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Abstract When machine learning programs from data, we ideally want to learn efficient
rather than inefficient programs. However, existing inductive logic programming (ILP) tech-
niques cannot distinguish between the efficiencies of programs, such as permutation sort
(n!) and merge sort O(n log n). To address this limitation, we introduce Metaopt, an ILP
system which iteratively learns lower cost logic programs, each time further restricting the
hypothesis space. We prove that given sufficiently large numbers of examples, Metaopt con-
verges on minimal cost programs, and our experiments show that in practice only small
numbers of examples are needed. To learn minimal time-complexity programs, including
non-deterministic programs, we introduce a cost function called tree cost which measures
the size of the SLD-tree searched when a program is given a goal. Our experiments on
programming puzzles, robot strategies, and real-world string transformation problems show
that Metaopt learns minimal cost programs. To our knowledge, Metaopt is the first machine
learning approach that, given sufficient numbers of training examples, is guaranteed to learn
minimal cost logic programs, including minimal time-complexity programs.

1 Introduction

Suppose you want to machine learn a program from the following examples:

f(lp,r,0,9,r,a,m],r).
f(li,n,d,u,c,t,i,o,nl,i).

Editors: Fabrizio Riguzzi, Nicolas Lachiche, Christel Vrain, Riccardo Zese and Elena Bellodi.

B Andrew Cropper
andrew.cropper @cs.ox.ac.uk

Stephen H. Muggleton
s.muggleton @imperial.ac.uk

Department of Computer Science, University of Oxford, Oxford, UK

Department of Computing, Imperial College London, London, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5712-6&domain=pdf

1064 Mach Learn (2019) 108:1063-1083

These examples are described as Prolog facts. The first argument is the input list. The second
argument is the output, and is the first duplicate element in the input. Given these examples
and the background predicates shown in Fig. 1, Metagol (Muggleton et al. 2015; Cropper
and Muggleton 20164, b), a state-of-the-art inductive logic programming (ILP) system, learns
the program shown in Fig. 2a. This recursive program goes through the elements of the list
checking whether the same element exists in the rest of the list, i.e. finds the first dupli-
cate element. By contrast, consider the program shown in Fig. 2b, which was learned by
Metaopt, a new ILP system introduced in Sect. 4. This program first sorts the list and then
goes through checking whether any adjacent elements are the same. Although larger, both in
terms of clauses and literals, the program learned by Metaopt is more efficient (O (n log n))
than the program learned by Metagol (O (n2)). This efficiency difference is shown in Fig. 2c,
which compares the running times of the two programs on randomly generated examples.

As this find duplicate scenario shows, when machine learning programs from examples,
we should consider the efficiency of learned programs. However, existing ILP systems cannot
distinguish between the efficiencies of programs, and typically rely on an Occamist bias to
learn textually simple programs, such as those using the fewest literals (Law et al. 2014) or
fewest clauses (Muggleton et al. 2015).

A recent paper (Cropper and Muggleton 2015) attempted to address this issue by introduc-
ing Metagolp, an ILP system based on meta-interpretive learning (MIL) (Muggleton et al.
2014, 2015; Cropper and Muggleton 2016a). Metagolp learns minimal resource complexity
robot strategies, described as dyadic logic programs, where resource complexity is the sum
of the action costs required to execute a strategy.

In this paper, we introduce Metaopt, which generalises Metagolp by adding a general
cost function into a meta-interpretive learner, where specific cost functions are provided as

Fig. 1 Background knowledge
for the find duplicate problem. hez.ad ([HI_1,H).

The definition for mergesory/2 is tail([_|T1,T).

omitted for brevity element ([X|_1,X):-!.

element ([_|T],X):-element(T,X).
mergesort(A,B):- ...

10'F E
= |
I g!?'] 1
f(A,B):-head(A,B),f_1(A,B). /{,/{r
£(A,B):-tail(A,C),f(C,B). 10° ¢
f_1(A,B):-tail(A,C),element(C,B). E,o F B
(a) B0 1
LA 1
f(A,B):-mergesort(A,C),f_1(C,B). 3 1
f_1(A,B):-head(A,B),f_2(A,B). 1072 E
f_1(A,B):-tail(A,C),f_1(C,B). g ~# Metagol |
f_2(A,B):-tail(A,C),head(C,B). [ | | [e Mewopt [
2,000 4,000 6,000 8,000 10,000
(b) Input size
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Fig.2 aAninefficient program learned by Metagol. b An efficient program learned by Metaopt. The predicates
£1/2 and £2/2 are invented. ¢ The running times of the two programs on randomly generated examples
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background knowledge. Metaopt uses a search procedure called iterative descent, introduced
in Cropper and Muggleton (2015) but generalised in this paper, to iteratively learn lower cost
programs, each time further restricting the hypothesis space. We prove that given sufficiently
large numbers of examples, Metaopt converges on minimal cost programs, and our exper-
iments show that in practice only small numbers of examples are necessary. In contrast to
Metagolp, Metaopt is not restricted to dyadic logic programs, does not need designated
input-output arguments, can handle negative examples, and considers backtracking steps
when measuring program costs, crucial when learning non-deterministic logic programs. To
learn minimal time-complexity programs, we introduce a cost function called tree cost, which
measures the size of the SLD-tree searched when a program is given a goal. Our experiments
on programming puzzles, robot strategies, and real-world string transformation problems
show that Metaopt learns minimal tree cost programs.
Our specific contributions are as follows:

We describe a general framework for learning minimal cost logic programs (Sect. 3).

— We extend MIL to support learning minimal cost logic programs (Sect. 3).

— To learn minimal time-complexity logic programs, we introduce a cost function called
tree cost which is based on SLD-tree sizes (Sect. 3).

— We introduce Metaopt, a MIL implementation, and prove that it converges on minimal
cost programs given sufficiently large numbers of examples (Sect. 4).

— We show through experimentation that Metaopt converges on minimal cost programs
given small numbers of examples (Sect. 5).

— We demonstrate the generality of Metaopt by simulating Metagolp to learn efficient
robot strategies (Sect. 5).

— We show that Metaopt learns more efficient programs than existing ILP systems on

real-world string transformation problems (Sect. 5).

2 Related work

Universal search If nothing is known about a problem besides input/output examples, and
assuming that the solution can be verified in polynomial time, Levin’s universal search (Levin
1984) is the asymptotically fastest way of finding a program to solve the problem. Levin
search differs from our work because it returns the first (and smallest) program that solves
a problem, which is not necessarily the most efficient program. By contrast, after finding
a program, our approach, Metaopt, continues to search for more efficient programs using
the cost of the previously found program to restrict the hypothesis space. In addition, for
many problems, it is unlikely that the most efficient program can be encoded with a small
number of bits, making Levin search impractical. By contrast, although our approach is
less general, because it assumes background knowledge of the problem, it is more practi-
cal.

Deductive program synthesis In contrast to universal search methods, deductive program
synthesis (Manna and Waldinger 1979) approaches build programs from full specifications,
where a specification precisely states the requirements and behaviour of the desired pro-
gram. Both Kant (1983) and Zelle and Mooney (1993) synthesise efficient programs from
complete specifications. In Zelle and Mooney (1993) the authors take as input a program
to sort lists and use an explanation-based learning (Mitchell 1997) approach to speed-up
the execution of the program by analysing program execution traces over training exam-
ples. A similar, yet distinct, approach is that of logic program transformation (Pettorossi
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and Proietti 1994). This approach starts with an initial program and successively applies
transformation rules to programs to improve on previous versions. The aim is to end up
with final program that has the same meaning as the initial one, but is preferably better in
some way, such as being more compact or more efficient (Pettorossi and Proietti 1994). In
contrast to these approaches, our approach induces programs from incomplete specifications
in the form of input/output examples. In addition, the aforementioned approaches do not
guarantee that the resulting program is optimal in terms of efficiency. By contrast, we prove
that Metaopt finds the minimal cost program given sufficiently large numbers of examples
(Theorem 1), and Experiment 1 shows that in practice only small numbers of examples are
necessary.

Program induction Program induction, also known as inductive programming (Gulwani et al.
2015), refers to inducing programs from incomplete specifications, typically input/output
examples. Early work includes Plotkin on least generalisation (Plotkin 1969, 1971), Vere
on induction algorithms for expressions in predicate calculus (Vera 1975), and Summers on
inducing Lisp programs (Summers 1977). Interest in program induction has grown recently,
partially due to the success of mass-market tools, such as FlashFill (Gulwani 2011). Most
forms of program induction are biased towards learning simple programs, typically those
with minimal textual complexity, such as the number of clauses (Muggleton et al. 2015) or
the number of literals (Law et al. 2014). This bias ignores the efficiency of hypothesised
programs. In ILP, for instance, Golem (Muggleton and Feng 1990) and Progol (Muggle-
ton 1995) can both learn sorting algorithms from examples, but when given background
predicates partition/3 and append/3, suitable for learning quick sort, both systems learn
variants of insertion sort, because the definition is smaller and there is no bias for learning
more efficient algorithms. By contrast, Metaopt is biased towards learning efficient pro-
grams.

Al planning In Al, planning typically involves deriving a sequence of actions to achieve a
specific goal from an initial situation (Russell and Norvig 2010). Planning research mostly
focuses on efficiently learning plans (Hoffmann and Nebel 2001). However, we are often
interested in plans that are optimal with respect to an objective function which measures the
quality of a plan. A common objective function is the length of the plan (Xing et al. 2006),
and existing systems can learn optimal plans based on this function (Eiter et al. 2003).

Plan length alone is only one criterion. If executing actions is costly, we may prefer a
plan which minimises the overall cost of the actions, e.g. to minimise the use of resources.
The answer set programming literature has started to address learning optimal plans by
incorporating action costs into the learning (Eiter et al. 2003; Yang et al. 2014). In contrast
to these approaches, in Sect. 5.4, we use Metaopt to learn robot strategies (Cropper and
Muggleton 2015), representing a (sometimes infinite) set of plans, which contain conditions
and recursion.

Various machine learning approaches support constructing strategies, such as the SOAR
architecture (Laird 2008), reinforcement learning (Sutton and Barto 1998), and action learn-
ing in ILP (Moyle and Muggleton 1997; Otero 2005). Relational markov decision processes
(van Otterlo and Wiering 2012) provide a general setting for reinforcement learning. Strate-
gies can be viewed as a deterministic special case of markov decision processes (MDPs)
(Puterman 2014). Unlike these approaches, we learn recursive logic programs, including the
use of predicate invention for automatic problem decomposition.

Efficient logic programs Kaplan (1988) describes a method for estimating the average-case
complexity of deterministic logic programs. However, in contrast to functional and imperative
programs, logic programs can be non-deterministic, i.e. a logic program may return multiple
solutions. Multiple solutions to a logic program are found by searching a SLD-tree for a SLD-
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refutation, and then backtracking to find other SLD-refutations. Debray et al. (1997) introduce
a semi-automatic method to estimate the worst-case time complexity of deterministic and
non-deterministic logic programs. However, their approach requires meta-information, such
as mode declarations and type information. In contrast to these approaches, we introduce
a cost function which estimates the worst-case complexity of both deterministic and non-
deterministic logic programs. Our approach does not require meta-information, and works by
measuring the size of the SLD-tree searched to find a SLD-refutation of a goal. In addition,
the aforementioned approaches do not consider how to machine learn efficient programs.

In Sect. 4, we introduce Metaopt, which is used in Experiments 1, 2, and 3 to learn minimal
time-complexity programs by iteratively restricting the hypothesis space by bounding the
number of resolutions allowed to find a hypothesis. Our approach is similar to one proposed
by Blum and Blum (1975) which was later adapted by Shapiro (1983) who uses the notion of
h-easy functions to limit the search for a hypothesis, where an atom A is h-easy with respect
to a logic program P if there exists a derivation of A from P using at most A resolution
steps. Shapiro’s approach measures the number of resolutions in the derivation of A from P,
and thus ignores backtracking steps. By contrast, our approach uses the notion of tree cost
to measure the total number of resolutions required to find a SLD-refutation of a goal with
respect to a program, i.e. tree cost includes backtracking steps.

Our approach of evaluating a hypothesis based on the SLD-tree size is similar the the idea

of Muggleton et al. (1992), who combined proof complexity (the number of choice points
in a SLD-refutation) with other factors, such as hypothesis length and predictive accuracy,
to measure the significance of a hypothesis. However, the authors only considered how to
characterise the significance of a hypothesis. By contrast, we use a meta-interpretive learner
to simultaneously induce and evaluate the time complexity of a hypothesis.
Metagolp To our knowledge, the only work on inducing efficient programs is the work of
Cropper and Muggleton (2015), who introduce an ILP system called Metagol o and show that
it learns efficient robot strategies. A robot strategy is a dyadic logic program where the first
argument of each predicate is the input and the second argument is the output. Each argument
is a state description, represented as a list of Prolog atoms. Each predicate represents an action
which modifies the state. The resource complexity of a strategy is maintained in the state as a
monadic atom named energy. Each time a robot action is successfully executed, the resource
complexity is increased by an amount specified by the user. Metagolp is not a general
approach for learning efficient logic programs and has several limitations. Problems must
be represented as dyadic programs, which is inconvenient and may lead to reduced learning
performance because concepts may be less succinctly represented. Also, the user must specify
predicate costs. For instance, if mergesort/2 is part of the background knowledge, then the
user must specify its cost. If no costs are given, Metagol o assumes uniform costs, and cannot,
for instance, distinguish between mergesort/2 and tail/2. Finally, Metagolp ignores failed
actions and cannot accurately measure the time complexity of programs with backtracking.
Our system, Metaopt, addresses all of these issues.

3 Framework
In this section, we describe the cost minimisation problem. We also describe MIL, which

we extend to support learning minimal cost programs. We assume familiarity with logic
programming (Nienhuys-Cheng and Wolf 1997).
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3.1 Cost minimisation problem

We assume a language of examples &, background knowledge %, and hypotheses 77°. We
denote the Herbrand base of the language L as o7,. We denote the power set of the set S as
25.
We first define a cost function that measures the cost of a program with respect to an atom:
Definition 1 (Program cost) A program cost function is of the form:
D xopue > N

A program cost function forms part of the cost minimisation input:

Definition 2 (Cost minimisation input) The cost minimisation input is a triple (B, E, @)
where:

— B C A is background knowledge

— E = (EY, E7)isapairwhere E* C &, E~ C & are sets of atoms representing positive
and negative examples respectively

— @ is a program cost function

We measure the maximum (i.e. worst-case) cost of a program over a set of examples:

Definition 3 (Maximum cost) Let (B, E, @) be a cost minimisation input, where £ =
(E™, E7). Then the maximum cost of a program H € 7 is:

max_cost(®, H, (E*, E7)) = max,cp+up-P(H, €)
We also define a function that measures the size of a logic program:

Definition 4 (Program size) The size size(H) of the program H is the number of clauses
in H.

We use the maximum cost and size of a program to define an efficiency ordering over
programs:

Definition 5 (Efficiency ordering <¢) Let (B, E, @) be a cost minimisation input and
H, Hy € 7. Then H| <¢ H; iff either:

1. max_cost(®, Hy, E) < max_cost(®, Hy, E)
2. max_cost(®, Hy, E) = max_cost(®, Hr, E) and size(H,) < size(H>)

This ordering priorities programs first by their maximum cost, then by their size. We use this
ordering to define the cost minimisation problem. For convenience, we first define the version
space (Mitchell 1997), which contains only hypotheses consistent with the examples:

Definition 6 (Version space) The version space ¥, g of a cost minimisation input (B, E, @)
contains the hypotheses consistent with E:

Ypg={He#|BUHEE", BUH [~ E™}
We now define the cost minimisation problem:

Definition 7 (Cost minimisation problem) Given a cost minimisation input (B, E, @), the
cost minimisation problem is to return a program H € ¥p g such that H <o H’ for all
H' € 7/3 E-
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Table 1 Example metarules. The

N Metarul

letters P, Q, R, and F denote ame ctaruie

existentially quantified variables.  qent P(A, B) < Q(A, B)

The letters A, B, and C denote ’ ’

universally quantified variables Precon P(A, B) <~ Q(A), R(A, B)
Curry P(A,B) < Q(A, B, F)
Chain P(A,B) < Q(A,C), R(C, B)
Tailrec P(A,B) < Q(A,C), P(C, B)

3.2 Meta-interpretive learning

We now extend MIL to support the cost minimisation problem. MIL is a form of ILP based on
a Prolog meta-interpreter. The key difference between a MIL learner and a standard Prolog
meta-interpreter is that whereas a standard Prolog meta-interpreter attempts to prove a goal
by repeatedly fetching first-order clauses whose heads unify with a given goal, a MIL learner
additionally attempts to prove a goal by fetching higher-order metarules (Table 1), supplied
as background knowledge, whose heads unify with the goal. The resulting meta-substitutions
are saved and can be reused in later proofs. Following the proof of a set of goals, a logic
program is formed by projecting the meta-substitutions onto their corresponding metarules.
A standard MIL input is defined as:

Definition 8 (MIL input) A MIL input is a pair (B, E) where:

— B = B¢ UM where Bc is a set of definite clauses and M is a set of metarules
— E = (E*, E7)is a pair where E™ and E~ are sets of atoms representing positive and
negative examples respectively

A standard MIL learner is defined as:

Definition 9 (MIL learner) Given a MIL input (B, E), a MIL learner returns a program
H € 4//B, E-

We extend MIL to support the cost minimisation problem. We first extend the MIL input:

Definition 10 (Cost minimal MIL input) A cost minimal MIL input is a triple (B, E, @)
where B and E are as in a standard MIL input and @ is a program cost function.

We now define a cost minimal MIL learner:

Definition 11 (Costminimal MIL learner) Given acost minimal MIL input (B, E, @), acost-
minimal MIL learner returns a program H € ¥ g such that H <¢ H' forall H' € ¥ .

In Sect. 4, we introduce Metaopt, a MIL learner that solves the MIL cost minimisation
problem.

3.3 Tree cost minimisation

The cost minimisation input includes a program cost function (Definition 1). We now intro-
duce a cost function for learning minimal time-complexity logic programs. In computer
science, time complexity refers to the time an algorithm needs to perform some computation.
In logic programming, computation is formalised by means of SLD-resolution. Given a logic
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program H and a goal G, computation involves finding a SLD-refutation of H U{G}. A SLD-
refutation is found by searching a SLD-tree, which contains all possible SLD-derivations,
and thus all possible SLD-refutations. Prolog searches for SLD-refutations using a depth-first
search (Sterling and Shapiro 1994). We can therefore measure the runtime (time complexity)
of a Prolog program as a function of the size of the SLD-tree that is being searched. For a
positive example, we can measure the size of the leftmost branch of the SLD-tree in which
the first SLD-refutation is found, i.e. the leftmost successful branch:

Definition 12 (Successful branch) Let H be a definite program, G be an initial goal, and T
be a SLD-tree for H U {G}. Then a successful branch is a path between the root (G) and a
leaf containing the empty clause.

We measure the size of the leftmost successful branch:

Definition 13 (Branch size) Let H be a definite program, G a goal, T a SLD-tree for HU{G},
and L be the leftmost successful branch of 7. Then the branch size branch_size(H, G) is
the number of resolutions prior to and including L in the depth-first enumeration of 7.

For a negative example, we can measure the size of the finitely failed SLD-tree:

Definition 14 (Finitely failed tree) Let H be a definite program, G be an initial goal. Then a
finitely failed SLD-tree for H U{G} is one which is finite and contains no successful branches.

We measure the size of the finitely failed SLD-tree:

Definition 15 (Failed tree size) Let H be a definite program, G be an initial goal, and T
be a finitely failed SLD-tree for H U {G}. Then the failed tree size tree_size(H, G) is the
number of resolutions in the depth-first enumeration of 7'.

We now define our tree cost function:

Definition 16 (7Tree cost) Let H be a definite program, G a goal, and T be a SLD-tree for
H U {G}. Then the tree cost tree_cost (H, G) is:

branch_size(H, G) if T has a successful branch

tree_cost(H,G) = . . . . .
tree_size(H, G) if T is finitely failed

In Experiments 1, 2, and 3, Metaopt uses tree cost to learn minimal time-complexity programs.

4 Implementation

In this section, we introduce Metaopt, a MIL implementation that learns minimal cost logic
programs. We also introduce two cost function implementations for learning minimal tree cost
(Definition 16) and minimal resource complexity (Cropper and Muggleton 2015) programs.
Finally, we describe Metagolp which is used as a comparator in the experiments in Sect. 5.

4.1 Metaopt

Metaopt extends Metagol (Cropper and Muggleton 2016b), an existing MIL implementation,
to support learning minimal cost logic programs. The two key extensions are (1) the addition
of a general cost function into the meta-interpreter, and (2) the use of a procedure called
iterative descent to search for lower cost programs. We describe these two extensions in turn.
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4.1.1 Meta-interpreter

The key extension in Metaopt is the addition of a proof cost, denoted by the variables C;,
into the meta-interpreter':

learn (Pos,Neg, Prog) : -
prove (Pos, [], Prog,0,_),
\+ prove (Neg, Prog, Prog,0,_).
prove ([], Prog, Prog,C,C).
prove ([Atom|Atoms], Progl, Prog2,Cl,C2): -
prove_aux (Atom, Progl, Prog3,Cl1,C3),
prove (Atoms , Prog3, Prog2 ,C3,C2).
prove_aux (Atom, Prog, Prog,Cl,C2) : -
pos_program_cost (Atom, Cost) ,
C2 is Cl+Cost,
get_max_cost (MaxCost) ,
C2<MaxCost.
prove_aux (Atom, Progl , Prog2 ,Cl,C2) : -
member (sub (Name, Subs) , Progl),
metarule (Name, Subs, (Atom:-Body)) ,
prove (Body, Progl , Prog2 ,Cl,C2).
prove_aux (Atom, Progl , Prog2 ,Cl,C2) : -
metarule (Name, Subs, (Atom:-Body)) ,
prove(Body,[sub(Name,Subs)|Prog1],Prog2,Cl,C2).

The meta-interpreter works as follows. Given sets of atoms representing positive (Pos) and
negative (Neg) examples, Metaopt tries to prove each positive atom in turn. Metaopt first
tries to deductively prove an atom by calling pos_program_cost/2, which is defined as
background knowledge. When an atom is proven this way, the cost of proving that atom is
added to the overall proof cost. If the overall proof cost exceeds a bound (MaxCost), then the
proof'is terminated, as to ignore inefficient programs. This bound is determined by the iterative
descent procedure, described in the next section. If Metaopt cannot deductively prove an atom,
it tries to unify the atom with the head of a metarule (metarule (Name, Subs, (Atom
: - Body) )) and to bind the existentially quantified variables in a metarule to symbols in
the predicate signature. Metaopt saves the resulting meta-substitutions, which are eventually
used to form a program. Metaopt then tries to prove the body of the metarule recursively
through meta-interpretation. After proving all positive atoms, a logic program is formed
by projecting the meta-substitutions onto their corresponding metarules. Metaopt checks the
consistency of the learned program with the negative examples. If the program is inconsistent,
then Metaopt backtracks to explore different branches of the SLD-tree.

4.1.2 Iterative descent

The Metaopt meta-interpreter is controlled by the iterative descent algorithm:

metaopt (Pos, Neg) : -
learn (Pos, Neg, Prog) ,
max_program_cost (Prog, Pos, Neg, Cost),

' To aid readability, the Prolog code for the meta-interpreter is a slimmed down version of the one used in the
experiments.
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is_better (Cost),
set_max_cost (Cost),
set_best_program (Prog) ,
false.
metaopt (_,_):-
get_best_program (Prog),
pprint (Prog) .
max_program_cost (Prog, Pos,Neg, MaxCost) : -
assert_program (Prog),
findall (C, (member (Atom, Pos) ,pos_program_cost (Atom,C)), PosCosts) ,
findall (C, (member (Atom, Neg) ,neg_program_cost (Atom,C)), NegCosts),
append (PosCosts , NegCosts , Costs) ,
max_list (Costs,MaxCost) ,
retract_program (Prog) .

Iterative descent works as follows. Starting at iteration 1, Metaopt uses iterative deepening
on the number of clauses to find a consistent program H; with the minimal program size
(Definition 4). The program H; is the quickest to learn because the hypothesis space is
exponential in the number of clauses (Lin et al. 2014; Cropper and Muggleton 2016a).
Metaopt then calculates the cost of H; using the max_program_cost/4 predicate, which
measures the maximum cost of proving the positive examples and disproving the negative
examples. This cost becomes the maximum cost for the next iteration for both the meta-
interpreter and the iterative descent algorithm. In iteration i > 1, Metaopt searches for a
program H;, again with minimal program size, but ensuring that the cost of H; is less than
the cost of H;_. Iterative descent continues until it cannot find a lower cost program.

We now prove that Metaopt solves the cost minimisation problem (Definition 7), i.e. that
Metaopt converges on minimal cost programs given sufficiently large numbers of examples:

Theorem 1 (Metaopt convergence) Assume E consists of m examples drawn from an enu-
meration of the infinite example space E'. Without loss of generality consider the hypothesis
space formed of two programs Hy and H» such that Hy <¢ H; for an arbitrary cost function
@. Then for a sufficiently large value m, Metaopt will return Hy in preference to H.

Proof Assume false, which, because of Definition 5, implies that one of the following con-
ditions must hold:

1. max_cost(®, Hy, E) > max_cost(®, Hy, E)
2. max_cost(®, Hy, E) = max_cost(®, Hy, E) and size(H) > size(H>)

We consider these two cases in turn:

Case 1 With sufficiently large m there will exist an example e such that @ (Hy, e) < @ (H>, e)
and @ (H», e) > ®(H,,€') for all other ¢’ in E and @ (H;, e) > ®(Hy, ¢) for all
other ¢’ in E. In this case max_cost (®, Hy, E) < max_cost(®, Hy, E) and Metaopt
returns H; which contradicts the assumption, so we discard this case.

Case 2 Metaopt performs iterative deepening search (IDS) on the number of clauses. From

the optimality of IDS, Metaopt returns H; which contradicts the assumption, so we
discard this case.

These two cases are exhaustive, thus the proof is complete. O

4.2 Program costs

Metaopt assumes a program cost function (Definition 1) as background knowledge. We now
describe two cost function implementations.

@ Springer



Mach Learn (2019) 108:1063-1083 1073

Fig. 3 Implementation of a
program cost function to measure
tree cost

pos_program_cost (Atom,Cost): -
statistics(inferences,I1),
call(Atom),
statistics(inferences,I2),
Cost is I2-I1.

neg_program_cost (Atom,Cost): -
statistics(inferences,I1),
(call(Atom) -> true; true),
statistics(inferences,I2),
% subtract one to account for the
% cost of the ifthen statement
Cost is I2-I1-1.

Fig. 4 Implementation of a
program cost function to measure
resource complexity Atom=..[P,A,B],
member (energy (E1),A),
call(Atom),
member (energy (E2),B),
Cost is E2-ET.
neg_program_cost (_,_):-
false.

pos_program_cost (Atom,Cost): -

4.2.1 Tree cost

Figure 3 shows the implementation of the tree cost functions (Definition 16) for positive and
negative examples. This implementation uses an inbuilt feature of SWI-Prolog (Wielemaker
et al. 2012) to measure the number of logical inferences needed to prove an atom, where an
inference is defined as a call or redo on a predicate.? This approach measures backtracking
steps, costs associated with non-dyadic predicates, and costs associated with trying to prove
negative examples, none of which are supported by Metagolp. In Experiments 1, 2, and 3,
Metaopt uses this implementation to learn minimal tree cost programs, and thus minimal
time-complexity programs.

4.2.2 Resource complexity

In Experiment 4, we reproduce an experiment from Cropper and Muggleton (2015) to show
that Metaopt can learn minimal resource complexity robot strategies and thus subsumes
Metagolp. As explained in Sect. 2, Metagol o maintains the resource complexity of a strategy
in the state description as a Prolog fact called energy. Figure 4 shows the implementation of
a function which accesses this value so that it can be used by Metaopt.

4.3 Metagolp

In Experiments 2 and 3 we compare Metaopt with Metagolp. However, we cannot use the
implementation from Cropper and Muggleton (2015) because Metagol o requires that prob-

2 http://www.swi-prolog.org/pldoc/man?predicate=statistics/2.
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lems be represented as dyadic robot strategies (as detailed in Sect. 2). Therefore, we simulate
Metagolp in Metaopt by defining a program cost predicate in which all dyadic predicates
have a uniform cost of 1, which is the assumption in Metagolp, and non-dyadic predicates
have a cost of 0, because Metagol g does not take these into account when calculating resource
complexity.

5 Experiments

We now describe four experiments® which test whether Metaopt learns minimal cost pro-
grams. We also compare Metaopt with Metagol and Metagolp, which minimise textual
complexity and resource complexity respectively.

5.1 Experiment 1: convergence on minimal cost programs

This experiment revisits the find duplicate problem from Sect. 1, where we are trying to learn
a program to find a duplicate in a list. The aim is to test the claim that Metaopt converges on
minimal cost programs given sufficient examples (Theorem 1). In particular, we want to see
how many examples are required in practice to converge on a minimal cost program. We test
the null hypothesis:

Null hypothesis 1 Metaopt cannot learn minimal cost programs without very large numbers
of examples.

This experiment focuses on learning minimal tree cost programs, and thus minimal time-
complexity programs.

Materials To refute null hypothesis 1, we must identify a minimal tree cost program in
the hypothesis space, otherwise our hypothesis would be untestable. We provide Metaopt
with background knowledge containing the ident, chain, and tailrec metarules (Table 1) and
four predicates: mergesort/2, tail/2, head/2, and element/2 (Fig. 1). Given this background
knowledge, the minimal tree cost program in the hypothesis space is shown in Fig. 2b.* This
minimal cost program has the following tree cost:

Proposition 1 Find duplicate minimal cost program Let n be the list length. Then the tree
cost of the minimal tree cost program is O (n log n).

Sketch proof 1 The minimal tree cost program involves first sorting the list and then passing
through the list checking whether any two adjacent elements are the same. Thus the overall
costis O(n log n). ]

We generate a positive training example as follows:

1. Select a random integer k from the interval [5, 100] to represent the size of the input
2. Select a random integer j from the interval [1, k] to represent the duplicate element
3. Append j to the sequence 1. ..k and randomly shuffle the resulting list to form s’
4. Form the atom f(s', j)

We generate a negative training example as follows:

3 All code and experimental data used in the experiments are available at https://github.com/andrewcropper/
mlj18-metaopt.

4 One could find the duplicate in time O(n) using a hash table but this program is not in the hypothesis space,
so could not be found by Metaopt.
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Fig.5 aThe median tree costs of programs learned by Metaopt when varying the number of training examples.
Error bars represent the median absolute derivation. After approximately 15 examples, Metaopt converges on
the minimal cost program. b The corresponding runtimes

1. Select a random integer k from the interval [5, 100] to represent the size of the input

2. Select arandom integer j from the interval [1, k] to represent the false duplicate element
3. Randomly shuffle the sequence 1 ...k to form s’

4. Form the atom f(s’, j)

We generate testing examples using the same procedures but for a fixed input size k = 1000.
Method Our experimental method is as follows. For each m in the set {4, 6, §, ..., 40}:

1. Generate m training examples, half positive and half negative

2. Generate 2000 testing examples, half positive and half negative

3. Learn a program p using the training examples with a timeout of 10 minutes.
4. Measure the tree cost and running time of p over the testing examples

We measure median tree costs and running times over 20 repetitions.

Results Figure 5a shows that Metaopt learns programs with lower costs given more train-
ing examples. After approximately 15 examples, Metaopt converges on the minimal cost
program, refuting null hypothesis 1. Figure 5b shows similar results when measuring the
runtimes of learned programs, and that the tree cost of a program corresponds to its time
complexity.

5.2 Experiment 2: comparison with other systems

This experiment again revisits the find duplicate problem. The aim is to compare the tree
costs and running times of programs learned by Metaopt to programs learned by Metagol
and Metagol g, where Metaopt minimises tree costs, Metagol minimises program size (Def-
inition 4), and Metagolp minimises resource complexity (as described in Sect. 4.3). We test
the null hypothesis:

Null hypothesis 2 Metaopt cannot learn programs with lower costs and lower running times
than Metagol and Metagol .

Materials We provide all three systems with the same background knowledge as in
Experiment 1. We generate training examples in the same way as in Experiment 1. We
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Fig. 6 a The median tree costs of learned find duplicate programs. Error bars represent the median absolute
derivation. The costs of programs learned by Metaopt match those of the minimal cost program and are of
order O(n log n). By contrast, the programs learned by Metagol and Metagolp are of order O(n?%). b The
corresponding runtimes

Table 2 Examples for the p0/

string transformation problem Input Output
My name is John John
My name is Bill Bill
My name is Josh Josh
My name is Albert Albert
My name is Richard Richard

generate testing examples using the same procedure but for fixed list sizes from the set
{1000, 2000, ..., 10,000} to measure tree costs as the input grows.
Method Our experimental method is as follows:

1. Generate 20 training examples, half positive and half negative

2. Generate 100 testing examples, half positive and half negative

3. Learn a program p using the training examples with a timeout of 10 minutes.
4. Measure the tree cost and running time of p over the testing examples

We measure median tree costs and running times over 20 repetitions.

Results The log-lin plot in Fig. 6a shows that Metaopt learns programs with lower tree costs
than both Metagol and Metagolp. The log-lin plot in Fig. 6b shows similar results when
measuring the runtimes of learned programs. Therefore, null hypothesis 2 is refuted both in
terms tree costs and running times. Figure 2a, b show example programs learned by Metagolp
and Metaopt respectively.

5.3 Experiment 3: real-world string transformations

In Lin et al. (2014) the authors evaluate Metagol on 17 real-world string transformation
problems. Table 2 shows problem p0I where the goal is to learn a program that extracts the
name from the input. This experiment explores whether Metaopt can learn minimal tree cost
programs for these real-world problems.
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Fig.7 Median tree costs of learned string transformation programs. Error bars represent the median absolute
derivation. Metaopt learns lower tree cost programs than Metagol and Metagol g in all cases

Materials We provide Metaopt, Metagol, and Metagolp with the same background knowl-
edge containing the curry and chain metarules (Table 1) and the predicates: is_letter/I,
not_letter/1, is_uppercase/l, not_uppercase/l, is_number/1, not_number/l, is_space/l,
not_space/l, tail/2, dropLast/2, reverse/2, filter/3, dropWhile/3, and takeWhile/3.

Method The dataset from Lin et al. (2014) contains five examples of each problem. We
perform leave-two-out (keep-three-in) cross validation. We measure median program costs
and running times over all trials. We set a timeout at 10 minutes.

Results Out of the 17 problems, Metagol, Metagolp, and Metaopt learned different programs
for 9 of them. Figure 7 shows the tree costs for the 9 problems, where Metaopt learns programs
with lower costs in all cases, again refuting null hypothesis 2. For problem p01, the cost of
the program learned by Metaopt (31) is half of that learned by Metagol (67) and Metagolp
(86). Figure 8 shows example programs learned by the systems for problem p0I. Although
textually more complex, the program learned by Metaopt has a lower tree cost because it
successively applies the tail/2 predicate until it reaches the first letter of the name. By contrast,
Metagol learns a program which uses the dropWhile/3 predicate to recursively check whether
the head symbol is uppercase, and if not drops the head element, which requires twice the
amount of work. Because Metagolp only associates costs with dyadic predicates, it found a
program which does not directly use any primitive dyadic predicates, and so has a resource
cost of 0, yet is less efficient than the one found by Metaopt.

5.4 Experiment 4: robot postman strategies

In Cropper and Muggleton (2015), Metagolp is shown to learn robot strategies with lower
resource complexities than Metagol. This experiment reproduces the postman experiment
from Cropper and Muggleton (2015) to show that Metaopt can simulate Metagol o by treating
resource complexity as a specific case of the cost minimisation problem, i.e. by using the
resource complexity implementation described in Sect. 4.2.2. We test the null hypotheses:
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Fig. 8 Programs learned by Metagol (a)

Metagol, Metagol g, and Metaopt s

for the p01 string transformation f(A,B):-tail(A,0), F1(C,B).

problem f1(A,B):-dropLast(A,C),f2(C,B).
f2(A,B):-dropWhile (A,B,not_uppercase).

Metagol,, (b)

f(A,B):-f_1(A,C),f4(C,B).
f1(A,B):-f_2(A,C),f3(C,B).
f2(A,B):-filter(A,B,is_letter).
f3(A,B):-dropWhile(A,B,is_uppercase).
f4(A,B):-dropWhile (A,B,not_uppercase).

Metaopt (c)

f(A,B):-tail(A,C),f1(C,B).
f1(A,B):-f2(A,C),dropLast(C,B).
f2(A,B):-f3(A,C),f3(C,B).
f3(A,B):-tail(A,C),f4(C,B).
f4(A,B):-f5(A,C),f5(C,B).
f5(A,B):-tail(A,C),tail(C,B).

Null hypothesis 3 Metaopt cannot learn programs with lower resource complexities than
Metagol.

Materials Imagine a humanoid robot postman learning to collect and deliver letters in a d
sized one-dimensional space. In the initial state, the robot is at position 1 and #n letters are to
be collected. In the final state, the robot is at position 1 and n letters have been delivered to
their intended destinations. The state is represented as a list of Prolog facts. The robot can
perform primitive actions to transform the state: move_right/2, move_left/2, pick_up_left/2,
pick_up_right/2, drop_left/2, drop_right/2, take_letter/2, bag_letter/2, and give_letter/2. All
primitive actions have a cost of 1. The robot can also perform complex actions, which
are defined in terms of primitive actions: find_next_sender/2 and find_next_recipient/2,
go_to_start/2, and go_to_end/2. The costs of complex actions are determined by their con-
stituent primitive actions. The robot can take and carry a single letter from a sender using
the action fake_letter/2. Alternatively, the robot can take a letter from a sender and place it
a postbag using the action bag_letter/2, which allows the robot to carry multiple letters. We
use the chain and tailrec metarules (Table 1).
We generate a training example using the following procedure:

—

Select a random integer d from the interval [10, 25] representing the number of houses.

2. Select a random integer n from the interval [1, 5] representing the number of letters.

3. For each letter /, select random integers i and j from the interval [1, d] representing the
letter’s start and end positions, such thati # j

4. Form an input state s =

[pos(pman,0), energy(0), pos(ly,i1), ..., pos(ly, in),
letter(ly, i1, j1), ..., letter(ly, in, ju)l
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Fig. 9 Median resource complexity of learned postman strategies with varying numbers of letters for 50
places. Error bars represent the median absolute derivation

5. Form an output state s, =

[pos(pman5 _)5 energy(_)5 pOS(ll, j1)5 sy pos(ll’la jn)7
letter(ly, iy, j1), ..., letter(ly, in, jn)l

6. Form an example f(s1, 52).

We generate a test example using the aforementioned procedure but with a fixed number
of letters d = 50 and fixed number of letters n from the set {2, 4, ..., 20} to measure the
resource complexity as n grows.

Methods Our experimental method is as follows:

1. Generate 5 positive training and 100 positive testing examples
2. Learn a program p using the training examples with a timeout of 10 minutes.
3. Measure the resource complexity and running time of p over the testing examples

We measure median resource complexities of learned strategies over 20 trials.

Results Figure 9 shows that Metaopt learns strategies with lower resource complexities than
Metagol, refuting null hypothesis 3. Figure 10 shows two strategies learned by Metagol (a)
and Metaopt (b), able to handle any number of houses, any number of letters, and different
start/end positions for the letters. Although the strategies are equal in their textual complexity,
they differ in their resource complexity. The strategy learned by Metaopt (b) has lower
resource complexity because it involves the use of the postbag to store letters, whereas
strategy (a) does not.

6 Conclusions and further work
We have introduced Metaopt which extends MIL to support learning minimal cost logic

programs. To find minimal cost programs, Metaopt uses iterative descent, which iteratively
learns lower cost programs, each time further restricting the hypothesis space. We have
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Metagol (a)

f(A,B):-go_to_start(A,C),f1(C,B).
f(A,B):-f1(A,C),f(C,B).
f1(A,B):-find_next_recipient (A,C),f2(C,B).
f1(A,B):-find_next_sender (A,C), take_letter(C,B).
f2(A,B):-give_letter (A,C),go_to_start(C,B).

Metaopt (b)

f(A,B):-f1(A,C),f1(C,B).
f1(A,B):-f2(A,C),go_to_start(C,B).
f1(A,B):-f2(A,C),f1(C,B).
f2(A,B):-find_next_recipient (A,C),give_letter(C,B).
f2(A,B):-find_next_sender (A,C),bag_letter(C,B).

Fig. 10 Postman strategies learned by Metagol (a) and Metaopt (b) with resource complexities O (n + d) and
O (nd) respectively

shown (Theorem 1) that given sufficiently large numbers of examples, Metaopt converges on
minimal cost programs, and that in practice (Experiment 1), only small numbers of examples
are required. To learn minimal time-complexity programs, we introduced a cost function
called tree cost (Definition 16), which is based on the size of a SLD-tree at the point of which
a goal is proved by a logic program. Our experiments on the find duplicate problem show
that Metaopt learns minimal cost programs given small numbers of examples. By contrast,
Metagol and Metagol o both learn non-minimal cost programs with longer running times. Our
experiments also show that Metaopt learns programs with lower costs than existing systems on
some real-world string transformation problems. Finally, our experiments on learning robot
strategies show that Metaopt can simulate Metagolp and learn minimal resource complexity
robot strategies by treating resource complexity as a specific case of the cost minimisation
problem.

6.1 Future work

Theorem 1 shows that Metaopt learns minimal cost programs given sufficient examples. The
find duplicate experiment (Sect. 5.1) supported this result and showed that in practice only
small numbers of examples (<20) are necessary. Future work should further test this result
on other domains, such as learning from visual data or learn efficient taleo-reactive programs
(Nilsson 1994). Likewise, in all of our experiments, we have assumed noise-free examples,
which means that a learned program must be consistent with all examples. This assumption
restricts MIL from being applied to noisy problems. To address this limitation, we could relax
the requirement that a program must be consistent with all examples. One method, similar to
the one used by Muggleton et al. (2018), is to repeatedly learn programs from random subsets
of the examples, and to then calculate confidence levels of the learned programs based on
the size of the subsets and the number of repetitions.

Other complexity measures We have introduced techniques to learn minimal worst-case
complexity programs. However, we are often interested in finding minimal average-case
complexity programs, and future work should explore this topic. To do so, the framework
in Sect. 3 would need to be adjusted to accommodate a different function to measure the
cost of a program over a set of examples (Definition 3), which would effect the proof of
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convergence of Metaopt (Theorem 1). In this case, it would be desirable to analyse how many
examples Metaopt would need to converge on the optimal average-case program. Another
promising areas of future work include investigating whether Metaopt can learn minimal
space-complexity programs or minimal power consumption programs.

Program complexity analysis Metaopt uses iterative descent to continually prune the hypothe-
sis space of programs that are less efficient than already learned ones. However, this approach
is inefficient when the first found program (in the first iteration of iterative descent) has a
prohibitively high cost. For instance, suppose you are learning to sort lists and that the short-
est program in the hypothesis space is permutation sort. Then in the first iteration of iterative
descent, Metaopt would find permutation sort, which would require O (n/) time. If the exam-
ples are large, then this approach would be impractical. To overcome this issue, iterative
descent could start with a low program cost bound and then iteratively relax this bound until
the first program is found. Once a program has been found, iterative descent could then work
as itdoes now and search for more efficient programs by continually restricting the hypothesis
space. Alternatively, we could estimate the tree complexity of a program by approximating
the SLD-tree size (Kilby and Slaney 2006).

Algorithm discovery We have used Metaopt to learn efficient programs, such as an efficient
quicksort robot strategy and an efficient find duplicate program. However, although the learn-
ing techniques are novel, the learned programs are not, i.e. we have learned programs that we
already knew about. In future work, we want to use Metaopt for algorithm discovery, where
the goal is to learn programs that are both efficient and novel.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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