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Review: Bayesian inference
• A general scenario:

- Query variables: X
- Evidence (observed) variables and their values: E = e

• Inference problem: answer questions about the query 
variables given the evidence variables

• This can be done using the posterior distribution P(X | E = e)
• Example of a useful question: Which X is true?
• More formally: what value of X has the least probability of 

being wrong?
• Answer: MPE = MAP (argmin P(error) = argmax

P(X=x|E=e))



Today: What if P(X,E) is complicated?

• Very, very common problem: P(X,E) is complicated because both X 
and E depend on some hidden variable Y

• SOLUTION:
• Draw a bunch of circles and arrows that represent the dependence
• When your algorithm performs inference, make sure it does so in the order of 

the graph

• FORMALISM: Bayesian Network



Hidden Variables
• A general scenario:

- Query variables: X
- Evidence (observed) variables and their values: E = e
- Unobserved variables: Y

• Inference problem: answer questions about the query 
variables given the evidence variables
- This can be done using the posterior distribution P(X | E = e)
- In turn, the posterior needs to be derived from the full joint P(X, E, Y)

• Bayesian networks are a tool for representing joint 
probability distributions efficiently
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Bayesian networks

• More commonly called graphical models
• A way to depict conditional independence 

relationships between random variables
• A compact specification of full joint distributions



Outline

• Review: Bayesian inference
• Bayesian network: graph semantics
• The Los Angeles burglar alarm example
• Conditional independence ≠ Independence
• Constructing a Bayesian network: Structure learning
• Constructing a Bayesian network: Hire an expert



Bayesian networks: Structure

• Nodes: random variables

• Arcs: interactions
• An arrow from one variable to another indicates 

direct influence
• Must form a directed, acyclic graph



Example: N independent 
coin flips

• Complete independence: no interactions

X1 X2 Xn
…



Example: Naïve Bayes document model

• Random variables:
• X: document class
• W1, …, Wn: words in the document

W1 W2 Wn
…

X



Outline

• Review: Bayesian inference
• Bayesian network: graph semantics
• The Los Angeles burglar alarm example
• Conditional independence ≠ Independence
• Constructing a Bayesian network: Structure learning
• Constructing a Bayesian network: Hire an expert



Example: Los Angeles Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor earthquakes. My two 
neighbors, John and Mary, promised to call me at work if they hear the alarm
• Example inference task: suppose Mary calls and John doesn’t call. What is the probability of a 

burglary?

• What are the random variables? 
• Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• What are the direct influence relationships?
• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call



Example: Burglar Alarm



Conditional independence and the 
joint distribution

• Key property: each node is conditionally independent of its 
non-descendants given its parents
• Suppose the nodes X1, …, Xn are sorted in topological order
• To get the joint distribution P(X1, …, Xn), 

use chain rule:
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Conditional probability distributions
• To specify the full joint distribution, we need to specify a 
conditional distribution for each node given its parents: 
P (X | Parents(X))

Z1 Z2 Zn

X

…

P (X | Z1, …, Zn)



Example: Burglar Alarm
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Example: Burglar Alarm
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• A “model” is a complete 
specification of the 
dependencies.

• The conditional 
probability tables are 
the model parameters.
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The joint probability distribution

For example, 

P(j, m, a,¬b,¬e) = P(¬b) P(¬e) P(a|¬b,¬e) P(j|a) P(m|a)
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Independence
• By saying that !" and !# are independent, we mean that 

P(!#, !") = P(!")P(!#)
• !" and !# are independent if and only if they have no common 

ancestors
• Example: independent coin flips

• Another example: Weather is independent of all other variables in this 
model.

X1 X2 Xn
…



Conditional independence
• By saying that !" and !# are conditionally independent given $, we 

mean that 
P !",!# $ = P(!"|$)P(!#|$)

• !" and !# are conditionally independent given $ if and only if they 
have no common ancestors other than the ancestors of $. 
• Example: naïve Bayes model:

W1 W2 Wn
…

X



Common cause: Conditionally 
Independent

Common effect: Independent

Are X and Z independent? No
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Are they conditionally independent given Y? Yes
! ", $ ( = !("|()!($|()

Are X and Z independent? Yes
!($, ") = !($)!(")

Are they conditionally independent given Y? No
! ", $ ( = ! ( $, " ! $ !(")
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Conditional independence ≠ Independence



Common cause: Conditionally 
Independent

Common effect: Independent

Are X and Z independent? No
Knowing X tells you about Y, which tells you about Z.
Are they conditionally independent given Y? Yes
If you already know Y, then X gives you no useful 
information about Z.

Are X and Z independent? Yes
Knowing X tells you nothing about Z.
Are they conditionally independent given Y? No

If Y is true, then either X or Z must be true.
Knowing that X is false means Z must be true.
We say that X “explains away” Z.

Conditional independence ≠ Independence



Conditional independence ≠ Independence

Being conditionally independent given X does NOT mean that !" and !# are 
independent.  Quite the opposite. For example:
• The document topic, X, can be either “sports” or “pets”, equally probable.
• W1=1 if the document contains the word “food,” otherwise W1=0.
• W2=1 if the document contains the word “dog,” otherwise W2=0.
• Suppose you don’t know X, but you know that W2=1 (the document has the 

word “dog”).  Does that change your estimate of p(W1=1)?

W1 W2 Wn
…

X



Conditional independence
Another example: causal chain

• X and Z are conditionally independent given Y, because they have 
no common ancestors other than the ancestors of Y.  

• Being conditionally independent given Y does NOT mean that X 
and Z are independent.  Quite the opposite.  For example, 
suppose P(#) = 0.5, P ) # = 0.8, P ) ¬# = 0.1, P - ) =
0.7, and P - ¬) = 0.4. Then we can calculate that P - # =
0.64, but P(-) = 0.535
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Constructing a Bayes Network: Two Methods
1. “Structure Learning” a.k.a. “Analysis of Causality:”

1. Suppose you know the variables, but you don’t know which variables depend on 

which others.  You can learn this from data.

2. This is an exciting new area of research in statistics, where it goes by the name of 

“analysis of causality.”

3. … but it’s almost always harder than method #2.  You should know how to do this 

in very simple examples (like the Los Angeles burglar alarm), but you don’t need to 

know how to do this in the general case.

2. “Hire an Expert:” 

1. Find somebody who knows how to solve the problem.  

2. Get her to tell you what are the important variables, and which variables depend 

on which others.

3. THIS IS ALMOST ALWAYS THE BEST WAY.



Constructing Bayesian networks: Structure 
Learning
1. Choose an ordering of variables X1, … , Xn

2. For i = 1 to n
• add Xi to the network
• Check your training data.  If there is any variable X1, … ,Xi-1 that CHANGES 

the probability of Xi=1, then add that variable to the set Parents(Xi) such 
that
P(Xi | Parents(Xi)) = P(Xi | X1, ... Xi-1)

3. Repeat the above steps for every possible ordering (complexity: n!). 

4. Choose the graph that has the smallest number of edges.



• Suppose we choose the ordering M, J, A, B, E

Example
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• Suppose we choose the ordering M, J, A, B, E

Example



Example contd.

• Deciding conditional independence is hard in noncausal directions
• The causal direction seems much more natural

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed (vs. 
1+1+4+2+2=10 for the causal ordering)

versus



Why store it in causal order? A: Saves 
memory
• Suppose we have a Boolean variable Xi with k Boolean parents. How many rows 

does its conditional probability table have? 
• 2k rows for all the combinations of parent values

• Each row requires one number for P(Xi = true | parent values)

• If each variable has no more than k parents, how many numbers does the 
complete network require? 
• O(n · 2k) numbers – vs. O(2n) for the full joint distribution

• How many nodes for the burglary network? 
1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)
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A more realistic Bayes Network: 
Car diagnosis

• Initial observation: car won’t start
• Orange: “broken, so fix it” nodes
• Green: testable evidence
• Gray: “hidden variables” to ensure sparse structure, reduce parameters



Car insurance



In research literature…

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data 
Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan
(22 April 2005) Science 308 (5721), 523.



In research literature…

Describing Visual Scenes Using Transformed Objects and Parts
E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky.
International Journal of Computer Vision, No. 1-3, May 2008, pp. 291-330.



In research literature…

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables
Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko
International Congress on Phonetic Sciences 1719:299-302, 2007

http://isle.illinois.edu/sst/pubs/2007/hasegawa-johnson07icphs.pdf


In research literature…

Detecting interaction links in a collaborating group using manually annotated data
S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor
Social Networks 10.1016/j.socnet.2012.04.002

http://isle.illinois.edu/sst/pubs/


In research literature…

Detecting interaction links in a collaborating group using manually annotated data
S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor

Social Networks 10.1016/j.socnet.2012.04.002

• Link: !"# = 1 if #i is 
listening to #j.

• Indirect: &"# = 1 if 
#i and #j are both 
listening to the 
same person.

• Speaking: '" = 1 if 
the i’th person is 
speaking.

• Gaze: ("# = 1 if #i 
is looking at #j.

• Neighborhood:
)"# = 1 if they’re 
near one another

http://isle.illinois.edu/sst/pubs/


Summary

• Bayesian networks provide a natural representation for (causally 
induced) conditional independence
• Topology + conditional probability tables
• Generally easy for domain experts to construct


