move(D,P,t), blocked(D-1,P,t).
14 :- move(D,t), on(D,P,t-1), blocked(D,P,t).
15 :- not 1 { on(D,P,t) } 1, disk(D).

17 #volatile t.
18 :- goal_on(D,P), not on(D,P,t).

20 #hide.
21 #show move /3.

Note that t replaces all occurrences of T and makes predicate time/1 obsolete. Finally, the
parameter-specific part is indicated by ‘#volatile t’ and applies to the query only.

In order to account for the slice-wise processing of program parts in modeling incremental
programs, it is often natural to index dynamic head atoms with the current time stamp t and to
refer in body literals to the previous slice via t-1. This convention avoids referring to program parts
that have not yet been produced because they are indexed with t+1. In fact, if such atoms are yet
undetermined at step t, the addition of rules at step t+1 has no effect on previously produced ground
rules.

7.3. MORE POTASSCO SYSTEMS 145

Incremental programs are solved by the incremental ASP system iclingo,built upon the libraries
of gringo and clasp. Unlike the standard proceeding, iclingo operates in a “stateful way.” That is, it
maintains its previous (grounding and solving) state for processing the next program slices. In this
way, all components, B, P [i], and Q[i] are dealt with only once, and duplicated work is avoided
when increasing i. Launching iclingo on the incremental programs in Listings 7.8 and 7.9 yields the
(abridged) result in Listing 7.10. Note that we take advantage of iclingo’s option --istats to get
some insight into the intermediate steps.

Listing 7.10: Incrementally solving the Towers of Hanoi problem

$ iclingo tohIinc.lp tohEinc.lp --istats
=============== step 1 ===============

Models : 0
Time : 0.000 (g: 0.000 , p: 0.000 , s: 0.000)
Rules : 84
Choices : 0
Conflicts: 0
=============== step 2 ===============

Models : 0
Time : 0.000 (g: 0.000 , p: 0.000 , s: 0.000)
Rules : 104
Choices : 0
Conflicts: 0
=============== step 3 ===============

[...]

=============== step 14 ===============

Models : 0
Time : 0.000 (g: 0.000 , p: 0.000 , s: 0.000)
Rules : 104
Choices : 87
Conflicts: 27
=============== step 15 ===============
Answer: 1
move(4,b, 1) move(3,c, 2) move(4,c, 3) move(2,b, 4) move(4,a, 5) \
move(3,b, 6) move(4,b, 7) move(1,c, 8) move(4,c, 9) move(3,a,10) \
move(4,a,11) move(2,c,12) move(4,b,13) move(3,c,14) move(4,c,15)

Models : 1
Time : 0.000 (g: 0.000 , p: 0.000 , s: 0.000)
Rules : 104
Choices : 80
Conflicts: 24
=============== Summary ===============
SATISFIABLE

Models : 1+
Total Steps : 15
Time : 0.000

146 7. SYSTEMS

Prepare : 0.000
Prepro. : 0.000
Solving : 0.000

We observe that iclingo initially grounds 84 rules and 104 in each subsequent step. Once the under-
lying solver is initiated, it is updated fourteen times with new rules. In doing so, it treats fourteen
unsatisfiable programs before finding a stable model. Note that whenever a solving step is engaged,
it benefits from the information gathered during the previous solving attempts.

Let us take a look under the hood. When processing consecutive program slices, we have to
distinguish cumulative and volatile ones. That is, while the ground rules stemming from P [j] are
accumulated in the solver, the ones from Q[j] must be discarded for 1 ≤ j < i when Q[i] is added.
This is accomplished by adding to each rule in Q[j] a new body atom αj , along with rules achieving
that αj holds only at step j (see below). We define the following set of rules for a program Q and a
new atom α:

Q(α) = {head (r) ← body(r) ∪ {α} | r ∈ Q}.
The addition of new atoms allows us to selectively (de)activate volatile program slices. That is, the
fact that programs Q[j](αj) behave neutrally as long as αj is unprovable provides us with a handle to
control effective program slices. In addition to activating some Q[j](αj), we also have to deactivate it
in subsequent steps. Thus, a solver cannot include αj persistently as a fact. But rather than explicitly
deleting any fact (or rule) previously passed to the solver, we build upon an interface supporting
assumptions. This trims the required solver interface to only two functions:

• Add(P) incorporates a ground logic program P into the rule database of the solver;

• Solve(L) takes a set L of ground literals and computes the stable models X of the ground
program comprised in the solver that satisfy L+ ⊆ X and L− ∩ X = ∅.

The literals L passed to Solve constitute assumptions, which can be understood as a set {← ∼a |
a ∈ L+} ∪ {← a | a ∈ L−} of integrity constraints. However, as regards clasp, the crucial difference
between integrity constraints and assumptions is that the former give rise to program simplifications
affecting internal data structures, while the effect of the latter is temporary, that is, restricted to an
invocation of Solve. While former assumptions can easily be withdrawn, it would be much more
involved to support an explicit deletion of obsolete problem parts.

Semantically, the activation and deactivation of volatile program slices can be captured by
choice rules and integrity constraints. A rule like ‘{αj } ←’ nominally permits the unconditional
inclusion of αj in a stable model. Upon the invocation of Solve in step j , literal αj is passed as
assumption, so that stable models must necessarily contain αj . In contrast, in step j + 1, an integrity
constraint like ‘← αj ’ can be persistently added to the solver to force αj to be false. This deactivates
all rules from Q[j] in later steps. Notably, clasp eliminates such false atoms and rules with false
bodies from its data structures, thus automatically deleting a whole obsolete program Q[j].

To make all this more precise, consider Algorithm 7 reflecting the principal functioning of
iclingo. The algorithm combines grounding with the above solving functions to compute the stable

7.3. MORE POTASSCO SYSTEMS 147

Algorithm 7: iSolve
Input : A domain description (B, P, Q).
Output : A non-empty set of stable models.
Internal
:

A grounder Grounder and a solver Solver.

1 i ← 0
2 (P0, O) ← Grounder.Ground(B, ∅)

3 Solver.Add(P0)

4 loop
5 i ← i + 1
6 (Pi, Oi) ← Grounder.Ground(P [i], O)

7 Solver.Add(Pi)

8 O ← O ∪ Oi

9 (Qi, O
′
i) ← Grounder.Ground(Q[i], O)

10 Solver.Add(Qi(αi) ∪ {{αi} ←} ∪ {← αi−1})
11 χ ← Solver.Solve({αi})
12 if χ �= ∅ then return {X \ {αi} | X ∈ χ}

models of incremental programs (B, P, Q). Programs B,P [i], and Q[i] are then gradually grounded
by means of a Grounder and fed into a Solver through function Add. The state of the grounder
is captured via a second argument to the grounding function Ground that comprises the current
set of derivable atoms. In Lines 7 and 10 of Algorithm 7, cumulative and volatile program slices
are handled and subsequently solved under (varying) assumption αi in Line 11. Note that iSolve
terminates as soon as function Solve reports a stable model. Otherwise, if no stable model is found
in any step i, iSolve (in theory) loops forever. In practice, iclingo’s iteration can be controlled via
options --imin, --imax, and --istop.

All in all, iclingo reduces efforts by avoiding reproducing previous ground rules when extending
a program. As regards solving, it reduces redundancy, in particular, if a learning ASP solver such as
clasp is used, given that previously gathered information on heuristics, conflicts, or loops, respectively,
remains available and can thus be continuously exploited. In fact, the latter is configurable via options
--ilearnt and --iheuristic that allow for either keeping or forgetting learned nogoods and
heuristic values, respectively.

7.3.7 OCLINGO

All of the above ASP systems are designed for offline usage and thus lack any online capacities. On
the other hand, many applications domains involve online data, as agent technology or robotics.

148 7. SYSTEMS

This issue is addressed by the reactive ASP solver oclingo, extending iclingo with online func-
tionalities. To this end, oclingo acts as a server listening on a port (configurable via its --port option
upon start-up). Unlike iclingo, which terminates after computing a stable model of an incremental
logic program, oclingo is run on, waiting for client requests. To issue such requests, a separate con-
troller program sends so-called online progressions to oclingo and receives stable models to act upon
in return. The corresponding architecture is illustrated in Figure 7.8.

gringo clasp

oclingo

Controller

Figure 7.8: Architecture of the reactive ASP system oclingo.

For illustrating the usage of oclingo, consider a very simple elevator control accepting requests
to go to a certain floor whenever it is not already at this floor. At each step, the elevator moves
either up or down by one floor. If it reaches a floor for which a request exists, it serves the request
and proceeds until its goal to serve all requests is fulfilled. This functionality is specified by the
incremental logic program in Listing 7.11.

Listing 7.11: An ASP encoding for simple elevator control (elevator.lp)

1 #base.
2 floor (1..3).
3 atFloor (1,0).

5 #cumulative t.
6 #external request(F,t) : floor(F).
7 1 { atFloor(F-1;F+1,t) } 1 :- atFloor(F,t-1), floor(F).
8 :- atFloor(F,t), not floor(F).
9 requested(F,t) :- request(F,t), floor(F), not atFloor(F,t).

10 requested(F,t) :- requested(F,t-1), floor(F), not atFloor(F,t).

12 #volatile t.
13 :- requested(F,t), floor(F).

Of particular interest is the declaration preceded by #external, delineating the input to the cumu-
lative part provided by putative online progressions. This declaration instructs oclingo not to apply
any simplifications in view of yet undefined instances of request(F,t).

Launching oclingo on Listing 7.11 yields a single stable model containing atFloor(2,1).
That is, we make the elevator move one floor and see no pending requests.

7.4. REFERENCES AND FURTHER READING 149

In fact, requests are coming from outside the system, and their occurrences cannot be foreseen
within an incremental program. If a request to serve floor 3 occurs at time 1, it is passed from the
controller to oclingo as follows.

#step 1. request (3,1). #endstep.

Here ‘#step 1’ instructs the grounder to (initially) unfold Listing 7.11 until t=1 and to process
all rules up to #endstep. Adding the enclosed online progression to the above program yields a
stable model containing request(3,1), requested(3,1), atFloor(2,1), and atFloor(3,2),
so that the elevator takes two steps to move to the third floor. (Note that this involves unfolding
Listing 7.11 until t=2.)

Further language constructs supported by oclingo’s controller include #assert, #retract,
#forget, as well as extended #volatile statements having a fixed expiration time.

Note that reasoning is driven by successively arriving events. An online progression comple-
ments an incremental program as in Listing 7.11 and initiates the subsequent search for a stable
model. Afterward, oclingo waits for the next request, extending the online progression.

7.4 REFERENCES AND FURTHER READING
Unlike the multitude of ASP solvers, there are only few ASP grounders. Apart from gringo, the other
two popular grounders are lparse (Syrjänen) and (the grounding component of) dlv (Leone et al.,
2006). While dlv processes the grounding result internally (or prints it as text), the smodels format
produced by lparse and gringo is compatible with most state-of-the-art ASP solvers. The smodels
format is detailed in (Syrjänen, Appendix B) and (Janhunen, 2007). An alternative intermediate
format is proposed in (Gebser et al., 2008a). Current versions of gringo significantly extend the
input language of lparse. Most notably, they largely eliminate the need for domain predicates. Also,
gringo has a more general syntax for optimization statements. See (Gebser et al.) for further details.
Both dlv and gringo accept safe programs and tolerate an unrestricted usage of function symbols.
We refer the interested reader for details to the literature on gringo (Gebser et al., 2007d, 2009b,
2011g) as well as the respective system manuals (Bihlmeyer et al., Gebser et al., Syrjänen).

Since its introduction in Gebser et al. (2007a), clasp has become a powerful native ASP solver,
offering various reasoning modes that make it an attractive tool for knowledge representation and
reasoning. See Gebser et al. (2007a, 2009d, 2012b) on clasp’s development up to version 2; its multi-
threaded architecture is detailed in Gebser et al. (2012c). Beyond search for stable models of proposi-
tional normal programs, clasp supports various types of solution enumeration (Gebser et al., 2007b,
2009c) and multi-criteria optimization (Gebser et al., 2011c). Also, more complex modes of rea-
soning are easily accomplished, like computing the intersection of all optimal models. Moreover,
clasp features advanced preprocessing techniques, identifying equivalences among (possibly negated)
atom and body variables (Gebser et al., 2008c), and a dedicated treatment of cardinality and weight
constraints (Gebser et al., 2009a). Specialized variants of clasp, like claspd (Drescher et al., 2008) for

150 7. SYSTEMS

disjunctive ASP solving, aclasp using adaptive restarts, or unclasp (Andres et al., 2012) using unsatis-
fiable cores for optimization can be found at potassco. Furthermore, clasp can be run as a competitive
SAT solver and a solver for Maximum Satisfiability (MaxSAT; Li and Manyà (2009)) and Pseudo-
Boolean (PB; Roussel and Manquinho (2009)) constraint satisfaction and/or optimization due to
dedicated front-ends supporting the respective input formats.This is witnessed by several first places
of clasp and clasp-based systems at international contests, like ASP, CASC, MISC, PB, and SAT,
over the last years.

Apart from the traditional ASP solvers smodels (Simons et al., 2002) and dlv (Leone et al.,
2006), rather different approaches to ASP solving have been pursued, leading to a multitude
of ASP solvers. An early implementation of an ASP solver was accomplished by Inoue et al.
(1992) based on a model generation theorem prover. Among the contemporary ASP solvers,
smodels-cc (Ward and Schlipf, 2004) is a first extension of smodels with conflict-driven learning; as-
sat (Lin and Zhao, 2004), cmodels (Giunchiglia et al., 2006), sag (Lin et al., 2006), and sup (Lierler,
2011) use off-the-shelf SAT solvers (and loop formulas for unfounded set handling); similarly,
pbmodels (Liu and Truszczyński, 2005) relies on PB solvers for a direct treatment of weight con-
straints; lp2sat (Janhunen, 2006), lp2diff (Janhunen et al., 2009), and lp2mip (Liu et al., 2012) allow
for using off-the-shelf SAT, SMT, and MIP16 solvers by corresponding translations handling un-
founded sets either by a logarithmic translation into SAT or mappings into difference logic or linear
constraints, respectively. Combined with a modification of gringo as front-end and off-the-shelf
SMT and MIP solvers as back-end, the two latter constitute the ASP systems dingo and mingo.
Systems nomore (Anger et al., 2001, Konczak et al., 2006) and nomore++ (Anger et al., 2005) have
their roots in Default Logic and use rules or both atoms and bodies as choice points, respectively;
smodels-ie (Brain and de Vos, 2009) is a modification of smodels optimizing cache utilization; as-
perix (Lefèvre and Nicolas, 2009) and gasp (Dal Palù et al., 2009) aim at ASP solving while ground-
ing on demand. More information on the diversity of ASP systems can be obtained by consulting
the respective ASP competitions (Calimeri et al., 2011, Denecker et al., 2009, Gebser et al., 2007c).

claspd (Drescher et al., 2008) allows for computing stable models of disjunctive logic programs.
This can also be accomplished by the ASP solvers dlv (Leone et al., 2006), cmodels (Giunchiglia et al.,
2006), and gnt (Janhunen et al., 2006). An early disjunctive ASP solver was presented in Inoue et al.
(1992).Ricca et al. (2006) proposed a first backjumping technique for disjunctive logic programming.

claspar was introduced in Ellguth et al. (2009) and further developed in Gebser et al. (2011e),
Schneidenbach et al. (2009). It aims at distributing clasp on large clusters via the Message Pass-
ing Interface (MPI; Gropp et al. (1999)). Earlier approaches to distributed ASP solving include
Balduccini et al. (2005), Gressmann et al. (2005, 2006), Pontelli et al. (2003).

claspfolio (Gebser et al., 2011d) is inspired by satzilla (Xu et al., 2008). While the latter uses
a heterogeneous portfolio of SAT solvers, the former relies exclusively on clasp configurations for
ASP solving. For learning classifiers, it uses support vector regression (Basak et al., 2007).

16MIP stands for Mixed Integer Programming.

7.4. REFERENCES AND FURTHER READING 151

clingcon (Gebser et al., 2009e) follows the lazy approach of modern SMT
solvers (Nieuwenhuis et al., 2006) for combining the ASP solver clasp with the CP solver
gecode (gecode). clingcon’s dedicated filtering techniques for extracting reasons and conflicts
from Boolean assignments are described in Ostrowski and Schaub (2012). Groundbreak-
ing work on enhancing ASP with CP techniques was conducted in Baselice et al. (2005),
Mellarkod and Gelfond (2008), Mellarkod et al. (2008). Balduccini (2009) represents constraint
problems via ASP. See Dechter (2003), Rossi et al. (2006) for an introduction to Constraint
Processing; and Barrett et al. (2009) on SAT Modulo Theories.

iclingo (Gebser et al., 2008b) combines incremental grounding and solving. The incremental
solving interface of clasp is similar to the one for incremental SAT solving due to Eén and Sörensson
(2003). Meanwhile iclingo has been successfully employed in various settings, for instance, for im-
plementing action description languages in coala (Gebser et al., 2010a) and PDDL-style planning
in plasp (Gebser et al., 2011f). Also, we use it as back-end of fimo (Gebser et al., 2011j) for imple-
menting a competitive system for finite model generation.

oclingo (Gebser et al., 2011a) extends iclingo with capacities for incorporating online data
into ASP solving. Gebser et al. (2012a) show how oclingo can be used for (window-based) stream
reasoning.

A collection of interesting ASP tools due to Tomi Janhunen can be found at Janhunen. See
also potassco.sourceforge.net/labs.html.

The effectiveness of modern ASP solvers like clasp had been impossible without the great
progress in Boolean Constraint Solving, mainly conducted in the area of SAT. In view of this, the de-
sign and implementation of the SAT solver minisat by Eén and Sörensson (2004) deserves particular
attention as a primary role model. See also the early approach of grasp Marques-Silva and Sakallah
(1999), chaff (Moskewicz et al., 2001), and berkmin (Goldberg and Novikov, 2002). Moreover, the
suite of SAT solvers developed by Armin Biere, comprising lingeling, plingeling, picosat, and pre-
cosat (Biere, 2008, 2010), is a rich source for studying advanced Boolean constraint technology.
Finally, the following concepts are of great interest to modern ASP solving: resolution-based pre-
processing techniques (implemented in the preprocessor satelite; Eén and Biere (2005)); blocked
clause elimination (Järvisalo et al., 2010); literal block distance (Audemard and Simon, 2009), that
is, the number of distinct decision levels associated with the literals contained in a nogood; heuris-
tics, like vsids (Moskewicz et al., 2001), berkmin (Goldberg and Novikov, 2002), and vmtf (Ryan,
2004); progress saving (Pipatsrisawat and Darwiche, 2007); restart policies (Huang, 2007); ded-
icated treatment of binary and ternary nogoods (Ryan, 2004); two-watched-literal17 propaga-
tion (Moskewicz et al., 2001); and failed-literal detection (Freeman, 1995).

The first proposal for the ASP input language ASP-Core-2 is given in Calimeri et al. (2012).

17Using watch lists for updating constraints is basically an implementation of the well-known observer design pattern (Gamma et al.,
1994).

potassco.sourceforge.net/labs.html

C H A P T E R 8

Advanced modeling
Modeling in ASP is still an art; it requires craft, experience, and knowledge. Although the resulting
ASP encodings are usually quite succinct and easy to understand, crafting an ASP encoding that
also leads to the best possible system performance is not yet as obvious as it might seem. This is why
ASP modeling is an active and interesting area of current research. To illustrate this, let us begin by
conducting an initial case study dealing with the n-queens problem introduced in Section 3.2.

8.1 PIMPING QUEENS
The encoding of this problem in Listing 3.14 on Page 44 was developed according to the fundamental
generate-and-test methodology of ASP. Starting from a generating rule positioning queens on an
n × n board in a seemingly arbitrary way, we added testing rules eliminating candidate solutions
with fewer or more than n queens on the board, and rules excluding two queens on the same row,
column, and diagonal.

A first improvement of this encoding is obtained by eliminating symmetric ground rules
expressing the same constraint. For example, the integrity constraint

:- queen(I,J), queen(I,JJ), J != JJ.

in Line 6 of Listing 3.14 gives rise to ground instances

:- queen(3,1), queen(3,2).
:- queen(3,2), queen(3,1).

both of which prohibit exactly the same placements of queens. This redundancy can be removed
by some simple symmetry breaking. In our example, it suffices to replace inequality ‘J != JJ’ by
‘J < JJ’. Globally applying this simple way of symmetry breaking to the encoding in Listing 3.14
yields Listing 8.1.

Listing 8.1: Second attempt at solving the n-queens problem (queens2.lp)

1 row (1..n).
2 col (1..n).

4 { queen(I,J) : col(I) : row(J) }.
5 :- not n { queen(I,J) } n.
6 :- queen(I,J), queen(I,JJ), J < JJ.
7 :- queen(I,J), queen(II ,J), I < II.

154 8. ADVANCED MODELING

8 :- queen(I,J), queen(II,JJ), I < II, I-J == II-JJ.
9 :- queen(I,J), queen(II,JJ), I < II, I+J == II+JJ.

11 #hide. #show queen /2.

The latter encoding almost halves the number of ground instances obtained from the four
integrity constraints. For instance, on the 10-queens problem, the total number of ground rules drops
from 2964 to 1494. Despite this reduction, the improved encoding still scales poorly, as witnessed
by the 1646904 rules obtained on the 100-queens problem (cf. Table 8.1 at the end of this section).

Analyzing the encoding in Listing 8.1 a bit further reveals that all integrity constraints give
rise to a cubic number of ground instances, that is, on the n-queens problem they produce O(n3)

ground rules.This can be drastically reduced by replacing the rule restricting placements in columns,
viz. ‘:- queen(I,J), queen(I,JJ), J < JJ’, by

:- col(I), not 1 { queen(I,J) } 1.

asserting that there is exactly one queen in each column. One rule per column results in O(n) rules
(each of size O(n)) rather than O(n3) as before. This is accomplished by virtue of using cardinality
constraints providing a compact representation of the pairwise integrity constraints.

Clearly, the same can be done for rows, yielding

:- row(J), not 1 { queen(I,J) } 1.

Note that the two new rules imply that there is exactly one queen per column and
row, respectively. Hence, we may actually eliminate the (much weaker) integrity constraint
‘:- not n { queen(I,J) } n’ in Line 5 of Listing 8.1.

Finally, what can we do about the integrity constraints controlling diagonal placements? It
fact, the same aggregation through cardinality constraints can be done for the diagonals, once we
adopt an enumeration scheme. The idea is to enumerate diagonals in two ways, once from the upper
right to the lower left, and similarly from the upper left to the lower right. Let us illustrate this for
n = 4:

1 2 3 4
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
4 4 5 6 7

1 2 3 4
1 4 3 2 1
2 5 4 3 2
3 6 5 4 3
4 7 6 5 4

A number in the table indicates the respectively numbered diagonal. The two enumeration schemes
can be captured by the equations D = I + J − 1 and D = I − J + n, respectively. For instance,
the first equation tells us that diagonal 6 consists of positions (4, 3) and (3, 4), as indicated in bold
in the left table. Given both equations, we may replace the rules in Lines 8 and 9 of Listing 8.1,
restricting placements in diagonals, by the two following rules:

8.1. PIMPING QUEENS 155

:- D = 1..n*2-1, not { queen(I,J) : D == I-J+n } 1.
:- D = 1..n*2-1, not { queen(I,J) : D == I+J-1 } 1.

As above, we thus obtain one rule per diagonal, inducing O(n) ground rules (each of size O(n)).
The resulting encoding is given in Listing 8.2.1

Listing 8.2: Third attempt at solving the n-queens problem (queens3.lp)

1 row (1..n).
2 col (1..n).

4 { queen(I,J) : col(I) : row(J) }.

6 :- col(I), not 1 { queen(I,J) } 1.
7 :- row(J), not 1 { queen(I,J) } 1.
8 :- D = 1..n*2-1, not { queen(I,J) : D == I-J+n } 1.
9 :- D = 1..n*2-1, not { queen(I,J) : D == I+J-1 } 1.

11 #hide. #show queen /2.

For 10 and 100 queens, the encoding in Listing 8.2 yields 77 and 797 ground rules, respectively,
in contrast to the 1494 and 1646904 rules obtained with the previous encoding in Listing 8.1.Despite
the much smaller grounding size, however, the grounding time does not scale as expected. To see
this, note that grounding the encoding in Listing 8.2 for 100 queens takes less than a second, while
500 queens require around 25 seconds of grounding time (although only 3997 ground rules are
produced).

Further investigations2 reveal that the last two rules in Listing 8.2 are the source of the
problem. In fact, it turns out that during grounding the tests D == I-J+n and D == I+J-1 are
repeated over and over. This can be avoided by precalculating both conditions. To this end, we add
the rules

d1(I,J,I-J+n) :- col(I), row(J).
d2(I,J,I+J-1) :- col(I), row(J).

and replace the two conditions D == I-J+n and D == I-J-1 by d1(I,J,D) and d2(I,J,D),
respectively. The resulting encoding is given in Listing 8.3.

Listing 8.3: Fourth attempt at solving the n-queens problem (queens4.lp)

1 row (1..n).
2 col (1..n).

1We refrained from introducing a domain predicate diag(1..n*2-1) and rather use D = 1..n*2-1 (instead of diag(D)) to
avoid unnecessarily blurring grounding size. A construct like I = 1..n can be read as I ∈ {1, . . . , n}.

2This can be done with gringo’s debug option --verbose, as illustrated in Section 7.1.3.

156 8. ADVANCED MODELING

4 { queen(I,J) : col(I) : row(J) }.

6 :- col(I), not 1 { queen(I,J) } 1.
7 :- row(J), not 1 { queen(I,J) } 1.
8 :- D = 1..n*2-1, not { queen(I,J) : d1(I,J,D) } 1.
9 :- D = 1..n*2-1, not { queen(I,J) : d2(I,J,D) } 1.

11 d1(I,J,I-J+n) :- col(I), row(J).
12 d2(I,J,I+J-1) :- col(I), row(J).

14 #hide. #show queen /2.

Although this encoding adds a quadratic number of facts, their computation is straightforward and
exploits indexing techniques known from database systems.

Table 8.1 gives some indicative runtime features of the different n-queens encodings. We
list results for n =50, 100, 500, 1000 with a cut-off at 300 seconds. Each entry gives grounding3

times, lines of the resulting ground4 program, and solving5 time. Times are given in seconds, but
only taken from a single run. We observe that the use of cardinality constraints greatly improves

Table 8.1: Experiments contrasting different encodings of the n-queens problem
n Listing 3.13 Listing 8.1 Listing 8.2 Listing 8.3

50 6.27 406804 5.42 0.90 203454 5.29 0.05 397 0.03 0.03 5397 0.03
100 97.67 3293604 — 13.03 1646904 — 0.24 797 0.11 0.09 20797 0.10
500 — — — — — — 25.93 3997 5.45 3.21 503997 5.91

1000 — — — — — — 195.69 7997 73.16 19.25 2007996 52.88

grounding and solving performance. Moreover, we observe how factoring out relations like d1/3 and
d2/3 accelerates grounding despite the quadratic number of additional ground facts.

A common alternative to the previous listings is to merge the generating choice rule in Line 4
with the integrity constraints in Lines 6 and 7 in order to suppress certain invalid selections. The
resulting encoding is given in Listing 8.4.

Listing 8.4: Another attempt at solving the n-queens problem (queens5.lp)

1 row (1..n).
2 col (1..n).

6 1 { queen(I,J) : row(J) } 1 :- col(I).

3Grounding done with gringo 3.0.3.
4Obtained using --text.
5Solving was done with clasp 2.0.5 using --heuristic=vsids.

8.2. STEMMING BLOCKS 157

7 1 { queen(I,J) : col(I) } 1 :- row(J).
8 :- D = 1..n*2-1, not { queen(I,J) : d1(I,J,D) } 1.
9 :- D = 1..n*2-1, not { queen(I,J) : d2(I,J,D) } 1.

11 d1(I,J,I-J+n) :- col(I), row(J).
12 d2(I,J,I+J-1) :- col(I), row(J).

14 #hide. #show queen /2.

Solving the 1000-queens problem with the program in Listing 8.4 took 14.24 seconds for grounding
and 71.15 seconds for solving. The ground program has one rule less than that obtained from
Listing 8.3; also 2000 (body) variables less are obtained from Listing 8.3. Despite this, both programs
yield the same number of nogoods. However, this similarity should come as no surprise given that the
translation of cardinality constraints in (2.8) on Page 20 turns Listing 8.4 in nearly the same ground
program as obtained from Listing 8.3. All in all, the major difference between both encodings thus
boils down to the degree of separation among generating and testing parts, and is thus mainly a
matter of taste.

8.2 STEMMING BLOCKS
In what follows, we discuss advanced modeling techniques that are often needed in production mode.
In doing so, we focus on a modular development carving out various modeling issues. Hence, the
individual encodings are no standalone exemplars from the perspective of Knowledge Representation
and Reasoning. The chosen issues are representative for many application domains; here they are
illustrated via blocks world planning.

A planning problem consists of three parts: an initial situation, a set of actions, and a goal
situation. Given such a problem description, a solution is a plan given by a sequence of actions
leading from the initial situation to a goal situation.

We consider a single action, move, that allows us to move a block to a location at a certain
point in time. A location can be a block or the table. Also, we associate each block with its mass and
look for plans minimizing the overall moved mass of blocks. A simple scenario is given in Figure 8.1.
In the initial and final situation, we consider nine blocks and a table, yet in different arrangements.
Listing 8.5 gives the corresponding problem instance.

Listing 8.5: Initial and goal situation (world.lp)
1 step (1..10).

3 block (1..9).

5 init (3,2). init (6,5). init (9,8).
6 init (2,1). init (5,4). init (8,7).
7 init (1,0). init (4,0). init (7,0).

158 8. ADVANCED MODELING

9 goal (8,6). goal (5 ,7).
10 goal (6,4). goal (7 ,3).
11 goal (4,2). goal (3 ,9).
12 goal (2,1).

14 mass (7,3). mass (9,3).
15 mass (5,5).
16 mass (1,7). mass (3,7).
17 mass (2 ,11).
18 mass (4 ,13). mass (6 ,13).
19 mass (8 ,15).

3

2

1

6

5

4

9

8

7

5

7

3

9

8

6

4

2

1

Figure 8.1: Some initial and goal situations for blocks world planning.

The nine blocks are distinguished by predicate block/1 and identified by positive integers.The table
is associated with 0. Atom mass(B,M) gives the mass M of block B. We use predicates init/2 and
goal/2 to express block locations in the initial and goal situation, respectively. Each state is linked
via step/1 to a time point. Note that the initial state is complete, while the goal is only partially
defined.

For conducting some empirical evaluations, we handcrafted a parametrized problem instance,
world9n.lp, involving 9 × n blocks and 12 × n steps relative to a parameter n.

8.2.1 SEQUENTIAL PLANNING
We start with encodings for sequential planning. A straightforward encoding is given in Listing 8.6.

Listing 8.6: Solving the blocks world problem, initial attempt (blocks0.lp)

1 location (0).
2 location(B) :- block(B).

8.2. STEMMING BLOCKS 159

4 { move(B,L,T) } :- block(B), location(L), step(T), B != L.
5 :- step(T), 2 #count{ move(_,_,T) }.

11 on(B,L,0) :- init(B,L).
12 on(B,L,T) :- move(B,L,T).
13 on(B,L,T) :- on(B,L,T-1), step(T), not no(B,L,T).

15 no(B,L,T) :- location(L), move(B,LL,T), LL != L.

17 blocked(B,T) :- on(_,B,T), block(B), step(T+1).
18 :- move(B,_,T), blocked(B,T-1).
19 :- move(_,B,T), blocked(B,T-1).

21 :- goal(B,L), step(T), not step(T+1), not on(B,L,T).

23 #minimize[move(B,_,_) = W : mass(B,W)].

25 #hide. #show move /3.

After defining valid locations in Lines 1 and 2, we generate in Line 4 possible sequences of actions
(admitting time points with no action).6 The integrity constraint in Line 5 eliminates parallel actions.
Each state is described in terms of predicate on/3, fixing the positions of blocks at each point in
time. In this way, Line 11 captures the initial situation, Line 12 enforces the effect of move actions,
and Line 13 progresses positions unless they are changed. A change of a block’s location is derived in
Line 15. Line 17 tells us which blocks are covered by others. With this, the next two lines eliminate
trajectories in which covered blocks are either being moved or serving as target locations. Line 21
ensures that all desired block locations hold in the final state (and thus avoids reoccurring checks at
all time points). Finally, the optimization statement in Line 23 selects sequences of actions whose
moved objects have a minimum mass. At last, Line 25 projects stable models onto predicate move/3.

Projection In analogy to Section 8.1, a first source of improvement is the elimination of unnecessary
combinatorics inflating the ground program. Such places can be found in Lines 5, 15, and 18, 19 of
Listing 8.6. The body of each ground integrity constraint resulting from Line 5 includes a quadratic
number of move atoms, although the specific block and location are of no interest. Similarly, the
purpose of the atom derived in Line 15 is to indicate that a block has been moved, no matter where
to. In this respect, both location L and LL are irrelevant. Similarly, neither constraint in Lines 18
or 19 needs both the moved block as well as its target location.

The refinement of our encoding in Listing 8.7 addresses these issues.

6Plans with gaps are a special case of plan permutations addressed below.

160 8. ADVANCED MODELING

Listing 8.7: Solving the blocks world problem, first improvement (blocks1.lp)

1 location (0).
2 location(B) :- block(B).

4 { move(B,L,T) } :- block(B), location(L), step(T), B != L.

6 object(B,T) :- move(B,_,T).
7 target(B,T) :- move(_,B,T).
8 :- step(T), 2 #count{ object(_,T) }.
9 :- step(T), 2 #count{ target(_,T) }.

11 on(B,L,0) :- init(B,L).
12 on(B,L,T) :- move(B,L,T).
13 on(B,L,T) :- on(B,L,T-1), step(T), not object(B,T).

17 blocked(B,T) :- on(_,B,T), block(B), step(T+1).
18 :- object(B,T), blocked(B,T-1).
19 :- target(B,T), blocked(B,T-1).

21 :- goal(B,L), step(T), not step(T+1), not on(B,L,T).

23 #minimize[object(B,_) = W : mass(B,W)].

25 #hide. #show move /3.

To this end, Lines 6 and 7 are added to project onto moved blocks and their target locations.
The resulting atoms are then used to remodel the spots identified above. First, the single integrity
constraint in Line 5 is replaced by Lines 8 and 9. The latter eliminate actions moving more than
one object at the same time and moving one object simultaneously to several locations. Note that
the resulting ground bodies of both constraints include only a linear number of atoms. The second
modification replaces ‘not no(B,L,T)’ with ‘not object(B,T)’ in Line 13 and deletes Line 15. A
less drastic change, leaving room for further exceptions, would be to leave Line 13 intact and merely
replace ‘move(B,LL,T), LL != L’ with object(B,T) in Line 15. Either change eliminates the
quadratic blow-up caused by Line 15 in Listing 8.6. Finally, Lines 18 and 19 of Listing 8.7 are
obtained from those in Listing 8.6 by inserting object(B,T) and target(B,T) for their respective
definitions. For each step, this yields a linear number of ground integrity constraints rather than the
quadratic number obtained from Listing 8.6. The same modification is done to the optimization
statement in Line 23. In our simple example, this reduces the number of elements in the ground
statement from 810 to 90.

The effect of using projection for reducing combinatorial blow-up can be observed by com-
paring the performance of blocks0.lp and blocks1.lp when solving our (scalable) problem

8.2. STEMMING BLOCKS 161

instance world9n.lp for n=1.The four figures in Table 8.2 are obtained by calling clasp with option
--stats.7 The two times in parentheses give the time spent to find the first model and to prove
unsatisfiability, respectively. We observe that our changes have quite a positive effect on the solving
behavior. Note that the number of Rules does not reflect decreases in number of body literals. Also,
it is interesting to note that both runs spend most of their solving time on proving unsatisfiability
(in improving obtained solutions).

Table 8.2: Empirically contrasting blocks world encodings
n=1 Rules Time Choices Conflicts

blocks0.lp 14270 20.6 (0.0/20.2) 678074 486795
blocks1.lp 5915 0.9 (0.0/0.8) 35004 24179
blocks2.lp 6899 0.6 (0.0/0.5) 20355 15596
blocks3.lp 8411 0.6 (0.0/0.5) 17940 13352
blocks4.lp 2638 0.0 (0.0/0.0) 105 63
blocks4t.lp 2674 0.0 (0.0/0.0) 105 63

n=4

blocks4.lp 47980 2.9 (2.1/0.1) 61240 32827
blocks4t.lp 48844 2.1 (1.7/0.0) 44997 24319

n=8

blocks4.lp 196148 1268.2 (85.2/58.4) 9970769 4071147
blocks4t.lp 199796 81.0 (1.7/0.0) 540772 274277
blocks4P.lp 182559 10.3 (8.9/0.0) 123150 38482

blocks4tP.lp 186207 8.2 (7.34/0.0) 109122 32026
n=16

blocks4P.lp 738335 195.5 (153.3/36.2) 741518 237702
blocks4tP.lp 753311 157.2 (151.3/0.8) 554611 128681

Symmetry breaking Another source of improvement lies in the elimination of symmetric solution
candidates. In fact, in our example, the order of moved blocks is often irrelevant. A good way to
accomplish this is to define an order on symmetric solution candidates and then to eliminate inferior
candidates in favor of superior ones during search.

Accordingly, our second refinement is obtained by adding the symmetry breaking rules in
Listing 8.8 to Listing 8.7. We refer to the resulting encoding as blocks2.lp.

Listing 8.8: Solving the blocks world problem, second improvement

27 sorted(B+1,T) :- object(B,T), block(B+1), step(T+1).
28 sorted(B+1,T) :- sorted(B,T), block(B+1).

7All experiments were run with clasp 2.0.6.

162 8. ADVANCED MODELING

29 :- move(B,L,T), 1 < T, not sorted(B,T-1),
30 not blocked(B;L,T-2), not object(L,T-1).

For ordering trajectories, we rely on block numbers. Predicate sorted/2 gives all blocks inferior
to the moved block. For instance, object(7,3) induces sorted(8,3) and sorted(9,3) in our
example. The idea is then to eliminate trajectories preferring to move an inferior block to a superior
one. In other words, whenever several blocks are movable, the superior one must be picked. This
local condition is expressed by the integrity constraint in Lines 29 and 30. Moreover, this constraint
enforces that actions are applied as soon as possible.

It is instructive to realize that the definition of sorted/2 in Listing 8.8 avoids a quadratic
blow-up by using linearization. To see this, compare the rules in Lines 27 and 28 with the straight-
forward definition of sorted/2:

sorted(B,T) :- block(B), object(C,T), B > C, step(T+1).

While the last rule gives rise to a quadratic number of ground rules, those in Lines 27 and 28 are
linear in the number of blocks.

In our initial example, blocks2.lp reduces the number of optimal plans from 100 to 5. As
an example, consider the following plan eliminated by blocks2.lp.

move(9,0,2) move(6,0,3) move(5,0,4) move(3,9,5)
move(4,2,6) move(6,4,7) move(8,6,8) move(7,3,9) move(5,7,10)

This plan violates the integrity constraint in Lines 29 and 30 in three ways. First, no action takes
place at step 1. Second, block 6 could have been moved at step 2 instead of the inferior block 9. And
similarly, block 3 was already movable at step 4 but ignored in favor of inferior block 5. In contrast,
the following plan is sanctioned by blocks2.lp.

move(9,0,1) move(3,9,2) move(6,0,3) move(5,0,4) move(4,2,5)
move(6,4,6) move(8,6,7) move(7,3,8) move(5,7,9)

The initial move of block 9 is tolerated because it lays the foundation for the second move, and the
local nature of our constraint prevents a comparison to the superior block moved at step 3. Other
plans start by putting block 6 down.

The effect of symmetry breaking can be read off the third line in Table 8.2. Although the
problem size is slightly augmented, we observe an increase in performance. While the decrease in
runtime is insignificant, the reduction in terms of choices and conflicts is substantial.

State constraints A third source of improvement lies in making (redundant) state constraints ex-
plicit. To this effect, Lines 32 and 33 of Listing 8.9 ensure that a block can never be at several
locations and that several blocks can never be on a single block. Moreover, the rules in Lines 35–37
require that each block must be on a stack of blocks that rests on the table.

Listing 8.9: Solving the blocks world problem, third improvement

8.2. STEMMING BLOCKS 163

32 :- block(B), step(T), 2 #count{ on(B,_,T) }.
33 :- block(B), step(T), 2 #count{ on(_,B,T) }.

35 above(B,T) :- on(B,0,T), step(T).
36 above(B,T) :- on(B,L,T), above(L,T).
37 :- block(B), step(T), not above(B,T).

We refer to the addition of the rules in Listing 8.9 to Listings 8.7 and 8.8 as blocks3.lp. As
with our last improvement, the addition of further information removes some choices and conflicts,
although this does not translate into a significant gain in runtime in Table 8.2. However, none of
the above encodings allows for solving our blocks world instance for n = 2 within an hour.

Background knowledge A great leap forward is made by incorporating background knowledge
about the blocks world domain. For instance, in blocks world planning, individual blocks need never
be moved more than twice. That is, they need not be moved if they are already in position, moved
once if they can directly be put in position, and twice if they need to be put down before they can
be moved to their final destination. And in the latter case, there is at least one block that must
be moved first. This kind of background knowledge allows us to significantly reduce the candidate
moves in Line 4 (already during grounding). Similarly, it helps us to cut down the elements subject
to minimization in Line 23. We refer to the resulting encoding as blocks4.lp.

The first change replaces Line 4 by the rules in Listing 8.10. The idea is to group moves in
two categories, those directly establishing a goal condition and those putting a block on the table.
In addition, the possible moves are constrained by domain constraints extracted from the initial
problem specification.

Listing 8.10: Solving the blocks world problem, fourth improvement, Part I

39 stay (0).
40 stay(L) :- block(L), init(B,L) : goal(B,L).

42 keep(B,0) :- block(B), not goal(B,L) : block(L).
43 keep(B,L) :- goal(B,L).
44 keep(B,L) :- init(B,L), stay(L), not goal(B,LL) : goal(B,LL) : LL!=L.

46 zero (0).
47 zero(B) :- init(B,L), keep(B,L), zero(L).

49 free(L) :- block(L), not init(B,L) : init(B,L).
50 free(L) :- block(L), init(B,L), fill(B), not zero(B).

52 fill(L) :- zero(L), block(L), not init(B,L) : zero(B).
53 fill(B) :- free(B), keep(B,0).
54 fill(B) :- free(B;L), goal(B,L), fill(L).

164 8. ADVANCED MODELING

56 once(B) :- keep(B,0), not zero(B).
57 once(B) :- goal(B,L), free(L), fill(L).
58 once(B) :- init(B,L), stay(L), zero(L), not zero(B).

60 { move(B,L,T) } :- goal(B,L), step(T), not zero(B).
61 { move(B,0,T) } :- block(B), step(T), not zero(B), keep(B,0) : once(B).
62 :- move(B,0,T), on(B,0,T-1).

In Line 60, a block B is only moved to a location L if this establishes some goal condition goal(B,L).
Line 61 handles moves putting blocks down on the table. In addition, both types of moves are
restricted via domain predicates zero/1,keep/2, and once/1. While ‘not zero(B)’ discards blocks
that never need to be moved, ‘keep(B,0) : once(B)’ ensures that the table is among the admissible
final locations of B whenever a single move of B is sufficient (and required); otherwise the table may
serve as an intermediate location of B. In our simple example, this reduces the number of possible
moves from 810 to 100. As regards the instance explored in Table 8.2 (n=1), the passage from
blocks3.lp to blocks4.lp yields a reduction from 972 to 144 possible actions. Finally, Line 62
eliminates trajectories in which a block is merely moved around on the table.

The rules in Lines 39 to 58 define domain predicates restricting the instantiation of move/3.
All these rules are turned into facts during grounding.The purpose of these predicates is summarized
below, accompanied by the facts obtained on Listing 8.5.

• stay/1 identifies locations that need not be cleared.
stay(0). stay(1). stay(5). stay(8).

• keep/2 gives admissible final locations of blocks.
keep(1,0). keep(2,1). keep(3,9). keep(4,2). keep(5,7). keep(6,4).
keep(7,3). keep(8,6). keep(9,0). keep(9,8).

• zero/1 tells us which blocks need never be moved.
zero(0). zero(1). zero(2).

• free/1 identifies blocks becoming clear upon executing direct moves to goal locations.
free(2). free(3). free(6). free(8). free(9).

• fill/1 identifies blocks being either in their final position or directly movable there.
fill(2). fill(3). fill(9).

• once/1 identifies blocks that can be moved directly to their final locations.
once(3). once(4). once(7). once(9).

Predicates zero/1 and once/1 are central to the encoding because they allow us to identify blocks
subject to no move or one move. Below, this is complemented by predicate back/1 isolating blocks
that must be moved twice. In our example, we get back(6) as a fact after grounding, leaving us
without precise information only about blocks 5 and 8 before solving.

8.2. STEMMING BLOCKS 165

While detecting immobile blocks can be done by matching initial block positions with admis-
sible final locations (cf. Line 47), the identification of one-shot moves is more involved and remains
incomplete. Clearly, a block can be put on the table in at most one step (cf. Line 56). Similarly,
a block can be directly moved on its final location L, provided the latter is in place (indicated by
fill(L)) as well as clear (indicated by free(L)), both of which are checked in Line 57. In our
example, this applies to blocks 3 and 9, as represented by facts once(3) and once(9). Finally, a
block can be directly moved to its goal position, whenever its underlying stack is stable and needs
not be cleared, as expressed in Line 58. In our example, blocks 4 and 7 can directly be moved from
the table to their final destinations, as indicated by facts once(4) and once(7).

The interplay of the auxiliary predicates free/1 and fill/1 is interesting to observe. While
fill traverses each stack bottom-up, free proceeds top-down. Line 52 identifies the highest block
in a stack that should not be moved. Hence, we get fill(2) but not fill(1). Conversely, Line 49
gives the top blocks on each stack, yielding free(3), free(6), and free(9). The latter results
in fill(9) via Line 53. As well, Line 54 allows us to derive fill(3) given that block 3 and its
final location, block 9, are both free and the final location is readily established, as indicated by
fill(9). With fill(3), Rule 50 yields free(2); similarly, we get free(8) in view of fill(9).
This tells us that blocks 2 and 9 can be cleared by moving their upper blocks directly on their goal
position. This cannot be guaranteed for block 6; hence, free(5) is not obtained.

Another point of interest is the use of conditional literals. For illustration, consider the defini-
tion of predicate stay/1 in Line 40, identifying locations that need not be cleared. The conditional
literal allows us to cover three cases depending on the goal conditions in Listing 8.5 and the resulting
instance of init/2. To see this, let us inspect the (intermediate) ground rules obtained for blocks 1,
2, and 5 after “expanding” the conditional literal in Line 40:

stay (1) :- block(1), init (2,1).
stay (2) :- block(2), init (4,2).
stay (5) :- block (5).

Body literals with predicate init/2 are obtained whenever the corresponding instance of goal/2
is available. The above rules are then evaluated with respect to Listing 8.5, yielding facts stay(1)
and stay(5). In addition, we obtain stay(0) and stay(8).

Similarly, the “expansion” of the conditional literal in Line 44 for (B,L) being (1,0), (2,1),
and (3,2) yields the following rules.

keep (1,0) :- init(1,0), stay (0).
keep (2,1) :- init(2,1), stay (1).
keep (3,2) :- init(3,2), stay(2), not goal (3 ,9).

The literal not goal(B,LL) is added for all instantiations of B and LL satisfying both goal(B,LL)
and LL != L. The above rules result in the facts keep(1,0) and keep(2,1), telling us that the
table is an admissible final location for block 1 as is the latter for block 2.

166 8. ADVANCED MODELING

Unlike the above, we get three instances of ‘not init(B,L)’ from the conditional literal in
Line 52 (in view of the extension of predicate zero/1). For example, substituting L by 1 and 2 yields
the following ground rules.

fill (1) :- zero(1), block(1), not init(0,1), not init(1,1), not init (2 ,1).
fill (2) :- zero(2), block(2), not init(0,2), not init(1,2), not init (2 ,2).

Also, it is instructive to observe how the conditional literal allows us to identify the highest immobile
block in a stack. To see this, note that fill(1) is unobtainable because init(2,1) indicates that
it is underneath another immobile block. Unlike this, the body of the second rule is reduced to true
yielding fact fill(2).

In Listing 8.11, we exploit further background knowledge for eliminating redundant trajec-
tories.

Listing 8.11: Solving the blocks world problem, fourth improvement, Part II

64 done(L,T-1) :- zero(L), step(T), fill(L) : block(L).
65 done(B,T) :- keep(B,L), on(B,L,T), done(L,T).
66 :- done(B,T), step(T+2), not done(B,T+1).

68 :- object(B,T), done(B,T-1).
69 :- target(L,T), step(T+1), not done(L,T).
70 :- move(B,0,T), goal(B,L), block(L), done(L,T), not blocked(L,T-1).

Unlike the above, the principal predicate done/2 is determined during solving; it tells us at which
time a block has reached its final destination. done/2 starts in Line 64 to collect placed blocks from
the topmost immobile blocks determined statically, and continues in Line 65 with blocks that lie
in the current state on an admissible final location. Line 66 ensures that “done blocks” are never
undone. Similarly, the remaining rules dismiss moving “done” objects, moves on “undone” targets,
and any intermediate storage on the table when direct moves are possible.

Finally, we add further domain knowledge for identifying blocks that must be moved twice.
Together with the domain predicates in Listing 8.10, this allows us to significantly reduce the
elements subject to minimization. This last change replaces Line 23 by the rules in Listing 8.12; it
reduces the number of minimized elements from 108 to 36 (when solving world9n.lp for n=1).

Listing 8.12: Solving the blocks world problem, fourth improvement, Part III

72 rank(init ,B,B,1) :- init(B,0).
73 rank(init ,A,B,I+1) :- init(B,L), rank(init ,A,L,I).

75 rank(goal ,B,B,1) :- keep(B,0).
76 rank(goal ,A,B,I+1) :- goal(B,L), rank(goal ,A,L,I).

78 back(B) :- rank(init ,AI,B,BI), rank(init ,AI,L,LI), LI < BI ,
79 rank(goal ,AG,B,BG), rank(goal ,AG ,L,LG), LG < BG,

8.2. STEMMING BLOCKS 167

80 not zero(B).

82 #minimize[move(B,0,_) = W : mass(B,W)
83 : not zero(B) : not once(B) : not back(B)].

Predicate rank/4 gives the height of a block in a stack (in the initial and goal situation). Each stack
is identified by its bottom block. The idea of the rule in Lines 78–80 is to check whether block B is
in both situations above the same block L. A block like B must first be moved away to free L before
it can be moved back somewhere above L. Hence, B must be moved twice. In our example, this
applies to block 6 only because it is above block 4 in the initial as well as final situation. Hence, we
get back(6).

With the help of background knowledge, we were able to identify blocks that need not be
moved at all (blocks 1 and 2), once (3, 4, 7, 9), or twice (6). Only blocks 5 and 8 evade this
classification (though they must be moved at least once). As a consequence, the contribution of the
classified blocks to the objective function is predetermined and need not be included in searching for
a minimum. This is accounted for in Line 83 by eliminating all these blocks. The only variable part
is whether the unclassified blocks are moved once or twice. Consequently, our objective function
only accounts for unclassified blocks that are moved twice. This is done by checking whether they
are put down on the table in Line 82. The value of the original objective function in Line 23 can
be calculated by summing up the value of the determined moves and the one of the reduced sum in
Lines 82 and 83.

To recapitulate, blocks4.lp consists of Listing 8.7 (blocks1.lp) without Lines 4 and 23
along with the rules in Listing 8.8 (yielding blocks2.lp), Listing 8.9 (yielding blocks3.lp), as
well as the ones in Listings 8.10, 8.11, and 8.12. Although the effect of incorporating background
knowledge is not reflected in the runtime in Table 8.2 for n=1, it is indicative regarding the number
of choices and conflicts that drop by three orders of magnitude. While all previous encodings fail
to solve our blocks world problem for n=2 within an hour, blocks4.lp still allows for solving the
problem for n=8 in about twenty minutes.

A further substantial improvement can be obtained by removing superfluous elements from
the optimization statement. In an optimal plan, a block will never be put down twice. Hence,
the optimization statement must merely detect whether a block was put down and not when. To
accommodate this, we replace the minimization statement in Lines 82 and 83 with the contents of
Listing 8.13. We refer to the resulting encoding as blocks4t.lp.

Listing 8.13: Solving the blocks world problem, fifth improvement

85 table(B) :- move(B,0,_), not zero(B), not once(B), not back(B).

87 #minimize[table(B) = W : mass(B,W)].

168 8. ADVANCED MODELING

Although predicate table/1 can simply be seen as a shorthand for the conditional literal within the
minimization statement in Lines 82 and 83, it further reduces the number of minimized elements
from 36 to 3 when solving world9n.lp for n=1. Scaling up to n=8, this seemingly simple modifi-
cation leads to a gain of an order of magnitude in runtime and a loss of one order of magnitude in
choices and conflicts.

Finally, we mention that the performance can yet be improved by switching to clasp’s vsids-like
heuristics, as shown in Table 8.3. In fact, with blocks4.lp, the default setting of clasp enumerates

Table 8.3: Empirically contrasting blocks world encodings, using
--heuristic=vsids

n=8/--heuristic=vsids Rules Time Choices Conflicts

blocks4.lp 196148 32.5 (1.5/6.7) 233236 120347
blocks4t.lp 199796 7.2 (1.4/0.1) 77660 33840

26 stable models upon finding the optimal one, while the vsids-based configuration inspects only 19
models. Comparing Table 8.3 with the corresponding lines in Table 8.2 shows that changing clasp’s
heuristic takes off another order of magnitude as regards runtime, choices, and conflicts.

8.2.2 PARALLEL PLANNING
Another major improvement can be obtained by allowing for parallel actions.This is because parallel
plans give rise to shallower search spaces than sequential ones.

Listing 8.14 gives the parallel version of blocks3.lp, originally composed of the rules in
Listing 8.9 extended by the ones in Listings 8.7 and 8.8.

Listing 8.14: Solving the blocks world problem, parallel version (blocks3P.lp)

1 location (0).
2 location(B) :- block(B).

4 { move(B,L,T) } :- block(B), location(L), step(T), B != L.

6 object(B,T) :- move(B,_,T).
7 target(B,T) :- move(_,B,T).

11 on(B,L,0) :- init(B,L).
12 on(B,L,T) :- move(B,L,T).
13 on(B,L,T) :- on(B,L,T-1), step(T), not object(B,T).

17 blocked(B,T) :- on(_,B,T), block(B), step(T+1).

8.2. STEMMING BLOCKS 169

18 :- object(B,T), blocked(B,T-1).
19 :- target(B,T), blocked(B,T-1).

21 :- goal(B,L), step(T), not step(T+1), not on(B,L,T).

23 #minimize[object(B,_) = W : mass(B,W)].

25 #hide. #show move /3.

29 :- move(B,L,T), 1 < T,
30 not blocked(B;L,T-2), not object(L,T).

32 :- block(B), step(T), 2 #count{ on(B,_,T) }.
33 :- block(B), step(T), 2 #count{ on(_,B,T) }.

35 above(B,T) :- on(B,0,T), step(T).
36 above(B,T) :- on(B,L,T), above(L,T).
37 :- block(B), step(T), not above(B,T).

Listing 8.14,orblocks3P.lp, is obtained fromblocks3.lp via two changes.First,Lines 8 and 9 are
removed given that they prevent parallel actions. Second, the symmetry breaking rules in Listing 8.8
are reduced to Lines 29 and 30 above. That is, the definition of sorted/2 is removed and the
occurrence of ‘not sorted(B,T-1)’ is deleted in Line 29. Also, ‘not object(L,T-1)’ is turned
into ‘not object(L,T)’ in Line 30. The remaining integrity constraint enforces that actions are
applied as soon as possible.

Note that the resulting encoding is rather liberal and for instance allows us to move a block
on another that is also about to be moved. The consistency of the respective states is ensured by the
state constraints in Lines 32 to 37.

The search for parallel plans is no silver bullet. In fact, the search space induced by
blocks3P.lp is much less constrained than that of blocks3.lp. The former results in a per-
formance being orders of magnitude worse than obtained with the latter. For instance, it takes more
than an hour to solve world9n.lp for n=1 with blocks3P.lp, while some milliseconds suffice
with blocks3.lp. However, this changes once we take advantage of background knowledge again.
The encodings blocks4P.lp and blocks4tP.lp are obtained from blocks3P.lp as described in
Section 8.2.1. Looking at Table 8.2, we observe how smoothly the parallel versions scale once the
search space has been streamlined by additional domain knowledge.

Finally, we mention that changing the heuristic also yields an improvement in the paral-
lel setting. For instance, a vsids-based configuration of clasp returns a (proven) optimal model of
blocks4tP.lp and world9n.lp for n=16 after 66.8 seconds, 150188 choices, and 67135 conflicts.

All in all, our elaboration upon assorted encoding techniques by means of blocks world
planning demonstrates that the best performance is obtained by combining various techniques

170 8. ADVANCED MODELING

rather than applying a single one. Such encoding techniques include “syntactic” ones, like projection,
symmetry breaking, linearization, and the addition of redundant constraints. Beyond that,“semantic”
tuning by means of background knowledge and viewpoint shifts (for instance, from sequential to
parallel planning) can often boost the performance by orders of magnitude.

8.3 SPEEDING SALESMEN
We have already seen in the previous section how a more careful formulation of an objective func-
tion may improve the solving process. So far, however, the elements of an optimization statement
have been regarded as being independent of each other. Often enough, this is not the case, and
interdependencies can be exploited provided they are made available to the solver.

To illustrate this, let us reconsider the traveling salesperson problem from Section 3.3. Lines 1
to 11 in Listing 8.15 correspond to the combined programs of Listing 3.16 (ham.lp on Page 46)
and 3.18 (min.lp), except that Rule 4 in Listing 3.16, viz. ‘reached(Y) :- cycle(1,Y)’, is
replaced in Listing 8.15 to deal with graphs lacking a node labeled 1. We refer to the program
consisting of Lines 1 to 11 in Listing 8.15 as tsp.lp.

Listing 8.15: Traveling salesperson, simple encoding (tsp.lp)

1 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
2 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

4 reached(X) :- X = #min[node(Y) = Y].
5 reached(Y) :- cycle(X,Y), reached(X).

7 :- node(Y), not reached(Y).

9 #hide. #show cycle /2.

11 #minimize[cycle(X,Y) = C : cost(X,Y,C)].

For an example, we use the graph in Figure 3.8 on Page 46 along with its factual representation in
Listings 3.1 (graph.lp) and 3.15 (costs.lp).

To put the above mentioned idea into practice, we replace Line 11 in Listing 8.15 by the rules
in Listing 8.16. We call the obtained program tspA.lp.

Listing 8.16: Traveling salesperson, advanced minimization

13 outcost(X,C) :- cost(X,_,C).

15 order(X,C1,C2) :- outcost(X,C1;C2), C1 < C2,
16 C <= C1 : outcost(X,C) : C < C2.

18 penalty(X,C1,C2-C1) :- order(X,C1,C2), cycle(X,Y), cost(X,Y,C2).

8.3. SPEEDING SALESMEN 171

19 penalty(X,C1,C2-C1) :- order(X,C1,C2), penalty(X,C2 ,_).

21 #minimize[penalty(_,_,C) = C].

To begin with, we exploit the functional dependencies expressed in Lines 1 and 2 and asso-
ciate with each node the cost of traversing it. We choose in Line 13 the costs of outgoing
edges, though incoming ones work just the same. For instance, node 1 has outcost(1,1),
outcost(1,2), and outcost(1,3). In turn, we order the costs of each node via predicate order/3
in Lines 15/16 (using linearization to avoid a quadratic blow-up). Here, the conditional literal
‘C <= C1 : outcost(X,C) : C < C2’ ensures that C1 is the next smaller element to C2. In this
way, we get for node 1 the facts order(1,1,2) and order(1,2,3). Now, depending on the cho-
sen outgoing edge a penalty is imposed. This penalty follows the order of costs associated with each
edge. That is, the edge with the lowest cost is free. The next one calls for a penalty consisting of the
difference in cost to the next lower one, etc. The overall penalty for “leaving” a node is given by the
sum of penalties starting from the chosen outgoing edge down to the edge with the lowest cost. As
an example, consider the instantiation of Lines 18 and 19 for node 1.

penalty (1,2,1) :- cycle (1 ,3).
penalty (1,1,1) :- cycle (1 ,2).

penalty (1,1,1) :- penalty (1,2,1).

No penalty is caused for cycle(1,4), while cycle(1,3) and cycle(1,2) give rise to a penalty
of 1. However, choosing the former edge also adds the penalty caused by the latter.

Now, instead of searching for an optimal assignment to the independent cycle/2 atoms in
Line 11, the minimization statement in Line 21 relies on penalty/3 atoms that are inferentially
related via Rule 19. (The values of both objective functions differ but can be converted into each
other.)

To provide an idea on the computational impact of the rules in Listing 8.16, we ran both
encodings on a series of so-called clumpy graphs. While tspA.lp completed 56 out of 77 problems
within three minutes, tsp.lp solved only 39. In order to get a more detailed view, we give in
Table 8.4 some information on the most difficult problems per class (no instance was solved by
tsp.lp in Class 11). A graph labeled n/m belongs to the class of clumpy graphs with n clumps of
n nodes each; m is an identifier. The figures in Table 8.4 are obtained by calling clasp with option
--stats.8 Although the ground program obtained from both encodings is nearly the same, the
inferential dependencies among the elements of the objective function have a significant impact
ranging from one to three orders of magnitude. The rules in Listing 8.16 do not only reduce the
number of conflicts and choices but also decrease the ratio between them.

The previous example has illustrated the advantage of a knowledgeable optimization statement
over an uninformed one,whose elements are prone to plain combinatorics.Directing the optimization

8All experiments were run with clasp 2.0.6 using --heuristic=vsids.

172 8. ADVANCED MODELING

Table 8.4: Empirically contrasting traveling salesperson encodings
tsp.lp tspA.lp

Graph Rules Time Choices Conflicts Rules Time Choices Conflicts

06/05 1104 2.0 228291 210797 1628 0.2 18091 15875
07/05 1556 126.4 12566913 11069578 2343 1.2 92975 77528
08/10 1655 25.0 2210992 2110187 2410 1.4 98178 85412
09/11 2087 164.4 14434424 13862523 3048 1.0 81873 65024
10/05 2527 135.2 9606607 8972659 3662 2.1 120243 99293
12/03 3573 164.7 8868378 8718742 5129 1.4 81583 68359

process by providing knowledge about its entities is usually highly beneficial and a key to many
application domains.

8.4 VADE MECUM GUM
Although ASP offers an easy declarative modeling language, scalability is not for free. While we are
relieved from telling a system how to solve a problem, scalability calls for representing a problem
such that a solver can draw advantage from its representation.

In what follows, let us give some hints on scalable modeling based on our experience.
The foundation of each ASP encoding is laid by the generate-and-test methodology presented

in Section 3.2. All following refinements adhere to this principled approach.
A rough guideline for creating a robust encoding is the following one.

1. Create a working encoding following the generate-and-test methodology.

2. Revise the encoding until all of the following questions are answered with “No!”

(a) Do you need to modify the encoding if the facts change?

(b) Are some variables insignificant (and functionally independent)?

(c) Can there be (many) identical ground rules?

(d) Can you use aggregates (unless they hamper learning)?

(e) Do you enumerate pairs of values (to test uniqueness)?

(f) Do you assign dynamic aggregate values (to check a fixed bound)?

(g) Do you admit (obvious) symmetric solutions?

(h) Do you have additional domain knowledge simplifying the problem?

(i) Are you aware of anything else that, if encoded, would reduce grounding and/or solving
efforts?

8.4. VADE MECUM GUM 173

In addition, one may consider revising the fact format as well, whenever it makes encoding painful
(for instance, abusing grounding for involved calculations).

During the development of an encoding, two kinds of errors may occur. On the one hand,
syntactic errors might be signaled by the grounder. To address them, it is usually sufficient to follow
the grounder’s error messages and fix them at the source. On the other hand, semantic errors are
(most likely) caused by a mismatch between the user’s intention and the encoding at hand. Here are
some ways to identify such errors early on.

1. Develop and test incrementally.

• Prepare toy instances with “interesting features.”

• Build the encoding bottom-up and verify additions (e.g., new predicates).

2. Compare the encoded to the intended meaning.

• Check whether the grounding fits (use gringo option --text).

• If stable models are unintended, investigate conditions that fail to hold.

• If stable models are missing, examine integrity constraints (and add heads).

3. Use ASP-oriented Software Engineering tools.

Once a running encoding is built, one may have to overcome some performance bottlenecks.
As regards grounding, it is advisable to

1. monitor the time spent and the output size via

• system tools (e.g., time(gringo <file> | wc)) or

• profiling info (as discussed in Section 7.1.3), and

2. once identified, reformulate “critical” logic program parts.

Regarding solving, it is worthwhile to

1. check solving statistics (as discussed in Section 7.2.5) and

2. if great search efforts (Conflicts, Choices, Restarts) are detected, then

• try auto-configuration (offered by claspfolio),

• try manual fine-tuning (requires expert knowledge), or

• if possible, reformulate the problem or add domain knowledge (“redundant” constraints)
to help the solver.

And, after all, take a breath and enjoy ASP!

174 8. ADVANCED MODELING

8.5 REFERENCES AND FURTHER READING
See Section 3.4 for literature references and further reading on modeling.

Blocks world planning in ASP is discussed in Lifschitz (1999, 2002). Slaney and Thiébaux
(2001) provide a detailed analysis of the blocks world domain along with dedicated strategies.General
strategies for parallel planning can be found in Rintanen et al. (2006).

Software Engineering tools for ASP are summarized in Chapter 9.

C H A P T E R 9

Conclusions
Answer Set Programming has made tremendous progress since the turn of the millennium.

The advancement of ASP is greatly boosted by the extraordinary effectiveness of modern
Boolean constraint technology, pioneered in the area of Satisfiability Testing. The distinguishing
feature of ASP lies in its versatility. ASP cannot only be uniformly used for MaxSAT, PB, 2QBF,
SAT, and dedicated SMT solving, but moreover adds novel problem solving capacities. For exam-
ple, unfounded-set-based inferences enable closed world reasoning and offer enhanced modeling
capacities, as witnessed by the ease of capturing reachability. Moreover, complex forms of reasoning,
such as solution enumeration and projection, intersection and union, as well as optimization can be
combined in ASP in various ways.

However, the major asset of ASP lies in its easy yet powerful modeling language, providing an
elaboration-tolerant tool for Knowledge Representation and Reasoning.This is greatly supported by
highly effective grounding systems that rely on (deductive) database technology. Meanwhile, these
modeling capacities are also available for SAT and certain SMT solvers via tools like lp2sat and
lp2diff.

9.1 OMISSIONS

There is much more to ASP than we could cover in this book. To compensate this, let us sketch
some of ASP’s subareas that we recklessly neglected in our treatment.

Applications Foremost, ASP has been applied in many distinct areas. Among them, we find Au-
tomated Planning (Dimopoulos et al., 1997), code optimization (Brain et al., 2006), composition
of Renaissance music (Boenn et al., 2008), database integration (Leone et al., 2005), decision sup-
port for NASA shuttle controllers (Nogueira et al., 2001), Model Checking (Heljanko and Niemelä,
2003, Liu et al., 1998), product configuration (Soininen and Niemelä, 1999), Robotics (Chen et al.,
2009, 2010, Erdem et al., 2011), System Biology (Erdem and Türe, 2008, Gebser et al., 2010b,
2011k), System Synthesis (Ishebabi et al., 2009), (industrial) team-building (Grasso et al., 2010),
and many more.

Intuitionistic foundations The exploration of ASP’s constructive nature was laid bare by Pearce in
(1994, 1996). This line of research led to the development of Equilibrium Logic (Pearce, 2006) that
can be regarded as ASP’s underlying logical formalism.

176 9. CONCLUSIONS

Equivalence In fact, Equilibrium Logic was used by Lifschitz et al. (2001) to capture the no-
tion of strong equivalence of logic programs under stable models semantics. Two programs are
strongly equivalent if they yield the same stable models, no matter which set of rules is added to
both of them. This concept guarantees the substitution of equivalent program parts. A similar con-
cept is uniform equivalence capturing the equivalence of logic programs relative to varying sets of
facts (Eiter and Fink, 2003). See Woltran (2011) for a brief survey.

Modularity The composition of logic programs must be guided by properties guaranteeing a well-
defined semantics of the resulting program. For example, splitting provides a recipe for dividing
a program into parts (Lifschitz and Turner, 1994). The atoms in one part’s stable models can in
turn be used as facts when computing the stable models of the other (that gives the stable mod-
els of the overall program). A more general approach is offered by the module theory developed
by Oikarinen and Janhunen (2006). Roughly, two programs can be composed if their union does
not yield any cycles in their joint positive atom dependency graph. Extensions of this concept are
central semantic underpinnings to incremental and reactive ASP (Gebser et al., 2008b, 2011a).

Change The update of logic programs is much more delicate than in propositional logic because
of nonmonotonicity. This has led to a variety of distinct approaches to updating logic programs, like
Alferes et al. (2002), Delgrande et al. (2007), Eiter et al. (2002), Leite (2003), Sakama and Inoue
(1999), Zhang and Foo (2005). Semantic approaches to revision, merging, and update were studied
in Delgrande et al. (2012), Slota and Leite (2010).

Preferences We have already seen in Section 2.3.3 how weighted literals along with optimiza-
tion statements can be used to express preferences. Many more forms of preferences have been
developed in ASP, ranging from preferences over rules (Brewka and Eiter, 1999, Delgrande et al.,
2003, Schaub and Wang, 2003) to complex optimization techniques based on summation, in-
clusion, or Pareto-efficiency (Brewka, 2002, Gebser et al., 2011h, Sakama and Inoue, 2000). See
Delgrande et al. (2004) for an overview.

Software engineering The pragmatic aspects of software engineering become more and more
important to ASP in view of its increasing range of applications.Among others, this involves effective
development tools, including editors and debuggers, as well as the dissemination of (open-source)
tools and libraries connecting ASP to other computing paradigms. First development environments
are described in Febbraro et al. (2011), Oetsch et al. (2011). Preliminary tools for visualization are
sketched in Bösel et al. (2004), Cliffe et al. (2008). Interfaces to host languages, databases, and
ontologies are presented in Eiter et al. (2006, 2008), Ricca (2003), Ricca et al. (2009),Terracina et al.
(2008). In gringo, the latter is addressed in a generic way by means of its integrated scripting language
(see Section 7.1.2).

Moreover, traditional debugging techniques often do not even apply to ASP because of its
strict separation of logic and control. In other words, they fail because ASP lacks a procedural
semantics that could be subject to conventional debugging and tracing. This “curse of declarativity”

9.2. CHALLENGES 177

is well recognized within the ASP community and addressed within a dedicated workshop series
(de Vos and Schaub, 2007, 2009). Approaches to debugging can be found in (Brain and de Vos,
2005, Brain et al., 2007, Gebser et al., 2008d, Pontelli and Son, 2006, Syrjänen, 2006).

First-order ASP So far, our treatment of first-order variables has been confined to variables over
terms, in other words, stable models were regarded as Herbrand interpretations. True quantification
over arbitrary domains can either be studied in Equilibrium Logic (Pearce, 2006) or dedicated
frameworks generalizing ASP (Ferraris et al., 2007).

9.2 CHALLENGES

Despite the tremendous progress made in ASP over the last decade, the field still faces significant
research challenges. In what remains, let us give a personal account of what needs to be done.

Dynamic systems and reactive reasoning Many real-world applications take place in a dynamic
setting.Looking at the success stories of SAT in Automated Planning (Kautz and Selman,1992) and
Model Checking (Clarke et al., 2001), we observe that both deal with dynamic systems. Although
similar attempts were made in ASP, they did not have the same impact. On the one hand, this is due
to the fact that both domains have dedicated problem description languages, diminishing the need
for an elaboration-tolerant modeling language. On the other hand, ASP has neglected research on
design patterns aiming at search space reductions in dynamic settings (see Rintanen (2009)) and
lags behind in the development of incremental grounding and solving techniques (cf. Section 7.3.6
or Eén and Sörensson (2003)). The first challenge is thus to consolidate ASP’s general-purpose
modeling capacities with such dedicated techniques for dynamic domains.

Moreover, the rapid advance of Internet and Sensor technology increases this need in view
of the emergence of dynamic data streams, like web logs, mobile locations, or traffic data. However,
the resulting applications do not only require the ability to reason about but also within a dynamic
domain.The issuing challenge consists in developing ASP technology that is capable of dealing with
online data streams. This includes grounding and solving technology for reactive ASP along with
novel modeling capacities dealing with emerging as well as expiring data in a seamless way. A first
step in this direction is done in Gebser et al. (2011a, 2012a).

Optimization and preference handling Another commonality of many real-world applications is
their interest in optimal solutions.

Although quantitative preferences as presented in Section 2.3 have been a part of ASP systems
from the very beginning, the underlying computational methods have not progressed much. All
major ASP systems implement optimization with branch and bound algorithms focusing on an
upper bound. An exception to this is the prototypical ASP solver unclasp whose optimization is
based on computing unsatisfiable cores, as developed in the area of MaxSAT. Similarly, there is little
work in ASP on incorporating lower bounds or non-uniform bound manipulation. Hence, it is an

178 9. CONCLUSIONS

important future challenge to conceive ways to incorporate advanced optimization techniques from
neighboring areas like MaxSAT and even more remote fields like Combinatorial Optimization.

Another challenge lies in the extension of ASP’s modeling capacities with language frag-
ments capturing qualitative and quantitative preferences. The possibility to uniformly express both
types of preferences would provide another asset of ASP as a powerful knowledge representation
tool. A promising implementation platform for this endeavor is offered by meta programming; see
also Eiter et al. (2003), Gebser et al. (2011h).

True declarativity Unlike traditional (logic) programming, ASP has succeeded in strictly separat-
ing logic from control. Despite this, it is arguably not fully declarative because the way we encode
a problem still influences the performance of finding its solution. In other words, two equivalent
encodings may result in a significantly different runtime behavior in terms of grounding and/or
solving. Although the ideal of declarativity appears to be unattainable, ASP still leaves plenty of
room for improvement.

On the one hand, we have seen that ASP modeling is still an art, requiring craft, experience,
and knowledge.While ASP encodings are usually quite succinct and easy to understand,designing an
encoding that is both elegant and scalable is still not as obvious as it might seem. For addressing this
shortcoming, we need methods for automated program optimization, foremost on the non-ground
level in order to avoid combinatorial blow-ups in grounding. A role model for this is database
query optimization. First attempts at non-ground preprocessing were made in Faber et al. (1999),
Gebser et al. (2011b).

On the other hand, advanced Boolean Constraint Solving is sensitive to parameter tuning.
Clearly, this carries over to modern ASP solving. For addressing this shortcoming, we have to un-
derstand how structural properties of ASP encodings (and instances) influence parameters, steering
the search for stable models. As a simple example, consider the relation between tight programs
and unfounded set checking. One way to overcome the sensitivity to parameters is to use classifiers
from machine learning as done in claspfolio. But this cannot relieve us from the task of developing a
systematic understanding on how a problem’s structure influences the search for its solutions.

9.3 ARMING TWEETY WITH JET ENGINES

Beginning in Nonmonotonic Reasoning with phenomenon-oriented studies in commonsense rea-
soning in the eighties, ASP has evolved into an attractive declarative problem solving paradigm.The
unique pairing of declarativeness and performance allows for concentrating on an actual problem,
rather than a smart way of implementing it. ASP’s development has also led to evolving problem
scenarios, beginning with the (in)famous Tweety examples, to artificial combinatorial problems, up
to first success stories in industrial application domains. However, the approach of ASP is not only
suitable for the practitioner solving a problem at hand but also for disseminating many basic AI
techniques through teaching their (executable) formalization in ASP. The ASP community can be
proud of having taught Tweety how to fly. But arming Tweety with jet engines is not enough. Despite

9.3. ARMING TWEETY WITH JET ENGINES 179

its increasing popularity, ASP cannot yet be regarded as an established technology, matching the
needs for a widely used problem solving paradigm. But even though there is still a long way to go
before having established ASP among the standard technologies in Informatics, its future is bright
and conceals many interesting research challenges.

ASP in a nutshell
This appendix provides a self-contained introduction to the syntax and semantics of ASP’s core
language; it is meant to serve as a compact reference. The definition of stable models provided
below applies to logic programs containing weight constraints under “choice semantics” (as used in
Section 2.3.2), while additionally allowing for disjunctions under minimal-model semantics (with
respect to a reduct).

A rule r is of the following form:

H ← B1, . . . , Bm, ∼Bm+1, . . . ,∼Bn.

By head (r) = H and body(r) = {B1, . . . , Bm, ∼Bm+1, . . . ,∼Bn}, we denote the head and the body
of r , respectively, where ∼ stands for default negation. The head H is a disjunction a1 ∨ · · · ∨ ak

over atoms a1, . . . , ak , belonging to some alphabet A, or a weight constraint of the form ‘l #sum[�1 =
w1, . . . , �k = wk] u’. In the latter, �i = ai or �i = ∼ai is a literal and wi a non-negative1 in-
teger weight for ai ∈ A and 1 ≤ i ≤ k; l and u are integers providing a lower and an upper
bound. Either or both of l and u can be omitted, in which case they are identified with the
(trivial) bounds 0 and ∞, respectively. A rule r such that head (r) = ⊥ (that is, H is the empty
disjunction) is an integrity constraint. Each body component Bi is either an atom or a weight
constraint for 1 ≤ i ≤ n. If body(r) = ∅, r is called a fact, and we skip ← when writing facts.
For a set {B1, . . . , Bm, ∼Bm+1, . . . ,∼Bn}, a disjunction a1 ∨ · · · ∨ ak , and a weight constraint
‘l #sum[�1 = w1, . . . , �k = wk] u’, we let

{B1, . . . , Bm, ∼Bm+1, . . . ,∼Bn}+ = {B1, . . . , Bm},
(a1 ∨ · · · ∨ ak)

+ = {a1, . . . , ak}, and
(l #sum[�1 = w1, . . . , �k = wk] u)+ = [�i = wi | 1 ≤ i ≤ k, �i ∈ A].

Note that the elements of a weight constraint form a multiset, possibly containing duplicates. For
some S = {a1, . . . , ak} or S = [a1 = w1, . . . , ak = wk], we define atom(S) = {a1, . . . , ak}.

An interpretation is represented by the set X ⊆ A of its entailed atoms. The satisfaction
relation |= on rules like r is inductively defined as follows.

1. X |= ∼B if X �|= B,

2. X |= (a1 ∨ · · · ∨ ak) if {a1, . . . , ak} ∩ X �= ∅,

1In view of the discussion on Page 22, we restrict ourselves to non-negative integers.

182 A. ASP IN A NUTSHELL

3. X |= (l #sum[�1 = w1, . . . , �k = wk] u) if l ≤ ∑
1≤i≤k,X|=�i

wi ≤ u,

4. X |= body(r) if X |= � for all � ∈ body(r), and

5. X |= r if X |= head (r) or X �|= body(r).

A logic program P is a set of rules r , and X is a model of P if X |= r for every r ∈ P . The reduct of
the head H of a rule r with respect to X is

HX = {a1 ∨ · · · ∨ ak} if H = a1 ∨ · · · ∨ ak, and
HX = atom(H+) ∩ X if H = l #sum[�1 = w1, . . . , �k = wk] u.

Furthermore, the reduct of some (positive) body element B ∈ body(r)+ is

BX = B if B ∈ A, and
BX = (

l − ∑
1≤i≤k,�i=∼ai ,ai /∈X wi

)
#sum B+ if B = l #sum[�1 = w1, . . . , �k = wk] u.

The reduct of P with respect to X is the following logic program:

P X = {
H ← BX

1 , . . . , BX
m |

r ∈ P, X |= body(r), H ∈ head (r)X, body(r)+ = {B1, . . . , Bm}}.
That is, for all rules r ∈ P whose bodies are satisfied with respect to X, the reduct is obtained
by replacing weight constraints in heads with individual atoms belonging to X and by eliminating
negative components in bodies, where lower bounds of residual weight constraints (with trivial upper
bounds) are reduced accordingly. Finally, X is a stable model of P if X is a model of P such that no
proper subset of X is a model of P X. In view of the latter condition, note that a stable model is a
minimal model of its own reduct.

As in Section 2.3.3, minimize statements are of the following form:

#minimize[�1 = w1@p1, . . . , �k = wk@pk]. (A.1)

As with weight constraints, every �i is a literal and every wi an integer weight for 1 ≤ i ≤ k, while
pi additionally provides an integer priority level. Priorities allow for representing a sequence of
lexicographically ordered minimize objectives, where greater levels are more significant than smaller
ones. A minimize statement distinguishes optimal stable models of a program P in the following
way. For any X ⊆ A and integer p, let �X

p denote the sum of weights w over all occurrences of
weighted literals � = w@p in (A.1) such that X |= �. A stable model X of P is dominated if there
is a stable model Y of P such that �Y

p < �X
p and �Y

p′ = �X
p′ for all p′ > p, and optimal otherwise.

Bibliography
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995. 66

J. Alferes and J. Leite, editors. Proceedings of the Ninth European Conference on Logics in Artificial
Intelligence (JELIA’04), volume 3229 of Lecture Notes in Computer Science, 2004. Springer-Verlag.
185, 190, 199, 204

J. Alferes, L. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A language for updating logic
programs. Artificial Intelligence, 138(1-2):87–116, 2002. DOI: 10.1016/S0004-3702(02)00183-2
176

M. Alviano, F. Calimeri, W. Faber, N. Leone, and S. Perri. Unfounded sets and well-founded
semantics of answer set programs with aggregates. Journal of Artificial Intelligence Research, 42:
487–527, 2011. DOI: 10.1613/jair.3432 89

B. Andres, B. Kaufmann, O. Matheis, and T. Schaub. Unsatisfiability-based optimization in clasp. In
A.Dovier and V.Santos Costa,editors,Technical Communications of theTwenty-eighth International
Conference on Logic Programming (ICLP’12), volume 17, pages 212–221. Leibniz International
Proceedings in Informatics (LIPIcs), 2012. 150

C. Anger, K. Konczak, and T. Linke. noMoRe: A system for non-monotonic reasoning under answer
set semantics. In Eiter et al. (2001), pages 406–410. 150

C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The nomore++ approach to answer set
solving. In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005. DOI: 10.1007/11591191 150

C. Anger, M. Gebser, and T. Schaub. Approaching the core of unfounded sets. In Dix and Hunter
(2006), pages 58–66. 110

G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT solvers. In C. Boutilier,
editor, Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence (IJ-
CAI’09), pages 399–404. AAAI/MIT Press, 2009. 110, 151

M. Balduccini. Representing constraint satisfaction problems in answer set programming. In
W. Faber and J. Lee, editors, Proceedings of the Second Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP’09), pages 16–30, 2009. 151

http://dx.doi.org/10.1016/S0004-3702(02)00183-2
http://dx.doi.org/10.1613/jair.3432
http://dx.doi.org/10.1007/11591191

184 BIBLIOGRAPHY

M. Balduccini, E. Pontelli, O. El-Khatib, and H. Le. Issues in parallel execution of non-monotonic
reasoning systems. Parallel Computing, 31(6):608–647, 2005. DOI: 10.1016/j.parco.2005.03.004
150

C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Univer-
sity Press, 2003. DOI: 10.1017/CBO9780511543357 9, 49

C. Baral and M. Gelfond. Logic programming and knowledge representation. Journal of Logic
Programming, 12:1–80, 1994. DOI: 10.1016/0743-1066(94)90025-6 49

C. Baral, G. Greco, N. Leone, and G. Terracina, editors. Proceedings of the Eighth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05), volume 3662 of
Lecture Notes in Artificial Intelligence, 2005. Springer-Verlag. DOI: 10.1007/11546207 191, 195

C. Baral, G. Brewka, and J. Schlipf, editors. Proceedings of the Ninth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483 of Lecture Notes in
Artificial Intelligence, 2007. Springer-Verlag. 185, 188, 192

C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In Biere et al.
(2009), chapter 26, pages 825–885. DOI: 10.1007/11513988_4 151

D. Basak, S. Pal, and D. Patranabis. Support vector regression. Neural Information Processing —
Letters and Reviews, 11(10):203–224, 2007. 150

S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the Twenty-first International Conference on
Logic Programming (ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages 52–66.
Springer-Verlag, 2005. 151

R. Bayardo and R. Schrag. Using CSP look-back techniques to solve real-world SAT instances. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI’97), pages 203–208.
AAAI/MIT Press, 1997. 110

P. Beame and T. Pitassi. Propositional proof complexity: Past, present, and future. Bulletin of the Eu-
ropean Association for Theoretical Computer Science, 65:66–89, 1998. DOI: 10.1145/602382.602406
90, 110

P.Beame,H.Kautz, and A.Sabharwal. Towards understanding and harnessing the potential of clause
learning. Journal of Artificial Intelligence Research, 22:319–351, 2004. DOI: 10.1613/jair.1410 90,
110

P. Besnard. An Introduction to Default Logic. Symbolic Computation — Artifical Intelligence.
Springer-Verlag, 1989. 10

http://dx.doi.org/10.1016/j.parco.2005.03.004
http://dx.doi.org/10.1017/CBO9780511543357
http://dx.doi.org/10.1016/0743-1066(94)90025-6
http://dx.doi.org/10.1007/11546207
http://dx.doi.org/10.1007/11513988_4
http://dx.doi.org/10.1145/602382.602406
http://dx.doi.org/10.1613/jair.1410

BIBLIOGRAPHY 185

N. Bidoit and C. Froidevaux. Minimalism subsumes default logic and circumscription in stratified
logic programming. In Proceedings of the Second Annual Symposium on Logic in Computer Science
(LICS’87), pages 89–97. IEEE Computer Society, 1987. 10

A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4:75–97,
2008. 151

A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Technical Report 10/1,
Institute for Formal Models and Verification. Johannes Kepler University, 2010. 151

A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009. 9, 90, 110, 184, 187, 198,
199, 202, 203

R. Bihlmeyer, W. Faber, G. Ielpa, V. Lio, and G. Pfeifer. DLV — user manual. URL http://www.
dlvsystem.com/man. 149

G. Boenn, M. Brain, M. de Vos, and J. Fitch. Automatic composition of melodic and harmonic
music by answer set programming. In Garcia de la Banda and Pontelli (2008), pages 160–174.
DOI: 10.1007/978-3-540-89982-2_21 175

A. Bösel, T. Linke, and T. Schaub. Profiling answer set programming: The visualiza-
tion component of the noMoRe system. In Alferes and Leite (2004), pages 702–705.
DOI: 10.1007/978-3-540-30227-8_61 176

M. Brain and M. de Vos. Debugging logic programs under the answer set semantics. In M. de Vos
and A. Provetti, editors, Proceedings of the Third International Workshop on Answer Set Programming
(ASP’05), volume 142, pages 141–152. CEUR Workshop Proceedings (CEUR-WS.org), 2005.
URL http://ceur-ws.org/Vol-142. 177

M. Brain and M. de Vos. The significance of memory costs in answer set solver implementation.
Journal of Logic and Computation, 19(4):615–641, 2009. DOI: 10.1093/logcom/exn038 150

M. Brain, T. Crick, M. de Vos, and J. Fitch. TOAST: Applying answer set programming to super-
optimisation. In Etalle and Truszczyński (2006), pages 270–284. DOI: 10.1007/11799573_21
175

M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and S. Woltran. Debugging ASP programs
by means of ASP. In Baral et al. (2007), pages 31–43. DOI: 10.1007/978-3-540-72200-7_5 177

M. Brain, O. Cliffe, and M. de Vos. A pragmatic programmer’s guide to answer set programming.
In de Vos and Schaub (2009), pages 49–63. URL http://ceur-ws.org/Vol-546. 49

G. Brewka. Logic programming with ordered disjunction. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 100–105. AAAI Press, 2002. 176

http://www.dlvsystem.com/man
http://www.dlvsystem.com/man
http://www.dlvsystem.com/man
http://dx.doi.org/10.1007/978-3-540-89982-2_21
http://dx.doi.org/10.1007/978-3-540-30227-8_61
http://ceur-ws.org/Vol-142
http://dx.doi.org/10.1093/logcom/exn038
http://dx.doi.org/10.1007/11799573_21
http://dx.doi.org/10.1007/978-3-540-72200-7_5
http://ceur-ws.org/Vol-546

186 BIBLIOGRAPHY

G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial Intelligence,
109(1-2):297–356, 1999. DOI: 10.1016/S0004-3702(99)00015-6 176

G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors. Proceedings of the Seventeenth European
Conference on Artificial Intelligence (ECAI’06), 2006. IOS Press. 195, 201

G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communications of
the ACM, 54(12):92–103, 2011. DOI: 10.1145/2043174.2043195 9

G. Brewka, T. Eiter, and S. McIlraith, editors. Proceedings of the Thirteenth International Conference
on Principles of Knowledge Representation and Reasoning (KR’12), 2012. AAAI Press. 194, 199

P. Cabalar and P. Ferraris. Propositional theories are strongly equivalent to logic programs. Theory
and Practice of Logic Programming, 7(6):745–759, 2007. DOI: 10.1017/S1471068407003110 33

M. Cadoli and A. Schaerf. Compiling problem specifications into SAT. Artificial Intelligence, 162
(1-2):89–120, 2005. DOI: 10.1016/j.artint.2004.01.006 10

F.Calimeri,W.Faber,G.Pfeifer, and N.Leone. Pruning operators for disjunctive logic programming
systems. Fundamenta Informaticae, 71(2-3):183–214, 2006. 110

F. Calimeri, S. Cozza, G. Ianni, and N. Leone. Computable functions in ASP: Theory and imple-
mentation. In Garcia de la Banda and Pontelli (2008), pages 407–424.
DOI: 10.1007/978-3-540-89982-2_37 67

F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber, O. Febbraro,
N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. Santoro, M. Sirianni,
G. Terracina, and P. Veltri. The third answer set programming competition: Preliminary report
of the system competition track. In Delgrande and Faber (2011), pages 388–403.
DOI: 10.1007/978-3-642-20895-9_46 150

F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca, and
T. Schaub. ASP-Core-2: Input language format. Available at https://www.mat.unical.it/
aspcomp2013/files/ASP-CORE-2.0.pdf, 2012. 151

X. Chen, J. Jiang, J. Ji, G. Jin, and F. Wang. Integrating NLP with reasoning about actions
for autonomous agents communicating with humans. In Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’09), pages 137–140. IEEE, 2009.
DOI: 10.1109/WI-IAT.2009.142 175

X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang, and J. Xie. Developing high-level cognitive functions for
service robots. In W. van der Hoek, G. Kaminka, Y. Lespérance, M. Luck, and S. Sen, editors,
Proceedings of the Ninth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’10), pages 989–996. IFAAMAS, 2010. 175

http://dx.doi.org/10.1016/S0004-3702(99)00015-6
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1017/S1471068407003110
http://dx.doi.org/10.1016/j.artint.2004.01.006
http://dx.doi.org/10.1007/978-3-540-89982-2_37
http://dx.doi.org/10.1007/978-3-642-20895-9_46
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf
http://dx.doi.org/10.1109/WI-IAT.2009.142

BIBLIOGRAPHY 187

K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978. DOI: 10.1007/978-1-4684-3384-5 69, 89

E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability solving.
Formal Methods in System Design, 19(1):7–34, 2001. DOI: 10.1023/A:1011276507260 177

O. Cliffe, M. de Vos, M. Brain, and J. Padget. ASPVIZ: Declarative visualisation and anima-
tion using answer set programming. In Garcia de la Banda and Pontelli (2008), pages 724–728.
DOI: 10.1007/978-3-540-89982-2_65 176

S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic
Logic, 44(1):36–50, 1979. DOI: 10.2307/2273702 90

M. D’Agostino and M. Mondadori. The taming of the cut. classical refutations with analytic cut.
Journal of Logic and Computation, 4(3):285–319, 1994. DOI: 10.1093/logcom/4.3.285 90

M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of Tableau Methods. Kluwer
Academic Publishers, 1999. 89, 201

A.Dal Palù,A.Dovier,E.Pontelli, and G.Rossi. Answer set programming with constraints using lazy
grounding. In Hill and Warren (2009), pages 115–129. DOI: 10.1007/978-3-642-02846-5_14
150

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. In Proceedings of the Twelfth Annual IEEE Conference on Computational Complexity
(CCC’97),pages 82–101.IEEE Computer Society Press,1997.DOI: 10.1109/CCC.1997.612304
33

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic
programming. ACM Computing Surveys, 33(3):374–425, 2001. DOI: 10.1145/502807.502810
10

A. Darwiche and K. Pipatsrisawat. Complete algorithms. In Biere et al. (2009), chapter 3, pages
99–130. 110

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM, 7:
201–215, 1960. DOI: 10.1145/321033.321034 32, 110

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Communi-
cations of the ACM, 5:394–397, 1962. DOI: 10.1145/368273.368557 32, 110

M. de Vos and T. Schaub, editors. Proceedings of the First Workshop on Software Engineering for Answer
Set Programming (SEA’07), volume 281, 2007. CEUR Workshop Proceedings. URL http://
ceur-ws.org/Vol-281. 177, 196

http://dx.doi.org/10.1007/978-1-4684-3384-5
http://dx.doi.org/10.1023/A:1011276507260
http://dx.doi.org/10.1007/978-3-540-89982-2_65
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.1093/logcom/4.3.285
http://dx.doi.org/10.1007/978-3-642-02846-5_14
http://dx.doi.org/10.1109/CCC.1997.612304
http://dx.doi.org/10.1145/502807.502810
http://dx.doi.org/10.1145/321033.321034
http://dx.doi.org/10.1145/368273.368557
http://ceur-ws.org/Vol-281
http://ceur-ws.org/Vol-281

188 BIBLIOGRAPHY

M. de Vos and T. Schaub, editors. Proceedings of the Second Workshop on Software Engineering for
Answer Set Programming (SEA’09), volume 546, 2009. CEUR Workshop Proceedings. URL
http://ceur-ws.org/Vol-546. 177, 185

R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003. 90, 151

J. Delgrande and W. Faber, editors. Proceedings of the Eleventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’11), volume 6645 of Lecture Notes in Artificial
Intelligence, 2011. Springer-Verlag. DOI: 10.1007/978-3-642-20895-9 186, 191, 193, 194, 201

J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic programs.
Theory and Practice of Logic Programming, 3(2):129–187, 2003.
DOI: 10.1017/S1471068402001539 176

J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and survey of preference han-
dling approaches in nonmonotonic reasoning. Computational Intelligence, 20(2):308–334, 2004.
DOI: 10.1111/j.0824-7935.2004.00240.x 33, 176

J.Delgrande,T.Schaub,and H.Tompits. A preference-based framework for updating logic programs.
In Baral et al. (2007), pages 71–83. DOI: 10.1007/978-3-540-72200-7_8 176

J. Delgrande, T. Schaub, H. Tompits, and S. Woltran. A model-theoretic approach to belief change
in answer set programming. ACM Transactions on Computational Logic, 2012. To appear. 176

M. Denecker and E. Ternovska. A logic of nonmonotone inductive definitions. ACM Transactions
on Computational Logic, 9(2):14:1–14:52, 2008. DOI: 10.1145/1342991.1342998 10

M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński. The second answer set
programming competition. In Erdem et al. (2009), pages 637–654.
DOI: 10.1007/978-3-642-04238-6_75 150

N. Dershowitz, Z. Hanna, and A. Nadel. Towards a better understanding of the functionality of a
conflict-driven SAT solver. In Marques-Silva and Sakallah (2007), pages 287–293.
DOI: 10.1007/978-3-540-72788-0_27 110

Y. Dimopoulos, B. Nebel, and J. Köhler. Encoding planning problems in nonmonotonic logic
programs. In S. Steel and R. Alami, editors, Proceedings of the Fourth European Conference on
Planning, volume 1348 of Lecture Notes in Artificial Intelligence, pages 169–181. Springer-Verlag,
1997. URL citeseer.nj.nec.com/dimopoulos97encoding.html. 175

J. Dix and A. Hunter, editors. Proceedings of the Eleventh International Workshop on Nonmonotonic
Reasoning (NMR’06), number IFI-06-04 in Technical Report Series, 2006. Clausthal University
of Technology, Institute for Informatics. 183, 204

http://ceur-ws.org/Vol-546
http://ceur-ws.org/Vol-546
http://dx.doi.org/10.1007/978-3-642-20895-9
http://dx.doi.org/10.1017/S1471068402001539
http://dx.doi.org/10.1111/j.0824-7935.2004.00240.x
http://dx.doi.org/10.1007/978-3-540-72200-7_8
http://dx.doi.org/10.1145/1342991.1342998
http://dx.doi.org/10.1007/978-3-642-04238-6_75
http://dx.doi.org/10.1007/978-3-540-72788-0_27
citeseer.nj.nec.com/dimopoulos97encoding.html

BIBLIOGRAPHY 189

J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic reasoning: Towards efficient calculi and imple-
mentations. In Robinson and Voronkov (2001), pages 1241–1354. 90

C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König, M. Ostrowski, and T. Schaub. Conflict-
driven disjunctive answer set solving. In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation and Reasoning (KR’08), pages
422–432. AAAI Press, 2008. 90, 110, 149, 150

N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elimination. In
F. Bacchus and T. Walsh, editors, Proceedings of the Eighth International Conference on Theory and
Applications of Satisfiability Testing (SAT’05), volume 3569 of Lecture Notes in Computer Science,
pages 61–75. Springer-Verlag, 2005. 151

N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. Electronic Notes in
Theoretical Computer Science, 89(4), 2003. DOI: 10.1016/S1571-0661(05)82542-3 151, 177

N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella, editors,
Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing
(SAT’03), volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer-Verlag,
2004. 110, 151

T. Eiter and M. Fink. Uniform equivalence of logic programs under the stable model semantics. In
C. Palamidessi, editor, Proceedings of the Nineteenth International Conference on Logic Programming
(ICLP’03), volume 2916 of Lecture Notes in Computer Science, pages 224–238. Springer-Verlag,
2003. 176

T. Eiter and A. Polleres. Towards automated integration of guess and check programs in answer set
programming: a meta-interpreter and applications. Theory and Practice of Logic Programming, 6
(1-2):23–60, 2006. DOI: 10.1017/S1471068405002577 67

T. Eiter, W. Faber, and M. Truszczyński, editors. Proceedings of the Sixth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’01), volume 2173 of Lecture Notes in
Computer Science, 2001. Springer-Verlag. 183, 196, 204

T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences based on causal
rejection. Theory and Practice of Logic Programming, 2(6):711–767, 2002.
DOI: 10.1017/S1471068401001247 176

T.Eiter,W.Faber,N.Leone, and G.Pfeifer. Computing preferred answer sets by meta-interpretation
in answer set programming. Theory and Practice of Logic Programming, 3(4-5):463–498, 2003.
DOI: 10.1017/S1471068403001753 67, 178

T. Eiter, G. Ianni, R. Schindlauer, and H.Tompits. DLVHEX: A prover for semantic-web reasoning
under the answer-set semantics. In Proceedings of the International Conference on Web Intelligence
(WI’06), pages 1073–1074. IEEE Computer Society, 2006. DOI: 10.1109/WI.2006.64 176

http://dx.doi.org/10.1016/S1571-0661(05)82542-3
http://dx.doi.org/10.1017/S1471068405002577
http://dx.doi.org/10.1017/S1471068401001247
http://dx.doi.org/10.1017/S1471068403001753
http://dx.doi.org/10.1109/WI.2006.64

190 BIBLIOGRAPHY

T. Eiter, G. Ianni,T. Lukasiewicz, R. Schindlauer, and H.Tompits. Combining answer set program-
ming with description logics for the semantic web. Artificial Intelligence, 172(12-13):1495–1539,
2008. DOI: 10.1016/j.artint.2008.04.002 176

T. Eiter, G. Ianni, and T. Krennwallner. Answer Set Programming: A Primer. In S. Tessaris,
E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M. Rousset, and R. Schmidt, editors, Fifth
International Reasoning Web Summer School (RW’09), volume 5689 of Lecture Notes in Computer
Science, pages 40–110. Springer-Verlag, 2009. URL http://www.kr.tuwien.ac.at/staff/
tkren/pub/2009/rw2009-asp.pdf. 9, 32, 49

E. Ellguth, M. Gebser, M. Gusowski, R. Kaminski, B. Kaufmann, S. Liske, T. Schaub, L. Schnei-
denbach, and B. Schnor. A simple distributed conflict-driven answer set solver. In Erdem et al.
(2009), pages 490–495. DOI: 10.1007/978-3-642-04238-6_47 150

H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972. 31

E. Erdem and F. Türe. Efficient haplotype inference with answer set programming. In
Fox and Gomes (2008), pages 436–441. 175

E. Erdem, F. Lin, and T. Schaub, editors. Proceedings of the Tenth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture Notes in Artificial
Intelligence, 2009. Springer-Verlag. DOI: 10.1007/978-3-642-04238-6 188, 190, 192, 193, 196,
197

E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras. Combining high-level causal
reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’11), pages
4575–4581. IEEE, 2011. DOI: 10.1109/ICRA.2011.5980160 175

S. Etalle and M. Truszczyński, editors. Proceedings of the Twenty-second International Conference on
Logic Programming (ICLP’06), volume 4079 of Lecture Notes in Computer Science, 2006. Springer-
Verlag. 185, 191, 202

W. Faber, N. Leone, C. Mateis, , and G. Pfeifer. Using database optimization techniques for non-
monotonic reasoning. In Proceedings of the Seventh International Workshop on Deductive Databases
and Logic Programming (DDLP’99), pages 135–139, 1999. 178

W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In Alferes and Leite (2004), pages 200–212.
DOI: 10.1007/978-3-540-30227-8_19 31

F. Fages. Consistency of Clark’s completion and the existence of stable models. Journal of Methods
of Logic in Computer Science, 1:51–60, 1994. 89

http://dx.doi.org/10.1016/j.artint.2008.04.002
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://dx.doi.org/10.1007/978-3-642-04238-6_47
http://dx.doi.org/10.1007/978-3-642-04238-6
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://dx.doi.org/10.1007/978-3-540-30227-8_19

BIBLIOGRAPHY 191

O. Febbraro, K. Reale, and F. Ricca. ASPIDE: Integrated development environment for answer set
programming. In Delgrande and Faber (2011), pages 317–330.
DOI: 10.1007/978-3-642-20895-9_37 176

P. Ferraris. Answer sets for propositional theories. In Baral et al. (2005), pages 119–131.
DOI: 10.1007/11546207_10 32, 33

P. Ferraris and V. Lifschitz. Mathematical foundations of answer set programming. In S. Artëmov,
H. Barringer, A. d’Avila Garcez, L. Lamb, and J. Woods, editors, We Will Show Them! Essays in
Honour of Dov Gabbay, volume 1, pages 615–664. College Publications, 2005. 9

P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In Veloso (2007), pages
372–379. 177

M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming, 2(4):
295–312, 1985. DOI: 10.1016/S0743-1066(85)80005-4 89

D. Fox and C. Gomes, editors. Proceedings of the Twenty-third National Conference on Artificial
Intelligence (AAAI’08), 2008. AAAI Press. 190, 192

J. Freeman. Improvements to propositional satisfiability search algorithms. PhD thesis, University of
Pennsylvania, 1995. 151

J. Gallier. Logic for Computer Science: Foundations of Automated Theorem Proving. Harper and Row,
New York, 1986. 31

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994. 151

M. Garcia de la Banda and E. Pontelli, editors. Proceedings of the Twenty-fourth International Con-
ference on Logic Programming (ICLP’08), volume 5366 of Lecture Notes in Computer Science, 2008.
Springer-Verlag. 185, 186, 187, 192, 198

M. Gebser and T. Schaub. Loops: Relevant or redundant? In Baral et al. (2005), pages 53–65.
DOI: 10.1007/11546207_5 89

M. Gebser and T. Schaub. Tableau calculi for answer set programming. In Etalle and Truszczyński
(2006), pages 11–25. DOI: 10.1007/11799573_4 89

M. Gebser and T. Schaub. Characterizing ASP inferences by unit propagation. In E. Giunchiglia,
V. Marek, D. Mitchell, and E. Ternovska, editors, Proceedings of the First International Workshop
on Search and Logic: Answer Set Programming and SAT (LaSh’06), pages 41–56, 2006b. 90

M. Gebser and T. Schaub. Generic tableaux for answer set programming. In V. Dahl and I. Niemelä,
editors, Proceedings of the Twenty-third International Conference on Logic Programming (ICLP’07),
volume 4670 of Lecture Notes in Computer Science, pages 119–133. Springer-Verlag, 2007. 89

http://dx.doi.org/10.1007/978-3-642-20895-9_37
http://dx.doi.org/10.1007/11546207_10
http://dx.doi.org/10.1016/S0743-1066(85)80005-4
http://dx.doi.org/10.1007/11546207_5
http://dx.doi.org/10.1007/11799573_4

192 BIBLIOGRAPHY

M. Gebser and T. Schaub. Tableau calculi for logic programs under answer set semantics. ACM
Transactions on Computational Logic, 2012. To appear. 89

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s guide to
gringo, clasp, clingo, and iclingo. URL http://potassco.sourceforge.net. 32, 49,
149

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
Veloso (2007), pages 386–392. DOI: 10.1016/j.artint.2012.04.001 90, 110, 149

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set enumeration. In
Baral et al. (2007), pages 136–148. DOI: 10.1007/978-3-540-72200-7_13 111, 149

M. Gebser, L. Liu, G. Namasivayam, A. Neumann,T. Schaub, and M.Truszczyński. The first answer
set programming system competition. In Baral et al. (2007), pages 3–17.
DOI: 10.1007/978-3-540-72200-7_3 150

M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer set programming. In
Baral et al. (2007), pages 266–271. DOI: 10.1007/978-3-540-72200-7_24 67, 149

M. Gebser, T. Janhunen, M. Ostrowski, T. Schaub, and S. Thiele. A versatile intermediate language
for answer set programming: Syntax proposal. Unpublished draft, 2008a. URL http://www.
cs.uni-potsdam.de/wv/pdfformat/gejaosscth08a.pdf. 149

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. Engineer-
ing an incremental ASP solver. In Garcia de la Banda and Pontelli (2008), pages 190–205.
DOI: 10.1007/978-3-540-89982-2_23 151, 176

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocessing for answer set
solving. In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors, Proceedings of
the Eighteenth European Conference on Artificial Intelligence (ECAI’08), pages 15–19. IOS Press,
2008c. 149

M. Gebser, J. Pührer, T. Schaub, and H. Tompits. A meta-programming technique for debugging
answer-set programs. In Fox and Gomes (2008), pages 448–453. 67, 177

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On the implementation of weight
constraint rules in conflict-driven ASP solvers. In Hill and Warren (2009), pages 250–264.
DOI: 10.1007/978-3-642-02846-5_23 90, 110, 149

M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and S. Thiele. On the input language of ASP
grounder gringo. In Erdem et al. (2009), pages 502–508. DOI: 10.1007/978-3-642-04238-6_49
149

http://potassco.sourceforge.net
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1007/978-3-540-72200-7_13
http://dx.doi.org/10.1007/978-3-540-72200-7_3
http://dx.doi.org/10.1007/978-3-540-72200-7_24
http://www.cs.uni-potsdam.de/wv/pdfformat/gejaosscth08a.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/gejaosscth08a.pdf
http://dx.doi.org/10.1007/978-3-540-89982-2_23
http://dx.doi.org/10.1007/978-3-642-02846-5_23
http://dx.doi.org/10.1007/978-3-642-04238-6_49

BIBLIOGRAPHY 193

M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for projected Boolean search
problems. In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’09), volume 5547 of Lecture Notes in Computer Science, pages 71–86. Springer-
Verlag, 2009c. 111, 149

M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven answer set solver clasp: Progress report.
In Erdem et al. (2009), pages 509–514. DOI: 10.1007/978-3-642-04238-6_50 149

M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In Hill and Warren (2009),
pages 235–249. DOI: 10.1007/978-3-642-02846-5_22 151

M. Gebser, T. Grote, and T. Schaub. Coala: A compiler from action languages to ASP. In T. Jan-
hunen and I. Niemelä, editors, Proceedings of the Twelfth European Conference on Logics in Artificial
Intelligence (JELIA’10), volume 6341 of Lecture Notes in Artificial Intelligence, pages 360–364.
Springer-Verlag, 2010a. 151

M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber. Repair and
prediction (under inconsistency) in large biological networks with answer set programming. In
F. Lin and U. Sattler, editors, Proceedings of the Twelfth International Conference on Principles of
Knowledge Representation and Reasoning (KR’10), pages 497–507. AAAI Press, 2010b. 175

M. Gebser, T. Grote, R. Kaminski, and T. Schaub. Reactive answer set programming. In
Delgrande and Faber (2011), pages 54–66. DOI: 10.1007/978-3-642-20895-9_7 151, 176, 177

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges in answer set solving. In
M. Balduccini and T. Son, editors, Logic Programming, Knowledge Representation, and Nonmono-
tonic Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday, volume
6565 of Lecture Notes in Computer Science, pages 74–90. Springer-Verlag, 2011b. 178

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-criteria optimization in answer set
programming. In J. Gallagher and M. Gelfond, editors, Technical Communications of the Twenty-
seventh International Conference on Logic Programming (ICLP’11), volume 11, pages 1–10. Leibniz
International Proceedings in Informatics (LIPIcs), 2011c. 149

M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller. A portfolio solver
for answer set programming: Preliminary report. In Delgrande and Faber (2011), pages 352–357.
DOI: 10.1007/978-3-642-20895-9_40 150

M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, and B. Schnor. Cluster-based ASP solving with
claspar. In Delgrande and Faber (2011), pages 364–369. DOI: 10.1007/978-3-642-20895-9_42
150

http://dx.doi.org/10.1007/978-3-642-04238-6_50
http://dx.doi.org/10.1007/978-3-642-02846-5_22
http://dx.doi.org/10.1007/978-3-642-20895-9_7
http://dx.doi.org/10.1007/978-3-642-20895-9_40
http://dx.doi.org/10.1007/978-3-642-20895-9_42

194 BIBLIOGRAPHY

M. Gebser, R. Kaminski, M. Knecht, and T. Schaub. plasp: A prototype for PDDL-based planning
in ASP. In Delgrande and Faber (2011), pages 358–363. DOI: 10.1007/978-3-642-20895-9_41
151

M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In
Delgrande and Faber (2011), pages 345–351. DOI: 10.1007/978-3-642-20895-9_39 149

M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set programming. Theory
and Practice of Logic Programming, 11(4-5):821–839, 2011h. DOI: 10.1017/S1471068411000329
33, 67, 176, 178

M. Gebser, J. Lee, and Y. Lierler. On elementary loops of logic programs. Theory and Practice of
Logic Programming, 11(6):953–988, 2011i. DOI: 10.1017/S1471068411000019 89

M. Gebser, O. Sabuncu, and T. Schaub. An incremental answer set programming based system for
finite model computation. AI Communications, 24(2):195–212, 2011j.
DOI: 10.3233/AIC-2011-0496 151

M. Gebser,T. Schaub, S.Thiele, and P. Veber. Detecting inconsistencies in large biological networks
with answer set programming. Theory and Practice of Logic Programming, 11(2-3):323–360, 2011k.
DOI: 10.1017/S1471068410000554 175

M. Gebser,T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and T. Schaub. Stream reasoning with
answer set programming: Preliminary report. In Brewka et al. (2012), pages 613–617. 151, 177

M.Gebser,B.Kaufmann, andT.Schaub. Conflict-driven answer set solving: From theory to practice.
Artificial Intelligence, 187:52–89, 2012b. DOI: 10.1016/j.artint.2012.04.001 90, 149

M. Gebser, B. Kaufmann, and T. Schaub. Multi-threaded ASP solving with clasp. Theory and
Practice of Logic Programming, 12(4-5):525–545, 2012c. DOI: 10.1017/S1471068412000166 149

gecode. URL http://www.gecode.org. 151

M. Gelfond. On stratified autoepistemic theories. In K. Forbus and H. Shrobe, editors, Proceed-
ings of the Sixth National Conference on Artificial Intelligence (AAAI’87), pages 207–211. Morgan
Kaufmann Publishers, 1987. 10

M. Gelfond. Representing knowledge in A-prolog. In A. Kakas and F. Sadri, editors, Computational
Logic: Logic Programming and Beyond, Essays in Honour of Robert Kowalski, volume 2408 of Lecture
Notes in Computer Science, pages 413–451. Springer-Verlag, 2002. 9

M. Gelfond. Answer sets. In Lifschitz et al. (2008), chapter 7, pages 285–316.
DOI: 10.1016/S1574-6526(07)03007-6 9

http://dx.doi.org/10.1007/978-3-642-20895-9_41
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.1017/S1471068411000329
http://dx.doi.org/10.1017/S1471068411000019
http://dx.doi.org/10.3233/AIC-2011-0496
http://dx.doi.org/10.1017/S1471068410000554
http://dx.doi.org/10.1016/j.artint.2012.04.001
http://dx.doi.org/10.1017/S1471068412000166
http://www.gecode.org
http://dx.doi.org/10.1016/S1574-6526(07)03007-6

BIBLIOGRAPHY 195

M. Gelfond and N. Leone. Logic programming and knowledge representation — the A-Prolog
perspective. Artificial Intelligence, 138(1-2):3–38, 2002. DOI: 10.1016/S0004-3702(02)00206-0
9

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kowalski
and K. Bowen, editors, Proceedings of the Fifth International Conference and Symposium of Logic
Programming (ICLP’88), pages 1070–1080. MIT Press, 1988. 10, 13, 31

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren and P. Szeredi,
editors, Proceedings of the Seventh International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990. 31

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9:365–385, 1991. DOI: 10.1007/BF03037169 10, 31, 33

M. Ginsberg, editor. Readings in Nonmonotonic Reasoning. Morgan Kaufmann Publishers, 1987. 10

E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propositional satisfi-
ability. Journal of Automated Reasoning, 36(4):345–377, 2006. DOI: 10.1007/s10817-006-9033-2
110, 150

E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Proceedings of the Fifth
Conference on Design, Automation and Test in Europe (DATE’02), pages 142–149. IEEE Computer
Society Press, 2002. DOI: 10.1016/j.dam.2006.10.007 151

G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F. Scalise. An ASP-based system
for team-building in the Gioia-Tauro seaport. In M. Carro and R. Peña, editors, Pro-
ceedings of the Twelfth International Symposium on Practical Aspects of Declarative Languages
(PADL’10), volume 5937 of Lecture Notes in Computer Science, pages 40–42. Springer-Verlag,
2010. DOI: 10.1007/978-3-642-11503-5 175

J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S. Thiele, and R. Tichy. Platypus: A platform for
distributed answer set solving. In Baral et al. (2005), pages 227–239. DOI: 10.1007/11546207_18
150

J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S. Thiele, and R. Tichy. On probing and multi-
threading in platypus. In Brewka et al. (2006), pages 392–396. 150

W. Gropp, E. Lusk, and R.Thakur. Using MPI-2: Advanced Features of the Message-Passing Interface.
MIT Press, 1999. 150

K. Gödel. Zum intuitionistischen Aussagenkalkül. In Anzeiger der Akademie der Wissenschaften in
Wien, page 65–66. 1932. 10

http://dx.doi.org/10.1016/S0004-3702(02)00206-0
http://dx.doi.org/10.1007/BF03037169
http://dx.doi.org/10.1007/s10817-006-9033-2
http://dx.doi.org/10.1016/j.dam.2006.10.007
http://dx.doi.org/10.1007/978-3-642-11503-5
http://dx.doi.org/10.1007/11546207_18

196 BIBLIOGRAPHY

R. Hähnle. Tableaux and related methods. In Robinson and Voronkov (2001), pages 100–178.
DOI: 10.1016/B978-044450813-3/50005-9 89

K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models. Theory and Practice
of Logic Programming, 3(4-5):519–550, 2003. 175

A. Heyting. Die formalen Regeln der intuitionistischen Logik. In Sitzungsberichte der Preussischen
Akademie der Wissenschaften, page 42–56. 1930. Reprint in Logik-Texte: Kommentierte Auswahl
zur Geschichte der Modernen Logik, Akademie-Verlag, 1986. 10

P. Hill and D. Warren, editors. Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer Science, 2009. Springer-Verlag.
187, 192, 193, 198

J. Huang. The effect of restarts on the efficiency of clause learning. In Veloso (2007), pages 2318–
2323. 151

K. Inoue, M. Koshimura, and R. Hasegawa. Embedding negation as failure into a model gener-
ation theorem prover. In D. Kapur, editor, Proceedings of the Eleventh International Conference
on Automated Deduction, volume 607 of Lecture Notes in Artificial Intelligence, pages 400–415.
Springer-Verlag, 1992. 110, 150

H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, andT. Schaub. Answer set vs integer linear programming
for automatic synthesis of multiprocessor systems from real-time parallel programs. Journal of
Reconfigurable Computing, 2009. URL http://www.hindawi.com/journals/ijrc/2009/
863630.html. Article ID 863630. DOI: 10.1155/2009/863630 175

T. Janhunen. URL http://www.tcs.hut.fi/Software/asptools. 151

T. Janhunen. On the effect of default negation on the expressiveness of disjunctive rules. In Eiter et al.
(2001), pages 93–106. DOI: 10.1007/3-540-45402-0_7 33

T. Janhunen. Some (in)translatability results for normal logic programs and propositional theories.
Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006. DOI: 10.3166/jancl.16.35-86 150

T. Janhunen. Intermediate languages of ASP systems and tools. In de Vos and Schaub (2007), pages
12–25. URL http://ceur-ws.org/Vol-281. 149

T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J. You. Unfolding partiality and disjunc-
tions in stable model semantics. ACM Transactions on Computational Logic, 7(1):1–37, 2006.
DOI: 10.1145/1119439.1119440 110, 150

T. Janhunen, I. Niemelä, and M. Sevalnev. Computing stable models via reductions to difference
logic. In Erdem et al. (2009), pages 142–154. DOI: 10.1007/978-3-642-04238-6_14 150

http://dx.doi.org/10.1016/B978-044450813-3/50005-9
http://www.hindawi.com/journals/ijrc/2009/863630.html
http://www.hindawi.com/journals/ijrc/2009/863630.html
http://dx.doi.org/10.1155/2009/863630
http://www.tcs.hut.fi/Software/asptools
http://dx.doi.org/10.1007/3-540-45402-0_7
http://dx.doi.org/10.3166/jancl.16.35-86
http://ceur-ws.org/Vol-281
http://dx.doi.org/10.1145/1119439.1119440
http://dx.doi.org/10.1007/978-3-642-04238-6_14

BIBLIOGRAPHY 197

M. Järvisalo and E. Oikarinen. Extended ASP tableaux and rule redundancy in normal logic
programs. Theory and Practice of Logic Programming, 8(5-6):691–716, 2008.
DOI: 10.1017/S1471068408003578 89

M. Järvisalo, A. Biere, and M. Heule. Blocked clause elimination. In J. Esparza and R. Majumdar,
editors, Proceedings of the Sixteenth International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’10), volume 6015 of Lecture Notes in Computer Science,
pages 129–144. Springer-Verlag, 2010. DOI: 10.1007/978-3-642-12002-2 151

H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann, editor, Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI’92), pages 359–363. John Wiley & sons, 1992.
177

K. Konczak,T. Linke, and T. Schaub. Graphs and colorings for answer set programming. Theory and
Practice of Logic Programming, 6(1-2):61–106, 2006. DOI: 10.1017/S1471068405002528 110,
150

R. Kowalski. Algorithm = logic + control. Communications of the ACM, 22(7):424–436, 1979.
DOI: 10.1145/359131.359136 10

J. Lee. A model-theoretic counterpart of loop formulas. In L. Kaelbling and A. Saffiotti, editors,
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI’05), pages
503–508. Professional Book Center, 2005. 89

C. Lefèvre and P. Nicolas. The first version of a new ASP solver : ASPeRiX. In Erdem et al. (2009),
pages 522–527. DOI: 10.1007/978-3-642-04238-6_52 150

J. Leite. Evolving Knowledge Bases, volume 81 of Frontiers of Artificial Intelligence and Applications.
IOS Press, 2003. 176

N. Leone, P. Rullo, and F. Scarcello. Disjunctive stable models: Unfounded sets, fixpoint semantics,
and computation. Information and Computation, 135(2):69–112, 1997.
DOI: 10.1006/inco.1997.2630 89, 110

N.Leone,G.Greco,G. Ianni,V.Lio,G.Terracina,T.Eiter,W.Faber,M.Fink,G.Gottlob,R.Rosati,
D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka, B. Nowicki, and W. Staniszkis. The INFOMIX
system for advanced integration of incomplete and inconsistent data. In F. Özcan, editor, Proceed-
ings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’05), pages
915–917. ACM Press, 2005. DOI: 10.1145/1066157 175

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system
for knowledge representation and reasoning. ACM Transactions on Computational Logic, 7(3):
499–562, 2006. DOI: 10.1145/1149114.1149117 32, 33, 49, 67, 110, 149, 150

http://dx.doi.org/10.1017/S1471068408003578
http://dx.doi.org/10.1007/978-3-642-12002-2
http://dx.doi.org/10.1017/S1471068405002528
http://dx.doi.org/10.1145/359131.359136
http://dx.doi.org/10.1007/978-3-642-04238-6_52
http://dx.doi.org/10.1006/inco.1997.2630
http://dx.doi.org/10.1145/1066157
http://dx.doi.org/10.1145/1149114.1149117

198 BIBLIOGRAPHY

C. Li and F. Manyà. MaxSAT. In Biere et al. (2009), chapter 19, pages 613–631.
DOI: 10.1007/s10601-010-9097-9 150

Y. Lierler. Abstract answer set solvers with learning. Theory and Practice of Logic Programming, 11
(2-3):135–169, 2011. DOI: 10.1017/S1471068410000578 90, 150

Y.Lierler and V.Lifschitz. One more decidable class of finitely ground programs. In Hill and Warren
(2009), pages 489–493. DOI: 10.1007/978-3-642-02846-5_40 67

V. Lifschitz. Foundations of logic programming. In G. Brewka, editor, Principles of Knowledge
Representation, pages 69–127. CSLI Publications, 1996. 9, 89

V. Lifschitz. Answer set planning. In D. de Schreye, editor, Proceedings of the International Conference
on Logic Programming (ICLP’99), pages 23–37. MIT Press, 1999. 9, 174

V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1-2):39–54,
2002. DOI: 10.1016/S0004-3702(02)00186-8 49, 174

V. Lifschitz. Introduction to answer set programming. Unpublished draft, 2004. URL http://
www.cs.utexas.edu/users/vl/papers/esslli.ps. DOI: 10.1007/s10472-007-9080-3 9,
31, 32

V. Lifschitz. Twelve definitions of a stable model. In Garcia de la Banda and Pontelli (2008), pages
37–51. DOI: 10.1007/978-3-540-89982-2_8 90

V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM Transactions on Compu-
tational Logic, 7(2):261–268, 2006. DOI: 10.1145/1131313.1131316 10

V. Lifschitz and H. Turner. Splitting a logic program. In Proceedings of the Eleventh International
Conference on Logic Programming, pages 23–37. MIT Press, 1994. 176

V. Lifschitz and T. Woo. Answer sets in general nonmonotonic reasoning (preliminary report). In
B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reasoning (KR’92), pages 603–614. Morgan Kaufmann
Publishers, 1992. 33

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM Transactions on
Computational Logic, 2(4):526–541, 2001. DOI: 10.1145/383779.383783 176

V. Lifschitz, F. van Harmelen, and B. Porter, editors. Handbook of Knowledge Representation. Elsevier
Science, 2008. 9, 194

F. Lin. A Study of Nonmonotonic Reasoning. PhD thesis, Stanford University, 1991. 89

F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT solvers. Artificial
Intelligence, 157(1-2):115–137, 2004. DOI: 10.1016/j.artint.2004.04.004 89, 110, 150

http://dx.doi.org/10.1007/s10601-010-9097-9
http://dx.doi.org/10.1017/S1471068410000578
http://dx.doi.org/10.1007/978-3-642-02846-5_40
http://dx.doi.org/10.1016/S0004-3702(02)00186-8
http://www.cs.utexas.edu/users/vl/papers/esslli.ps
http://www.cs.utexas.edu/users/vl/papers/esslli.ps
http://dx.doi.org/10.1007/s10472-007-9080-3
http://dx.doi.org/10.1007/978-3-540-89982-2_8
http://dx.doi.org/10.1145/1131313.1131316
http://dx.doi.org/10.1145/383779.383783
http://dx.doi.org/10.1016/j.artint.2004.04.004

BIBLIOGRAPHY 199

Z. Lin, Y. Zhang, and H. Hernandez. Fast SAT-based answer set solver. In Y. Gil and R. Mooney,
editors, Proceedings of the Twenty-first National Conference on Artificial Intelligence (AAAI’06), pages
92–97. AAAI Press, 2006. 110, 150

T. Linke. Graph theoretical characterization and computation of answer sets. In B. Nebel, editor,
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI’01),
pages 641–645. Morgan Kaufmann Publishers, 2001. 31, 110

G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer programming. In
Brewka et al. (2012), pages 32–42. 150

L. Liu and M. Truszczyński. Properties of programs with monotone and convex constraints. In
Veloso and Kambhampati (2005), pages 701–706. DOI: 10.1613/jair.2009 150

X. Liu, C. Ramakrishnan, and S. Smolka. Fully local and efficient evaluation of alternating fixed
points (extended abstract). In B. Steffen, editor,TACAS, volume 1384 of Lecture Notes in Computer
Science, pages 5–19. Springer-Verlag, 1998. 175

J. Lloyd. Foundations of Logic Programming. Symbolic Computation. Springer-Verlag, 1987.
DOI: 10.1007/978-3-642-83189-8 9, 10, 31, 32

V. Marek and M. Truszczyński. Nonmonotonic logic: context-dependent reasoning. Artifical Intelli-
gence. Springer-Verlag, 1993. 10

V. Marek and M. Truszczyński. Stable models and an alternative logic programming paradigm. In
K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The Logic Programming Paradigm: a
25-Year Perspective, pages 375–398. Springer-Verlag, 1999. 9, 49

M. Mariën, D. Gilis, and M. Denecker. On the relation between ID-logic and answer set pro-
gramming. In Alferes and Leite (2004), pages 108–120. DOI: 10.1007/978-3-540-30227-8_12
10

J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48(5):506–521, 1999. DOI: 10.1109/12.769433 110, 151

J. Marques-Silva and K. Sakallah, editors. Proceedings of the Tenth International Conference on Theory
and Applications of Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in Computer Science,
2007. Springer-Verlag. DOI: 10.1007/978-3-540-72788-0 188, 202

J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In Biere et al.
(2009), chapter 4, pages 131–153. DOI: 10.3233/978-1-58603-929-5-131 110

J. McCarthy. Circumscription — a form of nonmonotonic reasoning. Artificial Intelligence, 13(1-2):
27–39, 1980. DOI: 10.1016/0004-3702(80)90011-9 89

http://dx.doi.org/10.1613/jair.2009
http://dx.doi.org/10.1007/978-3-642-83189-8
http://dx.doi.org/10.1007/978-3-540-30227-8_12
http://dx.doi.org/10.1109/12.769433
http://dx.doi.org/10.1007/978-3-540-72788-0
http://dx.doi.org/10.3233/978-1-58603-929-5-131
http://dx.doi.org/10.1016/0004-3702(80)90011-9

200 BIBLIOGRAPHY

J. McCarthy. Applications of circumscription to formalizing common-sense knowledge. Artificial
Intelligence, 28:89–116, 1986. DOI: 10.1016/0004-3702(86)90032-9 89

J. McCarthy. Elaboration tolerance, 1998. URL http://www-formal.stanford.edu/jmc/
elaboration.html. 9

V. Mellarkod and M. Gelfond. Integrating answer set reasoning with constraint solving techniques.
In J. Garrigue and M. Hermenegildo, editors, Proceedings of the Ninth International Symposium on
Functional and Logic Programming (FLOPS’08), volume 4989 of Lecture Notes in Computer Science,
pages 15–31. Springer-Verlag, 2008. 151

V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287, 2008.
DOI: 10.1007/s10472-009-9116-y 151

J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann
Publishers, 1988. 10

R. Moore. Semantical considerations on nonmonotonic logics. Artificial Intelligence, 25:75–94, 1985.
DOI: 10.1016/0004-3702(85)90042-6 10, 89

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
SAT solver. In Proceedings of the Thirty-eighth Conference on Design Automation (DAC’01), pages
530–535. ACM Press, 2001. DOI: 10.1145/378239.379017 110, 151

I. Niemelä. Logic programs with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.
DOI: 10.1023/A:1018930122475 9, 10, 49

I. Niemelä and P. Simons. Evaluating an algorithm for default reasoning. In Working Notes of the
IJCAI’95 Workshop on Applications and Implementations of Nonmonotonic Reasoning Systems, pages
66–72, 1995. 32

I. Niemelä and P. Simons. Smodels: An implementation of the stable model and well-founded
semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings
of the Fourth International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’97), volume 1265 of Lecture Notes in Artificial Intelligence, pages 420–429. Springer-Verlag,
1997. DOI: 10.1007/3-540-63255-7 32

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM, 53(6):
937–977, 2006. DOI: 10.1145/1217856.1217859 90, 151

http://dx.doi.org/10.1016/0004-3702(86)90032-9
http://www-formal.stanford.edu/jmc/elaboration.html
http://www-formal.stanford.edu/jmc/elaboration.html
http://dx.doi.org/10.1007/s10472-009-9116-y
http://dx.doi.org/10.1016/0004-3702(85)90042-6
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1023/A:1018930122475
http://dx.doi.org/10.1007/3-540-63255-7
http://dx.doi.org/10.1145/1217856.1217859

BIBLIOGRAPHY 201

M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-prolog decision support
system for the space shuttle. In I. Ramakrishnan, editor, Proceedings of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), volume 1990 of Lecture Notes
in Computer Science, pages 169–183. Springer-Verlag, 2001. 175

J. Oetsch, J. Pührer, and H.Tompits. Catching the ouroboros: On debugging non-ground answer-set
programs. In Theory and Practice of Logic Programming. Twenty-sixth International Conference on
Logic Programming (ICLP’10) Special Issue, volume 10(4-6),pages 513–529.Cambridge University
Press, 2010. DOI: 10.1017/S1471068410000256 67

J. Oetsch, J. Pührer, M. Seidl, H. Tompits, and P. Zwickl. VIDEAS: A development tool for
answer-set programs based on model-driven engineering technology. In Delgrande and Faber
(2011), pages 382–387. DOI: 10.1007/978-3-642-20895-9_45 176

E. Oikarinen and T. Janhunen. Modular equivalence for normal logic programs. In Brewka et al.
(2006), pages 412–416. 176

N. Olivetti. Tableaux for nonmonotonic logics. In D’Agostino et al. (1999), pages 469–528. 90

M. Ostrowski and T. Schaub. ASP modulo CSP: The clingcon system. Theory and Practice of Logic
Programming, 12(4-5):485–503, 2012. DOI: 10.1017/S1471068412000142 151

D. Pearce. Default logic and constructive logic. In B. Neumann, editor, Proceedings of the European
Conference on Artificial Intelligence, pages 309–313. John Wiley & sons, 1994. 175

D. Pearce. A new logical characterisation of stable models and answer sets. In J. Dix, L. Pereira,
and T. Przymusinski, editors, Proceedings of the Sixth Workshop on Non-Monotonic Extensions of
Logic Programming (NMELP’96), volume 1216 of Lecture Notes in Computer Science, pages 57–70.
Springer-Verlag, 1996. 10, 175

D. Pearce. Equilibrium logic. Annals of Mathematics and Artificial Intelligence, 47(1-2):3–41, 2006.
DOI: 10.1007/s10472-006-9028-z 10, 175, 177

D. Pearce, I. de Guzmán, and A. Valverde. A tableau calculus for equilibrium entailment. In
R. Dyckhoff, editor, Proceedings of the Ninth International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX’00), volume 1847 of Lecture Notes in
Computer Science, pages 352–367. Springer-Verlag, 2000. DOI: 10.1007/10722086 90

D. Pearce, H. Tompits, and S. Woltran. Characterising equilibrium logic and nested logic pro-
grams: Reductions and complexity. Theory and Practice of Logic Programming, 9(5):565–616,
2009. DOI: 10.1017/S147106840999010X 89

S. Perri, F. Scarcello, G. Catalano, and N. Leone. Enhancing DLV instantiator by back-
jumping techniques. Annals of Mathematics and Artificial Intelligence, 51(2-4):195–228, 2007.
DOI: 10.1007/s10472-008-9090-9 67

http://dx.doi.org/10.1017/S1471068410000256
http://dx.doi.org/10.1007/978-3-642-20895-9_45
http://dx.doi.org/10.1017/S1471068412000142
http://dx.doi.org/10.1007/s10472-006-9028-z
http://dx.doi.org/10.1007/10722086
http://dx.doi.org/10.1017/S147106840999010X
http://dx.doi.org/10.1007/s10472-008-9090-9

202 BIBLIOGRAPHY

K.Pipatsrisawat and A.Darwiche. A lightweight component caching scheme for satisfiability solvers.
In Marques-Silva and Sakallah (2007), pages 294–299. DOI: 10.1007/978-3-540-72788-0_28
151

K. Pipatsrisawat and A. Darwiche. On the power of clause-learning SAT solvers as resolution
engines. Artificial Intelligence, 175(2):512–525, 2011. DOI: 10.1016/j.artint.2010.10.002 90, 110

E. Pontelli and T. Son. Justifications for logic programs under answer set semantics. In
Etalle and Truszczyński (2006). DOI: 10.1017/S1471068408003633 177

E. Pontelli, M. Balduccini, and F. Bermudez. Non-monotonic reasoning on Beowulf platforms. In
V. Dahl and P. Wadler, editors, Proceedings of the Fifth International Symposium on Practical Aspects
of Declarative Languages (PADL’03), volume 2562 of Lecture Notes in Artificial Intelligence, pages
37–57. Springer-Verlag, 2003. DOI: 10.1007/3-540-36388-2 150

potassco. URL http://potassco.sourceforge.net. DOI: 10.1007/s10992-011-9215-1 150

R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 55–76. Plenum Press, New York, 1978. 10

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132, 1980.
DOI: 10.1016/0004-3702(80)90014-4 10, 31, 89

F. Ricca. A java wrapper for DLV. In M. de Vos and A. Provetti, editors, Proceedings of the
Second International Workshop on Answer Set Programming (ASP’03), volume 78. CEUR Workshop
Proceedings (CEUR-WS.org), 2003. URL http://ceur-ws.org/Vol-78. 176

F. Ricca, W. Faber, and N. Leone. A backjumping technique for disjunctive logic programming. AI
Communications, 19(2):155–172, 2006. 150

F. Ricca, L. Gallucci, R. Schindlauer, T. Dell’Armi, G. Grasso, and N. Leone. OntoDLV: An ASP-
based system for enterprise ontologies. Journal of Logic and Computation, 19(4):643–670, 2009.
DOI: 10.1093/logcom/exn042 176

J. Rintanen. Planning and SAT. In Biere et al. (2009), chapter 15, pages 483–504.
DOI: 10.1007/978-3-642-15396-9_34 177

J. Rintanen, K. Heljanko, and I. Niemelä. Planning as satisfiability: parallel plans and algorithms
for plan search. Artificial Intelligence, 170(12-13):1031–1080, 2006.
DOI: 10.1016/j.artint.2006.08.002 174

A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. Elsevier and MIT Press,
2001. 189, 196

F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming. Elsevier Science,
2006. 9, 90, 151

http://dx.doi.org/10.1007/978-3-540-72788-0_28
http://dx.doi.org/10.1016/j.artint.2010.10.002
http://dx.doi.org/10.1017/S1471068408003633
http://dx.doi.org/10.1007/3-540-36388-2
http://potassco.sourceforge.net
http://dx.doi.org/10.1007/s10992-011-9215-1
http://dx.doi.org/10.1016/0004-3702(80)90014-4
http://ceur-ws.org/Vol-78
http://dx.doi.org/10.1093/logcom/exn042
http://dx.doi.org/10.1007/978-3-642-15396-9_34
http://dx.doi.org/10.1016/j.artint.2006.08.002

BIBLIOGRAPHY 203

O. Roussel and V. Manquinho. Pseudo-Boolean and cardinality constraints. In Biere et al. (2009),
chapter 22, pages 695–733. DOI: 10.3233/978-1-58603-929-5-695 150

L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon Fraser Uni-
versity, 2004. 110, 151

C. Sakama and K. Inoue. Updating extended logic programs through abduction. In M. Gelfond,
N. Leone, and G. Pfeifer, editors, Proceedings of the Fifth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’99), volume 1730 of Lecture Notes in Artificial
Intelligence, pages 147–161. Springer-Verlag, 1999. DOI: 10.1007/3-540-46767-X 176

C. Sakama and K. Inoue. Prioritized logic programming and its application to commonsense rea-
soning. Artificial Intelligence, 123(1-2):185–222, 2000. DOI: 10.1016/S0004-3702(00)00054-0
176

T. Schaub and K. Wang. A semantic framework for preference handling in answer set programming.
Theory and Practice of Logic Programming, 3(4-5):569–607, 2003.
DOI: 10.1017/S1471068403001844 176

J. Schlipf. The expressive powers of the logic programming semantics. Journal of Computer and
System Sciences, 51:64–86, 1995. DOI: 10.1006/jcss.1995.1053 10

L. Schneidenbach, B. Schnor, M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Experiences
running a parallel answer set solver on Blue Gene. In M. Ropo, J. Westerholm, and J. Dongarra,
editors, Proceedings of the Sixteenth European PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface (PVM/MPI’09), volume 5759 of Lecture Notes
in Computer Science, pages 64–72. Springer-Verlag, 2009. DOI: 10.1007/978-3-642-03770-2 150

C. Schwind. A tableaux-based theorem prover for a decidable subset of default logic. In
M. Stickel, editor, Proceedings of the Tenth International Conference on Automated Deduction
(CADE’90), volume 449 of Lecture Notes in Computer Science, pages 528–542. Springer-Verlag,
1990. DOI: 10.1007/3-540-52885-7 89

P. Simons. Extending and Implementing the Stable Model Semantics. Dissertation, Helsinki University
of Technology, 2000. 32

P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002. DOI: 10.1016/S0004-3702(02)00187-X 32, 33,
110, 150

J. Slaney and S. Thiébaux. Blocks world revisited. Artificial Intelligence, 125(1-2):119–153, 2001.
DOI: 10.1016/S0004-3702(00)00079-5 174

http://dx.doi.org/10.3233/978-1-58603-929-5-695
http://dx.doi.org/10.1007/3-540-46767-X
http://dx.doi.org/10.1016/S0004-3702(00)00054-0
http://dx.doi.org/10.1017/S1471068403001844
http://dx.doi.org/10.1006/jcss.1995.1053
http://dx.doi.org/10.1007/978-3-642-03770-2
http://dx.doi.org/10.1007/3-540-52885-7
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1016/S0004-3702(00)00079-5

204 BIBLIOGRAPHY

M. Slota and J. Leite. On semantic update operators for answer-set programs. In H. Coelho,
R. Studer, and M. Wooldridge, editors, Proceedings of the Nineteenth European Conference on Arti-
ficial Intelligence (ECAI’10), pages 957–962. IOS Press, 2010. 176

T. Soininen and I. Niemelä. Developing a declarative rule language for applications in product
configuration. In G. Gupta, editor, Proceedings of the First International Workshop on Practical
Aspects of Declarative Languages (PADL’99), volume 1551 of Lecture Notes in Computer Science,
pages 305–319. Springer-Verlag, 1999. 175

T. Syrjänen. Lparse 1.0 user’s manual. URL http://www.tcs.hut.fi/Software/smodels/
lparse.ps.gz. 32, 33, 66, 149

T. Syrjänen. Omega-restricted logic programs. In Eiter et al. (2001), pages 267–279.
DOI: 10.1007/3-540-45402-0_20 66, 67

T. Syrjänen. Cardinality constraint programs. In Alferes and Leite (2004), pages 187–199.
DOI: 10.1007/978-3-540-30227-8_18 33

T. Syrjänen. Debugging inconsistent answer set programs. In Dix and Hunter (2006), pages 77–83.
177

T. Syrjänen. Logic Programs and Cardinality Constraints: Theory and Practice. Dissertation, Aalto
University, 2009. 66

A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific Journal of Mathematics,
5:285–309, 1955. DOI: 10.2140/pjm.1955.5.285 32

G. Terracina, E. De Francesco, C. Panetta, and N. Leone. Enhancing a DLP system for advanced
database applications. In D. Calvanese and G. Lausen, editors, Proceedings of the Second Inter-
national Conference on Web Reasoning and Rule Systems (RR’08), volume 5341 of Lecture Notes in
Computer Science, pages 119–134. Springer-Verlag, 2008. DOI: 10.1007/978-3-540-88737-9 176

E. Torlak and D. Jackson. Kodkod: a relational model finder. In Proceedings of the Thirteenth Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07),
pages 632–647. Springer-Verlag, 2007. DOI: 10.1007/978-3-540-71209-1_49 10

M.Truszczynski. Trichotomy and dichotomy results on the complexity of reasoning with disjunctive
logic programs. Theory and Practice of Logic Programming, 11(6):881–904, 2011.
DOI: 10.1017/S1471068410000463 33

J. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press, 1988. 9, 66

A. Van Gelder. The alternating fixpoint of logic programs with negation. Journal of Computer and
System Science, 47:185–221, 1993. DOI: 10.1145/73721.73722 89

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://dx.doi.org/10.1007/3-540-45402-0_20
http://dx.doi.org/10.1007/978-3-540-30227-8_18
http://dx.doi.org/10.2140/pjm.1955.5.285
http://dx.doi.org/10.1007/978-3-540-88737-9
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1017/S1471068410000463
http://dx.doi.org/10.1145/73721.73722

BIBLIOGRAPHY 205

A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991. DOI: 10.1145/116825.116838 89

M. Veloso, editor. Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), 2007. AAAI/MIT Press. 191, 192, 196

M. Veloso and S. Kambhampati, editors. Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI’05), 2005. AAAI Press. 199, 205

J. Ward and J. Schlipf. Answer set programming with clause learning. In V. Lifschitz and I. Niemelä,
editors, Proceedings of the Seventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’04), volume 2923 of Lecture Notes in Artificial Intelligence, pages 302–313.
Springer-Verlag, 2004. DOI: 10.1007/b94792 150

S. Woltran. Equivalence between extended datalog programs - a brief survey. In O. de Moor,
G. Gottlob, T. Furche, and Sellers A, editors, First International Workshop on Datalog, volume
6702 of Lecture Notes in Computer Science, pages 106–119. Springer-Verlag, 2011. 176

L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm selection for
SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008. DOI: 10.1613/jair.2490 150

L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in a Boolean
satisfiability solver. In Proceedings of the International Conference on Computer-Aided Design (IC-
CAD’01), pages 279–285, 2001. DOI: 10.1109/ICCAD.2001.968634 110

Y. Zhang and N. Foo. A unified framework for representing logic program updates. In
Veloso and Kambhampati (2005), pages 707–713. 176

http://dx.doi.org/10.1145/116825.116838
http://dx.doi.org/10.1007/b94792
http://dx.doi.org/10.1613/jair.2490
http://dx.doi.org/10.1109/ICCAD.2001.968634

Index

,, 11
:, 22
;, 11, 24
(B, P, Q), 143
�, 53
⊥, 11
←, 11
↔, 11
|=, 25, 181
¬, 11, 23
→, 11
σ , 12
∼, 11, 13, 25, 181
�, 11
∨, 11
∧, 11
�P , 83
�P , 86
SM (P), 30
A, 12
Cn, 14
BF (P), 69
CF (P), 69
CF x(P), 85
EBP (L), 73
LF (P), 73
bodyP , 13
body, 13
grd , 16
head , 13
−, 13

+, 13
FP , 74, 81
TP , 74, 81
UP , 76, 81
�P , 77, 81, 89
�P , 74, 81, 89
F , 12
f , 78
t, 78
,, 3, 11
-, 11
., 3
:-, 3, 11
=, 115
_, 6, 64, 159
not, 11
|, 11
×, 103
T , 12
◦, 103

A, 13, 181
aggregate, 114

assignment, 115
count, 21, 114
sum, 21, 114, 181

answer set, 1, see stable model31, 31
Answer Set Programming, 1
ASP, 1
asptools, 116, 151
#assert, 149

208 INDEX

assertion level, 108
assignment, 12, 82, see aggregate115

appendage, 93
contradictory, 12
domain, 78
ordered, 12, 93
prefix, 93
total, 12
unordered, 12

assumption, 146
atleast, 32
atmost, 32
atom, 12

acyclic, 103
aggregate, 114
cyclic, 103

Automated Planning, 143, 175
#avg, 114

#base, 143
body, 13

external, 73
Boolean constraint, 82
Boolean Constraint Solving, 2, 151

cardinality constraint, 6, 20, 21
cardinality rule, 18
CDCL, 92
CDNL-ASP, 93
choice, see consequence29, 29
choice rule, 18
circular derivation, 71
Circumscription, 89
clasp, 8, 123
claspar, 124, 139
claspd, 124, 138
claspfolio, 138, 140
classical negation, 23
clause, 83, 90

definite, 31
Horn, 31
unit, 90

clingcon, 141
clingo, 8, 140
closed world reasoning, 2, 10, 89
complement, 12
completion, 69, 83, 85, 89
complexity, 30
conditional literal, 22, 165, 171

in (disjunctive) head, 25
in aggregate, 22
in body, 22
instantiation, 54

consequence
deterministic, 29, 61, 80, 94, 99, 126, 130
non-deterministic, 29, 92, 94, 95

consequence operator, 26
#const, 5, 116
constant, 11
Constraint Processing, 90, 141, 151
#count, 114
CP, 90
#cumulative, 144
Cut, 82

debugging, 176
decision level, 93
decision problem, 30
declarative problem solving, 1
default models semantics, 10
default negation, 13

in rule head, 24, 25
dependency graph

positive atom, 71, 176
predicate-rule, 55

in gringo, 120
directive, 3, 23, 116
disjunctive rule, 24

INDEX 209

domain, 12
domain predicate, 164
DOT, 120
double negation, 26
DPLL, 32, 91

elaboration tolerance, 45
encoding

uniform, 35, 61
entry, 12, 78, 82

decision, 94
implied, 94

enumeration, 29, 111
in clasp, 125
projective, 29, 111, 125

equivalence
strong, 176
uniform, 176

#even, 114
expand P , 28, 82
expand, 32, 82
#external, 116
external bodies, 73
external support, 73

fact, 3, 13
failed-literal detection, 126, 127, 151
Fitting operator, 89
Fitting semantics, 89
fixpoint, 14

alternating, 89
smallest, 27

#forget, 149
format

dimacs, 124
opb, 124
wbo, 124
smodels, 121

function, 11

gecode, 141
generate-and-test, 39, 46
graph, 12, see dependency graph55

connected, see strongly connected
subgraph12, 12

contracted, 56
implication, 130

graph coloring problem, 35
gringo, 8, 113
ground

atom, 12
instance, 12, 16
instantiation, 16
rule, 16
term, 12

groundedness, 89
grounding

arithmetic functions, 44
comparison predicates, 44
incremental, 143
unsafe rules, 42

guess-and-check, 39
guiding path, 131

Hamiltonian cycle, 45
head, 13

conditional literal, 22
Herbrand base, 32
Herbrand interpretation, 32
Herbrand universe, 32
heuristic

berkmin, 127, 137, 151
vmtf, 127, 151
vsids, 127, 137, 151, 168
sign, 127

#hide, 116, 125

iclingo, 124, 143
#infimum, 115

210 INDEX

instantiation
ground, 16

integrity constraint, 7, 17, 181
interface

incremental, 146
interpretation, 12, 181

partial, 12, 74
three-valued, 12, 74
total, 12
two-valued, 12

intersection, 29

John McCarthy, 9

Knowledge Representation and Reasoning, 2

linearization, 162, 171
literal, 13
literal block distance, 128, 132, 151
logic program, 1, 13, 182

λ-restricted, 66
ω-restricted, 66
disjunctive, 24, 138
incremental, 143
normal, 13
positive, 13
safe, 67
tight, 71, 86

loop, 72, 75, 89
loop formula, 73, 89
lower bound, 18, 181
lp2diff, 150, 175
lp2sat, 150, 175
lua, 117

match, 53
#max, 114
maximal, 12
maximization, 22
#maximize, 23

maximize statement, 23
Michael Gelfond, 1, 31
#min, 114
minimal, 12

⊆-, 12
minimization, 22
#minimize, 23
minimize statement, 22, 125, 182
minisat, 151
Mixed Integer Programming, 150
model, 13, 25, 70, 182

stable, see stable model13
supported, 70

Model Checking, 143, 175
modeling, 1
modeling language, 17
module theory, 176

negation-as-failure, 10, 89
nogood, 82, 90

antecedent, 94
asserting, 95
binary, 126, 130, 136
completion, 83, 94
loop, 86, 100
ternary, 126, 130

not, see ∼11, see not11
NP, 2, 17, 30
NPNP , 2, 24, 30

objective function, 22
oclingo, 116, 147
#odd, 114
online progression, 148
optimal stable model, 23
optimization, 29

constraint, 126
in clasp, 125
statement, 22, 182

INDEX 211

optimization problem
multi-criteria, 22

P, 30
part

defining, 6, 39
displaying, 6

in gringo, 116
generating, 6, 39
optimizing, 48
testing, 6, 39

partial evaluation, 55
planning

blocks world, 157
Potassco, 113, 138
predicate, 11

domain, 67
preference, 176
preprocessing, 124, 136, 151

non-ground, 113, 178
SAT-style, 137

priority level, 23
problem class, 35
problem instance, 35
program, see logic program13
progress saving, 127, 151
projection, see enumeration29, 159
Prolog, 1
proof complexity

in ASP, 82
in SAT, 90

propagation, 29, 99
backward, 77
in clasp, 126, 130
unit, see unit propagation82

propagator
post, 126, 133, 141

proposition, 11

n-queens problem, 39, 153

reachability, 47, 175
reasoning mode, 29

clasp, 125
in clasp, 125

recursion, 47
reduct, 14, 26, 31, 89
refutation, 82
representation, 1
resolution, 110

tree-like, 110
restart policies, 127, 151
#retract, 149
Robotics, 175
rule, 3, 13, 181

definite, 31
disjunctive, 24
ground, 16
normal, 13
safe, 37, 52

safety, see rule52
SAT, 2, 32
SAT Modulo Theories, 141, 151
SAT solving, see solving2
satelite, 137, 151
satisfaction relation, 25, 181
satisfiability, 29
Satisfiability Testing, 2
scope, 103
search algorithm, 29
search space, 82
semi-naive evaluation, 55
#show, 116, 125
smodels, 32, 82, see format121, 150
solution, 82
solve, 29, 91
solving, 1

2QBF, 175

212 INDEX

ASP, 2
incremental, 143
reactive, 147

MaxSAT, 124, 150
PB, 124, 150
SAT, 2, 90, 91, 110, 124, 150, 175

incremental, 151
SMT, 141, 151, 175

source pointer, 103
initial configuration, 103

splitting, 176
sqlite3, 118
stable, 14
stable model, 13, 14, 16, 25, 26, 182

preserving, 75, 77
stable models semantics, 1, 10, 31
standard

error, 119
output, 119

statistics
in clasp, 134
in gringo, 118

#step, 149
strongly connected component, 12, 56, 63, 103

dependency, 56
non-trivial, 12

strongly connected subgraph, 72
maximal, see strongly connected

component12, 12
substitution, 53

ground, 53
#sum, 114
supported model, 70, in clasp125
#supremum, 115
symmetry, 161

tableau, 78
calculus, 78

term, 12
theories, 25
tight, 47, 63, 71, 72, 86, 89
top-level, 92
translation

ASP to SAT, 10, 69, 73, 89
traveling salesperson problem, 45, 170
Turing machine, 60
Tweety, xxi, 178
two-watched literal, 126, 151

unfounded set, 76, 89
disjunctive, 110
greatest, 76

union, 29
unique implication point, 108

first, 108
unit propagation, 82, 83, 91, 94, 99

in clasp, 126
unit-resulting, 83, 94
unsatisfiability, 29
unsatisfiable core, 150, 177
upper bound, 20, 181

variable
anonymous, 6, 64, 159
first-order, 11, 16, 51
global, 37
local, 37
propositional, 12

visualization, 136
Vladimir Lifschitz, 1, 31
#volatile, 144

watch list, 126, 151
weight constraint, 21, 181
weight rule, 21
well-founded semantics, 89

	Figures
	Tables
	Lists
	Algorithms
	Preface
	About the Book
	Motivation
	Quickstart
	Refs

	Introduction
	Logical Preliminaries & Terminology
	Basic Syntax & Semantics
	Language Extensions
	First-Order Variables
	Core Language
	Optimization Statements
	Two (and a Half) Kinds of Negation
	True Language Extensions

	Computational Aspects
	Computation from First Principles
	Reasoning Modes
	Computational Complexity

	Refs

	Basic Modeling
	Problem Encoding
	Modeling Methodology
	Advanced Problem Encoding
	Refs

	Grounding
	Basic Grounding Algorithms
	Turing Machine
	Meta Programming
	Refs

	Characterizations
	Axiomatic Characterization
	Operational Characterization
	Proof-theoretic Characterization
	Nogood-based Characterization
	Refs

	Solving
	Boolean Constraint Solving
	Setting the Stage
	Conflict-driven Nogood Learning
	Nogood Propagation
	Unfounded Set Checking
	Conflict Analysis
	Refs

	Systems
	Grounding with GRINGO
	Architecture
	GRINGO input Language
	Making Grounding more transparent
	SMODELS Format
	Outlook

	Solving with CLASP
	Interfaces & Preprocessing
	Reasoning Modes
	Propagation & Search
	Multi-threaded Architecture
	Making Solving more transparent
	Fine-Tuning
	Outlook

	More Potassco Systems
	CLASPD
	CLASPAR
	CLASPFOLIO
	CLINGO
	CLINGCON
	ICLINGO
	OCLINGO

	Refs

	Advanced Modeling
	Pimping Queens
	Stemming Blocks
	Sequential Planning
	Parallel Planning

	Speeding Salesmen
	Vade mecum gum
	Refs

	Conclusions
	Omissions
	Challenges
	Arming Tweety with Jet Engines

	ASP in a Nutshell
	Biblio
	Index

