Probabilistic Answer Set Programming A Research Draft

Francisco Coelho

NOVA LINCS & High Performance Computing Chair & Departamento de Informática, Universidade de Évora

May 26, 2022

In short

- Use logic programs to formalize knowledge.
 - logic program = formula = model.
 - **Observations** not always agree with such models errors may result from sensors or from a wrong or incomplete model.
- We can associate **quantities** to formulas and sub-formulas.
 - And define how observations **update** those quantities.
- Adequate quantities and updates might be used to **interpret or evaluate the model** *e.g.* define a joint distribution or measure the accuracy of a clause.

Problem 1: Probabilities

The stable models of $c_1 \wedge c_2$ where

 $c_1 : b \lor \neg b$ $c_2 : h_1 \lor h_2 \quad \leftarrow b$

are

$$\left\{ \neg b\right\} ,\left\{ b,h_{1}\right\} \text{ and }\left\{ b,h_{2}\right\} .$$

Associate quantities to clauses and update them with observations.

Then compute:

- The probability of a stable model.
- The probability of an atom.
- The joint distribution of all atoms.

Problem 1: Probabilities

The stable models of $c_1 \wedge c_2$ where

 $c_1 : b \lor \neg b$ $c_2 : h_1 \lor h_2 \quad \leftarrow b$

are

$$\left\{ \neg b\right\} ,\left\{ b,h_{1}\right\} \text{ and }\left\{ b,h_{2}\right\} .$$

Associate quantities to clauses and update them with observations.

- How to **match** an observation z with a clause case h_i, b ?
- How do observations update the probabilities?
- Is this enough to compute the joint distribution of the atoms?

Matching observations and sub-formulas

- An observation is a subset of the literals¹ from a program.
- A consistent observation has no subset $\{p, \neg p\}$.
- A consistent observation z is relevant for the clause h ← b if b ⊆ z.
- A disjunctive clause

$$h_1 \lor \cdots \lor h_n \leftarrow b_1 \land \cdots \land b_m$$

has *n* cases: $\{h_i, b_1, ..., b_m\}, i = 1 : n$.

 The consistent observation z and the case {h, b_{1:n}} match if {h, b_{1:n}} ⊆ z.

The above definitions apply to facts, m = 0, and constraints, n = 0.

¹The set of atoms, a, of the program and their classic negations, $\neg a$.

Counters and updates

A consistent observation relevant for a clause $h_1 \vee \cdots \vee h_n \leftarrow b$ should increase the probability of matched cases.

Counters and updates

- **1** Associate **counters**, u, r, n, to clauses $h \leftarrow b$.
- **2** Associate a **counter**, m_i , to cases h_i , b.
- **3** Initial values result from *prior* knowledge.
- **4** Each *consistent* observation **increments**:
 - The *u* counters of relevant unmatched clauses (no matched cases).
 - The *r* counters of relevant clauses.
 - The *n* counters of **n**ot relevant clauses.
 - The m_i counters of matched cases h_i , b.
 - Clause counters must verify $r \leq u + \sum_i m_i$.

Counters and updates

A consistent observation **relevant** for a clause $h_1 \vee \cdots \vee h_n \leftarrow b$ should **increase the probability of matched cases**.

Counters and updates

- Literals must be explicitly observed: $\neg b \neq \sim b$.
- Counters relate a clause structure with observations.
- So far stable models had no role.

Given the following clauses with annotated counters,

$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

Given the following clauses with annotated counters,

$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

Counters of $b \lor \neg b$

0 observations where not relevant (because the body is \top); There where 12 relevant observations; Of those, *b* was matched by 7,

 $\neg b$ by 2 and 3 observations matched neither ($\models \sim b, \sim \neg b$).

Counters of $h_1 \lor h_2 \leftarrow b$

There where 11 = 6 + 5 observations, 6 relevant to this clause;

From these, 4 matched h_1 , 3 matched h_2 and 2 matched no case.

Given the following clauses with annotated counters,

$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

What can be computed?

- $P(\neg b) = \frac{2}{12}$ because $\neg b$ matched 2 of 12 relevant observations.
- $P(h_1|b) = \frac{4}{6}$ because h_1, b matched 4 of 6 relevant observations.
- *P*(*b*) needs further information.
 - E.g. assuming independent observations,

$$P(b) = \frac{7+6}{12+0+6+5}.$$

Given the following clauses with annotated counters,

$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

What can be computed? — assuming independent observations

- $P(b) + P(\neg b) = \frac{13}{23} + \frac{2}{12} \approx 0.73 < 1$ because some observations have neither b nor $\neg b$.
- $P(h_1, b) = P(h_1|b)P(b) = \frac{4}{6}\frac{13}{23}$ from above.
- $P(h_2, b) = P(h_2|b)P(b)$ is analogous.
- But not *e.g.* $P(h_1|\neg b)$ because no clause relates h_1 and $\neg b$.

Given the following clauses with annotated counters,

$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

Also...

Counters are local to clauses and, for distinct clauses, may result from distinct sources. *E.g. the relevant counter of* $h_1 \vee h_2 \leftarrow b$ and the match counter of b in $b \vee \neg b$.

Given the following clauses with annotated counters,

$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

Also...

Some observations may have neither b nor $\neg b$ so:

$$P(b) + P(\neg b) < 1.$$

Given the following clauses with annotated counters,

$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

Also...

Assuming independent observations, since $h_1 \mbox{ and } h_2$ are not independent,

$$\sum P(m) > 1.$$

m

Given the following clauses with annotated counters,

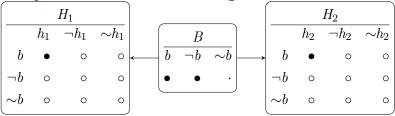
$$b \lor \neg b$$
 counters: 7, 2; 3, 12, 0
 $h_1 \lor h_2 \leftarrow b$ counters: 4, 3; 2, 6, 5

Also...

What's missing to define the joint distribution

$$P(H_1, H_2, B)?$$

The joint distribution, according to the clauses



Shortcomming 2: Default Negation

- How to deal with rules with $\sim a$ parts?
- Should missing elements on observations be replaced with ${\sim}a$ atoms?

Background Material

Machine Learning

Models are numeric functions: $y \approx f_{\theta}(x), \ \theta_i, x_j, y \in \mathbf{R}$.

- Amazing achievements.
- Noise tolerant.
- (as of today) Huge enterprise funding .

but

- (essentially) Academically solved.
- Models trained from "large" amounts of samples.
- Hard to add background knowledge.
- Models are hard to interpret.
- Single table, independent rows assumption.

Inductive Logic Programming

Models are logic program: $p_{\theta}(x, y), \ \theta_i, x_j, y \in \mathcal{A}$.

- Amazing achievements, at scale.
- Models trained from "small" amounts of samples.
- Compact, readable models.
- Background knowledge is easy to incorporate and edit.

but

- as of today, Little enterprise commitment.
- as of today, Mostly academic interest.
- Noise sensitive.

Distribution Semantics

Assigns probability to (marginally independent) facts and derives probability of ground propositions. Let F be set of facts, $S \subseteq F$, R a set of definite clauses and p

a proposition:

$$P_F(S) = \prod_{f \in S} P(f) \prod_{f \notin S} (1 - P(f))$$
$$P(W) = \sum_{S \subseteq F: W = M(S \cup R)} P_F(S)$$
$$P(p) = \sum_{S: S \cup R \vdash p} P_F(S) = \sum_{W: p \in W} P(W)$$

- Amazing achievements, at scale.
- Lots of tools and research.
- The best of both "worlds"?

Answer Set Programming

A program defines stable models.

- Pure declarative language, unlike Prolog.
- Uses generate & test methods instead of proofs.
- Uses both default $\sim p$ and classical negation $\neg p$.
- Clauses can be disjunctive $a \lor b \leftarrow c \land d$.

- An **atom** is $r(t_1, \ldots, t_n)$ where
 - *r* is a *n*-ary predicate symbol.
 - each t_i is a constant or a variable.
- A ground atom has no variables.
- A **literal** is either an atom a or a negated atom $\neg a$.
- An **ASP Program** is a set of **rules** such as $h_1 \lor \cdots \lor h_m \leftarrow b_1 \land \cdots \land b_n$ where
 - Each h_i is a literal, a or $\neg a$.
 - Each b_i is a literal like above or preceded by \sim .
 - m + n > 0.
- The **head** of such rule is $h_1 \vee \cdots \vee h_m$.
- The **body** of such rule is $b_1 \wedge \cdots \wedge b_n$.
- Each b_i is a **subgoal**.

- A non-disjunctive rule has $m \leq 1$.
- A normal rule has m = 1.
- A constraint has m = 0.
- A **fact** is a normal rule with n = 0.
- The **dependency graph** of a program is a digraph where:
 - Each grounded atom is a node.
 - For each grounded rule there are edges from the atoms in the body to the atoms in the head.
- A **negative edge** results from an atom with \sim ; Otherwise it is a **positive edge**.
- An acyclic program has an acyclic dependency graph.

- A normal program has only normal rules.
- A definite program is a normal program that doesn't contains ¬ neither ~ .
- In the dependency graph of a **stratified program** no cycle contains a negative edge.
 - A stratified program has a single minimal model that assigns either true or false to each atom.
- A propositional program has no variables.

(cont.)

- The **Herbrand base** of a program is the set of ground literals that result from combining all the predicates and constants of the program.
- An interpretation is a consistent subset (*i.e.* doesn't contain {a, ¬a}) of the Herbrand base.
- A ground literal is true, I ⊨ a, if a ∈ I; otherwise the literal is false.
- A ground subgoal, ~b, where b is a ground literal, is true, I ⊨~b, if b ∉ I; otherwise, if b ∈ I, it is false.
- A ground rule $r = h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$ is satisfied by the interpretation *I*, *i.e.* $I \models r$, iff

• $I \not\models b_j$ for some j or $I \models h_i$ for some i,

• A **model** of a program is an interpretation that satisfies all the rules.

Stable Semantics

- Every definite program has a unique minimal model; its *semantics*.
- Programs with negation may have no unique minimal model.
- Given a program P and an interpretation I, their reduct, P^I is the propositional program that results from

 Removing all the rules with ~b in the body where b ∈ I.
 - 2 Removing all the $\sim b$ subgoals from the remaining rules.
- A stable model of the program P is an interpretation I that is the minimal model of the reduct P^{I} .
- The **semantics** (the **answer sets**) of a program is the set of stable models of that program.

Stable Semantics

- A program such as $a \leftarrow \sim a$ may have no stable models.
- A stable model is a closed interpretation (under the rules of program).

