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Abstract

A major limitation of logical representations is the implicit assump-
tion that the Background Knowledge (BK) is perfect. This assumption
is problematic if data is noisy, which is often the case. Here we aim to
explore how ASP specifications with probabilistic facts can lead to char-
acterizations of probability functions on the specification’s domain.

1 Introduction and Motivation
Answer Set Programming (ASP) [3] is a logic programming paradigm based
on the Stable Model semantics of Normal Logic Programs (NP) that can be
implemented using the latest advances in SAT solving technology. ASP is a
truly declarative language that supports language constructs such as disjunction
in the head of a clause, choice rules, and hard and weak constraints.

The Distribution Semantics (DS) [4] is a key approach to extend logical
representations with probabilistic reasoning. Probabilistic Facts (PF) [4] are
the most basic stochastic DS primitive and they take the form of logical facts,
a, labelled with a probability, such as p :: a; Each probabilistic fact repre-
sents a boolean random variable that is true with probability p and false with
probability 1 − p. A (consistent) combination of the PFs defines a total choice
θ = {p :: a, . . .} such that

P (θ) =
∏
a∈θ

p
∏
a ̸∈θ

(1− p). (1)

Our goal is to extend this probability, from total choices, to cover the specifi-
cation domain. We can foresee two key applications of this extended probability:

1. Support any probabilistic reasoning/task on the specification domain.

2. Also, given a dataset and a divergence measure, now the specification
can be scored (by the divergence w.r.t. the empiric distribution of the
dataset), and sorted amongst other specifications. This is a key ingredi-
ent in algorithms searching, for example, an optimal specification of the
dataset.
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This goal faces a critical problem concerning situations where multiple stan-
dard models result from a given total choice[1], illustrated by the following
example. The specification

0.3 :: a,

b ∨ c← a.

has three stable models, {¬a} , {a, b} and {a, c}. While it is straightforward to
set P (¬a) = 0.7, there is no further information to assign values to P (a, b) and
P (a, c). At best, we can use a parameter α such that

P (a, b) = 0.3α,

P (a, c) = 0.3(1− α).

This uncertainty in inherent to the specification, but can be mitigated with
the help of a dataset: the parameter α can be estimated from the empirical
distribution.

In summary, if an ASP specification is intended to describe some system
that can be observed then:

1. The observations can be used to estimate the value of the parameters
(such as α above and others entailed from further clauses).

2. With a probability set for the stable models, we want to extend it to all
the samples (i.e. consistent sets of literals) of the specification.

3. This extended probability can then be related to the empirical distribu-
tion, using a probability divergence, such as Kullback-Leibler; and the
divergence value used as a performance measure of the specification with
respect to the observations.

4. If that specification is only but one of many possible candidates then that
performance measure can be used, e.g. as fitness, by algorithms searching
(optimal) specifications of a dataset of observations.

Currently, we are on the step two above: Extending a probability function
(with parameters such as α), defined on the stable sets of a specification, to
all the samples of the specification. This extension must, of course, respect the
axioms of probability so that probabilistic reasoning is consistent with the ASP
specification.

2 Work Plan
A team of two researchers and a undergraduate, master, or Ph.D. student,
working over six months with adequate resources, should be able to advance
substantial contributions and produce an intermediate progress report for a
workshop, a final comprehensive paper for a conference, or start a Ph.D. project
with greater reach and depth, describing:

• The formalization of the methods outlined above, including the parameter
estimation from observations and the probability distribution over the
specification samples.
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• Application and evaluation of this approach, using tools such as s(casp), or
the Potassco suit to a range of problems from the simple Burglar, Earth-
quake, Alarm to measuring a specification accuracy on a given dataset, or
finding an optimal specification for a given dataset given some background
knowledge.

While the theoretical work for this project has yet to be completed, there
are some relevant tasks that, with different levels of ambition, can be started
right now:

1. Extract Probability Annotations. For example, convert the annotated spec-
ification 0.3::a. b ; c :- a. to a ; -a. b ; c :- a. This is a sim-
ple, syntactical task that can be implemented either with prolog or using
python and the API provided by the Potassco suite.

2. Extend Probability to Stable Models. Application of the method outlined
before, where the probability of total choices is extended to standard mod-
els using parameters, which are next estimated with a dataset.

3. Relate Samples, Stable Models and Total Choices. Determine which sta-
ble models, or total choices, contain and which are contained in a given
sample.

4. Propagate Probability to Samples. Use of the relation above to assign a
probability to an arbitrary event, using an aggregation operation, such as
max or

∏
, from the relevant stable models.

5. Process Evaluation on Well-known Cases. Assessment of the implemented
prototype using well-known problems such as the “Alarm-Burglar-Earth-
quake”.
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