
Inductive Learning of Answer Set Programs

Mark Law, Alessandra Russo, and Krysia Broda

Department of Computing, Imperial College London,
{mark.law09, a.russo, k.broda}@imperial.ac.uk

Abstract. Existing work on Inductive Logic Programming (ILP) has
focused mainly on the learning of definite programs or normal logic pro-
grams. In this paper, we aim to push the computational boundary to
a wider class of programs: Answer Set Programs. We propose a new
paradigm for ILP that integrates existing notions of brave and cautious
semantics within a unifying learning framework whose inductive solu-
tions are Answer Set Programs and examples are (partial) Answer Sets.
We present an algorithm that is sound and complete with respect to
our new notion of inductive solutions. We demonstrate its applicabil-
ity by discussing a prototype implementation, called ILASP (Inductive
Learning of Answer Set Programs), and evaluate its use in the context
of planning. In particular, we show how ILASP can be used to learn
agent’s knowledge about the environment from observation. Solutions of
the learned ASP program provide plans for the agent to travel through
the given environment.

Keywords: Inductive Reasoning, Learning Answer Set Programs, Non-
monotonic Inductive Logic Programming

1 Introduction

For more than two decades, Inductive Logic Programming (ILP) [10] has been
an area of much interest. Significant advances have been made both on new al-
gorithms and systems (e.g. [15, 8, 1, 11, 12]) and proposals of new logical frame-
works for inductive learning (e.g. [16]). In most of these approaches an inductive
learning task is defined as the computation of an hypothesis that, together with
a given background knowledge, explains a set of observations (i.e. examples).
Observations are usually grouped into positive (E+) and negative (E�) exam-
ples, and an inductive solution is defined as an hypothesis H that is consistent
with the background knowledge B and that, together with B, entails the posi-
tive examples (B [H |= e for every e 2 E+) and does not entail the negative
examples.

As stated in [16], this semantic view of inductive learning may be too “strong”.
When B [H accepts more than one (minimal) model, it restricts solutions to
be only those hypotheses H for which the given observations are true in the
intersection of all models of B [H. Brave Induction [16] partly overcomes this
limitation by relaxing the notion of an inductive solution to hypotheses that,
together with the background knowledge, accept at least one minimal model
satisfying the examples. Both Brave Induction and Induction of Stable Models
[13] also applied induction to the stable model semantics[6] such that in sit-
uations when B [H has more than one stable model, it is just necessary to

2

guarantee that each example is true in at least one stable model of B[H. Their
notion of examples is, however, very specific: in [16] there is only one example
defined as a conjunction of atoms, and in [13] examples are partial interpre-
tations. When B [H has multiple stable models, literals may be true in all
models, some of, or none of them, and sometimes only a specified number of a
particular set of literals should be true. In particular, this is the case when the
hypothesis H is an Answer Set Program (ASP) and the models of B [H are
Answer Sets. Neither Brave Induction, nor Induction of Stable Models, is able to
express through examples that a literal should be true in all/no stable models.
To allow for hypotheses that are Answer Set Programs, a more expressive notion
of examples and inductive solution is therefore needed.

Consider, for instance, a simplified version of a sudoku game where the grid
includes only sixteen cells (see Figure 1).

1 3
4 1

2
4 1 2

(a)

1 1
3 1

2
3

(b)

1 2

4

1
2

1
3

(c)

1 4 2 3
3 2 4 1
2 1 3 4
4 3 1 2

(d)

Fig. 1. One valid partial sudoko board (a), followed by two invalid partial boards (b)
and (c) and one complete valid board (d)

Let us assume that basic definitions of cell, same row, same col and same block
(true only for two di↵erent cells in the same row/column/block) are given as
background knowledge B expressed as an Answer Set Program, and that the
task is to learn the set of rules that together with B generates all valid sudoku
grids. A possible hypothesis would in this case be the following ASP program:

1 { value(1, C), value(2, C), value(3, C), value(4, C) } 1 :- cell(C).

:- value(V, C1), value(V, C2), same_col(C1, C2).

:- value(V, C1), value(V, C2), same_row(C1, C2).

:- value(V, C1), value(V, C2), same_block(C1, C2).

The first rule states that each cell has exactly one value (1, 2, 3 or 4). The
remaining 3 rules are constraints stating that no two di↵erent cells in the same
column/row/block can have the same value. Each Answer Set of this program
corresponds to exactly one (complete) valid board.

To learn this program (given the definitions of cell, same row, same col,
same block as background knowledge) single literal examples, value(1, cell(1, 1)),
would not be enough, as value(1, cell(1, 1)) being valid depends on the values of
the other cells. Examples should therefore be (partial) boards, e.g. Figure 1(a),
and the learned hypothesis, H, should be such that for every example E, B [H
has an Answer Set corresponding to a complete board that extends E. But it is
not su�cient to consider only (positive) examples of what should be included in
an Answer Set of the target hypothesis: no matter how many (positive) examples
we give the following hypothesis will always be in the solution space:

0 { value(1, C), value(2, C), value(3, C), value(4, C) } 4 :- cell(C).

3

Every correct sudoku board would be an Answer Set of the above hypothesis as
every correct board has value between 0 and 4 in each cell; however, this is also
true for many incorrect boards, such as those in Figure 1 (b) and (c). What is
needed is the use of negative examples, also as partial interpretations, and a new
notion of inductive learning from positive and negative (partial) interpretations.

In this paper we propose a new paradigm for inductive learning that allows
Learning from (partial) Answer Sets. Our approach integrates notions of brave
and cautious semantics within a unifying learning framework whose inductive so-
lutions are ASP programs and both positive and negative examples are (partial)
interpretations (or partial Answer Sets). Inductive solutions are ASP programs
that together with a given background knowledge B have at least one Answer
Set extending each positive example (this could be a di↵erent Answer Set for
each example), and no Answer Set which extends any negative example. The use
of negative examples is what di↵erentiates our approach from Brave Induction
or Induction of Stable Models. In fact, neither of these two existing approaches
would be able to learn the three constraints described above as part of an in-
ductive solution for the given sudoku problem, but our approach can solve any
Brave Induction or Induction of Stable Models task.

In our framework negative examples drive the learning of constraints, or the
learning of bounds on aggregates. In the sudoku game, negative examples would
be invalid partial boards (e.g., Figure 1 (b) and (c)). These examples should
not be extended by any Answer Set of the learned program. If, for instance, we
wanted to force the learning of an hypothesis whose models are only complete
boards, we could consider, for instance, a negative example which states that
none of the values 1-4 appear in a particular cell. Note that this is di↵erent from
partial boards (examples) which do not specify a value for a particular cell, as
they could still be extended by a board which does.

Section 3 describes our new learning paradigm, called Learning from (partial)

Answer Sets, by formally defining our new notions of learning task and inductive
solutions. In Section 4 we present our algorithm, ILASP, and argue its sound-
ness and completeness with respect to our new notion of inductive learning. In
Section 5 we investigate its applicability to a planning problem. In particular we
show how ILASP can be used to learn agent’s knowledge about its environment
from observation. Answer Sets of the learned ASP hypotheses provide in this
case plans for the agent to travel through the given environment. We conclude
the paper with a review of the related work and a discussion of future directions.

2 Background

In this section we briefly summarize basic notions and terminology that will be
used throughout the paper. We assume the following subset of the ASP language.
A literal can be either an atom p or its default negation not p (often called nega-

tion by failure). A normal rule is of the form h b1, . . . , bn, not c1, . . . not cm
where h is the head of the rule, b1, . . . , bn, not c1, . . . not cm (collectively) is the
body of the rule, and all h, b

i

, and c
j

are atoms. A constraint is of the form
 b1, . . . , bn, not c1, . . . not cm where the empty head means false. A choice rule

is an expression of the form l{h1, . . . , hm

}u b1, . . . , bn, not c1, . . . not cm where

4

the head l{h1, . . . , hm

}u is called an aggregate. In an aggregate l and u are inte-
gers and h

i

, for 1 i m, are atoms.

Definition 1. A variable V occurring in a rule R is said to be safe if V occurs

in at least one non defaultly negated literal in the body of R.

Example 1. In the following rules the variable X is not safe:
p(X) q(Y), not r(Y) p q, not r(X).

An Answer Set Program P is a finite set of normal rules, constraints and
choice rules. Given an Answer Set Program P , the Herbrand Base of P , denoted
asHB

P

, is the set of all ground (variable free) atoms that can be formed from the
predicates and constants that appear in P . When P includes only normal rules, a
set A ✓ HB

P

is an Answer Set of P i↵ it is the minimal model of the reduct PA,
which is the program constructed from the grounding of P by first removing any
rule whose body contains a literal not c

i

where c
i

2 A, and then removing any
defaultly negated literals in the remaining rules. An Answer Set satisfies a ground
constraint b1, . . . , bn, not c1, . . . not cm if it is not the case that {b1, . . . , bn} ✓
A and A \ {c1, . . . cm} = ;. A constraint therefore has the e↵ect of eliminating
Answer Sets in which the body of the constraint is true. Finally, informally, if
the body of a ground choice rule l{h1, . . . , hm

}u b1, . . . , bn, not c1, . . . not cm
is satisfied by A, then the rule has the e↵ect of generating all Answer Sets in
which l |A \ {h1, . . . , hm

}| u. Note that this no longer enforces minimality.
For a formal definition of the semantics of Answer Set Programs with choice
rules, the reader is referred to [5]. Throughout the paper we will denote with
AS(P) the set of all Answer Sets of an Answer Set Program P .

Definition 2. A partial interpretation E is a pair E = hEinc, Eexci of sets

of literals, called the inclusions and exclusions respectively. An Answer Set A
extends hEinc, Eexci if and only if (Einc ✓ A) ^ (Eexc \A = ;). 1

A partial interpretation E is called a brave consequence of a program P if
and only if there exists an Answer Set A 2 AS(P) such that A extends E. E is
called a cautious consequence of a program P if and only if every Answer Set
A 2 AS(P) extends E.

3 Learning from Answer Sets

In this section we formalize our new paradigm of Learning from (partial) Answer

Sets. We assume background knowledge and hypotheses to be ASP programs
expressed using the ASP language defined in Section 2, and examples to be
partial interpretations.

In an ILP task, the expressivity of the hypothesis space is defined by the lan-
guage bias of the task. Mode declarations are a popular means of characterising
the language bias [11]. They specify which literals may appear in the head and
in the body of a hypothesis. Given a language bias the full hypothesis space,
also called search space and denoted with S

M

, is given by the finite set of all
the rules that can be constructed according to the given bias. A language bias

1 Note: h{e1, ..., en}, {f1, ..., fm}i can also be written {e1, ..., en, not f1, ..., not fm}.

5

can be defined as a pair of mode declarations hM
h

,M
b

i, where M
h

(resp. M
b

)
are called the head (resp. body) mode declarations. Each mode declaration m

h

(resp. m
b

) is a literal whose abstracted arguments are either v or c. Informally,
an atom is said to be compatible with a mode declaration m if every instance of
v in m has been replaced with a variable, and every c with a constant.

Definition 3. Given a set of mode declarations M = hM
h

,M
b

i, a rule of the

form h b1, . . . , bn, not c1, . . . not cm is in the search space S
M

if and only if

(i) h is empty; or h is an atom compatible with a mode declaration in M
h

; or

h is an aggregate l{h1, ...hk

}u such that 0 l u k and 8i 2 [1, k] h
i

are

compatible with mode declarations in M
h

; (ii) 8i 2 [1, n], 8j 2 [1,m] b
i

and c
j

are compatible with mode declarations in M
b

, and finally (iii) all variables in the

rule are safe. Each rule R in S
M

is given a unique identifier R
id

.

Example 2. Consider again the sudoku example and assume the following mode
declarations: M = h{value(c, v)}, {cell(v), value(v, v), same block(v, v)}i. Then
value(1, C) cell(C) 2 S

M

; 1{value(1, C), value(2, C)}2 cell(C) 2 S
M

;
 value(X,C1), value(X,C2), same block(C1, C2) 2 S

M

. The following rules
are not in the search space S

M

: value(C) cell(C); cell(C) cell(C); and
 value(1, C1), value(1, C2), same block(C1, C2).

Next we define our new notions of inductive task and inductive solution in
the Learning from Answer Sets setting.

Definition 4. A Learning from Answer Sets task is a tuple T = hB,S
M

, E+, E�i
where B be is the background knowledge, S

M

the search space defined by a lan-

guage bias M , E+
and E�

are sets of partial interpretations called, respectively,

the positive and negative examples. A hypothesis H 2 ILP
LAS

(T), the set of

inductive solutions of T if and only if:

1. H ✓ S
M

2. 8e+ 2 E+ 9A 2 AS(B [H) such that A extends e+

3. 8e� 2 E� 6 9A 2 AS(B [H) such that A extends e�

Note that this definition combines properties of both the brave and cautious
semantics: the positive examples must each be bravely entailed; whereas the
negation of each negative example must be cautiously entailed.

Example 3. LetB = {p r},M = h{q, r}, {p, r}i, E+={{p, not q}, {q, not p}}
and E� = {{not p, not q}, {p, q}}. An inductive solution is the ASP program H
given by H = {q not r; r not q} 2. The Answer Sets of B [H are {p, r} and
{q}. The former extends the first positive example, the latter extends the second
positive example and clearly neither of them extend any negative examples.

It is common practice in ILP to search for hypotheses which are “most com-
pressed”, following the Occam’s Razor principle of looking for simplest theories.
The notion of compressed is usually defined in terms of the number of literals
that appear in the hypothesis. This metric does not apply well to hypotheses
that include aggregates. The length of 1{p, q}1 (exactly one of p and q is true)

2 Here, and in the rest of the paper, we use ; as a delimiter in sets of rules.

6

would be the same as the length of 0{p, q}2 (none, either or both of p and q
is true), but clearly they do not represent similar concepts. So, to calculate the
length of an aggregate we convert it to disjunctive normal form, as this takes into
account both the number of Answer Sets that the aggregate generates and the
number of literals it uses. For example, 0{p, q}2 is considered as the disjunction
(p ^ q) _ (p ^ not q) _ (not p ^ q) _ (not p ^ not q), which has length 8, whereas
1{p, q}1 is considered as (p ^ not q) _ (not p ^ q), which has length 4.

Definition 5. Given an hypothesis H, the length of the hypothesis, |H|, is the

number of literals that appear in HD

, where HD

is constructed from H by con-

verting all aggregates in H to disjunctive normal form.

Given an ILP
LAS

learning task T =hB,S
M

, E+, E�i, we denote with ILP ⇤
LAS

(T)
the set of all optimal inductive solutions of T , where optimality is defined in
terms of the length of the hypotheses. We will also denote with ILPn

LAS

(T) the
set of all inductive solutions of T which have length n.

4 Algorithm

In this section we describe the design and implementation of our algorithm
ILASP (Inductive Learning of Answer Set Programs) and state its soundness
and completeness results. Due to space limitation, proofs have been omitted
from the paper but they are available in [9].

Our algorithm works by encoding our ILP
LAS

task into an ASP program. It
makes use of two main concepts: positive solutions and violating solutions. Pos-
itive solutions are those hypotheses that added to the background knowledge
have Answer Sets which extend each positive example. But some positive solu-
tions may still cover negative examples; we call these the violating solutions. The
underlying idea of our algorithm is to compute every violating solution of a given
length, and then use these to generate a set of constraints which, when added
to our task program, eliminate the violating solutions. Theorem 1 shows that
the remaining positive solutions are indeed the inductive solutions of the given
ILP

LAS

task. ILASP uses the ASP solver clingo[4] to compute these solutions.

Definition 6. Let T = hB,S
M

, E+
, E�i be an ILP

LAS

task. An hypothesis

H 2 positive solutions(T), called the set of positive inductive solutions of T , if
and only if H ✓ S

M

and 8e+ 2 E+ 9A 2 AS(B [H) such that A extends e+.

Example 4. Consider the ILP
LAS

task T =hB,S
M

, E+, E�i where B={q r},
E+ = {{p}, {q}}, E� = {{p, q}} and S

M

is given by the following rules {p; r;
p r; p not r; r not p}3. The hypotheses H1={p; r}, H2={p r; r}
and H3 = {p not r; r not p} are among the positive solutions of T . Note
that only the last solution is an inductive solution of T .

Definition 7. Let T = hB,S
M

, E+
, E�i be an ILP

LAS

task. An hypothesis

H 2 violating solutions(T), called the set of violating inductive solutions of T ,
if and only if H 2 positive solutions(H) and 9e� 2 E� 9A 2 AS(B [H) such
that A extends e�.
3 In subsequent examples we will refer to these rules in S

M

with their R
id

a to e.

7

We will write positive solutionsn(T) and violating solutionsn(T) to denote
the positive and violating inductive solutions of length n.

Example 5. Consider Example 4 again. Each of the first two hypotheses (to-
gether with the background knowledge) has one Answer Set: {p; q; r}. This ex-
tends the negative example in T , and so both hypotheses are violating inductive
solutions of T . Note that the positive solutions which are also violating solutions
are not inductive solutions, whereas the third positive solution, which is not a
violating solution is actually an inductive solution of the given ILP

LAS

task.
This is a general property proven by Theorem 1.

Theorem 1. Let T = hB,S
M

, E+
, E�i be an ILP

LAS

learning task. Then

ILP
LAS

(T)=positive solutions(T)\violating solutions(T).

One method to find all inductive solutions of a ILP
LAS

learning task T would
be to generate all positive inductive solutions of T , add each solution, in turn,
to the background knowledge in T and solve the resulting program to check
whether it accepts Answer Sets that extend the negative example, i.e. violating
solution of T . But this would in practice be ine�cient. Instead, we generate
the violating solutions first and use these to constrain our search for positive
solutions. Inspired by the technique in [2], we encode our ILP

ASP

learning task
as an ASP program whose Answer Sets will provide our inductive solutions.
But, di↵erently from [2], our encoding uses a meta-level approach that allows us
to reason about multiple Answer Sets of B [H, as in our notion of inductive
solution there might be multiple positive examples that may be extended by
di↵erent Answer Sets of B [H.

Specifically, our definition of an inductive solution H requires that each pos-
itive example e+ 2 E+ has an Answer Set of B [H that extends it. We use in
our encoding the atom e(A, e+

id

) to represent that a literal A is in the Answer
Set that extends the positive example e+ (denoted by the unique identifier e+

id

).
Ground facts of the form ex(e+

id

) are added to our encoding for each e+2E+ to
uniquely identify each positive example e+2E+. Each rule R in the background
knowledge and in the given hypothesis space S

M

, is rewritten in a meta-level
form by replacing each atom A that appears in R with the atom e(A,X) and
adding ex(X) to the body of the rule. In this way the evaluation of the rules (in
B[H) can explicitly refer to specific Answer Sets that extend a specific positive
example and guide the search accordingly. This specific reference to examples
when computing Answer Sets is only important for the positive examples. In the
case of negative examples, for an hypothesis H to be a violating solution, it is
only necessary that the computed Answer Sets cover at least one negative ex-
ample. We therefore use only the fact instance ex(negative) as representative of
any negative example. Given that the hypotheses search space, S

M

, is formally
represented in the ASP encoding, to identify specific hypothesis solutions for a
given set of (positive and negative examples) we use a predicate active(R

id

),
where R

id

is a unique identifier for a rule in S
M

. This predicate is added in
the body of each rule R 2 S

M

. Rules that are not chosen as optimal inductive
solutions will have this condition evaluated to false (and the rule will still be

8

vacuously satisfied). Inductive solutions will therefore be the set of rules whose
corresponding active(R

id

) is true. Formally, given an Answer Set A, the function
meta�1(A) = {R 2 S

M

: active(R
id

) 2 A}.

Definition 8. Let T =hB,S
M

, E+, E�i be an ILP
LAS

learning task and n 2 N.
Let R

id

be a unique identifier for each rule R2S
M

and let e+
id

be a unique iden-

tifier for each positive example e+ 2E+
. The learning task T is represented as

the ASP task program Tn

meta

= meta(B)[meta(S
M

)[meta(E+)[meta(E�)[
meta(Aux, n) where each of these five “meta” components are as follows:

1. meta(B) is generated from B by replacing every atom A with the atom

e(A,X), and by adding the condition ex(X) to the body of each rule.

2. meta(S
M

) is generated from S
M

by replacing every atom A with the atom

e(A,X), and by adding the two conditions active(R
id

) and ex(X) to the body

of the rule R that matches the correct rule identifier R
id

.

3. meta(E+) includes for every e+=h{li1, . . . , lih}, {le1, . . . , lek}i 2 E+
the rules

� ex(ex+
id

)
� not example covered(ex+

id

)
� example covered(e+

id

) e(li1, ex
+
id

), . . . , e(li
h

, ex+
id

),
not e(le1, ex

+
id

), . . . , not e(le
k

, ex+
id

)
4. meta(E�) includes for every e�=h{li1, . . . , lih}, {le1, . . . , lek}i2E�

the rule

� violating e(li1, negative), . . . , e(lih, negative),
not e(le1, negative), . . . , not e(lek, negative)

5. meta(Aux, n) includes the ground facts length(R
id

, |R|) for every rule R2
S
M

and the rule n #sum{active(R) = X : length(R,X)}n to impose that the

total length of the (active) hypothesis has to be n.

Example 6. Recall the task T in Example 4. T 3
meta

is as follows:

1. meta(B)={e(q,X) e(q,X), ex(X)}
2. meta(S

M

)={e(p,X) active(a), ex(X); e(r,X) active(b), ex(X);
e(p,X) e(r,X), active(c), ex(X); e(p,X) not e(r,X), active(d), ex(X);

e(r,X) not e(q,X), active(e), e(X)}
3. meta(E+)={example covered(1) ex(p, 1); example covered(2) ex(p, 2);

 not example covered(1); not example covered(2); ex(1); ex(2)}
4. meta(E�)={violating ex(p, negative), ex(q, negative)}
5. meta(Aux, 3)={length(a, 1); length(b, 1); length(c, 2); length(d, 2); length(e, 2);

3 #sum{active(R) = X : length(R,X)}3}

Proposition 1. Let T = hB,S
M

, E+, E�i be an ILP
LAS

task and n 2 N .

Then H 2 positive solutionsn(T) if and only if 9A 2 AS(Tn

meta

) such that

H=meta�1(A).

But as stated in Theorem 1, to compute our inductive solution we need also to
compute the violating solutions. The same ASP encoding described in Defini-
tion 8 can be used to generate all the violating solutions. Specifically, given a
length n, the ASP program Tn

meta

[{ not violating; ex(negative)} will have
Answer Sets that include active(R

id

) of hypotheses R 2 S
M

that are violating
solutions. This is captured by the following Proposition.

9

Proposition 2. Let T = hB,S
M

, E+, E�i be an ILP
LAS

task and n 2 N . Let
P be the ASP program Tn

meta

[{ not violating; ex(negative)}. Then H 2
violating solutionsn(T) if and only if 9A 2 AS(P) such that H=meta�1(A).

The main idea of our learning algorithm, called ILASP, is to compute first all
violating solutions of a given ILP

LAS

learning task T by solving the ASP pro-
gram Tn

meta

[{ not violating; ex(negative)}. Then to convert these solutions
into constraints (see Definition 9) and again to solve Tn

meta

, augmented this time
with these new constraints. The Answer Sets of this second step will provide all
the inductive solutions of T . This is formally described in Algorithm 1.

Definition 9. Let hypothesis H={R1, . . . , Rh

}. We denote with constraint(H)
the rule active(R

id1), . . . , active(Ridh

), where R
id1,. . .Ridh

are the unique iden-

tifiers of rules R1, . . . , Rh

in H.

Algorithm 1 ILASP
procedure ILASP(T)

solutions = []
for n = 0; solutions.empty; n++ do

vs = AS(Tn

meta

[{ not violating; ex(negative).})
ps = AS(Tn

meta

[{constraint(meta�1(V)) : V 2 vs})
solutions = {meta�1(A) : A 2 ps}

end for

return solutions
end procedure

We denote with ILPn

LAS

(T) the set of all inductive solutions of length n. Propo-
sition 3 states that the Answer Sets of the ASP task program augmented with
constraint(H), for every violating solution H, compute exactly to inductive so-
lutions of length n of the original learning task.

Proposition 3. Let T = hB,S
M

, E+, E�i be an ILP
LAS

task and n 2 N . Let

P = Tn

meta

[{constraint(V) : V 2 violating solutionsn(T)}. Then a hypothesis

H 2 ILPn

LAS

(T) if and only if 9A 2 AS(P) such that H = meta�1(A).

The following theorem states that our algorithm ILASP is sound and complete
with respect to the notion of optimal4 inductive solutions in ILP ⇤

LAS

(T). We
denote with ILASP (T) the set of inductive solutions computed by ILASP for a
given ILP

LAS

learning task T .

Theorem 2. Let T be any ILP
LAS

learning task such that there is at least one

inductive solution. Then ILASP (T) = ILP ⇤
LAS

(T).

Proof. At each step through the for loop (fix n to be any natural number):
Let H be a hypothesis of length n and let P be the program Tn

meta

[{
not violating; ex(negative).}
4 Note that the optimality – hypotheses with shortest length – is guaranteed by the
incremental property of our algorithm.

10

By Prop. 2,H 2 violating solutionsn(T) i↵ 9A 2 AS(P) stH = meta�1(A).
) H 2 violating solutionsn(T) i↵ 9A 2 vs st H = meta�1(A).
) violating solutionsn(T) = {meta�1(A) : A 2 vs}
ps = AS(Tn

meta

[{constraint(meta�1(V)) : V 2 vs})
) ps = AS(Tn

meta

[{constraint(V) : V 2 violating solutionsn(T)})
) H 2 ILPn

LAS

(T) i↵ 9A 2 ps st H = meta�1(A) by Proposition 3.
) ILPn

LAS

(T) = {meta�1(A) : A 2 ps} = solutions
As ILASP (T) returns ILPn

LAS

(T) for the first n such that this set is non-
empty, ILASP (T) = ILP ⇤

LAS

(T). ut

5 Application to a Planning Problem

In this section we apply our Learning from Answer Sets approach to a planning
problem where an agent is in a room at a given position and attempts to get to
a target position. Figure 2 gives a graphical representation of the room and the
legend on the right describes its main features. The challenge in this planning
problem is that although the agent has complete knowledge of the grid map, it
does not know the meaning of the various cell features. For instance, it knows
which cells are locked but it does not know that to go through a locked cell
it must first visit the key to that cell. The goal for the agent is to learn an
hypothesis for valid moves that will allow it to reach the target position.

The planning problem is modelled as follows. At each step an oracle informs
the agent on which cells it could move to next, called the valid moves. If the
agent using its current knowledge, infers valid moves that are di↵erent from that
suggested by the oracle then the agent learns an updated hypothesis; otherwise
it plans a path to the target position, using its current hypothesis, and selects as
its next move the first move in the plan. By using ASP optimisation, the agent
can even plan for the optimal (shortest) plan5.

In what follows we show three scenarios that illustrate three di↵erent learning
outcomes. In the first scenario, the agent learns just the concept of valid move;
in the second scenario, part of the existing background knowledge is removed
and in order to learn the concept of valid move the agent has also to learn a new
concept that does not appear in the examples or in the background knowledge.
This scenario shows the ability of our learning approach to support predicate in-
vention [11]. Finally, in the third scenario, the environment is non deterministic.
The agent then learns a non deterministic notion of valid move.

Scenario 1: In this simplest scenario, the agent is given the grid map, encoded
as facts, and the notions of adjacent cells, visited cell, unlocked cell, together
with the history of the cells it has been at from the start. An example of the
notion of unlocked cell is given below:
unlocked(C, T) :- visited_cell(Key, T), key(C, Key), time(T).

unlocked(C, T) :- cell(C), not locked(C), time(T).

The task is for the agent to learn the rules:
valid_move(C1, T) :- agent_at(C2, T), not wall(C1, C2),

adjacent(C1, C2), unlocked(C1, T).

valid_move(C1, T) :- agent_at(C2, T), link(C2, C1), unlocked(C1, T).

11

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

X

X

E

S

L

X,X

L

6,7

L

2,4

L

9,6

L

8,X

L

3,X

L

3,5

L

9,X

K

7,6

K

8,6

K

4,7

K

8,2

K

1,X

K

3,5

S

E

L

8,X

K

4,7

The agent starts here

The agent is aiming to end here

This cell starts off as being locked Cell

This is the key for the locked cell (4, 7)

This is a link cell which

allows the agent to move to (8, X)

Fig. 2. Cells with diagonal lines are locked and the agent must visit the corresponding
key before it can enter these cells. Link cells allow the agent to jump to the indicated
destination cell. The thick black lines represent walls.

We denote with VM
oracle

the set of valid move/2 facts that the oracle generates
and with VM

agent

the set of valid move/2 facts that the agent infers at a given time
using its current knowledge and hypothesis. When VM

oracle

and VM
agent

di↵er, the
agent uses our ILASP algorithm to find a hypothesis that is consistent with the new in-
formation. The background knowledge consists of the definitions of adjacent, unlocked,
visited cell and of the history of the cells the agent has been at from the start. In this
simple scenario the target program has only one Answer Set, thus only one positive
example is necessary. In particular, at each learning step, the positive example is given
by every valid move in VM

oracle

that does not appear in VM
agent

. These are the moves
the agent did not realise were possible, hence it needs to learn. But at the same time,
the negative examples are constructed from the moves that are in VM

agent

but not in
VM

oracle

. These are the moves the agent wrongly thought were possible and that the
new learned hypothesis should no longer cover. Similar to the positive example, the
set of negative examples is updated every time the agent has to relearn. Note that the
learning task does not take into account the complete history of the valid moves. So
it is possible that the new hypothesis wrongly classifies as invalid a move made at an
earlier step. If VM

oracle

is still di↵erent to VM
agent

, the examples are again updated
and a new hypothesis is learned.

Executing our ILASP algorithm, only the shortest hypothesis that is consistent
with what the agent has observed so far is computed. As shown in Table 1 ILASP is
able to generate the correct solution in 6 learning steps; however, in this scenario it had
only to learn one single predicate. In the next scenario we investigate what happens
when ILASP needs to learn an unseen predicate.

Scenario 2: This scenario di↵ers from the previous one in that the agent is not
given the definition of unlocked cell. The language bias of the this learning task is
therefore augmented with a new predicate, called extra/2 added to both M

h

and M
b

.
We expected the agent to have learned something similar to concept of unlocked cell.
However, the agent actually learned a shorter hypothesis:

extra(C,T) :- agent_at(C1, V1), link(C1,C).

5 If the agent cannot generate, with its current knowledge, an optimal plan to reach
the target position, then optimality is defined in terms of exploration of the map.

12

Path Hypotheses (With variables renamed for readability)

(10, 1)
(10, 1) valid move(C, T) unlocked(C, T).
(10..8, 1) valid move(C, T) adjacent(C,C2), agent at(C2, T).
(8, 1..4), (7..6, 4) valid move(C, T) not wall(C,C2), adjacent(C,C2), agent at(C2, T).

(6, 4..7), (5, 7) valid move(C, T) not wall(C,C2), adjacent(C,C2), agent at(C2, T).
valid move(C, T) link(C,C2), agent at(C2, T).

(5, 7..8), (2..3, 4),
(3, 3)

valid move(C, T) not wall(C,C2), unlocked(C, T),
adjacent(C,C2), agent at(C2, T).

valid move(C, T) link(C,C2), agent at(C2, T).
(3, 3), (2..3, 3),
(3, 5), (2, 5..6),
(1, 6..7) (1, 8..5),
(3..1, 10)

valid move(C, T) not wall(C,C2), unlocked(C, T),
adjacent(C,C2), agent at(C2, T).

valid move(C, T) link(C,C2), unlocked(C, T), agent at(C2, T).

Table 1. Results for the first scenario. Each row shows the path the agent took while
it believed a particular hypothesis ((1..3, 2) abbreviates (1, 2), (2, 2), (3, 2)).

extra(C,T) :- adjacent(C,C1), agent_at(C1, T), not wall(C,C1).

valid_move(C, T) :- extra(C,T), not locked(C).

valid_move(C, T) :- extra(C,T), key(C1,C), visited_cell(C1,T).

In these two scenarios, because of the deterministic environment the agent had only to
learn programs with one Answer Set. The next scenario explores what happens when
we have a non-deterministic environment.

Scenario 3: We now further complicate matters for our agent by removing the
guarantee that the set of valid moves it has is always inferable given its history. The
change to the scenario is that link is given an extra argument: the flipped destination
cell (if the destination cell is (X,Y), the flipped cell is (Y,X)). Now whenever the agent
lands on a link cell, the oracle decides (randomly) whether to give the destination
cell, or the flipped cell as a valid move. In the first two scenarios we restricted the
search space to hypotheses without aggregates. Here we allow aggregates, which extends
the search space to include many more rules. We also made a small addition to the
background knowledge that combines the concepts of adjacent and wall into a new
concept joined(C1, C2) adjacent(C1, C2), not wall. In this scenario, in addition to
the set of valid moves, the oracle also gives to the agent a second set of potentially valid
moves (the union of all sets of valid moves the oracle could have given).

The fact that the environment is non-deterministic changes the learning task slightly.
We can no longer encode every invalid move proposed by the agent at a particular time
as a negative example. This is because, had the oracle made a di↵erent choice, the move
might have been a valid one. If a not valid move appears in the set of potentially valid

moves, then it is instead added to the exclusion set of the positive example at that
time. This means that it cannot occur in the Answer Set extending this positive ex-
ample, but could well appear in other Answer Sets of the program. The agent was able
to learn the target hypothesis:
1 {valid_move(C, T); valid_move(FC, T)} 1 :- unlocked(C, T),

link(C2, C, FC), agent_at(C2, T).

valid_move(C, T) :- unlocked(C, T), joined(C, C2), agent_at(C2, T).

6 Related Work

In this section we review the related work which is closest to our own. We reformulate
(but preserve the meaning of) some of the learning tasks that follow to allow for easier
comparison with our own.

13

Induction of Stable Models [13] extends the definition of ILP to the stable model
semantics. An Induction of Stable Models task is a tuple hB,S

M

, Ei where B is the
background knowledge, S

M

is the search space and E is a set of partial interpretations.
H 2 ILP

sm

hB,M,Ei i↵ (i) H ✓ S
M

; and (ii) 8O 2 E : 9A 2 AS(B [H) such that
A extends O. This is a special case of ILP

LAS

: with no negative examples. For any
B,S

M

, E: ILP
sm

hB,S
M

, Ei = ILP
LAS

hB,S
M

, E, ;i. However, negative examples are
needed to learn Answer Set programs in practice, as otherwise there is no concept
of what should not be in an Answer Set. In our planning, for instance, no negative
examples would give the optimal solution 0{valid move(C, T)}1 cell(C), time(T)
(at any time for each cell C, we may or may not be allowed to move to C). This does
cover our positive examples, but it is not specific enough to be useful for planning.

Brave Induction[16] finds an hypothesis which covers a single observation O. A
Brave Induction task, when defined in the context of ASP, is a tuple hB,S

M

, Oi where
B is the background knowledge, S

M

the search space and O is a set of atoms. H 2
ILP

b

hB,M,Oi i↵ (i) H ✓ S
M

; and (ii) 9A 2 AS(B [H) such that O ✓ A. For any
B,M,O, the Brave Induction task ILP

b

hB,M,Oi = ILP
LAS

hB,M, {hO, ;i}, ;i.
ASPAL [2] uses ASP as a solver to compute a solution to a standard ILP Task.

ASPAL’s learning task, similarly to that of XHAIL [14], is between Brave Induction
and Induction of Stable Models. It has a single positive example which is a partial
interpretation. ASPAL’s method of using an ASP solver to search for the inductive
solutions to an ILP task inspired our own. Our method conducts the search in multiple
stages however, as we not only require the brave entailment of the positive examples,
but also the cautious entailment of the negation of our negative examples. The search
spaces in ASPAL and XHAIL did not include aggregates or constraints as they only
considered a single positive example.

There are other styles of learning task which involve partial interpretations. In [3],
De Raedt defines Learning from Partial Interpretations. Under ILP

LFPI

an example
E (a partial interpretation) is covered by a hypothesis H i↵ there is a model of B [H,
M which extends E. As this definition uses models rather than stable models/Answer
Sets, H covers an example E i↵ B[H[E is consistent. This is not the case for Learning
from Answer Sets. Another approach is Learning from Interpretation Transition [7].
The examples here are pairs of interpretations hI, Ji such that the consequences of
I [B [H = J . This relates to the supported model semantics rather than the stable
model semantics, making it di�cult to compare to our task. However if we needed to
construct a similar style of task in ASP, such that if an Answer Set A extends I then
it also extends B, we could translate it into an ILP

LAS

task by constructing, for each
literal L 2 J , a negative example I [{neg(L)} where neg(L) reverses the sign of L.
If we wanted to further stipulate that there is at least one such Answer Set, then we
could add I as a positive example.

7 Conclusion and Future Work

We have presented a new paradigm for ILP that allows the learning of ASP programs.
We have designed and implemented an algorithm which is able to compute inductive
solutions, and have shown how it can be used in a planning problem.

There are two avenues of future work: improving the e�ciency of our algorithm;
and learning a larger subset of the language of ASP. We intend to pursue both. In
particular we believe that learning optimisation statements in ASP will facilitate many
more applications, as most of ASP’s applications involve optimisation.

14

References

1. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search.
In: ICLP (Technical Communications). pp. 54–63 (2010)

2. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set pro-
gramming. In: Inductive Logic Programming, pp. 91–97. Springer (2012)

3. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1),
187–201 (1997)

4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Communications
24(2), 107–124 (2011)

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
and Claypool Publishers (2012)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. vol. 88, pp. 1070–1080 (1988)

7. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Ma-
chine Learning 94(1), 51–79 (2014)

8. Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn
theories. In: Logic Programming and Nonmonotonic Reasoning, pp. 169–181.
Springer (2009)

9. Law, M., Russo, A., Broda, K.: Proofs for inductive learning of answer set pro-
grams. https://www.doc.ic.ac.uk/˜ml1909/ILASP Proofs.pdf

10. Muggleton, S.: Inductive logic programming. New generation computing 8(4), 295–
318 (1991)

11. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan,
A.: Ilp turns 20. Machine Learning 86(1), 3–23 (2012)

12. Muggleton, S., Lin, D.: Meta-interpretive learning of higher-order dyadic datalog:
Predicate invention revisited. In: Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence. pp. 1551–1557. AAAI Press (2013)

13. Otero, R.P.: Induction of stable models. In: Inductive Logic Programming, pp.
193–205. Springer (2001)

14. Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic
7(3), 329–340 (2009)

15. Ray, O., Broda, K., Russo, A.: A hybrid abductive inductive proof procedure. Logic
Journal of IGPL 12(5), 371–397 (2004)

16. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from
incomplete information. Machine Learning 76(1), 3–35 (2009)

