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We introduce an approach to computing answer sets of logic programs, based on concepts
successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in
Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with
a uniform constraint-based framework capturing diverse inferences encountered in ASP
solving. Moreover, our approach allows us to apply advanced solving techniques from the
area of SAT. As a result, we present the first full-fledged algorithmic framework for native
conflict-driven ASP solving. Our approach is implemented in the ASP solver clasp that has
demonstrated its competitiveness and versatility by winning first places at various solver
contests.
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1. Introduction

Answer Set Programming (ASP; [67,94,102,66,87,6,65]) has become an attractive paradigm for knowledge representation
and reasoning, due to its appealing combination of rich yet simple modeling languages1 with powerful solving engines.
Albeit specialized ASP solvers have been highly optimized (cf. [119,83,15]), their performance has so far not matched the
one of modern solvers for Satisfiability (SAT; [12]) checking. However, computational mechanisms of SAT and ASP solvers are
not far-off, as witnessed by the SAT-based ASP solvers assat [90] and cmodels [71]. Nonetheless, state-of-the-art look-back
techniques from SAT, or more generally, Constraint Programming (CP; [26,113]), such as backjumping and conflict-driven
learning, were not yet established in native ASP solvers. In fact, previous approaches to adopt such techniques [126,112,91]
are rather implementation-specific, i.e., they focus on describing modifications of existing ASP solving approaches, and thus
lack generality.

We address this deficiency by introducing a novel computational approach to ASP solving, building on Boolean con-
straints. Apart from the fact that this allows us to easily integrate solving techniques from related areas like SAT, e.g.,
backjumping, conflict-driven learning, restarts, etc., it also provides us with a uniform characterization of inferences from
logic program rules, unfounded sets, and conflict conditions. As major results, we show that all inferences in ASP solv-
ing can be reduced to unit propagation on nogoods, and we devise the first self-contained algorithmic framework for
native conflict-driven ASP solving. While the general outline of search is the same as in Conflict-Driven Clause Learning
(CDCL; [97,127,23,96]), the state-of-the-art algorithm for industrial SAT solving, the integration of unfounded set checking
is particular to ASP and owed to its elevated expressiveness (cf. [117,76,88]). However, our approach favors “local” unit
propagation over unfounded set checks, i.e., tests whether inherent (loop) nogoods are unit or violated. We elaborate upon

✩ This paper combines and extends the work presented in Anger et al. (2005) [2], Gebser et al. (2007, 2007, 2009) [54,52,56].
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the formal properties of our conflict-driven algorithmic framework, and we demonstrate its soundness and completeness
for ASP solving.

Our approach has led to the implementation of the award-winning ASP solver clasp, taking first places at the ASP, CASC,
MISC, PB, and SAT contests in 2011 (see [110] for more details). We discuss the major features of clasp and provide an
empirical evaluation of its performance by comparing it to other state-of-the-art ASP solvers, using the class of NP decision
problems from the second ASP competition [28]. Generally, clasp has become a powerful native ASP solver, offering various
reasoning modes that make it an attractive tool for knowledge representation and reasoning.2 This is witnessed by an
increasing number of applications relying on clasp (or derivatives) as reasoning engine, e.g., [99,13,80,122,75,64]. Along with
the grounder gringo [51], clasp constitutes a central component of Potassco [44], the Potsdam Answer Set Solving Collection
bundling tools for ASP developed at the University of Potsdam.

The outline of this paper is as follows. After establishing the formal background, we provide in Section 3 a constraint-
based specification of answer sets in terms of nogoods. Based on this uniform characterization, we develop in Section 4
algorithms for ASP solving that incorporate advanced look-back techniques. In Section 5, we describe the award-winning
ASP solver clasp, implementing our approach. Section 6 provides a systematic empirical evaluation demonstrating the com-
petitiveness of clasp. We conclude with related work and summary. Proofs for formal results are provided in Appendix A.

2. Background

Given an alphabet P , a (propositional normal) logic program is a finite set of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn (1)

where 0 � m � n and each pi ∈ P is an atom for 0 � i � n. A body literal is an atom p or its (default) negation not p. For
a rule r as in (1), let head(r) = p0 be the head of r and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} be the body of r. The
intuitive reading of r is that head(r) must be true if body(r) holds, i.e., if p1, . . . , pm are (provably) true and if pm+1, . . . , pn

are (assumed to be) false. Given a set β of body literals, let β+ = {p ∈ P | p ∈ β} and β− = {p ∈ P | not p ∈ β}. For body(r),
we then have that body(r)+ = {p1, . . . , pm} and body(r)− = {pm+1, . . . , pn}. The set of atoms occurring in a logic program Π

is denoted by atom(Π), and body(Π) = {body(r) | r ∈ Π} is the set of bodies of rules in Π . For regrouping rule bodies
sharing the same head p, we define bodyΠ(p) = {body(r) | r ∈ Π, head(r) = p}.

A set X ⊆ P of atoms is a model of a logic program Π , if head(r) ∈ X , body(r)+ � X , or body(r)− ∩ X �= ∅ holds for
every r ∈ Π . In ASP, the semantics of Π is given by its answer sets [67]. The reduct, Π X , of Π relative to X is defined by
Π X = {head(r) ← body(r)+ | r ∈ Π, body(r)− ∩ X = ∅}. Note that Π X is a Horn program possessing a unique ⊆-minimal
model (cf. [30]). Given this, X is an answer set of Π , if X itself is the ⊆-minimal model of Π X . Note that any answer set
of Π is a model of Π as well, while the converse does not hold in general.

The positive dependency graph of a program Π is given by (atom(Π),�+), where atom(Π) and �+ = {(p,head(r)) |
r ∈ Π, p ∈ body(r)+} are the set of vertices and directed edges, respectively. This graph allows us to identify circular
positive dependencies among atoms. According to [90], a non-empty L ⊆ atom(Π) is a loop of Π , if for every pair p ∈ L,
q ∈ L (including p = q), there is a path of non-zero length from p to q in (atom(Π),�+) such that all vertices in the
path belong to L. We denote the set of all loops of Π by loop(Π); if loop(Π) = ∅ (or loop(Π) �= ∅), Π is a tight (or non-
tight) program. As shown in [40] and exploited in Section 3, the answer sets of a tight program Π coincide with models
of the Clark completion of Π [21], also referred to as the supported models of Π [3]. A strongly connected component of
(atom(Π),�+) is a maximal subgraph such that any pair of vertices is connected by some path; it is non-trivial, if it contains
some edge. Note that, for any loop L of Π , the atoms in L belong to the same non-trivial strongly connected component of
(atom(Π),�+). Moreover, we have that Π is tight iff (atom(Π),�+) does not include any non-trivial strongly connected
component.

Example 2.1. Consider the following logic program3:

Π2 =
{

a ← c ← a,not d e ← b
b ← not a d ← not c,not e e ← e

}
. (2)

This program has two answer sets: {a, c} and {a,d}. Note that Π2 is non-tight because its positive dependency graph
contains the non-trivial strongly connected component ({e}, {(e, e)}).

In practice, propositional logic programs are usually obtained from inputs in some first-order language (cf. [120,45,83])
via grounding. We do not detail grounding here, but only mention that off-the-shelf grounders, such as dlv’s grounding
component [105], gringo [51], and lparse [120], are available to accomplish this task. Moreover, particular classes of logic

2 Beyond search for one answer set of a propositional normal logic program, detailed in this paper, clasp supports so-called extended rules [47], solution
enumeration [53,57], and optimization [48]. Due to its versatile core engine, clasp can be run as a solver for ASP, SAT, Maximum Satisfiability (MaxSAT;
[85]), and Pseudo-Boolean (PB; [114]) constraint satisfaction/optimization, incorporating dedicated front-ends for diverse input formats.

3 Our enumeration scheme for particular logic programs Π follows that of equations.
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programs admit language extensions like classical negation and disjunctions [68], nested expressions [89], propositional
formulas [106,41], cardinality and weight constraints [119], or aggregates [39], to name some of them. In this paper, we
focus mainly on normal propositional logic programs and, in particular, on solving the decision problem of answer set
existence. For further details and broader overviews about the area of ASP, we refer the interested reader to [6,65].

The concepts introduced next are central in the context of conflict-driven answer set computation. A Boolean assignment
A over a domain, dom(A), is a sequence (σ1, . . . , σn) of signed literals σi of the form Tvi or Fvi , where vi ∈ dom(A) for
1 � i � n and vi �= v j for i < j � n. A literal Tv expresses that v is true, and Fv that it is false. (We omit the attribute
signed for literals whenever clear from the context.) We denote the complement of a literal σ by σ , that is, Tv = Fv and
Fv = Tv . The sequence obtained by appending a literal σ to A is denoted by A ◦ σ . We sometimes abuse notation and
identify an assignment with the set of its contained literals. Given this, we access the true and the false members of A via
AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}. For A = (σ1, . . . , σi−1, σi, . . . , σn), let A[σi] = (σ1, . . . , σi−1) be
the prefix of A relative to σi , and define A[σ ] = A for any σ /∈ A.

For a canonical representation of Boolean constraints, we rely on the concept of a nogood (cf. [26,113]), reflecting (par-
tial) assignments that cannot be extended to a solution. In our setting, a nogood is a set {σ1, . . . , σm} of signed literals,
expressing that any assignment containing σ1, . . . , σm is unintended.4 Accordingly, a nogood {σ1, . . . , σm} is violated by an
assignment A, if {σ1, . . . , σm} ⊆ A. In turn, an assignment A such that AT ∪ AF = dom(A) is a solution for a set � of nogoods,
if no nogood in � is violated by A.

Given a nogood δ and an assignment A, we say that a literal σ /∈ A is unit-resulting for δ wrt A, if δ \ A = {σ }. This
designates σ as the single literal of δ not contained in A, so that σ must necessarily be added to A for avoiding the
violation of δ. Note that a violated nogood does not have any unit-resulting literal, while the prerequisite σ /∈ A precludes
duplicates: if A already contains σ , it cannot be unit-resulting.5 For example, Fq is unit-resulting for nogood {Fp,Tq} wrt
assignment (Fp), but neither wrt (Fp,Fq) nor (Fp,Tq). Along the lines of SAT, for a set � of nogoods, we refer to the
iterated process of extending A by unit-resulting literals as unit propagation. We call a nogood δ an antecedent of σ wrt A, if
σ is unit-resulting for δ wrt prefix A[σ ]. In turn, σ ∈ A is implied by � wrt A, if there is some antecedent of σ wrt A in �.

3. Nogoods of logic programs

Inferences in ASP solving rely on truth values of atoms and applicability of program rules, which can be expressed by
assignments over atoms and bodies. Given a program Π , we thus fix the domain of assignments A to dom(A) = atom(Π) ∪
body(Π). Such a hybrid approach may result in exponentially smaller search space traversals than a purely either atom-
or body-based approach [63,62]; it moreover allows for a succinct representation of nogoods, as we show in this section.
While syntactic translations of logic programs to clauses (cf. [5,70,86]) primarily aim at reducing ASP to SAT solving, the
nogoods provided below describe semantic conditions under which an assignment over atom(Π) ∪ body(Π) represents an
answer set of Π .

Our approach is guided by the idea of Lin and Zhao [90] and decomposes ASP solving into “local” inferences obtainable
from the Clark completion [21] of a program and those obtainable from loop formulas [90]. While Clark completion captures
the answer sets of tight programs compactly in terms of theories in propositional logic [40], exponentially many loop
formulas may be required in addition to extend this characterization of answer sets to non-tight programs [88].

3.1. Completion nogoods

We begin with nogoods capturing constraints induced by the Clark completion of a program, where we use ¬, ∧, ∨,
→, and ↔ for denoting the classical connectives in propositional logic. Then, the Clark completion of a program Π can be
defined as follows:

{
pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

∣∣ β ∈ body(Π), β = {p1, . . . , pm,not pm+1, . . . ,not pn}
}

(3)

∪ {
p ↔ pβ1 ∨ · · · ∨ pβk

∣∣ p ∈ atom(Π), bodyΠ(p) = {β1, . . . , βk}
}
. (4)

This formulation relies on atoms p as well as auxiliary propositions pβ representing bodies β . Such propositions are also
introduced in Conjunctive Normal Form (CNF) transformations as abbreviations avoiding an exponential blow-up [123]. The
models of the Clark completion of a program are called supported models [3]; on tight programs, they coincide with answer
sets [40].

The equivalences in (3) define propositions standing for bodies, while those in (4) define atoms in terms of their sup-
porting bodies. For identifying the underlying constraints, we begin with the body-oriented equivalences in (3). In fact, they
can be decomposed into two kinds of implications considered next.

4 Any nogood {σ1, . . . , σm} can be syntactically represented by a clause σ1 ∨ · · · ∨ σm (dropping T and replacing F with ¬ in σ1, . . . , σm to stay in the
syntax of propositional logic), while other representations like logic program rules, PB constraints, and Boolean circuit gates are possible as well.

5 The concept of a unit-resulting literal is closely related to unit clauses considered in SAT (cf. [12]): a clause is unit iff the nogood it represents has
some unit-resulting literal.
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Table 1
Body-oriented nogoods in �body(Π2) .

Body β δ(β) �(β)

∅ {F∅}
{not a} {F{not a},Fa} {T{not a},Ta}
{a,not d} {F{a,not d},Ta,Fd} {T{a,not d},Fa}

{T{a,not d},Td}
{not c,not e} {F{not c,not e},Fc,Fe} {T{not c,not e},Tc}

{T{not c,not e},Te}
{b} {F{b},Tb} {T{b},Fb}
{e} {F{e},Te} {T{e},Fe}

Table 2
Atom-oriented nogoods in �atom(Π2) .

Atom p �(p) δ(p)

a {Fa,T∅} {Ta,F∅}
b {Fb,T{not a}} {Tb,F{not a}}
c {Fc,T{a,not d}} {Tc,F{a,not d}}
d {Fd,T{not c,not e}} {Td,F{not c,not e}}
e {Fe,T{b}} {Te,F{b},F{e}}

{Fe,T{e}}

On the one hand, we obtain (p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn → pβ). That is, the body β of a rule holds if
all its body literals are true. Conversely, some literal of β must be false if β does not hold. So, given a body β =
{p1, . . . , pm,not pm+1, . . . ,not pn}, the previous implication expresses the nogood:

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}.
Note that nogoods treat atoms and bodies as equitable objects. In terms of unit propagation, δ(β) is a constraint enforcing
the truth of β or the falsity of a contained literal. For instance, for body {a,not d} in Program Π2, we obtain δ({a,not d}) =
{F{a,not d},Ta,Fd} (see also Table 1).

On the other hand, a body β must be false if some of its literals is false, or all literals of β must be true if β

holds. This is expressed by the second implication obtained from (3), viz., (pβ → p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn).
It is equivalent to the conjunction of clauses (¬pβ ∨ p1), . . . , (¬pβ ∨ pm), (¬pβ ∨ ¬pm+1), . . . , (¬pβ ∨ ¬pn). For β =
{p1, . . . , pm,not pm+1, . . . ,not pn}, such clauses induce the following set of nogoods:

�(β) = {{Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn}}.
Taking again body {a,not d} gives �({a,not d}) = {{T{a,not d},Fa}, {T{a,not d},Td}}.

We now come to constraints primarily aiming at atoms. In analogy to the above, we derive the corresponding nogoods
from the equivalences in (4).

To begin with, the implication (pβ1 ∨ · · · ∨ pβk → p) tells us that an atom p must be true if some element of bodyΠ(p)

holds and, conversely, that all elements of bodyΠ(p) must be false if p is false. For bodyΠ(p) = {β1, . . . , βk}, we thus get
the set of nogoods6:

�(p) = {{Fp,Tβ1}, . . . , {Fp,Tβk}
}
.

For example, for atom e in Program Π2 with bodyΠ2
(e) = {{b}, {e}}, we obtain �(e) = {{Fe,T{b}}, {Fe,T{e}}} (see also Ta-

ble 2).
Finally, according to the implication (p → pβ1 ∨ · · · ∨ pβk ), some element of bodyΠ(p) must hold if p is true, or p must

be false if all elements of bodyΠ(p) are false. For bodyΠ(p) = {β1, . . . , βk}, this is reflected by the following nogood:

δ(p) = {Tp,Fβ1, . . . ,Fβk}.
Taking once more atom e with bodyΠ2

(e) = {{b}, {e}}, we get δ(e) = {Te,F{b},F{e}}.
Combining the four types of nogoods stemming from the Clark completion of a program Π , we obtain the following sets

of nogoods:

�body(Π) = {
δ(β)

∣∣ β ∈ body(Π)
} ∪ {

δ ∈ �(β)
∣∣ β ∈ body(Π)

}
, (5)

�atom(Π) = {
δ(p)

∣∣ p ∈ atom(Π)
} ∪ {

δ ∈ �(p)
∣∣ p ∈ atom(Π)

}
, (6)

�Π = �body(Π) ∪ �atom(Π).

6 For the sake of simplicity, we leave an underlying program Π implicit in the notations �(p) and δ(p).
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Table 3
Supported models of Π2 and corresponding solutions for �Π2 .

Supported model Assignment

{a,d} ∪ {p∅, p{not c,not e}} {Ta,Td,Fc,Fe,Fb} ∪ {T∅,T{not c,not e},F{a,not d},F{e},F{not a},F{b}}
{a, c} ∪ {p∅, p{a,not d}} {Ta,Fd,Tc,Fe,Fb} ∪ {T∅,F{not c,not e},T{a,not d},F{e},F{not a},F{b}}
{a, c, e} ∪ {p∅, p{a,not d}, p{e}} {Ta,Fd,Tc,Te,Fb} ∪ {T∅,F{not c,not e},T{a,not d},T{e},F{not a},F{b}}

For illustration, in Tables 1 and 2, we provide the set �Π2 of nogoods stemming from the Clark completion of Pro-
gram Π2. While Table 1 shows the body-oriented nogoods in �body(Π2) , Table 2 comprises the atom-oriented ones in
�atom(Π2) .

In what follows, we develop the result of this section that solutions for �Π coincide with supported models, and if Π is
tight, also with answer sets of Π . As an auxiliary property, we have that the truth values of bodies are uniquely determined
by those of atoms.

Lemma 3.1. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that

A = {Tp | p ∈ X} ∪ {
Fp

∣∣ p ∈ atom(Π) \ X
}

∪ {
Tβ

∣∣ β ∈ body(Π), β+ ⊆ X, β− ∩ X = ∅}
∪ {

Fβ
∣∣ β ∈ body(Π),

(
β+ ∩ (

atom(Π) \ X
)) ∪ (

β− ∩ X
) �= ∅}

is the unique solution for �body(Π) such that AT ∩ atom(Π) = X.

Observe that, for a given X ⊆ atom(Π), the unique solution A for �body(Π) must assign T or F to β ∈ body(Π) according
to the semantics of conjunction, as it is expected.

The next auxiliary result establishes one-to-one correspondence between supported models of Π , satisfying the equiva-
lences in (3) and (4), and solutions for �Π .

Lemma 3.2. Let Π be a logic program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π)) ∪ {pβ | β ∈ X ∩ body(Π)} is a supported model of Π iff {Tv | v ∈ X} ∪ {Fv | v ∈ (atom(Π) ∪

body(Π)) \ X} is a solution for �Π .

Since supported models and answer sets coincide on tight programs Π , we further obtain the following correspondence
between answer sets of Π and solutions for �Π .

Theorem 3.3. Let Π be a tight logic program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {
Fp

∣∣ p ∈ atom(Π) \ X
}

∪ {
Tβ

∣∣ β ∈ body(Π), β+ ⊆ X, β− ∩ X = ∅}
∪ {

Fβ
∣∣ β ∈ body(Π),

(
β+ ∩ (

atom(Π) \ X
)) ∪ (

β− ∩ X
) �= ∅}

is the unique solution for �Π such that AT ∩ atom(Π) = X.

Example 3.1. For illustration, let us inspect the supported models and answer sets of Π2 from Example 2.1, which is non-
tight because of rule (e ← e). The equivalences of the Clark completion of Π2 are:

a ↔ p∅, b ↔ p{not a}, c ↔ p{a,not d}, d ↔ p{not c,not e}, e ↔ p{b} ∨ p{e},
p∅ ↔ �, p{not a} ↔ ¬a, p{a,not d} ↔ a ∧ ¬d, p{not c,not e} ↔ ¬c ∧ ¬e, p{b} ↔ b, p{e} ↔ e.

The supported models of Π2 and corresponding solutions for �Π2 are shown in Table 3. Note that the atoms belonging
to the first two supported models correspond to answer sets of Π2, but not those in the third one. The reason for this
mismatch is rule (e ← e), which makes Π2 non-tight. When dropping this rule from Π2, the first two supported models
remain valid, while e in the third one is no longer supported. By Lemma 3.2, this allows us to conclude that the first two
assignments (without F{e}) are solutions for �Π2\{e←e} . Since Π2 \ {e ← e} is tight, we can further use Theorem 3.3 to see
that {a,d} and {a, c} are the two answer sets of Π2 \ {e ← e}.

As pointed out at the beginning of this section, the nogoods contributing to �body(Π) in (5) and �atom(Π) in (6) are
directly linked to the clauses obtained when decomposing the equivalences in the Clark completion of a program Π in
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the straightforward way. Hence, the nogoods in �Π essentially characterize supported models in terms of assignments
over atoms as well as rule bodies. Note that each atom and each body is defined by some equivalence, given implicitly
through (the semantics of) Π or written explicitly in the Clark completion of Π . In a sense, one can view Π as a shorthand
representation for the conditions that all rules must be fulfilled and that any true atom must be supported via some rule
whose body holds.

3.2. Loop nogoods

Every answer set of a program Π is also a supported model of Π , while the converse does not hold in general. In fact,
the mismatch on non-tight programs is due to the potential of circular support (or positive recursion) among true atoms,
which is admissible with supported models, but not with answer sets. Hence, such improper support must be suppressed
to distinguish supported models that are answer sets from the rest, and there are several approaches to accomplish this. On
the one hand, well-founded semantics is based on unfounded sets [124], viz., sets of atoms that cannot be non-circularly
supported and must thus be false. While unfounded sets are traditionally determined wrt partial interpretations over atoms,
an alternative approach identifying unfounded sets wrt (false) rule bodies is described in [2]. On the other hand, loop
formulas can be utilized to characterize answer sets by classical models of propositional theories. Here, the main focus
is on restricting the consideration of unfounded sets to particular (syntactic) classes of sets of atoms, namely, loops [90,
82] or elementary sets [61,58]. In this section, we introduce the concept of an unfounded set in our setting and relate it
to traditional approaches [124,84]. We further exploit unfounded sets to extend our constraint-based characterization of
answer sets to non-tight programs, which yields a close relationship to loop formulas.

To begin with, for a program Π and some U ⊆ atom(Π), we define the external bodies of U for Π as

EBΠ(U ) = {
body(r)

∣∣ r ∈ Π, head(r) ∈ U , body(r)+ ∩ U = ∅}
.

A body in EBΠ(U ) can provide non-circular support for U , as it does not (positively) contain any atom of U . Then, U is
unfounded, if all its external bodies are false, that is, if there is no non-circular support left for U . In our setting, this
amounts to the following definition.

Definition 3.1. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
Then, we define U as an unfounded set of Π wrt A, if EBΠ(U ) ⊆ AF .

In more detail, this definition determines U as unfounded for Π wrt A, if for every r ∈ Π , we have that head(r) /∈ U ,
body(r)+ ∩ U �= ∅, or body(r) ∈ AF . For comparison, the traditional unfounded set definition by Van Gelder, Ross, and
Schlipf [124] can be reformulated wrt assignments as follows.

Definition 3.2. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
Then, we define U as a GRS-unfounded set of Π wrt A, if

EBΠ(U ) ⊆ {
β ∈ body(Π)

∣∣ (
β+ ∩ AF) ∪ (

β− ∩ AT) �= ∅}
.

Note that this definition requires an external body to contain a false literal in order to witness the unavailability of
non-circular support.

For comparing our concept of an unfounded set to the traditional one, we define the following properties for a program
along with an assignment.

Definition 3.3. Let Π be a logic program and A an assignment.
Then, we define A as

1. body-saturated for Π , if{
β ∈ body(Π)

∣∣ (
β+ ∩ AF) ∪ (

β− ∩ AT) �= ∅} ⊆ AF;
2. body-synchronized for Π , if{

β ∈ body(Π)
∣∣ (

β+ ∩ AF) ∪ (
β− ∩ AT) �= ∅} = AF ∩ body(Π).

In words, body-saturation requires that bodies containing false literals must likewise be assigned to false; if the converse
holds as well, we have body-synchronization.

Based on these properties, we now formalize the relationships between GRS-unfounded sets and our unfounded set
notion.

Proposition 3.4. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-saturated for Π , then we have that U is an unfounded set of Π wrt A if U is a GRS-unfounded set of Π wrt A.
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Fig. 1. The positive dependency graph of Π7.

Proposition 3.5. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-synchronized for Π , then we have that U is an unfounded set of Π wrt A iff U is a GRS-unfounded set of Π wrt A.

These results show that any GRS-unfounded set can be turned into an unfounded set by assigning bodies containing
false literals to false as well, in this way establishing body-saturation. For a body β , the nogoods in �(β) enable such
forwarding of falsity by unit propagation (cf. Section 2). As the following example illustrates, there is no straightforward
converse “transformation” to turn unfounded sets into GRS-unfounded sets.

Example 3.2. Consider the following (non-tight) program:

Π7 =
{

a ← not b c ← a d ← b, c e ← b,not a
b ← not a c ← b,d d ← e e ← c,d

}
. (7)

The positive dependency graph of Π7 is shown in Fig. 1. Observe that {c,d}, {d, e}, and {c,d, e} are all non-empty
sets of atoms such that their elements reach one another via (loop-internal) paths of non-zero length, i.e., loop(Π7) =
{{c,d}, {d, e}, {c,d, e}}. In particular, U = {d, e} is unfounded for Π7 wrt A = (F{b, c},F{b,not a}) in view of EBΠ7 (U ) =
{{b, c}, {b,not a}}. This tells us that any answer set of Π7 such that rules (d ← b, c) and (e ← b,not a) are inapplicable (i.e.,
their bodies {b, c} and {b,not a} do not hold) must not contain d or e. In fact, the remaining rules supporting d and e,
(d ← e) and (e ← c,d), are circular and do thus not provide external support for U . However, U is not a GRS-unfounded set
of Π7 wrt A, and neither nogood δ({b, c}) = {F{b, c},Tb,Tc} nor δ({b,not a}) = {F{b,not a},Tb,Fa} allows for deriving the
falsity of any body literal by unit propagation wrt A. That is, the fact that the remaining supports for d and e are circular
is not reflected by GRS-unfounded sets. On the other hand, we have that U is a GRS-unfounded set of Π7 wrt B = (Fb)

because positive body literal b in {b, c} and {b,not a} is false wrt B. The mismatch that U is not an unfounded set of Π7
wrt B is due to B not being body-saturated for Π7. Yet a body-saturated assignment B′ containing F{b, c} and F{b,not a} is
easily derived from B by unit propagation, in view of nogoods {T{b, c},Fb} and {T{b,not a},Fb} belonging to �({b, c}) and
�({b,not a}), respectively. Then, we have that U is an unfounded set of Π7 wrt B′ .

In order to identify constraints induced by unfounded sets, we inspect loop formulas. Reusing auxiliary propositions for
rule bodies, as given in (3), for a program Π and U ⊆ atom(Π), the (disjunctive) loop formula can be written as follows:( ∨

p∈U

p

)
→

( ∨
β∈EBΠ (U )

pβ

)
.

Such a loop formula stipulates at least one body in EBΠ(U ) to hold whenever some atom of U is true. An alternative
reading is that all elements of U must be false if U is unfounded. For Program Π7 and U = {d, e}, we get loop formula
(d ∨ e → p{b,c} ∨ p{b,not a}); the corresponding clauses are (¬d ∨ p{b,c} ∨ p{b,not a}) and (¬e ∨ p{b,c} ∨ p{b,not a}).

To capture unit propagation on loop formulas, for a program Π , a non-empty U ⊆ atom(Π), and some p ∈ U , we define
a loop nogood by

λ(p, U ) = {Tp,Fβ1, . . . ,Fβk}
where EBΠ(U ) = {β1, . . . , βk}. For Program Π7 and U = {d, e}, we obtain λ(d, U ) = {Td,F{b, c},F{b,not a}} and λ(e, U ) =
{Te,F{b, c},F{b,not a}}. Notice that literals of the form Fβ , where β ∈ EBΠ(U ), are the same in λ(p, U ) for all p ∈ U .

Overall, we get the following set of loop nogoods for a program Π :

ΛΠ =
⋃

∅⊂U⊆atom(Π)

{
λ(p, U )

∣∣ p ∈ U
}
.

The next result describes the relationship between loop nogoods and unfounded sets.

Proposition 3.6. Let Π be a logic program and A an assignment such that AT ∪ AF = atom(Π) ∪ body(Π).
Then, we have that A is a solution for ΛΠ iff U ⊆ AF for every unfounded set U of Π wrt A.

In combination with Proposition 3.5, the previous result tells us that a body-synchronized total assignment A is
unfounded-free [84] iff A is a solution for ΛΠ . Along with Lemma 3.1, which establishes that any solution for �Π is body-
synchronized, this now allows us to extend Theorem 3.3 to non-tight programs.
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Theorem 3.7. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {
Fp

∣∣ p ∈ atom(Π) \ X
}

∪ {
Tβ

∣∣ β ∈ body(Π), β+ ⊆ X, β− ∩ X = ∅}
∪ {

Fβ
∣∣ β ∈ body(Π),

(
β+ ∩ (

atom(Π) \ X
)) ∪ (

β− ∩ X
) �= ∅}

is the unique solution for �Π ∪ ΛΠ such that AT ∩ atom(Π) = X.

We have thus established that the nogoods in �Π ∪ ΛΠ describe a set of constraints that need to be checked for iden-
tifying answer sets. However, while the size of �Π is linear in the size of Π , the one of ΛΠ is, in general, exponential.
As shown by Lifschitz and Razborov [88], the latter is not a defect in the construction of ΛΠ , but an implication of widely
accepted assumptions in complexity theory. Hence, most answer set solvers work on logic programs as succinct represen-
tations of loop nogoods (or formulas, respectively) and check them efficiently by determining unfounded sets relative to
assignments. To this end, program structure, viz., loops or elementary sets, can be used to confine unfounded set checking
to necessary parts.

In the remainder of this section, we detail the theoretical foundations for the completeness of our loop-oriented
unfounded set detection algorithm, presented in Section 4.3. To begin with, we note that, under the assumption of body-
saturation, we may eliminate false atoms from an unfounded set in order to obtain an unfounded set of non-false atoms
only.

Proposition 3.8. Let Π be a logic program, A an assignment, and U an unfounded set of Π wrt A.
If A is body-saturated for Π , then we have that U \ AF is an unfounded set of Π wrt A.

For instance, U = {b,d, e} is an unfounded set of Π7 wrt body-saturated assignment A = (F{not a},Fb,F{b,d},F{b, c},
F{b,not a}), and Proposition 3.8 tells us that U \ AF = {d, e} remains unfounded for Π7 wrt A. That is, we may limit the
attention to unfounded sets containing exclusively non-false atoms.

In what follows, we exploit loops to confine the consideration of unfounded sets, essentially reproducing results similar
to those in [90,2] in our setting. To accomplish this, we introduce atom-saturation as a property dual to body-saturation.

Definition 3.4. Let Π be a logic program and A an assignment.
Then, we define A as atom-saturated for Π , if{

p ∈ atom(Π)
∣∣ bodyΠ(p) ⊆ AF} ⊆ AF.

This definition requires that atoms p without support must be assigned to false, as it is also stipulated by nogood
δ(p) = {Tp,Fβ1, . . . ,Fβk} (where bodyΠ(p) = {β1, . . . , βk}).

Given an atom-saturated assignment, we have that every non-empty unfounded set of non-false atoms contains some
unfounded loop.

Proposition 3.9. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \ AF a non-empty unfounded set of Π wrt A.
If A is atom-saturated for Π , then there is some unfounded set L ⊆ U of Π wrt A such that L ∈ loop(Π).

For illustration, note that U = {d, e} is an unfounded loop of Π7 wrt atom- and body-saturated assignment A =
(F{not a},Fb,F{b,d},F{b, c},F{b,not a}). Moreover, {a} is the only non-empty unfounded set of Π7 wrt B = (F{not b}), which
is not atom-saturated because a /∈ BF . The fact that a must be false when given B is expressed by δ(a) = {Ta,F{not b}}, and
λ(a, {a}) = δ(a) does not provide additional information for the “non-loop” {a}.

Given that a program may yield exponentially many loops, which can be unfounded separately wrt different assignments,
it is impractical to identify (arbitrary) loops a priori. However, the non-trivial strongly connected components of a positive
dependency graph limit the atoms that can jointly belong to (unfounded) loops, and the scope of unfounded set checking
procedures [119,17,2,31,47] can thus be restricted to them. In our setting, the fact that the consideration of unfounded sets
can be confined to non-trivial strongly connected components is an immediate consequence of Proposition 3.9.

Corollary 3.10. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \ AF a non-empty unfounded set of Π wrt A.
If A is atom-saturated for Π , then there is some non-empty unfounded set U ′ ⊆ U of Π wrt A such that all p ∈ U ′ belong to the

same non-trivial strongly connected component of (atom(Π),�+).

Finally, we can combine Propositions 3.8 and 3.9 to establish the formal basis for the completeness of our unfounded set
detection algorithm in Section 4.3.
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Theorem 3.11. Let Π be a logic program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π wrt A such that U � AF , then there is some

unfounded set L ⊆ U \ AF of Π wrt A such that L ∈ loop(Π).

Since fixpoints of unit propagation on �Π are both atom- and body-saturated for Π , Theorem 3.11 tells us that un-
founded set checking can focus on loops (of non-false atoms). For Program Π7, where loop(Π7) = {{c,d}, {d, e}, {c,d, e}} (cf.
Fig. 1), we can thus in principle restrict unfounded set checking to its three loops in order to test all nogoods in ΛΠ7 .

As mentioned above, it is impractical to consider (arbitrary) loops as long as they are not unfounded, while strongly
connected components can easily be determined statically [121]. The role of such components as a means to limit the scope
of unfounded set checks is summarized in the following immediate consequence of Theorem 3.11.

Corollary 3.12. Let Π be a logic program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π wrt A such that U � AF , then there is some

non-empty unfounded set U ′ ⊆ U \ AF of Π wrt A such that all p ∈ U ′ belong to the same non-trivial strongly connected component
of (atom(Π),�+).

With the characterization of answer sets in terms of nogoods along with relevant background knowledge on unfounded
sets at hand, the next section provides our conflict-driven approach to the computation of solutions representing answer
sets.

4. Conflict-driven ASP solving

Given the specification of answer sets in terms of nogoods, we can now make use of advanced search techniques
from SAT for developing equally advanced ASP solving procedures. But while SAT deals with plain nogoods, represented
by clauses, our algorithms work on logic programs, inducing several kinds of nogoods. In particular, the exponentially many
nogoods stemming from unfounded sets are succinctly given by a program, and the algorithms devised below determine in-
dividual ones only when used for unfounded set falsification. The main purpose of associating nogoods with a logic program
is to provide reasons for literals derived by (unit) propagation. This puts ASP solving on the same logical fundament as SAT
solving, so that similar reasoning strategies can be applied without relying on translation to SAT or proprietary techniques
(apart from unfounded set checking).

In what follows, we first present our main conflict-driven ASP solving procedure. We then detail its subroutines for prop-
agation and unfounded set checking, which is the main particularity of ASP (compared to SAT). Furthermore, we describe
resolution-based conflict analysis in our setting. Finally, we outline the derivation of soundness and completeness results.

4.1. Conflict-driven nogood learning

Our main procedure for deciding whether a program has an answer set is similar to CDCL with First-UIP scheme [97,
127,23,96]. In fact, clauses can be viewed as particular syntactic representations of nogoods, but other representations (e.g.,
gates, inequalities, rules, etc.) can be used as well. Hence, to abstract from syntax, we present our conflict-driven algorithm
for ASP solving in terms of nogoods and call it Conflict-Driven Nogood Learning for ASP (CDNL-ASP).

Given a program Π , CDNL-ASP, shown in Algorithm 1, starts from an empty assignment A and an empty set ∇ of
recorded nogoods. The latter include nogoods derived from conflicts encountered during search, and if Π is non-tight, also
loop nogoods explaining inferences due to unfounded sets. Moreover, the decision level dl, initialized with 0, is used to count
decision literals, that is, literals in A that are heuristically selected (cf. Lines 14–17), while literals derived via propagation in
Line 5 are implied. For any literal σ ∈ A, we access via dl(σ ) the decision level of σ , that is, the value dl had when σ was
added to A; such values are relevant for conflict analysis in Line 8 and backjumping in Line 10.

Algorithm 1 follows the standard proceeding of CDCL. First, NogoodPropagation (detailed in Section 4.2) determin-
istically extends A, and possibly also records loop nogoods from ΛΠ in ∇ . Afterwards, one of the following three cases
applies:

Conflict If propagation led to a conflict, as checked in Line 6, there are two possibilities. If the current decision level is 0,
it means that the conflict occurred independently of any heuristic decision; that is, the input program Π has
no answer set. Otherwise, ConflictAnalysis (detailed in Section 4.4) is performed in Line 8 to determine a
conflict nogood δ, recorded in ∇ in Line 9, and a decision level to jump back to.
Note that we assume δ to be asserting, i.e., some literal must be unit-resulting for δ wrt A after backjumping
in Line 10. This condition, which is guaranteed by ConflictAnalysis, makes sure that, after backjumping,
CDNL-ASP traverses the search space differently from before (without explicitly flipping any decision literal).

Solution If A is not conflicting (ε � A for all ε ∈ �Π ∪ ∇) and total (AT ∪ AF = atom(Π) ∪ body(Π)), as checked in Line 11,
the atoms that are true in A form an answer set of Π .

Decision Finally, if A is neither conflicting nor total, a decision literal σd is selected according to some heuristic (see
Section 5 for further details) and added to A. We assume that σd = Tv or σd = Fv for some v ∈ (atom(Π) ∪
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Algorithm 1: CDNL-ASP.

Input : A logic program Π .
Output : An answer set of Π or “no answer set”.

1 A := ∅ // assignment over atom(Π) ∪ body(Π)

2 ∇ := ∅ // set of (dynamic) nogoods
3 dl := 0 // decision level

4 loop
5 (A,∇) := NogoodPropagation(dl,Π,∇,A)

6 if ε ⊆ A for some ε ∈ �Π ∪ ∇ then // conflict
7 if dl = 0 then return no answer set
8 (δ,dl) := ConflictAnalysis(ε,Π,∇,A)
9 ∇ := ∇ ∪ {δ} // learning

10 A := A \ {σ ∈ A | dl < dl(σ )} // backjumping

11 else if AT ∪ AF = atom(Π) ∪ body(Π) then // answer set
12 return AT ∩ atom(Π)

13 else
14 σd := Select(Π,∇,A) // decision
15 dl := dl + 1
16 dl(σd) := dl
17 A := A ◦ σd

body(Π)) \ (AT ∪ AF), i.e., v must belong to dom(A) and be yet unassigned. Then, σd becomes assigned at the new
decision level dl + 1.

Example 4.1. Although we have not yet detailed the subroutines used in Algorithm 1, let us consider a full-fledged com-
putation of answer set {b, c,d, e} of Program Π7. To this end, Table 4 shows the current assignment A at different stages
of CDNL-ASP(Π7), where columns provide the value of dl, viz., the current decision level, and the line of Algorithm 1 at
which particular contents of A and/or some nogood δ are inspected. Note that literals added to A in Line 17 of Algorithm 1
are decision literals, not implied by any nogood. Unlike them, each literal added to A in Line 5, that is, within an execution
of NogoodPropagation, has some antecedent δ ∈ �Π7 ∪ ∇ . Furthermore, we indicate successes of the test for a violated
nogood performed in Line 6, and we show the nogood δ to be recorded in ∇ along with the decision level dl to jump back
to as returned by ConflictAnalysis when invoked in Line 8.

In detail, a computation of CDNL-ASP(Π7) can start by successively picking decision literals Td, F{b,not a}, Tc, and
F{not a} at levels 1, 2, 3, and 4, respectively. Observe that there is exactly one decision literal per level, and each decision
is immediately followed by a propagation step, performed before making the next decision. At the start, propagation cannot
derive any literals at decision levels 1 and 2, and thus assignment A stays partial. After the third decision, the literals
assigned along with Tc are unit-resulting for respective nogoods δ ∈ �Π7 wrt A. Hence, they are added to A at decision
level 3. Since A is still partial, decision literal F{not a} is picked at level 4. The following propagation step yields a total
assignment, whose true atoms, viz., a, c, d, and e, belong to a supported model of Π7. However, we have that {d, e} is
unfounded for Π7 wrt A, that is, the corresponding loop nogoods λ(d, {d, e}) and λ(e, {d, e}) are violated. Such violations
are detected by NogoodPropagation and, for some unfounded atom, lead to the recording of an associated loop nogood
in ∇ . In Table 4, we assume that λ(d, {d, e}) = {Td,F{b, c},F{b,not a}} is recorded, so that a conflict is encountered in
Line 6 of Algorithm 1. Note that F{b, c} is the single literal in λ(d, {d, e}) assigned at decision level 4. Hence, λ(d, {d, e}) is
instantly asserting and returned by ConflictAnalysis in Line 8; the smallest decision level such that, after backjumping,
T{b, c} is unit-resulting for λ(d, {d, e}) is 2. The peculiarity that ConflictAnalysis may be launched with an asserting
(loop) nogood results from the “unidirectional” propagation of loop nogoods in current ASP solvers (cf. [63,62]). (We further
comment on this phenomenon in Section 4.4.)

Given dl = 2 as level to jump back to, computation proceeds by retracting all literals added to A at levels 3
and 4, while retaining the (decision) literals Td and F{b,not a} assigned at levels 1 and 2. In contrast to the pre-
vious visit of decision level 2, the asserting nogood λ(d, {d, e}) in ∇ enables the derivation of further literals by
unit propagation, which results in another conflict, this time on the completion nogood {T{not a},Ta}. Starting from
it, ConflictAnalysis determines the asserting nogood {F{b,not a},Td}. As a consequence, CDNL-ASP(Π7) re-
turns to decision level 1, where T{b,not a} is unit-resulting for {F{b,not a},Td}. A final propagation step leads to
a total assignment not violating any nogood in �Π7 ∪ ∇ . (Notably, nogoods in ΛΠ7 are left implicit and tested
within NogoodPropagation via an unfounded set checking subroutine.) The true atoms of the obtained solution
are underlined in Table 4; the associated answer set of Program Π7, {b, c,d, e}, is returned as the result of CDNL-
ASP(Π7).

After the general outline, we below detail the subroutines used in CDNL-ASP computations.
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Table 4
A computation of answer set {b, c,d, e} with CDNL-ASP(Π7).

dl A δ Line

1 Td 17
2 F{b,not a} 17
3 Tc 17

T{c,d} {F{c,d},Tc,Td} = δ({c,d}) 5
Te {Fe,T{c,d}} ∈ �(e) 5
T{e} {F{e},Te} = δ({e}) 5

4 F{not a} 17
Ta {F{not a},Fa} = δ({not a}) 5
T{a} {F{a},Ta} = δ({a}) 5
T{not b} {Ta,F{not b}} = δ(a) 5
Fb {Tb,F{not a}} = δ(b) 5
F{b, c} {T{b, c},Fb} ∈ �({b, c}) 5
F{b,d} {T{b,d},Fb} ∈ �({b,d}) 5

{Td,F{b, c},F{b,not a}} = λ(d, {d, e}) 6
{Td,F{b, c},F{b,not a}} dl = 2 8

2 F{b,not a}
T{b, c} {Td,F{b, c},F{b,not a}} ∈ ∇ 5
Tb {T{b, c},Fb} ∈ �({b, c}) 5
Ta {F{b,not a},Tb,Fa} = δ({b,not a}) 5
T{not a} {Tb,F{not a}} = δ(b) 5

{T{not a},Ta} ∈ �({not a}) 6
{F{b,not a},Td} dl = 1 8

1 Td
T{b,not a} {F{b,not a},Td} ∈ ∇ 5
Tb {T{b,not a},Fb} ∈ �({b,not a}) 5
Fa {T{b,not a},Ta} ∈ �({b,not a}) 5
T{not a} {Tb,F{not a}} = δ(b) 5
F{not b} {T{not b},Tb} ∈ �({not b}) 5
F{a} {T{a},Fa} ∈ �({a}) 5
Te {Fe,T{b,not a}} ∈ �(e) 5
T{e} {F{e},Te} = δ({e}) 5
T{b,d} {F{b,d},Tb,Td} = δ({b,d}) 5
Tc {Fc,T{b,d}} ∈ �(c) 5
T{b, c} {F{b, c},Tb,Tc} = δ({b, c}) 5
T{c,d} {F{c,d},Tc,Td} = δ({c,d}) 5

4.2. Nogood propagation

Our subroutine for deterministically extending an assignment A is shown in Algorithm 2. It combines unit propagation
on completion nogoods in �Π and recorded nogoods in ∇ (Lines 3–9) with unfounded set checking (Lines 10–14). While
unit propagation is always run to a fixpoint (or a conflict), sophisticated unfounded set checks are performed only if the
input program Π is non-tight. In fact, when finishing the loop in Lines 3–9, an assignment A at hand is both atom- and
body-saturated for Π , so that the results in Section 3.2 serve as a basis for demand-driven unfounded set checking. In
particular, if Π is tight, Theorem 3.11 tells us that all unfounded sets U are already falsified, i.e., U ⊆ AF holds, and thus
unit propagation on �Π is sufficient to falsify unfounded atoms.

Example 4.2. The central idea of integrating unfounded set checking with unit propagation is to make loop nogoods from
ΛΠ explicit in ∇ in order to trigger the falsification of unfounded atoms by unit propagation. To see this, consider a
program Π containing the following rules:

x ← y, z,

y ← x,

z ← y.

Let A be an atom-saturated assignment such that U = {x, y, z} is unfounded for Π wrt A and U ∩ (AT ∪ AF) = ∅. Then, we
have that EBΠ(U ) ⊆ AF , so that Fx, Fy, and Fz are unit-resulting for λ(x, U ), λ(y, U ), and λ(z, U ), respectively. While neither
of these literals may be unit-resulting for any completion nogood in �Π , all of them (along with F{x}, F{y}, and F{y, z})
are derived by unit propagation when given �Π ∪ {λ(x, U )}. That is, when adding only λ(x, U ) to ∇ , the whole unfounded
set U is falsified by unit propagation. However, whether the addition of a single loop nogood is sufficient to falsify a whole
unfounded set depends on the structure of Π . For instance, when we augment Π with (y ← z), the derivation of Fy and
Fz by unit propagation is no longer certain because (circular) supports (y ← z) and (z ← y) may not be eliminated by
assigning x to false. We still derive F{x}, i.e., rule (y ← x) becomes inapplicable, so that EBΠ({y, z}) ⊆ (A ∪ {Fx,F{x}})F . This
shows that U \ AF = {x, y, z} \ {x} = {y, z} remains as a smaller unfounded set.
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Algorithm 2: NogoodPropagation.

Input : A decision level dl, a logic program Π , a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

1 U := ∅ // unfounded set

2 loop
3 repeat
4 if δ ⊆ A for some δ ∈ �Π ∪ ∇ then return (A,∇) // conflict
5 Σ := {δ ∈ �Π ∪ ∇ | δ \ A = {σ }, σ /∈ A} // unit-resulting nogoods
6 if Σ �= ∅ then let σ ∈ δ \ A for some δ ∈ Σ in
7 dl(σ ) := dl
8 A := A ◦ σ

9 until Σ = ∅
10 if loop(Π) = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(Π) \ AF

11 U := U \ AF

12 if U = ∅ then U := UnfoundedSet(Π,A)
13 if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(Π) \ AF

14 let p ∈ U in ∇ := ∇ ∪ {λ(p, U )} // record loop nogood

The observations made in Example 4.2 motivate the strategy of Algorithm 2 to successively falsify the elements of an
unfounded set U . At the start, no (non-empty) unfounded set has been determined, and so U is initialized to be empty
in Line 1. Provided that unit propagation in Lines 3–9 finishes without conflict and that Π is non-tight, we remove all
false atoms from U in Line 11. In the first iteration of the outer loop in Lines 2–14, U stays empty, and the subrou-
tine for unfounded set detection (detailed in Section 4.3) is queried in Line 12. The crucial assumption made here is that
UnfoundedSet(Π,A) returns an unfounded set U ⊆ atom(Π) \ AF such that U is non-empty if some non-empty subset
of atom(Π) \ AF is unfounded. Then, we have that EBΠ(U ) ⊆ AF , so that λ(p, U ) \ A ⊆ {Tp} for every p ∈ U . Hence, if a
non-empty U is returned, the addition of λ(p, U ) to ∇ for an arbitrary p ∈ U , done in Line 14, yields either a conflict or
unit-resulting literal Fp in the next iteration of the loop in Lines 2–14. In the latter case, further literals may be derived and
elements of U falsified upon computing the next fixpoint of unit propagation. When we afterwards reconsider the previously
determined unfounded set U , the removal of false atoms in Line 11 is guaranteed to result in another (smaller) unfounded
set U \ AF . Hence, if U \ AF is non-empty (checked in Line 12 before computing any further unfounded set), NogoodProp-
agation proceeds by adding the next loop nogood to ∇ , which as before yields either a conflict or a unit-resulting literal.
Thus, once a non-empty unfounded set U has been detected, it is falsified element by element; only after expending all
elements of U , a new unfounded set is to be computed. Overall, NogoodPropagation terminates as soon as a conflict is
encountered (in Line 4) or with a fixpoint of unit propagation on �Π ∪∇ such that no non-empty subset of atom(Π) \ AF is
unfounded. If Π is tight, the latter is immediately verified in Line 10. Otherwise, the UnfoundedSet subroutine, queried
in Line 12, could not detect any non-empty unfounded set (of non-false atoms) before finishing in Line 13.

Example 4.3. To illustrate how NogoodPropagation utilizes nogoods, reconsider the computation of CDNL-ASP(Π7)
shown in Table 4. All implied literals, that is, the ones assigned after the decision literal at a level dl, are unit-resulting for
nogoods in �Π7 ∪ ∇ and successively derived by unit propagation. In particular, at decision level 4, the implied literals σ
have antecedents δ ∈ �Π7 such that all literals of δ except for σ are already contained in A when σ is assigned. The impact
of loop nogoods in ΛΠ7 can be observed on the conflict encountered at decision level 4. Here, we have that U = {d, e} ⊆ AT

is unfounded, so that A violates both λ(d, U ) and λ(e, U ). After detecting the unfounded set U and recording λ(d, U ) in ∇ ,
its violation gives rise to leaving NogoodPropagation in Line 4 of Algorithm 2.

In summary, our subroutine for propagation interleaves unit propagation with the recording of loop nogoods. The latter
is done only if the input program is non-tight and if the falsity of unfounded atoms cannot be derived by unit propa-
gation on other available nogoods. Clearly, our approach favors unit propagation over unfounded set computations, which
can be motivated as follows. For one, unit propagation does not contribute new dynamic nogoods to ∇ , so that it is more
“economic” than unfounded set checking. For another, although unfounded set detection algorithms (like the one described
below) are of linear time complexity, they analyze a logic program in a more global fashion than unit propagation. While
the latter investigates only the rules (or nogoods) directly related to literals becoming assigned, unfounded set computations
may inspect significant parts of a program (or its positive dependency graph) without eventually detecting any non-empty
unfounded set. But given that unfounded set checking (wrt total assignments) is mandatory for soundness and (wrt par-
tial assignments) also helps to detect inherent conflicts early, the respective subroutine is nonetheless an integral part of
NogoodPropagation.



64 M. Gebser et al. / Artificial Intelligence 187–188 (2012) 52–89
4.3. Unfounded set checking

Our unfounded set checking procedure is invoked on a non-tight program Π whenever unit propagation reaches a
fixpoint without any conflict or formerly computed but yet unfalsified unfounded atoms (cf. Algorithm 2). As a matter
of fact, a fixpoint of unit propagation is both atom- and body-saturated for Π . Hence, Corollary 3.12 applies and allows
us to focus on unfounded sets of non-false atoms contained in non-trivial strongly connected components of the positive
dependency graph of Π . To this end, for any p ∈ atom(Π), let scc(p) denote the set of atoms belonging to the same strongly
connected component as p in (atom(Π),�+). We say that p is cyclic, if �+ ∩ (scc(p) × scc(p)) �= ∅ (that is, if there is some
rule r ∈ Π such that head(r) ∈ scc(p) and body(r)+ ∩ scc(p) �= ∅), and acyclic otherwise. As a consequence of Proposition 3.9,
we immediately get that unfounded set checking can concentrate exclusively on cyclic atoms, since only they can belong to
(unfounded) loops.7

Beyond static information about strongly connected components, our unfounded set detection algorithm makes use of
source pointers [119] to indicate non-circular supports of atoms. Given a program Π , the idea is to associate every (cyclic)
p ∈ atom(Π) with an element of bodyΠ(p) (or one of the special-purpose symbols ⊥ and �), denoted by source(p), point-
ing to a chain of rules witnessing that p cannot be unfounded. Hence, as long as source(p) remains “intact”, p can be
excluded from unfounded set checks. In this way, source pointers enable lazy, incremental unfounded set checking relative
to recent changes of an assignment. To make sure that still no unfounded set is missed, the following invariants need to be
guaranteed:

1. For every cyclic p ∈ atom(Π), we require that source(p) ∈ bodyΠ(p) ∪ {⊥}.
2. The subgraph of (atom(Π),�+) containing every cyclic p ∈ atom(Π) along with edges (q, p) for all q ∈ source(p)+ ∩

scc(p) must be acyclic.8

For a program Π , we call the collection of links source(p) for all p ∈ atom(Π) a source pointer configuration. We say that a
source pointer configuration is valid, if it satisfies the aforementioned invariants. For an appropriate initialization, we define
the initial source pointer configuration for Π by:

source(p) =
{⊥ if p ∈ atom(Π) is cyclic,

� if p ∈ atom(Π) is acyclic.

While � expresses that an acyclic atom p does not need to be linked to any element of bodyΠ(p), ⊥ indicates that a non-
circular support for a cyclic atom p still needs to be determined. We assume that the initial source pointer configuration
for Π , which is valid by definition, is in place upon an invocation of CDNL-ASP(Π).

Given a program Π and an assignment A, UnfoundedSet, shown in Algorithm 3, starts by collecting non-false (cyclic)
atoms p whose source pointers are false (source(p) ∈ AF) or yet undetermined (source(p) = ⊥) in Line 1, as the possibility of
non-circularly supporting such atoms is in question. In Lines 2–5, this set is successively extended by adding atoms whose
source pointers (positively) rely on it, thus providing the scope S for the second part of unfounded set checking. In fact,
the loop in Lines 6–17 aims at re-establishing source pointers for the atoms in S via rules whose bodies do not (positively)
rely on S , so that these rules can provide non-circular support. Conversely, if source pointers cannot be re-established, an
unfounded set is detected.

In more detail, as long as scope S is non-empty, an arbitrary atom p ∈ S is picked in Line 6 of Algorithm 3 as start-
ing point for the construction of a non-empty unfounded set U . If EBΠ(U ) ⊆ AF holds in Line 9, the unfounded set U
is immediately returned, so that NogoodPropagation can successively falsify its atoms by unit propagation (cf. Algo-
rithm 2). Otherwise, some external body β ∈ EBΠ(U ) \ AF is selected in Line 10 for further investigation. If β+ contains
atoms in scope S that belong to the same strongly connected component of (atom(Π),�+) as the starting point p (checked
in Line 11), we add them to U in Line 16, which makes β non-external wrt the extended set U . On the other hand, if
such atoms do not exist in β+ , it means that β can non-circularly support all of its associated head atoms q ∈ U . Then,
in Lines 12–15, the source pointers of such atoms q are set to β , and the atoms q are removed from both the unfounded
set U under construction and scope S . The described process continues until either U becomes empty (checked in Line 17),
in which case the remaining atoms of S are investigated, or a (non-empty) unfounded set U is detected and returned in
Line 9. Finally, if scope S runs empty, source pointers could be re-established for all atoms that had been contained in S ,
and UnfoundedSet returns the empty unfounded set in Line 18.

In order to provide further intuitions, let us stress some major design principles of our unfounded set detection algo-
rithm:

7 Strongly connected components of positive dependency graphs are also exploited by unfounded set checking procedures [119,17,2] of native ASP solvers
other than clasp. We further discuss relationships to them in Section 7.

8 Recall that source(p)+ = {p1, . . . , pm} for a rule body source(p) = {p1, . . . , pm,not pm+1, . . . ,not pn}. For special-purpose symbols ⊥ and �, we let
⊥+ = �+ = ∅.
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Algorithm 3: UnfoundedSet.

Input : A logic program Π and an assignment A.
Output : An unfounded set of Π wrt A.

1 S := {p ∈ atom(Π) \ AF | source(p) ∈ AF ∪ {⊥}} // initialize scope S
2 repeat
3 T := {p ∈ atom(Π) \ (AF ∪ S) | source(p)+ ∩ (scc(p) ∩ S) �= ∅}
4 S := S ∪ T // extend scope S
5 until T = ∅
6 while S �= ∅ do let p ∈ S in // select starting point
7 U := {p}
8 repeat
9 if EBΠ(U ) ⊆ AF then return U // unfounded set ∅ ⊂ U ⊆ atom(Π) \ AF

10 let β ∈ EBΠ (U ) \ AF in
11 if β+ ∩ (scc(p) ∩ S) = ∅ then // shrink U
12 foreach q ∈ U such that β ∈ bodyΠ(q) do
13 source(q) := β

14 U := U \ {q}
15 S := S \ {q}
16 else U := U ∪ (β+ ∩ (scc(p) ∩ S)) // extend U

17 until U = ∅
18 return ∅ // no unfounded set ∅ ⊂ U ⊆ atom(Π) \ AF

1. At each stage of the loop in Lines 6–17, all atoms of U belong to scc(p), where p is an atom added first to U (in Line 7).
This is because further atoms, added to U in Line 16, are elements of scc(p). (However, U ⊆ scc(p) does not necessarily
imply p ∈ U for a (non-empty) unfounded set U returned in Line 9.)

2. At each stage of the loop in Lines 6–17, we have that U ⊆ S , as all atoms added to U in either Line 7 or 16 belong to S .
Hence, it holds that q ∈ S whenever source(q) is set to an (external) body β ∈ bodyΠ(q) in Line 13, while β+ ∩ (scc(p)∩
S) = ∅ has been checked before (in Line 11). This makes sure that setting source(q) to β does not introduce any cycle
via source pointers.

3. Once detected, a (non-empty) unfounded set U is immediately returned in Line 9, and NogoodPropagation takes
care of falsifying all atoms of U before checking for any further unfounded set (cf. Algorithm 2). This reduces over-
laps with unit propagation on the completion nogoods in �Π , as it already handles unsupported atoms, i.e., singleton
unfounded sets (and bodies relying on them).

4. The source pointer of an atom q in some unfounded set U returned in Line 9 needs not and is not reset to ⊥. (In
fact, source(q) is only set in Line 13 when re-establishing a potential non-circular support for q.) Rather, we admit
source(q) ∈ AF as long as q ∈ AF , derived within NogoodPropagation upon falsifying U . Thus, when Fq becomes
unassigned later on (after backjumping), source(q) still allows for lazy unfounded set checking.

Example 4.4. Let us illustrate Algorithm 3 on some invocations of UnfoundedSet(Π7,A) made upon the computation of
answer set {b, c,d, e} of Program Π7 described in Example 4.1. To this end, in Table 5, we indicate stages of Unfound-
edSet(Π7,A) when queried wrt fixpoints A of unit propagation at decision levels 0, 2, and 4, respectively. Beforehand,
note that scc(c) = scc(d) = scc(e) = {c,d, e}, while a and b are acyclic. Hence, before the first invocation of Unfounded-
Set(Π7,A) at decision level 0, we have that source(a) = source(b) = � and source(c) = source(d) = source(e) = ⊥. In view
of Line 1 of Algorithm 3, we thus obtain scope S = {c,d, e}. Then, assume that e is picked in Line 6 and added to U in Line 7,
and that {c,d} ∈ EBΠ7 ({e}) is selected in Line 10. Since {c,d} ∩ (scc(e) ∩ S) = {c,d}, this makes us augment U with both c
and d in Line 16, resulting in an intermediate stage such that U = {c,d, e}. Further assume that {b,not a} ∈ EBΠ7 ({c,d, e})
is selected next in Line 10, for which {b} ∩ (scc(e) ∩ S) = ∅ holds in Line 11. Hence, source(e) is set to {b,not a} in Line 13,
and e is removed from U and S in Lines 14 and 15, respectively. In the same manner, source(d) and source(c) can in the
following iterations of the loop in Lines 8–17 be set to {e} and {b,d}, respectively. Afterwards, we have that U = S = ∅, so
that the empty unfounded set is returned (in Line 18). Given that there is no non-empty unfounded set, no literal is derived
by unit propagation at decision level 0, as also indicated by omitting this level in Table 4.

The invocation of UnfoundedSet(Π7, (Td)) at decision level 1 is not shown in Table 5, as it yields an empty scope S .
Unlike this, with UnfoundedSet(Π7, (Td,F{b,not a})) at decision level 2, we have that source(e) = {b,not a} ∈ AF , so that
S = {e} is obtained in Line 1 of Algorithm 3. In Lines 2–5, we successively add d and c to S because source(d)+ ∩ S =
{e} ∩ {e} �= ∅ and source(c)+ ∩ (S ∪ {d}) = {b,d} ∩ {d, e} �= ∅. Afterwards, assume that d is added first to U in Line 7, and that
selecting {b, c} ∈ EBΠ7 ({d}) in Line 10 leads to U = {d} ∪ ({b, c} ∩ (scc(d) ∩ S)) = {c,d}. When investigating {a} ∈ EBΠ7 ({c,d})
and again {b, c} ∈ EBΠ7 ({d}) in the next two iterations of the loop in Lines 8–17, we set source(c) to {a} and source(d) to
{b, c}, while obtaining U = ∅ and S = {e}. Since S �= ∅, another iteration of the loop in Lines 6–17 adds e to U and then
removes it from U and S along with setting source(e) to {c,d}. Given U = S = ∅, we again get the empty unfounded set as
result.
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Table 5
Runs of UnfoundedSet(Π7,A) upon a computation of answer set {b, c,d, e}.

dl source(p) S U β ∈ EBΠ7 (U ) \ AF Line

0 {c,d, e} 1
{c,d, e} {e} 7
{c,d, e} {c,d, e} {c,d} 16

source(e) {c,d} {c,d} {b,not a} 13
source(d) {c} {c} {e} 13
source(c) ∅ ∅ {b,d} 13

2 F{b,not a} {e} 1
{e} {d, e} 4
{b,d} {c,d, e} 4

{c,d, e} {d} 7
{c,d, e} {c,d} {b, c} 16

source(c) {d, e} {d} {a} 13
source(d) {e} ∅ {b, c} 13

{e} {e} 7
source(e) ∅ ∅ {c,d} 13

4 F{b, c} {d} 1
{c,d} {d, e} 4

{d, e} {e} 7
{d, e} {d, e} {c,d} 16

At decision level 3, unfounded set checking is without effect because, as shown in Table 4, no rule body and, in particular,
no source pointer is falsified. However, at decision level 4, we have that source(d) = {b, c} ∈ AF , and thus we get S = {d} in
Line 1 of Algorithm 3. In an iteration of the loop in Lines 2–5, we further add e to S because source(e)+ ∩ S = {c,d}∩{d} �= ∅,
while c stays unaffected in view of source(c) = {a} /∈ AF . After adding e to U in Line 7, U is further extended to {d, e} in
Line 16, given that {c,d} ∈ EBΠ7 ({e}) and {c,d} ∩ (scc(e) ∩ S) = {d}. We have now obtained U = {d, e}, and it holds that
EBΠ7 ({d, e}) = {{b, c}, {b,not a}} ⊆ AF . That is, the termination condition in Line 9 applies, and UnfoundedSet(Π7,A)
returns the (non-empty) unfounded set {d, e}.

To conclude the example, in Table 4, we observe that adding loop nogood λ(d, {d, e}) = {Td,F{b, c},F{b,not a}} to ∇ leads
to a conflict at decision level 4. After backjumping to decision level 2, NogoodPropagation encounters a conflict before
invoking UnfoundedSet(Π7,A). Hence, UnfoundedSet(Π7,A) is only queried again wrt the total assignment A de-
rived by unit propagation after returning to decision level 1. In view of source(c) = {a} ∈ AF , this final invocation (not shown
in Table 5) makes us reset source pointers as follows: source(e) = {b,not a}, source(d) = {e}, and source(c) = {b,d} (like
at decision level 0). As this yields only the empty unfounded set (of non-false atoms), NogoodPropagation terminates
without conflict, and CDNL-ASP(Π7) returns answer set {b, c,d, e} of Π7.

Note that a non-empty unfounded set U returned in Line 9 of Algorithm 3 is, in general, not guaranteed to be a loop
in the sense of [90]. However, Theorem 3.11 tells us that U contains some loop L that is unfounded. One or several such
loops L could a posteriori be extracted from U , for which purpose any of the approaches in [90,71,91,2,59] can in principle
be applied.

4.4. Conflict analysis

Finally, we turn to the subroutine for conflict analysis, whose purpose is to determine an asserting nogood, so that some
literal is unit-resulting after backjumping. To this end, it resolves a violated nogood δ ⊆ A against some antecedent ε of an
implied literal σ ∈ δ (that is, a nogood ε such that ε \ A[σ ] = {σ }) for obtaining a new violated nogood (δ \ {σ }) ∪ (ε \ {σ }).
Iterated resolution proceeds in inverse order of assigned literals, resolving first over the literal σ ∈ δ assigned last in A, viz.,
δ \ A[σ ] = {σ }, and stops as soon as δ contains exactly one literal, called Unique Implication Point (UIP; [97]), that has been
assigned at the decision level where the conflict is encountered. The effectiveness of this approach, referred to as First-UIP
scheme (cf. [127,35,96]), has in the area of SAT been demonstrated both empirically [127,115,29] and analytically [109].
Despite small peculiarities (discussed below Example 4.5), the First-UIP scheme can be applied unaltered in conflict-driven
ASP solving. However, identifying antecedents of implied literals is less straightforward than with clauses. For instance, note
that our subroutine for propagation in Algorithm 2 records a priori implicit loop nogoods from ΛΠ to make sure that every
implied literal has some antecedent in �Π ∪ ∇ .

Conflict resolution according to the First-UIP scheme is performed by ConflictAnalysis, shown in Algorithm 4. In
fact, the loop in Lines 1–7 proceeds by resolving over the literal σ of the violated nogood δ assigned last in A (given
that δ \ A[σ ] = {σ } is required in Line 2) until the assertion level [23], that is, the greatest level dl(ρ) associated with
literals ρ ∈ δ \ {σ }, is different from and actually smaller than dl(σ ). If so, nogood δ and assertion level k (determined in
Line 3) are returned in Line 7; since δ ⊆ A, we have that σ is unit-resulting for δ after backjumping to decision level k.
Otherwise, if k = dl(σ ), σ is an implied literal, so that some antecedent ε ∈ �Π ∪ ∇ of σ can be chosen in Line 5 and
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Algorithm 4: ConflictAnalysis.

Input : A violated nogood δ, a logic program Π , a set ∇ of nogoods, and an assignment A.
Output : A derived nogood and a decision level.

1 loop
2 let σ ∈ δ such that δ \ A[σ ] = {σ } in
3 k := max({dl(ρ) | ρ ∈ δ \ {σ }} ∪ {0})
4 if k = dl(σ ) then
5 let ε ∈ �Π ∪ ∇ such that ε \ A[σ ] = {σ } in
6 δ := (δ \ {σ }) ∪ (ε \ {σ }) // resolution

7 else return (δ,k)

Table 6
Run of ConflictAnalysis({T{not a},Ta},Π7,∇,A) at decision level 2.

δ ε

{ T{not a} ,Ta} {Tb, F{not a} }
{ Ta ,Tb} {F{b,not a},Tb, Fa }
{ Tb ,F{b,not a}} {T{b, c}, Fb }
{ T{b, c} ,F{b,not a}} {Td, F{b, c} ,F{b,not a}}
{ F{b,not a} ,Td}

used for resolution against δ in Line 6. Note that there may be several antecedents of σ in �Π ∪ ∇ , and thus the choice
of ε in Line 5 is, in general, non-deterministic (cf. [32]). Regarding the termination of Algorithm 4, note that a decision
literal σd (cf. Algorithm 1) is the first literal in A at its (positive) level dl(σd), and σd is also the only literal at dl(σd) that is
not implied. Given that ConflictAnalysis is only applied to nogoods violated at decision levels beyond 0, all conflict
resolution steps are well-defined and stop at latest at a decision literal σd . However, resolving up to σd can be regarded
as worst case because the First-UIP scheme aims at few resolution steps to obtain a nogood that is “close” to a conflict at
hand.

Example 4.5. To illustrate Algorithm 4, let us inspect the resolution steps shown in Table 6. They are applied when resolving
the violated nogood {T{not a},Ta} against the antecedents shown in Table 4 upon analyzing the conflict encountered at
decision level 2 in the computation of CDNL-ASP(Π7) described in Example 4.1. The literal σ of a violated nogood δ

assigned last in A as well as its complement σ in an antecedent ε of σ are surrounded by a box in Table 6, and further
literals assigned at decision level 2 are underlined. The result of iterated resolution, {F{b,not a},Td}, contains F{b,not a} as
the single literal assigned at decision level 2, while Td has been assigned at assertion level 1. In this example, the first UIP
F{b,not a} happens to be the decision literal at level 2.

In general, a first UIP is not necessarily a decision literal, as it can for instance be observed on UIP F{b, c} in the as-
serting nogood {Td,F{b, c},F{b,not a}} returned by ConflictAnalysis at decision level 4 in Example 4.1. Also recall
that λ(d, {d, e}) = {Td,F{b, c},F{b,not a}} served as starting point for ConflictAnalysis, containing a (first) UIP with-
out requiring any resolution step. This phenomenon is due to “unidirectional” propagation of loop nogoods, given that
unfounded set checks (cf. Algorithm 3) merely identify unfounded atoms, but not rule bodies that must necessarily hold
for (non-circularly) supporting some true atom. In Example 4.1, the fact that T{b, c} is required from decision level 2 on is
only recognized at level 4, where assigning F{b, c} leads to a conflict. In view of this, Algorithm 3 can be understood as a
checking routine guaranteeing the soundness of CDNL-ASP, while its inference capabilities do not match (full) unit propa-
gation on loop nogoods. Similar observations have already been made in [63,62], but more powerful yet efficient reasoning
mechanisms for unfounded set handling seem to be difficult to develop; for instance, the approach suggested in [18,19] is
computationally too complex (quadratic) to be beneficial in practice.

Despite of the fact that conflict resolution in ASP can be done in the same fashion as in SAT, the input format of
logic programs makes it less predetermined. For one, the completion nogoods in �Π contain rule bodies as structural
variables for the sake of succinct representation. For another, the number of (relevant) inherent loop nogoods in ΛΠ may
be exponential [88]. Fortunately, the satisfaction of ΛΠ can be checked in linear time (e.g., via Algorithm 3), so that an
explicit representation of its elements is not required. However, NogoodPropagation (cf. Algorithm 2) records loop
nogoods from ΛΠ that are antecedents to make them easily accessible in ConflictAnalysis.

Alternatives in the representation of constraints induced by a logic program become apparent when considering tradi-
tional ASP solvers, such as dlv [83] and smodels [119], where assignments are (logically) identified with interpretations over
atoms. In order to augment smodels with conflict-driven learning, smodelscc [126] pursues an algorithmic approach to extract
antecedents (over atoms) relative to smodels’ inference rules. In our setting, one may restrict heuristic decisions in Line 14
of Algorithm 1 to atoms for mimicking an “atom-only” approach where truth values of rule bodies are determined by their
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literals. However, when ConflictAnalysis remains unaltered, its asserting nogoods may still enable unit propagation
to derive the falsity of bodies without (known) false body literals (or associated false head atoms), which cannot occur with
atom-based approaches. To ultimately avoid such inferences, one would need to unconditionally eliminate literals over bod-
ies from conflict nogoods by resolution against their antecedents, which is possible when heuristic decisions are restricted
to atoms. This idea comes close to the learning technique of smodelscc , breaking derivations relying on bodies down to their
contained literals. Although such “body elimination” may enable learning on top of atom-based approaches, it still goes
along with exponentially increased (best-case) complexity, independent of and thus irreparable by conflict-driven nogood
learning [62].

4.5. Soundness and completeness of CDNL-ASP algorithm

In what follows, we elaborate upon the formal properties of the provided algorithms. Generally speaking, soundness
wrt the decision problem of answer set existence is obtained from the fact that NogoodPropagation and Conflict-
Analysis exploit and possibly tighten available knowledge, but do not draw incorrect conclusions. In the course of this,
UnfoundedSet performs a sufficient amount of work to distinguish answer sets from (inadmissible) circularly supported
models. The completeness of CDNL-ASP follows from the observation that its subroutines cannot loop infinitely along with
the fact that conflict-driven assertions relocate variables to smaller decision levels than before, which guarantees termination
(cf. [128,115]).

To begin with, we consider crucial properties of UnfoundedSet in Algorithm 3. First, we have that (positive) depen-
dencies through source pointers are inherently acyclic.

Lemma 4.1. Let Π be a logic program and A an assignment that is body-saturated for Π .
If UnfoundedSet(Π,A) is invoked on a valid source pointer configuration, then we have that the source pointer configuration

remains valid throughout the execution of UnfoundedSet(Π,A).

The above property holds because potential non-circular supports for atoms in β+ must already be established before a
source pointer can be set to a body β in Line 13 of Algorithm 3. In particular, the atoms of β+ contained in an investigated
strongly connected component of (atom(Π),�+) must not belong to scope S , comprising potentially unfounded atoms. In
fact, the following result shows that all “interesting” unfounded sets, namely, unfounded loops, are part of S; conversely,
atoms outside S cannot belong to an unfounded loop.

Lemma 4.2. Let Π be a logic program and A an assignment that is atom-saturated for Π .
If UnfoundedSet(Π,A) is invoked on a valid source pointer configuration, then we have that every unfounded set U ⊆

atom(Π) \ AF of Π wrt A such that all p ∈ U belong to the same strongly connected component of (atom(Π),�+) is contained
in S whenever Line 6 of Algorithm 3 is entered.

The previous lemmas along with Corollary 3.12 can now be combined to, essentially, establish the completeness of
Algorithm 3.9

Theorem 4.3. Let Π be a logic program and A an assignment that is both atom- and body-saturated for Π .
If UnfoundedSet(Π,A) is invoked on a valid source pointer configuration, then we have that UnfoundedSet(Π,A) returns

an unfounded set U ⊆ atom(Π) \ AF of Π wrt A, where U = ∅ iff there is no unfounded set U ′ of Π wrt A such that U ′ � AF .

After considering unfounded set detection, we now turn to NogoodPropagation in Algorithm 2. The next lemma is
straightforward yet helpful, as it assures the prerequisites of demand-driven unfounded set checking, mainly focusing on
unfounded loops.

Lemma 4.4. Let Π be a logic program, ∇′ a set of nogoods, dl ∈ N, and A′ an assignment.
Then, we have that A is both atom- and body-saturated for Π whenever Line 10 of Algorithm 2 is entered in an execution of

NogoodPropagation(dl,Π,∇′,A′).

The following properties are essential for ConflictAnalysis to be well-defined as well as the soundness and com-
pleteness of CDNL-ASP.

Lemma 4.5. Let Π be a logic program, ∇′ a set of nogoods, dl ∈ N, and A′ an assignment.
If NogoodPropagation(dl,Π,∇′,A′) is invoked on a valid source pointer configuration, then we have that NogoodProp-

agation(dl,Π,∇′,A′) returns a pair (A,∇) such that

9 Soundness, viz., the property that any set U returned by UnfoundedSet is indeed unfounded, is obvious in view of the test in Line 9 of Algorithm 3
and the fact that ∅, which can be returned in Line 18, is trivially unfounded.
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1. ∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ ;
2. A is an assignment such that A′ ⊆ A and every σ ∈ A \ A′ is implied by �Π ∪ ∇ wrt A;
3. δ ⊆ A for some δ ∈ �Π ∪ ∇ if λ(p, U ) ⊆ A for some λ(p, U ) ∈ ΛΠ .

The first item expresses that only loop nogoods can possibly be added by NogoodPropagation, viz., in Line 14 of
Algorithm 2 (provided that Π is non-tight). In view of Theorem 3.7, this makes sure that the recorded nogoods do not
eliminate any answer set of Π . The second item states that any literal assigned within NogoodPropagation has some
antecedent, which can (later on) be used for conflict resolution. Finally, the third item exploits Theorem 4.3 and Lemma 4.4
to establish that violations of (loop) nogoods cannot stay undetected.

Regarding ConflictAnalysis in Algorithm 4, the next lemma states that its derived nogoods are asserting and en-
tailed by the nogoods that are already given.

Lemma 4.6. Let Π be a logic program, ∇ a set of nogoods, A an assignment such that {σ ∈ A | ρ ∈ A[σ ], dl(σ ) < dl(ρ)} = ∅ and {σ ∈
A | ρ ∈ A[σ ], dl(ρ) = dl(σ )} ⊆ {σ ∈ A | ε ∈ �Π ∪ ∇, ε \ A[σ ] = {σ }}, and δ′ ⊆ A such that m = max({dl(σ ) | σ ∈ δ′} ∪ {0}) �= 0.

Then, we have that ConflictAnalysis(δ′,Π,∇,A) returns a pair (δ,k) such that

1. δ ⊆ A;
2. |{σ ∈ δ | k < dl(σ )}| = 1;
3. δ � B for any solution B for �Π ∪ ∇ ∪ {δ′}.

The above prerequisites regarding ∇ , A, and δ′ stipulate the existence of antecedents for all but the first literal assigned
at decision level m > 0. These conditions are guaranteed by CDNL-ASP, as it increments dl in Line 15 of Algorithm 1
before assigning a decision literal (without antecedent) in Line 17, and as conflicts are analyzed only if encountered beyond
decision level 0.

After inspecting the subroutines of CDNL-ASP, important invariants of assignments and nogoods generated by CDNL-
ASP can be summarized as follows.

Lemma 4.7. Let Π be a logic program.
Then, we have that the following holds whenever Line 5 of Algorithm 1 is entered in an execution of CDNL-ASP(Π):

1. ∇ is a set of nogoods such that δ � B for every δ ∈ ∇ and any solution B for �Π ∪ ΛΠ ;
2. A is an assignment such that {σ ∈ A | ρ ∈ A[σ ], dl(σ ) < dl(ρ)} = ∅ and {σ ∈ A | dl(σ ) � max({dl(ρ) | ρ ∈ A[σ ]} ∪ {0})} ⊆

{σ ∈ A | ε ∈ �Π ∪ ∇, ε \ A[σ ] = {σ }};
3. dl ∈N is such that δ � {σ ∈ A | dl(σ ) < dl} for every δ ∈ �Π ∪ ΛΠ ∪ ∇ .

Given that only the (implied) literals belonging to the current assignment A require antecedents for the second invariant
to hold, dynamic nogoods in ∇ that are not antecedents may optionally be deleted. This yields polynomial space complexity
of CDNL-ASP because the number of (required) antecedents is bounded by the maximum number of assigned literals, viz.,
|atom(Π)∪ body(Π)|. In practice, nogood deletion (cf. [72,35]) is an important technique preventing conflict-driven learning
solvers from blowing up in space.

Finally, the above results allow for deriving the soundness and completeness of CDNL-ASP.

Theorem 4.8. Let Π be a logic program.
Then, we have that CDNL-ASP(Π) terminates, and it returns an answer set of Π iff Π has some answer set.

Soundness wrt the decision problem of answer set existence follows from the observations made above, namely, that
violated loop nogoods are detected and that nogoods added by NogoodPropagation or derived by ConflictAnaly-
sis are entailed. The completeness of CDNL-ASP, viz., the fact that it is a decision procedure, is due to its termination.
Notably, arguments for the termination of CDCL (cf. [128,115]) also apply to CDNL-ASP, given that both search procedures
make use of conflict-driven assertions to exclude repetitions of assignments.

5. The clasp system

Our approach to conflict-driven ASP solving is implemented in clasp [54,52,56], combining the high-level modeling ca-
pacities of ASP with state-of-the-art Boolean constraint solving techniques. The solver clasp is freely available as an open
source package at [110] and distributed under GNU general public license.

The clasp system is originally designed and optimized for conflict-driven ASP solving, as described in Section 4. To
this end, it features a number of sophisticated reasoning and implementation techniques, some specific to ASP and others
borrowed from CDCL-based SAT solvers. Moreover, clasp can be used as a full-fledged SAT, MaxSAT, or PB solver, accepting
propositional CNF formulas in (extended) dimacs format as well as PB formulas in opb format. The flexibility of input formats,
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reasoning modes (cf. Section 5.2), and tuning parameters (cf. Section 5.4) supported by clasp goes well beyond the margins
of typical ASP or SAT solvers. This section, however, is primarily devoted to ASP solving, describing the main features of
clasp. Albeit the theoretical considerations in Section 4 concentrated on normal logic programs, one such feature is clasp’s
ability to treat extended rules [119] intrinsically (without a priori compilation), supporting choice constructs in rule heads
as well as cardinality and weight constraints in rule bodies. While the nogoods stemming from normal programs, described
in Section 3, can be represented by clauses, clasp also includes dedicated data structures for dealing with linear inequalities
obtained from extended programs or PB formulas. In order to give a comprehensive overview about the functionalities
provided by clasp, we below discuss also such features.

5.1. Interfaces and preprocessing

For ASP solving, clasp reads propositional logic programs (without proper disjunctions in rule heads) in lparse for-
mat [120], provided by either lparse [120] or gringo [51]. Choice rules as well as cardinality and weight constraints (cf.
[119,120]) are either compiled into normal rules during parsing, configurable via option -trans-ext, or dealt with in an
intrinsic fashion (by default; see Section 5.3 for details).

At the beginning, a logic program is subject to extensive preprocessing [55]. The idea is to simplify the program while
identifying equivalences among its relevant constituents. These equivalences are then used for building a compact program
representation (in terms of Boolean constraints). Logic program preprocessing is configured via option -eq, taking an integer
value fixing the number of iterations. Once a program has been transformed into Boolean constraints, they can be subject
to further preprocessing, primarily based on resolution [33]. Such SatELite-like preprocessing is invoked with option -sat-
prepro and further parameters. However, care must be taken when adapting techniques from SAT because preprocessing
must not eliminate variables that are relevant to unfounded set checking or that occur in extended rules and optimization
statements.

A major yet internal feature of clasp is that it can be used in a stateful way. That is, clasp may keep its state, involving
program representation, recorded nogoods, heuristic values, etc., and be invoked under additional (temporary) assumptions
and/or by adding new atoms and rules. The corresponding interfaces are fundamental for supporting incremental ASP solving
as realized in iclingo [46], a combination of gringo and clasp for incremental grounding and solving. Furthermore, solving
under assumptions [34] is used in our parallel ASP solver claspar [37,118,50].

5.2. Reasoning modes

Although clasp’s primary use case is the computation of answer sets, it also allows for computing supported models of a
logic program via option -supp-models.10 In addition, clasp provides a number of reasoning modes, determining how to
proceed when a model is found.

Enumeration Solution enumeration is non-trivial in the context of backjumping and conflict-driven learning. A simple ap-
proach relies on recording solutions as nogoods and exempting them from deletion. Although clasp supports this via option
-solution-recording, it is prone to blow up in space in view of an exponential number of solutions (in the worst
case). Unlike this, the default enumeration algorithm of clasp runs in polynomial space [53]. Both enumeration approaches
also allow for projecting models to a subset of atoms [57], invoked with -project and configured via the well-known di-
rectives #hide and #show of lparse and gringo. This option is of great practical value whenever one faces overwhelmingly
many models, involving solution-irrelevant variables having proper combinatorics. For example, the program consisting of
the choice rule {a,b,c}. has eight (obvious) answer sets. When augmented with directive #hide c., still eight solutions
are obtained, yet including four duplicates. Unlike this, invoking clasp with -project yields only four answer sets differing
on a and/or b.

As regards implementation, it is interesting to note that clasp offers a dedicated interface for enumeration. This allows
for abstracting from how to proceed once a model is found and thus makes the search algorithm independent of the
concrete enumeration strategy. Further reasoning modes implemented via the enumeration interface admit computing the
intersection or union of all answer sets of a program (via -cautious and -brave, respectively). Rather than computing
the whole collection of (possibly) exponentially many answer sets, the idea is to compute a first answer set, record a
constraint eliminating it from further solutions, then compute a second answer set, strengthen the constraint to represent
the intersection (or union) of the first two answer sets, and to continue like this until no more answer set is obtained. This
process involves computing at most as many answer sets as there are atoms in an input program. Either the cautious or the
brave consequences are then given by the atoms captured by the final constraint.

Optimization As common in lparse-like languages, an objective function is specified via a sequence of #minimize or
#maximize statements. For finding optimal solutions, clasp offers several options. First, the objective function can be ini-
tialized via -opt-value. Second, clasp allows for computing one or all (via -opt-all) optimal solutions. Such options

10 To be more precise, option -supp-models disables unfounded set checking. Sometimes, the grounder or preprocessing may already eliminate some
supported models such that they cannot be recovered later on.
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are useful when one is interested in computing consequences belonging to all optimal solutions (in combination with
-cautious). To this end, one starts with searching for an (arbitrary) optimal answer set and then re-launches clasp by
bounding its search with the obtained optimum. Doing the latter with -cautious yields the atoms that belong to all
optimal answer sets. On application problems, option -restart-on-model, making clasp restart after each (putatively
optimal) solution, turned out to be effective for ameliorating convergence to an optimum. Particular strategies for lexi-
cographic optimization [48], available in clasp series 2, serve the same purpose, especially on large and underconstrained
multi-criteria optimization problems. Moreover, option -opt-heu can be used to alter sign selection (see below) towards
a better objective function value. Optimization is implemented via the aforementioned enumeration interface. When a so-
lution is found, an optimization constraint is updated with the corresponding objective function value. Then, the decision
level violating the constraint is identified and retracted, or if the constraint is violated at decision level 0, search terminates.
It is also worth mentioning that clasp propagates optimization constraints, that is, they can imply (and provide reasons
for) literals upon unit propagation. Finally, when optimization is actually undesired and all solutions ought to be inspected
instead, option -opt-ignore is available to make modifying the input (by removing optimization statements) obsolete.

5.3. Propagation and search

Propagation in clasp relies on an interface called Boolean constraint; it is thus not limited to (clausal representations of)
nogoods (cf. [35]). However, dedicated data structures are used for binary and ternary nogoods (cf. [115]), accounting for
the many short nogoods stemming from Clark completion. More complex constraints are accessed via two watch lists for
each variable, storing the Boolean constraints that need to be updated when the variable becomes true or false, respectively.
While unit propagation of long nogoods is based on the well-known two-watched-literal data structure [101], a counter-
based approach is used for propagating cardinality and weight constraints [47]. A literal implied by a Boolean constraint
upon unit propagation stores a reference to that constraint, which in turn can be queried for an antecedent.

During unit propagation, binary nogoods are handled before ternary ones, which are in turn inspected before other
Boolean constraints. As detailed in Algorithm 2, our propagation procedure is distinct in giving a clear preference to unit
propagation over unfounded set computations. Unfounded set detection follows Algorithm 3 and aims at small, rather than
greatest, unfounded sets. As detailed in [47], intrinsic treatment of cardinality and weight constraints augments unfounded
set detection by means of source pointers, still aiming at lazy unfounded set checking. The representation of loop nogoods
is controlled via option -loops. In the default setting, loop nogoods are generated for individual unfounded atoms, as
shown in Algorithm 2. Like nogoods derived from conflicts, they are subject to unit propagation and deletion. However,
when -loops=no is specified, loop nogoods are stored only as long as they serve as antecedents of falsified unfounded
atoms.

Decision heuristics The primary decision heuristics of clasp use look-back strategies derived from corresponding CDCL-
based approaches in SAT, viz., vsids [101], berkmin [72], and vmtf [115]. Such heuristics privilege variables involved in recent
conflicts. To this end, they maintain an activity score for each variable, increased upon conflict resolution and decayed peri-
odically. The major difference between the approaches of vsids and berkmin lies in the scope of variables considered during
decision making. While vsids selects a free variable that is globally most active, berkmin restricts the selection to variables
belonging to the most recently recorded yet undispelled dynamic nogood. Although the look-back heuristics implemented in
clasp are modeled after the corresponding CDCL-based approaches, clasp optionally also scores variables contained in loop
nogoods. In case of berkmin, it may also select a free variable belonging to a recently recorded loop nogood. Finally, we note
that clasp’s heuristic can also be based upon look-ahead strategies extending unit propagation by failed-literal detection [42].
This makes sense when running clasp without conflict-driven nogood learning, operating similar to smodels.

Once a decision variable has been selected, a sign heuristic decides about its truth value. The main criterion for look-
back heuristics is to satisfy the greatest number of conflict nogoods, that is, to pick the literal that occurs in fewer of them.
Initially and also for tie-breaking, clasp does sign selection based on the type of a variable: atoms are preferably set to
false, while bodies are made true. This aims at maximizing the number of resulting implications. Another sign heuristic
implemented in clasp is progress saving [107]. The idea is to remember truth values of retracted variables upon backjumping
(or restarting), except for those assigned at the last decision level. These saved values are then used for sign selection.
The intuition behind this strategy is that the literals assigned prior to the last decision level did not lead to a conflict and
may have satisfied some subproblem. Hence, re-establishing them may help to avoid solving subproblems multiple times.
Progress saving is invoked with option -save-progress; its computational impact, however, depends heavily on the
structure of an application at hand (cf. Section 5.4).

Restart policies The robustness of clasp is boosted by multiple restart strategies (cf. [74]), namely, geometric, fixed-interval,
Luby-style, or a nested policy. The first two start with an initial number of conflicts after which clasp restarts; this threshold
can then be increased after each restart. The third policy, going back to Luby, Sinclair, and Zuckerman [92], schedules
restarts according to a recurrent and progressively growing sequence of numbers of conflicts, e.g., 32 32 64 32 32 64
128 32 . . . for unit 32. In addition, the nested policy first used in picosat [11] is also offered by clasp. This policy takes
three parameters, x, y, and z, and makes restarts follow a two-dimensional pattern that increases geometrically in both
dimensions. The geometric restart sequence x ∗ yi is repeated when it reaches an outer limit z ∗ y j , where i counts the
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number of performed restarts and j how often the outer limit was hit so far. Usually, restart strategies are based on the total
number of encountered conflicts. Beyond that, clasp features local restarts [116]. Here, one counts the number of conflicts
per decision level in order to measure the difficulty of subproblems locally. Furthermore, a bounded approach to restarting
(and backjumping) is used when enumerating answer sets as described in [53]. To complement its more determined search,
clasp also allows for initial randomized runs [35], typically with a small restart threshold, in the hope to extract putatively
interesting nogoods. Finally, it is worth noting that, despite of the fact that recent SAT solvers use rather aggressive restart
strategies (cf. Section 5.4), clasp still defaults to a more conservative geometric policy (cf. [35]) because it performs better
on ASP-specific benchmarks.

Nogood deletion To limit the number of nogoods stored simultaneously, dynamic nogoods are periodically subject to
deletion. Complementing look-back heuristics, clasp’s nogood deletion strategy associates an activity with each recorded
nogood, which is incremented whenever the nogood is used for conflict resolution. Borrowing ideas from minisat [35] and
berkmin [72], the initial threshold on the number of stored nogoods is calculated from the size of an input program and
increased by a certain factor upon each restart. As soon as the current threshold is exceeded, deletion is initiated and
removes up to 75% of the recorded nogoods. Nogoods that are currently locked (because they serve as antecedents) or
whose activities significantly exceed the average activity are exempt from deletion. However, the nogoods that are not
deleted have their activities decayed in order to account for recency of usage. All in all, clasp’s nogood deletion strategy
aims at limiting the overall number of stored nogoods, while keeping the relevant and recently recorded ones. This likewise
applies to conflict and loop nogoods.

5.4. Fine-tuning

Advanced Boolean constraint solving technology adds a multitude of degrees of freedom to ASP solving. Currently, clasp
has about 40 options, half of which control the search strategy. Although considerable efforts were taken to find default
parameters jointly boosting robustness and speed, the default setting still leaves room for drastic improvements on specific
benchmarks by fine-tuning the parameters. The question then arises how to deal with this vast “configuration space” and
how to conciliate it with the idea of declarative problem solving. Currently, there seems to be no alternative to manual
fine-tuning when addressing highly demanding applications.

As rules of thumb, we usually start by investigating the following options:

-heuristic: Try vsids instead of clasp’s default berkmin-style heuristic.
-trans-ext: Applicable if a program contains extended rules, that is, rules including cardinality and weight constraints.

Try at least the dynamic transformation.
-sat-prepro: Resolution-based preprocessing (as in SatELite [33]) works best on tight programs with few cardinality and

weight constraints. It should almost always be used when extended rules are transformed into normal ones (via
-trans-ext).

-restarts: Try aggressive restart policies, like Luby-256 or the nested policy, or try disabling restarts whenever a problem
is deemed to be unsatisfiable.

-save-progress: Progress saving typically works nicely when the average backjump length (or the #choices/#conflicts
ratio) is high (�10). It usually performs best in combination with aggressive restarts.

The impact of fine-tuning can be seen on the following examples. As observed in [78], clasp times out on satisfiable 4-
coloring problems. However, with -save-progress, clasp solves each instance in about a second (the average backjump
length is >60). For another example, consider the benchmark class WeightBoundedDomSet from the second ASP compe-
tition [28]. The default configuration of clasp results in timeouts (see next section), all of which vanish once aggressive
restarts are used. Similar effects can be observed on application problems featuring yet different characteristics.

Although fine-tuning may greatly improve the efficiency of clasp, it is hard to accomplish for an unpracticed user, and
after all it takes us away from the ideals of declarative problem solving. To this end, we advocate an extension of clasp,
called claspfolio [49], that maps benchmark features to solver configurations (via machine learning techniques). It is part of
our ongoing work to investigate how far the selection of effective parameter settings can be automated.

6. Experimental results

We conducted experiments on NP decision problems of the second ASP competition [28], using encodings by the
Potassco team.11 Our comparison considers clasp (version 1.3.1) in its default setting as well as a setting suited better
for the benchmarks in focus. The latter, denoted by clasp+ , invokes clasp with options -sat-prepro and -trans-
ext=dynamic, using SatELite-like preprocessing [33] on nogoods as well as a context-dependent handling of extended

11 See http://dtai.cs.kuleuven.be/events/ASP-competition/SubmittedBenchmarks.shtml for detailed descriptions of benchmark classes as well as http://dtai.
cs.kuleuven.be/events/ASP-competition/encodings.shtml for benchmark instances and encodings.

http://dtai.cs.kuleuven.be/events/ASP-competition/SubmittedBenchmarks.shtml
http://dtai.cs.kuleuven.be/events/ASP-competition/encodings.shtml
http://dtai.cs.kuleuven.be/events/ASP-competition/encodings.shtml
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rules, excluding “small” extended rules from an intrinsic treatment (cf. [47]) and rather transforming them into normal rules.
For comparison, we also consider cmodels (version 3.79 with minisat 2.0), smodels (version 2.34 with option -restart),
and lp2sat (version 1.13 with minisat 2.0 or clasp 1.3.1).12 For cmodels and lp2sat, we below indicate the use of either minisat
or clasp as underlying SAT solver by adding “[m]” or “[c]”, respectively. The experiments were run sequentially under Linux
on an Intel Quad-Core Xeon E5520 machine equipped with 2.27 GHz processors. Every benchmark instance (in lparse output
format [120], generated offline with gringo) was run three times per solver, each run restricted to 600 seconds time and
2 GB RAM. A run finished when the solver found an answer set, reported unsatisfiability (no answer set), or was aborted
due to time or memory exhaustion.

SAT-based solver cmodels converts a logic program into propositional clauses via Clark completion and delegates the
search for supported models to minisat. Except for the treatment of extended rules, this approach is comparable to clasp
on tight programs. In the non-tight case, cmodels delays (sophisticated) unfounded set checks until an assignment is total,
while clasp and smodels integrate them into propagation. In fact, smodels is a “traditional” ASP solver using a search pattern
based on systematic backtracking along with an unfounded set checking procedure computing greatest unfounded sets.
Finally, lp2sat like cmodels converts a logic program into propositional clauses and delegates the search for a model to some
SAT solver. On tight programs, lp2sat’s translation amounts to Clark completion, while level mappings [76,103] are used to
capture non-circular derivability of atoms from non-tight programs. Among the solvers accepting lparse output format, our
experiments include the ones that were leading in the NP decision category of the second ASP competition (cf. [28]).13 In
particular, lp2sat has an edge on lp2diff [78], which applies a translation to difference logic and solvers for Satisfiability
Modulo Theories (SMT; [10]) as search back-ends, on the investigated benchmarks [77].

Our experimental results are summarized in Tables 7–9, giving average runtimes in seconds and numbers of aborted
runs (in parentheses) for every solver on each benchmark class, with time or memory exhaustions taken as 600 seconds.
More detailed benchmark results, including individual times for all instances as well as further solver configurations, are
provided at [22]. While Table 7 considers all benchmarks, divided into tight and non-tight ones, Tables 8 and 9 analogously
report results restricted to satisfiable and unsatisfiable instances, respectively. Each table gives the number of instances per
benchmark class in the column headed by “#”. In addition, Table 7 provides the respective partition into satisfiable and un-
satisfiable instances (in parentheses). The last column amounts to the virtual best solver, composed of the smallest runtime
and the smallest number of aborts observed on each benchmark class. The rows marked with “∅(∅)” average runtimes
and time or memory exhaustions over a collection of benchmark classes under consideration.14 The following row gives
the Euclidean distance (in an n-dimensional space, where n is the number of benchmark classes and a point is a column
of n average runtimes) of each solver to the virtual best one on the respective collection in focus; the quadratic distance
calculation scheme punishes imbalanced and rewards consistent performance more than averaging. Some benchmark classes
make heavy use of extended rules, so that their different treatments, e.g., in clasp+ and cmodels, have significant impact on
the observed performances; such benchmark classes are marked with “∗” in Tables 7–9.

Considering the results on tight benchmarks in the upper part of Table 7, we note that the traditional ASP solver smodels
is consistently outperformed by systems exploiting conflict-driven learning. For instance, smodels times out on all satisfiable
instances of 15Puzzle, which are rather unproblematic for the other solvers. In fact, occasional varying performances of
the latter on tight programs are due to different treatments of extended rules and/or determinizations of inherent non-
determinisms in minisat and clasp, respectively. Any such differences may turn out to be advantageous the one or the other
way around; e.g., clasp+ and lp2sat[c] have an edge on other solvers on GraphColouring, clasp in its default setting is fastest
on SchurNumbers, while lp2sat[m] yields the fewest aborts on WeightBoundedDomSet. On non-tight benchmarks, we observe
that the problem representation overhead incurred by lp2sat’s translational approach is a major handicap, though minisat
and clasp may react more or less sensitively (cf. Labyrinth and TravellingSalesperson). Except for MazeGeneration, the strategy
of cmodels to verify candidate supported models found by minisat already improves on eager translation by lp2sat. However,
integrating unfounded set checking into propagation is usually even more effective, as it can be observed when comparing
clasp and clasp+ to cmodels on KnightTour and WireRouting. Beyond dealing with (non-)tightness, the treatment of extended
rules is a crucial factor on some benchmark classes. Their transformation into normal rules, as done by cmodels and lp2sat,
turns out to be helpful on ConnectedDomSet,15 while it drastically blows up problem representations and thus deteriorates
performance on TravellingSalesperson.

Focusing on either satisfiable or unsatisfiable instances in Tables 8 and 9, respectively, sheds some light on the distri-
bution of hardness within benchmark classes, yet without exhibiting any overwhelming impact regarding relative solver
performances. In fact, a look into Table 8, especially at cmodels and smodels, reveals that the satisfiable instances of Channel-
Routing, GraphPartitioning, and MazeGeneration are rather easy. Interestingly, both lp2sat variants still have difficulties with
the non-tight benchmarks, viz., GraphPartitioning and MazeGeneration, indicating that an eager translation of logic programs
may diminish search performance. On the other hand, all solvers perform worse on the satisfiable instances of SchurNumbers

12 Additional results for cmodels with zchaff 2007.3.12 and smodels without restarts are available at [22].
13 Some non-participating solvers, e.g., assat, sag [91], and smodelscc , are no longer maintained and thus not incorporated here. Although original smodels

did not participate either (but its close derivative smodels-ie [15] did), we still consider it for reference. At the time of running the experiments, the solver
minisat(id) [95], supporting “inductive definitions” on top of propositional theories, did not accept lparse output format.
14 We provide averages (rather than sums) for balancing diverse numbers of instances per benchmark class.
15 Interestingly, a single instance of ConnectedDomSet is responsible for the three timeouts of clasp and clasp+ .
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] lp2sat[c] virtual best

(0) 15.13 (0) 15.13 (0)
(0) 5.22 (0) 4.91 (0)
(6) 121.08 (6) 120.13 (6)
(0) 5.58 (0) 0.23 (0)
(0) 24.95 (0) 0.90 (0)
(51) 357.57 (39) 357.57 (39)
(0) 5.36 (0) 2.92 (0)
(0) 0.86 (0) 0.16 (0)
(6) 36.93 (0) 17.44 (0)
(27) 210.14 (27) 162.82 (21)
(0) 0.82 (0) 0.15 (0)
(9) 143.87 (12) 102.18 (9)

(8.25) 77.29 (7.00) 65.38 (6.25)
70.51 0.00

(0) 13.62 (0) 7.46 (0)
(0) 12.90 (0) 0.10 (0)
(21) 344.39 (21) 7.98 (0)
(0) 15.68 (0) 0.06 (0)
(27) 487.61 (24) 91.80 (3)
(27) 534.62 (75) 82.92 (6)
(9) 85.57 (6) 85.57 (6)
(0) 3.99 (0) 0.73 (0)
(55) 198.34 (9) 0.05 (0)
(48) 459.97 (51) 36.36 (3)

(18.70) 215.67 (18.60) 31.30 (1.80)
832.52 0.00

(13.00) 140.19 (12.27) 49.89 (4.23)
835.50 0.00
Table 7
Average runtimes on benchmarks of the second ASP competition.

Benchmark # clasp clasp+ cmodels[m] smodels lp2sat[m

15Puzzle 16 (16/0) 33.01 (0) 20.18 (0) 31.36 (0) 600.00 (48) 22.21
BlockedNQueens 29 (15/14) 5.09 (0) 4.91 (0) 9.04 (0) 29.37 (0) 13.19
ChannelRouting 10 (6/4) 120.13 (6) 120.14 (6) 120.58 (6) 120.90 (6) 121.34
EdgeMatching 29 (29/0) 0.23 (0) 0.41 (0) 59.32 (0) 60.32 (0) 13.05
Fastfood∗ 29 (10/19) 1.17 (0) 0.90 (0) 29.22 (0) 83.93 (3) 46.85
GraphColouring 29 (9/20) 421.55 (60) 357.88 (39) 422.66 (57) 453.77 (63) 409.70
Hanoi 15 (15/0) 11.76 (0) 3.97 (0) 2.92 (0) 523.77 (39) 3.81
HierarchicalClustering∗ 12 (8/4) 0.16 (0) 0.17 (0) 0.76 (0) 1.56 (0) 0.94
SchurNumbers 29 (13/16) 17.44 (0) 49.60 (0) 75.70 (0) 504.17 (72) 90.88
Solitaire 27 (22/5) 204.78 (27) 162.82 (21) 175.69 (21) 316.96 (36) 222.60
Sudoku 10 (10/0) 0.15 (0) 0.16 (0) 2.55 (0) 0.25 (0) 0.87
WeightBoundedDomSet∗ 29 (29/0) 123.13 (15) 102.18 (12) 300.26 (36) 400.84 (51) 179.56

∅ (∅) (tight) 264 (182/82) 78.22 (9.00) 68.61 (6.50) 102.50 (10.00) 257.99 (26.50) 93.75
Eucl. dist. (tight) 81.80 32.58 227.19 991.76 141.67

ConnectedDomSet∗ 21 (10/11) 40.42 (3) 36.11 (3) 7.46 (0) 183.76 (15) 13.43
GeneralizedSlitherlink∗ 29 (29/0) 0.10 (0) 0.22 (0) 1.92 (0) 0.16 (0) 5.05
GraphPartitioning∗ 13 (6/7) 9.27 (0) 7.98 (0) 20.19 (0) 92.10 (3) 365.18
HamiltonianPath 29 (29/0) 0.07 (0) 0.06 (0) 0.21 (0) 2.22 (0) 3.45
KnightTour 10 (10/0) 124.29 (6) 91.80 (3) 242.48 (12) 150.55 (3) 545.42
Labyrinth 29 (29/0) 123.82 (12) 82.92 (6) 142.24 (6) 594.10 (81) 282.23
MazeGeneration 29 (10/19) 91.17 (12) 89.89 (12) 90.41 (12) 293.62 (42) 125.94
Sokoban 29 (9/20) 0.73 (0) 0.80 (0) 3.39 (0) 176.01 (15) 6.11
TravellingSalesperson∗ 29 (29/0) 0.05 (0) 0.06 (0) 317.82 (7) 0.22 (0) 441.68
WireRouting 23 (12/11) 42.81 (3) 36.36 (3) 175.73 (12) 448.32 (45) 460.89

∅ (∅) (non-tight) 241 (173/68) 43.27 (3.60) 34.62 (2.70) 100.19 (4.90) 194.11 (20.40) 224.94
Eucl. dist. (non-tight) 62.37 28.97 383.16 739.35 866.08

∅ (∅) 505 (355/150) 62.33 (6.55) 53.16 (4.77) 101.45 (7.68) 228.95 (23.73) 153.38
Eucl. dist. 102.86 43.59 445.45 1237.02 877.59
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(0) 15.13 (0) 15.13 (0)
(0) 4.16 (0) 3.48 (0)
(0) 1.37 (0) 0.16 (0)
(0) 5.58 (0) 0.23 (0)
(0) 18.54 (0) 0.12 (0)
(0) 31.27 (0) 24.99 (0)
(0) 5.36 (0) 2.92 (0)
(0) 1.03 (0) 0.13 (0)
(6) 80.40 (0) 37.25 (0)
(12) 121.54 (12) 63.46 (6)
(0) 0.82 (0) 0.15 (0)
(9) 143.87 (12) 102.18 (9)

(2.25) 35.76 (2.00) 20.85 (1.25)
85.96 0.00

(0) 12.36 (0) 1.74 (0)
(0) 12.90 (0) 0.10 (0)
(3) 118.25 (3) 0.11 (0)
(0) 15.68 (0) 0.06 (0)
(27) 487.61 (24) 91.80 (3)
(27) 534.62 (75) 82.92 (6)
(0) 10.92 (0) 0.07 (0)
(0) 4.34 (0) 0.63 (0)
(55) 198.34 (9) 0.05 (0)
(30) 519.94 (30) 62.63 (3)

(14.20) 191.49 (14.10) 24.01 (1.20)
789.78 0.00

(7.68) 106.55 (7.50) 22.29 (1.23)
794.44 0.00
Table 8
Average runtimes on satisfiable benchmarks of the second ASP competition.

Benchmark # clasp clasp+ cmodels[m] smodels lp2sat[m]

15Puzzle 16 33.01 (0) 20.18 (0) 31.36 (0) 600.00 (48) 22.21
BlockedNQueens 15 3.48 (0) 4.93 (0) 7.52 (0) 22.13 (0) 13.99
ChannelRouting 6 0.16 (0) 0.17 (0) 0.67 (0) 1.35 (0) 1.63
EdgeMatching 29 0.23 (0) 0.41 (0) 59.32 (0) 60.32 (0) 13.05
Fastfood∗ 10 0.12 (0) 0.49 (0) 9.26 (0) 82.44 (0) 45.33
GraphColouring 9 24.99 (0) 32.66 (0) 98.64 (3) 128.80 (3) 57.93
Hanoi 15 11.76 (0) 3.97 (0) 2.92 (0) 523.77 (39) 3.81
HierarchicalClustering∗ 8 0.14 (0) 0.13 (0) 1.02 (0) 1.52 (0) 1.20
SchurNumbers 13 37.25 (0) 109.13 (0) 166.77 (0) 600.00 (39) 200.49
Solitaire 22 114.96 (12) 63.46 (6) 79.25 (6) 252.63 (21) 136.82
Sudoku 10 0.15 (0) 0.16 (0) 2.55 (0) 0.25 (0) 0.87
WeightBoundedDomSet∗ 29 123.13 (15) 102.18 (12) 300.26 (36) 400.84 (51) 179.56

∅ (∅) (tight, sat) 182 29.11 (2.25) 28.16 (1.50) 63.29 (3.75) 222.84 (16.75) 56.41
Eucl. dist. (tight, sat) 59.07 72.48 256.02 1037.56 203.65

ConnectedDomSet∗ 10 9.28 (0) 1.74 (0) 12.06 (0) 135.10 (6) 17.57
GeneralizedSlitherlink∗ 29 0.10 (0) 0.22 (0) 1.92 (0) 0.16 (0) 5.05
GraphPartitioning∗ 6 0.11 (0) 0.14 (0) 4.52 (0) 0.56 (0) 114.21
HamiltonianPath 29 0.07 (0) 0.06 (0) 0.21 (0) 2.22 (0) 3.45
KnightTour 10 124.29 (6) 91.80 (3) 242.48 (12) 150.55 (3) 545.42
Labyrinth 29 123.82 (12) 82.92 (6) 142.24 (6) 594.10 (81) 282.23
MazeGeneration 10 0.07 (0) 0.08 (0) 0.08 (0) 0.15 (0) 114.32
Sokoban 9 0.63 (0) 0.78 (0) 5.40 (0) 320.54 (9) 10.77
TravellingSalesperson∗ 29 0.05 (0) 0.06 (0) 317.82 (7) 0.22 (0) 441.68
WireRouting 12 74.00 (3) 62.63 (3) 134.94 (3) 407.44 (18) 513.20

∅ (∅) (non-tight, sat) 173 33.24 (2.10) 24.04 (1.20) 86.17 (2.80) 161.10 (11.70) 204.79
Eucl. dist. (non-tight, sat) 53.99 0.20 364.12 709.78 818.54

∅ (∅) (sat) 355 30.99 (2.18) 26.29 (1.36) 73.69 (3.32) 194.78 (14.45) 123.85
Eucl. dist. (sat) 80.02 72.48 445.12 1257.11 843.49
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(0) 6.35 (0) 4.88 (0)
(6) 300.66 (6) 300.10 (6)
(0) 28.32 (0) 1.11 (0)
(51) 504.40 (39) 504.24 (39)
(0) 0.50 (0) 0.21 (0)
(0) 1.61 (0) 1.24 (0)
(15) 600.00 (15) 600.00 (15)

(10.29) 205.98 (8.57) 201.68 (8.57)
27.26 0.00

(0) 14.77 (0) 3.28 (0)
(18) 538.22 (18) 14.70 (0)
(9) 124.86 (6) 124.86 (6)
(0) 3.83 (0) 0.78 (0)
(18) 394.56 (21) 7.70 (0)

(9.00) 215.25 (9.00) 30.27 (1.20)
651.05 0.00

(9.75) 209.84 (8.75) 130.26 (5.50)
651.62 0.00
Table 9
Average runtimes on unsatisfiable benchmarks of the second ASP competition.

Benchmark # clasp clasp+ cmodels[m] smodels lp2sat[m]

BlockedNQueens 14 6.82 (0) 4.88 (0) 10.68 (0) 37.14 (0) 12.33
ChannelRouting 4 300.10 (6) 300.10 (6) 300.44 (6) 300.23 (6) 300.90
Fastfood∗ 19 1.72 (0) 1.11 (0) 39.72 (0) 84.71 (3) 47.66
GraphColouring 20 600.00 (60) 504.24 (39) 568.48 (54) 600.00 (60) 567.99
HierarchicalClustering∗ 4 0.21 (0) 0.24 (0) 0.24 (0) 1.63 (0) 0.42
SchurNumbers 16 1.34 (0) 1.24 (0) 1.70 (0) 426.30 (33) 1.82
Solitaire 5 600.00 (15) 600.00 (15) 600.00 (15) 600.00 (15) 600.00

∅ (∅) (tight, unsat) 82 215.74 (11.57) 201.69 (8.57) 217.32 (10.71) 292.86 (16.71) 218.73
Eucl. dist. (tight, unsat) 95.79 0.03 75.18 444.84 79.30

ConnectedDomSet∗ 11 68.73 (3) 67.35 (3) 3.28 (0) 227.99 (9) 9.67
GraphPartitioning∗ 7 17.12 (0) 14.70 (0) 33.62 (0) 170.56 (3) 580.29
MazeGeneration 19 139.12 (12) 137.16 (12) 137.95 (12) 448.09 (42) 132.06
Sokoban 20 0.78 (0) 0.81 (0) 2.49 (0) 110.97 (6) 4.01
WireRouting 11 8.78 (0) 7.70 (0) 220.23 (9) 492.92 (27) 403.83

∅ (∅) (non-tight, unsat) 68 46.91 (3.00) 45.54 (3.00) 79.51 (4.20) 290.10 (17.40) 225.97
Eucl. dist. (non-tight, unsat) 67.03 65.24 213.78 653.33 690.59

∅ (∅) (unsat) 150 145.39 (8.00) 136.63 (6.25) 159.90 (8.00) 291.71 (17.00) 221.75
Eucl. dist. (unsat) 116.91 65.24 226.62 790.39 695.13
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than on the unsatisfiable ones, and the same also applies to clasp, clasp+ , and lp2sat on WireRouting. Looking at these two
classes in Table 9, we observe that the unsatisfiable instances of SchurNumbers are trivial for all solvers but smodels, while
only clasp and clasp+ complete all of the unsatisfiable WireRouting instances. The latter suggests that such instances are
not inherently hard but that lacking either conflict-driven learning (smodels) or native unfounded set checking (cmodels and
lp2sat) renders them more difficult.

Unlike with SchurNumbers and WireRouting, some of the unsatisfiable instances of ChannelRouting, GraphColouring, Soli-
taire, and MazeGeneration turn out to be much harder than their satisfiable counterparts (at least for the considered solvers).
Notably, lp2sat[c], running clasp as SAT solver, completes more unsatisfiable MazeGeneration instances than clasp and clasp+
themselves, which contrasts with the behavior observed on satisfiable instances (cf. MazeGeneration in Tables 8 and 9).
A similar shift of behaviors is due to one unsatisfiable instance of ConnectedDomSet, which poses a problem to the intrinsic
treatment of extended rules in clasp and clasp+ , while cmodels and lp2sat do not encounter such difficulties. In view of this,
we believe that the dynamic selection among possible handlings of extended rules (intrinsic treatment and/or transforma-
tion) is interesting future work.

7. Related work

Our approach to conflict-driven ASP solving borrows and extends state-of-the-art techniques from the area of SAT [12].
Its global search pattern is similar to CDCL with First-UIP scheme, developed more than a decade ago [97,101,127] and
nowadays quasi standard for industrial SAT solving (cf. [35,115,100,29,11,4,23,96]). While traditional search procedures like
Davis–Putnam–Logemann–Loveland (DPLL; [25,24]) are polynomially equivalent to tree-like resolution, CDCL (with unlimited
restarts) amounts to general resolution [109] and is thus strictly more powerful (regarding the best-case complexity of
unsatisfiability proofs) than DPLL. Several investigations [62,79,70] show that this separation carries forward to (native) ASP
solvers under standard translations between ASP and SAT, viz., Clark completion and the reduction in [102]. The clasp system
implements the CDCL search pattern likewise for logic programs under answer set semantics as well as for propositional
CNF and PB formulas. In contrast to translational approaches, as used by minisat+ [36], it offers dedicated data structures
for the internal representation of and reasoning about linear inequalities [47]. This relates clasp to SMT [10] techniques,
applying “theory propagation” (cf. [104]) to concepts available in extended logic programs [119], viz., unfounded sets (or
positive recursion) and linear inequalities (over Boolean variables).

SAT-based ASP solvers like assat [90], cmodels [71], and sag [91] may also exploit conflict-driven learning in the search
for supported models being answer set candidates, accomplished by underlying SAT solvers. However, their integration of
unfounded set checking is much more loose than in native ASP solvers. To our knowledge, the only native ASP solver other
than clasp that implements conflict-driven learning is smodelscc [126],16 while ASP solvers like dlv [83], smodels [119], and
nomore++ [1] perform DPLL-style search. For enabling conflict analysis, smodelscc takes an algorithmic approach, monitoring
applications of smodels’ inference rules to on-the-fly build an implication graph [97,127,9] as a representation of antecedents.
Unlike this, clasp directly incorporates suitable data structures, designed to accommodate backjumping and conflict-driven
learning: similar to SAT solvers, it merely stores references to antecedents upon propagation, which incurs only negligible
(constant) “overhead”. A prototypical extension [112] of dlv includes backjumping, but not learning, based on tracking dlv’s
inference rules.

Given that answer sets are determined by atoms, native ASP solvers dlv, smodels, and smodelscc are (logically) restricted
to assignments over atoms. As shown in [63,62], this yields an exponential separation, already on tight logic programs, to
solvers that in addition assign and make decisions on rule bodies. To our knowledge, clasp and nomore++ are the only ASP
solvers deliberately taking advantage of rule bodies in assignments. Regardless of minor technical differences, the compar-
ison of smodels’ and nomore++’ inferences in [62] reveals that both are based on structural propositions for bodies, so that
the restricted scope of heuristic decisions is the main trait of smodels’ atom-oriented approach. In view of similarities to
smodels (cf. [70]), this also applies to dlv and smodelscc . Interestingly, CNF conversions of SAT-based ASP solvers (cf. [5]) also
introduce auxiliary propositions for rule bodies to prevent an exponential blow-up. Although such auxiliary propositions can
then be exploited by underlying SAT solvers, their motivation is more by need than by design. However, as there is not yet a
consensus on how to represent the Boolean constraints induced by logic programs (see, e.g., the proposals in [5,70,86]), we
have used nogoods to express conditions for (unit) propagation, thus separating semantics from syntactic representations.

As pointed out in [63,86], SAT-based and native ASP solvers differ in their “laziness” to apply unfounded set checks.
While the former confine themselves to final tests required for soundness, in the terminology of [104] investigating SMT,
native ASP solvers perform “theory propagation” via unfounded sets.17 Notably, virtually all ASP solvers exploit strongly
connected components of positive dependency graphs to limit work to necessary parts. Unlike the unfounded set checking
procedures of dlv [17] and smodels [119] computing greatest unfounded sets, the ones of clasp and nomore++ [2] aim at small
unfounded sets and return them as soon as they are identified. The main motive for this is to reduce overlaps between (unit)
propagation and unfounded set checking. Another difference between unfounded set checking approaches is that dlv and

16 The solver minisat(id) [95] supports “inductive definitions” on top of propositional theories. Inductive definitions are closely related to logic programs,
yet involve a “totality” condition not shared by the latter.
17 The approach of lp2diff [78] relies on a reduction to difference logic, so that SMT solvers supporting this logic can be used to accomplish unfounded

set checks and thus to compute answer sets.
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nomore++ use a flag “must-be-true” to indicate (logically true) atoms whose non-circular derivability is uncertain, for which
purpose smodels and clasp exploit source pointers [119]. The advantage of source pointers is that they need not be updated
upon backtracking or backjumping, respectively, while “true” may have to be turned back into “must-be-true”. Albeit several
approaches [90,71,91,2,59] admit restricting the consideration of unfounded sets to loops, clasp does not guarantee that a
detected non-empty unfounded set is a loop (yet it contains one), and it is an interesting open question whether a strict
limitation to loops would be advantageous. We also note that the “unidirectional” unfounded set handling in native ASP
solvers, not realizing full unit propagation via loop formulas, has already been recognized in [63,62]. Unfortunately, the
approach to remedy this peculiarity suggested in [18,19] is computationally too complex (quadratic) to be beneficial in
practice, and it is open whether the intended effect can be achieved by more economic techniques.

On top of its basic decision procedure, clasp supports various extended functionalities (cf. [56]). Particular backtracking
schemes, applied after finding a solution, admit the repetition-free enumeration of answer sets [53] as well as projections
of them [57] in polynomial space. Optimization strategies wrt one or multiple (lexicographically ordered) objectives are
described in [48]. Furthermore, clasp offers advanced preprocessing on the level of logic programs [55] and also their
induced constraints [33]. Techniques for the intrinsic treatment of extended rules have been presented in [47]; in particular,
they include an unfounded set checking procedure extending the one in Algorithm 3. Finally, several systems implement
elaborate features on top of clasp: disjunctive ASP solver claspD [31] internally couples two clasp engines, clingcon [60]
embeds the gecode constraint library18 into clasp’s propagation routine to deal with non-Boolean variables, iclingo [46]
exploits clasp’s incremental interface to solve series of problems over increasing horizons [20,34], and parallel ASP solver
claspar [37,118,50] augments clasp with a communication module to enable message passing between distributed solver
instances.

8. Summary

We have provided a uniform approach to conflict-driven ASP solving, allowing for a transparent technology transfer
from (and to) neighboring areas like SAT. The idea is to view inferences in ASP solving as unit propagation on nogoods,
reflecting constraints from Clark completion, unfounded sets, and conflicts. We have seen that the inclusion of rule bodies
in assignments allows for a natural extension of unit propagation to ASP, abolishing the pre-existing need for multiple
inference rules.

In contrast to SAT, ASP induces implicit constraints given by loop nogoods. Though inherently present, these nogoods
need only be expatiated when they serve as antecedents. This puts sophisticated unfounded set checks on the same logical
basis as plain SAT, and we have provided a conflict-driven algorithmic framework for ASP solving, incorporating state-
of-the-art SAT solving techniques. Notably, our approach favors unit propagation on explicit nogoods over unfounded set
checks, testing for implicit loop nogoods that are unit or violated. In fact, many of the combinatorially constructable loop
nogoods (ΛΠ ) might be redundant, that is, entailed by Clark completion and/or other loop nogoods. (For tight programs,
the whole set ΛΠ of loop nogoods is redundant.) In view of this, our approach makes sure that inspected loop nogoods are
“1-empowering” [108] and supplement the available constraints.

We have implemented our approach in the ASP solver clasp, which has demonstrated its competitiveness in various
settings, for instance, winning first places at the ASP, CASC, MISC, PB, and SAT contests in 2011. The clasp system implements
state-of-the-art techniques from Boolean constraint solving without deploying or modifying any legacy SAT solver. Rather,
clasp extends the functionalities of plain SAT solvers by unfounded set checking, intrinsic treatment of cardinality and
weight constraints, and optimization. Beyond search for one answer set, clasp can enumerate them without falling back
on solution recording; such techniques are detailed in [53] and [57]. All in all, clasp has become a powerful native ASP
solver, whose reasoning modes [56] make it an attractive tool for knowledge representation and reasoning. The clasp system
constitutes a central component of the Potassco tool suite [44] and has already been used in various applications from
diverse areas like, e.g., assisted living [99], music composition [13], temporal reasoning [80], general game playing [122],
hardware synthesis [75], and systems biology [64].
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Appendix A. Proofs

In Appendices A.1 and A.2, we provide proofs for the formal results presented in Sections 3 and 4.5, respectively.

18 Available at http://www.gecode.org.
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A.1. Nogoods of logic programs

We begin with Lemma 3.1, establishing that any solution for �Π is uniquely determined by its literals over atoms.

Lemma 3.1. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that

A = {Tp | p ∈ X} ∪ {
Fp

∣∣ p ∈ atom(Π) \ X
}

∪ {
Tβ

∣∣ β ∈ body(Π), β+ ⊆ X, β− ∩ X = ∅}
∪ {

Fβ
∣∣ β ∈ body(Π),

(
β+ ∩ (

atom(Π) \ X
)) ∪ (

β− ∩ X
) �= ∅}

is the unique solution for �body(Π) such that AT ∩ atom(Π) = X.

Proof. Consider any β = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π), and recall that δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1,

. . . ,Fpn} and �(β) = {{Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn}}. Then, one of the following cases applies:

β+ ⊆ X and β− ∩ X = ∅: We have that {Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} ⊆ A and {Fp1, . . . ,Fpm,Tpm+1, . . . ,Tpn} ∩ A = ∅. In
view of the latter, δ � A for any δ ∈ �(β). Furthermore, Tβ ∈ A and Fβ /∈ A make sure that δ(β) � A, where
δ(β) \ A = {Fβ}.

(β+ ∩ (atom(Π) \ X)) ∪ (β− ∩ X) �= ∅: We have that {Fp1, . . . ,Fpm,Tpm+1, . . . ,Tpn} ∩ A �= ∅ and {Tp1, . . . ,Tpm,Fpm+1,

. . . ,Fpn} � A. The latter yields that δ(β) � A. Furthermore, Fβ ∈ A and Tβ /∈ A make sure that δ � A for every
δ ∈ �(β), where δ \ A = {Tβ} for some δ ∈ �(β).

The above cases show that, for every β ∈ body(Π), no nogood from {δ(β)}∪�(β) is contained in A, so that A is a solution for
�body(Π) = {δ(β) | β ∈ body(Π)} ∪ {δ ∈ �(β) | β ∈ body(Π)}. On the other hand, for each β ∈ body(Π), either δ(β) \ A = {Fβ}
or δ \ A = {Tβ} for some δ ∈ �(β). Hence, there is no solution B �= A for �body(Π) such that BT ∩ atom(Π) = X . �

Theorem 3.3 on the correspondence between answer sets of a tight program Π and solutions for �Π can be derived
from Lemma 3.2, establishing one-to-one correspondence between supported models of Π and solutions for �Π . Both
results are demonstrated next.

Lemma 3.2. Let Π be a logic program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π)) ∪ {pβ | β ∈ X ∩ body(Π)} is a supported model of Π iff {Tv | v ∈ X} ∪ {Fv | v ∈ (atom(Π) ∪

body(Π)) \ X} is a solution for �Π .

Proof. Let M = (X ∩ atom(Π)) ∪ {pβ | β ∈ X ∩ body(Π)} and A = {Tv | v ∈ X} ∪ {Fv | v ∈ (atom(Π) ∪ body(Π)) \ X}. Then, for
any p ∈ atom(Π) (or β ∈ body(Π)), we have that p ∈ M (or pβ ∈ M) iff Tp ∈ A (or Tβ ∈ A), and p /∈ M (or pβ /∈ M) iff Fp ∈ A
(or Fβ ∈ A).

Considering any β = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π), it is not difficult to check that δ ⊆ A for some
δ ∈ {δ(β)}∪�(β) = {{Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}, {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn}} iff M �|� (pβ ↔
p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn).

Likewise, for any p ∈ atom(Π) with bodyΠ(p) = {β1, . . . , βk}, δ ⊆ A for some δ ∈ {δ(p)} ∪ �(p) = {{Tp,Fβ1, . . . ,Fβk},
{Fp,Tβ1}, . . . , {Fp,Tβk}} iff M �|� (p ↔ pβ1 ∨ · · · ∨ pβk ).

This shows that M is a supported model of Π iff A is a solution for �Π . �
Theorem 3.3. Let Π be a tight logic program and X ⊆ atom(Π).

Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {
Fp

∣∣ p ∈ atom(Π) \ X
}

∪ {
Tβ

∣∣ β ∈ body(Π), β+ ⊆ X, β− ∩ X = ∅}
∪ {

Fβ
∣∣ β ∈ body(Π),

(
β+ ∩ (

atom(Π) \ X
)) ∪ (

β− ∩ X
) �= ∅}

is the unique solution for �Π such that AT ∩ atom(Π) = X.

Proof. By Lemma 3.1, there is a subset of �Π for which A is the unique solution such that AT ∩ atom(Π) = X . Along with
Lemma 3.2, we conclude that M ∩ atom(Π) = X for some supported model M of Π iff A is the unique solution for �Π such
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that AT ∩ atom(Π) = X . Finally, by Theorem 3.2 in [40], showing that supported models and answer sets of Π coincide if Π

is tight,19 we conclude that X is an answer set of Π iff A is the unique solution for �Π such that AT ∩ atom(Π) = X . �
In order to extend Theorem 3.3 to non-tight programs, we provide some properties of unfounded sets. To begin with,

GRS-unfounded sets are linked to unfounded sets by the fact that, wrt a body-saturated assignment, every GRS-unfounded
set is an unfounded set as well.

Proposition 3.4. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-saturated for Π , then we have that U is an unfounded set of Π wrt A if U is a GRS-unfounded set of Π wrt A.

Proof. Assume that A is body-saturated for Π . Then, for every β ∈ body(Π), (β+ ∩AF)∪(β− ∩AT) �= ∅ implies β ∈ AF . Hence,
if U is a GRS-unfounded set of Π wrt A, then EBΠ(U ) ⊆ {β ∈ body(Π) | (β+ ∩ AF) ∪ (β− ∩ AT) �= ∅} implies EBΠ(U ) ⊆ AF , so
that U is an unfounded set of Π wrt A. �

Further considering the relationships between unfounded set concepts, unfounded sets and GRS-unfounded sets coincide
wrt body-synchronized assignments.

Proposition 3.5. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-synchronized for Π , then we have that U is an unfounded set of Π wrt A iff U is a GRS-unfounded set of Π wrt A.

Proof. Assume that A is body-synchronized for Π . Then, A is body-saturated for Π according to Definition 3.3, and by
Proposition 3.4, U is an unfounded set of Π wrt A if U is a GRS-unfounded set of Π wrt A. It remains to show that the
converse holds as well. Since A is body-synchronized for Π , for every β ∈ body(Π), β ∈ AF implies (β+ ∩AF)∪ (β− ∩AT) �= ∅.
Hence, if U is an unfounded set of Π wrt A, then EBΠ(U ) ⊆ AF implies EBΠ(U ) ⊆ {β ∈ body(Π) | (β+ ∩ AF)∪ (β− ∩ AT) �= ∅},
so that U is a GRS-unfounded set of Π wrt A. �

The following characterization of solutions for ΛΠ provides an analogy to unfounded-free interpretations [84], as identi-
fied wrt GRS-unfounded sets, in terms of our unfounded set notion.

Proposition 3.6. Let Π be a logic program and A an assignment such that AT ∪ AF = atom(Π) ∪ body(Π).
Then, we have that A is a solution for ΛΠ iff U ⊆ AF for every unfounded set U of Π wrt A.

Proof. We have that A is not a solution for ΛΠ iff λ(p, U ) ⊆ A for some ∅ ⊂ U ⊆ atom(Π) and p ∈ U iff p ∈ U ∩ AT and
EBΠ(U ) ⊆ AF for some U ⊆ atom(Π) iff U � AF for some unfounded set U of Π wrt A. �

We are now ready to extend Theorem 3.3 to non-tight programs.

Theorem 3.7. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {
Fp

∣∣ p ∈ atom(Π) \ X
}

∪ {
Tβ

∣∣ β ∈ body(Π), β+ ⊆ X, β− ∩ X = ∅}
∪ {

Fβ
∣∣ β ∈ body(Π),

(
β+ ∩ (

atom(Π) \ X
)) ∪ (

β− ∩ X
) �= ∅}

is the unique solution for �Π ∪ ΛΠ such that AT ∩ atom(Π) = X.

Proof. By Lemma 3.1, there is a subset of �Π for which A is the unique solution such that AT ∩ atom(Π) = X . Along with
Lemma 3.2, we conclude that M ∩ atom(Π) = X for some supported model M of Π iff A is the unique solution for �Π

such that AT ∩ atom(Π) = X . For any supported model M of Π , it is clear that M ∩ atom(Π) is a model of Π , that is,
head(r) ∈ M , body(r)+ � M , or body(r)− ∩ M �= ∅ holds for every r ∈ Π . Hence, if A is the unique solution for �Π such
that AT ∩ atom(Π) = X , then AT ∩ atom(Π) is a model of Π . In addition, we have that A is body-synchronized for Π

according to Definition 3.3 because AF ∩ body(Π) = {β ∈ body(Π) | (β+ ∩ (atom(Π) \ X)) ∪ (β− ∩ X) �= ∅} = {β ∈ body(Π) |
(β+ ∩ AF) ∪ (β− ∩ AT) �= ∅}. We use these properties to show the implications of the statement:

19 Note that the equivalences in (3) define auxiliary propositions for bodies in terms of atoms. Hence, our representation is a conservative extension of
the completion of Π , originally described without propositions for bodies [21].
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⇒: Assume that X is an answer set of Π . Then, by Corollary 1 in [93], we have that M ∩ atom(Π) = X for some supported
model M of Π . (See Footnote 19 for remarks on the role of auxiliary propositions for bodies in the Clark completion
of Π .) That is, A is the unique solution for �Π such that AT ∩ atom(Π) = X . Furthermore, by Theorem 4.6 in [84],
we have that U ∩ X = ∅ holds for every GRS-unfounded set U of Π wrt X . Since A is body-synchronized for Π , by
Proposition 3.5, we conclude that U ∩ AT = ∅ and U ⊆ AF hold for every unfounded set U of Π wrt A. Hence, by
Proposition 3.6, A is a solution for ΛΠ and the unique solution for �Π ∪ ΛΠ such that AT ∩ atom(Π) = X .

⇐: Assume that A is the unique solution for �Π ∪ΛΠ such that AT ∩ atom(Π) = X . Then, by Proposition 3.6, we have that
U ∩ AT = ∅ holds for every unfounded set U of Π wrt A. Since A is body-synchronized for Π , Proposition 3.5 yields
that U ∩ X = ∅ holds for every GRS-unfounded set U of Π wrt X . Along with the fact that AT ∩atom(Π) = X is a model
of Π , by Theorem 4.6 in [84], we conclude that X is an answer set of Π .

We have thus shown that both implications of the statement hold. �
In what follows, we show further crucial properties of unfounded sets. To begin with, false atoms of an unfounded set

may be removed, while still maintaining unfoundedness when the assignment at hand is body-saturated.

Proposition 3.8. Let Π be a logic program, A an assignment, and U an unfounded set of Π wrt A.
If A is body-saturated for Π , then we have that U \ AF is an unfounded set of Π wrt A.

Proof. Assume that A is body-saturated for Π . Then, for every β ∈ EBΠ(U \ AF) \ EBΠ(U ), the fact that β+ ∩ (U ∩ AF) �= ∅
implies β ∈ AF . Along with EBΠ(U ) ⊆ AF , we conclude that EBΠ(U \ AF) ⊆ AF , so that U \ AF is an unfounded set of Π

wrt A. �
The following auxiliary result shows that, wrt an atom-saturated assignment, any non-empty unfounded set of non-false

atoms that is not a loop contains in turn a non-empty proper subset that is unfounded.

Lemma A.1. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \ AF a non-empty unfounded set of Π wrt A.
If A is atom-saturated for Π and if U /∈ loop(Π), then there is some non-empty unfounded set U ′ ⊂ U of Π wrt A.

Proof. Assume that A is atom-saturated for Π and that U /∈ loop(Π). Then, for every p ∈ U , the prerequisite that U ⊆
atom(Π) \ AF implies bodyΠ(p) � AF , while EBΠ(U ) ⊆ AF yields bodyΠ(p) ∩ EBΠ(U ) ⊆ AF . That is, for every p ∈ U , there is
some β ∈ bodyΠ(p) \ AF , and β+ ∩ U �= ∅ holds for each β ∈ bodyΠ(p) \ AF . Hence, every atom of U has some predecessor
belonging to U in (atom(Π),�+). However, since U /∈ loop(Π), we have that the subgraph of (atom(Π),�+) induced by U
is not strongly connected. Along with the fact that U is finite, we conclude that there is some strongly connected component
of (U , {(p,head(r)) | r ∈ Π, head(r) ∈ U , p ∈ body(r)+ ∩ U }) such that its vertices C do not reach atoms in U \ C .20 The latter
means that β+ ∩ C = ∅ holds for every β ∈ EBΠ(U \ C), so that EBΠ(U \ C) ⊆ EBΠ(U ). Since ∅ ⊂ C ⊂ U and EBΠ(U ) ⊆ AF ,
this shows that U ′ = U \ C is a non-empty unfounded set of Π wrt A such that U ′ ⊂ U . �

The previous lemma allows us to conclude that, wrt an atom-saturated assignment, every non-empty unfounded set of
non-false atoms must contain an unfounded loop.

Proposition 3.9. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \ AF a non-empty unfounded set of Π wrt A.
If A is atom-saturated for Π , then there is some unfounded set L ⊆ U of Π wrt A such that L ∈ loop(Π).

Proof. Assume that A is atom-saturated for Π . Then, since U ⊆ atom(Π) \ AF is a non-empty unfounded set of Π wrt A,
there is some non-empty unfounded set L ⊆ U of Π wrt A such that ∅ and L are all unfounded sets of Π wrt A contained
in L. For each such L ⊆ U , by Lemma A.1, we conclude that L ∈ loop(Π). �
Corollary 3.10. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \ AF a non-empty unfounded set of Π wrt A.

If A is atom-saturated for Π , then there is some non-empty unfounded set U ′ ⊆ U of Π wrt A such that all p ∈ U ′ belong to the
same non-trivial strongly connected component of (atom(Π),�+).

Proof. This result follows immediately from Proposition 3.9, since all atoms of some L ∈ loop(Π) belong to the same strongly
connected component of (atom(Π),�+), which must be non-trivial by the definition of a loop. �

Finally, we combine Propositions 3.8 and 3.9 to show that, wrt an assignment that is both atom- and body-saturated,
any unfounded set that includes non-false atoms must contain an unfounded loop of non-false atoms.

20 Note that the “condensation” of (U , {(p,head(r)) | r ∈ Π, head(r) ∈ U , p ∈ body(r)+ ∩ U }), obtained by contracting each strongly connected component
to a single vertex, is a directed acyclic graph (cf. [111]).
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Theorem 3.11. Let Π be a logic program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π wrt A such that U � AF , then there is some

unfounded set L ⊆ U \ AF of Π wrt A such that L ∈ loop(Π).

Proof. Assume that A is both atom- and body-saturated for Π and that there is some unfounded set U of Π wrt A such
that U � AF . Then, by Proposition 3.8, we have that U \ AF is a non-empty unfounded set of Π wrt A. Furthermore, by
Proposition 3.9, there is some unfounded set L ⊆ U \ AF of Π wrt A such that L ∈ loop(Π). �
Corollary 3.12. Let Π be a logic program and A an assignment.

If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π wrt A such that U � AF , then there is some
non-empty unfounded set U ′ ⊆ U \ AF of Π wrt A such that all p ∈ U ′ belong to the same non-trivial strongly connected component
of (atom(Π),�+).

Proof. This result follows immediately from Theorem 3.11, since all atoms of some L ∈ loop(Π) belong to the same strongly
connected component of (atom(Π),�+), which must be non-trivial by the definition of a loop. �
A.2. Soundness and completeness of CDNL-ASP algorithm

We begin with showing fundamental properties of UnfoundedSet in Algorithm 3, where Lemmas 4.1 and 4.2 establish
invariants that are crucial for its soundness and completeness, stated in Theorem 4.3.

Lemma 4.1. Let Π be a logic program and A an assignment that is body-saturated for Π .
If UnfoundedSet(Π,A) is invoked on a valid source pointer configuration, then we have that the source pointer configuration

remains valid throughout the execution of UnfoundedSet(Π,A).

Proof. Assume that UnfoundedSet(Π,A) is invoked on a valid source pointer configuration. Then, an invalid source
pointer configuration could in principle be obtained only in Line 13 of Algorithm 3, where source(q) is set for some (cyclic)
q ∈ atom(Π). However, by induction on executions of Line 13, we show that the source pointer configuration remains valid:

Base case: Since the given source pointer configuration is valid and A is body-saturated for Π , after finishing the loop
in Lines 2–5 of Algorithm 3, we have that source(p) ∈ bodyΠ(p) \ AF and source(p)+ ∩ (AF ∪ (scc(p) ∩ S)) = ∅
hold for every cyclic p ∈ atom(Π) \ (AF ∪ S). For the atoms C of any non-trivial strongly connected component
of (atom(Π),�+), this implies that

⋃
p∈C\(AF∪S)(source(p)+ ∩ C) ⊆ C \ (AF ∪ S). In words, the source pointers of

atoms in C that are neither false in A nor in scope S do not contain any atom of C that is false in A or in scope S .
Induction step: Let q ∈ U be any cyclic atom such that the condition in Line 12 of Algorithm 3 applies to q, and let

C = scc(q). Then, in view of the choice of some p ∈ S in Line 6 along with Lines 7 and 14–16, manipulating the
contents of U and S , respectively, we have that U ⊆ C ∩ S , which yields that q ∈ C ∩ S . Furthermore, assume that
the source pointer configuration is valid and that

⋃
p∈C\(AF∪S)(source(p)+ ∩ C) ⊆ C \ (AF ∪ S) holds before setting

source(q) to some β ∈ bodyΠ(q) in Line 13. In terms of the subgraph of (atom(Π),�+) containing every cyclic
p ∈ atom(Π) along with edges (p′, p) for all p′ ∈ source(p)+ ∩ scc(p),

⋃
p∈C\(AF∪S)(source(p)+ ∩ C) ⊆ C \ (AF ∪ S)

means that it does not contain any edge from an atom in C ∩ (AF ∪ S) to an atom in C \ (AF ∪ S). For β , since A is
body-saturated for Π , the condition β ∈ EBΠ(U ) \ AF in Line 10 makes sure that β+ ∩ AF = ∅, and β+ ∩ (C ∩ S) = ∅
is verified in Line 11. Hence, we have that β+ ∩ C ⊆ C \ (AF ∪ S), so that, for all edges (p,q) from atoms p ∈ β+ ∩ C
to q, it holds that p ∈ C \ (AF ∪ S). As we have seen above that q ∈ C ∩ S does not reach atoms in C \ (AF ∪ S),
we conclude that the subgraph of (atom(Π),�+) containing every cyclic p ∈ atom(Π) along with edges (p′, p)

for all p′ ∈ source(p)+ ∩ scc(p) remains acyclic after setting source(q) to β in Line 13. This shows that the source
pointer configuration obtained by executing Line 13 is in turn valid. Finally, we have that the induction hypothesis
still holds for S \ {q} constructed in Line 15, that is,

⋃
p∈C\(AF∪(S\{q}))(source(p)+ ∩ C) = (

⋃
p∈C\(AF∪S)(source(p)+ ∩

C)) ∪ (β+ ∩ C) ⊆ C \ (AF ∪ S) ⊆ C \ (AF ∪ (S \ {q})).

We have thus shown that a valid source pointer configuration cannot be invalidated when invoking UnfoundedSet(Π,A)
with an assignment A that is body-saturated for Π . �
Lemma 4.2. Let Π be a logic program and A an assignment that is atom-saturated for Π .

If UnfoundedSet(Π,A) is invoked on a valid source pointer configuration, then we have that every unfounded set U ⊆
atom(Π) \ AF of Π wrt A such that all p ∈ U belong to the same strongly connected component of (atom(Π),�+) is contained
in S whenever Line 6 of Algorithm 3 is entered.

Proof. Assume that UnfoundedSet(Π,A) is invoked on a valid source pointer configuration. Then, let U ⊆ atom(Π) \ AF

be any unfounded set of Π wrt A such that all p ∈ U belong to the same strongly connected component of (atom(Π),�+).
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Since U ∩ AF = ∅ and A is atom-saturated for Π , we have that bodyΠ(p) � AF for every p ∈ U , while EBΠ(U ) ⊆ AF implies
that β+ ∩ U �= ∅ holds for each β ∈ bodyΠ(p)\AF . That is, all p ∈ U are cyclic, and source(p) ∈ bodyΠ(p)∪{⊥} holds because
the given source pointer configuration is valid. By induction on executions of the test in Line 6 of Algorithm 3, we show
that U � S is impossible whenever Line 6 is entered:

Base case: For the sake of contradiction, assume that U � S after finishing the loop in Lines 2–5 of Algorithm 3. Then,
in view of Line 1, for each p ∈ U \ S , we have that source(p) /∈ AF ∪ {⊥}, which further implies that source(p) ∈
bodyΠ(p) \ AF and source(p)+ ∩ U �= ∅. Moreover, the condition source(p)+ ∩ (scc(p) ∩ S) �= ∅ in Line 3 does not
apply to source(p), which yields that source(p)+ ∩ (U ∩ S) = ∅ and source(p)+ ∩ (U \ S) �= ∅. Since U \ S is finite
and each atom of U \ S has some predecessor belonging to U \ S in the subgraph of (atom(Π),�+) containing
every cyclic p ∈ atom(Π) along with edges (q, p) for all q ∈ source(p)+ ∩ scc(p), we conclude that this subgraph
cannot be acyclic, which is a contradiction to the assumption that UnfoundedSet(Π,A) is invoked on a valid
source pointer configuration.

Induction step: For the sake of contradiction, assume that U ⊆ S at the beginning of an iteration of the loop in Lines 6–17
of Algorithm 3, but U � S when Line 6 is re-entered after finishing the iteration. In this iteration, the elements of
U \ S must have (successively) been removed from S in Line 15. In particular, some q ∈ U \ S has been removed
from S before any other atom of U . To achieve this, the condition in Line 11 must have applied to some β ∈
bodyΠ(q) \ AF , which yields that β+ ∩ (scc(q) ∩ U ′) = ∅ for some superset U ′ of U . Since U ⊆ scc(q), this implies
that β+ ∩ U = ∅, which is a contradiction to the assumption that U is an unfounded set of Π wrt A.

We have thus shown that, if UnfoundedSet(Π,A) is invoked on a valid source pointer configuration with an assign-
ment A that is atom-saturated for Π , every unfounded set U ⊆ atom(Π) \ AF of Π wrt A such that all p ∈ U belong to
the same strongly connected component of (atom(Π),�+) must be contained in S whenever Line 6 of Algorithm 3 is en-
tered. If any such unfounded set U is non-empty, this invariant excludes the termination of Algorithm 3 by returning ∅ in
Line 18. �
Theorem 4.3. Let Π be a logic program and A an assignment that is both atom- and body-saturated for Π .

If UnfoundedSet(Π,A) is invoked on a valid source pointer configuration, then we have that UnfoundedSet(Π,A) returns
an unfounded set U ⊆ atom(Π) \ AF of Π wrt A, where U = ∅ iff there is no unfounded set U ′ of Π wrt A such that U ′ � AF .

Proof. Assume that UnfoundedSet(Π,A) is invoked on a valid source pointer configuration. Then, in view of the condi-
tion EBΠ(U ) ⊆ AF in Line 9 of Algorithm 3 and the fact that ∅, which can be returned in Line 18, is a (trivial) unfounded
set of Π wrt A, we have that UnfoundedSet(Π,A) can only return an unfounded set of Π wrt A. By Corollary 3.12, the
existence of some non-empty unfounded set U ′ of Π wrt A such that U ′ � AF implies that there is a non-empty unfounded
set U ⊆ U ′ \ AF such that all p ∈ U belong to the same strongly connected component of (atom(Π),�+). Furthermore, by
Lemma 4.2, any such unfounded set U of Π wrt A is contained in scope S whenever Line 6 is entered. This shows that
UnfoundedSet(Π,A) cannot return ∅ in Line 18 if there is some non-empty unfounded set U ′ of Π wrt A such that
U ′ � AF .

It only remains to show that UnfoundedSet(Π,A) terminates. To this end, note that scope S is increasing over
iterations of the loop in Lines 2–5 of Algorithm 3, and strictly decreasing over iterations of the loop in Lines 6–17. For U
handled in the loop in Lines 8–17, we observe that it is strictly increasing when U is extended in Line 16, and strictly
decreasing when an element q is removed from U in Line 14, where q cannot be added back later on because it is also
removed from S in Line 15. Since atom(Π) is finite and U ⊆ S ⊆ atom(Π) \ AF , we conclude that none of the loops in
Algorithm 3 can be iterated infinitely. Rather, any atom can be added to and removed from S and U , respectively, at most
once, which yields that the time complexity of UnfoundedSet(Π,A) is linear in the size of Π . �

Next, we show properties of NogoodPropagation in Algorithm 2. Lemma 4.4 essentially establishes the applicability
of Theorem 4.3 whenever an unfounded set check is initiated in Line 12 of Algorithm 2, and Lemma 4.5 provides properties
crucial for the soundness and completeness of conflict-driven ASP solving.

Lemma 4.4. Let Π be a logic program, ∇′ a set of nogoods, dl ∈ N, and A′ an assignment.
Then, we have that A is both atom- and body-saturated for Π whenever Line 10 of Algorithm 2 is entered in an execution of

NogoodPropagation(dl,Π,∇′,A′).

Proof. For the sake of contradiction, assume that Line 10 of Algorithm 2 is entered in an execution of NogoodPropaga-
tion(dl,Π,∇′,A′), while the current assignment A is not atom-saturated or not body-saturated for Π . Then, some of the
following cases applies:

bodyΠ(p) ⊆ AF but Fp /∈ A for some p ∈ atom(Π): The nogood δ(p) = {Tp,Fβ1, . . . ,Fβk}, where bodyΠ(p) = {β1, . . . , βk}, is
such that δ(p) \ A ⊆ {Tp}. In view of the condition in Line 4 of Algorithm 2, tested in the previous iteration of
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the loop in Lines 3–9, we have that Tp /∈ A and δ(p) \ A = {Tp}. But this implies that Fp is unit-resulting for δ(p)

wrt A, so that the condition Σ = ∅ cannot hold in Line 9, which contradicts that Line 10 is entered with A being
the current assignment.

(β+ ∩ AF) ∪ (β− ∩ AT) �= ∅ but Fβ /∈ A for some β ∈ body(Π): Some nogood δ = {Tβ,ρ} ∈ �(β) is such that δ \ A ⊆ {Tβ}. In
view of the condition in Line 4 of Algorithm 2, tested in the previous iteration of the loop in Lines 3–9, we have
that Tβ /∈ A and δ \ A = {Tβ}. But this implies that Fβ is unit-resulting for δ wrt A, so that the condition Σ = ∅
cannot hold in Line 9, which contradicts that Line 10 is entered with A being the current assignment.

Since each of the above cases yields a contradiction, we conclude that A is both atom- and body-saturated for Π whenever
Line 10 of Algorithm 2 is entered. �
Lemma 4.5. Let Π be a logic program, ∇′ a set of nogoods, dl ∈ N, and A′ an assignment.

If NogoodPropagation(dl,Π,∇′,A′) is invoked on a valid source pointer configuration, then we have that NogoodProp-
agation(dl,Π,∇′,A′) returns a pair (A,∇) such that

1. ∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ ;
2. A is an assignment such that A′ ⊆ A and every σ ∈ A \ A′ is implied by �Π ∪ ∇ wrt A;
3. δ ⊆ A for some δ ∈ �Π ∪ ∇ if λ(p, U ) ⊆ A for some λ(p, U ) ∈ ΛΠ .

Proof. Assume that NogoodPropagation(dl,Π,∇′,A′) is invoked on a valid source pointer configuration. Then, we
begin with showing that the items of the statement hold if NogoodPropagation(dl,Π,∇′,A′) returns a pair (A,∇):

1. Since ∇′ can be augmented only with elements of ΛΠ in Line 14 of Algorithm 2, we have that ∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ .
2. In view of Line 5 of Algorithm 2, for each literal σ added to an assignment B such that A′ ⊆ B ⊂ A, we have that

{σ ,σ } ∩ B = ∅ and that there is an antecedent δ ∈ �Π ∪ ∇ of σ wrt B, so that σ is implied by �Π ∪ ∇ wrt A.
3. For the sake of contradiction, assume that δ � A for all δ ∈ �Π ∪ ∇ and λ(p, U ) ⊆ A for some λ(p, U ) ∈ ΛΠ . Then, U is

an unfounded set of Π wrt A such that U � AF . Furthermore, (A,∇) must be returned in Line 10 or 13 of Algorithm 2,
and Lemma 4.4 tells us that A is both atom- and body-saturated for Π . By Theorem 3.11, we conclude that some
L ∈ loop(Π) is unfounded for Π wrt A, so that Π is not tight. Hence, (A,∇) must be returned in Line 13 after obtaining
∅ as the result of UnfoundedSet(Π,A) in Line 12. However, by Lemmas 4.4 and 4.1, we conclude that Theorem 4.3
is applicable, which contradicts that ∅ is obtained as the result of UnfoundedSet(Π,A) in Line 12.

It remains to show that NogoodPropagation(dl,Π,∇′,A′) terminates. To this end, note that an assignment B such
that A′ ⊆ B is increasing over iterations of the loop in Lines 3–9 of Algorithm 2, as shown in the proof of the second
item. Furthermore, by Theorem 4.3 (along with Lemmas 4.4 and 4.1), any invocation of UnfoundedSet(Π,B) in Line 12
terminates with an unfounded set U ⊆ atom(Π) \ BF of Π wrt B. Hence, we have that U = ∅ or λ(p, U ) \ B ⊆ {Tp} for
each p ∈ U ; by Lemma 4.4 and Proposition 3.8, the same applies to U \ BF determined in Line 11. Thus, any execution of
Lines 11–12 is followed by the termination of Algorithm 2 in Line 13, or in view of Line 14, by the termination in Line 4 or
the addition of a literal Fp (for p ∈ atom(Π) \ (BT ∪ BF)) to B in Line 8 in the next iteration of the loop in Lines 2–14. Since
atom(Π) ∪ body(Π) is finite, there cannot be infinitely many literals added to A′ over iterations of the loops in Lines 2–14
and 3–9, respectively, so that NogoodPropagation(dl,Π,∇′,A′) terminates by returning a pair (A,∇). �

The following lemma expresses that ConflictAnalysis in Algorithm 4 returns an asserting nogood when given a
nogood violated at a decision level greater than 0.

Lemma 4.6. Let Π be a logic program, ∇ a set of nogoods, A an assignment such that {σ ∈ A | ρ ∈ A[σ ], dl(σ ) < dl(ρ)} = ∅ and {σ ∈
A | ρ ∈ A[σ ], dl(ρ) = dl(σ )} ⊆ {σ ∈ A | ε ∈ �Π ∪ ∇, ε \ A[σ ] = {σ }}, and δ′ ⊆ A such that m = max({dl(σ ) | σ ∈ δ′} ∪ {0}) �= 0.

Then, we have that ConflictAnalysis(δ′,Π,∇,A) returns a pair (δ,k) such that

1. δ ⊆ A;
2. |{σ ∈ δ | k < dl(σ )}| = 1;
3. δ � B for any solution B for �Π ∪ ∇ ∪ {δ′}.

Proof. Given that {σ ∈ A | ρ ∈ A[σ ], dl(σ ) < dl(ρ)} = ∅, every ε′ ⊆ A such that max({dl(ρ) | ρ ∈ ε′} ∪ {0}) = m contains
a literal σ such that ε′ \ A[σ ] = {σ } and dl(σ ) = m. (Such literals σ are determined in Line 2 of Algorithm 4.) Then, by
induction on iterations of the loop in Lines 1–7 of Algorithm 4, we show that the items of the statement hold if Con-
flictAnalysis(δ′,Π,∇,A) returns a pair (δ,k):

Base case: Let δ ⊆ A be some set of literals such that max({dl(ρ) | ρ ∈ δ} ∪ {0}) = m and δ � B for any solution B for
�Π ∪ ∇ ∪ {δ′}. For the literal σ ∈ δ determined in Line 2 of Algorithm 4, if the test in Line 4 yields that k =
max({dl(ρ) | ρ ∈ δ \ {σ }} ∪ {0}) �= m, then |{ρ ∈ δ | k < dl(ρ)}| = |{σ }| = 1, and (δ,k) is returned in Line 7.



M. Gebser et al. / Artificial Intelligence 187–188 (2012) 52–89 85
Induction step: Let ε′ ⊆ A be some set of literals such that max({dl(ρ) | ρ ∈ ε′} ∪ {0}) = m and ε′ � B for any solution B
for �Π ∪ ∇ ∪ {δ′}. For the literal σ ∈ ε′ determined in Line 2 of Algorithm 4, if the test in Line 4 yields that
max({dl(ρ) | ρ ∈ ε′ \ {σ }} ∪ {0}) = m, there is some ρ ∈ A[σ ] such that dl(ρ) = dl(σ ) = m. Given that {σ ∈ A | ρ ∈
A[σ ], dl(ρ) = dl(σ )} ⊆ {σ ∈ A | ε ∈ �Π ∪∇, ε \A[σ ] = {σ }}, �Π ∪∇ contains an antecedent of σ wrt A, and some
such ε is selected in Line 5. Since ε′ \ {σ } ⊆ A[σ ] ⊆ A and ε \ {σ } ⊆ A[σ ] ⊆ A, for (ε′ \ {σ }) ∪ (ε \ {σ }) constructed
in Line 6, it holds that (ε′ \ {σ }) ∪ (ε \ {σ }) ⊆ A[σ ] ⊆ A. Furthermore, max({dl(ρ) | ρ ∈ ε′ \ {σ }} ∪ {0}) = m implies
that max({dl(ρ) | ρ ∈ (ε′ \ {σ })∪ (ε \ {σ })}∪ {0}) = m. Finally, since any solution B for �Π ∪∇ ∪{δ′} contains either
σ or σ , while ε′ � B and ε � B, we have that (ε′ \ {σ }) ∪ (ε \ {σ }) � B.

It remains to show that ConflictAnalysis(δ′,Π,∇,A) terminates, i.e., that the base case of the induction eventually
applies. To this end, note that, in the induction step above, we have that (ε′ \ {σ }) ∪ (ε \ {σ }) ⊆ A[σ ] ⊆ A, i.e., all literals
ρ ∈ (ε′ \ {σ })∪ (ε \ {σ }) precede σ in A. From this and the fact A does not include duplicate literals, we conclude that there
cannot be infinitely many applications of the induction step over iterations of the loop in Lines 1–7 of Algorithm 4, so that
ConflictAnalysis(δ′,Π,∇,A) terminates by returning a pair (δ,k). �

We now turn to CDNL-ASP in Algorithm 1 for deciding whether a logic program has an answer set, where Lemma 4.7
establishes invariants that are crucial for the main soundness and completeness result stated in Theorem 4.8.

Lemma 4.7. Let Π be a logic program.
Then, we have that the following holds whenever Line 5 of Algorithm 1 is entered in an execution of CDNL-ASP(Π):

1. ∇ is a set of nogoods such that δ � B for every δ ∈ ∇ and any solution B for �Π ∪ ΛΠ ;
2. A is an assignment such that {σ ∈ A | ρ ∈ A[σ ], dl(σ ) < dl(ρ)} = ∅ and {σ ∈ A | dl(σ ) � max({dl(ρ) | ρ ∈ A[σ ]} ∪ {0})} ⊆

{σ ∈ A | ε ∈ �Π ∪ ∇, ε \ A[σ ] = {σ }};
3. dl ∈N is such that δ � {σ ∈ A | dl(σ ) < dl} for every δ ∈ �Π ∪ ΛΠ ∪ ∇ .

Proof. By induction on iterations of the loop in Lines 4–17 of Algorithm 1, we show that the items of the statement hold
whenever Line 5 is entered in an execution of CDNL-ASP(Π):

Base case: Before the first iteration, in view of Lines 1–3 of Algorithm 1, we have that A = ∇ = ∅ and dl = 0, for which the
items of the statement trivially hold, and also that max({dl(σ ) | σ ∈ A} ∪ {0}) � dl.

Induction step: At the beginning of an iteration of the loop in Lines 4–17 of Algorithm 1, let ∇′ , A′ , and dl′ be such that the
items (1), (2), and (3) of the statement are satisfied wrt them, and assume that (a) max({dl(σ ) | σ ∈ A′} ∪ {0}) �
dl′ .21 Then, by Lemma 4.5 (along with Lemmas 4.1 and 4.4) and in view of Lines 7–8 of Algorithm 2, we have that
NogoodPropagation(dl′,Π,∇′,A′) invoked in Line 5 returns a pair (A,∇) such that the items of the statement
still hold for ∇ , A, and dl′ , respectively. In addition, we have that max({dl(σ ) | σ ∈ A} ∪ {0}) � dl′ . Afterwards, one
of the following cases applies:

ε ⊆ A for some ε ∈ �Π ∪ ∇: If the condition in Line 7 of Algorithm 1 applies, CDNL-ASP(Π) immediately ter-
minates by returning “no answer set”. Otherwise, by Lemma 4.6, ConflictAnalysis(ε,Π,∇,A)
returns a pair (δ,k) such that δ ⊆ A, |{σ ∈ δ | k < dl(σ )}| = 1, and δ � B for any solution B for
�Π ∪ ∇ . Since any solution B for �Π ∪ ΛΠ is a solution for �Π ∪ ∇ as well, it follows that δ � B,
so that (1) B is a solution for �Π ∪ (∇ ∪ {δ}), where ∇ ∪ {δ} is constructed in Line 9. Furthermore,
Ak = A \ {σ ∈ A | k < dl(σ )} constructed in Line 10 is such that (2) {σ ∈ Ak | ρ ∈ Ak[σ ], dl(σ ) < dl(ρ)} = ∅
and {σ ∈ Ak | dl(σ ) � max({dl(ρ) | ρ ∈ Ak[σ ]} ∪ {0})} ⊆ {σ ∈ Ak | ε ∈ �Π ∪ (∇ ∪ {δ}), ε \ Ak[σ ] = {σ }}.
Since 0 � k holds in view of Line 3 of Algorithm 4, (a) max({dl(σ ) | σ ∈ Ak} ∪ {0})� dl, where dl is set to
k in Line 8. Finally, δ ⊆ A and |{σ ∈ δ | k < dl(σ )}| = 1 yield that dl < dl′ and δ � Ak , so that (3) dl ∈ N is
such that δ′ � {σ ∈ Ak | dl(σ ) < dl} for every δ′ ∈ �Π ∪ ΛΠ ∪ (∇ ∪ {δ}). That is, the induction hypotheses
still apply wrt ∇ ∪ {δ}, Ak , and dl.

ε � A for all ε ∈ �Π ∪ ∇: If the condition in Line 11 of Algorithm 1 applies, CDNL-ASP(Π) terminates in
Line 12 by returning AT ∩ atom(Π). Otherwise, some decision literal σd = Tv or σd = Fv such that
v ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF), as required in Section 4.1, is returned by Select(Π,∇,A)
in Line 14. Let dl = dl′ + 1, as set in Line 15. Since dl(σd) is set to dl in Line 16, we have that
Aσd = A ◦ σd constructed in Line 17 is such that (a) max({dl(σ ) | σ ∈ Aσd } ∪ {0}) = dl and (2) {σ ∈
Aσd | ρ ∈ Aσd [σ ], dl(σ ) < dl(ρ)} = ∅ and {σ ∈ Aσd | dl(σ ) � max({dl(ρ) | ρ ∈ Aσd [σ ]} ∪ {0})} ⊆ {σ ∈ Aσd |
ε ∈ �Π ∪ ∇, ε \ Aσd [σ ] = {σ }}. Finally, we note that (1) ∇ is not altered, and by the third item in

21 We below indicate derivations of our induction hypotheses by (1), (2), and (3), standing for the first, the second, and the third item of the statement,
respectively, as well as by (a), expressing that max({dl(σ ) | σ ∈ A} ∪ {0})� dl holds for an assignment A and the current value of dl.
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the statement of Lemma 4.5, we have that (3) dl ∈ N is such that δ � {σ ∈ Aσd | dl(σ ) < dl} for every
δ ∈ �Π ∪ ΛΠ ∪ ∇ . That is, the induction hypotheses still apply wrt ∇ , Aσd , and dl.

We have thus shown that the items of the statement hold whenever Line 5 of Algorithm 1 is entered. �
Theorem 4.8. Let Π be a logic program.

Then, we have that CDNL-ASP(Π) terminates, and it returns an answer set of Π iff Π has some answer set.

Proof. If AT ∩ atom(Π) is returned in Line 12 of Algorithm 1, then the test in Line 6 and the third item in the statement
of Lemma 4.5 establish that A is a solution for �Π ∪ ΛΠ . Furthermore, by Lemma 3.1, we have that there is no solution
B �= A for �Π ∪ ΛΠ such that BT ∩ atom(Π) = AT ∩ atom(Π). Hence, by Theorem 3.7, we conclude that AT ∩ atom(Π) is an
answer set of Π . On the other hand, if CDNL-ASP(Π) returns “no answer set” in Line 7, in view of the third item in the
statement of Lemma 4.7, we have that max({dl(σ ) | σ ∈ ε} ∪ {0}) = 0 for some ε ∈ �Π ∪ ∇ such that ε ⊆ A. Then, by the
second item in the statement of Lemma 4.7, for every σ ∈ ε, there is some antecedent of σ wrt A in �Π ∪ ∇ , so that there
cannot be any solution for �Π ∪ ∇ . Along with the first item in the statement of Lemma 4.7, it follows that there is no
solution for �Π ∪ ΛΠ . Hence, by Theorem 3.7, we conclude that Π has no answer set.

It remains to show that CDNL-ASP(Π) terminates. In view of the second and the third item in the statement of
Lemma 4.7 along with the condition in Line 7 of Algorithm 1, we have that Lemma 4.6 applies whenever Conflict-
Analysis(ε,Π,∇,A) is invoked in Line 8. Hence, it returns a pair (δ,k) such that some literal ρ is unit-resulting for δ

wrt A \ {σ ∈ A | k < dl(σ )}. As a consequence, ρ will be added to A \ {σ ∈ A | k < dl(σ )} in Line 5 in the next iteration
of the loop in Lines 4–17. That is, after every backjump in Line 10, some element of atom(Π) ∪ body(Π) is assigned at
a smaller (non-negative) decision level than before. Since atom(Π) ∪ body(Π) is finite, this implies that CDNL-ASP(Π)
admits only finitely many backjumps.22 Along with the fact that A is strictly extended in Line 17, so that either a backjump
or termination in Line 12 is inevitable within a linear number of iterations of the loop in Lines 4–17, we conclude that
CDNL-ASP(Π) eventually terminates in Line 7 or 12 of Algorithm 1. �
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