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Abstract

We address the problem of extending probability from the total
choices of an ASP program to the stable models and, from there, to
general events. Our approach is algebraic in the sense that it relies
on an equivalence relation over the set of events and uncertainty is
expressed with variables and polynomial expressions. We illustrate
our methods with two examples, one of which shows a connection to
bayesian networks.

1 Introduction and Motivation

A major limitation of logical representations in real world applications is the
implicit assumption that the background knowledge is perfect. This assump-
tion is problematic if data is noisy, which is often the case. Here we aim to
explore how answer set programming specifications with probabilistic facts
can lead to characterizations of probability functions on the specification’s
domain, which is not straightforward in the context of answer set program-
mings, as explained below (see also [3, 11]).

Answer set programming (ASP) [7] is a logic programming paradigm
based on the stable model (SM) semantics of normal programs (NPs) that
can be implemented using the latest advances in SAT solving technology.
Unlike ProLog, ASP is a truly declarative language that supports language
constructs such as disjointion in the head of a clause, choice rules, and hard
and weak constraints.
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The distribution semantics (DS) [10, 9] is a key approach to extend logical
representations with probabilistic reasoning. Probabilistic facts (PFs) are
the most basic DS stochastic primitives and take the form of logical facts,
a, labelled with probabilities, p, such as p ::a; each PF represents a boolean
random variable that is true with probability p and false with probability
p = 1− p. A (consistent) combination of the PFs defines a total choice (TC)
t = {p ::a, . . .} such that (with abuse of notation),

P(T = t) =
∏
a∈t

p
∏
a̸∈t

p. (1)

Our goal is to extend this probability, from TCs, to cover the specification
domain. We use the term “specification” as set of rules and facts, plain and
probabilistic, to decouple it from any computational semantics, implied, at
least implicitly, by the term “program”. We can foresee two key applications
of this extended probability:

1. Support probabilistic reasoning/tasks on the specification domain.

2. Also, given a dataset and a divergence measure, the specification can be
scored (by the divergence w.r.t. the empiric distribution of the dataset),
and weighted or sorted amongst other specifications. These are key
ingredients in algorithms searching, for example, optimal specifications
of a dataset.

Our idea to extend probabilities from total choices starts with the stance
that a specification describes an observable system, that the stable models are
all the possible states of that system and that observations (i.e. events) are
stochastic — one observation can be sub-complete or super-complete, and
might not determine the real state of the system. From here, probabilities
must be extended from TCs to SMs and then to any event.

This extension process starts with a critical problem, illustrated by the
example in section 2, concerning situations where multiple SMs, ab and ac,
result from a single TC, a, but there is not enough information (in the spec-
ification) to assign a single probability to each SM. We propose to address
this issue by using algebraic variables to describe that lack of information
and then estimate the value of those variables from empirical data. This lack
of uniqueness is also addressed in [3] along a different approach, using credal
sets.

In another related work, [11], epistemic uncertainty (or model uncer-
tainty) is considered as a lack of knowledge about the underlying model,
that may be mitigated via further observations. This seems to presuppose a
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bayesian approach to imperfect knowledge in the sense that having further
observations allows to improve/correct the model. Indeed, the approach in
that work uses Beta distributions in order to be able to learn the full distri-
bution. This approach seems to be specially fitted to being able to tell when
some probability lies beneath some given value. Our approach seems to be
similar in spirit, while remaining algebraic in the way that the extension of
probabilities is addressed.

The example in section 2 uses the code available in the project’s reposi-
tory1, developed with the Julia programming language [1], and the Symbolics
[5], and DataFrames [2] libraries.

2 A Simple but Fruitful Example

In this section we consider a somewhat simple case, which we call the Simple
But Fruitful (SBF) example, that showcases the problem of extending proba-
bilities from total choices to stable models and then to events. As mentioned
before, the main issue arises from the lack of information in the specification
to assign a single probability to each stable model. This becomes a crucial
problem in situations where multiple stable models result from a single total
choice. We will come back to this example in section 4.1, after we present
our proposal for extending probabilities from total choices to stable models
in section 3.

Example 1. Consider the following specification

0.3::a,

b ∨ c← a.
(2)

This specification has three stable models, a, ab and ac (see fig. 1). While
it is straightforward to assume P(a) = 0.7, there is no obvious, explicit, way
to assign values to P(ab) and P(ac). For instance, we can use a parameter θ
as in

P(ab) = 0.3θ,

P(ac) = 0.3(1− θ)

to express our knowledge that ab, ac are events related in a certain way and,
simultaneously, our uncertainty about that relation. This uncertainty can
then be addressed with the help of adequate distributions, such as empirical
distributions from a dataset. We further develop this case in the examples of
section 4.

1https://git.xdi.uevora.pt/fc/sasp
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If an ASP specification is intended to describe some system then:

1. With a probability set for the stable models, we want to extend it to
all the events of the specification domain.

2. In case where some statistical knowledge is available, for example, in
the form of a distribution, we consider it as “external” knowledge about
the parameters, that doesn’t affect the extension procedure described
below.

3. Statistical knowledge can be used to estimate parameters and to “score”
the specification.

4. If that specification is only but one of many possible candidates then
that score can be used, e.g. as fitness, by algorithms searching (optimal)
specifications of a dataset of observations.

5. If observations are not consistent with the specification, then we ought
to conclude that the specification is wrong and must be changed ac-
cordingly.

Currently, we are addressing the problem of extending a probability func-
tion (possibly using parameters such as θ), defined on the SMs of a specifica-
tion, to all the events of that specification. This extension must satisfy the
Kolmogorov axioms of probability so that probabilistic reasoning is consis-
tent with the ASP specification and follow our interpretation of stable models
as the states of an observable system.

So, as states of a system, we assume that SMs are (statistically) disjoint:

Assumption 1. Stable models are disjoint events: For any X ⊂ S

P(X) =
∑
s∈X

P(s) (3)

Consider the stable models ab, ac from example 1, that result from the
clause b ∨ c ← a and the total choice a. Since we intend to associate each
stable model with a state of the system, ab and ac should be disjoint events.
So b ∨ c is interpreted as an exclusive disjunction and no further statistical
relation between b and c is assumed.

By not making distribution assumptions on the clauses of the specification
we can state such properties on the semantics of the specification, as we’ve
done in assumption 1.
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△

a

ab ac

b c

abccab bac

bc

a

ac

abc

Figure 1: Events related to the stable models of example 1. The circle nodes
are total choices and shaded nodes are stable models. The empty event, with
no literals, is denoted by △.

3 Extending Probabilities

The diagram in fig. 1 illustrates the problem of extending probabilities from
total choices to stable models and then to general events in a edge-wise
process, where the value in a node is defined from the values in its neighbors.
This quickly leads to coherence problems concerning probability, with no
clear systematic approach. Notice that bc is not directly related with any
stable model therefore propagating values through edges would assign a hard
to justify (̸= 0) value to bc. Instead, we propose to base the extension in the
relation an event has with the stable models.

3.1 An Equivalence Relation

Given an ASP specification, we consider a set of atoms A, a set of literals,
L, and a set of events E such that e ∈ E ⇐⇒ e ⊆ L. We also consider a set
of worlds W (consistent events), a set of total choices T such that for every
a ∈ A we have t ∈ T ⇐⇒ t = a ∨ ¬a, and a set of stable models S such
that S ⊂ W . At last, the set of stable models entailed by the total choice t
is denoted by ⟨t⟩.

Our path to extend measures and probabilities starts with a perspective
of stable models as playing a role similar to prime factors. The stable models
of a specification are the irreducible events entailed from that specification
and any event must be considered under its relation with the stable models.

From example 1, consider the SMs {a, ab, ac} and events a, abc and c.
While a is related (contained) with both ab, ac, event c is related only with
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△

a

ab ac

b c

abccab bac

bc

a

ac

abc

Figure 2: Classes (of consistent events) related to the stable models of exam-
ple 1 are defined through intersections and inclusions. In this picture we can
see, for example, the classes {cab, ab, b} and {a, abc}. As before, the circle
nodes are total choices and shaded nodes are stable models. Notice that bc
is not in a “shaded” area.

ac. So, a and c are related with different SMs. On the other hand, both
ab, ac are related (contained) in abc. So a and abc are related with the same
stable models.

Definition 1. The stable core (SC) of the event e ∈ E is

JeK := {s ∈ S | s ⊆ e ∨ e ⊆ s} . (4)

We now define an equivalence relation, ∼, so that two events are related
if either both are inconsistent or both are consistent and, in the latter case,
with the same stable core.

Definition 2. For a given specification, let u, v ∈ E. The equivalence relation
∼ is defined by

u ∼ v :⇐⇒ u, v ̸∈ W ∨
(
u, v ∈ W ∧ JuK = JvK

)
. (5)

Observe that the minimality of stable models implies that, in definition 1,
either e is a stable model or at least one of ∃s (s ⊆ e) ,∃s (e ⊆ s) is false. This
equivalence relation defines a partition of the events space, where each class
holds a unique relation with the stable models. In particular, we denote each
class by:

[e]∼ =

{
⊥ := E \W if e ∈ E \W ,{
u ∈ W

∣∣ JuK = JeK
}

if e ∈ W .
(6)
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The combinations of the stable models, together with ⊥, form a set of
representatives. Consider again example 1. As previously mentioned, the
stable models are S = {a, ab, ac} so the quotient set of this relation, with a
small abuse of notation, is:

[E ]∼ =
{
⊥,♢, [a]∼, [ab]∼, [ac]∼, [a, ab]∼, [a, ac]∼, [ab, ac]∼, [a, ab, ac]∼

}
(7)

where ♢ denotes both the class of independent events e such that JeK = ∅
and its core (which is the empty set). We have:

Core, JeK Class, [e]∼ Size,#[e]∼
⊥ aa, . . . 37

♢ b, c, bc, ba, bc, bc, ca, cb, bca 9

a a, ab, ac, ab, ac, abc, acb, abc, abc 9
ab b, ab, cab 3

ac c, ac, bac 3
a, ab ∅ 0
a, ac ∅ 0
ab, ac a, abc 2
a, ab, ac △ 1
Ω all events 64

� Since all events within an equivalence class are in relation with a specific
set of stable models, measures, including probability, should be constant
within classes :

∀u ∈ [e]∼
(
µ(u) = µ(e)

)
.

� In general, we have much more stable models than literals but their
combinations are still much less than events. Nevertheless, the equiv-
alence classes allow us to propagate probabilities from total choices to
events, as explained in the next subsection.

� In this specific case, instead of dealing with 64 = 26 events, we consider
only the 9 = 23 +1 classes, well defined in terms of combinations of the
stable models.

3.2 From Total Choices to Events

Our path to set a distribution on E starts with the more general problem of
extending measures, since extending probabilities easily follows by means of
a suitable normalization (see (15) and (16)), and has two phases:
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1. Extension of the probabilities, as measures, from the total choices to
events.

2. Normalization of the measures on events, recovering a probability.

The “extension” phase, traced by eq. (1) and eqs. (8) to (14), starts with
the measure (probability) of total choices, µ(t) = P(T = t), expands it to
stable models, µ(s), and then, within the equivalence relation from eq. (5),
to (general) events, µ(e), including (consistent) worlds.

Total Choices. Using eq. (1), this case is given by

µTC(t) := P(T = t) =
∏
a∈t

p
∏
a̸∈t

p. (8)

Stable Models. Recall that each total choice t, together with the rules and
the other facts of a specification, defines the set ⟨t⟩ of stable models
associated with that choice. Given a total choice t, a stable model s,
and variables or values θs,t ∈ [0, 1], we define

µ(s, t) :=

{
θs,t if s ∈ ⟨t⟩
0 otherwise

(9)

such that
∑

s∈⟨t⟩ θs,t = 1.

Classes. Each class is either the inconsistent class, ⊥, or is represented by
some set of stable models.

Inconsistent Class. The inconsistent class contains events that are
logically inconsistent, thus should never be observed and have
measure zero:

µ(⊥, t) := 0.2 (10)

Independent Class. A world that neither contains nor is contained
in a stable model corresponds to a non-state, according to the
specification. So the respective measure is also set to zero:

µ(♢, t) := 0. (11)

2Notice that this measure being equal to zero is actually independent of the total choice.
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Other Classes. The extension must be constant within a class, its
value should result from the elements in the stable core, and re-
spects assumption 1 (stable models are disjoint):

µ
(
[e]∼, t

)
:= µ

(
JeK , t

)
=

∑
s∈JeK

µ(s, t) (12)

and
µ
(
[e]∼

)
:=

∑
t∈T

µ
(
[e]∼, t

)
µTC(t) . (13)

Events. Each (general) event e is in the class defined by its stable core, JeK.
So, denoting by #X the number of elements in X, we set:

µ(e, t) :=


µ([e]∼,t)
#[e]∼

if #[e]∼ > 0,

0 otherwise.
(14)

and
µ(e) :=

∑
t∈T

µ(e, t)µTC(t) . (15)

� Consider the event bc. Since [bc]∼ = ♢, from eq. (11) we get µ(bc) = 0.

� Equation (15) together with external statistical knowledge, can be used
to learn about the initial probabilities of the atoms, that should not
(and by proposition 1 can’t) be confused with the explicit µTC set in
the specification.

The θs,t parameters in equation (9) express the specification’s lack of
knowledge about the measure assignment, when a single total choice entails
more than one stable model. In that case, how to distribute the respective
measures? Our proposal to address this problem consists in assigning an
unknown measure, θs,t, conditional on the total choice, t, to each stable
model s. This approach allows the expression of an unknown quantity and
future estimation, given observed data.

Equation (12) results from assumption 1 and states that the measure of
a class [e]∼ is the sum over it’s stable core, JeK, and (13) marginalizes the
TCs on (12).

The normalizing factor is:

Z :=
∑
e∈E

µ(e) =
∑

[e]∼∈[E]∼

µ
(
[e]∼

)
,

9



and now equation (15) provides a straightforward way to define the prob-
ability of observation of a single event :

P(E = e) :=
µ(e)

Z
. (16)

Since total choices are also events, one can ask, for an arbitrary total
choices t, if P(T = t) = P(E = t) or, equivalently, if µTC(t) = µ(t). However,
it is easy to see that, in general, that cannot be true. While the domain
of the random variable T is the set of total choices, for E the domain is
much larger, including all the events. Except for trivial specifications, where
the SMs are the TCs, some events other than total choices have non-zero
probability.

Proposition 1. In a specification with a stable model that is not a total
choice there is at least one t ∈ T such that:

P(T = t) ̸= P(E = t) . (17)

Proof. Supposing towards a contradiction that P(T = t) = P(E = t) for all
t ∈ T . Then ∑

t∈T

P(E = t) =
∑
t∈T

P(T = t) = 1.

Hence P(E = x) = 0 for all x ∈ E \T , in contradiction with the fact that
for at least one s ∈ S \ T one has P(E = s) > 0.

The essential conclusion of proposition 1 is that we are dealing with two
distributions : one, on the TCs, explicit in the annotations of the specifica-
tions and another one, on the events, and entailed by the explicit annotations
and the structure of the stable models.

4 Developed Examples

Here we apply the methods from section 3 to the SBF example and to a well
known bayesian network, the Earthquake, Burglar, Alarm problem.

4.1 The SBF Example

We continue with the specification from eq. (2).

Total choices. The total choices, and respective stable models, are

10



Total choice Stable models µTC(t)
a ab, ac 0.3
a a 0.3 = 0.7

Stable models. The θs,t parameters in this example are

θs,t a a
a 1 0
ab 0 θ

ac 0 θ

with θ ∈ [0, 1].

Classes. Following the definitions in eqs. (4) to (6) and (10) to (12) we get
the following quotient set (ignoring ⊥ and ♢), and measures:

JeK µ(s, a) µ(s, a) µ
(
[e]∼, a

)
µ
(
[e]∼, a

)
µ
(
[e]∼

)
a, ab, ac a, ab, ac µTC = 0.7 µTC = 0.3

a 1 , 0, 0 0 , θ, θ 1 0 0.7

ab 1, 0 , 0 0, θ , θ 0 θ 0.3θ

ac 1, 0, 0 0, θ, θ 0 θ 0.3θ

a, ab 1 , 0 , 0 0 , θ , θ 1 θ 0.7 + 0.3θ

a, ac 1 , 0, 0 0 , θ, θ 1 θ 0.7 + 0.3θ

ab, ac 1, 0 , 0 0, θ , θ 0 θ + θ = 1 0.3

a, ab, ac 1 , 0 , 0 0 , θ , θ 1 θ + θ = 1 1

Prior Distributions. Following the above values (in rational form), and

11



considering the inconsistent and independent classes (resp. ⊥,♢):

JeK #[e]∼ µ
(
[e]∼

)
µ(e) P(E = e) P

(
E ∈ [e]∼

)
⊥ 37 0 0 0 0

♢ 9 0 0 0 0

a 9 7
10

7
90

7
207

7
23

ab 3 3
10
θ 1

10
θ 1

23
θ 3

23
θ

ac 3 3
10
θ 1

10
θ 1

23
θ 3

23
θ

a, ab 0 7+3θ
10

0 0 0

a, ac 0 7+3θ
10

0 0 0

ab, ac 2 3
10

3
20

3
46

3
23

a, ab, ac 1 1 1 10
23

10
23

Z = 23
10

So the prior distributions, denoted by the random variable E, of events
and classes are:

JeK ⊥ ♢ a ab ac a, ab a, ac ab, ac a, ab, ac

P(E = e) 0 0 7
207

1
23
θ 1

23
θ 0 0 3

46
10
23

P
(
E ∈ [e]∼

)
0 0 7

23
3
23
θ 3

23
θ 0 0 3

23
10
23

(18)

Testing the Prior Distributions

These results can be tested by simulation in a two-step process, where (1) a
“system” is simulated, to gather some “observations” and then (2) empirical
distributions from those samples are related with the prior distributions from
eq. (18). Tables 1 and 2 summarize some of those tests, where datasets of
n = 1000 observations are generated and analyzed.

Simulating a System. Following some criteria, more or less related to the
given specification, a set of events, that represent observations, is generated.
Possible simulation procedures include:

� Random. Each sample is a Random Set of Literals (RSL). Additional
sub-criteria may require, for example, consistent events, a Random
Consistent Event (RCE) simulation.

� Model+Noise. Gibbs’ sampling [4] tries to replicate the specification
model and also to add some noise. For example, let α, β, γ ∈ [0, 1] be

12



some parameters to control the sample generation. The first parameter,
α is the “out of model” samples ratio; β represents the total choice a
or a (explicit in the model) and γ is the simulation representation of
θ. A single sample is then generated following the probabilistic choices
below: 

α by RCE
β a{

γ ab

ac

,

where {
p x

y

denotes “the value of x with probability p, otherwise y” — notice that
y might entail x and vice-versa: E.g. some ab can be generated in the
RCE.

� Other Processes. Besides the two sample generations procedures above,
any other processes and variations can be used. For example, requiring
that one of x, x literals is always in a sample or using specific distribu-
tions to guide the sampling of literals or events.

Relating the Empirical and the Prior Distributions. The data from
the simulated observations is used to test the prior distribution. Consider the
prior, P(E), and the empirical, P(S), distributions and the following error
function:

err(θ) :=
∑
e∈E

(
P(E = e)− P(S = e)

)2
. (19)

� Since E depends on θ, one can ask how does the error varies with θ.

� What is the optimal (i.e. minimum) error value

θ̂ := arg min
θ

err(θ) (20)

and what does it tell us about the specification.

In order to illustrate this analysis, consider the experiment summarized
in table 1:

1. Equation (19) becomes

err(θ) =
20869963

66125000
+

477

52900
θ +

18

529
θ2.
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JeK #
{
S ∈ [e]∼

}
P
(
S ∈ [e]∼

)
P
(
E ∈ [e]∼

)
⊥ 0 0 0

♢ 24 24
1000

0

a 647 647
1000

7
23

ab 66 66
1000

3
23
θ

ac 231 231
1000

3
23
θ

a, ab 0 0 0

a, ac 0 0 0

ab, ac 7 7
1000

3
23

a, ab, ac 25 25
1000

10
23

n = 1000

Table 1: Experiment 1. Results from an experiment where n = 1000 sam-
ples where generated following the Model+Noise procedure with parameters
α = 0.1, β = 0.3, γ = 0.2. The empirical distribution is represented by the
random variable S while the prior, as before, is denoted by E.

2. The minimum of err(θ) is at 477
52900

+ 2 18
529

θ = 0. Since this value is

negative and θ ∈ [0, 1], it must be θ̂ = 0, and

err
(
θ̂
)

=
20869963

66125000
≈ 0.31561.

The parameters α, β, γ of that experiment favour ac over ab. In particular,
setting γ = 0.2 means that in the simulation process, choices between ab and
ac favour ac 4 to 1. For completeness sake, we also describe one experiment
that favours ab over ac (setting γ = 0.8) and one balanced (γ = 0.5).

For γ = 0.8, the error function is

err(θ) =
188207311

529000000
− 21903

264500
θ+

18

529
θ2 ≈ 0.35579−0.08281θ+0.03403θ2

and, with θ ∈ [0, 1] the minimum is at −0.08281 + 0.06805θ = 0, i.e.:

θ̂ : 0.08281
0.06805

≈ 1.21683 > 1. So, θ̂ = 1,

err
(
θ̂
)
≈ 0.30699.

For γ = 0.5, the error function is

err(θ) =
10217413

33062500
− 2181

66125
θ+

18

529
θ2 ≈ 0.30903−0.03298θ+ 0.03402θ2
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JeK #
{
S0.2 ∈ [e]∼

}
#
{
S0.8 ∈ [e]∼

}
#
{
S0.5 ∈ [e]∼

}
⊥ 0 0 0

♢ 24 28 23

a 647 632 614

ab 66 246 165

ac 231 59 169

a, ab 0 0 0

a, ac 0 0 0

ab, ac 7 8 4

a, ab, ac 25 27 25

Table 2: Experiments 2 and 3. Results from experiments where, in each,
n = 1000 samples are generated following the Model+Noise procedure with
parameters α = 0.1, β = 0.3, γ = 0.8 (Experiment 2) and γ = 0.5 (Exper-
iment 3). Empirical distributions are represented by the random variables
S0.8 and S0.5 respectively. Data from experience table 1 is also included, and
denoted by S0.2, to provide reference.

and, with θ ∈ [0, 1] the minimum is at −0.03298 + 0.06804θ = 0, i.e.:

θ̂ ≈ 0.03298

0.06804
≈ 0.48471 ≈ 1

2
,

err
(
θ̂
)
≈ 0.30104

These experiments show that data can indeed be used to estimate the
parameters of the model. However, we observe that the estimated θ̂ has a
tendency to exaggerate the bias of the θ used to generate the samples. More
precisely, in experiment 1 data is generated with γ = 0.2 (the surrogate of
θ) and the estimation leads to θ̂ = 0 while in experiment 2, γ = 0.8 leads
to θ̂ = 1. This suggests that we might need to refine the error estimation
process. However, experiment 3 data results from γ = 0.5 and we’ve got
θ̂ ≈ 0.48471 ≈ 0.5, which is more in line with what is to be expected.

4.2 An Example Involving Bayesian Networks

As it turns out, our framework is suitable to deal with more sophisticated
cases, in particular cases involving Bayesian networks. In order to illustrate
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A

BE

M J

P(B) = 0.001P(E) = 0.002

P(M | A) P(J | A)

P(M | A)

m ¬m
a 0.9 0.1
¬a 0.05 0.95

P(J | A)

j ¬j
a 0.7 0.3
¬a 0.01 0.99

P(A | B ∧ E)

a ¬a
b e 0.95 0.05
b ¬e 0.94 0.06
¬b e 0.29 0.71
¬b ¬e 0.001 0.999

Figure 3: The Earthquake, Burglary, Alarm model

this, in this section we see how the classical example of the Burglary, Earth-
quake, Alarm [8] works in our setting. This example is a commonly used
example in Bayesian networks because it illustrates reasoning under uncer-
tainty. The gist of the example is given in fig. 3. It involves a simple network
of events and conditional probabilities.

The events are: Burglary (B), Earthquake (E), Alarm (A), Mary calls
(M) and John calls (J). The initial events B and E are assumed to be in-
dependent events that occur with probabilities P(B) and P(E), respectively.
There is an alarm system that can be triggered by either of the initial events
B and E. The probability of the alarm going off is a conditional probability
given that B and E have occurred. One denotes these probabilities, as per
usual, by P(A | B), and P(A | E). There are two neighbors, Mary and John
who have agreed to call if they hear the alarm. The probability that they
do actually call is also a conditional probability denoted by P(M | A) and
P(J | A), respectively.

We follow the convention of representing the (upper case) random variable
X by the lower case x. Considering the probabilities given in fig. 3 we obtain
the following specification:

0.001::b,

0.002::e,
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For the table giving the probability P(M | A) we obtain the specification:

0.9::pm|a,

0.05::pm|a,

m← a ∧ pm|a,

m← ¬a ∧ pm|a.

This latter specification can be simplified by writing 0.9 :: m ← a and
0.05::m← ¬a.

Similarly, for the probability P(J | A) we obtain

0.7::j ← a, 0.01::j ← ¬a,

Finally, for the probability P(A | B ∧ E) we obtain

0.95::a← b, e, 0.94::a← b, e,

0.29::a← b, e, 0.001::a← b, e.

One can then proceed as in the previous subsection and analyze this
example. The details of such analysis are not given here since they are
analogous, albeit admittedly more cumbersome.

5 Discussion and Future Work

This work is a first venture into expressing probability distributions using
algebraic expressions derived from a logical specification. We would like to
point out that there is still much to explore concerning the full expressive
power of logic programs and ASP specifications. So far, we have not consid-
ered recursion, logical variables or functional symbols. Also, there is still little
effort to articulate with the related fields, probabilistic logical programming,
machine learning, inductive programming, etc.

The equivalence relation from definition 2 identifies the s ⊆ e and e ⊆ s
cases. Relations that distinguish such cases might enable better relations
between the models and processes from the stable models.

The example from section 4.2 shows that the theory, methodology, and
tools, from bayesian networks can be adapted to our approach. The con-
nection with Markov Fields [6] is left for future work. An example of a
“specification selection” application (as mentioned in item 4, section 2) is
also left for future work.

Related with the remark at the end of section 4.1 on the tendency of the
estimated θ̂ to exaggerate the bias of θ, notice that the error function in (19)
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expresses only one of many possible “distances” between the empirical and
prior distributions. Variations include normalizing this function by the size
of E or using the Kullback-Leibler divergence. The key contribution of this
function in this work is to find an optimal θ.

We decided to set the measure of inconsistent events to 0 but, maybe, in
some cases, we shouldn’t. For example, since observations may be affected by
noise, one can expect inconsistencies between the literals of an observation
to occur.
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