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INDUCTIVE LOGIC PROGRAMMING: THEORY AND 
METHODS 

STEPHEN MUGGLETON AND LUC DE RAEDT 

D Inductive Logic Programming (ILP) is a new discipline which investigates the in- 
ductive construction of first-order clausal theories from examples and background 
knowledge. We survey the most important theories and methods of this new field. 
First, various problem specifications of ILP are formalized in semantic settings 
for ILP, yielding a “model-theory” for ILP Second, a generic ILP algorithm is 
presented. Third, the inference rules and corresponding operators used in ILP are 
presented, resulting in a “proof-theory” for ILP Fourth, since inductive inference 
does not produce statements which are assured to follow from what is given, in- 
ductive inferences require an alternative form of justification. This can take the 
form of either probabilistic support or logical constraints on the hypothesis lan- 
guage. Information compression techniques used within ILP are presented within 
a unifying Bayesian approach to confirmation and corroboration of hypotheses. 
Also, different ways to constrain the hypothesis language or specify the declara- 
tive bias are presented. Fifth, some advanced topics in ILP are addressed. These 
include aspects of computational learning theory as applied to ILP, and the issue of 
predicate invention. Finally, we survey some applications and implementations of 
ILP ILP applications fall under two different categories: first, scientific discovery 
and knowledge acquisition, and second, programming assistants. a 

1. INTRODUCTION 

Inductive Logic Programming (ILP) has been defined [81] as the intersection of inductive 
learning and logic programming. Thus, ILPemploys techniques from both machine learning 
and logic programming. 
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From inductive machine learning, ILP inherits its goal: to develop tools and techniques 
to induce hypotheses from observations (examples) and to synthesize new knowledge from 
experience. By using computational logic as the representational mechanism for hypotheses 
and observations, inductive logic programming can overcome the two main limitations of 
classical machine learning techniques, such as the Top-Down-Induction-of-Decision-Tree 
(TDIDT) family [loll: 

1, the use of a limited knowledge representation formalism (essentially a propositional 

logic), and 
2. difficulties in using substantial background knowledge in the learning process. 

The first limitation is important because many domains of expertise can only be expressed 
in a first-order logic, or a variant of first-order logic, and not in a propositional one. One 
problem in which this is obvious is the domain of logic program synthesis from examples. 
Most logic programs cannot be defined using only propositional logic. The use of domain 
knowledge is also crucial because one of the well-established findings of artificial intelli- 

gence is that the use of domain knowledge is essential for achieving intelligent behavior. 
Logic offers an elegant formalism to represent knowledge, and hence incorporate it in the 
induction task. 

From computational logic, inductive logic programming inherits its representational for- 
malism, its semantical orientation, and various well-established techniques. In contrast to 
most other approaches to inductive learning, inductive logic programming is interested 
in properties of inference rules, in convergence of algorithms, and in the computational 
complexity of procedures. Many inductive logic programming systems benefit from using 
the results of computational logic. Additional benefit could potentially be derived from 
making use of work on termination, types and modes, knowledge-base updating, algorith- 
mic debugging, abduction, constraint logic programming, program synthesis, and program 
analysis. 

Inductive logic programming extends the theory and practice of computational logic 
by investigating induction rather than deduction as the basic mode of inference. Whereas 
present computational logic theory describes deductive inference from logic formulas pro- 
vided by the user, inductive logic programming theory describes the inductive inference 
of logic programs from instances and background knowledge. In this manner, ILP may 
contribute to the practice of logic programming, by providing tools that assist logic pro- 
grammers to develop and verify programs. 

ILP can be distinguished from traditional investigations of inductive inference in areas 
such as grammatical induction and induction of finite state automata [76, 13, 31 by its 
emphasis on the use of a universal representation. Clearly, universal representations promise 
much wider scope of applicability. Logic programs are arguably much easier to manipulate 
for a machine learning algorithm than other universal representations which have been 
investigated, such as Universal Turing Machine programs [ 141 and LISP programs [ 133,121. 
This is due to the fact that, in pure clausal logic, changes can be made to a program 
by simply adding or deleting either complete clauses or literals within a clause without 
worrying about ordering effects. Since the semantics of logic programs are so closely allied 
to their syntax, such changes also have a clear and simple effect on the generality of the 
resulting program. In addition, logic programs allow a single representation for examples, 
background knowledge, and hypotheses. 

In this paper, we provide an introduction to ILP. The introduction focuses on what we 
believe to be the foundations of the field. This paper is not a bottom-up paper based on 
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describing small differences between many different systems. It is instead a top-down 
synthetic overview of concepts, terminology, and methods. We are not overly concerned 
with discussing the implementation details of particular systems and approaches because 
the differences are often quite minor and not of great interest to a general audience. We aim 
instead at providing a conceptual framework for presenting ILP at four levels of description: 
a semantic level (defining the problem of ILP), a generic ILP algorithm level, a proof- 
theoretic level (defining the inference rules used in ILP), and a probabilistic semantics of 
belief (defining the justification of induced hypotheses). 

The paper is organized as follows. In Section 2, we introduce inductive logic program- 
ming informally by means of some examples; in Section 3, we formally define the problem 
of inductive logic programming at the model-theoretic or semantic level; in Section 4, we 
provide a generic ILP algorithm; in Section 5, we study some inductive inference rules 
used in ILP, yielding a “proof-theory” for ILP; in Section 6, information compression tech- 
niques used within ILP are presented within a unifying Bayesian approach to confirmation 
and corroboration of hypotheses; in Section 7, we survey some methods to constrain the 
search-space in ILP (syntactic and semantic bias); in Section 8, the convergence and com- 
putationally complexity of ILP (learnability) is investigated; in Section 9, the problem of 
inventing new predicates is addressed; in Section 10, various ILP implementations are dis- 
cussed and compared; in Section 11, some applications of ILP in scientific discovery and 
automatic programming are summarized; finally, in Section 12, we conclude. Appendix A 
contains a list of symbols and notations used throughout this paper. 

2. GENERAL SETTING 

Inductive inference is a very common form of everyday reasoning. Consider the following 
examples, which will be used throughout this paper. 

2.1. Family Example 

Imagine yourself as learning about the relationships between people in your close family 
circle. You have been told that your grandfather is the father of one of your parents, but do 
not yet know what a parent is. You might have the following beliefs. 

I 
grundfather(X, Y) t father(X, Z), parent (Z, Y) 

B = father(henry, jane) + 

mother (june, john) t 

mother(june, alice) t 

You are now given the following facts (positive examples) concerning the relationships 
between particular grandfathers and their grandchildren. 

grundfuther(henry, john) t 
grundfuther(henry, alice) t 

You might be told, in addition, that the following relationships do not hold (negative exam- 
ples). 

E_ = t grundfuther(john, henry) 
t grundf uther(ulice, john) 
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Believing B, and faced with the new facts E+ and E-, you might guess the following 
relationship. 

H = parent(X, Y) +- mother(X, Y) 

Note that H is not a consequence of B and E-. That is, 

B A E- F •I (prior satisf iability) 

However, H allows us to explain E+ relative to B. That is, 

B A H b E+ (posterior sufficiency) 

Note that B and H are consistent with E-. That is, 

B A H A E- k 0 (posterior satisfiability) 

The question arises as to how it is possible to derive (even tentatively) the hypothesis H. 

2.2. Another Example: Tweety 

Suppose that you know the following about birds: 

haswings t bird(X) 

B = hasbeak t bird(X) 

bird(X) t u&me(X) 

carnivore(X) +- vulture(X) 

Imagine now that an expedition to the upper Za’ire basin comes across a creature, which we 
shall call for convenience “Tweety.” The expedition leader telegraphs you. to let you know 
that Tweety has wings and a beak. This could be represented as the following logic program 
E+. 

haswings(tweety) t 
hasbeak(tweety) t 

Even without any negative examples, it would not take a very inspired ornithologist with 
belief set B to hazard the guess “Tweety is a bird.” This can be written as 

H = bird(tweety) t 

This might be seen by our ornithologist as a working hypothesis about Tweety. It could 
clearly be refuted if further evidence revealed Tweety to be made of plastic (although this 
would require a more sophisticated belief set B’). Note that, as in the grandfather example, 
H allows us to explain E relative to B. That is, 
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Note that the ornithologist would be unlikely to entertain the more speculative hypothesis 
“vulture(tweety),” even though this could also be used to explain all the evidence. 

H’ = uulture(tweety) t 

But how do we know from B and E+ that H’ is more speculative than H? 

2.3. Sorting Example 

Inductive inference can also be viewed as a form of program synthesis. Imagine that a 
learning program is to be taught the logic program for “quick-sort.” The following definitions 
are provided as background knowledge. 

I 
part(X, [I* [I, [I> + 
part(X, [Y/T], [YISI], S2) +- Y =< X, partition(X, T, Sl, S2) 

B = purt(X, [Y/T], Sl, [Y]S2]) t Y > X, part(X, T, Sl, S2) 

wm, L, L) +- 
v~([XlTl, L, [XIRI) + ~PPV, L, RI 

The program is then provided with a set of positive ground examples of quick-sort, such as 

i 

ssort([l, [I) + 
E+ = qsort(COl, [Ol> i- 

wrt([l, 01, K4 11) +- 
. . . 

together with some negative examples such as 

+- q.wt(ll, 01, P, 01) 
E- = + wort(lOl, 11) 

. . . 

In this case, we might hope that the algorithm would, given a sufficient number of examples, 
suggest the following clauses for “quick-sort.” 

I 
qsort(ll, [I) + 
qsort([XJT], S) t purt(X, T, Ll, L2), 

H= qsort(L1, Sl), 
qsort(L2, S2), 

app(S1, [Xl% s> 

Indeed, several ILP systems such as Golem [!%I and FOIL [ 1051 can learn this definition 
of quick-sort from as few as six or ten examples. Although much background knowledge 
is required to learn quick-sort, the mentioned ILP systems are able to select the correct 
hypothesis from a huge space of possible hypotheses. 
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In some parts of the paper, we will also employ background theory B’. From B’ and 
some examples, it is easy to induce a permutation sort. 

B’ zz 

perm([l, [I> +- 
perm(l, [XIP]) +- del(X, L, Ll), perm(l1, P) 

del(X, tXlT1, T> +- 
deZ(X, [Y(T], [Y]Tl]) t deZ(X, T, Tl) 
sorted t 

sorted([X]) +- 

sorted([X, Y(T]) +- X 5 Y, sorted([YIT]) 

2.4. Inductive Inference and the Philosophy of Science 

The form of reasoning demonstrated in the last three examples is known as inductive in- 
ference and is very common within the natural sciences. Aristotle first describes it in his 
Posterior Analytics. Francis Bacon, in discussing the empiricism of the new natural sciences 
in the 17th century (in Novum Organum), gave numerous examples of inductive inference 
as a paradigm for scientific method. 

However, despite the efforts of philosophers such as Hume, Mill, Pierce, Popper, and 
Carnap, the foundations of inductive reasoning are still much less clear than those of de- 
ductive mathematical logic. Since the 1970s several researchers from within Computer 
Science have attempted, with varying degrees of success, to find a logical basis for inductive 
inference. These researchers have included Plotkin [loo], Shapiro [ 125, 1261, and the new 
school of Inductive Logic Programming [81, 83, 1071. 

In this paper, we will describe the theoretical basis of Inductive Logic Programming in the 
framework of first-order predicate calculus, Bayesian statistics, and algorithmic complexity 
theory. Although the examples used generally only involve definite clauses, most results 
extend quite naturally to full clausal logic (see Section 3). The theory of ILP will be related 
to implementations and applications throughout the paper. 

2.5. Hypothesis Formation and Justification 

From the examples in Sections 2.1, 2.2, and 2.3, it is clear that the processes of hypothesis 
formation (abduction) and hypothesis justification need further clarification. In this paper, 
it will be assumed that 

Induction = Abduction + Justification 

Abduction. According to the philosopher Pierce, abduction is the process of hypothesis 
formation. This term is used withinLogic Programming (e.g., [52,19,51]) to denote 
a form of nonmonotonic reasoning (see also Section 11.2.5). Pierce describes the 
basis of abduction as follows: given E and E t H, hypothesize H. A more 
extensive definition appropriate for ILP will be given in Section 3. 

Justification. The degree of belief ascribed to a hypothesis given a certain amount of 
evidence. Followers of Carnap talk of the degree of “confirmation,” claiming that 
no absolute justification is possible. On the other hand, a follower of Popper would 
not see there being a problem of justification, but rather a problem of deciding 
between competing hypotheses. They would therefore rather talk of corroboration. 
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The term justification is used here to introduce the whole nexus of related problems. 
The problem of justification is discussed in detail in Section 6. 

In fact, scientific theory formation involves much more than the two elements of induction 
above. Facts must be gathered, experiments must be planned, and alternative theories must 
be tested out. Abduction and justification can be seen as central components of this process. 
Several ILP applications (Section 11) have involved the discovery of new pieces of scientific 
knowledge from empirical evidence. ILP potentially also contributes to experimentation 
and testing of hypotheses [ 1061. 

3. MODEL-THEORY OF ILP 

The logical elements (the semantics) involved in inductive inference will now be described, 
together with the relationships which should hold between them. We describe two different 
semantics for ILP: the normal and nonmonotonic semantics, and we also discuss the definite 
semantics, which is-roughly speaking-a special case of the normal semantics. 

Throughout the paper, we will employ the notion of syntactic bias (see Section 7). The 
syntactic bias defines the set of well-formed hypotheses, and thus constitutes a parameter 
of any ILP task. Because the use of a syntactic bias is omni-present in ILP, we will not 
always write explicitly that we assume the hypotheses are well-formed with regard to this 
bias. 

3.1. Normal Semantics 

Here, we will use a general setting for ILP and allow examples, background theory, and 
hypotheses to be any (well-formed) logical formula. 

The problem of inductive inference is as follows. Given is background (prior) knowledge 
B and evidence E. The evidence E = E+ A E- consists of positive evidence E+ and 
negative evidence E-. The aim is then to find a hypothesis H such that the following 
conditions hold. 

Dejnition 3.1. (normal semantics) 

Prior Satisfiability. B A E- k 0 

Posterior Satisfiability. B A H A E- k Cl 
Prior Necessity. B k E+ 
Posterior Sufficiency. B A H j= E+ 

The Sufficiency criterion is sometimes named completeness with regard to positive evi- 
dence, and the Posterior Satisfiability criterion is also known as consistency with the negative 
evidence. 

In most ILP systems, background theory and hypotheses are restricted to being definite. 
This definite setting is simpler than the general setting because a definite clause theory T 
has a unique minimal Herbrand model M+(T), and any logical formula is either true or 
false in this least model. This setting is formalized in the definite setting of Definition 3.2. 

Dejnition 3.2. (definite semantics) 
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Prior Satisfiability. all e E E- are false in M+(B) 
Posterior Satisfiability. all e E E- are false in M+(B A H) 

Prior Necessity. some e E E+ are false in M+(B) 

Posterior Sufficiency. all e E E+ are true in M+(B A H) 

The special case of the definite semantics, where the evidence is restricted to true and 
false ground facts (examples), will be called the example setting. Notice that the example 
setting is equivalent to the normal semantics, where B and H are definite clauses and E is 
a set of ground unit clauses. The example setting is the main setting of ILP. It is employed 
by the large majority of ILP systems; it will also be the most important setting in this paper. 
The example setting is the one illustrated in Section 2. 

The reason for allowing evidence other than examples in the definite semantics is that 
it is often useful to allow general clauses as evidence (cf. [llO, 1071 and Section 11.2). 
Clausal evidence usually captures more knowledge than factual evidence consisting of only 
ground facts. For instance, in the family example of Section 2.1, the first positive example 
could be 

grandfather(henry, john) + father(henry, june), mother(jane, john) 

and the (positive) evidence could also include t grandfuther(X,X), stating that no one is 
their own grandfather. Analogously, in the sorting example of Section 2.3, one could use 
sorted(Y) t quicksort(X, Y) and quicksort(X,X) t sorted(X) as positive evidence when the 
definition of sorted is in the background theory. The use of clausal evidence provides the 
learner with an incomplete or partial specification of the sorting predicate. This constrains 
the space of acceptable hypotheses. Positive evidence has to be true in the minimal model 
of the hypothesis and theory, whereas negative evidence has to be false in this setting. 

3.2. The Nonmonotonic Semantics 

A nonmonotoniclsetting for ILP was introduced by Nicolas Helft [48] and Flach [39]; some 
variants were later considered by 17, 113, 1141. Here, we define a variant related to the 
normal setting and [I 13, 1141. 

In the nonmonotonic setting of ILP, the background theory is a set of definite clauses, 
the evidence is empty, and the hypotheses are sets of general clauses expressible using the 

same alphabet as the background theory. The reason that the evidence is empty is that the 
positive evidence is considered part of the background theory and the negative evidence is 
derived implicitly, by making a kind of closed world assumption (realized by taking the 
least Herbrand model). 

In the nonmonotonic setting, the following conditions should hold for H and B: 

Definition 3.3. (nonmonotonic semantics) 

Validity: all h E H are true in M+(B) 
Completeness: if general clause g is true in M+(B), then H /= g 
Minimality: there is no proper subset G of H which is valid and complete 

‘The term “nonmonotonic” was introduced by Helft in order to make a link with other forms of non- 
monotonic reasoning because of the relation to the closed world assumption and its variants. 
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The Validity requirement assures that all clauses belonging to a hypothesis hold in the 
database B, i.e., that they are true properties of the data. The Completeness requirement 
states that all information that is valid in the database should be encoded in the hypothesis. 
This requirement should also be understood with regard to a given syntactic bias, which 
determines the set of well-formed hypotheses (see Section 7). The Minimality requirement 
aims at deriving nonredundant hypotheses. 

To illustrate the nonmonotonic setting, consider the following example (taken from 
[ 1131) and assume that a hypothesis is well-formed if it consists of clauses containing a 
single variable: 

I 

male(luc) t 

B= 
f emale(lieve) t 
human(lieve) t 

human(Euc) t 

A possible solution is then 

I 

t f emale( male(X) 
H = human(X) + male(X) 

human(X) + female(X) 
f emale( male(X) + human(X) 

To explain the differences between the example setting and the nonmonotonic setting, let 
us consider 

bird(oliver) t 

EF = flies(tweety) t 

An acceptable hypothesis HI in the example setting would be flies(X) t bird(X). Notice 
that this clause realizes an inductive leap asj?ies(oliver) is true in M+(Bl A HI). On the 
other hand, HI is not a solution in the nonmonotonic setting as there exists a substitution 6’ 
= {X t oliver} which makes the clause false (nonvalid) in M+(Bl A Et). This demon- 
strates that the nonmonotonic setting hypothesizes only properties that hold in the database. 
Therefore, the nonmonotonic semantics realizes induction by deduction. The induction 
principle of the nonmonotonic setting states that the hypothesis H, which is, in a sense, 
deduced from the set of observed examples E and the background theory B (using a kind of 
closed world and closed domain assumption), holds for all possible sets of examples. This 
produces generalization beyond the observations. As a consequence, properties derived in 
the nonmonotonic setting are more conservative than those derived in the normal setting. 

The differences between the two settings are related to the closed world assumption. In 
most applications of the example setting in ILP [58,91], only the set of positive examples 
is specified, and the set of negative examples is derived from this by applying the closed 
world assumption, i.e., by taking E- = M-(B A E+).21n our illustration, this results in 

*M-(T) = [f : f E (B(T) - M+(T))), i.e., the complement of the minimal Herbrand model of T, 

where 7 denotes the negation of .f, where T is a definite clause program, and where B(T) is the Herbrand 
base of T. 
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E, = vies(oEiver)}. Given this modified Er , hypothesis H1 cannot contribute to a solution 
in the normal setting. If, on the other hand, we ignore the difference between background 
theory and examples and define B2 = 0, and E: = B1 A ET and ET = EF, then clause 
Hz can also be part of a solution in the normal setting. Intuitively, this shows that solutions 
to problems in the normal setting, where the closed world assumption is applied, are also 
valid in the nonmonotonic setting. 

Theorem 3.1. Any hypothesis H posterior s@icient and posterior satisfiable for a back- 
ground theory B, and examples E such that E- = M-(B A E+), is valid in the 
nonmonotonic setting if I3p = f?(B A H) = B(B A E+). 

PROOF. We prove that, under these assumptions, M+(B A E+) = M+(B A H). 
Define t3p as B(B A H) 
1) M+(B A E+) c M+(B A H) because E+ is true in M+(B AH) (posterior sufficiency) 
and B is true in M+(B A H) 
so EC A B is true in M+(B A H) 
so M+(E+ A B) c M+(B A H) 
2) M+(B A H) c M+(B A Ef) because B A H A E- k 0 (posterior satisfiability) 
so M+(B A H) n M+(E-) = 0 
so M+(B A H) n M-(B A E+) = 0 
so M+(B A H) C t3p - M-(B A E+) 
so M+(B A H) c M+(B A E+) 0 

The opposite does not always hold, and this reveals the other main difference between the 
two settings. In the normal setting, the induced hypothesis can always be used to replace 
the examples because theory and hypothesis entail the observed examples (and possibly 
other examples as well). In the nonmonotonic setting, the hypothesis consists of a set of 
properties holding for the example set. When using a language bias (cf. Section 7), which 
further restricts the (syntactic) form of clauses, there is no explicit guarantee concerning 
prediction. For instance, in the nonmonotonic setting (with a language bias restricting 
hypotheses to single clauses), hypothesis Hz is a solution for B1 and Ef. Nevertheless, it 

cannot be used to predict the example in ET. 
The nonmonotonic semantics do not require the closed domain assumption to hold for 

the background theory and evidence. Indeed, for example, in a medical application, all 
patients should be completely specified, which means that all their symptoms and diseases 
should be fully described. Notice that this is different from requiring that the complete 
universe is described (i.e., all possible patients). 

Although the nonmonotonic and the normal semantics appear to be quite different, it will 
turn out that some ILP techniques, such as refinement, apply to both frameworks. Also, the 
two semantics allow for a different kind of application; see also Section 11.2. 

4. A GENERIC ILP ALGORITHM 

In this section, we present a generic ILP algorithm based on the GENCOL model of [ 1121. 
The generic ILP algorithm makes abstraction of specific ILP algorithms and aims at pro- 
viding the reader with a general understanding of ILP algorithms and implementations. 

A first key observation leading towards a generic ILP algorithm is to regard ILP as 
a search problem. This view of ILP follows immediately from the model-theory of ILP 
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presented in Section 3. Indeed, in ILP, there is a space of candidate solutions, i.e., the set 
of “well-formed” hypotheses (which constitutes the syntactic bias or the language bias of 
the problem, cf. Section 7), and an acceptance criterion characterizing solutions to an ILP 
problem. Following general artificial intelligence principles, one can solve ILP using a naive 
generate and test algorithm. This approach is known in the literature as the enumeration 
algorithm. However, as for other artificial intelligence problems, the enumeration algorithm 
is computationally too expensive to be of practical interest. Therefore, the question arises 
of how the space of possible solutions can be structured in order to allow for pruning of 
the search. In concept-learning and ILP [72, 125, 74, 1121, the search space is typically 
structured by means of the dual notions of generalization and specialization. 

In our view, generalization corresponds to induction, and specialization to deduction, 
implying that induction is viewed here as the inverse of deduction.3 

De$nition 4.1. A hypothesis G is more general than a hypothesis S if and only if G /= S. 
S is also said to be more specific than G. 

In search algorithms, the notions of generalization and specialization are incorporated 
using inductive and deductive inference rules: 

Dejinition 4.2. A deductive inference rule r E R maps a conjunction of clauses G onto a 
conjunction of clauses S such that G b S; r is called a specialization rule. 

As an example of deductive inference rule, consider resolution. Also, dropping a clause 
from a hypothesis realizes specialization. 

Definition 4.3. An inductive inference rule r E R maps a conjunction of clauses S onto a 
conjunction of clauses G such that G + S; r is called a generalization rule. 

An example of an inductive inference rule is Absorption: 

Absorption: 
p+A,B q+A 

P +-9,B 9-A 

In the rule of Absorption, the conclusion entails the condition. Notice that applying the 
rule of Absorption in the reverse direction, i.e., applying resolution, is a deductive inference 
rule. Other inductive inference rules generalize by adding a clause to a hypothesis, or by 
dropping a negative literal from a clause. Inductive inference rules, such as Absorption, are 
clearly not sound. The fact that they cannot be applied in an unrestricted fashion is against 
the spirit of logical inference. 

This soundness problem can be circumvented by associating each hypothesized conclu- 
sion H with a label L = p(HIB A E) where L is the probability that H holds given that 
the background knowledge B and evidence E hold. A Bayesian approach to computing 
this conditional probability is given in Section 6. 

31n this paper, we stick to this-probably controversial-view because it offers a clear and operational 
framework for induction. This contrasts with alternative frameworks, which mainly rest on philosophical 
intuitions and have less clear logical formalizations. 
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Assuming the subjective assignment of probabilities to be consistent, labeled rules of in- 
ductive inference are as sound as deductive inference. The conclusions are simply claimed 
to hold in a certain proportion of interpretations.4 

Generalization and specialization form the basis for pruning the search space. This is 
because 

l When B A H w e, where B is the background theory, H is the hypothesis, and e is 
positive evidence, then none of the specializations H’ of H will imply the evidence. 
Each such hypothesis will be assigned a probability label p( H’I B A E) = 0. They 
can therefore be pruned from the search. 

a When B A H A e b 0, where B is the background theory, H is the hypothesis, and 
e is negative evidence, then all generalizations H’ of H will also be inconsistent 
with B A E. These will again have p(H’IB A E) = 0. 

For example, in the family example of Section 2.1, one should not consider specializations 
of B as they will not imply the positive examples. On the other hand, in the sorting example 
of Section 2.3, one should not consider generalizations of the hypothesis qsort(X,X) t as 

it is inconsistent with some negative examples. 
Given the above key ideas of ILP as search, inference rules, and labeled hypotheses, a 

generic ILP system can now be defined: 

Algorithm 4. I. 

QH := Initialize 
repeat 

Delete H from QH 
Choose the inference rules r-1, . . . . rk E R to be applied to H 

Apply the rules t-1, . . . . rk to H to yield HI, Hz, . . . . H,, 

Add HI, . . . . H,, to Q H 

Prune QH 

until stop-criterion(QH) satisfied 

The algorithm works as follows. It keeps track of a queue of candidate hypotheses Q H. 

It repeatedly deletes a hypothesis H from the queue and expands that hypotheses using 
inference rules. The expanded hypotheses are then added to the queue of hypotheses Q H, 

which may be pruned to discard unpromising hypothesis from further consideration. This 
process continues until the stop-criterion is satisfied. 

In the above algorithm, the generic procedures are typewritten. The algorithm has 
the following generic parameters: 

l Initialize denotes the hypotheses started from. 
l R denotes the set of inference rules applied. 
l Delete influences the search strategy. Using different instantiations of this pro- 

cedure, one can realize a depth-first (Delete = LIFO), breadth-first (Delete = 

FIFO), or best-first algorithm. 

41n the learning literature, assignments of degrees of belief are usually more ad hoc than in Section 6 
and are known as “inductive bias.” Inductive bias is often taken to be a binary (accept/reject) assignment. 
However, “reject” can simply be viewed as a prior probability of zero. 
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l Choose determines the inference rules to be applied on the hypothesis H. 
l Prune determines which candidate hypotheses are to be deIeted from the queue. 

This is usually realized using the labels (probabilities) of the hypotheses on QH 

or relying on the user (employing an “oracle”). Combining Delete with Prune, 
it is easy to obtain advanced search strategies such as hill-climbing, beam-search, 
best-first, etc. 

. The Stop-criterion states the conditions under which the algorithm stops. 
Some frequently employed criteria require that a solution be found, or that it is 
unlikely that an adequate hypothesis can be obtained from the current queue. 

Notice that the above algorithm searches for solutions at the hypotheses level rather than at 
the clause level, as done by several algorithms such as FOIL [ 1051 and GOLEM [90]. We 
take the more general approach here. 

As an example of an instantiation of this algorithm, consider the DUCE and CIGOL 
algorithms of [79, 891, which realize a hill-climbing search strategy. At the time Delete 
is invoked, the queue always contains a single hypothesis. Initially, this hypothesis is 
B A E+. The inference rules are based on inverting resolution (see Section 5.4 for more 
details) and include the Absorption rule. In the Pruning phase, only the best hypothesis 
is kept; the others are discarded from the queue Q H. Pruning is realized using a mixture 
of the minimal description length principle (see Section 6) and relying on the user (the 
“oracle”) to decide whether a clause is true in the intended model or not. 

The DUCE and CIGOL systems are representatives of the class of “specific-to-general” 
systems. These systems start from the examples and background knowledge, and repeatedly 
generalize their hypothesis by applying inductive inference rules. During the search, they 
take care that the hypothesis remains satisfiable (i.e., does not imply negative examples). 
Other representatives of this class include ITOU [ 12 11, CLINT [ 1071, MARVIN [ 1241, 
GOLEM [90], and PGA [20]. 

The dual class of systems, which searches “general-to-specific,” starts with the most 
general hypothesis [i.e., the inconsistent clause 0) and repeatedly specializes the hypothesis 
by applying deductive inference rules in order to remove inconsistencies with the negative 
examples. During the search, care is taken that the hypotheses remain sufficient with regard 
to the positive evidence. Systems of this type include FOIL [ 105 1, CLAUDIEN [ 1131, MIS 
[ 1251, MOBAL [54], GRENDEL 1241, and ML-SMART [9]. 

The same search strategies are also valid in the nonmonotonic setting (cf. [47, 1131). 
Indeed, in the nonmonotonic setting, one is interested in the boundary of maximally general 
hypotheses, true in the minimal model. Above the boundary, the hypotheses will be false, 
and below that boundary, they will either be false or nonmaximal. To locate the boundary, 
one can search again specific-to-general or general-to-specific. 

In the next two sections of this paper, we will give a detailed overview of the different 
types of inductive inference rules applied in ILP (the proof-theory of ILP, see Section 5), and 
provide a unifying framework that makes abstraction of specific labeling schemes employed 
in ILP (the probabilistic semantics of ILP, see Section 6). These two aspects lie at the heart 
of ILP Other implementation aspects (such as search-strategy) usually follow from these 
two using general artificial intelligence principles. 

5. PROOF-THEORY OF ILP 

In this section, we give a detailed overview of different frameworks for inductive inference 
rules. Remember from Section 4 that induction was viewed as the inverse of deduction. 
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Given the formulas B A H + E’, deriving E+ from B A H is deduction, and deriving 
H from B and E+ is induction. Therefore, inductive inference rules can be obtained by 
inverting deductive ones. Since this “inverting deduction” paradigm can be studied under 
various assumptions, corresponding to different assumptions about the deductive rule for 
+ and the format of background theory B and evidence Et, different models of induc- 
tive inference are obtained. In the simplest model, 8-subsumption (see Section 5.2), the 
background knowledge is supposed to be empty, and the deductive inference rule corre- 
sponds to 0-subsumption among single clauses. Since the deductive inference rule based 
on t9-subsumption is incomplete with regard to implication among clauses, extensions of 
inductive inference under 8-subsumption have been recently studied under the header “in- 
verting implication” (see Section 5.5). Extensions of 8-subsumption that take into account 
background knowledge are studied in Section 5.3. Finally, the most attractive but most 
complicated framework for inductive inference is studied in Section 5.4. This framework 
takes into account background knowledge and aims at inverting the resolution principle, 
the best-known deductive inference rule. 

Before going into details about these different frameworks, we discuss the difference 
between inference rules and inference operators, which is important when searching the 
space of hypotheses. 

5.1. Rules of Inductive Inference and Operators 

Recall from Section 4 that inference rules basically state what can be inferred from what. 
A well-known problem in artificial intelligence is that the unrestricted application of infer- 
ence rules results in combinatorial explosions. To control the application of inference rules, 
artificial intelligence employs “operators” that expand a given node in the search tree into 
a set of successor nodes in the search. This, together with the above properties of gener- 
alization and specialization discussed earlier, motivates the introduction of specialization 

and generalization operators (see also [ 1121): 

Definition 5.1. A specialization operator maps a conjunction of clauses G onto a set of 
maximal specializations of S. A maximal specialization S of G is a specialization of G 
such that G is not a specialization of S, and there is no specialization S’ of G such that 
S is a specialization of S’. 

Dejinition 5.2. A generalization operator maps a conjunction of clauses S onto a set of 
minimal generalizations of S. A minimal generalization G of S is a generalization of S 
such that S is not a generalization of G, and there is no generalization G’ of S such that 
G is a generalization of G’. 

In the spirit of restricting the application of inference rules, one usually imposes further 
conditions on the operators. Such conditions (see also below) require, for instance, that the 
generated hypotheses satisfy the language bias, that the operators be complete (generate all 
clauses in the language), etc. 
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5.2. 8-Subsumption 

We start discussing the simplest model of deduction for ILP: 0-subsumption as introduced 
by Plotkin. 

Definition 5.3. ([99, IOO]) A clause ct Q-subsumes a clause c2 if and only if there exists a 
substitution 8 such that cl@ E ~2. ct is a generalization of c2 (and c:! a specialization of 
cl) under 8-subsumption. 

In this definition, clauses are seen as sets of (positive and negative) literals. 
The f?-subsumption inductive inference rule is thus 

8-subsumption: -$ where cl0 C ~2. 

For example, father(X, Y) t parent(X, Y), male(X) &subsumes father[jeJpaul) t par- 
ent(jef;paul), parent(jeJann), male(jef), female(ann) with 0 = {X = jef; Y = arm}. 

5.2.1. PROPERTIES. Some properties of 8-subsumption include (see [ 100,991) 

Implication. If ct e-subsumes c2 then ct b ~2. The opposite does not hold for self- 
recursive clauses: let CJ = p(f(X)) t p(X); c2 = p(f(f(Y))) t p(Y); cl + 
122, but ct does not Q-subsume ~2. Therefore, deduction using 0-subsumption is not 
equivalent to implication among clauses; see also Section 5.5. 

Infinite Descending Chains. There exist infinite descending chains, e.g., 

MXt , X2) + 

h(Xl, X2) +- P(XI, X2) 

WXl, X2) + PCXI 3 X~)>PWZ, X3) 

. . . 

This series is bounded from below by h(X,X) t p(X,X). 
Infinite Ascending Chains. There exist rather complicated infinite ascending chains, see 

[991. 
Equivalence. There exist different clauses that are equivalent under &subsumption, e.g., 

parent(X, Y) +- mother(X, Y), mother(X,Z) &subsumes parent(X, Y) t mother(X, Y) 
and vice versa. Because two clauses equivalent under 0-subsumption are also log- 
ically equivalent (implication), ILP systems should generate at most one clause of 
each equivalence class. For an extended discussion of equivalence, see [69]. 

Reduction. To get around this problem, Plotkin defined equivalence classes of clauses, 
and showed that there is a unique representative (up to variable renamings) of each 
clause, which he named the reduced clause. The reduced clause r of a clause c is a 
minimal subset of literals of c such that r is equivalent to c. An algorithm to reduce 
clauses follows from this. ILP systems can get around the problem of equivalent 
clauses when working with reduced clauses only. 

Lattice. The set of reduced clauses form a lattice, i.e., any two clauses have a unique lub 
(the least general generalization-Zgg, see also below) and any two clauses have a 
unique glb. 

5.2.2. OPEJLAIQES 

5A simplified form of 8-subsumption has been studied by Steven Vere [142]. 
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Let us first discuss specialization under &subsumption. Shapiro [ 1251 introduced the 
notion of a refinement operator p for clauses, which corresponds to our notion of a special- 
ization rule under 0-subsumption with the restriction that G and S contain a single clause. 
Refinement operators basically employ two operations on a clause: 

1. apply a substitution 6 to the clause, 
2. add a literal (or a set of literals) to the clause. 

There are several issues in designing refinement operators. In the next definition, we 
assume a specific language bias L: is used (see Section 7). Without loss of generality, we 
assume C has a most general element T. 

Dejinition 5.4. (properties of refinement operators) 

Global completeness. A refinement operator p (with transitive closure p*) is globally 
complete for a language JZ if and only if p*(T) = C, where T is the most general 
element in C. 

Local completeness. A refinement operator p (with transitive closure p*) is locally com- 
plete for a language _C if and only if Vc E L: : p(c) = {c’ f C 1 c’ is a maximal 
specialization of c}. 

Optimality. A refinement operator p (with transitive closure p*) is optimal for a language 
C if and only if Vc, cl, c2 E L : c E p*(q) and c E p*(q) + cl E P*(Q) or 

c2 E p*6-3>. 

First, for reasons discussed above, it is desirable that only reduced clauses are generated 
by the refinement operators; such a refinement operator for full clausal logic was recently 
developed by Patrick van der Laag [61]. Second, to consider all hypotheses, operators 
should be globally complete (preferably, for a language containing only reduced clauses). 
Third, if a heuristic general-to-specific search strategy (such as hill climbing in FOIL [ 1051) 
is employed, the operator should be locally complete. If the operator is not locally complete, 
not all successors of a node (hypothesis) in the search space are considered. On the other 
hand, if a complete search strategy is used (such as breadth-first [ 1251 or depth first iterative 
deepening [ 113]), it is desirable that the operator be optimal because they generate each 
candidate clause exactly once. Nonoptimal refinement operators, such as in Shapiro’s MIS 
[ 1251, generate all candidate clauses more than once, getting trapped in recomputing the 
same things again and again. Recently, an optimal refinement operator for full clausal logic 
was developed by Wim Van Laer [ 1411 for use in the nonmonotonic setting of CLAUDIEN 
[113]. 

The definitions of the properties of generalization operators (for 8-subsumption and 
single clauses) can be derived from those of refinement operators. Neither a locally nor a 
globally complete generalization rule for full clausal logic (and also definite clause logic) 
exists because of the infinite descending chains. Indeed, without additional assumptions 
about the language bias, the most specific generalization of h(X,X) +- p(X,X) under 8 
subsumption contains an infinite number of literals. Generalizat.ion operators thus depend 
very much on the language bias employed. Therefore, we do not discuss them any further 
here. 

Although generalization operators under t!?-subsumption for single clauses under 8- 
subsumption do not exist for full clausal logic, a generalization rule that starts from pairs of 
clauses does exist. This is the well-known least general generalization rule of Plotkin [99], 
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which computes the greatest lower bound of the two input clauses under B-subsumption. To 
compute the lgg of two clauses, consider the following. The lgg of the terms f(sr , ,.., sn) 
and f(tr, . . . . r,) is f(lgg(sr, tl), . . . . Zgg(s,, t,)). The Zgg of the terms f(sr, . . . . s,) and 
g(tl , . . . . tm) where f # g is the variable u where IJ represents this pair of terms through- 
out. The lgg of two atoms ~($1, . . . . s,,) and ~(tr, . . . . t,J is p(Zgg(sr , tl), . . . . Zgg(s,, t,)), 
the lgg being undefined when the sign or the predicate symbols are unequal. Finally, the 
Zgg of two clauses cl and c2 is then {Egg(lt, E2) 1 11 E cl and 12 E Q}. For example, the 
lgg offather(tom,ann) t parent(tom,ann), male(tom), female(ann) and father(jejpaul) t 

parent(jeJpaul), male(jefl, male(pau1) is father(X, Y) t parent(X, Y), male(X), male(Z). 

5.3. Relative Subsumption 

Plotkin [IOO] extended the notion of &subsumption to that of relative subsumption as 
follows. First, he defines c-derivations, which defines the deductive inference rule, i.e., the 
way t is implemented. 

Dejnition 5.5. A resolution-based derivation D of the clause c from the conjunction of 
clauses T is called a c-derivation if and only if each clause in T appears at most once in 
D. 

Plotkin then defines relative subsumption as follows. 

Dejinition 5.6. The conjunction of clauses T relatively subsumes the clause c if and only 
if there exists a c-derivation of a clause d from T such that d 8-subsumes c. 

Like 8-subsumption, it is straightforward to define relatively reduced clauses using a 
straightforward definition of relative clause equivalence. Relative subsumption forms a lat- 
tice over relatively reduced clauses. Plotkin defines the relative least general generalization 
(rlgg) as follows. 

Dejinition 5.7. The least general generalization of clauses c and d relative to T is the lub 

of c and d within the relative subsumption ordering. 

Plotkin shows that the rlgg of two clauses is not necessarily finite. However, under the 
language bias of ij-determinacy introduced in [90], a unique, finite rlgg can be constructed. 

Buntine [21] defined a special case of relative subsumption which he called generalized 

subsumption. Generalized subsumption is only applicable to definite clauses. 

5.4. Inverting Resolution 

As stated in Section 5.1, inductive inference rules can be viewed as the inverse of deductive 
rules of inference. Since the deductive rule of resolution is complete for deduction, an 
inverse of resolution should be complete for induction. This idea of “inverse resolution” 
was first introduced for first-order logic in [89]. Several authors have expanded on these 
ideas [ 144, 49, 121, 1361. Four rules of inverse resolution were introduced in [79]. 
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FIGURE 1. Absorption as a V-operator. 

Absorption: 

Identification: 

Intra-Construction: 

Inter-Construction: 

q+A p+A,B 
q+A p +q,B 

p+A,B P +A,9 
q+B P +-A,9 

p+A,B p+-A,C 
9+-B P +A,9 9+-c 

P+-A,B q+A,C 
p+r,B ?-+A 4 +r,C 

In these rules, lower-case letters are atoms and upper-case letters are conjunctions of 
atoms. Both Absorption and Identification invert a single resolution step. This is shown 
diagrammatically in Figure 1 as a “V” with the two premises on the base and one of the 
arms. The new clause in the conclusion is then the clause found on the other arm of the V. 
For this reason, Absorption and Identification were called collectively V-operators. 

The rules of Inter- and Intra-Construction introduce a new predicate symbol. Inductive 
inference rules which introduce new predicates are said to carry out “predicate invention” 
(see Section 9). When constructing logic programs such as “insertion sort,” ILP systems 
such as CIGOL [89] use Intra-Construction to introduce a new predicate “insert.” The 
new predicate can then be generalized using a V-operator. Diagrammatically (see Figure 
2), the construction operators can be shown as two linked V’s, or a W, each representing a 
resolution. The premises are placed at the two bases of the W and the three conclusions at the 
top of the W. One of the clauses is shared in both resolutions. Intra- and Inter-Construction 
are collectively called W-operators. 

The V- and W-operators have most specific forms (see Definition 2) as shown below (see 

also [Sl]). 
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PfA,Cl qec 

pf A,B p+ AC 

FIGURE 2. Intra-Construction as a W-operator. 

AbsorptionJ: q+A P+-A,B 

q+A P +- 4, A, B 

IdentificationJ : p+A,B P +-A,q 
q+A,B P +A,q 

Intra-Construction&: p + A, B P+-A,C 

q +A,B p+-A,q q +A,C 

Inter-ConstructionJ: p t A, B q-+A,C 

p +-r,A,B rtA q +r,A,C 

Note that, in this form, the V-operators realize both generalization and specialization 
since the conclusions entail the premises. Use of most specific operators is usually imple- 
mented [122, 901 by having a two-stage operation. In the first phase, inverse resolution 
operators are applied to examples (this is called saturation in [ 1221). In the second phase, 
clauses are reduced by generalization through the 8-subsumption lattice (see Section 5.2). 

In [81], it was shown that the lgg of two examples el and e2 saturated relative to back- 
ground knowledge B is equivalent to the rlgg of el and e2 relative to B. This result 
established a relationship between generalizations based on subsumption and those based 
on inverse resolution. 

5.4.1. MATCHING SUBCLAUSES. Just as resolution requires unification to match terms, 
inverse resolution operators require a matching operation. In [ 1221, all clauses, including 
the examples, are “flattened.” This involves introducing a new (n+l)-ary predicate for every 
n-ary function symbol. Thus, the clause member(a, [a, b]) t becomes 

member(U, V) t a(U), dot(V, U, X), dot(X, Y, Z), b(Y), niE(Z). 

Each new predicate symbol is then separately defined. For instance, 

dot([XIYl, X, Y> + 
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After flattening, the problem of matching clauses when applying the inverse resolution 
operators reduces to one-sided matching of clause bodies. In [81], saturation using most 
specific operations is shown to be complete with respect to Plotkin’s c-derivations (see 
Section 6). This kind of completeness result was demonstrated independently in [121]. 
However, c-derivations do not cover all cases in which B + c. The latter problem is known 
as inverting implication. 

5.5. Inverting Implication 

Plotkin [loo] was the first to show that 8-subsumption and implication between clauses 
are not equivalent. The difference between the two is important since almost all inductive 
algorithms which generalize first-order clauses invert 0-subsumption rather than implica- 
tion. This inevitably leads to a form of incompleteness in these algorithms. In this section, 
methods of constructing the inverse implicants of clauses are explored. In Section 55.4, it 
is shown how these methods can be extended to the problem of inverting implication in the 
presence of background knowledge. First, the difference between Plotkin’s &subsumption 
and implication between clauses will be reviewed. 

Remember from Section 5.2 that, whenever clause c &subsumes clause d, it also implies 
d. However, the converse does not hold. For instance, Plotkin shows that with clauses 

c = P(f(X)) +- P(X) 

d = ~(f(fG>>) + P(X) 

c implies d since d is simply c self-resolved. However, c does not B-subsume d. In 
discussing this problem, Niblett [93] proves various general results. In particular, he shows 
that there is not always a unique least generalization under implication of an arbitrary pair 
of clauses. For instance, the clause d above and the clause d’ = p(f(f(f(X)))) t p(X) 

have both c and the clause p(f (X)) t p(Y) as least generalizations. Although Niblett 
claims that implication between Horn clauses is decidable, this has since been shown to be 
false by Marcinkowski and Pacholski [70]. 

Gottlob [42] also proves a number of properties concerning implication between clauses. 
Notably, let c+ , c- be the positive and negative literals of c and d+ , d- be the same for d. 

Now, if c + d, then cf Q-subsumes d+ and c- 6-subsumes d-. 

5.5.1. SUBUNIFICATION. The problem of inverting implication is discussed in a paper 
by Lapointe and Matwin [63]. They note that inverse resolution (Section 5.4) is incapable 
of reversing SLD derivations in which the hypothesized clause is used more than once. 
In fact, Plotkin [lOO] showed that the same problem appears in the use of relative least 
general generalization of clauses (see definition of c-derivations). Lapointe and Matwin 
go on to describe subunification, a process of matching subterms. They demonstrate that 
subunification is able to construct recursive clauses from fewer examples than would be 
required by ILP systems such as Golem [90] and FOIL [ 1051. For instance, given the atoms 
append([], X, X) and append([a, b, Y], [l, 21, [a, b, Y, 1,2]), subunification can be used 
to construct the recursive clause 

appendWlV1, W, [XIYI) -+ appendO’, W, Y> 

Unlike the approach taken originally with inverse resolution 1891, Lapointe and Matwin 
do not derive subunification from resolution. Instead, subunification is based on a definition 
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of most general subunifiers. Although the operations described by Lapointe and Matwin 

are shown to work on a number of examples, it is not clear how general the mechanism is. 
A complete though nondeterministic algorithm is given for inverting implication in [85]. 

A complete and deterministic method is given by Idestam-Almquist [50]. A new and simple 
inverse implication technique called “forced simulation” is described in [26]. 

55.2. IMPLICATION AND RESOLUTION. In this section, the relationship between reso- 
lution and implication between clauses is investigated. Below, a definition equivalent to 
Robinson’s [I201 resolution closure is given. The function RC below contains only the 
linear derivations of Robinson’s function R. However, the closure is equivalent up to re- 
naming of variables given that linear derivation (as opposed to input derivation) is known 
to be complete. 

Definition 5.8. (Resolution closure) 
Let T be a set of clauses. The function R.C is recursively defined as 

R&(T) = T 

KY”(T) = (c ( cl E RLCn-‘(T), c2 E T, c is the resolvent of ct and ~2) 

the resolution closure XL*(T) is RC’(T) U RL2(T) U . . 

5.5.3. NTH POWERS AND NTH ROOTS OFCLAUSES. The set of clauses constructed by self- 
recursing c, RL*({c]), is partitioned into levels by the function 7213. By viewing resolution 
as a product operation, Muggleton and Buntine [89] stated the problem of finding the inverse 
resolvent of a pair of clauses as that of finding the set of quotients of two clauses. Following 
the same analogy, the set c 2 = RL’({c}) might be called the squares of the clause c and 
c3 = 7X3({c}) the cubes of c. The following definition from [85] captures this idea. 

Dejinition 5.9. (nth powers of a clause) 
Let c and d be clauses. For n 1 1, d is an nth power of c if and only if d is an alphabetic 
variant of a clause in %XY((c}). 

Taking the analogy a bit further, one might also talk about the nth roots of a clause. 

Definition 5.10. (nth roots of a clause) 
Let c and d be clauses. d is an nth root of c if and only if c is an nth power of d. 

We now have: in terms of nth roots of a clause: 

Corollary 5.1. (Implication between clauses in terms of nth roots) Let c be an arbitrary 
clause and d a nontautological clause. c k d if and only iffor some positive integer n, 
c is an nth root of a clause e which O-subsumes d. 

It is fairly straightforward to enumerate the set of clauses which &subsume a given 
clause. Therefore, the problem of finding the set of clauses which imply a given clause 
c reduces to that of enumerating the set of nth roots of clauses which 8-subsume c. The 
special case of clauses which immediately &subsume c occurs with n = 1. An algorithm 
for constructing nth roots is given in [85]. 
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5.5.4. IMPLICATION AND BACKGROUND KNOWLEDGE. In the normal setting of Induc- 
tive Logic Programming (Section 3.1), generalization is carried out in the presence of back- 
ground knowledge. In this section, the solution to inverting implication between clauses is 
extended to the case in which background knowledge is present. 

Assume a background clausal theory B and a clause (or example) c which is not entailed 
by B. Assume that there is a single clause d such that 

This problem can be transformed to one involving implication between single clauses as 
follows. 

Br\d+c 

d I= (B + c> 
bd -+ (B + c) 

bd+ (BAT) 

+ d -+ (11 A /2 A . .) 

In the last line, (B A F) is replaced with a conjunction of all ground literals which can be 
derived from (B A C). This can be viewed as replacing the formula with a model of the 
formula. Since (II A 12 A . . .) is a conjunction of literals, the last line above represents 
implication between two clauses. The clause (II v 12 v . . .) can be constructed to be of 
finite length if B is range-restricted or generative (see [go]) and elements of the model are 
only constructed to a finite depth of resolution. This clause can then be used to construct c 
using an algorithm for constructing nth roots. 

6. PROBABILISTIC SEMANTICS: CONFIRMATION AND BELIEF 

According to Utgoff and Mitchell [ 1391, bias is anything which influences how the concept- 
learner draws inductive inferences based on the evidence. There are two fundamentally 
different forms of bias: declarative bias, which defines the space of hypotheses to be 
considered by the learner, i.e., what to search, and preference bias, which determines how 

to search that space, which hypotheses to focus on, and which ones to prune, etc. In this 
section, we will discuss the probabilistic semantics of ILP, which underly any preference 
bias. The next section presents different forms of declarative bias. 

Since there will generally be more than one candidate hypothesis which explains all the 
examples, we need a sound basis for grading hypotheses, i.e., a preference bias. Many ILP 
algorithms, such as FOIL [ 1051, use information-based techniques to guide search. In this 
section, the information compression techniques described in [80, 92, 271 are presented 
within a unifying Bayesian approach to confirmation and corroboration of hypotheses. 
The relationship between the probabilistic view and information view are shown from first 
principles. This general approach has the advantage of being applicable even when only 
positive examples are available. 

6. P. Probability Calculus 

Unlike deductive inference, the conclusions of inductive inference are not assured to follow 
from what is known. Thus, each inductively inferred logical statement is accompanied by 
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U 

FIGURE 3. Venn diagram for probabilities. 

a degree of belief, or probability value (see Section 4). 
The probability calculus, like the predicate calculus, has its basis in set theory. Figure 3 

is a Venn diagram depicting the intersecting sets P and Q within the universal set U. 
The probability of a randomly chosen element of U being in P, written p(P) is defined 

as follows. 

Similarly for Q. Given that a randomly chosen element of U is found within Q, the proba- 
bility that it is also found within P, written p(PJQ), is 

p(PIQ), or the probability of P given Q, is known as a conditional probability. Noting that 

P@ n Q> = M’IQ).p(Q) = P(QIP).P@‘) 

and rearranging gives Bayes’ theorem, 

p(PIQ) = P(V.P(QIP) 

P(Q) 

Suppose that in Figure 3 P represents the set of all Herbrand models of the well-formed 
formula P, Q, the same for the well-formed formula Q and U= 2”(“‘Q) the set of all 
Herbrand interpretations of P A Q. Then p(P) = p(P) is simply the proportion of inter- 
pretations of P which are models of P. This is also the probability that a randomly chosen 
interpretation is a model of P. p( P l Q) is the proportion of models of Q which are models 
of P. This probabilistic interpretation of first-order predicate calculus was suggested by 
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the Philosopher of Science Carnap [22,78] in the 1950s. It has the properties that 

p(O) = 0, 
pm = 1, 
P(P A Q> = p(Pn Q>, 
P<P” Q> = PF u Q>, 
p(P) = 1 - p(P) and 

P(P) 5 p(Q) if P I= Q. 

However, p(P) is undefined when P has an infinite set of Herbrand models. 

6.2. Justijication 

Suppose we are attempting to induce a definition of the predicate p from positive examples 
only. Abduction will have two extreme solutions. 

H = T = p(xl, .., x,) t 

H=I=E+ 

When negative examples are present, application of the posterior satisfiability condition 
(Section 3) will replace the unique topmost element by a set of topmost elements. In the 
following, let 

T=Br\H 

Let us assume that our degree of belief in a formula can be represented as a subjective 
probability. We can therefore make use of Bayes’ Theorem as follows. 

P(TIE) = 
P(T).P(EIT) 

P(E) 

Below, we assume that the evidence is correct, and therefore p(E) = 1. As already 
mentioned, Catnap took the view that p(T) is the proportion of interpretations which are 
models of T. This leads to the paradox that if T has a finite set of models among an infinite 
set of interpretations, then p(T) = 0, i.e., T is necessarily false. Solomonoff [128] took 
an alternative approach to these probabilities by re-interpreting them in information terms. 
Any recursively enumerable set must have finite information since it can be denoted by a 
finite formula. However, a theory T for which p(T) = 0 has infinite information. In all 
other ways, Solomonoff’s syntactically-oriented approach provides a usable approximation 
to Carnap’s probabilistic interpretation of logic formulas. 

Like Carnap’s interpretation, Solmonoff’s approach can be used to ascribe prior proba- 
bilities to logic programs. However, in Solomonoff’s case, p(P) = 2-U(p) where o(P) is 
the number of bits in the minimum encoding of P (the information content of the formula 
P). In both Carnap and Solomonoff’s case, since the number of logic programs is large 
and prior probabilities must sum to 1, the prior probability of any particular logic program 
will be very small. Larger logic programs can be composed of smaller logic programs 
by conjunction. When the models of two logic programs P and Q are independent (the 
“average” case), p(P A Q) = p(P).p(Q). Even when P and Q are not independent, 
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p(P A Q) must be less in Carnap’s interpretation than both p(P) and p(e) (see Figure 
3). According to Shannon’s information theory, the information content of logic program 
P is Z(P) = -Zog2p(P). Using this definition, we have the following properties for the 
information content of logic programs. 

Empty program. (Z(W) = 0) since (p(M) = 1). 
Empty clause. (Z(D) = 00) since (p(O) = 0). 
Additive composition. (p(P A Q) = p(P).p(Q)) implies (Z(P A Q) = Z(P) + Z(Q)). 

Note that additive composition assumes independence of P and Q. We have the following 
corollary of Bayes’ Theorem. 

Corollary 6.1. Information Bayes. Let E represent the evidence for theory T. Then, if 
T + E, then 

Z(TIE) = Z(T) + Z(EIT) - Z(E) 

PROOF. Simply the log form of the Bayes’ formula. 0 

It is possible that for certain T, Z(T 1 E) 1 Z(B A E). In this case, we might say that T 
does not “compress” the examples since it has greater information content than the examples 
themselves. Random data (sometimes called noise) cannot be compressed. The principle of 
choosing the theory which minimizes Z (T 1 E) is known as Rissanen’s minimum description 

lengthprinciple (MDL)[ 1 19].6The MDL principle has been made use of in machine learning 
by Quinlan and Rivest [ 1041. MDL has been used in ILP in [80,92,27] and [ 1051. It is a 
generalization of other Bayesian confirmation techniques such as those used in [32]. 

The following result shows that the choice of the theory with minimum description is 
equivalent to choosing the theory which has maximum Bayes’ posterior probability. This 
is the same as Fisher’s maximum likelihood principle (maximize Z(E (T)) when the prior 
probability p(T) is assumed to be the same for all T. 

Theorem 6.1. Equivalence of minimum description and maximum posterior probabil- 
ity. Let E be evidence for a set of potential theories chosen from C. 

minraz(TIE) = -~og~~~~c~(TlE) 

PROOF. Follows trivially from the fact that log2 is monotone and Z(TI E) = 

-logzp(TlE). 

Solmonoff’s cr function is not computable due to halting. However, a variety of good 
approximations to this approach are given in [ 105,80,92,27]. The fine details of functions 
used are beyond the scope of this paper. 

6Rissanen’s principle is a variant of Jayne’s maximum en~opy principle, but more sophisticated than 
William of O&ham’s (1290-1349) razorprinciple which advocates minimizing I(T) rather than Z(T(E). 
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7. DECLARATIVE BIAS 

In this section, we will briefly discuss the most important forms of declarative bias. Current 
ILP systems distinguish two kinds of declarative bias: syntactic bias (sometimes also called 
language bias) and semantic bias. Syntactic bias imposes restrictions on the form (syntax) 
of clauses allowed in hypothesis. To illustrate syntactic bias, let us consider abduction as it 
is usually perceived in logic programming. Roughly speaking, abduction can be considered 
the special case of the normal setting in inductive logic programming, where the syntactic 
bias restricts the hypotheses to positive ground unit clauses, where the positive evidence is 
a true ground fact, and the negative evidence a set of integrity constraints. Semantic bias 
imposes restrictions on the meaning, or the behavior of hypotheses. To illustrate semantic 

bias, consider types and modes. 

7.1. Syntactic Bias 

Formally speaking, a syntactic bias defines the set of well-formed hypotheses IH. The set 
of well-formed hypotheses 1-I is usually defined from a language bias C, which is the set of 
syntactically acceptable clauses. 

Since the syntactic bias of an ILP system determines the actual result, it is a very important 
parameter of an ILP system. Whereas, previously, most ILP systems employed an implicit 
built-in syntactic bias, there is a growing interest in general formalisms to specify syntactic 
bias. The advantage of such general formalisms is that language bias can be decoupled from 
particular ILP implementations. Hence, it becomes a true portable parameter of the system, 
which facilitates the comparison of different systems. In the remainder of this section, we 
first present four different frameworks for bias specification, and then briefly study the link 
between syntactic bias and the efficiency of ILP algorithms. 

7.1.1. GENERAL FRAMEWORKS FOR BIAS-SPECIFICATION. At present, there exist four 
more or less general frameworks to specify language bias, i.e., to specify the set of clauses 
allowed in hypotheses. This includes: the inductive logic programming language of 
Bergadano [8, lo], the antecedent description grammars of Cohen [24,23], the schemata of 
the BLIP-MOBAL team [35,54], and their variants [ 111,127,135]. The fourth framework, 
parametric languages as defined by [90, 107,20,25], will be presented when discussing the 
link to the complexity of learning. 

Bergadano’s inductive logic programming language uses a notation close to PROLOG 
as it aims mainly at applications in programming. It extends PROLOG by means of clause 
sets and predicate sets. As an example, consider the following expression: 

(father(X, Y) t {maZe(X),female(X)}, parent(X, Y); 
mother-(X, Y) + {male(X),female(X)}, parent(X, Y) } 

Set expressions, denoted using [ }, are used to express that a subset of the literals or clauses 
may be present in the final hypothesis. The above expression denotes the hypotheses space 
consisting of all subsets of the following set of clauses: 

(father(X, Y) + male(X),femule(X), parent(X, Y); 
father-(X, Y) t female(X), parent(X, Y); 
father-(X, Y) t male(X), parent(X, Y); 
father(X, Y) t parent(X, Y); 
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mother(X, Y) + male(X),female(X), parent(X, Y); 

mother(X, Y) t female(X), parent(X, Y); 

mother(X, Y) t male(X), parent(X, Y); 

mother(X, Y) t parent(X, Y)} 

Whereas the framework introduced by Bergadano aims at readability, the framework of 
Cohen aims at generality and computing power. Cohen employs a kind of definite clause 
grammar, which he calls antecedent description grammars, to describe the set of well- 
formed clauses. The above clauses can be encoded in this formalism as follows: 

goal_formula(father(X, Y))). 

goal_formula(mother(X, Y))). 

body(father(X, Y) + m(X),flX), [ parent(X, Y) ] 
body(mother(X, Y) + m(X),f(X), [ parent(X, Y) ] 
NW -+ [I 
m(X) + [~WJI 
f(X) + [I 
f(X) + [female(X)] 

In this notation, goal-formula defines the predicates to be learned, and body(P) is the 
starting symbol of a grammar for learning clauses with as head P. As for definite clause 
grammars, square brackets enclose terminal symbols. 

Another type of syntactic bias that is often used in inductive logic programming is a form 
of second-order schemata. Here, we present the formalism first introduced by Emde et al. 

[35] and later adapted or employed by [77,147,137,111,127,54,135]. Slightly different but 
related formalisms have been considered by [ 149,381. A second-order schema is basically a 
clause, where some of the predicate names are (existentially quantified) predicate variables. 
One such second-order schema is, e.g., 

S = 3P, 4, r : p(X, Y> +- 4(X, XW), q(YW, Y), r(XW, YW) 

A set of second-order schemata defines a language bias as the set of all clauses that can 
be obtained by instantiating a second-order schema with a second-order substitution. A 
second-order substitution is a substitution that replaces predicate-variables by predicate- 
names. 

For schema S, 0 = { p = connected, q = part-oj r = touches} is a second order 
substitution. The instantiated schema SO yields 

connected(X, T) + part-of(X,XW), part-ox Yu: Y), touches(XW YW) 

The above three ways of specifying bias have the advantage that the specification is 
closely connected to the structure on the search space under 8-subsumption. Indeed, Kietz 
and Wrobel [54] showed, both theoretically and also in their MOBAL system, that second 
order schemata can be partially ordered and effectively searched using an extension of 
f3-subsumption, Cohen showed that generality can be determined at the sentential level 
(which are sentences containing both terminals and nonterminals) and effectively used to 
guide the search, and for Bergadano’s formalism, the structure of the search-space follows 
directly from the set notation. The three formalisms can therefore be easily used in the 
general-to-specific framework under 8-subsumption. 
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Finally, let us note that Cohen’s formalism is the most powerful but least declarative 
framework, and that both Bergadano’s framework and that of BLIP-MOBAL are comple- 
mentary. Indeed, using Bergadano’s framework, it is easy to make abstraction of the number 
of literals in a clause, whereas a language bias having a fixed number of literals would re- 
sult in a huge number of expressions. Schemata are complementary in that the opposite is 
true. Therefore, it might be interesting to consider a straightforward generalization of both 
models, where the set expressions also allow for predicate variables. 

7.1.2. SYNTACTIC BIAS AND THE COMPLEXITY OF THE SEARCH. Earlier approaches 
[ 107, 90, 201 to bias specification employed a parametric approach, where a number of 
parameters determined the syntax of clauses in the hypotheses. The parametric approach 
has the advantage that it is easy to implement a shif of bias [ 1071, which occurs when the 
learner changes the language bias. Changing the language bias may be necessary when there 
exists no solution within a certain syntactic bias. Using a parametric approach, shifting the 
bias can be realized by modifying the parameters in such a way that the language becomes 
more expressive. 

In the parametric approach, various parameters have been employed; many of them are 
rather straightforward and include criteria such as restrictions on the maximum number of 
variables in a clause, the maximum number of literals in a clause, the predicates allowed in 

the hypotheses, etc. 
Before presenting some of the more advanced notions, we introduce “linked” clauses 

[481. 

Dejinition 7.1. A clause is linked if all of its variables are linked. A variable v is linked in 
a clause c if and only if v occurs in the head of c, or there is a literal 1 in c that contains 
the variables v and w (v # w) and w is linked in c. 

The linkage requirement is meant to exclude usually useless clauses such as, for instance, 
p(X) t r(Z). A linked clause is, for instance, p(X) t q(X, Y),r(xZ),t(Z,W). 

The following parameters are important as they determine the computational complexity 
of the learning. 

Definition 7.2. (depth of term) The depth d(V) of a variable V is 0. The depth d(c) of a 
constant c is 1. The depth d(f(tl, . . . . t,)) of a term f(tl, . . . . tn) is 1 + max d(ti). 

Limiting the depth of terms in hypotheses to 1 corresponds to working with functor-free 
clauses. 

Dejinition 7.3. (level of a term) The level l(t) of a term t in a linked clause c is 0 if t occurs 
as an argument in the head of c, and 1 + min l(s) where s and t occur as arguments in 
the same literal of c. 

The variable F in father t male(F), parent has level 0, the variable C in 
father(F) t male(F), parent has level 1, the variable G in grandfather(F) t male(F), 

parent(EC),parent(C,G) has level 2, etc. The level of a term corresponds to Muggleton and 
Feng’s i parameter [90] and De Raedt’s level of existential quantification [ 1071. 

Both the level and the depth of terms are frequently employed by ILP learners to define 
language restrictions; see, for example, [90,107,109,25,56]. The two notions are especially 
important in the context of specific-to-general ILP systems such as ITOU [121], GOLEM 
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[90], CLINT [107], and PGA [20] because this class of learners starts learning from a 
so-called starting clause. The starting clause SC(B, L, e) is a function of the background 
theory B, the language bias L, and a positive example e. SC(B, L, e) yields a most specific 
clause c E L such that B A c + e. 

For linked languages with maximum depth 1 and level > 1, the starting clause is unique, 
but the number of literals can grow exponential with its level; see Example 7.1. 

Example 7.1. Let B be defined as follows: 

B= 

I 

parent (jef, Paul) + 

parent( jef, ann) t 

male(pau1) +- 
f emale(ann) t 

let e = is-a-father(jef), and let the clauses in the languages have a maximum depth 1 and 
maximum level 2. The only starting clause is then 

is-a-father(jef) t parent(jef;ann), parent(je~paul),fefemle(ann),rnale(paul) 

Therefore, specific-to-general systems being complete for these languages-without 
using additional (semantic) restrictions-are inefficient; cf. [56]. 

Also, starting clauses are not necessarily unique, and the number of starting clauses can 
be exponential in the maximum number of variables allowed in clauses. This is illustrated 
in Example 7.2. 

Example 7.2. Given the same background knowledge and example as in Example 7.1 and 
clauses having a maximum of two variables, the following clauses are legal starting clauses: 

is-a-father(F) t parent(F;C), male(C) 

is-a-father(F) t parent(lj;C), female(C) 

It is easy to extend this example and show that the number of starting clauses can grow 
exponentially in the number of variables. 

7.2. Semantic Bias 

Although modes and types are usually employed to optimize the efficiency of Prolog com- 
pilers [7 1,73, 181, they are also relevant to bias the set of acceptable hypotheses in inductive 
logic programming. Indeed, since Shapiro’s MIS [125], it has become quite standard in 
inductive logic programming to provide the learner with type and mode declarations (cf., 
e.g., [65,90, 130,54, 1451). 

Since modes and types are well-known in logic programming, we do not formalize them 
here, but rather illustrate their use on an example. 

For example, the ILP system Progol [88] allows the user to specify declarations of the 
predicates in the background theory such as 

mode(1, append(+list, +list, --list)) 
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mode(*, append(-list, -list, +Zist)) 

list (nil) t 

list([XIT]) t integer(X), list(T) 

The first mode states that the predicate append will succeed once (1) when the first two 
arguments are instantiated with lists, and on return the third argument will be instantiated 
by a list. Types such as list are user-defined as monadic background predicates. The second 
declaration states that append will succeed finitely many times (*) when the third argument 
is instantiated by a list. The specified limit on the degree of indeterminacy of the call can 
be any natural number or *. 

Modes are useful for inductive logic programming for two reasons. First, if we are 
in a single-predicate learning context, and the background predicates and their modes are 
correctly specified, the learner can guarantee termination by assuring that the queries it 
generates are mode-conform. Second, the learner can optimize its search when answering 
queries. Indeed, given the first declaration for append, the learner does not need to backtrack 
after having found a first solution to a query matching the declaration. 

Given type declarations of the predicate to be learned, the learner need only consider the 
type-conform subset of its hypothesis space. This can drastically reduce the computation 
needed. 

Another semantic bias, employed by the ILP systems GOLEM [901, FOIL [103], and 
LINUS [65], is the notion of determinate clauses. Here, we adopt the simpler definition of 
[33] instead of the original one of 1901. 

Dejinition 7.4. (adapted from [33]) A definite clause h t It, . . . . 1, is determinate (with 
respect to background knowledge B and examples E) if and only if, for every substitution 
8 for h that unifies h to a ground instance e E E, and for all i = 1, . . . , n, there is a 
unique substitution 8~ such that (11 A . . . A li)B8i is both ground and true in M+(B). 

Roughly speaking, a clause is determinate if all of its literals are determinate; and a literal 
is determinate if each of its variables that does not appear in preceding literals has only one 
possible binding given the bindings of its variables that appear in preceding literals. 

To illustrate determinacy, reconsider the background theory B of Example 7.2. Here, 
the clause has-father(Y) +- parent is determinate as given a Y, there is a unique 
instantiation of F that is true. On the other hand, the clause is-father(F) c parent(E Y) is 
not determinate as there exist two true instantiations of Y given F. Notice also that none 
of the clauses shown in Example 7.2 is determinate. 

Determinate clauses are one way to get around some of the problems indicated in Ex- 
amples 7.2 and 7.1. Indeed, some of the results in computational learning theory show that 
certain classes of determinate clauses can be learned efficiently (cf. [33] and Section 8). 
This, however, is at the cost of losing completeness. 

8. LEARNABILITY 

The discussion in the sections so far has revolved around the process of hypothesis for- 
mation and justification. However, it was noted in Section 2.5 that this is only a part of a 
larger scientific setting in which facts are gathered, experiments planned, and alternative 
theories tested. A simplified scenario of this kind is studied in the theory of “learnability.” 
Learnability concerns itself with the convergence properties of a process of forming and 



INDUCTIVE LOGIC PROGRAMMING 659 

revising predictive hypotheses. Two main approaches to learnability will be discussed in 
this section. These are 

Gold’s [41] identification in the limit. This approach is derived from computability 
theory. It deals with finite time convergence of a computational learning procedure. 
Valiant’s [ 1401 Probably-Approximately-Correct(PAC) learning. This is derived 
from computational complexity theory and deals with the expected rate of conver- 
gence. 

Current learnability results address only the definite and the example settings of inductive 
logic programming. 

8.1. Identijkation-in the-Limit 

Both identification-in the-limit and PAC-learnability assume a predefined class of hypoth- 
esized theories 7-1, derived from the syntactic bias C which defines the clauses that can be 
part of a hypothesis. Here, IFt will be assumed to contain only sets of definite clauses. A 
presentation of a definite clause theory T is defined as follows. Let Q+(T) be the set of 
clauses true in M+(T) and using the same alphabet as T; let Q-(T) be the set of clauses 
false in M+(T) and using the same alphabet as T; Q = Q- U Q+. 

De$nition 8.1. E, = (Eo, El, E2,. . .) is a presentation of T if and only if Eo = 0 and 
for all i 2 1, Ei = Ei-1 U {ei} for an ei E (Q+(T) U Q-(T)) such that M+(E,) = 

M+(T).7 

The following is an ILP-oriented variant of Gold’s definition. 

De$nition 8.2. Let B be a definite clause background theory and l-i(B) a class of definite 
clause theories. Let A be an ILP algorithm which, given positive and negative evidence 
E = E+ U E-, returns a hypothesis H’ = A(B, E) such that posterior satisfiability 
and posterior sufficiency hold. Algorithm A identifies the class 7-t(B) in the limit if and 
only if, for each H in ‘H(B) and presentation Em = (Eo, El, . . .) of H, there is a finite 
i such that M+(B A H) = M+(B A (A(B, Ej))) for all j > i. 

The intuition behind Gold’s formalism is that a certain class of learning tasks is “learn- 
able” when there exists an algorithm that will find a correct hypothesis in finite time for all 
of these learning tasks if the algorithm is provided with enough evidence. 

Gold gives various results showing that certain classes of theories can or cannot be 
identified in the limit. 

The main results in identification in the limit in ILP are due to Shapiro [ 12.51 and De Raedt 
[ 107, 1 lo]. Shapiro proves that his MIS system (equipped with the eager search strategy) 
identifies any h-easy definite clause theory from a presentation consisting of (positive and 
negative) examples and an oracle to answer membership and existential questions. Roughly 
speaking, an h-easy definite clause theory is a definite clause theory for which there exists 
a function h from the Herbrand base to the natural numbers, which returns, for a given 
fact, the maximum depth of the SLD-proof tree needed to prove that the fact is true. The 

7Here, we implicitly assume that a unique minimal Herbrand model of E, exists, even though E, may 
contain general clauses. 
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value returned by h is used as a depth bound on the proof of the fact in order to guarantee 
termination. A membership question asks the oracle for the truth-value of a ground fact, 
and an existential question asks the oracle for the truth-value of a nonground fact. For 
membership questions, the oracle has to answer true or false. For existential questions, 
the oracle must answer with ground substitutions for which the fact is true, or with false, 
meaning that no instantiation of the fact is true. 

De Raedt and Bruynooghe [ 1 lo] upgraded Shapiro’s result towards presentations using 
any presentation containing positive cZuusa1 evidence only.‘In their adaptation of Shapiro’s 
MIS, they restrict their attention towards functor-free clauses. In [107], this restriction 
is-under certain conditions-lifted for the CLINT system. Other results in identification 
in the limit are due to Plotkin [ 1001 and Banerji [4]. 

8.2. PAC-Learnability 

The following is a variant of Valiant’s definition of PAC-learnability. 

Dejiinition 8.3. Let B be adefinite clause theory and X(B) aclass of definite clause theories. 
Let A be an algorithm which, given positive and negative examples E = E+ U E-, 
returns a hypothesis H’ = A(B, E) in E(B) such that posterior sufficiency and posterior 
satisfiability hold. Let error(B A H’, B A H) be the probability that an example drawn 
from 23(H) (see Section 3.2) according to distribution D is true in M+(B A H’) and 
false in M+(B A H) or vice versa. Algorithm A PAC-learns the class X(B) if and 
only if, for each H in X(B) and every probability distribution D of a(H), and all E 
and 6, 0 < E, S < 1, there is a polynomial function f such that, for a random sample 
of examples E C f3(H) of size at least f( l/cr, l/6) drawn from distribution D, the 
probability that H’ = A(B, E) has error(B A H’, B A H) 5 E is at least 1 - 6. 

8.3. PAC-Learnability Results in ILP 

Learning-in-the-limit results are well-established in the ILP literature, both for full-clausal 
logic [ 1001 and definite clause logic [ 125,4, 110, 1071. These results tell one little about the 
efficiency of learning. In contrast, Valiant’s [ 1401 PAC (Probably-Approximately-Correct) 
framework is aimed at providing complexity results for machine learning algorithms. Fur- 
thermore, the PAC-framework does not require convergence to a correct hypothesis, but 
rather to a hypothesis that is with high probability (1 - S) approximately correct (1 - E), 
hence resulting in a more realistic framework. 

Haussler’s [46] negative PAC result concerning existentially quantified formulas seemed 
initially to exclude the possibility of PAC results for first-order logic. The situation has 
been improved by recent positive results in significant sized subsets of definite clause logic. 
These results have been possible for particular language biases (see Section 7). Namely, 
single constrained Horn clauses [94] (depth = 0, level = 0 in Section 7.1) and k-clause ij- 
determinate nonrecursive single-predicate logic programs [33] under simple distributions. 
(k denotes the maximum number of clauses in hypotheses, i denotes level, j denotes the 
maximum arity of predicates in the background knowledge, and simple distributions are 
limited to those which are computable.) Recursive ij-determinate predicates were shown to 
be PAC-learnable when membership queries are allowed. Thus, the definition of quick-sort 
is PAC-learnable using membership queries. 

8Notice that a negative example n in the definite setting can be expressed as positive evidence t n. 
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Kietz [56] showed that the following languages are not PAC-learnable: 

l one-clause j-determinate programs, even without recursion 
l one-clause ij-indeterminate programs, even without recursion 

The second result disables the learning of the following simple nondeterminate clause. 

male(X) : -brother(X, Y). 

However, Cohen [25] recently showed that single definite clauses with bounded indetermi- 
nacy and polynomial literal support are PAC-predictable (the same as PAC-learnable, except 
that hypotheses do not have to be within K(B)). Cohen’s restriction on the indeterminacy 
of a single clause hypothesis is as follows. 

De$nition 8.4. (l-indeterminate) A clause h t bl , . . . , b, is called Z-indeterminate (with 
respect to background knowledge B and E) if and only if, for every possible substitution 
0 of h to some ground instance e E E and for all i = 1, . . . , r, there are at most 1 distinct 
substitutions Q such that (bl A . . A bi)Oa is both ground and true in M+(B). 

Thus, the clause above for defining male could be learned if a bound could be put on the 
maximum number of brothers and sisters any individual might be expected to have. 

9. PREDICATE INVENTION 

The following theoretical characterization of predicate invention follows that in [86]. If P 
is a logic program, then the set of all predicate symbols found in the heads of clauses of P 
is called the definitional vocabulary of P or P(P). KLP has the following three definitional 
vocabularies. 

Observational vocabulary: 0 = P(E+ U E-) 
Theoretical vocabulary: 7 = P(B) - 0 
Invented vocabulary: Z = P(H) - (7 U 0) 

The learner carries out predicate invention whenever I # 0. 

9.1. Necessary Predicate Invention 

Ling [68] discusses the conditions under which predicate invention is necessary. This 
requires the following addition to the satisfiability, necessity, and sufficiency requirements 
of Section 3. 

Necessary invention: Z # 0 for each H which provides sufficiency and consistency. 

In other words, predicate invention is only necessary when there does not exist a finite 
axiomatization of the predicates in 0 containing only predicate symbols from 7 U 0. The 
following theorem is from Stahl [ 1291. 
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Theorem 9.1. Decidability with fixed vocabulary. Given a recursively enumerable, de- 
ductively closed set offormulas C in a$rst-order language Is, it is undecidable whether 
C isJinitely axiomatizable in C. 

Stahl’s proof is based on an application of Rice’s Theorem [ 1171 on the undecidability of 
nontrivial index sets being recursively enumerable. This result means that the necessity of 
invention must by needs be heuristic in the general case. However, if constraints on the 
language and depth of inference such as those discussed in Sections 7 and 8 are applied, 
this problem becomes decidable. 

The following result due to Kleene [60] shows the importance of the introduction of new 
predicates in constructing finite axiomatizations. 

Theorem 9.2. Finite axiomatization given additional vocabulary. Any recursively enu- 
merable, deductively closed set C of formulas in a first-order language L is finitely 

axiomatizable using additional predicate symbols other than those in C. 

Although Kleene’s proof is constructive, it introduces new predicates regardless of whether 
they are necessary. Clearly, any one of a potentially infinite set of new predicates could 
be introduced. It seems reasonable that when it is necessary to extend the vocabulary, this 
should be done in as conservative a manner as possible. To do so requires a notion of 
ordering over invented predicates. 

In [86], a lattice of utility of invented predicates is introduced. The lattice has a unique 
topmost and bottommost element. An equivalence class over the set of all possible invented 
predicates allows one to investigate only one of a set of invented predicates which are 
equivalent up to re-ordering of arguments and removal of redundant arguments. By making 
use of least-upper-bound and greatest-lower-bound operators, this utility lattice should 
provide a sound and complete approach to searching for invented predicates. 

9.2. Predicate Invention Techniques 

Most ILP systems which carry out predicate invention [79, 89, 122, 5, 681 are based on 
the use of the inverse resolution W-operators (see Section 5.4). This necessarily involves a 
specific-to-general search. 

An exception to this approach is found in [ 1451 and [ 1471 in which a general-specific 
search is employed. The search is guided by the use of mode declarations in [145] (see 
Section 7.2). 

In [62], the authors use W-operators to introduce new predicates. The auxiliary subpred- 
icates are then generalized using inverse implication (see Section 5.5). This allows certain 
subpredicates to be learned which could not have been learned otherwise. 

10. ILP IMPLEMENTATIONS 

Up to now, we discussed-what are in our view-the foundations of the field of inductive 
logic programming, in particular, the model-theory, the proof-theory, the probabilistic se- 
mantics, the bias, and the notions of predicate invention and learnability. The underlying 
assumption is that these foundations lie at the heart of ILP and are sufficient for understand- 
ing ILP. As a consequence, we ignored several other issues in ILP, mainly because they are 
closely connected to particular ILP implementations and applications. This includes, for 
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instance, the use of an oracle, theory revision, and the handling of numerical data. At the 
same time, we also did not study any particular ILP system in detail. In this section, we will 
briefly touch on these two matters. First, we will discuss some dimensions and issues of 
ILP as perceived by users of ILP systems. Second, we will give a short overview of some 
selected ILP systems. 

IO. 1. Characteristics of ILP Systems 

Practical ILP systems can be classified along different dimensions as perceived by users 
of ILP systems. Obvious characteristics, studied earlier in this paper, include the types of 
bias employed, the ability to invent new predicates, and the heuristics employed to handle 
imperfect data and noise. 

10.1.1. INCREMENTAL/N• NINCREMENTAL. This dimension describes the way the evi- 
dence E (examples) is obtained. In nonincremental or empirical ILP, the evidence is given 
at the start and not changed afterwards; in incremental ILP, the examples are input one by 
one by the user, in a piecewise fashion. Nonincremental systems search typically either 
specific-to-general or general-to-specific. Incremental systems usually employ a mixture 
of these strategies as they may need to correct earlier induced hypotheses. Incremental 
ILP systems include MIS [125], CLINT [107], MOBAL [54], FORTE [118], RX [134], 
LFP [144], and CIGOL [89]. Nonincremental systems include GOLEM [90], FOIL [105], 
FOCL [95], GRENDEL [24], CLAUDIEN [ 1131, mFOIL [32], and LINUS [66]. 

10.1.2. INTERACTIVE/N• NINTERACTIVE. In interactive ILP, the learner is allowed to 

pose questions to an oracle (i.e., the user) about the intended interpretation. Usually, these 

questions query the user for the intended interpretation of an example or a clause. The 
answers to the queries allow us to prune large parts of the search space (in the generic 
algorithm, queries would normally be generated in the procedure Prune). Obviously, in- 
teractiveness implies incrementality. Most systems are noninteractive. Interactive systems 
include CIGOL [89], MIS [ 1251, and CLINT [ 1071. 

10.1.3. SINGLE/MULTIPLE PREDICATE LEARNING/THEORY REVISION. Suppose P(F) 

represent the predicate symbols found in formula F. In single predicate learning from 
examples, the evidence E is composed of examples for one predicate only, i.e., P(E) is a 
singleton. In multiple predicate learning, P(E) is not restricted as the aim is to learn a set of 

possibly interrelated predicate definitions. Theory revision is usually a form of incremental 

multiple predicate learning, where one starts from an initial approximation of the theory. 

Although theory revision systems have been around ever since MARVIN [ 1241, MIS [ 1251, 
followed by Banerji [4], BLIP-MOBAL [147], ML-SMART [9], CIGOL [89], and CLINT 
[ 1081, there has recently been a renewed interest in theory revision and multiple predicate 
learning, cf. [2, 1, 6, 115, 118, 146, 28, 10, 134, 113, 148, 1101. These newer approaches 
differ from the previous ones in the sense that they try to learn without requiring an oracle. 
Note that also ML-SMART and BLIP-MOBAL did not require an oracle. Although it 
is commonly believed that theory revision and multiple predicate learning algorithms are 
fundamentally different from single predicate learners, both types of systems fit in a natural 
way in the generic algorithm outlined in Section 4. The main differences between theory 
revision systems and single predicate learners are the following. Theory revision systems 
typically use a variety of deductive and inductive inference rules, e.g., combining abduction 
with specialization and generalization. Second, as for incremental systems, they can both 
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generalize and specialize. Specialization occurs when a negative example is implied by the 
hypothesis, and generalization when a positive example is not implied. Finally, in theory 
revision, it is important to modify the theory as little as possible, and to stay as close to the 
original theory as possible. This issue is formalized in the recent work of Stefan Wrobel 
[148]. 

10.1.4. NUMERICAL DATA. The mesh domain (Section 11.1 .S) involves predicting the 
number of sections that an edge of a CAD object should be broken into for efficient finite- 
element analysis. The rules developed by GOLEM [90] have the following form. 

mesh(Obj, 8) +- connected(Obj, Objl), . . . 

With a small number of examples, it is hard to get enough examples in which the prediction 
is an exact number, such as 8. Instead, we would like the rules to predict an interval such as 

mesh(Obj, X) t 7 5 X 5 9, connected(Obj, Objl), . . 

This kind of construction is not handled elegantly by existing systems (although LINUS 
[66] and more recently FOIL [103] can use TDIDT-extensions [ 1011 to introduce tests such 
as X 5 9). In statistics, this problem of numerical prediction is known as regression. Many 
efficient statistical algorithms exist for handling numerical data. ILP system designers are 
starting to look at smoothly integrating such approaches into their systems. Recent work on 
introducing linear inequalities into inductively constructed definite clauses [75,53] provides 
an elegant logical framework for this problem. This approach also allows the introduction 
of Constraint Logic Programming (CLP) techniques into ILP. 

10.2. ILP Systems 

In this section, we give an overview of a number of important inductive logic programming 
systems. It is clear that a complete overview of all systems is outside the scope of this 
paper, given the very large number of ILP systems and implementations. Instead, the 
overview centers around the following six systems: MIS [ 1251, MOBAL-BLIP [54], CIGOL 
[89], GOLEM [90], FOIL [105], and CLAUDIEN [113]. These systems were selected 
because they are fundamentally different, and contributed significantly to inductive logic 
programming. Furthermore, most of the other systems are very much related to these six. 

One of the first real inductive logic programming systemsgin the sense that it was related 
to I as well as L P and involved both theory and implementation, is the MIS system of Ehud 
Shapiro [ 1251. The MIS system introduced several important techniques in inductive logic 
programming. These include refinement graphs (see Section 5.2.2) for general-to-specific 
search, the backtracing algorithm to locate incorrect clauses in programs, identification in 
the limit of h-easy programs (see Section S), the handling of multiple predicates (realizing 
theory revision), and coping with functors in definite clause programs (i.e., realizing pro- 
gram synthesis from examples). Many other systems and techniques are related to MIS, 
e.g., LFP [143], CLINT [107], SIERES [145], FORTE [118], AUDREY [146], MIST [59], 
TR [ 11, those of [4,1 lo], RX [ 1341, MARKUS [43], and others. Important developments in 

9A full historic overview of inductive logic programming is outside the scope of this paper. However, a 
personal view (by Claude Sammut) of the developments that led to inductive logic programming is contained 
in [123]. 
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MIS type systems include: the introduction of the definite semantics (using clausal evidence 
instead of merely examples) by [ 110, 1071, relating the MIS to intensional knowledge-base 
updating [ 1 lo] (see also Section 11.2), the introduction of predicate invention techniques 
in [ 1451, the elimination of the questions to the user (oracle) in [ 118, 146, 1, 1341, and the 
introduction of specific-to-general search in [ 1071. 

Whereas the MIS originated from an interest in (logic) program synthesis and computa- 
tional learning theory (or inductive inference), the MOBAL system [54] and its predecessors 
BLIP [77, 147, 137, 341 and METAXA [35] originate from a knowledge acquisition and 
knowledge discovery perspective. The main contribution of this line of research is the 
introduction of second-order schemata and the associated theory of model driven learning, 
which now yields practical knowledge acquisition tools. Although schemata were origi- 
nally only meant to specify syntactic bias, schemata (and their variants) have proven to be 
useful for other purposes as well. This includes the learning of syntactic bias, i.e., higher 
order logic learning [38, 11 I], predicate invention [ 11 I], intelligent (general-to-specific) 
search aids [ 1271, and analogical reasoning mechanisms [ 1491. 

The first real “inverse resolution” operator (see Section 5.4) was the absorption operator, 
employed by the MARVIN system [ 1241. However, in MARVIN, the underlying theory of 
inverting resolution was not yet formalized. This was first done for propositional logic in 
DUCE [79], and later for definite clause logic in CIGOL [89] and LFP [ 1431. This paradigm 
was further explored by [144, 122, 121, 811. However, in many ways, the most innovative 
extension introduced in DUCE and CIGOL was the concept of predicate invention. This 
was not present in the earlier frameworks of either Plotkin [ IOO] or Shapiro [ 1251. One of 
the new departures in this line of research has come from the LOPSTER system [63], which 
was the first to make use of inverting implication (see Section 5.5). 

The GOLEM system [90] was based on a special case of inverse resolution which corre- 
sponds to the rlgg operator of Gordon Plotkin [98, 1001; see also [8 I]. This special case of 
inverse resolution, restricted to determinate clauses (cf. Section 7), proved to be much more 
tractable than the more complicated inverse resolution paradigm. It is in part because of the 
increased efficiency that GOLEM could be applied to real scientific discovery tasks [58,91]. 
The determinacy restriction also proved to be relevant for the computational complexity of 
the learner [56, 33,251. 

The FOIL system [ 1051 is based on traditional concept-learning techniques. In partic- 
ular, it relates to the greedy TDIDT-algorithms [loll and the AQ family of algorithms of 
Michalski [72]. As a matter of fact, the use of relations to express background knowledge 
when learning concepts was already present in the Induce algorithm of [72] and in the ML- 
Smart system of [9]. However, these algorithms-adopting the classical concept-learning 
framework-produced rules for a fixed number of classes only. As a consequence, AQ 
and Induce learned a kind of functor-free definite clause with propositions in the condition 
part. Furthermore, AQ and Induce employed a nonstandard logic to represent concepts and 
examples. The main contribution of Quinlan in FOIL was to recognize the power of logic 
programming as a representation language for inductive learning and to upgrade machine 
learning techniques towards the much more expressive DATALOG representation. Further- 
more, the FOIL system was the first widely known demonstration that first-order learning 
could really work, in the sense that it works efficiently on a broad range of problems involv- 
ing large and noisy datasets. More recently [ 1021, FOIL incorporated the ij-determinate 
constraint introduced first in [90]. Many variants and refinements of FOIL have been devel- 
oped, including FOCL [ 171, mFOIL [32], and CHAM [57]. Related to traditional concept- 
learning techniques and FOIL is also LINUS of [65], which transforms certain classes of 
ILP problems into attribute value form, then runs classical algorithms and transforms the 
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result back into logical clauses. 
The CLAUDIEN system [ 1131 is the first efficient inductive logic programming working 

in the nonmonotonic setting deriving full clausal theories from databases. CLAUDIEN is 
based on a simple general-to-specific iterative deepening search using refinement under 0- 
subsumption. At the same time, it offers a natural approach to empirically learning multiple 
predicates, which requires interaction with the user, or “good” presentations in the normal 
setting (see [ 114, 1151). Indeed, in the nonmonotonic setting, it is easy to learn multiple 
predicates because if two clauses ct and c:! are valid, then their conjunction is also valid. 
This is in contrast to the normal setting, where the conjunction of two clauses (contributing 
individually to a solution) may violate the posterior satisfiability requirement. It remains, 
however, to be seen whether this new approach will yield as successful applications as 
GOLEM, MOBAL, and FOIL. 

11. APPLICATION AREAS 

Other computational techniques, such as neural networks, are said to mimic human learn- 
ing. In a sense, neural networks, along with techniques such as statistical regression, can be 
viewed as making use of a form of inductive inference. However, unlike neural networks, 
ILP algorithms output rules which are easily understood by people. This makes ILP par- 
ticularly appropriate for scientific theory formation tasks in which the comprehensibility of 
the generated knowledge is essential to the advancement of scientific subjects. 

The use of a relational logic formalism has allowed successful application of ILP systems 
in a number of domains in which the concepts to be learned cannot easily be described in an 
attribute-value language. These applications include structure-activity prediction for drug 
design [58, 1311, protein secondary-structure prediction [91], finite element mesh design 
[31], and automatic construction of qualitative models [16]. It is worth noting that the 
results produced by ILP 1) did produce new knowledge publishable in refereed journals 
of the application area (as for the drug design and protein folding); 2) are understandable 
and meaningful for scientists in the application domain; and 3) were realized using general 
purpose ILP systems. There are very few other examples within AI where this combination 
has been achieved. 

Programming assistants are tools that assist a programmer in the design and implemen- 
tation of software. The most straightforward application of ILP to this area is program 
synthesis from examples, bias, and partial specifications (see, e.g., [ 125, 103,59, 107,401). 
Other applications include algorithmic debugging [ 1251, program testing and verification 
[36, 1161, the automatic derivation of properties of programs and/or databases [ 15, 1131, 

reverse engineering [ 151, and knowledge-base updating [ 1101. 

1 I. 1. Scientific Discovery and Knowledge Acquisition 

11.1.1. DRUG DESIGN. The majority of pharmaceutical R&D is based on finding slightly 
improved variants of patented active drugs (292 out of 348 U.S. drugs introduced between 
1981 and 1988 were of this kind). This involves laboratories of chemists synthesizing and 
testing hundreds of compounds almost at random. The ability to automatically discover 
the chemical properties which affect the activity of drugs could provide a great reduction 
in pharmaceutical R&D costs. The average cost of developing a single new drug is $230 
million. 
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In [58], it was shown that ILP techniques are capable of constructing rules which predict 
the activity of untried drugs. Rules are constructed from examples of drugs with known 
medicinal activity. The accuracy of the rules was found to be higher than for traditional 
statistical methods. More importantly, the easily understandable rules can provide key 
insights, allowing considerable reductions in the numbers of compounds that need to be 
tested. 

11.1.2. PROTEIN PRIMARY SECONDARY SHAPE PREDICTION. Predicting the three-dimen- 
sional shape of proteins from their amino acid sequence is widely believed to be one of 
the hardest unsolved problems in molecular biology. It is also of considerable interest 
to pharmaceutical companies since shape generally determines the function of a protein. 
ILP techniques developed at the Turing Institute have recently had considerable success 
within this area. Over the last 20 years, many attempts have been made to apply methods 
ranging from statistical regression to decision tree and neural net learning to this problem. 
Published accuracy results for the general prediction problem have ranged between 50 and 
60%, very close to random prediction. In [91], it was found that the ability to make use of 
biological background knowledge, together with the ability to describe structural relations, 
boosted the predictivity for a restricted subproblem from about 70% to about 80% on an 
independently chosen test set. 

11.1.3. SATELLITE DIAGNOSIS. ILP techniques have been applied to problems within 
the Aerospace industry. In this case, a complete and correct set of rules for diagnosing 
power supply failures was developed by generating examples from a qualitative model of 
the power subsystem of an existing satellite [37]. The resulting rules are thus guaranteed 
complete and correct for all single faults since all examples of these were generated from 
the original model. Rules were described using a simple temporal formalism in which each 
predicate had an associated time variable. 

11.1.4. RHEUMATOLOGY. An application [67] of the LINUS system [66] to the learn- 
ing of medical rules for the early diagnosis of rheumatic diagnosis showed that relational 
background knowledge provided by a domain expert substantially improved the quality of 
the induced rules as compared to results with attribute value learning techniques. 

11.1.5. FINITE ELEMENT MESHES. Successes [3 11 achieved in applying Golem to Finite 
Element Mesh design have drawn interest from industry in applying these techniques within 
state-of-the-art CAD packages. Finite element methods are used extensively by engineers 
and modeling scientists to analyze stresses in physical structures. These structures are 
represented quantitatively as finite collections of elements. The deformation of each element 
is computed using linear algebraic equations. In order to design a numerical model of a 
physical structure, it is necessary to decide the appropriate resolution for modeling each 
component part. Considerable expertise is required in choosing these resolution values. 
Too fine a mesh leads to unnecessary computational overheads when executing the model. 
Too coarse a mesh produces intolerable approximation errors. ILP techniques have been 
used to develop rules for deciding on appropriate resolution values inductively from expert- 
provided examples. 

In this case, a relational language was required to reflect the relations between elements 
of the physical structure being modeled. 
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11.2. Programming Assistants 

Here, we study the relation between interests in logic programming and ILP At several 
places, we argue for a tighter interpretation of the ZLP = Z n LP paradigm. Such an 
interpretation allows us to import ILP into LP, and to export LP to inductive techniques in 
general, thus permitting cross-fertilization. We discuss the application of this claim in logic 
program synthesis, reverse engineering, algorithmic debugging, deductive databases, and 
program testing and verification. 

11.2.1. LOGIC PR~CRAM SYNTHESIS. Logic program synthesis and transformation [30, 
641 try to develop techniques to derive efficient programs from a specification (synthesis) 
or an inefficient implementation (transformation). Usually, logic program synthesis and 
transformation employ deductive techniques to achieve this aim. Here, we will show that, 
alternatively, one could use induction. This has the advantage that logic program synthesis 
from incomplete specifications is plausible. 

Let us briefly illustrate this on the sorting example. In a logic program synthesis or 
transformation setting, the predicate sort might be specified by 

S = sort(X, Y) ++ permutation(X, Y}, sorted(Y) 

with corresponding definitions of permutation and sorted (see Section 2.3) in the back- 
ground theory B. The aim would then be to improve the definition of permutation sort 
towards a more efficient sorting predicate such as quicksort, insertion sort, or bubble sort. 
The techniques to achieve this aim in logic program synthesis and transformation are basi- 
cally deductive, for instance, using fold-unfold or mathematical induction techniques. 

In the lLP setting, one could tackle the same problem by taking 

permutation(X, Y) +- serf (X, Y) 

E+ = sorted(Y) + sort(X, Y) 
sort(X, Y) t permutation(X, Y), sorted(Y) 

B then includes sorted and permutation and possibly other predicates such as partition, 
append, member, etc., and the language bias is such that permutation and sorted are not to 
be used in hypotheses. Any definition of sort satisfying the requirements will be equivalent 
to the specification (i.e., permutation sort) and therefore correct. Also, depending on the 
predicates in the background theory and the bias, different definitions for sort could be 
derived. For example, if partition is in the background theory, one could induce quicksort. 
This shows that ILP can be used to derive logic programs from complete specifications. 
On the other hand-and this shows the flexibility of ILP-by relaxing the evidence, ILP 
can also induce programs from incomplete specifications, which is not possible by most 
synthesis approaches (but see [40]). For instance, the third clause in E+ could be replaced 
by a few positive examples. A disadvantage of using ILP techniques for logic program 
synthesis is that there is no guarantee that the induced hypothesis will be more efficient in 
use than the original specification. This should be verified empirically. 

An extreme case of the application of ILP to this area is programming synthesis from 
examples only. Although such automatic programming has been used by many ILP re- 
searchers (cf. [90, 125, 107, 1031) to test and illustrate their techniques, we do not believe 
program synthesis from examples only to be a promising direction for ILP. This is because 
too many examples are needed before the correct definition can be induced (cf., e.g., [103]). 
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Therefore, automatic programming from examples only will never be practical because it 
is much easier to program manually than to specify hundreds (thousands) of examples. At 
the same time, it follows that upgrading the representation of examples as ground facts to 
more general formulas should be one of the prime concerns in ILP (cf. [ 110, 1071). 

11.2.2. INDUCING PROPERTIES OF PROGRAMS/DATABASES. Given a database or a pro- 
gram, one is often interested in the regularities in the database or program. High-level 
regularities satisfying a program can be regarded as (partial) specifications of that program. 
Such specifications can then be used to judge the correctness of the program. Regularities 
satisfying a database can be relevant as integrity constraints and as new knowledge discov- 
ered (cf. [97] and higher). Inducing properties of programs or databases thus corresponds 
to a form of reverse engineering. 

Although, in principle, one could use the normal setting of ILP to discover high-level 
regularities in programs or databases, the nonmonotonic setting of ILP is more appropriate 
(cf. [ 1141). In this setting, the given database or program is B and the induced hypothesis 
H contains the high-level regularities one is interested in. One example in a database 
context was given in Section 3.2. To illustrate the programming context, consider the 
sorting example once more, and assume that B contains quicksort, sorted, and permutation. 
Systems working in the nonmonotonic setting, such as CLAUDIEN [ 1131, could then induce 
a hypothesis containing the clauses E+ listed in the previous section. 

11.2.3. PROGRAM Y~STING AND DEBUGGING. The relation between algorithmic debug- 

ging and inductive inference is well known since Shapiro’s influential work on the MIS 
[ 1251. Basically, debugging a program corresponds to credit-assignment problem in induc- 
tive inference. Furthermore, once the bug has been located, one may try to repair it by using 
incremental inductive inference techniques. 

Whereas algorithmic debugging starts from a known bug in a program, program testing 
and verification try to discover whether there exist bugs in the program. To this aim, 
they generate a test set of example behaviors of the program, which can then be judged on 
correctness by the user. To generate a test set from a program or knowledge-base, satisfying 
certain desirable properties, one can employ ILP techniques (cf. [36,116]). Indeed, suppose 
one starts from a program P to test and an ILP system (in the example setting). Roughly 
speaking, the ILP approach to test generation computes a minimal set of examples E of the 
program’s behavior such that E is sufficient to induce a program P’ equivalent to P (or to 
uniquely distinguish P from a set of alternatives). The underlying assumption states that, 
if P behaves correctly on E, it is correct. The computation of E is done incrementally. 
Initially, E is empty and P’ is a program generated by the ILP system and correct with 
regard to E. If P and P’ are not equivalent, an example e can be generated that is true in 
one program but not in the other. The example e (with the truth value in P) is then added 
to E, and the process of inducing P’ from E and generating examples is repeated until P 
is equivalent to P’. The example set E is then the required test set. 

11.2.4. KNOWLEDGE-BASE UPDATING. Roughly speaking, the problem of knowledge- 

base updating (see [29, 19, 44, 45, 138, 96, 521) can be specified as follows. Given is 
a deductive database D, satisfying a set of integrity constraints I and a formula f not 
explained by the database. The aim is then to find an updated database which explains the 
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formula f such that all integrity constraints_ remain satisfied. To illustrate this, let D be 

D=, 

grandparent(X, Y) t father(X, Z), parent(Z, Y) 
parent(X, Y) t mother(X, Y) 
father(henry, june) +- 
mother(june, john) t 
mother(june, ulice) + 

Let the integrity theory I be 

1 = 

( 

+ father(X, X) 
+ mother(X, X) 

An update request fr could then ask to make grundpurent(george,henry) t true. Typ- 
ical knowledge-base updating methods realize the update requests by adding and delet- 
ing ground facts to the database (using a mixture of abduction and techniques to short- 
cut proofs). For example, the above update request could be realized by adding the fact 
father(george, henry) +- . 

The problem of knowledge-base updating as formulated above corresponds to an in- 
cremental ILP problem (in the definite setting) where B A H = D and E+ = I, and the 
update request is considered positive evidence (cf. [l lo]). The advantage of reformulat- 
ing knowledge-base updating in terms of ILP is that this allows us to extend the allowed 
transactions. None of the existing knowledge-base updating methods allows the induction 
of nonfactual clauses; few techniques can delete nonfactual clauses from the database. In 
contrast, in the ILP setting, this is very natural. Given the above database, integrity theory, 
and appropriate evidence, incremental ILP techniques could induce the missing clauses for 
parent and grandparent. On the other hand, ILP techniques could also benefit from the 
work on knowledge-base updating, which has spent a lot of effort to cope with normal 
program clauses in an SLDNF setting. In ILP, few techniques handle negation in a general 
and sound manner (but see [ 1361). 

11.2.5. ABDUCTION. Abduction, as it is currently perceived in Logic Programming [5 I], 
can be considered the special case of the example setting in inductive logic programming, 
where the hypotheses are restricted to sets of ground facts and the evidence to single positive 
examples. loThis statement reveals an important difference between the two techniques: in 
ILP, the facts (examples) are usually assumed to be stable as the clauses are to be learned; 
in contrast, in abductive logic programming, the clauses are stable and the facts are to be 
learned. Therefore, these two techniques should not be considered opposite, but rather 
complementary. Indeed, many ILP systems include an abductive component (e.g., MIS 
[125], CLINT [107], abduction is also a special case of inverse resolution, etc.). Also, 
applications of abduction, may be extendable towards inductive logic programming. One 
such application was discussed above: intensional knowledge-base updating. 

‘OIt has to be mentioned that abduction has considered more complicated representations for background 
theories, including normal program clauses. 
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12. CONCLUSION AND FUTURE DIRECTIONS 

Plotkin [loo] in the early 1970s and Shapiro [125] in the early 1980s set the scene for the 
recent upsurge of interest in the area of learning first-order formulas. However, since 1990, 
ILP has grown from a theoretical backwater to a mainstream area of research, as evidenced 
by three annual international workshops [82, 84, 871. Many of the problems encountered 
on the way can make use of solutions developed in Machine Learning, Statistics, and Logic 

Programming. 
Many future advances of ILP are likely to come from well-established techniques drawn 

from Logic Programming. For instance, at present, most ILP systems (with the exceptions 
of MOBAL [SS] and the system of [130]) require that all mode and type information 
concerning predicates in the background knowledge be provided by the user. However, both 
type and mode declarations could be derived automatically from analysis of the background 
knowledge. In addition, benefit could potentially be derived from making use of work on 
termination, knowledge-base updating, algorithmic debugging, abduction, constraint logic 
programming, program synthesis, and program analysis. 

It should be clear from Section 5 that logical theorem-proving is at the heart of all 
ILP methods. For this reason, it must be worth asking whether the technology of Prolog 
interpreters is sufficient for all purposes. Reconsider the Tweety example in Section 2.2. 
Implementing a general system that carried out the inference in this example would require 
a full-clausal theorem prover. However, most ILP systems merely use a Prolog interpreter to 
carry out theorem-proving. Is it worth going to more computationally expensive techniques? 
In learning full-clausal theories, De Raedt and Bruynooghe [ 1131 have made use of Stickel’s 
[ 1321 efficient full-clausal theorem-prover. Stickel’s theorem prover compiles full clauses 
into a set of definite clauses. These definite clauses are then executed by a Prolog interpreter 
using iterative deepening. This technique maintains most of Prolog’s efficiency while 
allowing full theorem-proving. Learning full-clausal theories is a largely unexplored new 
area for ILP. 

The problem of dealing efficiently and effectively with numerical data is an important 
challenge to ILP. Earlier systems such as LINUS [66] dealt with the problem by allowing 
simple inequalities, such as X > 7, in the hypothesis language. Recent work on introduc- 
ing more general linear inequalities into inductively constructed definite clauses, [75, 531 
provides an elegant logical framework for this problem. This approach also allows the 
introduction of Constraint Logic Programming (CLP) techniques into ILP. 

ILP research has many issues to deal with and many directions to go. By maintaining 
strong connections among theory, implementations, and applications, ILP has the potential 
to develop into a powerful and widely-used technology. 
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APPENDIX A: NOTATIONAL CONVENTIONS 

0: false: 
m true; 
b=: logical entailment; 
A : conjunction: 
c : implication; 
*: double implication: 
C: proper subset; 
&: subset; 
T: maximally general element: 
1: maximally spectfk element: 
7: complement off; 
d(t): depth of term t; 
glb: greatest lower bound; 
1 (t) : level of term t in clause: 
lub: least upper bound: 
p(X): prior probability of X; 
p(XIY): priorprobability of Xgiven Y; 
I(X): prior information content 0fX; 
I(XlY): informationcontentofXgiven K 
p : refinement operator; 
p’ : transitive closure of p; 
B(T): the Herbrand base of T, where T is a conjunction of clauses: 
7-i: set of well-formed hypotheses, contains set of sets of clauses in l: 
c: language bias, i.e. set of clauses: 
M+(T): the least Herbrand model of T, where T is a definite clause program; 
M-(T) = (7 : f E (B(T) - M+(T))), i.e., the complement of the least Herbrand model of T, where 

T is a definite clause program: 
p(F): set ofpredicate symbols occurring in F, where F is any logical,formula; 
Q+(T): the set of clauses true in M+(T) and using the same alphabet as T; 
Q-(T): the set of clausesfalse in M+(T) and using the same alphabet as T; 
XL”(T): nth linear resolution of dejnite clause theory T. 
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