
Probabilistic Answer Set
Programming
A Research Draft

Francisco Coelho

NOVA LINCS &
High Performance Computing Chair &

Departamento de Informática, Universidade de Évora

May 26, 2022

In short

• Use logic programs to formalize knowledge.
• logic program = formula = model.
• Observations not always agree with such models —

errors may result from sensors or from a wrong or
incomplete model.

• We can associate quantities to formulas and
sub-formulas.
• And define how observations update those quantities.

• Adequate quantities and updates might be used to
interpret or evaluate the model e.g. define a joint
distribution or measure the accuracy of a clause.

1 Development

2 Conclusions

Problem 1: Probabilities

The stable models of c1 ∧ c2 where

c1 : b ∨ ¬b
c2 : h1 ∨ h2 ← b

are
{¬b} , {b, h1} and {b, h2} .

Associate quantities to clauses and update them with
observations.
Then compute:
• The probability of a stable model.
• The probability of an atom.
• The joint distribution of all atoms.

Problem 1: Probabilities

The stable models of c1 ∧ c2 where

c1 : b ∨ ¬b
c2 : h1 ∨ h2 ← b

are
{¬b} , {b, h1} and {b, h2} .

Associate quantities to clauses and update them with
observations.
• How to match an observation z with a clause case hi , b?
• How do observations update the probabilities?
• Is this enough to compute the joint distribution of the

atoms?

Matching observations and sub-formulas

• An observation is a subset of the literals1 from a program.
• A consistent observation has no subset {p,¬p}.
• A consistent observation z is relevant for the clause

h ← b if b ⊆ z .
• A disjunctive clause

h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm

has n cases: {hi , b1, . . . , bm} , i = 1 : n.
• The consistent observation z and the case {h, b1:n}

match if {h, b1:n} ⊆ z .
The above definitions apply to facts, m = 0, and
constraints, n = 0.

1The set of atoms, a, of the program and their classic negations, ¬a.

Counters and updates
A consistent observation relevant for a clause
h1 ∨ · · · ∨ hn ← b should increase the probability of
matched cases.
Counters and updates

1 Associate counters, u, r , n, to clauses h ← b.
2 Associate a counter, mi , to cases hi , b.
3 Initial values result from prior knowledge.
4 Each consistent observation increments:

• The u counters of relevant unmatched clauses (no
matched cases).

• The r counters of relevant clauses.
• The n counters of not relevant clauses.
• The mi counters of matched cases hi , b.
• Clause counters must verify r ≤ u +

∑
i mi .

Counters and updates

A consistent observation relevant for a clause
h1 ∨ · · · ∨ hn ← b should increase the probability of
matched cases.
Counters and updates
• Literals must be explicitly observed: ¬b ̸=∼b.
• Counters relate a clause structure with observations.
• So far stable models had no role.

Counters and updates: An example

Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

Counters and updates: An example

Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

Counters of b ∨ ¬b
0 observations where not relevant
(because the body is ⊤);
There where 12 relevant
observations;
Of those, b was matched by 7,
¬b by 2 and 3 observations
matched neither (|=∼b,∼¬b).

Counters of h1 ∨ h2 ← b
There where 11 = 6 + 5
observations, 6 relevant to this
clause;
From these, 4 matched h1, 3
matched h2 and 2 matched no
case.

Counters and updates: An example
Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

What can be computed?
• P(¬b) = 2

12 because ¬b matched 2 of 12 relevant
observations.
• P(h1|b) = 4

6 because h1, b matched 4 of 6 relevant
observations.
• P(b) needs further information.

• E.g. assuming independent observations,

P(b) = 7 + 6
12 + 0 + 6 + 5

.

Counters and updates: An example
Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

What can be computed? — assuming independent
observations
• P(b) + P(¬b) = 13

23 + 2
12 ≈ 0.73 < 1 because some

observations have neither b nor ¬b.
• P(h1, b) = P(h1|b)P(b) = 4

6
13
23 from above.

• P(h2, b) = P(h2|b)P(b) is analogous.
• But not e.g. P(h1|¬b) because no clause relates h1 and
¬b.

Counters and updates: An example

Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

Also. . .
Counters are local to clauses and, for distinct clauses, may
result from distinct sources. E.g. the relevant counter of
h1 ∨ h2 ← b and the match counter of b in b ∨ ¬b.

Counters and updates: An example

Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

Also. . .
Some observations may have neither b nor ¬b so:

P(b) + P(¬b) < 1.

Counters and updates: An example

Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

Also. . .
Assuming independent observations, since h1 and h2 are not
independent, ∑

m

P(m) > 1.

Counters and updates: An example
Given the following clauses with annotated counters,

b ∨ ¬b counters: 7, 2; 3, 12, 0
h1 ∨ h2 ← b counters: 4, 3; 2, 6, 5

Also. . .
What’s missing to define the joint distribution

P(H1,H2,B)?

The joint distribution, according to the clauses

B
b ¬b ∼b
• • ·

H1
h1 ¬h1 ∼h1

b • ◦ ◦
¬b ◦ ◦ ◦
∼b ◦ ◦ ◦

H2
h2 ¬h2 ∼h2

b • ◦ ◦
¬b ◦ ◦ ◦
∼b ◦ ◦ ◦

Shortcomming 2: Default Negation

• How to deal with rules with ∼a parts?
• Should missing elements on observations be replaced with
∼a atoms?

1 Development

2 Conclusions

Background Material

Machine Learning

Models are numeric functions: y ≈ fθ(x), θi , xj , y ∈ R.
• Amazing achievements.
• Noise tolerant.
• (as of today) Huge enterprise funding .

but
• (essentially) Academically solved.
• Models trained from “large” amounts of samples.
• Hard to add background knowledge.
• Models are hard to interpret.
• Single table, independent rows assumption.

Inductive Logic Programming

Models are logic program: pθ(x , y), θi , xj , y ∈ A.
• Amazing achievements, at scale.
• Models trained from “small” amounts of samples.
• Compact, readable models.
• Background knowledge is easy to incorporate and edit.

but
• as of today, Little enterprise commitment.
• as of today, Mostly academic interest.
• Noise sensitive.

Distribution Semantics
Assigns probability to (marginally independent) facts and
derives probability of ground propositions.
Let F be set of facts, S ⊆ F , R a set of definite clauses and p
a proposition:

PF (S) =
∏
f∈S

P(f)
∏
f ̸∈S

(
1− P(f)

)
P(W) =

∑
S⊆F : W=M(S∪R)

PF (S)

P(p) =
∑

S : S∪R ⊢ p
PF (S) =

∑
W : p∈W

P(W)

• Amazing achievements, at scale.
• Lots of tools and research.
• The best of both “worlds”?

Answer Set Programming

A program defines stable models.
• Pure declarative language, unlike Prolog.
• Uses generate & test methods instead of proofs.
• Uses both default ∼p and classical negation ¬p.
• Clauses can be disjunctive a ∨ b ← c ∧ d.

ASP definitions

• An atom is r(t1, . . . tn) where
• r is a n-ary predicate symbol.
• each ti is a constant or a variable.

• A ground atom has no variables.
• A literal is either an atom a or a negated atom ¬a.
• An ASP Program is a set of rules such as

h1 ∨ · · · ∨ hm ← b1 ∧ · · · ∧ bn where
• Each hi is a literal, a or ¬a.
• Each bj is a literal like above or preceded by ∼ .
• m + n > 0.

• The head of such rule is h1 ∨ · · · ∨ hm.
• The body of such rule is b1 ∧ · · · ∧ bn.
• Each bi is a subgoal.

ASP definitions (cont.)

• A non-disjunctive rule has m ≤ 1.
• A normal rule has m = 1.
• A constraint has m = 0.
• A fact is a normal rule with n = 0.
• The dependency graph of a program is a digraph

where:
• Each grounded atom is a node.
• For each grounded rule there are edges from the atoms

in the body to the atoms in the head.
• A negative edge results from an atom with ∼ ;

Otherwise it is a positive edge.
• An acyclic program has an acyclic dependency graph.

ASP definitions (cont.)

• A normal program has only normal rules.
• A definite program is a normal program that doesn’t

contains ¬ neither ∼ .
• In the dependency graph of a stratified program no

cycle contains a negative edge.
• A stratified program has a single minimal model that

assigns either true or false to each atom.
• A propositional program has no variables.

ASP definitions (cont.)
• The Herbrand base of a program is the set of ground

literals that result from combining all the predicates and
constants of the program.
• An interpretation is a consistent subset (i.e. doesn’t

contain {a,¬a}) of the Herbrand base.
• A ground literal is true, I |= a, if a ∈ I ; otherwise the

literal is false.
• A ground subgoal, ∼b, where b is a ground literal, is

true, I |=∼b, if b ̸∈ I ; otherwise, if b ∈ I , it is false.
• A ground rule r = h1 ∨ · · · ∨ hm ← b1 ∧ · · · ∧ bn is

satisfied by the interpretation I , i.e. I |= r , iff
• I ̸|= bj for some j or I |= hi for some i,

• A model of a program is an interpretation that satisfies
all the rules.

Stable Semantics

• Every definite program has a unique minimal model; its
semantics.
• Programs with negation may have no unique minimal

model.
• Given a program P and an interpretation I , their reduct,

PI is the propositional program that results from
1 Removing all the rules with ∼b in the body where b ∈ I .
2 Removing all the ∼b subgoals from the remaining rules.

• A stable model of the program P is an interpretation I
that is the minimal model of the reduct PI .
• The semantics (the answer sets) of a program is the

set of stable models of that program.

Stable Semantics

• A program such as a ←∼a may have no stable models.
• A stable model is a closed interpretation (under the rules

of program).

1 Development

2 Conclusions

1 Development

2 Conclusions

	Motivation
	Development
	Conclusions
	Background Material
	Stable Sets
	References

