arXiv:0812.0659v1 [cs.Al] 3 Dec 2008

Under consideration for publication in Theory and Practizielogic Programming 1

Probabilistic reasoning with answer sets

Chitta Baralf, Michael Gelfond{, and Nelson Rushtoh

+ Department of Computer Science and Engineering,
Arizona State University,
Tempe, AZ 85287-8809, USA.
chitta@asu.edu

Department of Computer Science
Texas Tech University
Lubbock, Texas 79409

{mgelfond,nrushtop@cs.ttu.edu

submitted 22 September 2005; revised 21 June 2007, 20 Jx8e @cepted 2 December 2008

Abstract

To appear in Theory and Practice of Logic Programming (TPLP)

This paper develops a declarative language, P-log, thabic@® logical and probabilistic arguments in its reasonimgswer
Set Prolog is used as the logical foundation, while causgeBaets serve as a probabilistic foundation. We give sknera
trivial examples and illustrate the use of P-log for knovgedepresentation and updating of knowledge. We argue that o
approach to updates is more appealing than existing appesabVe give sufficiency conditions for the coherency of ¢-lo
programs and show that Bayes nets can be easily mapped tenbRelog programs.

KEYWORDS Logic programming, answer sets, probabilistic reasanimswer Set Prolog

1 Introduction

The goal of this paper is to define a knowledge represent#ioguage allowing natural, elaboration tolerant
representation of commonsense knowledge involving logitobabilities. The result of this effort is a language
calledP-log.

By a knowledge representation language, or KR language ,@esmaformal languagewith an entailment relation
E such that (1) statements dfcapture the meaning of some class of sentences of natugaldge, and (2) when
a setS of natural language sentences is translated into &68} of statements of,, the formal consequences of
T(S) underE are translations of the informal, commonsense conseqa@rfiée

One of the best known KR languages is predicate calculusttdadcexample can be used to illustrate several
points. First, a KR language is committed to an entailmdatian, but it is not committed to a particular inference
algorithm. Research on inference mechanisms for predizdtelus, for example, is still ongoing while predicate
calculus itself remains unchanged since the 1920's.

Second, the merit of a KR language is partly determined bycliags of statements representable in it. Inference
in predicate calculus, e.g., is very expensive, but it israpartant language because of its ability to formalize a
broad class of natural language statements, arguablydimgjunathematical discourse.

Though representation of mathematical discourse is a @nobblved to the satisfaction of many, representation of

http://arxiv.org/abs/0812.0659v1

2 C. Baral, M. Gelfond and N. Rushton

other kinds of discourse remains an area of active reseatding work on defaults, modal reasoning, temporal
reasoning, and varying degrees of certainty.

Answer Set Prolog (ASP) is a successful KR language withgelhistory of literature and an active community of
researchers. In the last decade ASP was shown to be a poteaifahpable of representing recursive definitions,
defaults, causal relations, special forms of self-refeegeand other language constructs which occur frequently in
various non-mathematical domains (Baral 2003), and afewlif or impossible to express in classical logic and
other common formalisms. ASP is based on the answer sd¢/statulels semantics (Gelfond et al. 1988) of logic
programs with default negation (commonly writtervas), and has its roots in research on non-monotonic logics.
In addition to the default negation the language contaifes%ical” or “strong” negation (commonly written a$

and “epistemic disjunction” (commonly written as).

Syntactically, an ASP program is a collection of rules offibren:
bor...orly < lxy1,...,0n,not lps1,...,n0t I,

wherel’s are literals, i.e. expressions of the fopmand —p wherep is an atom. A rule with variables is viewed
as a schema - a shorthand notation for the set of its groumahitetions. Informally, a ground prograhh can
be viewed as a specification for the sets of beliefs whichdbel held by a rational reasoner associated With
Such sets are referred to agswer setsAn answer set is represented by a collection of groundalgein forming
answer sets the reasoner must be guided by the followingnvefigprinciples:

1. One should satisfy the rules 0t In other words, if one believes in the body of a rule, one nalsi believe in
its head.

2. One should not believe in contradictions.
3. One should adhere to the rationality principle, whichsséBelieve nothing you are not forced to believe.”

An answer sefS of a program satisfies a literaif [€ S; S satisfiesnot [if | € S; S satisfies a disjunction if it
satisfies at least one of its members. We often say thatifS thenyp is believed to be truen S, if -p € S thenp
is believed to be falsén S. Otherwisep is unknownin S. Consider, for instance, an ASP progra&mconsisting
of rules:

.p(a).

.—p(b).

.q(c) + not p(c), not —p(c).
-7g(c) < ple).

-7g(e) < =p(e).

ga b~ WN PR

The first two rules of the program tell the agent associatéd R4 that he must believe that(a) is true andp(b)

is false. The third rule tells the agent to belieMe) if he believes neither truth nor falsity of ¢). Since the agent
has reason to believe neither truth nor falsitypdt) he must believey(c). The last two rules require the agent
to include—¢(¢) in an answer set if this answer set contains eithien or —p(c¢). Since there is no reason for
either of these conditions to be satisfied, the program vadlehunique answer sét = {p(a), =p(b), q¢(¢)}. As
expected the agent believes that) andg(c) are true and that(b) is false, and simply does not consider truth
or falsity of p(¢).

If P; were expanded by another rule:

6.p(c) or—p(c)

Probabilistic reasoning with answer sets 3

the agent will have two possible sets of beliefs represeoyeghswer set§; = {p(a), —~p(b), p(c), ~q(c)} and
52 = {p(a)7 ﬁp(b)7 ﬁp(C)7 ﬁQ(C)}

Now p(c) is not ignored. Instead the agent considers two possibleerrsets, one containing(c) and another
containing—p(c). Both, of course, containg(c).

The example illustrates that the disjunction (6), read adiée p(c) to be true or believe(c) to be false”, is
certainly not a tautology. It is often called tlavareness axiortfor p(c)). The axiom prohibits the agent from
removing truth of falsity op(¢) from consideration. Instead it forces him to consider theseguences of believing
p(c) to be true as well as the consequences of believing it to be fal

The above intuition about the meaning of logical connestiaéASFE] and that of the rationality principle is
formalized in the definition of an answer set of a logic progfaee Appendix IIl). There is a substantial amount of
literature on the methodology of using the language of ASPepresenting various types of (possibly incomplete)
knowledgel(Baral 2003).

There are by now a large number of inference engines desifgmadrious subclasses of ASP programs. For
example, a number of recently developed systems, caltstver set solvergNiemela and Simons 1997; 2002 ;
Citrigno et al. 199[7; Leone et al. 2006; Lierler 2005; Lin afftho 2004; Gebser et al. 2007) compute answer sets
of logic programs with finite Herbrand universe®iswer set programmin@ programming methodology which
consists in reducing a computational problem to computimeyer sets of a program associated with it, has been
successfully applied to solutions of various classical Al £S tasks including planning, diagnostics, and con-
figuration (Baral 2003). As a second example, more tradifiqnery-answering algorithms of logic programming
including SLDNF based Prolog interpreter and its variadst @nd Doets 1994, Chen, Swift and Warren 1995)
are sound with respect to stable model semantics of prognatmsut — andor.

However, ASP recognizes only three truth values: trueefalad unknown. This paper discusses an augmentation
of ASP with constructs for representing varying degreesedieh The objective of the resulting language is to
allow elaboration tolerant representation of commons&nseledge involving logic and probabilities. P-log was
first introduced in[(Baral et al. 2004), but much of the maiidnere is new, as discussed in the concluding section
of this paper.

A prototype implementation of P-log exists and has been usgmising experiments comparing its performance
with existing approaches (Gelfond et al. 2006). Howeverfticus of this paper is not on algorithms, but on precise
declarative semantics for P-log, basic mathematical ptimseof the language, and illustrations of its use. Such
semantics are prerequisite for serious research in aigusitelated to the language, because they give a definition
with respect to which correctness of algorithms can be jddée a declarative language, P-log stands ready to
borrow and combine existing and future algorithms from Bedtich as answer set programming, satisfiability
solvers, and Bayesian networks.

P-log extends ASP by adding probabilistic constructs, where glvdities are understood as a measure of the
degree of an agent’s belief. This extension is natural keec#e intuitive semantics of an ASP program is given
in terms of the beliefs of a rational agent associated withitaddition to the usual ASP statements, the P-log
programmer may declare “random attributes” (essentialhydom variables) of the forma(X) whereX and the
value of a(X) range oveffinite domainsProbabilistic information about possible valuesaofs given through
causal probability atomsr pr-atoms. Apr-atom takes roughly the form

prr(a(t) =ylc B) = v

wherea(t) is a random attributef? a set of literals, and@ € [0, 1]. The statement says thithe value ofa(t) is
fixed by experiment, andB holds, then the probability thatcausesi(t) = y isv.

1 1t should be noted that the connectives of Answer Set Pralegliéferent from those of Propositional Logic.

4 C. Baral, M. Gelfond and N. Rushton

A P-log program consists of it®gical part and itprobabilistic part. The logical part represents knowledgéctv
determines the possible worlds of the program, including A8les and declarations of random attributes, while
the probabilistic part contains pr-atoms which determiveegdrobabilities of those worlds. If is a P-log program,
the semantics of P-log associates the logical pdit with a “pure” ASP program (II). The semantics of a ground
1T is then given by

(i) a collection of answer sets @{1II) viewed as the possible sets of beliefs of a rational ageotaged withll,
and

(i) a measure over the possible worlds defined by the cadiectf the probability atoms dfl and theprinciple of
indifferencewhich says that possible values of random attribugge assumed to be equally probable if we have
no reason to prefer one of them to any other.

As a simple example, consider the program

a:{1,2,3}.
random(a).

pr(a=1)=1/2.

This program defines a random attributevith possible valueg, 2, and3. The program’s possible worlds are
Wy = {a =1}, W2 = {a =2},and W5 = {a = 3}. In accordance with the probability atom of the program, the
probability measurg(W;) = 1/2. By the principle of indifferencg(Ws) = p(Ws) = 1/4.

This paper is concerned with defining the syntax and sensotiP-log, and a methodology of its use for knowl-
edge representation. Whereas much of the current reseapechbabilistic logical languages focuses on learning,
our main purpose, by contrast, is to elegantly and straagiveirdly represent knowledge requiring subtle logical
and probabilistic reasoning. A limitation of the currentsien of P-log is that we limit the discussion to models
with finite Herbrand domains. This is common for ASP and iteergions. A related limitation prohibits pro-
grams containing infinite number of random selections (agrch an uncountable number of possible worlds).
This means P-log cannot be used, for example, to describkagttic processes whose time domains are infinite.
However, P-log can be used to describe initial finite segmefguch processes, and this paper gives two small ex-
amples of such descriptions (Sectiénd 5.3 5.4) andgfisswone large example in Secfion 5.5. We believe the
techniques used by (Sato 1995) can be used to extend the tsewdnP-log to account for programs with infinite
Herbrand domains. The resulting language would, of coalt®y representation of processes with infinite time
domains. Even though such extension is theoretically rificdli, its implementation requires further research in
ASP solvers. This matter is a subject of future work. In tlipgr we do not emphasize P-log inference algorithms
even for programs with finite Herbrand domains, though thaso an obvious topic for future work. However, our
prototype implementation of P-log, based on an answer $etrsBmodels[(Niemela and Simons 1897), already
works rather efficiently for programs with large and comptagical component and a comparatively small number
of random attributes.

The existing implementation of P-log was successfully used instance in an industrial size applica-
tion for diagnosing faults in the reactive control systenC@} of the space shuttlé (Balduccini et al. 2001,
Balduccini et al. 2002). The RCS is the Shuttle’'s system tlagtprimary responsibility for maneuvering the air-
craft while it is in space. It consists of fuel and oxidizenka, valves, and other plumbing needed to provide
propellant to the maneuvering jets of the Shuttle. It alsiuides electronic circuitry: both to control the valves
in the fuel lines and to prepare the jets to receive firing camds. Overall, the system is rather complex, in that
it includes12 tanks,44 jets, 66 valves,33 switches, and arount0 computer commands (computer-generated
signals).

We believe that P-log has some distinctive features whichbeaof interest to those who use probabilities. First,
P-log probabilities are defined by their relation to a knalgle base, represented in the form of a P-log program.
Hence we give an account of the relationship between pros@#bimodels and the background knowledge on

Probabilistic reasoning with answer sets 5

which they are based. Second, P-log gives a natural accdéunavo degrees of belief change with the addition
of new knowledge. For example, the standard definition ofd@@nal probability in our framework becomes
a theorem relating degrees of belief computed from two different wiemige bases, in the special case where
one knowledge base is obtained from the other by the addifiabservations which eliminate possible worlds.
Moreover, P-log can accommodate updates which add rulektmaledge base, including defaults and rules
introducing new terms.

Another important feature of P-log is its ability to distirigh between conditioning on observations and on delib-
erate actions. The distinction was first explicated in (PZa00), where, among other things, the author discusses
relevance of the distinction to answering questions abesirdbility of various actions (Simpson paradox dis-
cussed in section 8.2 gives a specific example of such aisit)atn Pearl's approach the effect of a deliberate
action is modeled by an operation on a graph representirgpterlations between random variables of a domain.
In our approach, the semantics of conditioning on actiorsismatized using ASP’s default negation, and these
axioms are included as part of the translation of programs fP-log to ASP. Because Pearl’s theory of causal
Bayesian nets (CBN’s) acts as the probabilistic foundatioR-log, CBN's are defined precisely in Appendix I,
where it is shown that each CBN maps in a natural way to a P+logrpm.

The last characteristic feature of P-log we would like to tienhere is itsprobabilistic non-monotonicity—

that is, the ability of the reasoner to change his probahilimodel as a result of new information. Normally
any solution of a probabilistic problem starts with constion of probabilistic model of a domain. The model
consists of a collection of possible worlds and the corraedpw probability measure, which together determine
the degrees of the reasoner’s beliefs. In most approach@siability, new information can cause a reasoner to
abandon some of his possible worlds. Hence, the effect cditedd monotonic, i.e. it can only eliminate possible
worlds. Formalisms in which an update can cause creatiorewfpossible worlds are called “probabilistically
non-monotonic”. We claim that non-monotonic probabitistystems such as P-log can nicely capture changes in
the reasoner’s probabilistic models.

To clarify the argumentlet us informally consider the fallng P-log program (a more elaborate example involving
a Moving Robot will be given in Sectidn 5.3).

a:{1,2,3}.
a =1 < not abnormal.
random(a) < abnormal.

Herea is an attribute with possible valués2, and3. The second rule of the program says that normally the value
of a is 1. The third rule tells us that under abnormal circumstancesll randomly take on one of its possible
values. Since the program contains no at@dmormal the second rule concludes= 1. This is the only possible
world of the programu(a = 1) = 1, and hence the value afis 1 with probability 1. Suppose, however, that
the program is expanded by an ataimormal. This time the second rule is not applicable, and the prodrasn
three possible worldstV; = {a = 1}, Wa = {a = 2}, and W3 = {a = 3}. By the principle of indifference
(W) = p(Wa) = u(Ws) = 1/3 — attributea takes on valué with probability1/3.

The rest of the paper is organized as follows. In Se¢fion 2iwethe syntax of P-log and in Sectibh 3 we give its
semantics. In Sectidd 4 we discuss updates of P-log prog@ectiori b contains a number of examples of the use
of P-log for knowledge representation and reasoning. Thehasis here is on demonstrating the power of P-log
and the methodology of its use. In Sectidn 6 we present serffdgi conditions for consistency of P-log programs
and use it to show how Bayes nets are special cases of caridtsteg programs. Sectidn 7 contains a discussion
of the relationship between P-log and other languages adnmiprobability and logic programming. Section
8 discusses conclusions and future work. Appendix | coant#ie proofs of the major theorems, and appendix
Il contains background material on causal Bayesian netsvakkpendix Il contains the definition and a short
discussion of the notion of an answer set of a logic program.

6 C. Baral, M. Gelfond and N. Rushton

2 Syntax of P-log

A probabilistic logic prograrP-log program)I consists of (i) asorted signatur€ii) a declaration(iii) a regular
part (iv) a set ofrandom selection rule$v) a probabilistic informatiorpart, and (vi) a set obbservationsand
actions Every statement of P-log must be ended by a period.

(i) Sorted Signature The sorted signaturE of II contains a seO of objects and a set’ of function symbols.
The setF' is a union of two disjoint sets;,. and F',. Elements off,. are calledterm building functionsElements
of F, are calledattributes

Terms of P-log are formed in a usual manner using function®jsfromF,. and objects fron0. Expressions of
the forma(?), wherea is an attribute and is a vector of terms of the sorts required bywill be referred to as
attribute terms(Note that attribute terms are not terms). Attributes wlhih range{ true, false} are referred to as
Boolean attributes arelations We assume that the number of terms and attributesXvefinite. Note that, since
our signature is sorted, this does not preclude the use ofitmsymbols. The example in Sectionl5.5 illustrates
such a use.

Atomic statements are of the fora{t) = t,, wheret, is a term,¢ is a vector of terms, and is an attribute (we
assume that and? are of the sorts required by). An atomic statemenp, or its negation;-p is referred to as a
literal (or ©-literal, if & needs to be emphasized); literal&nd—p are calledcontrary by | we denote the literal
contrary tol; expressiong andnot | wherel is a literal andnot is the default negation of Answer Set Prolog
are calledextended literald. iterals of the forma (%) = true, a(?) = false, and—(a(?) =) are often written as
a(t), —a(?), anda(t) # to respectively. Ifp is a unary relation and is a variable then an expression of the form
{X : p(X)} will be called aset-termOccurrences ok in such an expression are referred tcbasind

Terms and literals are normally denoted by (possibly indgXetterst and ! respectively. The letters and a,
possibly with indices, are used as generic names for sodstinbutes. Other lower case letters denote objects.
Capital letters normally stand for variables.

Similar to Answer Set Prolog, a P-log statement containimgound variables is considered a shorthand for the
set of its ground instances, where a ground instance israuatdiy replacing unbound occurrences of variables
with properly sorted ground terms. Sorts in a program areatdd by the declarations of attributes (see below).
In defining semantics of our language we limit our attentifiitite programs with no unbound occurrences of
variables. We sometimes refer to programs without unbogsdrmences of variables gsound

(ii) Declaration: The declaration of a P-log program is a collection of definis of sorts and sort declarations for
attributes.

A sort ¢ can be defined by explicitly listing its elements,

c={x1,..., 2} - 1)

or by a logic progran” with a unique answer set. In the latter case € ciff ¢(z) € A.

The domain and range of an attribut@re given by a statement of the form:
a:c1 X...XCp—Co- (2)

For attributes without parameters we simply write cg.

The following example will be used throughout this section.

Example 1

Probabilistic reasoning with answer sets 7

[Dice Example: program component]

Consider a domain containing two dice owned by Mike and Jekpectively. Each of the dice will be rolled once.
A P-log programil, modeling the domain will have a signaturecontaining the names of the two diag, and
dy, an attributeroll mapping each die to the value it indicates when thrown, whiam integer from to 6, an
attribute owner mapping each die to a person, relatieren (D), whereD ranges ovetlice, and “imported” or
“predefined” arithmetic functions andmod. The corresponding declaratior3,, will be as follows:

dice = {dl, dg}

score = {1,2,3,4,5,6}-

person = {mike, john}-

roll : dice — score-

owner : dice — person:

even : dice — Boolean- O

(iii) Regular part: The regular part of a P-log program consists of a collectibrules of Answer Set Prolog
(without disjunction) formed using literals &f.

Example 2

[Dice Example (continued): program componéni
For instance, the regular pab, of programll, may contain the following rules:

owner(dy) = mike-

owner(dy) = john-

even(D) < roll(D) =Y, Y mod 2 = 0-
—even(D) < not even(D)-

Here D and Y range ovewdice andscore respectively. i

(iv) Random Selection This section contains rules describing possible valuearafom attributes. More precisely
arandom selectiois a rule of the form

[7] random(a(t) : {X : p(X)}) + B - 3)

wherer is a term used to name the rule aBds a collection of extended literals &. The namd r | is optional
and can be omitted if the program contains exactly one ranslelection fora(¢). Sometimes we refer to as
an experiment Statement[{3) says thét B holds, the value ofi(t) is selected at random from the det :
p(X)} Nrange(a) by experiment, unless this value is fixed by a deliberate actlbrB in (3) is empty we simply
write

[] random(a(t) : {X : p(X)}) - 4)
If {X : p(X)} is equal to thexange(a) then rule[[B) may be written as
[r] random(a(t)) + B - (5)

Sometimes we refer to the attribute teuft) asrandomand to{ X : p(X)} N range(a) as thedynamic rangef
a(t) via ruler. We also say that a literal(?) = y occurs in the headf @) for everyy € range(a), and that any
ground instance of(X) and literals occurring irB occur in the bodpf (3).

8 C. Baral, M. Gelfond and N. Rushton

Example 3

[Dice Example (continued)]
The fact that values of attributell : dice — score are random is expressed by the statement

[(D)] random(roll(D)). O

(v) Probabilistic Information: Information about probabilities of random attributes takiparticular values is
given byprobability atomgor simply pr-atom$ which have the form:

prr(a(t) =ylc B) =v- (6)

wherev € [0, 1], B is a collections of extended literals; is a special symbol not belongingiy r is the name of

a random selection rule far(%), andpr,.(a(t) = y | B) = v says thaif the value ofa(t) is fixed by experiment

r, andB holds, then the probability thatcausesi(t) = y is v. (Note that here we use ‘cause’ in the sense that
B is an immediate or proximate causedfl) = y, as opposed to an indirect cause.J#f is a possible world

of a program containind 16) ant/ satisfies bothB and the body of rule, then we will refer tov as thecausal
probabilityof the atoma (%) = y in W.

We say that a literak(7) = y occurs in the heaof (@), and that literals occurring iB occur in the bodpf (G).

If B is empty we simply write

pre(a(t) =y) =v- @)
If the program contains exactly one rule generating valfieg ® = y the indexr may be omitted.

Example 4

[Dice Example (continued): program componéni
For instance, the dice domain may inclufig consisting of the random declarationmefl(D) given in Examplé3
and the following probability atoms:

pr(roll(D) =Y |, owner(D) = john) = 1/6-
pr(roll(D) = 6 |. owner(D) = mike) = 1/4.
pr(roll(D) =Y |, Y # 6, owner(D) = mike) = 3/20.

The above probability atoms convey that the die owned by JoFair, while the die owned by Mike is biased to
roll 6 at a probability of25. O

(vi) Observations and actions Observations and actions are statements of the respémtive
obs (1) - do(a(f) = y))-

wherel is a literal. Observations are used to record the outcomesnafom events, i.e., random attributes, and
attributes dependent on them. The dice domain may, fornostacontain{obs(roll(d;) = 4)} recording the
outcome of rolling died;. The statementlo(a(?) = y) indicates thatu(¢) = y is made true as a result of a
deliberate (non-random) action. For instanioéy(roll(d;) = 4)} may indicate thatl; was simply put on the table
in the described position. Similarly, we may havies(even(d;)). Here, even thoughven(d;) is not a random
attribute, it is dependent on the random attribui#(d;). If B is a collection of literalsobs(B) denotes the set
{obs(1) | I € B}. Similarly for do.

The precise meaning afo and obs is captured by axiom§9[=1L3) in the next section and discLissExample
[18, and in connection with Simpson’s Paradox in sedfioh M@e discussion of the difference between actions
and observations in the context of probabilistic reasonamgbe found in (Pearl 2000).

Probabilistic reasoning with answer sets 9

Note that limiting observable formulas to literals is nadestial. It is caused by the syntactic restriction of Answer
Set Prolog which prohibits the use of arbitrary formulase Téstriction could be lifted if instead of Answer Set

Prolog we were to consider, say, its dialect from (Lifscleitzal. 1999). For the sake of simplicity we decided to
stay with the original definition of Answer Set Prolog.

A P-log progranil can be viewed as consisting of two parts. Togical part which is formed by declarations,
regular rules, random selections, actions and obsengtatafines possible worlds ®f. The probabilistic part
consisting of probability atoms defines a measure over tissible worlds, and hence defines the probabilities of
formulas. (If no probabilistic information on the numberpafssible values of a random attribute is available we
assume that all these values are equally probable).

3 Semantics of P-log

The semantics of a ground P-log progrélns given by a collection of the possible sets of beliefs of tioreal
agent associated wifli, together with their probabilities. We refer to these sstpa@ssible worlds ofl. We will
define the semantics in two stages. First we will define a nmappf the logical part ofl into its Answer Set
Prolog counterpart;(IT). The answer sets af(IT) will play the role of possible worlds dfl. Next we will use the
probabilistic part oflI to define a measure over the possible worlds, and the praieshdf formulas.

3.1 Defining possible worlds:
The logical part of a P-log prograh is translated into an Answer Set Prolog progra(il) in the following way.

1. Sort declarations: For every sort declaratios {1, ..., z,} of I, 7(II) containsc(z), . . ., ¢(zy).
For all sorts that are defined using an Answer Set Prolog prog@t in II, 7(II) containsT.

2. Regular part:
In what follows (possibly indexed) variablés$ are free variables. A rule containing these variables véll b
viewed as shorthand for a collection of its ground instanz#s respect to the appropriate typing.

(a) Foreach rule in the regular part ofl, 7(II) contains the rule obtained by replacing each occurrence
of an atoma (%) = yin r by a(, y).
(b) For each attribute term(?), 7(II) contains the rule:

ﬂa(f, Yl) — a(f, YQ), Yl }é YQ . (8)

which guarantees that in each answer#éj has at most one value.
3. Random selections:

(a) For an attribute,, we have the rule:
intervene(a(t)) < do(a(t, Y)) - 9)

Intuitively, intervene(a(t)) means that the value af?) is fixed by a deliberate action. Semantically,
a(t) will not be considered random in possible worlds which $atistervene(a(?)).
(b) Each random selection rule of the form

[r] random(a(t) : {Z : p(Z)}) + B-
with range(a) = {1, ..., yx } is translated to the following rules in Answer Set Praog
a(t,y1)or ... ora(t, yx) < B, not intervene(a(?)) - (10)

2 Our P-log implementation uses an equivalent ife (%, Z) : co(Z) : p(Z)}1 + B, not intervene(a(%)) from the input language of
Smodels.

10 C. Baral, M. Gelfond and N. Rushton

If the dynamic range of in the selection rule is not equal to its static range, i.pressioR Z : p(Z)}
is not omitted, then we also add the rule

+ a(t,y),not p(y), B, not intervene(a(?)) - (11)

Rule [10) selects the value of?) from its range while ruld(11) ensures that the selectedagatisfies
p-

N

. 7(II) contains actions and observationd bf
5. For eacli-literal [, 7(II) contains the rule:

« obs(l), not 1 - (12)
6. For each atom(?) = y, 7(II) contains the rule:

The rule [I2) guarantees that no possible world of the prodadls to satisfy observatioh The rule [1B)
makes sure the atoms that are made true by the action aralitrdee

This completes our definition of(11).

Before we proceed with some additional definitions let us m@mt on the difference between rules 12 13.
Since the P-log prograniB U obs(l) and T' U {+ not I} have possible worlds which are identical except for pos-
sible occurrences afbs(1), the new observation simply eliminates some of the possiblids of T'. This reflects
understanding of observations in classical probabiligotly. In contrast, due to the possible non-monotonicity of
the regular part of", possible worlds ofl’ U do(1) can be substantially different from those Bf(as opposed to
merely fewer in number); as we will illustrate in Sectibn15.3

Definition 1
[Possible worlds]

An answer set of (II) is called apossible worldf I1. O

The set of all possible worlds a@f will be denoted by)(IT). WhenlI is clear from context we will simply write
Q. Note that due to our restriction on the signature of P-laggpams possible worlds @f are always finite.
Example 5

[Dice example continued: P-log prograf]
Let 71 be a P-log program consisting &f;, D> and D3 described in ExampleE] @] 2, 3 4. The Answer Set
Prolog counterpart(T;) of T; will consist of the following rules:

dice(dy). dice(dy). score(1). score(2).
score(3). score(4). score(5). score(6).
person(mike). person(john).
owner(dy, mike). owner(dy, john).

even(D) < roll(D,Y), Y mod 2 = 0.

—even(D) + not even(D).

intervene(roll(D)) < do(roll(D, Y)).

roll(D,1) or ... orroll(D,6) + B, not intervene(roll(D)).
—roll(D, Y1) < roll(D, Y2), Y1 # Ya.

Probabilistic reasoning with answer sets 11

—owner(D, Py) < owner(D, P3), Py # Ps.

—even(D, By) + even(D, By), By # Bs.

+ o0bs(roll(D, Y)), not roll(D, Y).

+ obs(—roll(D, Y)), not —roll(D, Y).

roll(D, Y)) < do(roll(D, Y)).

The translation also contains simileis and do axioms for other attributes which have been omitted here.

The variablesD, P, B’'s, andY’s range ovedice, person, boolean, andscore respectively. (In the input language
of Lparse used by Smodels(Niemela and Simons1997) andadetber answer set solving systems this typing
can be expressed by the statement

#domain dice(D), person(P), score(Y).

Alternatively ¢(X) can be added to the body of every rule containing variablgith domainc. In the rest of the
paper we will ignore these details and simply use Answer 880§ with the typed variables as needed.)

Itis easy to check that(T;) has36 answer sets which are possible worlds of P-log progfantach such world
contains a possible outcome of the throws of the dice,el(.d;, 6), roll(dz, 3). O

3.2 Assigning measures of probability:

There are certain reasonableness criteria which we wdigdbliir programs to satisfy. These are normally easy to
check for P-log programs. However, the conditions are d@sdusing quantification over possible worlds, and so
cannot be axiomatized in Answer Set Prolog. We will statentlas meta-level conditions, as follows (from this
point forward we will limit our attention to programs satisfg these criteria):

Condition 1
[Unique selection rule]
If rules
[r1] random(a(t) : {Y : p1(Y)}) < By-
[o] random(a(t) : {Y : p2(Y)}) < Ba-
belong tolT then no possible world dfl satisfies bothB; and Bs. O

The above condition follows from the intuitive reading ofid@m selection rules. In particular, there cannot be two
different random experiments each of which determines #heaof the same attribute.
Condition 2

[Unique probability assignment]
If IT contains a random selection rule

[r] random(a(t) : {Y : p(Y)}) + B-
along with two different probability atoms
prr(a(t) |c B1) = v1 andpr,(a(t) |. B2) = va-

then no possible world dfl satisfiesB, B, andBs. O

12 C. Baral, M. Gelfond and N. Rushton

The justification of Condition 2 is as follows: If the conditis B; and By can possibly both hold, and we do not
havev; = vy, then the intuitive readings of the twm-atoms are contradictory. On the other hand,if= v, the
same information is represented in multiple locations anghogram which is bad for maintenance and extension
of the program.

Note that we can still represent situations where the valaa attribute is determined by multiple possible causes,
as long as the attribute is not explicitly random. To illastr this point let us consider a simple example from
(Vennekens et al. 2006).

Example 6

[Multiple Causes: Russian roulette with two guns]
Consider a game of Russian roulette with two six-chambesghlach of the guns is loaded with a single bullet.
What is the probability of the player dying if he fires both g@n

Note that in this example pulling the trigger of the first gurdaulling the trigger of the second gun are two
independent causes of the player’s death. That is, the mirha of death from each of the two guns are separate
and do not influence each other.

The logical part of the story can be encoded by the followidgd®programil;:

gun = {1,2}.

pull_trigger : gun — boolean. % pull_trigger(G) says that the player pulls the trigger of gGn
fatal : gun — boolean. % fatal(G) says that the bullet from gu@ is sufficient to kill the player.
is_dead : boolean. % is_dead says that the player is dead.

[r(G)] : random(fatal(G)) + pull_trigger(G).

is_dead + fatal(Q).

—is_dead <+ not is_dead.

pull_trigger(G).

Here the value of the random attribyf&al(1), which stands for “Gun 1 causes a wound sufficient to kill the
player” is generated at random by rutél). Similarly for fatal(2). The attributeis_dead, which stands for the
death of the player, is described in termg@fl(G) and hence is not explicitly random. To define the probability
of fatal(G) we will assume that when the cylinder of each gun is spun, eattie six chambers is equally likely
to fall under the hammer. Thus,

pry) (fatal(1)) = 1/6.
pro) (fatal(2)) = 1/6.

Intuitively the probability of the player’s death will bel /36. At the end of this section we will learn how to
compute this probability from the program.

Suppose now that due to some mechanical defect the prdigaifitihe first gun firing its bullet (and therefore
killing the player) is notl /6 but, say,11/60. Then the probability atoms above will be replaced by

prr1)(fatal(1)) = 11/60.
prr2)(fatal(2)) = 1/6.

The probability of the player’s death defined by the new paagwill be 0 - 32. Obviously, both programs satisfy
Conditiong1 anf]2 above.

Note however that the somewhat similar program

gun = {1,2}.
pull_trigger : gun — boolean.
1s_dead : boolean.

Probabilistic reasoning with answer sets 13

[r(G)] : random(is_dead) <+ pull_trigger(G).
pull_trigger(G).

does not satisfies Conditiéh 1 and hence will not be allowertiog. O
The next example presents a slightly different version asoming with multiple causes.

Example 7

[Multiple Causes: The casino story]

A roulette wheel has 38 slots, two of which are green. Noryn#ile ball falls into one of these slots at random.
However, the game operator and the casino owner each hawmbuhey can press which “rig” the wheel so
that the ball falls into slot 0, which is green, with prob#kill/2, while the remaining slots are all equally likely.
The game is rigged in the same way no matter which button ssprk or if both are pressed. In this example,
the rigging of the game can be viewed as having two causeq@dSapn this particular game both buttons were
pressed. What is the probability of the ball falling intot<)@

The story can be represented in P-log as follows:

slot = {zero, double_zero, 1 - -36}.
button = {1, 2}.

pressed : button — boolean.

rigged : boolean.

falls_in : slot.

[r] : random(falls_in).

rigged <— pressed(B).

—rigged <— not rigged.

pressed(DB).

pr(falls_in = zero|.rigged) = 1/2.

Intuitively, the probability of the ball falling into slotero is1/2. The same result will be obtained by our formal
semantics. Note that the program obviously satisfies Ciomd[fl and’R. However the following similar program
violates Conditio 2.

slot = {zero, double_zero, 1 - -36}.
button = {1, 2}.

pressed : button — boolean.

falls_in : slot.

[r] : random(falls_in).

pressed(B).

pry(falls_in = zero|.pressed(B)) = 1/2.

Condition2 is violated here because two separate pr-atacts &ssign probability to the literftiis_in = zero.
Some other probabilistic logic languages allow this, emiplg various systems of “combination rules” to compute
the overall probabilities of literals whose probabilitywas are multiply assigned. The study of combination rules
is quite complex, and so we avoid it here for simplicity. O

Condition 3

[No probabilities assigned outside of dynamic range]
If II contains a random selection rule

[r] random(a(t) : {Y : p(Y)}) < By-

14 C. Baral, M. Gelfond and N. Rushton

along with probability atom
pre(a(t) =y |c B2) = v-
then no possible worldV of I satisfiesB; and B, andnot intervene(a(t)) but fails to satisfyp(y). O

The condition ensures that probabilities are only assigodagically possible outcomes of random selections. It
immediately follows from the intuitive reading of staten®{@) and[(B).

To better understand the intuition behind our definition afabilistic measure it may be useful to consider an
intelligent agent in the process of constructing his pdesimrlds. Suppose he has already constructed alpart
of a (not yet completely constructed) possible wold and suppose thdt satisfies the precondition of some
random selection rule. The agent can continue his construction by consideringndaia experiment associated
with 7. If y is a possible outcome of this experiment then the agent matyne@ his construction by adding the
atoma(t) = y to V. To define the probabilistic measyzeof the possible worldV under construction, we need
to know the likelihood ofy being the outcome af, which we will call thecausal probabilitpf the atoma(7) = y

in W. This information can be obtained from a pr-atpm(a(%) = y) = v of our program or computed using the
principle of indifference. In the latter case we need to @bersthe collectionk of possible outcomes of experiment
r. For example ify € R, there is no probability atom assigning probability to aumes ofR, and|R| = n, then
the causal probability of (7 = y) in W will be 1/n.

Let v be the causal probability of(¢) = y. The atoma(?) = y may be dependent, in the usual probabilistic
sense, with other atoms already present in the construdfimmevery is not read as the probability af(7) = v,

but the probability that, given what the agent knows aboaipbssible world at this point in the construction, the
experiment determining the value oft) will have a certain result. Our assumption is that these ixats are
independent, and hence it makes sensedhaill have a multiplicative effect on the probability of the@gsible
world under construction. (This approach should be famitighose accustomed to working with Bayesian nets.)
This intuition will be captured by the following definitions

Definition 2

[Possible outcomes]

Let W be a consistent set of literals Bf I1 be a P-log prograny be an attribute, ang belong to the range af.
We say that the atom(?) = y is possiblén W with respect td1 if II contains a random selection ruldor a(7),
where ifr is of the form [8) them(y) € W and W satisfiesB, and ifr is of the form [b) thenlV satisfiesB. We
also say thay is apossible outcomef a(t) in W with respect td1 via rule r, and thatr is agenerating ruléor
the atoma(?) = y. O

Recall that, based on our convention, if the range @& boolean then we can just say thdt) and—a(?) are
possible in. (Note that by Conditiohl1, i#¥ is a possible world ofI then each atom possible iff has exactly
one generating rule.)

Note that, as discussed above, there is some subtlety hemadmewe are describing) = y as possible, though
not necessarily true, with respect to a particular set efdis and prograri.

For everyW € Q(II) and every atona(t) = y possible inT¥ we will define the corresponding causal probability
P(W,a(t) = y). Whenever possible, the probability of an ateiit) = y will be directly assigned by pr-atoms
of the program and denoted WA (W, a(?) = y). To define probabilities of the remaining atoms we assume tha
by default, all values of a given attribute which are notgissd a probability are equally likely. Their probabilities
will be denoted byPD (W, a(t) = y). (PA stands fomssigned probabilitand PD stands fodefault probability.

For each atoma(¢) = y possible inW':

1. Assigned probability:

Probabilistic reasoning with answer sets 15

If TT containspr,-(a(t) = | B) = v wherer is the generating rule af(t) = y, B C W, and W does not
containintervene(a(t)), t

PA(W.,a(t)=y)=wv
2. Default probability:
For any setS, let|S| denote the cardinality of. Let A,) (W) = {y | PA(W, a() = y) is defined, and
a(t) = y be possible in¥ such thaty ¢ A, (W). Then let

o, (W) = Z PA(W,a(t) =y)
€A, (W)
Buy (W) ={y : a(f) = y is possible inW andy ¢ A, (W)}
1- aa(f)(W)
Ba (W)
of a(t) = y in W is defined by:

D(W,a(l) = y) =
3. Finally, the causal probabilitf (W, a(t) =

y)
) PA(W,a(t)=y) fyed, (W)
P(W, aft) = y)_{PD(W,aG)_y) otherwise(z)

Example 8

[Dice example continued: P-log prograf]
Recall the P-log prograrii; from Exampléb. The program contains the following proliatid information:

pr(roll(dy) =i |. owner(d;) = mike) = 3/20, for eachi such that < i < 5.
pr(roll(dy) = 6 |, owner(dy) = mike) = 1/4-
pr(roll(dz) =i |. owner(dz) = john) =1/6, for eachisuchthat < i < 6

We now consider a possible world
W = {owner(dy, mike), owner(dz, john), roll(dy,6), roll(dg, 3), ...}
of Th and computd’(W, roll(d;) = j) for every died; and every possible scoje

According to the above definitiotPA(W, roll(d;) = j) and P(W, roll(d;) = j) are defined for every random
atom (i.e. atom formed by a random attribute)i(d;) = j in W as follows:

P(W,roll(dy) = i) = PA(W,roll(dy) = i) = 3/20, for eachi suchthatl < i < 5.
P(W,roll(dy) = 6) = PA(W,roll(dy) =6) =1/4-
P(W,roll(dz) = i) = PA(W,roll(d2) = i) = 1/6, for eachi such thatl < i < 6- O

Example 9

[Dice example continued: P-log prograf.1]

In the previous example all random atomslfwere assigned probabilities. Let us now consider what \aitigen
if explicit probabilistic information is omitted. LeDs.; be obtained fromD3; by removing all probability atoms
except

pr(roll(D) = 6 |. owner(D) = mike) = 1/4.

Let 7., be the P-log program consisting 6%, D> and D3.; and letW be as in the previous example. Only the
atomroll(d;) = 6 will be given an assigned probability:

P(W, roll(dy) = 6) = PA(W, roll(dy) = 6) = 1/4.

16 C. Baral, M. Gelfond and N. Rushton

The remaining atoms receive the expected default prokiabili
P(W,roll(dy) = i) = PD(W,roll(dy) = i) = 3/20, for eachi such thatl < i < 5-
P(W,roll(dz2) = i) = PD(W,roll(de) = i) = 1/6, for each: such thatl < i < 6- O

Now we are ready to define the measurg, induced by the P-log prograh.

Definition 3

[Measure]

1. Let W be a possible world dfl. Theunnormalized probabilityfir; (W), of a possible world¥ induced by
ITis
an(W) = [I P(W,a(®) =y)
a(t,y)e W
where the product is taken over atoms for whiehiv’, a(%) = y) is defined.

2. Supposdl is a P-log program having at least one possible world withzeom unnormalized probability.
The measureurn (W), of a possible worldW induced byl is the unnormalized probability off” divided
by the sum of the unnormalized probabilities of all possiktelds ofIl, i.e.,

fmn (W)

MH(W) - ZWZGQ ,&H(Wz)

When the progranil is clear from the context we may simply writeandy instead ofii;; andur respectivelyd

The unnormalized measure of a possible wdifdcorresponds, from the standpoint of classical probabititthe
unconditional probability ofi. Each random atom(¢) = y in W is thought of as the outcome of a random
experiment that takes place in the constructio¥idf and P(W, a(t) = y) is the probability of that experiment
having the result(7) = y in W. The multiplication in the definition of unnormalized messsis justified by an
assumption that all experiments performed in the constmiatf 17 are independent. This is subtle because the
experiments themselves do not show ugiin— only their results do, and the results nragtbe independetﬁ.

Example 10

[Dice example continuedl’; and 71.1]
The measures of the possible worlds of Exariiple 9 are given by

w({roll(dy,6), roll(dz,y),...}) =1/24,for1 < y <6, and
w({roll(dy,), roll(d, y),...}) = 1/40,for1 < u < 5andl < y <6.

where only random atoms of each possible world are shown. O

Now we are ready for our main definition.

3 For instance, in the upcoming Exampld 18, random attributesnic and death respectively reflect whether or not a given rat eats arsenic,
and whether or not it dies. In that examplieath and arsenic are clearly dependent. However, we assume that the factoch wetermine
whether a poisoning will lead to death (such as the rat'stitatien, and the strength of the poison) are independemhefactors which
determine whether poisoning occurred in the first place.

Probabilistic reasoning with answer sets 17

Definition 4

[Probability]

Supposdl is a P-log program having at least one possible world withzeom unnormalized probability. The
probability, Pri(E), of a setF of possible worlds of progradi is the sum of the measures of the possible worlds
fromE, i.e.

Pr(E) = Z pr (W)

WeE

WhenlIl is clear from the context we may simply wrifeinstead ofPry.

The functionPy; is not always defined, since not every syntactically correlig program satisfies the condition
of having at least one possible world with nonzero unnorzedimeasure. Consider for instance a program
consisting of facts

p(a):
—p(a)-
The program has no answer sets at all, and hence Pgris not defined. The following proposition, however,
says that whePr; is defined, it satisfies the Kolmogorov axioms of probabilitisTjustifies our use of the term
“probability” for the functionPr. The proposition follows straightforwardly from the defian.
Proposition 1
[Kolmogorov Axioms]
For a P-log prograril for which the functionPy; is defined we have
1. For any sef of possible worlds ofI, P (F) > 0.
2. If Qis the set of all possible worlds of then P (Q2) = 1.
3. For any disjoint subset8; and E» of possible worlds ofl, P (E; U E») = Pr(E1) + Pu(Ez). O

In logic-based probability theory a sBtof possible worlds is often represented by a propositicorahtilaF’ such
that W € FE iff W is a model ofF. In this case the probability function may be defined on psitpms as

P(F) =g4ey P({W : W is amodel ofF'}).

The value ofP(F) is interpreted as the degree of reasoner’s belidf i\ similar idea can be used in our frame-
work. But since the connectives of Answer Set Prolog aresdffit from those of Propositional Logic the notion
of propositional formula will be replaced by that of formwaBAnswer Set Prolog (ASP formula). In this paper we
limit our discussion to relatively simple class of ASP folasiwhich is sufficient for our purpose.
Definition 5
[ASP Formulas (syntax)]
For any signature&

e An extended literal ok is anASP formula

e if AandB areASP formulaghen(A A B) and(A or B) are ASP formulas. O
For example((p A not ¢ A —r) or(not r)) is an ASP formula butnot (not p)) is not. More general definition

of ASP formulas which allows the use of negationsnd not in front of arbitrary formulas can be found in
(Lifschitz et al. 2001).

Now we define the truthlf/ - A) and falsity (7 - A) of an ASP formula4 with respect to a possible world’:

18 C. Baral, M. Gelfond and N. Rushton

Definition 6

[ASP Formulas (semantics)]

1. Forany-literall, W lifle W; WHlifle W.

2. For any extendel-literal not I, W not lif lg W; W 4 not lifl e W.

3. WHE(ALAAy)if WHEAandW + Ay W H (A A Ay) if W H Ay or W As.

4. WE(ArorAx)if WEAyor W Ag; W H (A orAg)if W+ AyandW — As. O

An ASP formulad4 which is neither true nor false i is undefinedn W. This introduces some subtlety. The
axioms of modern mathematical probability are viewed asrasi about measures on sets of possible worlds,
and as such are satisfied by P-log probability measures. Yaws&nce we are using a three-valued logic, some
classical consequences of the axioms for the probabibtfiésrmulaefail to hold. Thus, all theorems of classical
probability theory can be applied in the context of P-log;Wwa must be careful how we interpret set operations in
terms of formulae. For example, note that formulafnot 1) is truein every possible world? . However formula

(p or—p) is undefined in any possible world containing neith@or—p. Thus if P is a P-log probability measure,
we will always haveP(not 1) = 1 — P(l), but not necessarily(—l) = 1 — P(l).

Consider for instance an ASP progrdm from the introduction. If we expanft; by the appropriate declarations
we obtain a prograrfl; of P-log. It's only possible world i$Vy = {p(a), —~p(b), ¢(c)}. Since neithep nor ¢ are
random, its measure,(W) is 1 (since the empty product i§. However, since the truth value pfc) or —p(c)

in Wy is undefined P, (p(c) or —p(c)) = 0. This is not surprising sincé/, represents a possible set of beliefs
of the agent associated withy in which p(c¢) is simply ignored. (Note that the probability of formuj&c) which
expresses this fact is properly equaljo

Let us now look at prograrfl; obtained fromll; by declaringp to be a random attribute. This timgc) is not
ignored. Instead the agent considers two possibilitiescandtructs two compleﬂepossible worlds:

W1 = {p(a),~p(b), p(c), ~q(c)} and

Wz = {p(a),~p(b),~p(c),~q(c)}.

Obviously Pry, (p(¢) or—p(c)) = 1.

It is easy to check that if all possible worlds of a P-log peogil are complete the®; (I or —1) = 1. This is the
case for instance whdi contains no regular part, or when the regular pafi @onsists of definitions of relations
p1,- .., pn (Where adefinition of a relationp is a collection of rules which determines the truth value tofas
built from p to be true or false in all possible worlds).

Now the definition of probability can be expanded to ASP folasu

Definition 7

[Probability of Formulas]
The probabilitywith respect to prograrl of a formula4, Pr(A4), is the sum of the measures of the possible
worlds ofII in which A is true, i.e.

Pr(A) = Z pr(W):

WA

As usual when convenient we oniltand simply writeP instead ofPr;.

4 A possible worldW of programl1 is calledcompleteif for any ground atormu from the signature ofl, a € W or —a € W.

Probabilistic reasoning with answer sets 19

Example 11

[Dice example continued]
Let T; be the program from Examglé 5. Then, using the measures dethjjuExamplé 10 and the definition of
probability we have, say

P, (roll(dy) = 6) = 6% (1/24) = 1/4.
Py, (roll(dy) = 6 A even(dz)) =3 (1/24) = 1/8. 0

Example 12

[Causal probability equal to]
Consider the P-log prograih, consisting of:

a : boolean.
random a.

pr(a) = 1.

The translation of its logical part(IIy), will consist of the following:
intervene(a) < do(a).

intervene(a) + do(—a).

a Of —a < not intervene(a).

+ obs(a), not a.

+ obs(—a), not —a.

a « do(a).

—a + do(—a).

7(Ip) has two answer setd/; = {a,...} and Wo = {—a,...}. The probabilistic part ofI, will lead to the
following probability assignments.

P(Wi,a) = 1.

P(Wy,—a) = 0.

P(Wa,a) = 1.

P(Wy,—a) = 0.

ﬂHo(Wl) =1

,[LHO(WQ) =0.

/LHO(Wl) =1

/LHO(WQ) =0.

This gives usPr, (a) = 1. O
Example 13

[Guns example continued]

Let II, be the P-log program from Examgdlé 6. It is not difficult to ckebat the program has four possi-
ble worlds. All four contair{ gun(1), gun(2), pull_trigger(1), pull_trigger(2)}. Suppose now thall; contains
{fatal(1), —fatal(2)}, Wa contains{—fatal(1), fatal(2)}, W5 contains{fatal(1), fatal(2)}, and W, contains
{—fatal(1), —fatal(2)}. The first three worlds contaiiz_dead, the last one containsis_dead. Then

20 C. Baral, M. Gelfond and N. Rushton

pirn, (Wh) = 1/6 %5/6 = 5/36.

pirt, (W) = 5/6 % 1/6 = 5/36.

pirt, (W3) = 1/6 % 1/6 = 1/36.

pirt, (Wa) = 5/6 % 5/6 = 25/36.

and hence

P, (is-dead) = 11/36. 0

As expected, this is exactly the intuitive answer from Exlfh A similar argument can be used to compute
probability of rigged from ExampldV.

Even if P satisfies the Kolmogorov axioms it may still contain questiole probabilistic information. For in-
stance a program containing statememt§p) = 1 and pr(—p) = 1 does not seem to have a clear intuitive
meaning. The next definition is meant to capture the classagframs which are logically and probabilistically
coherent.

Definition 8

[Program Coherency]
Let IT be a P-log program and’ be obtained fronil by removing all observations and actiofikis said to be
consistentf II has at least one possible world.

We will say that a consistent progrdmis coherenif

e Ppis defined.
e For every selection rule with the premisek” and every probability atomr, (a(t) = y | B) = v of I, if
Prv (B U K) is not equal td) then Py ops(Byuobs(x) (a(t) = y) = v. O

Coherency intuitively says that causal probabilities gr@responding conditional probabilities. We now give
two examples of programs whose probability functions afdd, but which are not coherent.

Example 14

Consider the prograniss:

a : boolean.
random a.
a

pr(a) =1/2-

andllg:

a: {0,1,2).
random a.
pr(a=0)=pr(a=1)=pr(a=2)=1/2

Neither program is cohereril; has one possible worltd” = {a}. We havein, (W) = 1/2, un, (W) = 1, and
Pri. (a) = 1. Sincepr(a) = 1/2, 115 violates condition (2) of coherency.

IIs has three possible world§g = 0}, {a = 1}, and{a = 2} each with unnormalized probabilit/2. Hence
Pri,(a = 0) = 1/3, which is different frompr(a = 0) which is1/2; thus makindIs incoherent. O

The following two propositions give conditions on the prblligdy atoms of a P-log program which are necessary
for its coherency.

Probabilistic reasoning with answer sets 21

Proposition 2

Let IT be a coherent P-log program without any observations oor&tianda(Z) be an attribute term from the
signature ofll. Suppose thdil contains a selection rule

[r] random(a(?) : {X : p(X)}) < By-

and there is a subset= {1, ..., y,} of the range of(%) such that for every possible world of I satisfying
Bi, we have{Y : W p(Y)} = {v1,...,yn}. Suppose also that for some fixé&l, II contains probability
atoms of the form

prr(a(t) = yi |c B2) = pi-

forall1 < i < n.Then

Pu(BiABy)=0 or > pi=1
=1

Proof: LetIT = T U 0bs(B1) U obs(Bs) and letPr(B; A Be) # 0. From this, together with rule_12 from the
definition of the mapping from sectiofi 311, we have thHthas a possible world with non-zero probability. Hence
by Propositiofi]L Py, satisfies the Kolmogorov Axioms. By Condition 2 of cohergvey havePy, (a(t) = y;) =

pi, forall 1 < i < n. By rule[12 of the definition of- we have that every possible world Bf satisfiesB; .
This, together with ruleS]§.10, ahdl11 from the same defmitioplies that every possible world ®f contains
exactly one literal of the forma(#) = y wherey € c. SincePy; satisfies the Kolmogorov axioms we have that if
{F1,..., F,}is aset of literals exactly one of which is true in every pblesivorld of IT then

S Py(F) =1
=1
This implies that

Zpi = ZPﬁ(a(f) =yi)=1

The proof of the following is similar:

Proposition 3

Let IT be a coherent P-log program without any observations oor&tianda(z) be an attribute term from the
signature ofll. Suppose thdil contains a selection rule

[r] random(a(%) : p) < By-

and there is a subset= {1, ..., y,} of the range of(%) such that for every possible world of I satisfying
By, we have{Y : W p(Y)} = {v1,...,yn}. Suppose also that for some fixé&l, II contains probability
atoms of the form

prr(a(t) = yi |c B2) = pi-
for somel < i < n. Then

Prp(By A By) =0 or ZPiSl
i—1

22 C. Baral, M. Gelfond and N. Rushton

4 Belief Update in P-log

In this section we address the problem of belief updating -e-abhility of an agent to change degrees of belief
defined by his current knowledge baseTlfs a P-log program andl is a collection of statements such tiat U

is coherent we calll anupdateof T'. Intuitively U is viewed as new information which can be added to an existent
knowledge baseT'. Explicit representation of the agent’s beliefs allows danatural treatment of belief updates
in P-log. The reasoner should simply add the new knowledde T and check that the result is coherent. If it is
then the new degrees of the reasoner’s beliefs are givenebfutittion P y. As mentioned before we plan to
expand our work on P-log with allowing its regular part be aggzam in CR-Prolod (Balduccini and Gelfond 2003)
which has a much more liberal notion of consistency than AamsSet Prolog. The resulting language will allow a
substantially larger set of possible updates.

In what follows we compare and contrast different types adatps and investigate their relationship with the
updating mechanisms of more traditional Bayesian appemch

4.1 P-log Updates and Conditional Probability

In Bayesian probability theory the notion of conditionabpability is used as the primary mechanism for updating
beliefs in light of new information. I is a probability measure (induced by a P-log program or ettse), then
the conditional probability”(A|B) is defined as(A A B)/P(B), providedP(B) is not0. Intuitively, P(A|B)

is understood as the probability of a formulawith respect to a background theory and a Betf all of the
agent’s additional observations of the world. The new evidd3 simply eliminates the possible worlds which do
not satisfyB. To emulate this type of reasoning in P-log we first assumgtitteaonly formulas observable by the
agent are literals. (The restriction is needed to stay irsyfimitactic boundaries of our language. As mentioned in
Sectior2 this restriction is not essential and can be editsih by using a syntactically richer version of Answer
Set Prolog.) The next theorem gives a relationship betwksessical conditional probability and updates in P-log.
Recall that if B is a set of literals, adding the observatiels(B) to a progranil has the effect of removing all
possible worlds ofI which fail to satisfyB.

Proposition 4

[Conditional Probability in P-log]
For any coherent P-log prograf, formula A, and a set oE-literals B such thatPr(B) # 0,

Pryoss(By(A) = Pr(AA B)/Pr(B)

In other words,
PT(AlB) = PTUobs(B)(A)

Proof:

Let us order all possible worlds df in such a way that

{wy - - - w;} is the set of all possible worlds df that contain bot and B,
{wy - - - w;} is the set of all possible worlds dF that containB, and

{wy - - - w, } is the set of all possible worlds df.

Programs of Answer Set Prolog are monotonic with respecbistcaints, i.e. for any prograifi and a set of
constraintsC, X is an answer set dil U C iff it is an answer set oP satisfyingC'. Hence the possible worlds of
T U obs(B) will be all and only those off" that satisfyB. In what follows, we will writep and i for o andgr,

Probabilistic reasoning with answer sets 23
respectively. Now, by the definition of probability in P-ld§ Pr(B) # 0, then
121 ﬂ(wi)
S i Alwi)
Now if we divide both the numerator and denominator by themadizing factor forT, we have

o iw) Y w3 Alw) Y p(w) _ Pr(AAB)

iy aw) iy pwi)/ Yy lw) iy p(ws) Pr(B)

This completes the proof. O

PTUobs(B)(A) =

Example 15

[Dice example: upgrading the degree of belief]

Let us consider prograr; from Examplé B and a new observatiewen (ds,). To see the influence of this new evi-
dence on the probability af, showing at we can comput®r, (roll(dz) = 4) whereTy = Ty U{obs(even(dz))}.
Addition of the new observations eliminates those possilddds of 7} in which the score ofl; is not even.Ts
has18 possible worlds. Three of them, containingl(d;) = 6, have the unnormalized probabiliti€g24 each.
The unnormalized probability of every other possible wasld /40. Their measures are respectivalyl2 and
1/20, and hencePr, (roll(dz) = 4) = 1/3. By Propositior ¥ the same result can be obtained by conmgutin
standard conditional probabilit} 7, (roll(dz) = 4|even(dy)). O

Now we consider a number of other types of P-log updates whilthake us beyond the updating abilities of the
classical Bayesian approach. Let us start with an updafeé mf

B={l,....l,}- (14)

wherel’s are literals.

To understand a substantial difference between updéatibg obs({) and by a fact one should consider the ASP
counterpart-(II) of II. The first update correspond to expandir{@l) by the deniak— not [while the second
expands-(IT) by the factl. As discussed in Appendix Ill constraints and facts plajedént roles in the process
of forming agent’s beliefs about the world and hence one cged thatll U {obs(l)} andIl U {I/} may have
different possible worlds.

The following examples show that it is indeed the case.

Example 16

[Conditioning onobs(1) versus conditioning ol
Consider a P-log prograrfi

p: {yla yQ}
q : boolean.

random(p).
g & not g,p = Y.
¢ =P =Y

It is easy to see that no possible worldBfcontainsg and hencePr(¢) = 0. Now consider the se® = {¢,p =

y1 } of literals. The progranf” U obs(B) has no possible worlds, and hence Mg,;5(5)(¢) is undefined. In
contrast,T U B has one possible world,g,p = y1,...} and hencePrup(q) = 1. The updateB allowed the
reasoner to change its degree of beliefiimtom 0 to 1, a thing impossible in the classical Bayesian framewark.

24 C. Baral, M. Gelfond and N. Rushton

Note that since forl" and B from Exampld_1b we have thdt;(B) = 0, the classical conditional probability
of A given B is undefined. Hence from the standpoint of classical prdinalkixample[16 may not look very
surprising. Perhaps somewhat more surprisingly,..s(z)(4) and Pryp(A) may be different even when the
classical conditional probability of given B is defined.

Example 17

[Conditioning onobs(1) versus conditioning ol
Consider a P-log prograrfi

p: {yla yQ}
q : boolean.

random(p).
q<P="Mh.
—q < not q.

It is not difficult to check that progranT’ has two possible worldsi¥;, containing{p = w1, ¢} and Wa,
containing{p = 2, ~¢}. Now consider an updatd U obs(q). It has one possible world}¥/;. Program
T U {q} is however different. It has two possible world8/; and W5 where W3 contains{p = s, q};

Brufqy(Wi) = prugey(Ws) = 1/2. This implies thatPryps(q) (P = y1) = 1 while Pry(p = y1) = 1/2.
O

Note that in the above cases the new evidence containedad fitemed by an attribute;, not explicitly defined as
random. Adding a fact(¢) = y to a program for whichu(t) is random in some possible world will usually cause
the resulting program to be incoherent.

4.2 Updates Involving Actions

Now we discuss updating the agent’s knowledge by the eftdaisliberate intervening actions, i.e. by a collection
of statements of the form

do(B) = {do(a(t) = y) : (a(f) =y) € B} (15)

As before the update is simply added to the background th&tey results however are substantially different
from the previous updates. The next example illustratesliffierence.

Example 18

[Rat Example]
Consider the following progrant;, representing knowledge about whether a certain rat withesenic today, and
whether it will die today.

arsenic, death : boolean:

[1] random(arsenic)-

[2] random(death)-
pr(arsenic) =0 - 4

pr(death |, arsenic) =0 - 8-
pr(death |, —arsenic) = 0-01-

The above program tells us that the rat is more likely to diayoif it eats arsenic. Not only that, the intuitive

semantics of theratoms expresses that the rat’'s consumption of arseni@sanformation about the cause of his
death (as opposed to, say, the rat's death being informaligat the causes of his eating arsenic).

Probabilistic reasoning with answer sets 25

An intuitive consequence of this reading is that seeing #talie raises our suspicion that it has eaten arsenic,
while killing the rat (say, with a pistol) does not affect alegree of belief that arsenic has been consumed. The
following computations show that the principle is refleciethe probabilities computed under our semantics.

The possible worlds of the above program, with their unndized probabilities, are as follows (we show only
arsenia@anddeatHiterals):

wy : {arsenic, death} fi(wn) =0-4%0-8=0-32
wy : {arsenic, ~death}- fi(wg) =0-4%0-2=0-08

ws : {—arsenic, death}- fi(ws) =0-6%0-01=0-06
wq : {—arsenic, ~death}- fi(wy) =0-6%0-99 =0-54

Since the unnormalized probabilities add up to 1, the rag@emeasures are the same as the unnormalized prob-
abilities. Hence,

Pr(arsenic) = p(wl) + p(w3) =0-32+0-08=0-4
To compute probability ofirsenic after the observation afeath we consider the prografi, = TU{obs(death)}

The resulting program has two possible worldgs,andws, with unnormalized probabilities as above. Normaliza-
tion yields

Prp, (arsenic) =0-32/(0-32+0-06) =0-8421
Notice that the observation of death raised our degree @fftibhat the rat had eaten arsenic.

To compute the effect ofo(death) on the agent’s belief imrsenic we augment the original program with the
literal do(death) The resulting program7», has two answer sets; and ws. However, the action defeats the
randomness of death so that has unnormalized probability: 4 andws has unnormalized probability: 6. These
sum to one so the measures are @lsd and0 - 6 respectively, and we get

Prp,(arsenic) =0-4

Note this is identical to the initial probabilit# (arsenic) computed above. In contrast to the case when the effect
(that is, death) was passively observed, deliberatelgbrgnabout the effect did not change our degree of belief
about the propositions relevant to the cause.

Propositions relevant to a cause, on the other hand, gival egidence for the attendant effects whether they are
forced to happen or passively observed. For example, if we fiee rat arsenic, this increases its chance of death,
just as if we had observed the rat eating the arsenic on its dha conditional probabilities computed under our
semantics bear this out. Similarly to the above, we can ceenpu

Pp(death) =0-38

PTU{dU(arsenic)}(deCLth) =0-8
PTU{obs(arsenic)}(death) =0-8]

Note that even though the idea of action based updates coomadfearl, our treatment of actions is technically
different from his. In Pearl’s approach, the semantics efdhoperator are given in terms of operations on graphs
(specifically, removing from the graph all directed linkadéng into the acted-upon variable). In our approach the
semantics oflo are given by non-monotonic axionid (9) abdl(10) which areothiced by our semantics as part
of the translation of P-log programs into ASP. These axioregriggered by the addition afo(a(?) = y) to the
program.

26 C. Baral, M. Gelfond and N. Rushton

4.3 More Complex Updates
Now we illustrate updating the agent’s knowledge by morememregular rules and by probabilistic information.

Example 19

[Adding defined attributes]
In this example we show how updates can be used to expandc¢hbwary of the original program. Consider for
instance a prograrfi; from the die examplel5. An update, consisting of the rules

maz_score : boolean:
maz_score < score(d;) = 6, score(dz) = 6.

introduces a new boolean attributeax_score, which holds iff both dice roll the max score. The probabitif
maz_score is equal to the product of probabilities &fore(d;) = 6 andscore(ds) = 6. O

Example 20

[Adding new rules]
Consider a P-log prograrfi

d ={1,2}.
p : d — boolean.
random(p(X)).

The program has four possible world8; = {p(1), p(2)}, Wa = {-p(1),p(2)}, W5 = {p(1),—p(2)}, Wy =
{-p(1),-p(2)}. It is easy to see thad®r(p(1)) = 1/2. What would be the probability gf(1) if p(1) andp(2)
were mutually exclusive? To answer this question we can ete®r, 5 (p(1)) where

B ={=p(1) < p(2); —p(2) < p(1)}
SinceT U B has three possible world&/>, W5, Wy, we have thaPr5(p(1)) = 1/3. The new evidence forced
the reasoner to change the probability frop2 to 1/3. O

The next example shows how a new update can force the reasowiew a previously non-random attribute as
random.
Example 21

[Adding Randomness]
ConsiderT consisting of the rules:

a1, az, az : boolean.
ap < a2
as <— not —as-

The program has one possible world, = {a;, az}.
Now let us updateél” by B of the form:

—ag-
random(ay) —ag-

The new program?’ U B, has two possible worlds
Wy = {al, ﬁag} and
Wy = {—a1,~az}

Probabilistic reasoning with answer sets 27

The degree of belief im; changed from to 1/2. O

Example 22

[Adding Causal Probability]
Consider program§? consisting of the rules:

a : boolean.
random(a).

and T consisting of the rules:

a : boolean.
random(a).

pr(a) =1/2.

The programs have the same possible worlds, = {p} and W, = {-p}, and the same probability functions
assigningl /2 to W, and Ws. The programs however behave differently under simple igoda= {pr(a) = 1/3}.
The updated’; simply assigns probability/3 and2/3 to W; and I, respectively. In contrast the attempt to apply
the same update t@> fails, since the resulting program violates Condifion 2vff@.2. This behavior may shed
some light on the principle of indifference. According[to&hd Teng 2001) “One of the oddities of the principle of
indifference is that it yields the same sharp probabilitiesa pair of alternatives about which we know nothing at
all as it does for the alternative outcomes of a toss of a tiginty balanced and tested coin”. The former situation
is reflected inT; where principle of indifference is used to assign defawbpbilities. The latter case is captured
by T», wherepr(a) = 1/2 is the result of some investigation. Correspondingly theaipU of T is viewed as
simple additional knowledge - the result of study and testirhe same update t6, contradicts the established
knowledge and requires revision of the program. O

It is important to notice that an update in P-log cannot it original background information. An attempt to
add—a to a program containing or to addpr(a) = 1/2 to a program containingr(a) = 1/3 would result in

an incoherent program. It is possible to expand P-log tonafloch new information (referred to as “revision” in
the literature) but the exact revision strategy seems tewmigjon particular situations. If the later information is
more trustworthy then one strategy is justified. If old and/meformation are “equally valid”, or the old one is
preferable then other strategies are needed. The classificd such revisions and development of the theory of
their effects is however beyond the scope of this paper.

5 Representing knowledge in P-log

This section describes several examples of the use of Retdgrimalization of logical and probabilistic reasoning.
We do not claim that the problems are impossible to solveawitiP-log; indeed, with some intelligence and effort,
each of the examples could be treated using a number of elitféormal languages, or using no formal language
at all. The distinction claimed for the P-log solutions isttthey arise directly from transcribing our knowledge
of the problem, in a form which bears a straightforward rdslamce to a natural language description of the same
knowledge. The “straightforwardness” includes the faat s additional knowledge is gained about a problem, it
can be represented by adding to the program, rather than Hifyimg existing code. All of the examples of this
section have been run on our P-log interpreter.

28 C. Baral, M. Gelfond and N. Rushton

5.1 Monty Hall problem

We start by solving the Monty Hall Problem, which gets its mainom the TV game show hosted by Monty Hall
(we follow the description from http://www.io.comkmellis/monty.htmil). A player is given the opportunity to
select one of three closed doors, behind one of which thexrpiize. Behind the other two doors are empty rooms.
Once the player has made a selection, Monty is obligated ¢a ope of the remaining closed doors which does
not contain the prize, showing that the room behind it is gnipé then asks the player if he would like to switch
his selection to the other unopened door, or stay with higiral choice. Here is the problem: does it matter if he
switches?

The answer is YES. In fact switching doubles the player'sacleato win. This problem is quite interesting, be-
cause the answer is felt by most people — often including ematiticians — to be counter-intuitive. Most people
almost immediately come up with a (wrong) negative answeraae not easily persuaded that they made a mis-
take. We believe that part of the reason for the difficultydme disconnect between modeling probabilistic and
non-probabilistic knowledge about the problem. In P-lag tlisconnect disappears which leads to a natural cor-
rect solution. In other words, the standard probabilityrfatisms lack the ability to explicitly represent certain
non-probabilistic knowledge that is needed in solving fhrizblem. In the absence of this knowledge, wrong con-
clusions are made. This example is meant to show how P-logpearsed to avoid this problem by allowing us to
specify relevant knowledge explicitly. Technically thisdone by using a random attributgen with the dynamic
range defined by regular logic programming rules.

The domain contains the set of three doors and three O-atitipudes, selected, open and prize. This will be
represented by the following P-log declarations (the nuhaee not part of the declaration; we number statements
so that we can refer back to them):

1- doors ={1,2,3}
2 - open, selected, prize : doors-

The regular part contains rules that state that Monty can apg door to a room which is not selected and which
does not contain the prize.

3. —can_open(D) + selected = D-
4- —=can_open(D) + prize = D-
5. can_open(D) + not —can_open(D)-

The first two rules are self-explanatory. The last rule, Wwhises both classical and default negations, is a typical
ASP representation of the closed world assumpfion (Re&&€&)— Monty can open any door except those which
are explicitly prohibited.

Assuming the player selects a door at random, the probtibilidormation about the three attributes of doors can
be now expressed as follows:

6- random(prize)-
7 random(selected)-
8- random(open : {X : can_open(X)})-

Notice that rule (8) guarantees that Monty selects onlydldmors which can be opened according to rules (3)—(5).
The knowledge expressed by these rules (which can be eedr&rm the specification of the problem) is often
not explicitly represented in probabilistic formalismadiéng to reasoners (who usually do not realize this) totinsis
that their wrong answer is actually correct.

The P-Log progranil,,..:y0 consisting of the logical rules (1)-(8) represents our kieolge of the problem do-
main. It has the following 12 possible worlds:

http://www.io.com/~kmellis/monty.html

Probabilistic reasoning with answer sets 29

W1 = {selected = 1, prize =1, open = 2, - - -
Wy = {selected = 1, prize = 1, open = 3, - - -
W5 = {selected = 1, prize = 2, open = 3, - - -
Wy = {selected = 1, prize = 3, open = 2, - - -
W5 = {selected = 2, prize =1, open = 3, - - -
Ws = {selected = 2, prize = 2, open =1, - - -
Wy = {selected = 2, prize = 2, open = 3, - - -
Ws = {selected = 2, prize = 3, open = 1, - - -
Wy = {selected = 3, prize = 1, open = 2, - -
Wio = {selected = 3, prize = 2, open = 1,- - -}.
Wh1 = {selected = 3, prize = 3, 0pen = 1,- - -}.
Wio = {selected = 3, prize = 3, open = 2,- - -}.

My A e A A e e

According to our definitions they will be assigned varioushability measures. For instance/ected has three
possible values in each;, none of which has assigned probabilities. Hence, accgridirihe definition of the
probability of an atom in a possible world from Sectionl 3.2,

P(W;, selected = j) =1/3

for eachi and;. Similarly for prize

P(W;, prize =3j) =1/3

ConsiderW;. Sincecan_open(1) ¢ W; the atomopen = 1 is not possible ini#; and the corresponding prob-
ability P(Wy, open = 1) is undefined. The only possible valuesaqkr in W; are2 and3. Since they have no
assigned probabilities

P(Wh, open = 2) = PD(W1, open =2) =1/2

P(Wh, open = 3) = PD(W1, open = 3) =1/2

Now considerW,. W, containscan_open(2) and no othercan_open atoms. Hence the only possible value of
open in Wy is 2, and therefore

P(Wy, open = 2) = PD(Wy, open =2) =1

The computations of other values Bf W;, open = j) are similar.

Now to proceed with the story, first let us eliminate an orthrog problem of modeling time by assuming that we
observed that the player has already selected tard Monty opened do@rrevealing that it did not contain the
prize. This is expressed as:

obs(selected = 1) - obs(open =2) - obs(prize # 2)-

Let us refer to the above P-log progranig,+,1. Because of the observatiols,..,1 has two possible worlds
Wy, and Wy: the first containingrize = 1 and the second containingize = 3. It follows that

a(Wy) = P(Wh, selected = 1) x P(Wh, prize = 1) x P(W1, open =2) =1/18

(Wy) = P(Wh, selected = 1) x P(Wh, prize = 3) x P(W1, open =2) =1/9

_ /18 _
w(Wh) = 173t57s = 1/3

1/9
w(Wy) = 1/18/+1/9 =2/3

P prize =1) = p(Wy) =1/3

monin (

P prize = 3) = p(Wy) =2/3

—

30 C. Baral, M. Gelfond and N. Rushton

Changing doors doubles the player’s chance to win.

Now consider a situation when the player assumes (eithesctaunsly or without consciously realizing it) that
Monty could have opened any one of the unopened doors (imgushe which contains the prize). Then the
corresponding program will have a new definitioncaf._open. The rules (3-5) will be replaced by

—can_open(D) + selected = D-
can_open(D) + not —can_open(D)-

The resulting programil,, ,:,2 Will also have two possible worlds containipgize = 1 andprize = 3 respec-
tively, each with unnormalized probability of 1/18, andréfere Py, (prize = 1) = 1/2 and Py
3) = 1/2. In that case changing the door will not increase the prdibpabf getting the prize.

monty2 (PTIZE =

Programil,,...,1 has no explicit probabilistic information and so the polesilsults of each random selection are
assumed to be equally likely. If we learn, for example, thatig a choice between opening do@rand3, Monty
opens dooe four times out of five, we can incorporate this informatiorntbg following statement:

9. pr(open =2 |. can_open(2), can_open(3)) = 4/5

A computation similar to the one above shows that changimggstill increases the players chances to win. Of
course none of the above computations need be carried owrtal fihe interpreter will do them automatically.

In fact changing doors is advisable as long as each of thdablaidoors can be opened with some positive
probability. Note that our interpreter cannot prove thiegal result even though it will give proper advice for any
fixed values of the probabilities.

The problem can of course be generalized to an arbitrary pumlpf doors simply by replacing rule (1) with
doors = {1,...,n}.

5.2 Simpson’s paradox
Let us consider the following story frorn_(Pearl 2000): A patiis thinking about trying an experimental drug and

decides to consult a doctor. The doctor has tables of theveegoates that have been observed among males and
females, taking and not taking the drug.

Males:
fraction.of_population recoveryate
drug 3/8 60%
- drug 1/8 70%
Females:

fraction.of_population recoveryate
drug 1/8 20%
- drug 3/8 30%

What should the doctor’s advice be? Assuming that the paiies male, the doctor may attempt to reduce the
problem to checking the following inequality involving skical conditional probabilities:

P(recover|male, ~drug) < P(recover|male, drug) (16)

Probabilistic reasoning with answer sets 31

The corresponding probabilities, if directly calculateaii the tabI@. are0 - 7 and0 - 6. The inequality fails, and
hence the advice is not to take the drug. A similar argumeswshihat a female patient should not take the drug.

But what should the doctor do if he has forgotten to ask theped sex? Following the same reasoning, the doctor
might check whether the following inequality is satisfied:

P(recover|—drug) < P(recover|drug) (7)

This will lead to an unexpected result(recovery|drug) = 0 - 5 while P(recovery|—=drug) = 0 - 4. The drug
seems to be beneficial to patients of unknown sex — thoughasingiasoning has shown that the drug is harmful
to the patients of known sex, whether they are male or female!

This phenomenon is known as Simpson’s Paradox: condiipomimA may increase the probability @ among

the general population, while decreasing the probabifiti# @n every subpopulation (or vice-versa). In the current
context, the important and perhaps surprising lesson isclhasical conditional probabilities do not faithfully
formalize what we really want to knowvhat will happen if we do X (Pearl 2000) Pearl suggests a solution
to this problem in which the effect of deliberate actidnon conditionC is represented by (C|do(A4)) — a
guantity defined in terms of graphs describing causal melatibetween variables. Correct reasoning therefore
should be based on evaluating the inequality

P(recover|do(—drug)) < P(recover|do(drug)) (18)

instead of[(1]7); this is also what should have been doné& &)t (1

To calculate[(IB) using Pearl's approach one needs a causidlrand it should be noted that multiple causal
models may be consistent with the same statistical datag BHows us to express causality and we can determine
the probabilityPr; of a formulaC' given that actiom is performed by computin@r ¢ 4o(4); (C).

Using the tables and added assumption about the directicmxsblit@ between the variables, we have the values
of the following causal probabilities:

pr(male) =0 - 5.

pr(recover |, male, drug) =0 - 6.
pr(recover |, male, ~drug) =0-7.
pr(recover |, =male, drug) = 0 - 2.
pr(recover |, =male, ~drug) =0 - 3.
pr(drug | male) =0 - 75.
pr(drug |, ~male) = -25.

These statements, together with declarations:

male, recover, drug : boolean
[1] random(male).

[2] random(recover).

[3] random(drug).

constitute a P-log prograr, that formalizes the story.

The program describes eight possible worlds containinguaralues of the attributes. Each of these worlds and
their unnormalized and normalized probabilities is cadted below.

5 If the tables are treated as giving probabilistic informatithen we get the followingP (male) = P(—male) = 0 - 5. P(drug) =
P(—drug) = 0 - 5. P(recover | male, drug) = 0 - 6. P(recover | male,~drug) = 0 - 7. P(recover | —-male, drug) = 0 - 2.
P(recover | =male, ~drug) =0 - 3. P(drug | male) = 0-75. P(drug | —male) = 0 - 25.

6 A different assumption about the direction of causality riead to a different conclusion.

32 C. Baral, M. Gelfond and N. Rushton

W1 = {male, recover, drug}. i(W1) =0-5x0-6x0-75=0-225. u(Wy) =0-225.

Wo = {male, recover, —drug}. f(Wa) =0-5x0-7x0-75=0-2625. u(Ws) =0 - 2625.
W5 = {male, —recover, drug}. f(W3) =0-5x0-4x0-75=0-15. u(W5) =0 15.

Wy = {male, —recover, —drug}. i)(Wy) =0-5x0-3x0-75=0-1125. u(Wy) = 0-1125.
Ws = {—male, recover, drug}. j(W5) =0-5x0-2x0-25=0-025. u(Ws) =0 - 025.

Ws = {—male, recover, —drug}. i(Ws) =0-5x0-3x0-35=0-0375. u(Ws) = 0-0375.
Wy = {—male, ~recover, drug}. f(W7) =0-5x0-8x0-25=0-1. u(W7) =0-1.

Ws = {—male, ~recover, ~drug}. i(Ws) =0-5x0-7x0-25=0-0875. u(Wg) = 0- 0875.

Now let us computePry, (recover) and Py, (recover) respectively, wher@l; = II U {do(drug)} andIly =
ITU {do(—drug)}.

The four possible worlds dff; and their unnormalized and normalized probabilities af@kswvs:

W{ = {male, recover, drug}. f(W{) =0-5x0-6x1=0-3. u(W/)=0-3.

W3 = {male, —recover, drug}. f(W4) =0-5x0-4x1=0-2. u(W4) =0-2.

W{ = {—male, recover, drug}. f(W{) =0-5x0-2x1=0-1.u(W))=0-1

W, = {—male, —recover, drug}. f(W7) =0-5x0-8x0-1=0-4. u(W7)=0-4.

From the above we obtaiR, (recover) = -4.
The four possible worlds dfl; and their unnormalized and normalized probabilities af@kswvs:

W3 = {male, recover, ~drug}. f(W4) =0-5x0-7x1=0-35. u(Wy) =0-35.
W, = {male, —recover, ~drug}. f(W;) =0-5x0-3x1=0-15. u(Wj) =0-15.
W¢ = {—male, recover, ~drug}. f(W¢) =0-5x0-3x1=0-15. u(W{) =0 15.
W§ = {—male, ~recover, —drug}. f(Wg) =0-5x0-7x1=0-35. u(W§) =0-35.

From the above we obtaiA, (recover) = -5. Hence, if one assumes the direction of causality that wenasd,
it is better not to take the drug than to take the drug.

Similar calculations also show the following:

PHU{obs(male),do(dTug)}(Tecover) =06
PHU{obs(male),do(ﬂdrug)}(recovelr) =0-7

PHU{obs(ﬂmale),do(drug)}(recovelr) =0-2
PHU{obs(ﬂmale),do(—\dTug)}(Tecover) =0-3

l.e., if we know the person is male then it is better not to tiddeedrug than to take the drug, the same if we know

the person is female, and both agree with the case when wetdoow if the person is male or female.

The example shows that queries of the form “What will happevel do X ?” can be easily stated and answered
in P-log. The necessary P-log reasoning is nonmonotoniisapased on rule§{9) and (10) from the definition of

7(1I).

5.3 A Moving Robot

Now we consider a formalization of a problem whose origireabkion, not containing probabilistic reasoning, first

appeared in (Iwan and Lakemeyer 2002).

There are rooms, say, 1, r» reachable from the current position of a robot. The roomsbeawpen or closed. The

robot cannot open the doors. It is known that the robot néwigas usually successful. However, a malfunction

can cause the robot to go off course and enter any one of theropms.

Probabilistic reasoning with answer sets 33

We want to be able to use our formalization for correctly agrsmg simple questions about the robot’s behavior
including the following scenario: the robot moved towaréopoomr; but found itself in some other room. What
room can this be?

As usual we start with formalizing this knowledge. We neeadlitiitial and final moments of time, the rooms, and
the actions.

time = {0,1} rooms = {ry, r1, 12}
We will need actions:

go_in : rooms — boolean-

break : boolean.

ab : boolean.

The first action consists of the robattemptingto enter the roonR at time ste. The second is an exogenous
breaking action which may occur at moménand alter the outcome of this attempt. In what follows, (fags
indexed) variable® will be used for rooms.

A state of the domain will be modeled by a time-dependenibati, in, and a time independent attribusgen.
(Time dependent attributes and relations are often reféorasfluents.

open : rooms — boolean-
mn : time — rooms:
The description of dynamic behavior of the system will beegiby the rules below:

First two rules state that the robot navigation is usuallycessful, and a malfunctioning robot constitutes an
exception to this default.

1.in(1) = R < go_in(R), not ab-
2. ab < break-

The random selection rule (3) below plays a role of a (nomheinistic) causal law. It says that a malfunctioning
robot can end up in any one of the open rooms.

3.[r] randonfin(1) : {R : open(R)}) < go_in(R), break-
We also need inertia axioms for the fluent

4a.in(1) = R + in(0) = R, not —in(1l) = R-
4b.in(1) # R + in(0) # R, not in(1) = R-

Finally, we assume that only closed doors will be specifietthéninitial situation. Otherwise doors are assumed to
be open.

5. open(R) < not —open(R)-

The resulting prograni]y, completes the first stage of our formalization. The prognaibe used in conjunction
with a collectionX of atoms of the formn(0) = R, —open(R), go_in(R), break which satisfies the following
conditions:X contains at most one atom of the fogm(0) = R (robot cannot be in two rooms at the same time);
X has at most one atom of the forgm_in(R) (robot cannot move to more than one roodi)does not contain a
pair of atoms of the formhopen(R), go_in(R) (robot does not attempt to enter a closed room); Zndoes not
contain a pair of atoms of the formopen(R), in(0) = R (robot cannot start in a closed room). A sétatisfying
these properties will be normally referred to agadid inputof I1j.

34 C. Baral, M. Gelfond and N. Rushton

Given an inputX; = {go_in(rg)} the programll, U X; will correctly concludein(1) = ry. The input
X = {go_in(ry), break} will result in three possible worlds containirig(1) = rg, in(1) = r andin(l) = ry
respectively. If, in addition, we are givefmpen(rs) the third possible world will disappear, etc.

Now let us expandI, by some useful probabilistic information. We can for ins&wonsideiI; obtained from
Iy by adding:

8. prr-(in(1) = R |. go_in(R), break) =1/2-

(Note that for any valid inpuk’, Condition 3 of Sectioh 312 is satisfied fi, U X , since rooms are assumed to
be open by default and no valid input may contaispen(R) andgo_in(R) for any R.) ProgramT; = II; U X;
has the unique possible world which containgl) = ry. Hence,Pr, (in(1) = rp) = 1.

Now considerT, = II; U Xa. It has three possible world$¥, containingin(1) = ry, and Wy, W5 containing
in(1) = rp andin(1) = r, respectivelyPr, (Wp) is assigned a probability af/2, while P, (Wy) = Prp, (W) =

1/4 by default. Therefordr, (in(1) = ry) = 1/2. Here the addition obreak to the knowledge base changed the
degree of reasoner’s belief in(1) = r, from 1 to 1/2. This is not possible in classical Bayesian updating, for
two reasons. First, the prior probability éfeak is O and hence it cannot be conditioned upon. Second, the prio
probability ofin(1) = ry is 1 and hence cannot be diminished by classical conditipfimaccount for this change

in the classical framework requires the creation of a nevbabdistic model. However, each model is a function
of the underlying background knowledge; and so P-log allogv represent the change in the form of an update.

5.4 Bayesian squirrel

In this section we consider an example frgm (Hilborn and Maid§97) used to illustrate the notion of Bayesian
learning. One common type of learning problem consists tgfctiag from a set of models for a random phe-
nomenon by observing repeated occurrences of the phenom&he Bayesian approach to this problem is to
begin with a “prior density” on the set of candidate modeld apdate it in light of our observations.

As an example, Hilborn and Mangel describe the Bayesianrgui he squirrel has hidden its acorns in one of
two patches, say Patch 1 and Patch 2, but can’t remember witfietsquirrel is 80% certain the food is hidden in
Patch 1. Also, it knows there is a 20% chance of finding fooddagrwhen it looking in the right patch (and, of

course, a 0% probability if it's looking in the wrong patch).

To represent this knowledge in P-log’s progrBimve introduce sorts
patch = {pl, p2}.

day ={1...n}.

(wheren is some constant, say)

and attributes

hidden_in : patch.

found : patch * day — boolean.

look : day — patch.

Attribute hidden_in is always random. Hence we include

[r1] random(hidden_in).

found is random only if the squirrel is looking for food in the rigbaitch, i.e. we have

Probabilistic reasoning with answer sets 35

[r2] random(found (P, D)) + hidden_in = P, look(D) = P.

The regular part of the program consists of the closed wasdiaption forfound:
—found(P, D) < not found(P, D).

Probabilistic information of the story is given by statertzen

prr, (hidden_in = p1) =0 - 8.

pry, (found(P,D)) =0-2.

This knowledge, in conjunction with description of the sgeiis activity, can be used to compute probabilities of
possible outcomes of the next search for food.

Consider for instance progralfy = IT U {do(look(1) = p1)}. The program has three possible worlds
Wi = {look(1) = p1, hidden_in = py, found(p1,1),...},

Wy = {look(1) = py, hidden_in = py, ~found(p1,1),...},

W4 = {look(1) = py, hidden_in = py, —~found(p1,1),...},

with probability measureg(W;) = 0 - 16, u(W) = 0- 64, u(Ws3) =0 - 2.

As expected

P, (hidden_in = p1) = 0- 8, and

P, (found(p1,1)) = 0 - 16.

Suppose now that the squirrel failed to find its food durirgfibst day, and decided to continue her search in the
first patch next morning.

The failure to find food in the first day should decrease therse]is degree of belief that the food is hidden in
patch one, and consequently decreases her degree of beliefhte will find food by looking in the first patch
again. This is reflected in the following computation:

LetIly = II; U {obs(—found(p1, 1)), do(look(2) = p1)}.

The possible worlds dfl, are:

W = W U {hidden_in = py, look(2) = p1, found(p1,2)...},

W3 = W U {hidden_in = py, look(2) = p1, ~found(p1,2) ...},

W32 = W U {hidden_in = pa, look(2) = p1, ~found(p1,2)...}.

whereW = {look(1) = p1, ~found(p1,1)}

Their probability measures are

p(W2) =128/ -84 = 152, u(W2) = -512/ - 84 = -61, u(W) = -2/ - 84 = -238.
Consequently,

P, (hidden_in = py) = 0 - 762, and Pr, (found(p1,2)) = 0 - 152, and so on.

After a number of unsuccessful attempts to find food in thé fiasch the squirrel can come to the conclusion that
food is probably hidden in the second patch and change hestsstategy accordingly.

Notice that each new experiment changes the squirrel'sgiibstic model in a non-monotonic way. Thatis, the set

36 C. Baral, M. Gelfond and N. Rushton

of possible worlds resulting from each successive experisenot merely a subset of the possible worlds of the
previous model. The program however is changed only by tbgiad of new actions and observations. Distinctive
features of P-log such as the ability to represent obsemnvatind actions, as well as conditional randomness, play
an important role in allowing the squirrel to learn new proiiatic models from experience.

For comparison, let’s look at a classical Bayesian solutibtihe squirrel has looked in patch 1 on day 1 and not
found food, the probability that the food is hidden in pataah be computed as follows. First, by Bayes Theorem,

—find(1)| hidden_in = py) * P(hidden_in = p1)
P(=found(p1,1))

P(hidden = 1|-found(py,1)) = P
The denominator can then be rewritten as follows:
P(~find(1))
= P(=found(p1,1) U hidden_in = 1) + P(—found(p1,1) U hidden_in = ps)
= P(—found(p1,1)| hidden_in = p,) * P(hidden_in = p,) + P(hidden_in = py)
=0-8%0-8+0-2
=0-84
Substitution yields

P(hidden_in = p1| —found(p1,1)) = (0-8%0-8)/0-84 =0-762

Discussion

Note that the classical solution of this problem does notaiarany formal mention of the actidaok(2) = p;.

We must keep this informal background knowledge in mind wbemstructing and using the model, but it does

not appear explicitly. To consider and compare distindibacsequences, for example, would require the use of
several intuitively related but formally unconnected miedin Causal Bayesian nets (or P-log), by contrast, the
corresponding programs may be written in terms of one anoiag the do-operator.

In this example we see that the use of the do-operator is nafyghecessary. Even if we were choosing between
sequences of actions, the job could be done by Bayes theooeniined with our ability to juggle several intu-
itively related but formally distinct models. In fact, if ware very clever, Bayes Theorem itself is not necessary
— for we could use our intuition of the problem to constructeavrprobability space, implicitly based on the
knowledge we want to condition upon.

However, though not necessary, Bayes theorem is very usehdcause it allows us to formalize subtle reasoning
within the model which would otherwise have to be performed in tl@imal process otreatingthe model(s).
Causal Bayesian nets carry this a step further by allowingpdsrmalize interventions in addition to observa-
tions, and P-log yet another step by allowing the formaiiradf logical knowledge about a problem or family of
problems. At each step in this hierarchy, part of the infdrpmacess of creating a model is replaced by a formal
computation.

As in this case, probabilistic models are often most easscdbed in terms of the conditional probabilities of
effects given their causes. From the standpoint of tratktiprobability theory, these conditional probabilities a
viewed as constraints on the underlying probability spbca learning problem like the one above, Bayes Theorem
can then be used to relate the probabilities we are givendsetlve want to know: namely, the probabilities of
evidence-given-models with the probabilities of modealeg-evidence. This is typically done without describing
or even thinking about the underlying probability spaceause the given conditional probabilities, together with
Bayes Theorem, tell us all we need to know. The use of Bayesréhein this manner is particular to problems
with a certain look and feel, which are loosely classifiedBayesian learning problems”.

Probabilistic reasoning with answer sets 37

From the standpoint of P-log things are somewhat differelete, all probabilities are defined with respect to
bodies of knowledge, which include models and evidence énsthgle vehicle of a P-log program. Within this
framework, Bayesian learning problems do not have suchtadise quality. They are solved by writing down
what we know and issuing a query, just like any other probl8mce P-log probabilities satisfy the axioms of
probability, Bayes Theorem still applies and could be usefaalculating the P-log probabilities by hand. On the
other hand, it is possible and even natural to approach grebéems in P-log without mentioning Bayes Theorem.
This would be awkward in ordinary mathematical probahilithere the derivation of models from knowledge is
considerably less systematic.

5.5 Maneuvering the Space Shuttle

So far we have presented a number of small examples to dhestrarious features of P-log. In this section we
outline our use of P-log for an industrial size applicatidiagnosing faults in the reactive control system (RCS) of
the Space Shuttle.

To put this work in the proper perspective we need to brieflscdbe the history of the project. The RCS actuates
the maneuvering of the shulttle. It consists of fuel and @ddtanks, valves, and other plumbing needed to provide
propellant to the shuttle’s maneuvering jets. It also idelsielectronic circuitry, both to control the valves in the
fuel lines, and to prepare the jets to receive firing commamdgerform a maneuver, Shuttle controllers (i.e.,
astronauts and/or mission controllers) must find a sequeincemmands which delivers propellant from tanks to
a proper combination of jets.

Answer Set Programming (without probabilities) was susfigly used to design and implement the decision
support system USA-Adviser (Balduccini et al. 2001; Bakdoret al. 2002), which, given information about the
desired maneuver and the current state of the system (inglitd known faults), finds a plan allowing the con-
trollers to achieve this task. In addition the USA-Advissrdapable of diagnosing an unexpected behavior of
the system. The success of the project hinged on Answer SkigRr ability to describe controllers’ knowledge
about the system, the corresponding operational procsegamed a fair amount of commonsense knowledge. It also
depended on the existence of efficient ASP solvers.

The USA-Advisor is build on a detailed but straightforwarddael of the RCS. For instance, the hydraulic part of
the RCS can be viewed as a graph whose nodes are labeled byctartkining propellant, jets, junctions of pipes,
etc. Arcs of the graph are labeled by valves which can be apbenelosed by a collection of switches. The graph
is described by a collection of ASP atoms of the fotomnected(n,, v, ng) (valve v labels the arc fromm; to

ng) and controls(s, v) (switch s controls valvev). The description of the system may also contain a collaatio
faults, e.g. a valve can tsuck it can beleaking or have abad circuitry. Similar models exists for electrical part
of the RCS and for the connection between electrical andaufidrparts. Overall, the system is rather complex, in
that it includesl 2 tanks,44 jets,66 valves,33 switches, and arounds0 computer commands (computer-generated
signals).

In addition to simple description of the RCS, USA-Advisontains knowledge of the system’s dynamic behavior.
For instance the axiom

—faulty(C) « not may_be_faulty(C)-

says that in the absence of evidence to the contrary, compmoethe RCS are assumed to be working properly
(Note that concise representation of this knowledge depernitically on the ability of ASP to represent defaults.)

38 C. Baral, M. Gelfond and N. Rushton

the axioms
h(state(S, open), T +1) <« occurs(flip(S), T),
h(state(S, closed), T),
—faulty(S)-
h(state(S, closed), T + 1) < occurs(flip(S), T),
h(state(S, open), T,
—faulty(S)-
express the direct effect of an action of flipping switthHerestate is a function symbol with the first parameter
ranging over switches and valves and the second rangingtbgérpossible stategip is a function symbol
whose parameter is of type switch. Predicate symbiolds) has the first parameters ranging over fluents and
the second one ranging over time-steps; two parametereof are of typeaction andtime-step respectively.
Note that despite the presence of function symbols our tygirarantees finiteness of the Herbrand universe of the
program. The next axiom describes the connections betwestigns of switches and valves.

h(state(V,P), T) + controls(S, V),
h(state(S, P), T),
—fault(V, stuck)-

A recursive rule
h(pressurized(Nz), T) < connected(Ny, V', Na),

h(pressurized(Ny), T),

h(state(V , open), T),

—fault(V, leaking)-
describes the relationship between the values of relatiegsurized(N) for neighboring nodes. (Nod&' is
pressurized if it is reached by a sufficient quantity of the propellantheEe and other axioms, which are rooted
in a substantial body of research on actions and changesjldesccomparatively complex effect of a simglé
operation which propagates the pressure through the system

The plan to execute a desired maneuver can be extracted loyptegdrocedural program from answer sets of
a programll, U PM, wherell, consists of the description of the RCS and its dynamic behaanhd PM is a
“planning module,” containing a statement of the goal (n@aneuver), and rules needed for ASP-based planning.
Similarly, the diagnosis can be extracted from answer $diis @ DM, where the diagnostic modulg)/ contains
unexpected observations, together with axioms needetiédohEP diagnostics.

After the development of the original USA-Advisor, we leadithat, as could be expected, some faults of the RCS
components are more likely than others, and, moreovepnadde estimates of the probabilities of these faults can
be obtained and utilized for finding the most probable diaigmof unexpected observations. Usually this is done
under the assumption that the number of multiple faults efsystem is limited by some fixed bound.

P-log allowed us to write software for finding such diagnogést we needed to expamtl, by the corresponding
declarations including the statement

[r(C, F)] random(fault(C, F)) + may_be_faulty(C)-

wheremay_be_fault(C, F) is a boolean attribute which is true if componé&hmay (or may not) have a fault of
type F. The probabilistic information about faults is given by ffreatoms, e.g.

PV stack) (fault (V' stuck)|. may_be_faulty(V')) = 0 - 0002-

etc. To create a probabilistic model of our system, the ASigristic module finds components relevant to the
agent's unexpected observations, and adds themoas a collection of atoms of the formay_be_faulty(c).
Each possible world of the resulting program (vi2.= I, U DM) uniquely corresponds to a possible explanation
of the unexpected observation. The system finds possibliEsvaith maximum probability measure and returns
diagnoses defined by these worlds, where an “explanationsists of all atoms of the fornfuult(c,f) in a

Probabilistic reasoning with answer sets 39

given possible world. This system works very efficiently i @ssume that maximum number,of faults in the
explanation does not exceed two (a practically realistiuagption for our task). If. equals3 the computation

is substantially slower. There are two obvious ways to inagrefficiency of the system: improve our prototype
implementation of P-log or reduce the number of possiblytfatomponents returned by the original diagnostic
program or both. We are currently working in both of thesedtons. It is of course important to realize that
the largest part of all these computations is not probadigilend is performed by the ASP solvers, which are
themselves quite mature. However the conceptual blendidg® with probabilities achieved by P-log allowed
us to successfully express our probabilistic knowledge tamlefine the corresponding probabilistic model, which
was essential for the success of the project.

6 Proving Coherency of P-log Programs

In this section we state theorems which can be used to showotierency of P-log programs. The proofs of the
theorems are given in an Appendix I. We begin by introducergninology which makes it easier to state the
theorems.

6.1 Causally ordered programs
LetII be a (ground) P-log program with signatite

Definition 9

[Dependency relations]
Let/; andl; be literals of>:. We say that

1. [is immediately dependent I, written asl; <; b, if there is a ruler of IT such that; occurs in the head
of » andl; occurs in ther’s body;

2.) depend®n Iy, written asi; < b, if the pair(l;, lr) belongs to the reflexive transitive closure of relation
b <5 b

3. An attribute termy, (1) depend®n an attribute ternas (¢2) if there are literald; andl, formed bya; (%)
andas(2) respectively such thdf depends ot,. O

Example 23

[Dependency]

Let us consider a version of the Monty Hall program consigtifirules (1) — (9) from Subsectiénb.1. Let us denote
it by IL,n0nty3. From rules (3) and (4) of this program we conclude thain_open(d) is immediately dependent
on prize = d andselected = d for every doord. By rule (5) we have that for every € doors, can_open(d)

is immediately dependent ofican_open(d). By rule (8),o0pen = d; is immediately dependent amn_open(dz)

for any d;, da € doors. Finally, according to (9)ppen = 2 is immediately dependent otun_open(2) and
can_open(3). Now it is easy to see that an attribute tespen depends on itself and on attribute termsze and
selected, while each of the latter two terms depends only on itself. O

Definition 10

[Leveling function]

40 C. Baral, M. Gelfond and N. Rushton

A leveling function | |, of I maps attribute terms & onto a sef0, n] of natural numbers. It is extended to other
syntactic entities ovexr as follows:

la(t) = y| = |a(l) # y| = |not a(t) = y| = |not a(?) # y| = |a(?)]

We'll often refer to|e| as therankof e. Finally, if B is a set of expressions théB| = maz({|e| : e € B}). O

Definition 11

[Strict probabilistic leveling and reasonable programs]
A leveling function| | of IT is calledstrict probabilistidf

1. no two random attribute terms Bfhave the same level undgl;

2. for every random selection rulér] random(a(?) : {y : p(y)}) + B of Il we have
la(t) = y| < {p(y) : y € range(a)} U BY;

3. for every probability atompr,(a(t) = y | B) of Il we have|a(?)| < |B|;

4. if a1(t1) is a random attribute ternup (¢2) is a non-random attribute term, amg(¢-) depends ony (¢1)
then |az(t2)| > |a1(t1)]-

A P-log progranil which has a strict probabilistic leveling function is callkeasonable O

Example 24

[Strict probabilistic leveling for Monty Hall]
Let us consider the prografh,,,,+,3 from Examplé 2B and a leveling function

|prize|] =0
|selected| = 1
|can_open(D)| =1
|open| = 2

We claim that this leveling is a strict probabilistic lewedj. Conditions (1)—(3) of the definition can be checked
directly. To check the last condition it is sufficient to roaithat for everyD the only random attribute terms on
which non-random attribute teraun_open(D) depends areelected andprize. O

LetIT be a reasonable program with signatdrand leveling| |, and leta; (1), . .., a,(¢,) be an ordering of its
random attribute terms induced by. By L; we denote the set of literals &f which do not depend on literals
formed bya;(t;) wherei < j.II; for 1 < ¢ < n + 1 consists of all declarations @i, along with the regular
rules, random selection rules, actions, and observatibhsuch that every literal occurring in them belongs to
L;. We'll often refer tolly, ..., 11,11 as @ |-induced structure dfl.

Example 25

[Induced structure for Monty Hall]
To better understand this construction let us consider elifey function| | from Example24. It induces the
following ordering of random attributes of the correspargdprogram.

ay = prize.
ap = selected.
ag = open.

Probabilistic reasoning with answer sets 41

The corresponding languages are

Ly =10

Ly = {prize = d : d € doors}

L3 = Ly U{selected = d : d € doors} U {can_open(d) : d € doors} U {—can_open(d) : d € doors}
Ly = L3U{open =d : d € doors}

Finally, the induced structure of the programis as follomsbers refer to the numbered statements of Subsection

5.1

H1:{152}

H2:{1a276}

My ={1,...,7}

M, ={1,....8} O

Before proceeding we introduce some terminology.

Definition 12

[Active attribute term]
If there isy such thatu(t) = y is possible inWW with respect tdl, we say that:(?) is activein W with respect to
1I. O

Definition 13

[Causally ordered programs]
Let IT be a P-log program with a strict probabilistic levelingand leta; be thei* random attribute ofl with
respect td |. We say thall is causally ordered

1. I1; has exactly one possible world;

2. if W is a possible world off; and aton, (7;) = yo is possible ini with respect td1;; then the program
W UTIL, 11 U obs(a;(T;) = yo) has exactly one possible world; and

3. if Wis a possible world ofT; anda;(%;) is not active inW with respect tdl;; then the progran¥’ UTI; 4
has exactly one possible world. O

Intuitively, a program is causally ordered if (1) all nonelehinism in the program results from random selections,
and (2) whenever a random selection is active in a given plessiorld, the possible outcomes of that selection
are not constrained in that possible world by logical rulestber random selections. The following is a simple

example of a program which is not causally ordered, becawsdates the second condition. By comparison with

ExampldID, it also illustrates the difference between thements: andpr(a) = 1.

Example 26

[A non-causally ordered programs]
Consider the P-log prograhh consisting of:

1- a : boolean.
2 - random a.
3. a

The only leveling function for this program ja| = 0, hencel; = 0 while Ly = {a,—a}; andIl; = {1}
while I, = {1, 2, 3}. Obviously,IT; has exactly one possible world, namél§; = (. Both literals,a and—a are

42 C. Baral, M. Gelfond and N. Rushton

possible inT¥; with respect tdl,. However,W; U II; U obs(—a) has no possible worlds, and hence the program
does not satisfy Condition 2 of the definitionedusally ordered.

Now let us consider prograii’ consisting of rules (1) and (2) @f and the rules

b < not —b, a.
—b < not b, a.

The only strict probabilistic leveling function for thisggram maps to 0 andb to 1. The resulting languages are
L =0andLy; = {a,—a, b,—b}. Hencell; = {1} andIl, = II'. As before,W; is empty ancs and—a are both
possible inT¥; with respect tdl,. It is easy to see that prografi; U IT, U obs(a) has two possible worlds, one
containingb and another containingb. Hence Condition 2 of the definition of causally ordered igiagiolated.

Finally, consider prograffii” consisting of rules:

a,b : boolean.
random(a).
random(b) + a.
- b+ a.

¢ < —b.

SO s W N

+ T1C.

It is easy to check that immediately depends onb, which in turn immediately depends enand—a. b im-
mediately depends om. It follows that any strict probabilistic leveling functidor this program will lead to the
orderinga, b of random attribute terms. Hendg = {—c}, Ly = {—¢, a,—a}, andLs = Ly U {b, —b, c}. This
implies thatll{ = {1,6}, 11§ = {1,2,6}, andIl; = {1,...,6}. Now consider a possible world/ = {-¢, —a}
of I} It is easy to see that the second random attribytis,not active inW with respect td15, but W U II5 has
no possible world. This violates Condition 3 of causallyeret.

Note that all the above programs are consistent. A prograps&hegular part consists of the ryle«— not p
is neither causally ordered nor consistent. Similarly, phegram obtained fronil above by adding the atom
pr(a) = 1/2is neither causally ordered nor consistent. O

Example 27

[Monty Hall program is causally ordered]

We now show that the Monty Hall prograth,,..y3 is causally ordered. We use the strict probabilistic legli
and induced structure from the Examgles 24 25. Obviplisiyas one possible worl@; = @. The atoms
possible inW; with respect td1, areprize = 1, prize = 2, prize = 3. So we must check Condition 2 from the
definition of causally ordered for every atgmize = d from this set. It is not difficult to show that the translation
7(W1 UTls U obs(prize = d)) is equivalent to logic program consisting of the translatid declarations into
Answer Set Prolog along with the following rules:

prize(1) or prize(2) or prize(3).

—prize(Dy) < prize(Ds), D1 # Ds.

<+ obs(prize(1)), not prize(d).

obs(prize(d)).

whereD; and D, range over the doors. Except for the possible occurrencaissarvations this program is equiv-
alent to

—prize(Dy) + prize(Ds), D1 # Ds.
prize(d).

Probabilistic reasoning with answer sets 43
which has a unique answer set of the form
{prize(d), ~prize(dy), ~prize(ds)} (19)

(whered; andd, are the other two doors besidés Now let 1> be an arbitrary possible world df,, and/ be an
atom possible i/, with respect td1Is. To verify Condition 2 of the definition of causally orderex § = 2, we
must show that¥, U I, U obs(l) has exactly one answer set. It is easy to see iamust be of the formi(19),
and! must be of the formselected = d’ for some doowd’.

Similarly to above, the translation d¥> U II3 U obs(selected(d’)) has the same answer sets (except for possible
occurrences of observations) as the program consistingcdlong with the following rules:

selected(d").

—selected(Dy) + selected(Ds), Dy # Ds.
—can_open(D) + selected(D).
—can-open(D) < prize(D).

can_open < not —can_open(D).

If negated literals are treated as new predicate symbolsaw&iew this program as stratified. Hence the program
obtained in this way has a unique answer set. This meandihabbve program has @iostone answer set; but it
is easy to see it is consistent and so it has exactly one. Ifolaws that Condition 2 is satisfied far= 2.

Checking Condition 2 fof = 3 is similar, and completes the proof. |

“Causal ordering” is one of two conditions which togetheantee the coherency of a P-log program. Causal
orderingis a condition on the logical part of the programe ©ther condition — that the program must be “unitary”
— is a condition on ther-atoms. It says that, basically, assigned probabilitfey, must be given in a way that
permits the appropriate assigned and default probakilitiesum to 1. In order to define this notion precisely, and
state the main theorem of this section, we will need someiteriogy.

LetIT be a ground P-log program containing the random selectien ru

[r] random(a(t) : {Y : p(Y)}) « K-

We will refer to a ground pr-atom

prr(a(t) =y |c B) = v
as apr-atom indexing-. We will refer to B as thebody of the pr-atom. We will refer tov as theprobability
assigned by ther-atom

Let W, and W5 be possible worlds ofl satisfying K. We say thatii’; and W5 are probabilistically equivalent
with respect ta- if

1. forally, p(y) € Wy ifand onlyif p(y) € Wa, and
2. For everypr-atomg indexingr, W, satisfies the body of if and only if W, satisfies the body of.

A scenaridor r is an equivalence class of possible world$lagatisfying X', under probabilistic equivalence with
respect ta-.

Example 28

[Rat Example Revisited]

Consider the program from Examgle] 18 involving the rat, asdpbssible worldsiWy, W,, W3, Wy. All four
possible worlds are probabilistically equivalent withpest to Rule [1]. With respect to Rule [2}; is equivalent
to W5, and W3 is equivalent toW,. Hence Rule [2] has two scenaridgyy, Wa} and{ Ws, Wy }. O

44 C. Baral, M. Gelfond and N. Rushton

range(a(t), r, s) will denote the set of possible values @ft) in the possible worlds belonging to scenasiof
rule r. This is well defined by (1) of the definition of probabilistquivalence w.r.tr. For example, in the rat
program,range(death, 2, { Wy, Wa}) = {true, false}.

Let s be a scenario of rule. A pr-atomgq indexingr is said to beactive in sf every possible world of satisfies
the body ofq.

For a random selection rubeand scenaria of r, let at,.(s) denote the set of probability atoms which are active
in s. For exampleats ({ W1, Wa}) is the singleton sefpr(death |, arsenic) =0 - 8}.

Definition 14

[Unitary Rule]
Ruler is unitary inIl, or simplyunitary, if for every scenaria of r, one of the following conditions holds:

1. For everyy in range(a(t),r,s), at-(s) contains apr-atom of the formpr,.(a(t) = y | B) = v, and
moreover the sum of the values of the probabilities assitpyedembers ofit,.(s) is 1; or

2. Thereis g in range(a(t), r, s) such thatut,(s) contains ngr-atom of the fornpr,.(a(t) = y |. B) = v,

and the sum of the probabilities assigned by the members.¢f) is less than or equal to 1. O
Definition 15
[Unitary Program]
A P-log program isunitaryif each of its random selection rules is unitary. O
Example 29

[Rat Example Revisited]

Consider again Examplé_118 involving the rat. There is cleashly one scenario,s;, for the Rule
[1] random(arsenic), which consists of all possible worlds of the program.(s;) consists of the singler-
atompr(arsenic) = 0 - 4. Hence the scenario satisfies Condition 2 of the definiticumitiry.

We next consider the selection ryl@ |random(death)- There are two scenarios for this rukg;scn., consisting
of possible worlds satisfyingrsenic, and its complement,, ,q,senic. Condition 2 of the definition of unitary is
satisfied for each element of the partition. O

We are now ready to state the main theorem of this sectiomprita of which will be given in Appendix I.

Theorem 1

[Sufficient Conditions for Coherency]
Every causally ordered, unitary P-log program is coherent. O

Using the above examples one can easily check that the rattyMtall, and Simpson’s examples are causally
ordered and unitary, and therefore coherent.

For the final result of this section, we give a result that §dan represent the probability distribution of any finite
set of random variables each taking finitely many values ilassical probability space.

Probabilistic reasoning with answer sets 45

Theorem 2

[Embedding Probability Distributions in P-log]

Let z,...,z, be a nonempty vector of random variables, under a classioalapility P, taking finitely many
values each. LeR; be the set of possible values of eaghand assume; is nonempty for each. Then there
exists a coherent P-log programwith random attributes;, . .., z,, such that for every vector, ..., r, from
Ry x -+ XR,,we have

Plry=r,...,0n=1y) =Pz =11,..., 2, = 10) (20)
O

The proof of this theorem appears in Appendix I. It is a cagllof this theorem that i3 is a finite Bayesian
network, each of whose nodes is associated with a randoatblataking finitely many possible values, then there
is a P-log program which represents the same probabilityildision asB. This by itself is not surprising, and
could be shown trivially by considering a single randomilattte whose values range over possible states of a
given Bayes net. Our proof, however, shows something moeaely, that the construction of the P-log program
corresponds straightforwardly to the graphical structfrine network, along with the conditional densities of its
variables given their parents in the network. Hence any Bagt can be represented by a P-log program which is
“syntactically isomorphic” to the network, and presendesintuitions present in the network representation.

7 Relation with other work

As we mention in the first sentence of this paper, the motivdbiehind developing P-log is to have a knowledge
representation language that allows natural and elabor&ierant representation of common-sense knowledge
involving logic and probabilities. While some of the othappabilistic logic programming languages such as
(Poole 1998; Poole 2000) and (Vennekens et al. 2004; Vems&l@07) have similar goals, many other probabilis-
tic logic programming languages have “statistical relaioearning (SRL)"[(Getoor et al. 2007) as one of their
main goals and as a result they perhaps consciously saarfitee knowledge representation dimensions. In this
section we describe the approaches$ in (Poole!1993; Pool a0d [(Vennekens et al. 2004; Vennekens 2007) and
compare them with P-log. We also survey many other works obadrilistic logic programming, including the
ones that have SRL as one of their main goals, and relate th@aldg from the perspective of representation and
reasoning.

7.1 Relation with Poole’s work

Our approach in this paper has a lot of similarity (and matffeinces) with the works of Poolg (Poole 1993;

Poole 2000). To give a somewhat detailed comparison, wevgithrsome of the definitions from (Poole 1993).

7.1.1 Overview of Poole’s probabilistic Horn abduction

In Poole’s probabilistic Horn abduction (PHA), disjointdigrations are an important component. We start with
their definition. (In our adaptation of the original definitis we consider the grounding of the theory, so as to make
it simpler.)

Definition 16

46 C. Baral, M. Gelfond and N. Rushton

Disjoint declarations are of the fordisjoint([h1 : p1; ... ; hn : pn)), Whereh;s are different ground atoms —
referred to as hypotheses or assumabigsare real numbersand + ... + p, = 1. O

We now define a PHA theory.

Definition 17

A probabilistic Horn abduction (PHA) theory is a collectiohdefinite clauses and disjoint declarations such that
no atom occurs in two disjoint declarations. i

Given a PHA theoryT’, the facts ofT’, denoted byf'; consists of

o the collection of definite clauses ifi, and
o for every disjoint declaration® in T, and for everyh; andh;, i # j in D, integrity constraints of the form:
< hi, h7

The hypotheses df’, denoted byH 1, is the set ofy; occurring in disjoint declarations df.

The prior probability of T' is denoted byPr and is a functionH; — [0, 1] defined such thaPr(h;) = p;
wheneven; : p; is in a disjoint declaration of’. Based on this prior probability and the assumption, deshbye
(Hyp-independent), that hypotheses that are consistent with are (probabilistically) independent of each other,
we have the following definition of the joint probability ofset of hypotheses.

Definition 18

Let{h,..., h} be a set of hypotheses where eaglis from a disjoint declaration. Then, their joint probatyili
is given byPr(hy) X ... x Pp(hy). O

Poole [(Poole 1993) makes the following additional assusmgtaboutr'; and Hp:

1. (Hyp-not-head) There are no rules il whose head is a member Hf;. (i.e., hypotheses do not appear in
the head of rules.)

2. (Acyclic-definite) F'r is acyclic.

. (Completion-cond) The semantics of' is given via its Clark’s completion.

4. (Body-not-overlap) The bodies of the rules i for an atom are mutually exclusive. (i.e., if we have
a <+ B; anda < B; in Fr, wherei # j, thenB; andB; can not be true at the same time.)

w

Poole presents his rationale behind the above assumptibicd) he says makes the language weak. His rationale
is based on his goal to develop a simple extension of Pure@(definite logic programs) with Clark’s completion
based semantics, that allows interpreting the number ihypetheses as probabilities. Thus he restricts the syntax
to disallow any case that might make the above mentionedpirgtion difficult.

We now define the notions of explanations and minimal exgianaand use it to define the probability distribution
and conditional probabilities embedded in a PHA theory.
Definition 19

If g is a formula, an explanation gffrom (Fr, Hr) is a subseD of Hr such thatFr U D | g andFr U D has
a model.

A minimal explanation of; is an explanation of such that no strict subset is an explanatiog of]

Probabilistic reasoning with answer sets 47

Poole proves that under the above mentioned assumptions, ikxpl(g, T') is the set of all minimal explanations
of g from (Fr, Hr) and Comp(T) is the Clark’s completion of'r then

Comp(T) = (o= \/ e

e; € min_expl(g,T)

Definition 20

For a formulag, its probability P with respect to a PHA theor¥' is defined as:

P(g) = > Pr(e;)

e; € min_expl(g,T)

Conditional probabilities are defined using the standafuhitien:

P(aApB)

We now relate his work with ours.

7.1.2 Poole’s PHA compared with P-log

e The disjoint declarations in PHA have some similarity witir candom declarations. Following are some of
the main differences:

— (Disjl1) The disjoint declarations assign probabilities to the higpsis in that declaration. We use
probability atoms to specify probabilities, and our randieglarations do not mention probabilities.

— (Disj2) Our random declarations have conditions. We also speciéynge for the attributes. Both the
conditions and attributes use predicates that are defiried udes. The usefulness of this is evident
from the formulation of the Monty Hall problem where we use tandom declaration
random(open : {X : can_open(X)}).
The disjoint declarations of PHA theories do not have caoaditand they do not specify ranges.

— (Disj3) While the hypotheses in disjoint declarations are arhjteoms, our random declarations are
about attributes.

e (Pr-atom-gen) Our specification of the probabilities using pr-atoms is engeneral than the probability
specified using disjoint declarations. For example, in $piag the probabilities of the dices we say:
pr(roll(D) = Y |, owner(D) = john) = 1/6.

e (CBN) We directly specify the conditional probabilities in cauBayes nets, while in PHA only prior
probabilities are specified. Thus expressing a Bayes nktigastraightforward in P-log while in PHA it
would necessitate a transformation.

¢ (Body-not-overlap2)Since Poole’s PHA assumes that the definite rules with the $ymothesis in the head
have bodies that can not be true at the same time, many raesah be directly written in our formalism
need to be transformed so as to satisfy the above mentiomeiiticm on their bodies.

e (Gen)While Poole makes many a-priori restrictions on his rules fellow the opposite approach and ini-
tially do not make any restrictions on our logical part. Thus have an unrestricted logical knowledge
representation language (such as ASP or CR-Prolog) at spostl. We define a semantic notion of consis-
tent P-log programs and give sufficiency conditions, momgega than Poole’s restrictions, that guarantee
consistency.

48 C. Baral, M. Gelfond and N. Rushton

e (Obs-do)Unlike us, Poole does not distinguish between doing andrelrge

¢ (Gen-upd)We consider very general updates, beyond an observatioprof@sitional fact or an action that
makes a propositional fact true.

o (Prob-def) Not all probability numbers need be explicitly given in Ryldt has a default mechanism to
implicitly assume certain probabilities that are not egitlly given. This often makes the representation
simpler.

e Our probability calculation is based on possible worldsicltis not the case in PHA, although Poole’s later
formulation of Independent Choice Logic (Poole 1997; P&8180) (ICL) uses possible worlds.

7.1.3 Poole’s ICL compared with P-log

Poole’s Independent Choice Logic (Poole 1997; Poole R0&fd)as his PHA by replacing the set of disjoint dec-
larations by a choice space (where individual disjoint deations are replaced by alternatives, and a hypothesis
in an individual disjoint declaration is replaced by an aimichoice), by replacing definite programs and their
Clark’s completion semantics by acyclic normal logic progs and their stable model semantics, by enumerating
the atomic choices across alternatives and defining pessritnﬂd@ rather than using minimal explanation based
abduction, and in the process making fewer assumptionsardticplar, the assumptioBompletion-condis no
longer there, the assumpti@ody-not-overlapis only made in the context of being able to obtain the prdimgbi

of a formulag by adding the probabilities of its explanations, and theiagstion Acyclic-definite is relaxed to
allow acyclic normal programs; while the assumptitéhg-not-head and Hyp-independent remain in slightly
modified form by referring to atomic choices across altéveatrather than hypothesis across disjoint statements.
Nevertheless, most of the differences between PHA and Bdog over to the differences between ICL and P-log.
In particular, all the differences mentioned in the pregisection — with the exception 8ody-not-overlap2—
remain, modulo the change between the notion of hypothe$tsliA to the notion of atomic choices in ICL.

7.2 LPAD : Logic programming with annotated disjunctions
In recent work[(Vennekens et al. 2004) VVennekens et al. heygoged the LPAD formalism. An LPAD program
consists of rules of the form:
(h1:a1) V...V (hy i ap) < b1,..., by,

whereh;’s are atoms);s are atoms or atoms precededrint anda;s are real numbers in the intervél 1], such
thatd " | a; = 1.

An LPAD rule instance is of the form:
h; < bl,...7bm.
The associated probability of the above rule instance is siaéd to bey;.

An instance of an LPAD prograrf is a (normal logic programp’ obtained as follows: for each rule id exactly
one of its instance is included i, and nothing else is iF’. The associated probability of an instari¢e denoted
by = (P’), of an LPAD program is the product of the associated proltgloif each of its rules.

An LPAD program is said to be sound if each of its instancesatasalued well-founded model. Given an LPAD
programP, and a collection of atomb, the probability assigned tbby P is given as follows:

7 Poole’s possible worlds are very similar to ours except tieaéxplicitly assumes that the possible worlds whose corgddatme obtained by
the enumeration, can not be eliminated by the acyclic progithrough constraints. We do not make such an assumptiow,elimination of
such cores, and if elimination of one or more (but not all)silae worlds happen then we use normalization to redidgithe probabilities.

Probabilistic reasoning with answer sets 49

mp(I) = > m(P’)
P’ is an instance of andr is the well-founded model aof

The probability of a formula assigned by an LPAD prograii is then defined as:

mp(¢) = > mp(1)

¢ is satisfied by

7.2.1 Relating LPAD with P-log

LPAD is richer in syntax than PHA or ICL in that its rules (cesponding to disjoint declarations in PHA and
a choice space in ICL) may have conditions. In that sensecibier to the random declarations in P-log. Thus,
unlike PHA and ICLP, and similar to P-log, Bayes networksloamexpressed in LPAD fairly directly. Nevertheless
LPAD has some significant differences with P-log, includiing following:

e The goal of LPAD is to provide succinct representations fobpbility distributions. Our goals are broader,
viz, to combine probabilistic and logical reasoning. ConsatlydéP-log is logically more expressive, for
example containing classical negation and the ability psesent defaults.

e The ranges of random selections in LPAD are taken direabiynfthe heads of rules, and are therefore static.
The ranges of of selections in P-log are dynamic in the sdvadhiey may be different in different possible
worlds. For example, consider the representation
random(open : {X : can_open(X)}).
of the Monty Hall problem. It is not clear how the above can becinctly expressed in LPAD.

7.3 Bayesian logic programming:
A Bayesian logic program (BLP) (Kersting and De Raedt 20@8)tvo parts, a logical part and a set of conditional
probability tables. The logical part of the BLP consistslaises (referred to as BLP clauses) of the form:
H|A,..., A,

whereH, A4, ..., A, are (Bayesian) atoms which can take a value from a given doassiociated with the atom.
Following is an example of a BLP clause from (Kersting and Red® 200[7):

burglary(X) | neighborhood(X).

Its corresponding domain could be, for examplByurgiary = {ves,no}, and Dycighbourhood =
{bad, average, good}.

Each BLP clause has an associated conditional probalalitg fCPT). For example, the above clause may have
the following table:

neighborhood(X| burglary(X)| burglary(X)

yes no
bad 0.6 0.4
average 0.4 0.6

good 0.3 0.7

50 C. Baral, M. Gelfond and N. Rushton

A ground BLP clause is similar to a ground logic programminigr It is obtained by substituting variables with
ground terms from the Herbrand universe. If the ground wersif a BLP program is acyclic, then a BLP can
be considered as representing a Bayes network with posefiorljte number of nodes. To deal with the situation
when the ground version of a BLP has multiple rules with theesatom in the head, the formalisms allows for
specification ofcombining ruleghat specify how a set of ground BLP rules (with the same gilaatom in the
head) and their CPT can be combined to a single BLP rule amtjgesassociated CPT.

The semantics of an acyclic BLP is thus given by the charaetiion of the corresponding Bayes net obtained as
described above.

7.3.1 Relating BLPs with P-log

The aim of BLPs is to enhance Bayes nets so as to overcome sbthe bmitations of Bayes nets such as
difficulties with representing relations. On the other hbk&lBayes nets, BLPs are also concerned about statistical
relational learning. Hence the BLP research is less cordenith general knowledge representation than P-log is,
and this is the source of most of the differences in the two@gghes. Among the resulting differences between
BLP and P-log are:

e In BLP every ground atoms represents a random variable.i¥hist the case in P-log.

e In BLP the values the atoms can take are fixed by their domis.i$ not the case in P-log where through
the random declarations an attribute can have differentdtusrunder different conditions.

e Although the logical part of a BLP looks like a logic programhgen one replacesby the connective
+), its meaning is different from the meaning of the corresing logic program. Each BLP clause is a
compact representation of multiple logical relationshifith associated probabilities that are given using a
conditional probability table.

¢ In BLP one can specify a combining rule. We do not allow sudtgjation.

The ALTERID language of (Breese 1990; Wellman et al. 19928)nslar to BLPs and has similar differences with
P-log.

7.3.2 Probabilistic knowledge bases
Bayesian logic programs mentioned in the previous sulsectivas inspired by the probabilistic knowledge bases
(PKBs) of (Ngo and Haddawy 1997). We now give a brief desimipof this formalism.

In this formalism each predicate represents a set of simaladom variables. It is assumed that each predicate
has at least one attribute representing the value of randmiiouées made up of that predicate. For example, the
random variable&Colour of a carC can be represented by a 2-ary predicater(C, Col), where the first position
takes the id of particular car, and the second indicatesdlue (say, blue, red, etc.) of the cér.

A probabilistic knowledge base consists of three parts:

e A set of probabilistic sentences of the form:

pr(Ap | A1,..., A,) = «, whereA;s are atoms.
e A set of value integrity constraints of the form:
EXCLUSIVE(p, a1,...,a,), Wherep is a predicate, and;s are values that can be taken by random vari-

ables made up of that predicate.
e A set of combining rules.

Probabilistic reasoning with answer sets 51

The combining rules serve similar purpose as in Bayesiait jpgpgrams. Note that unlike Bayesian logic pro-
grams that have CPTs for each BLP clause, the probabilistiteaces in PKBs only have a single probability
associated with it. Thus the semantic characterizationushmmore complicated. Nevertheless the differences
between P-log and Bayesian logic programs also carry oveKfs.

7.4 Stochastic logic programs

A Stochastic logic program (SLF) (Muggleton 1995)s a collection of clauses of the form
p: A« By,...,B,

wherep (referred to as the probability label) belongd@ol], and A, By, . .. B, are atoms, with the requirements
that (a)A «+ By, ..., B, isrange restricted and (b) for each predicate symhnol P, the probability labels for all
clauses withy in the head sum to 1.

The probability of an atony with respect to an SLR is obtained by summing the probability of the various
SLD-refutation of+ ¢ with respect toP, where the probability of a refutation is computed by muyipg the
probability of various choices; and doing appropriate raination. For example, if the first atom of a subgoal
« ¢’ unifies with the head of stochastic clauggs: Ci, ..., pm : C,, and the stochastic clauge : C; is

chosen for the refutation, then the probability of this tdmdisﬁ.

7.4.1 Relating SLPs with P-log

SLPs, both as defined in the previous section and &s in (Cad8989), are very different from P-log both in its
syntax and semantics.

e To start with, SLPs do not allow the ‘not’ operator, thus limj the expressiveness of the logical part.

e In SLPs all ground atoms represent random variables. Thigtithe case in P-log.

e In SLPs probability computation is through computing pioibes of refutations, a top down approach. In
P-log it is based on the possible worlds, a bottom up approach

The above differences also carry
over to probabilistic constraint logic programs (Riezl88&;/Santos Costa et al. 2003) that generalize SLPs to
Constraint logic programs (CLPs).

7.5 Probabilistic logic programming

The probabilistic logic programming formalisms in (Ng andb&hmanian 1992; Ng and Subrahmanian 1994,
Dekhtyar and Dekhtyar 2004) and (Lukasiewicz 1998) taker¢ipeesentation of uncertainty to another level. In
these two approaches they are interested in classes ofljiligbdistributions and define inference methods for
checking if certain probability statements are true witspeect to all the probability distributions under considera
tion. To express classes of probability distributionsythse intervals where the intuitive meaninggof [«, 5] is
that the probability of is in betweeny and3. We now discuss the two formalismsin (Ng and Subrahmani@a;19
Ng and Subrahmanian 1994; Dekhtyar and Dekhtyar 2004)[ankidiewicz 1998) in further detail. We refer to
the first one as NS-PLP (short for Ng-Subrahmanian prolsdibilogic programming) and the second one as L-PLP
(short for Lukasiewicz probabilistic logic programming).

52 C. Baral, M. Gelfond and N. Rushton

7.5.1 NS-PLP

A simple NS-PLP program
(Ng and Subrahmanian 1992; Ng and Subrahmanian| 1994; Daaldutgl Dekhtyar 2004) is a finite collection of
p-clauses of the form

AO : [Oéo,ﬁo] < Al : [al,Bl],...,An : [an,ﬁn].

where Ay, 44,..., 4, are atoms, anfh;, 5;] C [0, 1]. Intuitively, the meaning of the above rule is that if the
probability of 4; is in the interval[ay, £1], ..., and the probability ofd,, is in the interval[«,,, 8,] then the
probability of A is in the intervalayg, Bo].

The goal behind the semantic characterization of an NS-RoramP is to obtain and express the set of (prob-
abilistic) p-interpretations (each of which maps possitglds, which are subsets of the Herbrand Base, to a
number in [0,1]),Mod(P), that satisfy all the p-clauses in the program. Althouglhiahly it was thought that
Mod(P) could be computed through the iteration of a fixpoint oparatzently (Dekhtyar and Dekhtyar 2004)
shows that this is not the case and gives a more complicated tavacompute Mod(P). In particular,
(Dekntyar and Dekhtyar 2004) shows that for many NS-PLP iamog, although its fixpoint, a mapping from the
Herbrand base to an interval i 1], is defined, it does not represent the set of satisfying @qimetations.

Ng and Subrahmaniah (Ng and Subrahmanian 1994) considergeoeral NS-PLP programs whetgs are ‘ba-

sic formulas’ (which are conjunction or disjunction of atgnand some ofi4, ..., A,, are preceded by theot
operator. In presence ofot they give a semantics inspired by the stable model semaiidsin this case an
NS-PLP program may have multiple stable formula functi@ash of which map formulas to intervals i 1].
While a single stable formula function can be considered@peesentation of a set of p-interpretations, it is not
clear what a set of stable formula functions correspond bausTNS-PLP programs and their characterization is
very different from P-log and it is not clear if one is more exgsive than the other.

7.5.2 L-PLP

An L-PLP program((Lukasiewicz 1998) is a finite set of L-PLBudes of the form
(H | B)cr, co]
whereH andB are conjunctive formulas ang < cs.

Given a probability distributiodPr, an L-PLP clause of the above form is said to b&mif ¢; < Pr(H|B) < co.
Pr is said to be anodelof an L-PLP programr if each clause inr is true in Pr. (H | B)[c1, ¢c2] is said to
be a logical consequence of an L-PLP progrardenoted byr = (H | B)[c, cz] if for all models Pr of «,
(H | B)[c1, c2] is in Pr. A notion of tight entailment, and correct answer to ground aon-ground queries of
the form3(H | B)[c1, 2] is then defined in(Cukasiewicz 1998). In recent papers Liekdsz and his colleagues
generalize L-PLPs in several ways and define many othermetibentailment.

In relation to NS-PLP programs, L-PLP programs have a simgkrval associated with an L-PLP clause and
an L-PLP clause can be thought of as a constraint on the pamédig conditional probability. Thus, although
‘logic’ is used in L-PLP programs and their characterizatibis not clear whether any of the ‘logical knowledge
representation’ benefits are present in L-PLP programsekample, it does not seem that one can define the
values that a random variable can take, in a particular plessiorld, using an L-PLP program.

Probabilistic reasoning with answer sets 53

7.6 PRISM: Logic programs with distribution semantics

Sato in (Sato 1995) proposes the notion of “logic progranth wistribution semantics,” which he refers to as
PRISM as a short form for “PRogramming In Statistical Modglf Sato starts with a possibly infinite collection
of ground atoms}’, the setr of all interpretations ofF@, and a completely additive probability measutg
which quantifies the likelihood of interpretation?z is defined on some fixed algebra of subsets 6¢fr.

In Sato’s framework interpretations éf can be used in conjunction with a Horn logic progr&ywhich contains
no rules whose heads unify with atoms fréfSato’s logic program is a tripl&€] = (F, Pr, R). The semantics of
IT are given by a collectiofer; of possible worlds and the probability measiiie. A setM of ground atoms in the
language ofI belongs tdy iff M is a minimal Herbrand model of a logic progrdimuU R for some interpretation
Ir of F. The completely additive probability measureféf is defined as an extension Bf-.

Given a specification oP, the formalism provides a powerful tool for defining compfaobability measures,
including those which can be described by Bayesian nets atkH Markov models. The emphasis of the original
work by Sato and other PRISM related research seems to be osé¢rof the formalism for design and investigation
of efficient algorithms for statistical learning. The gaato use the paiDB = (F', R) together with observations
of atoms from the language @éiB to learn a suitable probability measure .

P-log and PRISM share a substantial number of common featB@h are declarative languages capable of
representing and reasoning with logical and probabillstiowledge. In both cases logical part of the language is
rooted in logic programming. There are also substanti&idihces. PRISM seems to be primarily intended as “a
powerful tool for building complex statistical models” Wwiemphasis of using these models for statistical learning.
As a result PRISM allows infinite possible worlds, and hasatidity of learning statistical parameters embedded
in its inference mechanism. The goal of P-log designers wadetelop a knowledge representation language
allowing natural, elaboration tolerant representatiooaimonsense knowledge involving logic and probabilities.
Infinite possible worlds and algorithms for statisticalrt@ag were not a priority. Instead the emphasis was on
greater logical power provided by Answer Set Prolog, on abinserpretation of probability, and on the ability to
perform and differentiate between various types of upd#tethe near future we plan to use the PRISM ideas to
expand the semantics of P-log to allow infinite possible darlOur more distant plans include investigation of
possible adaptation of PRISM statistical learning aldnis to P-log.

7.7 Other approaches

So far we have discussed logic programming approachesdgrate logical and probabilistic reasoning. Besides
them, the paper (De Vos and Vermeir 2000) proposes a notienenthe theory has two parts, a logic programming
part that can express preferences and a joint probabityilition. The probabilities are then used in determining
the priorities of the alternatives.

Besides the logic programming based approaches, there bemre other approaches to combine logical and
probabilistic reasoning, such as probabilistic relationadels (Koller 1999; Getoor et al. 2001), various proba-
bilistic first-order logics such as (Nilsson 1986: Bacch88(L[Bacchus et al. 1996; Halpern 1990; Halpern 2003;
Pasula and Russell 2001:_Poole 1993), approaches thanassigeight to first-order formulas (Paskin 2002;

Richardson and Domingos 2006) and first-order MOPs (Beutdt al. 2001). In all these approaches the logic
parts are not quite rich from the ‘knowledge representatiogle. To start with they use classical logic, which is

monotonic and hence has many drawbacks with respect to kdgelrepresentation. A difference between first-
order MDPs and our approach is that actions, rewards aritiestiire inherent part of the former; one may encode

8 By interpretation/; of F we mean an arbitrary subset Bf Atom A € F is truein I iff A € Ip.

54 C. Baral, M. Gelfond and N. Rushton

them in P-log though. In the next subsection we summarizeifipdifferences between these approaches (and all
the other approaches that we mentioned so far) and P-log.

7.8 Summary

In summary, our focus in P-log has many broad differencels mibst of the earlier formalisms that have tried to
integrate logical and probabilistic knowledge. We nowdisine of the main issues.

e To the best of our knowledge P-log is the only probabiligigit programming language which differentiates
between doing and observing, which is useful for reasonfioyiacausal relations.

e P-log allows a relatively wide variety of updates comparétth wther approaches we surveyed.

e Only P-log allows logical reasoning to dynamically decidetloe range of values that a random variable can
take.

e P-log is the only language surveyed which allows a prograntmevrite a program which represent the
logical aspects of a problem and its possible worlds, ancdtaddal probabilistic information to this program
as it becomes relevant and available.

e Our formalism allows the explicit specification of backgnoiknowledge and thus eliminates the difference
between implicit and explicit background knowledge thapagnted out in|[(Wang 2004) while discussing
the limitation of Bayesianism.

e As our formalization of the Monty Hall example shows, P-l@naeal with non-trivial conditioning and is
able to encode the notion of protocols mentioned in Chaptér{BEalpern 200B).

8 Conclusion and Future Work

In this paper we presented a non-monotonic probabilisgelprogramming language, P-log, suitable for repre-
senting logical and probabilistic knowledge. P-log is ltbse logic programming under answer set semantics, and
on Causal Bayesian networks. We showed that it general@béddnguages.

P-log comes with a natural mechanism for belief updating -e-ahility of the agent to change degrees of belief
defined by his current knowledge base. We showed that conifig of classical probability is a special case of this
mechanism. In addition, P-log programs can be updated ligractdefaults and other logic programming rules,
and by some forms of probabilistic information. The non-wtomicity of P-log allows us to model situations when

new information forces the reasoner to change its colledfpossible worlds, i.e. to move to a new probabilistic
model of the domain. (This happens for instance when thetaderowledge is updated by observation of an event
deemed to be impossible under the current assumptions.)

The expressive power of P-log and its ability to combineaasiforms of reasoning was demonstrated on a number
of examples from the literature. The presentation of themgtas is aimed to give a reader some feeling for the
methodology of representing knowledge in P-log. Finally gaper gives sufficiency conditions for coherency of
P-log programs and discusses the relationship of P-log avitimber of other probabilistic logic programming
formalisms.

We plan to expand our work in several directions. First wedrteemprove the efficiency of the P-log inference
engine. The current, naive, implementation relies on cdatfmn of all answer sets of the logical part of P-log
program. Even though it can efficiently reason with a suipgisariety of interesting examples and puzzles, a more
efficient approach is needed to attack some other kinds diemes. We also would like to investigate the impact of
replacing Answer Set Prolog — the current logical foundatibP-log — by a more powerful logic programming
language, CR-prolog. The new extension of P-log will be &bléeal with updates which are currently viewed as
inconsistent. We plan to use P-log as a tool for the invesstigaf various forms of reasoning, including reasoning

Probabilistic reasoning with answer sets 55

with counterfactuals and probabilistic abductive reasgriapable of discovering most probable explanations of
unexpected observations. Finally, we plan to explore hatissical relational learning (SRL) can be done with
respect to P-log and how P-log can be used to accommodageetiffkinds of uncertainties tackled by existing
SRL approaches.

Acknowledgments
We would like to thank Weijun Zhu and Cameron Buckner fortthairk in implementing a P-log inference engine,
for useful discussions and for helping correct errors inatiginal draft of this paper.

9 Appendix I: Proofs of major theorems

Our first goal in this section is to prove TheorEin 1 from Setffio We'll begin by proving a theorem which is
more general but whose hypothesis is more difficult to vehifyrder to state and prove this general theorem, we
need some terminology and lemmas.

Definition 21

Let T be a tree in which every arc is labeled with a real number ib][0Ve sayT is unitaryif the labels of the
arcs leaving each node add up to 1. O

Figure[1 gives an example of a unitary tree.

Fig. 1. Unitary tree T

Definition 22

Let T be a tree with labeled nodes ande a node ofl'. By pr(n) we denote the set of labels of nodes lying on
the path from the root of” to n, including the label of, and the label of the root. O
Example 30

Consider the tred” from Figurel. Ifn is the node labeled (13), ther-(n) = {1, 3,8,13}. O

56 C. Baral, M. Gelfond and N. Rushton

Definition 23

[Path Value]

Let T be a tree in which every arc is labeled with a number in [0, path valueof a noden of T', denoted by
pur(n), is defined as the product of the labels of the arcs in the pathfitom the root. (Note that the path value
of the rootof T"is 1.) O

When the tre€l” is obvious from the context we will simply right(n).

Example 31
Consider the tred” from Figurel. Ifn is the node labeled (8), then(n) =0-3 x 0-3 =0 - 09. O

Lemmal

[Property of Unitary Trees]
Let T be a unitary tree and be a node ofl’. Then the sum of the path values of all the leaf nodes desddnal®
n (includingn if n is a leaf) is the path value of. |

Proof: We will prove that the conclusion holds for every unitary sab of T' containingn, by induction on the
number of nodes descended framSinceT is a subtree of itself, the lemma will follow.

If n has only one node descended from it (includintgself if n is a leaf) them is a leaf and then the conclusion
holds trivially.

Consider a subtreg in whichn hask nodes descended from it for sorhe- 0, and suppose the conclusion is true
for all subtrees where has less thak descendents. Létbe a leaf node descended franand letp be its parent.
Let S’ be the subtree of consisting of all ofS except the children of. By induction hypothesis, the conclusion
is true of S’. Let ¢y, ..., ¢, be the children op. The sum of the path values of leaves descended frams is
the same as that i, except thapv(p) is replaced bywv(c1) + ... + pv(cy,). Hence, we will be done if we can
show these are equal.

Let iy, - -, I, be the labels of the arcs leading to nodgs, ¢,, respectively. Themv(ci1) + ... + pv(e,) =
L = pu(p) + ...+ I, * pv(p) by definition of path value. Factoring opt(p) givespuv(p) = (i + ...+ 1,). But
SinceS’ is unitary,l; + ...+ I, = 1 and so this is juspv(p). O

Let IT be a P-log program with signatube Recall thatr(IT) denotes the translation of its logical part into an
Answer Set Prolog program. Similarly for a liteigin) with respect td1, (1) will represent the corresponding
literal in 7(IT). For exampler (owner(dy) = mike) = owner(dy, mike). For a set of literal® (in X) with respect
to I1, 7(B) will represent the sefr(l) | | € B}.

Definition 24

A set S of literals ofIT is II-compatiblewith a literal I of ¥ if there exists an answer set ofII) containing
T(S)Uu{r(1)}. OtherwiseS isII-incompatiblenith I. S is II-compatiblenith a setB of literals ofII if there exists
an answer set of(IT) containingr(S) U 7(B); otherwiseS is II-incompatiblenith B. O

Definition 25

A set S of literals is said tall-guarantee literal [if S and! areIl-compatible and every answer setxdfI)
containingr(.S) also contains (1); S II-guaranteea setB of literals if S II-guarantees every member®f O

Probabilistic reasoning with answer sets 57

Definition 26

We say thatB is apotentialll-causeof a(t) = y with respect to a rule if II contains rules of the form

[r] random(a(t) : {X : p(X)}) K - (21)
and
pre(a(t) =ylc B)=v- (22)
0
Definition 27
[Ready to branch]

Let T be a tree whose nodes are labeled with literalsabd a rule oflI of the form
random(a(t) : {X : p(X)}) « K-
or

random(a(t)) + K-
whereK can be empty. A node of T is ready to branch on(t) via r relative toll if

1. pr(n) contains no literal of the form(t) = y for anyy,
2. pr(n) II-guaranteed,

3. for every rule of the formpr,.(a(t) = y | B) = v in I, eitherpy(n) II-guarantee® or isII-incompatible
with B, and

4. if r is of the first form then for every in the range ofa(t), pr(n) eitherII-guarantee(y) or is II-
incompatible withp(y) and moreover there is at least opsuch thatpr(n) II-guarantees(y).

If IT is obvious from context we may simply say thats ready to branch on(¢) via r. O

Proposition 5

Supposer is ready to branch on(t) via some rule- of IT, anda(t) = y is II-compatible withp(n); and letW;
and W, be possible worlds dfl compatible withp(n). ThenP (W1, a(t) = y) = P(Wa, a(t) = y). O

Proof: Suppose: is ready to branch on(t) via some rule- of I, anda(t¢) = y is II-compatible withp(n); and
let W; and W5 be possible worlds dfl compatible withpr(n).

Case 1: Suppose(t) = y has an assigned probability ;. Then there is a ruler,(a(t) = y | B) = v of
IT such thatW; satisfiesB. Since W; also satisfiep(n), B is II-compatible withpr(n). It follows from the
definition of ready-to-branch that, (n) II-guarantee®. Since IV, satisfiesp(n) it must also satisfyB and so
P(Wa,a(t) =y) = v.

Case 2: Suppos&(t) = y does not have an assigned probability#i. Case 1 shows that the assigned prob-
abilities for values ofa(¢) in W, and W, are precisely the same; sgt) = y has a default probability in both
worlds. We need only show that the possible valuesa(@f are the same iri¥; and W,. Suppose then that for
somez, a(t) = z is possible inW;. ThenW; satisfiegp(y). Hence sincé¥; satisfiespr(n), we have thapr(n)
is II-compatible withp(y). By definition of ready-to-branch, it follows that- (n) II-guaranteeg(y). Now since

58 C. Baral, M. Gelfond and N. Rushton

W, satisfiep 7 (n) it must also satisfy(y) and hence(t) = y is possible inW,. The other direction is the same.

a

Supposen is ready to branch on(t) via some ruler of IT, anda(t) = y is
is a possible world ofI compatiblepr(n). We may refer to the®?(W, a(t)

latter notation does not mentidil, it is well defined by propositionl 5.

Fig. 2. Ty: The tree corresponding to the dice P-log progidsm

Example 32

[Ready to branch]
Consider the following version of the dice example. Leteréd it asll,

dice = {dl, dg}

score = {1,2,3,4,5,6}-

person = {mike, john}-

roll : dice — score-

owner : dice — person-

owner(dy) = mike-

owner(dy) = john-

even(D) < roll(D) =Y, Y mod 2 = 0-
—even(D) + not even(D)-

[(D)] random(roll(D))-

pr(roll(D) =Y |, owner(D) = john) = 1/6-

compatible withpr(n), and W
y) asv(n, a(t),y). Though the

Probabilistic reasoning with answer sets 59

pr(roll(D) = 6 |. owner(D) = mike) = 1/4.
pr(roll(D) =Y |, Y # 6, owner(D) = mike) = 3/20.
whereD ranges ovefd;, d}.

Now consider a treel’, of Figure[2. Let us refer to the root of this tree ms the noderoli(d;) = 1 asny,
and the nodewoli(dz) = 2 connected taw, asnz. Thenpr,(ny) = {true}, pr,(n2) = {true, roll(dy) = 1},
andpr,(n3) = {true,roll(dy) = 1,ro0ll(d2) = 2}. The set{true} of literals II;-guaranteeg owner(d;) =
mike, owner(dy) = john} and islly-incompatible with{ owner(d;) = john, owner(ds) = mike}. Hencen, and
the attributeroll(d;) satisfy condition 3 of definition 27. Similarly fatll(d,). Other conditions of the definition
hold vacuously and thereforg is ready to branch omli(D) via r(D) relative toIl, for D € {d;, d»}. Itis also
easy to see that, is ready to branch omll(dy) via r(dz), and thatns is not ready to branch on any attribute of
1I,. |

Definition 28

[Expanding a node]

In casen is ready to branch on(¢) via some rule ofll, the II-expansiorof T at n by a(t) is a tree obtained
from T as follows: for eachy such thap(n) is II-compatible witha(t) = y, add an arc leaving, labeled with
v(n, a(t), y), and terminating in a node labeled witkit) = y. We say that branches on(t). O

Definition 29

[Expansions of a tree]

A zero-stedI-expansion ofT" is T. A one-stedI-expansion ofT' is an expansion of” at one of its leaves by
some attribute terma(t). Forn > 1, ann-stepll-expansiorof T is a one-stefil-expansion of arin — 1)-step
IT-expansion ofT". A TI-expansiorof T is ann-stepll-expansion ofl’ for some non-negative integer O

For instance, the tree consisting of the top two layers & Triefrom Figurd 2 is dl;-expansion of one node tree
ny by roll(dy).

Definition 30

A seedis a tree with a single node labeléde |
Definition 31

[Tableau]

A tableauof 11 is all-expansion of a seed which is maximal with respect to therealvelation. O

For instance, a tre&, of Figure[2 is a tableau dil;.

Definition 32

[Node Representing a Possible World]
SupposeT is a tableau ofl. A possible worldW of 11 is representedby a leaf noden of T if W is the set of
literalsTI-guaranteed by (n). O

For instance, a node; of T5 represents a possible world
{owner(dy, mike), owner(dz, john), roll(dy, 1), roll(dz, 2), —meven(dy), even(dz)}.

60 C. Baral, M. Gelfond and N. Rushton

Definition 33

[Tree Representing a Program]
If every possible world ofl is represented by exactly one leaf nodeTgfand every leaf node of represents
exactly one possible world df, then we sayl" representsl. O

Itis easy to check that the tré® represents$l,.

Definition 34

[Probabilistic Soundness]
Supposdl is a P-log program and' is a tableau representiff such that? is a mapping from the possible worlds
of IT to the leaf nodes of” which represent them. If for every possible woild of IT we have

pur(R(W)) = u(W)
i.e. the path value if" of R(W) is equal to the probability of¥/, then we say that the representatiodbby T

is probabilistically sound |

The following theorem gives conditions sufficient for théhecency of P-log programs (Recall that we only con-
sider programs satisfying Conditidad1, 2, and 3 of Seéfidjh & will later be shown that all unitary, ok programs
satisfy the hypothesis of this theorem, establishing Téweil.

Theorem 3

[Coherency Condition]

Supposdl is a consistent P-log program such ti®atis defined. Lefl’ be obtained frondl by removing all obser-
vations and actions. If there exists a unitary tabl@arepresentindgl’, and this representation is probabilistically
sound, then for every pair of rules

[r] random(a(t) : {Y : p(Y)}) « K - (23)
and
prr(a’(t):ylc B)=wv- (24)

of Il such thatPr (B U K) > 0 we have

PH’Uobs(B)Uobs(K)(a(t) = y) =v

Hencell is coherent. O

Proof: For any setS of literals, letigar(S) (pronounced “L-gar” for “leaves guaranteeing”) be the ddeavesn
of T such thapr(n) II'-guarantees.

Let 1 denote the measure on possible worlds inducel’by.et (2 be the set of possible worlds B U obs(B) U
obs(K). SincePrr (B U K) > 0 we have

Z{W : WEQ A a(t)=y € W} M(W)
PrivGobs(Byuobs (k) (a(t) = y) = : — (25)
Hobs(B)Robs (O Z{W: WeQ}N(W)

Now, let

Probabilistic reasoning with answer sets 61

a= Z pu(n)

n€lgar(BUKU{a(t)=y)}

B= > pu(n)

ne€lgar(BUK)

Since T is a probabilistically sound representationBf the right-hand side of (25) can be written@43. So we
will be done if we can show that/S = v.

We first claim
Everyn € lgar(B U K) has a unique ancestg#(n) which branches on(t) via r (23)- (26)

If existence failed for some leaf thenn would be ready to branch ag(¢) which contradicts maximality of the
tree. Uniqueness follows from Condition 1 of Definitiod 27.

Next, we claim the following:
For everyn € lgar(B U K), pr(ga(n)) II-guarantee® U K - (27)

Letn € lgar(B U K). Sincega(n) branches onu(t), ga(n) must be ready tdl-expand using:(t). So by (2)
and (3) of the definition of ready-to-branciy(n) eitherI'-guaranteesB3 or is IT’-incompatible withB. But
pr(ga(n)) C pr(n), andpr(n) II'-guaranteesB, so pr(ga(n)) cannot bell’-incompatible withB. Hence
pr(ga(n)) II'-guarantees. It is also easy to see that-(ga(n)) II'-guarantee .

From [27), it follows easily that
If n € lgar(B U K), every leaf descended from ¢#(n) belongs tdgar(B U K) - (28)

Let
A={ga(n):n €lgar(BUK)}
In light of (28) and[(Z2B), we have

lgar(B U K) is precisely the set of leaves descended from nodés in (29)

Therefore,

B= > po(n)
n IS a leaf descended from somea
Moreover, by construction df’, no leaf may have more than one ancestat jrand hence

B=Y > po(n)
acA 4 is aleaf descended from
Now, by Lemmall on unitary trees, sin@gis unitary,
B=> pv(a)
a€A

This way of writing will help us complete the proof. Now far.

Recall the definition of::

a = Z pv(n)
n€lgar(BUKU{a(t)=y})

62 C. Baral, M. Gelfond and N. Rushton

Denote the index set of this sum byr (B, K, y). Let
A, = {n : parent(n) € A, the label ofn is a(t) = y}

Sincelgar(B, K, y) is a subset ofgar(B) U K, (29) implies thatigar(B, K, y) is precisely the set of nodes
descended from nodes i,. Hence

a= Z pv(n')
n’ is a leaf descended from somea,

Again, no leaf may descend from more than one nodéofand so by the lemma on unitary trees,

a=>Y > po(n') =" pv(n) (30)

n€Ay pis aleaf descended from neAy

Finally, we claim that every node in A has a unique child inl,, which we will labelychild(n). The existence
and unigueness follow frori (7), along with Conditidn 3 ot&en[3.2, and the fact that every nodedrbranches
on a(t) via [r]. Thus from [30) we obtain

a= Z pv(ychild(n))

neA

Note that ifn € A, the arc fromn to ychild(n) is labeled withv. Now we have:

PH/Uobs(B)Uobs(K)(a(t) = y)

=a/B
= > po(ychild(n))/ Y pv(n)
neA neA
=Y po(n)xv/ Y po(n)
neA neA
= V-

O
Proposition 6
[Tableau for causally ordered programs]
Supposdl is a causally ordered P-log program; then there exists adalil of IT which representl. O
Proof:
Let| | be a causal order di, a;(¢1), ..., am(tm) be the ordering of its terms induced py; andIly, ..., 11,14
be the| |-induced structure dil.
Consider a sequench, . . ., T,, of trees wherelj, is a tree with one nodey,, labeled bytrug and T; is obtained

from T;_; by expanding every leaf of;_; which is ready to branch oa;(¢;) via any rule relative tdl; by this
term. LetT = T,,. We will show thatT,, is a tableau ofI which representH.

Our proof will unfold as a sequence of lemmas:

Lemma 2

For everyk > 0 and every leaf node of T, programll;; has a unique possible world” containingpr, (n).
O

Probabilistic reasoning with answer sets 63

Proof:

We use induction ork. The case wheré = 0 follows from Condition (1) of Definitioh I3 of causally ordt
program. Assume that the lemma holds fo= k£ — 1 and consider a leaf node of T}. By construction ofT’,
there exists a leaf node of T}, which is either the parent of or equal ton. By inductive hypothesis there is a
unique possible world” of IT;, containingpr,_, (m).

(i) First we will show that every possible world” of I1;, ;1 containingpr, , (m) also containg/. By the splitting
set theorem (Lifschitz and Turner 1994), 3ét = W|,, is a possible world ofI,. Obviously,pr, ,(m) C V".
By inductive hypothesisy’ = V, and hencd’ C W.

Now let us consider two cases.

(i) ax(%x) is not active inV with respect tdl; ;. In this case for every random selection rulelbf, ; either
Condition (2) or Condition (4) of definition 27 is not satisfiand hence there is no rutesuch thatm is ready
to branch o (%) via r relative toll, ;. From construction ofl;, we have thatn = n. By (3) of the defini-
tion of causally ordered, the prograi U 11, has exactly one possible worldly. Since L;, is a splitting set
(Lifschitz and Turner 1994) ofl;; we can use splitting set theorem to conclude thais a possible world of
II;+1. Obviously, W containsV and hence 1, _, (m). Sincen = m this implies thati¥ containspr, (n).

Uniqueness follows immediately from (i) and Condition (3Definition[13.

(iii) A term ax (7) is active in V. This means that there is some random selectionrrule
[r] random(ay(Tg) : {Y : p(Y)}) + K-

such thatV satisfiesK and there igy such thato(yy) € V. (If » does not contaimp the latter condition can be
simply omitted). Recall that in this casg()) = yo is possible inV with respect td T ;.

We will show thatm is ready to branch ony, () via rule r relative tolTj .
Condition (1) of the definition of“ready to branch” (Defimiti27) follows immediately from construction &f, ;.

To prove Condition (2) we need to show that, _, (m) IIx4;-guaranteed(. To see thapp,_,(m) and K are
1T, 1-compatible notice that, from Condition (2) of Definitibn] 88id the fact thap(yo) € V we have that
V UIl,4, has a possible world, saj¥. Obviously it satisfies bothi” andp, _, (m). Now consider a possible
world W of 11,4, which containspr,_, (m). By (i) we have thatV C W. Since V satisfiesK so doesW.
Condition (2) of the definition of ready to branch is satisfied

To prove condition (3) considerr,(a;(tx) = vy | B) = v from I, such thatB is 1Ty ;-compatible with
pr._, (m). Il -compatibility implies that there is a possible worl#, of 11,41 which contains bothpr, _, (m)
andB. By (i) we have thatl’ C W, and hence/ satisfiesB. Since every possible worl@ of II;,, containing
pr,_, (m) also containg” we have that? satisfiesB which proves condition (3) of the definition.

To prove Condition (4) we considep such thaty(yo) € V (The existence of sucly is proven at the beginning
of (iii)). We show thatpr,_, (m) II;4+1-guarantee®(yo). Sinceay (tx) = yo is possible inV with respect to
;41 Condition (2) of Definitio_IB guarantees tHaf,; has possible world, say¥’, containing V. By con-
struction,p(yo) € V and hencep(yo) andpr,_, (m) arell;;, compatible. From (i) we have thaty, _, (m)
11 +1-guarantees(yo). Similar argument shows thatifr, _, (m) is I1j 41 -compatible withp(y) thenp(y) is also
IT;41-guaranteed by, , (m).

We can now conclude that is ready to branch ony (Z) via ruler relative toll;. This implies that a leaf node
n of T}, is obtained fromm by expanding it by an ator, (7)) = y.

By Condition (2) of Definitio 1B, progran¥’ U I U obs(ax(tx) = y) has exactly one possible worldiy .
Since L, is a splitting set ofll;1; we have thatW is a possible world ofl; ;. Clearly W containspy, (n).
Uniqueness follows immediately from (i) and Condition (2 Definition[13.

64 C. Baral, M. Gelfond and N. Rushton

Lemma 3

For allk > 0, every possible world dff;; containspr, (n) for some unique leaf node of Tj,. O

Proof:

We use induction oik. The case wheré = 0 is immediate. Assume that the lemma holdsfce £ — 1, and
consider a possible worl@ of 11, ;. By the splitting set theoreri¥ is a possible world of” U 11,1 where V'

is a possible world ofI;. By the inductive hypothesis there is a unique leaf nedef Tj,_; such thatl” contains
pr,_, (m). Consider two cases.

(a) The attribute termay (%) is not active inV and hencen is not ready to branch ouw (). This means that
m is a leaf of T}, andpr,_,(m) = pr,(m). Letn = m. SinceV C W we have thapy, (n) C W. To show
unigueness supposé is a leaf node off;, such that 1, (n') C W, andn’ is not equal ton. By construction of
Ty, there is somg and somey; # y» such thata;(¢;) = y1 € pr.(n') anda;(t;) = y2 € pr,(n). Since W is
consistent and, is a function we can concludecannot differ fromn’.

(b) If ax(tx) is active inV then there is a possible outcomef a (7x) in V with respecil;; via some random
selection ruler such thatay (7;) = y € W. By inductive hypothesid’ containspr,_, (m) for some leafm of
Trx_1. Repeating the argument from part (iii) of the proof of Len{fheve can show that: is ready to branch
on ay () via r relative toll . Sinceay(f;) = y is possible inV there is a som of m in T} labeled by
a,(tr) = y. Itis easy to see thal’ containspr, (n). The proof of uniqueness is similar to that used in (a).

Lemma 4

For every leaf noden of T;_;, every setB of extended literals of;_;, and everyi < j < m + 1 we have
pr,_,(n) isII;-compatible withB iff pr, | (n) is IL;-compatible withB. O

Proof:

_>

Suppose thatr,_, (n) isII;-compatible withB. This means that there is a possible wovidf II; which satisfies
pr,_,(n) and B. To construct a possible world &f; with the same property consider a leaf nadeof 7,_;
belonging to a path containing nodeof T;_;. By Lemmal2II; has a unique possible worlt/’ containing
pr,_,(m). L; is a splitting set of; and hence, by the splitting set theorem, we have Wat V' U U whereV”’
is a possible world of; andUNL; = (. This implies thatV’’ containgr,_, (n), and hence, by Lemnia2’ = V.
SinceV satisfiesB and U N L, = () we have that¥ also satisfied3 and hencer, ,(n) is II;-compatible with
B.

(_

Let W be a possible world dfi; satisfyingpr, , (n) andB. By the splitting set theorem we have tHét= VU U
whereV is a possible world ofl; and U N L; = (). SinceB andpr,_, (n) belong to the language df; we have
thatB andpr, ,(n) are satisfied by and hence,_, (n) is IT;-compatible withB.

Lemma5s

For every leaf noden of T;_;, every setB of extended literals of.;_;, and everyi < j < m + 1 we have
pr,_, (n) II;-guarantee® iff pr, , (n) II;-guarantees. O

-
Let us assume thatr,_, (n) II;-guarantees3. This implies thatpr,_, (n) is II;-compatible withB, and hence,
by Lemm&dpr, ,(n) is II;-compatible withB. Now let W be a possible world ofl; satisfyingpr, ,(n). By
the splitting set theoreni’ = V U U whereV is a possible world ofI; and U N L; = (. This implies thatV’
satisfiepr,_, (n). Sincepr,_, (n) I1;-guarantee® we also have thal” satisfiesB. Finally, sincelU N L, = () we
can conclude thall satisfiesB.

Probabilistic reasoning with answer sets 65

“
Suppose now thatr, ,(n) II;-guarantee®. This implies thap, , (n) is II;-compatible withB. Now let V be
a possible world ofI; containingpr,_, (n). To show thatV" satisfiesB let us consider a leaf node of a path of
T;—1 containingn. By Lemma[2I1; has a unique possible worl@” containingpr, , (m). By construction, W

also containgr,_, (n) and hence satisfieB. By the splitting set theorerV = V' U U where V' is a possible
world of IT; and U N L; = 0. SinceB belongs to the language &f it is satisfied byV’. By Lemmd2V’' = V.

Thus V satisfies B and we concluge, | (n) II;-guarantees.

Lemma 6

For every; < j < m + 1 and every leaf node of T;_;, n is ready to branch on term (¢;) relative toIl; iff n is
ready to branch on; (Z;) relative toll;. O

Proof:

_>

Condition (1) of Definitioh 2]7 follows immediately from camsgction of T’s. To prove condition (2) consider a leaf
noden of T;_; which is ready to branch om;(7,) relative tolIl;. This means thafl; contains a random selection
rule » whose body id1;-guaranteed by, , (n). By definition of L;, the extended literals frorA” belong to the
languagel.; and hence, by Lemnid by, , (n) II,-guarantee%.

Now consider a seB of extended literals from condition (3) of Definition]27 anssame thapr, ,(n) is II;-
compatible withB. To show thatyr, , (n) I1;-guarantee$ note that, by Lemm@l 4y, , (n) is I1;-compatible
with B. Sincen is ready to branch on; (%;) relative toIl; we have thap,_, (n) II;-guarantee$3. By Lemma
B we have thapr, , (n) II;-guarantee®? and hence Condition (3) of Definitidn 27 is satisfied. Cowdit{4) is
similar to check.

.
As before Condition (1) is immediate. To prove Condition ¢@hsider a leaf node of T;_; which is ready to
branch ona;, (¢;) relative toIl,. This means thapr, , (n) IL;-guaranteeg(for some ruler from II;. Sincell;
is causally ordered we have thabelongs tdll;. By LemmdD5pr,_, (n) I1;-guaranteedl. Similar proof can be
used to establish Conditions (3) and (4).

Lemma7

T = T,, is atableau fofl = I1,,, 4. O
Proof:

Follows immediately from the construction of tH&s andII's, the definition of a tableau, and Lemnhas 6 Bhd 4.
Lemma 8

T = T,, represent$l = II,,, ;. O
Proof:

Let W be a possible world dfl. By Lemm&3BW containspr(n) for some unique leaf nodeof T. By Lemma 2,
W is the set of literal§I-guaranteed by (n), and hencéV is represented by. Suppose now that’ is a node

of T representingV. Thenpr(n’) II-guarantee$? which implies thati containspr,, (n’). By Lemmd3 this
means that: = n’, and hence we proved that every answer séf &f represented by exactly one leaf nodeTof

Now letn be a leaf node of". By Lemmd2II has a unique possible world containingpr(n). Itis easy to see
that IV is the set of literals represented hyO

66 C. Baral, M. Gelfond and N. Rushton

Lemma 9

SupposeT is a tableau representifdd. If n is a node ofT" which is ready to branch on(¢) via r, then all
possible worlds ofI compatible withp(n) are probabilistically equivalent with respectito O

Proof:
This is immediate from Conditions (3) and (4) of the defimitif ready-to-branch.

Notation: If n is a node ofT’ which is ready to branch om(t) via r, the LemmaDB guarantees that there is a unique
scenario for containing all possible worlds compatible with (). We will refer to this scenario ate scenario
determined by.

We are now ready to prove the main theorem.

Theorem[d
Every causally ordered, unitary program is coherent.

Proof:

Supposdl is causally ordered and unitary. Propositidn 6 tells us Thas represented by some tabledu By
Theoreni B we need only show tHatis unitary — i.e., that for every nodeof II, the sum of the labels of the arcs
leavingn is 1. Letn be a node and latbe the scenario determined hys satisfies (1) or (2) of the Definitidn114. In
case (1) is satisfied, the definitionefn, a(t), y), along with the construction of the labels of arcslafguarantee
that the sum of the labels of the arcs leaving 1. In case (2) is satisfied, the conclusion follows fromghme
considerations, along with the definition BD (W, a(t) = y).

We now restate and prove Theorem 2.

Theorem[2

Let zy,...,z, be a nonempty vector of random variables, under a classichipility P, taking finitely many
values each. LeR; be the set of possible values of eaghand assume; is nonempty for each. Then there
exists a coherent P-log programwith random attributes;, . . ., z, such that for every vector, ..., r, from
Ri x -+ X R,,we have

Plry=r,...,0n=1y) = Pu(x1 = 11,...,2p = 10) (31)
O
Proof:
For eachi let pars(z;) = {z1,...,z;—1}. LetII be formed as follows: For each, II contains
Z; - Rl
random(z;)-

Also, for eachy;, every possible valug of z;, and every vector of possible valugsof pars(z;), letII contain
pr(z =y | pars(i) = yp) = v(i, Y, 4p)
wherev(i, y, yp) = P(x; = y|pars(i) = yp).

Construct a tableaff for IT as follows: Beginning with the root which has depth 0, forrgugoden at depthi and
every possible valug of x;,1, add an arc leaving, terminating in a node labeled; = y; label the arc with

P(ziy1 = ylpr(n)).

Probabilistic reasoning with answer sets 67

We first claim thatT is unitary. This follows from the construction & and basic probability theory, since the
labels of the arcs leaving any nodeat depth: are the respective conditional probabilities, given(n), of all
possible values of; ;.

We now claim thatl’ represent$l. Each answer set of(1I), the translation ofI into Answer Set Prolog, satisfies

x = r,...,2, = 1, for exactly one vectory,...,r, in Ry x ... x R,, and every such vector is satisfied in
exactly one answer set. For the answer$sttisfyingz; = r1,...,z, = r,, let M(S) be the leaf node of T
such thatpr(n) = {1 = r,...,2, = r,}. M(S) representss by Definition[32, sincdl has no non-random
attributes. Sincé/ is a one-to-one corresponden@erepresentsl. (31) holds because

P(Il =T, T = Tn)

=Pm=mn)XPlma=mnlzy=r)X...x Py =r|z1 =11, Tpn-1=Tn-1)

=ou(l,r, () X ... xv(n,r, (r1, ..., 1))

=Pu(my =ri,..., 0, = Tn)

To complete the proof we will use Theoréin 3 to show ffias coherentlI trivially satisfies the Unique selection
rule. The Unique probability assignment rule is satisfiecdosepars(z;) cannot take on two different valug%
and yg in the same answer séi. is consistent because by assumptiof » and R, is nonempty. For the same
reason Pr is definedlIl contains naloor obsliterals; so we can apply Theorem 3 directlyliavithout removing
anything. We have shown th@t is unitary and represent$. The representation is probabilistically sound by the
construction ofT". These are all the things that need to be checked to applyr&imE® to show thall is coherent.

O

Finally we give proof of Propositidnl 7.

Proposition 7

Let T be a P-log program over signatufenot containingpr-atoms, and3 a collection ofX-literals. If

1. all random selection rules @f are of the formrandom(a(%)),
2. T U obs(B) is coherent, and

3. for every termu () appearing in literals fron® program7” contains a random selection rulewdom (a(t)),

then for every formulad
Prup(A) = Pruoss(s)(4)

Proof:

We will need some terminology. Answer Set Prolog progrdimsandlIl, are calledequivalent(symbolically,

11, = I1,) if they have the same answer sdiis; andIl, are called strongly equivalent (symbolically = I15)

if for every programil we have thall; U IT = II; U II. To simplify the presentation let us consider a program
T’ = T U B U obs(B). Using the splitting set theorem it is easy to show thais a possible world of”" U B iff

W U obs(B) is a possible world of’. To show

(1) Prup(A) = Pruoss(s)(4):

we notice that, sincd”, T U B and T' U obs(B) have the same probabilistic parts and the same collectibns o
do-atoms to prove (1) it suffices to show that

(2) W is a possible world off” iff W is a possible world ofl" U obs(B).

68 C. Baral, M. Gelfond and N. Rushton
Let Pp = 7(T") and P55y = 7(T U obs(B)). By definition of possible worlds (2) holds iff

(3) Pp = Poys(p)

To prove (3) let us first notice that the set of liter&lsormed by relationsglo, obs, andintervene form a splitting
set of programg’s and P, 5. Both programs include the same collection of rules whoselsi®elong to this
splitting set. LetX be the answer set of this collection and {gt and Q) be partial evaluations aPz and
P,ys(5y With respect taX and.S. From the splitting set theorem we have that (3) holds iff

(4) QB = Qobs(B)-
To prove (4) we will show that for every literale B there are set#/; (1) and Uz (1) such that for somé)
(5) Qobs(p)y = QU {r:r € Uy(l) forsomel € B},
(6) @ = QU {r: r e Uy(l) for somel € B},
(7) U(1) =5 U2(1)
which will imply (4).
Let literal I € B be formed by an attribute(?). Consider two cases:
Case lintervene(a(t)) € X.
Let Uy (1) consist of the rules
(a) —a(t, Y1) < a(t, Y3), Y1 # Ys.
(b) a(t,y1)or...ora(t, yg).
(¢) + notl.
Let Ux(1) = Uy (1) U B.

Itis easy to see that due to the restrictions on random sateetles of T’ from the propositiori/; (1) belongs to
the partial evaluation of(7') with respect taX andS. HenceU (1) C Q,(5)- Similarly U (1) C @Qp, and hence
U, (1) and U (1) satisfy conditions (5) and (6) above. To show that they atisndition (7) we use the method de-
veloped in[(Lifschitz et al. 2001). First we reinterpret tomnectives of statements 6% (1) and Uz(1). In the new
interpretation- will be a strong negation of Nelson (Nelson 1948)t , <—, or will be interpreted as intuitionistic
negation, implication, and disjunction respectivelyill stand forA. A programP with connectives reinterpreted
in this way will be referred to ablL counterparbf P. Note that the NL counterpart &f not [is not not [. Next
we will show that, under this interpretatiofy; (1) and U (1) are equivalent in Nelson’s intuitionistic logic (NL).
Symbolically,

(8) Ul(l) =NL UQ(Z)

(Roughly speaking this means thit(7) can be derived froni/z(1) and Uz (1) from U; (1) without the use of the
law of exclusive middle.) As shown in (Lifschitz et al. 20G®o programs whose NL counterparts are equivalent
in NL are strongly equivalent, which implies (7).

To show (8) it suffices to show that
(9) Uh(l) Fuz L.

If [is of the forma(¢, y;) then let us assume(¢, y;) wherej # 7. This, together with the NL counterpart of rule
(a) derives-a(t, y;). Since in NL-A + not A this derivesnot a(%, y;), which contradicts the NL counterpart
not not a(%,y;) of (). The only disjunct left in (b) i%(Z, y;).

Probabilistic reasoning with answer sets 69

If [is of the form—a(7, y;) then (9) follows from (a) and (b).
Case 2intervene(a(t)) € X
This implies that there is somg such thatdo(a(?) = y;) € T.

If 1is of the forma(t) = y then sinceT’ U obs(B) is coherent, we have thgt= y;, and thusQz and Q) are
identical.

If [is of the forma(%) # y then, sincel’ U obs(B) is coherent, we have thagt=£ y;.

Let U1 () consist of rules:

—a(t, y) < a(l, yi).

a(?, yi)-

Let Us(1) = U1 (1) U —a(t, y).

Obviously Uy (1) C Qops(By, U2(1) C @p and U (1) entails Uz(1) in NL. Hence we have (7) and therefore (4).

This concludes the proof.

10 Appendix II: Causal Bayesian Networks

This section gives a definition of causal Bayesian netwarksely following the definition of Judea Pearl and
equivalent to the definition given ib_(Pearl 2000). Pearéfimition reflects the intuition that causal influence can
be elucidated, and distinguished from mere correlatiorgditrolled experimentsn which one or more variables
are deliberately manipulated while other variables artetdetheir normal behavior. For example, there is a strong
correlation between smoking and lung cancer, but it couldypsthesized that this correlation is due to a genetic
condition which tends to cause both lung cancer and a subit#pto cigarette addiction. Evidence of a causal
link could be obtained, for example, by a controlled expenitin which one randomly selected group of people
would be forced to smoke, another group selected in the saayeweuld be forced not to, and cancer rates
measured among both groups (not that we recommend such ariregpt). The definitions below characterize
causal links among a collectior of variables in terms of the numerical properties of proliglineasures o/

in the presence of interventions. Pearl gives the namertiatgional distribution” to a function from interventions
to probability measures. Given an interventional distiifou P*, the goal is to describe conditions under which a
set of causal links, represented by a DAG, agrees with thegitistic and causal information containedAi. In

this case the DAG will be called a causal Bayesian networkpadiile with P*.

We begin with some preliminary definitions. L&t be a finite set of variables, where eacln V takes values
from some finite seD(v). By anassignmenon V', we mean a function which maps eachl V' to some member
of D(v). We will let A(V') denote the set of all assignments BnAssignments orl’ may also be callegossible

worldsof V.

A partial assignmerdn V' is an assignment on a subsetiof We will say two partial assignments acensistent

if they do not assign different values to the same variakéetid? assignments can also be calfaterventions
Let Interv(V') be the set of all interventions o, and let{ } denote the empty intervention, that is, the unique
assignment on the empty set of variables.

By a probability measuren ¥V we mean a functiol® which maps every set of possible worlds Bfto a real
number in[0, 1] and satisfies the Kolmogorov Axioms.

When P is a probability measure of, the arguments oP are sets of possible worlds df. However, these

70 C. Baral, M. Gelfond and N. Rushton

sets are often written as constraints which determine theinbers. So, for example, we wrilg{v = z) for the
probability of the set of all possible worlds &f which assignz to v.

The following definition captures when a DAG is an “ordinary” (i.e., not-necessarily-causal) Bayesiatwork
compatible with a given probability measure. The idea ig tha graphG captures certain conditional inde-
pendence information about the given variables. That i&rginformation about the observed values of certain
variables, the graph captures which variables are releggdrticular inferences about other variables. Generally
speaking, this may fail to reflect the directions of caugaliecause the laws of probability used to make these in-
ferences (e.g., Bayes Theorem and the definition of comditiprobability) do not distinguish causes from effects.
For example ifA has a causal influence d®, observations ofi may be relevant to inferences abdgiin much

the same way that observationsi®fare relevant to inferences abodit

Definition 35

[Compatible]
Let P be a probability measure ori and letG be a DAG whose nodes are the variabledinWe say thatP is
compatible withG if, under P, everyv in V is independent of its non-descendantsingiven its parents irz. O

We are now ready to define causal Bayesian networks. In thenfiolg definition, P* is thought of as a mapping
from each possible interventionto the probability measures o resulting from performing-. P* is intended

to capture a model of causal influence in a purely numericg aad the definition relates this causal model to a
DAG G.

If G is a DAG andv vertex of G, let Parents(G, v) denote the parents ofin G.

Definition 36

[Causal Bayesian network]

Let P* map each interventionin Interv(V') to a probability measur®, on V. Let G be a DAG whose vertices
are precisely the members &f. We say thatG is a causal Bayesian netwodompatible withP* if for every
interventionr in Interv(V),

1. P, is compatible withG,

2. P.(v=1z)=1whenever(v) =z, and

3. whenever does not assign a value g ands is an assignment oRarents(G, v) consistent withr, we

have that for every. € D(v)
P.(v=1x|u=s(u)forall u € Parents(G,v))
=Piy(v=a|u=s(u)foralu e Parents(G,v)) O

Condition 1 says that regardless of which interventios performed,G is a Bayesian net compatible with the
resulting probability measurE*E Condition 2 says that when we perform an intervention on dreables ofV/,

the manipulated variables “obey” the intervention. Caindif3 says that the unmanipulated variables behave under
the influence of their parents in the usual way, as if no mdatmn had occurred.

For example, consideV = {a, d}, D(a) = D(d) = {true, false}, andP* given by the following table:
9 This part of the definition captures some intuition aboutsedity. It entails that given complete information aboue factors immediately

influencing a variable (i.e., given the parents afin G), the only variables relevant to inferences abeare its effects and indirect effects
(i.e., descendants afin G) — and that this property holds regardless of the intereengierformed.

Probabilistic reasoning with answer sets 71

interventior| {a,d} {a,—~d} {-a,d} {-a,~d}

! 0.32 0.08 0.06 0.54
{a} 0.8 0.2 0 0
{~a} 0 0 0.01 0.99
{d} 0.4 0 0.6 0
{~d} 0 0.4 0 0.6
{a,d} 1 0 0 0
{a,~d} 0 1 0 0
{~a,d} 0 0 1 0
{~a,~d} | 0O 0 0 1

The entries down the left margin give possible intervergj@nd each row defines the corresponding probability
measure by giving the probabilities of the four singletots s possible worlds. Intuitively, the table represents
P* derived from Example_18, whererepresents that the rat eats arsenic, @mepresents that it dies.

If G is the graph with a single directed arc franto d, then one can verify tha®* satisfies Conditions 1-3 of the
definition of Causal Bayesian Network. For example; i {a = true}, s = {d = true}, v = d, andx = true,
we can verify Condition 3 by computing its left and right hasides using the first two rows of the table:

LHS = Py (d|a)=0-8/(0-8+0-2)=0-8
RHS = P(y(d|a)=0-32/(0-32+0-08) =0-8

Now let G’ be the graph with a single directed arc frahto a. We can verify that”* fails to satisfy Condition 3
for G’ with r = {a = true}, v = d, z = true, ands the empty assignment, viz.,
LHS = P(s3(d)=0-84+0=0-8
RHS = Pyy(d)=0-32+0-6=0-38

This tells us thatP* given by the table is not compatible with the hypothesis thatrat’s eating arsenic saused
byits death.

Definition 36 leads to the following proposition that suggesstraightforward algorithm to compute probabilities
with respect to a causal Bayes network with nodes. . , v, after an interventiom is done.

Proposition 8((Pearl 2000)

Let G be a causal Bayesian network, with nodés= v, = x1,..., v, = 1z, compatible with an interventional
distribution P*. Suppose also thatis an intervention innterv(V'), and the possible worlth = 1, ..., vy = 3
is consistent with-. Then

Po(vy=a1,...,05 = 11) = H Pgy (v = xi|pag(r) (1, ..., z1))

irr(v;) IS not defined

wherepa;(z1,. .., x;)) is the unique assignment world dturents(G, v;) compatible withv; = z, ..., vy = .
O
Theorem 4

Let G be a DAG with vertices/ = {u,..., v, } and P be as defined in Definition 36. For an interventigriet
do(r) denote the setdo(v; = r(v;)) : r(v;) is defined}.

72 C. Baral, M. Gelfond and N. Rushton

Then there exists a P-log programwith random attributes, ..., v; such that for any intervention in
Interv(V) and any assignment = i, ..., v, = 2 we have

Pr(vi = 21,..., 0 = 2) = Prudo(ry (01 = T1,. .., v = 73) (32)

O

Proof: We will first give a road map of the proof. Our proof consistshaf following four steps.

(i) First, given the antecedent in the statement of the theanenwill construct a P-log program which, as we
will ultimately show, satisfied (32).

(i) Next, we will construct a P-log progran(r) and show that:

PﬂUdO(T)(vl =T,V = iI,'k) = Pﬂ(T)(vl =T,V = mk) (33)

(iii) Next, we will construct a finite Bayes nét(r) that defines a probability distributia®’ and show that:

Pey(vr =@, .. 0 = a) = P'(oy = @, ... 0 =) (34)

(iv) Then we will use Proposition 1 to argue that:

Pvy=m21,...,0h = 2%) = Pr(vy = 21, ..., 0 = Tp) (35)
(32) then follows from[(33)[(34) an@ (B5).
We now elaborate on the steps (i)-(iv).
Step (i) Given the antecedent in the statement of the theorem, weeriltruct a P-log programas follows:
(a) For each variable; in V, 7 contains:

random(v;).
v; » D(v;).

whereD(v;) is the domain ob;.

(b) For anyv;, € V, such thatparents(G,v;) = {vi,...,v, }, anyy € D(v;), and anyz;,,...,z;, in
D(vy),..., D(v;,) respectivelyr contains the pr-atom:

pr(vi=y e vi, =i, - i, =w,) = Ppy(visylvi =z, ... v, =3,)

Step (ii) Given the antecedent in the statement of the theorem, anat@mwentionr in Interv(V') we will now
construct a P-log program(r) and show tha{(33) is true.

(a) For each variable; in V, if (v;) is not defined, them(r) containsrandom(v;) andv; : D(v;), whereD (v;)
is the domain ofy;.

Probabilistic reasoning with answer sets 73

(b) The pr-atoms inr(r) are as follows. For any node such that-(v;) is not defined Iel{vi]1 e, vijk} consists
of all elements oparents(G, v;) = {v;,, ..., v;, } wherer is not defined. Then the following pr-atom iszr).
p(v; = z | Viy, = Yipy oo Vi = yijk) = Py(vi = x| vy = Yiy,-.o5 v, = ¥i,), Where for allv;, €

parents(G, v;), if r(v;,) is defined theny;, = r(v;,).

Now let us compare the P-log programs) do(r) andx(r). Their pr-atoms differ. In addition, for a variableg,

if r(v;) is defined thenr U do(r) hasdo(v; = r(v;)) and random(v;) while =(r) has neither. For variables,
vj, wherer(v;) is not defined bothr U do(r) and=(r) haverandom(v;). It is easy to see that there is a one-
to-one correspondence between possible worlds0fdo(r) andx(r); for any possible world¥V of = U do(r)
the corresponding possible world” for () can be obtained by projecting on the atoms about variablésr
which r(v;) is not defined. For a; for which r(v;) is defined,W will contain intervene(v;), and will not have
an assigned probability. The default probabilRp (W, v; = r(v;)) will be m Now it is easy to see that the
unnormalized probability measure associated vithwill be

1
|D(v;)]

v« r(v;) IS defined
times the unnormalized probability measure associatdu Wit and hence their normalized probability measures
will be the same. Thugwudo(r)(vl =T1,...,0 = Ik) = P,T(r)(vl =21,...,0 = :Ek).

Step (iii) Given G, P* and any intervention in Interv(V) we will construct a finite Bayes ne®(r). Let P’
denote the probability with respect to this Bayes net.

The nodes and edges 6f(r) are as follows. All vertices; in G such that-(v;) is not defined are the only vertices
in G(r). For any edge fromy; to v; in G, only if r(v;) is not defined the edge from to v, is also an edge in
G(r). No other edges are i&(r). The conditional probability associated with the Bayes@ét) is as follows:
For any nodey; of G(r), let parents(G(r), v;) = {v;, ..., v, } C parents(G,v;) = {vi, ..., v, }. We define
the conditional probability (v; = = [vy, =y, ..., v, =y,) = Py(vi = 2 | vy = Yy e ooy Vi = i)
where for allv;, € parents(G, v;), if 7(v;,) is defined (i.e.p;, & parents(G(r),v;)) theny;, = r(vs,).

From Theorem 2 which shows the equivalence between a Bayesmde representation of it in P-log, which we
will denote byn(G(r)) , we know thatP’(v; = z1,..., v = 2k) = Pr(ary(v1 = 21,..., 0 = x). Itis easy
to see thatr(G(r)) is same as(r). Hencel(34) holds.

Step (iv) It is easy to see tha®’(v; = z1,..., v, =) is equal to the right hand side of Proposition 1. Hence
(39) holds.
11 Appendix lll: Semantics of ASP

In this section we review the semantics of ASP. Recall thak@R rule is a statement of the form

bor...orly < lxt1,---bn,not bng1,...,not I, (36)
where thel;'s are ground literals over some signatateAn ASP program 11, is a collection of such rules over
some signature(I1), and apartial interpretatiorof (I1) is a consistent set of ground literals of the signature. A
program with variables is considered shorthand for the sall ground instantiations of its rules. The answer set

semantics of a logic prograhh assigns tdl a collection ofanswer sets— each of which is a partial interpretation
of o(II) corresponding to some possible set of beliefs which can Bellyua rational reasoner on the basis of

74 C. Baral, M. Gelfond and N. Rushton

rules ofII. As mentioned in the introduction, in the construction oftsa set,S, the reasoner should satisfy the
rules ofIT and adhere to theationality principlewhich says thabne shall not believe anything one is not forced
to believe A partial interpretatiort’ satisfiesRule[36 if whenevely . 1,..., 1, areinS and none of,,,11,..., I,

are in S, the setS contains at least ongwhere0 < i < k. The definition of an answer set of a logic program is
given in two steps:

First we consider a prograhh not containing default negatiomt.

Definition 37

(Answer set — part one)
A partial interpretationS of the signatures(IT) of II is an answer sefor II if S is minimal (in the sense of
set-theoretic inclusion) among the partial interpretaiof o (I1) satisfying the rules off. O

The rationality principle is captured in this definition yetminimality requirement.

To extend the definition of answer sets to arbitrary progrdak® any prograril, and letS be a partial interpre-
tation of o (IT). ThereductTl® of II relative toS is obtained by

1. removing fromlI all rules containinguot [such that € S, and then
2. removing all literals of the formot [from the remaining rules.

ThusII® is a program without default negation.

Definition 38

(Answer set — part two)
A partial interpretatior$ of o(I1) is an answer set fdfl if S is an answer set fdil®. O

The relationship between this fix-point definition and th@imal principles which form the basis for the notion
of answer set is given by the following proposition.

Proposition 9

Baral and Gelfond| (Baral, and Gelfond 1994)

Let S be an answer set of ASP progrdin

(a) S satisfies the rules of the ground instantiatiorilof

(b) If literal [€ S then there is a rule from the ground instantiation af such that the body of is satisfied byS
and! is the only literal in the head of satisfied bys. O

The ruler from (b) “forces” the reasoner to believe

It is easy to check that program(a) or p(b) has two answer sets{p(a)} and {p(b)}, and pro-
gram p(a) + not p(b) has one answer sef{p(a)}. ProgramP; from the introduction indeed has one
answer set{p(a),—p(b), ¢(c)}, while program P, has two answer sets{p(a),—p(b),p(c),—¢(c)} and

{p(a),=p(b),—~p(c),~q(c)}.

Note that the left-hand side (the head) of an ASP rule can bgyedm this case the rule is often referred to as a
constraintor denial The deniak— B prohibits the agent associated with the program from haziset of beliefs
satisfying B. For instance, program(a) or —p(a) has two answer set$p(a)} and{—p(a)}. The addition of

a denial p(a) eliminates the forme—p(a)} is the only answer set of the remaining program. Every answer
set of a consistent prografhU {I-} contains! while a progranil U {+ not [-} may be inconsistent. While the
former tells the reasoner to believe ttias true the latter requires him to find support of his belief from II. If,

Probabilistic reasoning with answer sets 75

say,II is empty then the first program has the answef setvhile the second has no answer setdI ifonsists of
the default-l < not [then the first program has the answerisghile the second again has no answer sets.

Some additional insight into the difference betwdeand < not [can also be obtained from the relationship
between ASP and intuitionistic or constructive logic (Beis, and Lifschitz 2005) which distinguishes betwéen
and——l. In the corresponding mapping the denial corresponds tddhble negation of.

To better understand the role of denials in ASP one can viensgramlI as divided into two partdl,. consisting
of rules with non-empty heads ariti; consisting of the denials dfi. One can show that is an answer set of
IT iff it is an answer set ofl,. which satisfies all the denials frobh;. This property is often exploited in answer
set programming where the initial knowledge about the danmibften defined by, and the corresponding
computational problem is posed as the task of finding anseterddl1, satisfying the denials frofi,;.

References

APT, K., AND DOETS, K. 1994. A new definition of SLDNF resolutionlournal of Logic Programmind.8, 177—190.

BAccHUS, F. 1990.Representing and reasoning with uncertain knowletifj@ Press.

BACCHUS, F., GROVE, A., HALPERN, J.,AND KOLLER, D. 1996. From statistical knowledge bases to degrees w#fbel
Artificial Intelligence 87, 75-143.

BALDUCCINI, M., GELFOND, M., NOGUEIRA, M., WATSON, R., AND BARRY, M. 2001. An A-Prolog decision support
system for the space shuttle -Froceedings of Practical Aspects of Declarative Languddis-183.

BALDUCCINI, M., GELFOND, M., NOGUEIRA, M., AND WATSON, R. 2002. Planning with the USA-AdvisoBrd NASA
International workshop on Planning and Scheduling for 8pac

BALDUCCINI, M. AND GELFOND, M. 2003. Logic programs with consistency-restoring rullsInternational Symposium
on Logical Formalization of Commonsense Reasoning, AAAIZ8pring Symposium Serie3-18.

BARAL, C. 2003.Knowledge representation, reasoning and declarativdgmrobolving Cambridge University Press.

BARAL, C.,AND GELFOND, M. 1994. Logic Programming and Knowledge Representatitanirnal of Logic Programming
19,20 73-148.

BARAL, C., GELFOND, M., AND RUSHTON, N. 2004. Probabilistic reasoning with answer setsPtaceedings of LPNMR7
21-33.

BOUTILIER, C., REITER, R.,AND PRICE, B. 2001. Symbolic Dynamic Programming for First-Order MDn Proceedings
of IJCAI 01. 690-700.

BREESE J. 1990. Construction of belief and decision networks hTeep., Technical Memorandom 90, Rockwell International
Science Center, Palo Alto, CA.

CHEN, W., SWIFT, T.,AND WARREN, D. 1995. Efficient top-down computation of queries undenikell-founded semantics.
Journal of Logic Programming@4, 3, 161-201.

CITRIGNO, S., HTER, T., FABER, W., GOTTLOB, G., KOCH, C., LEONE, N., MATEIS, C., PFEIFER, G.,AND SCARCELLO,
F. 1997. The dlv system: Model generator and applicationtfemds. InProceedings of the 12th Workshop on Logic
Programming128-137.

CUSSENS J. 1999. Loglinear models for first-order probabilistiesening. InProceedings of the Fifteenth Conference on
Uncertainty in Atrtificial Intelligencel26-133.

DE Vos, M. AND VERMEIR, D. 2000. Dynamically ordered probabilistic choice logiogramming. InProceedings of the
20th Conference on Foundations of Software Technology dredbrBtical Computer Science (FSTTCS20@2)7—239.

DEKHTYAR, A. AND DEKHTYAR, M. 2004. Possible worlds semantics for probabilistic éqmiograms. INCLP. 137-148.

FERRARIS, P.AND LIFSCHITZ, V. 2005. Weight constraints as nested expressiditeory and Practice of Logic Program-
ming 5 45-74.

FERRARIS, P.,AND LIFSCHITZ, V. 2005. Mathematical foundations of answer set programmie Will Show Them! Essays
in Honour of Dov GabbayKing’s College Publications. 615—-664.

GEBSER M., KAUFMANN, B., NEUMANN, A., AND ScHAUB, T. 2007. CLASP: A conflict-driven answer set solver. In
LPNMR’07. 260-265.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programmingroceedings of the Fifth Int’'l
Conference and Symposium on Logic Programmiifty 0—1080.

76 C. Baral, M. Gelfond and N. Rushton

GELFOND, M., RUSHTON, N.,AND ZHU, W. 2006. Combining logical and probabilistic reasonimgPloceedings of AAAI 06
Spring Symposium: Formalizing and Compiling BackgrounaWhedge and Its Applications to Knowledge Representation
and Question Answerin0-55.

GETOOR, L., FRIEDMAN, N., KOLLER, D.,AND PFEFFER A. 2001. Learning probabilistic relational models. Relational
data mining Springer, 307—335.

GETOOR, L., AND TASKAR, B. 2007. Statistical Relational Learning. MIT Press.

HALPERN, J. 1990. An analysis of first-order logics of probabilidttificial Intelligence 46, 311-350.

HALPERN, J. 2003.Reasoning about UncertaintMIT Press.

HILBORN, R.AND MANGEL, M. 1997. The Ecological DetectivePrinceton University Press.

IWAN, G.AND LAKEMEYER, G. 2002. What observations really tell us. @ogRob’02

Jr, H. E. K.AND TENG, C. M. 2001. Uncertain InferenceCambridge University Press.

KERSTING, K. AND DE RAEDT, L. 2007. Bayesian logic programs: Theory and Tool. Am Introduction to Statistical
Relational LearningL. Getoor and B. Taskar, Eds. MIT Press.

KOLLER, D. 1999. Probabilistic relational models. InP99. 3—13.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S.AND SCARCELLO, F. 2006. The DLV system for
knowledge representation and reasoniA@M Transactions on Computational Logit(3): 499-562.

LIERLER, Y. 2005. Cmodels - SAT-based disjunctive answer set solWerProceedings of Logic Programming and Non
Monotonic Reasoningt47—-451.

LIFSCHITZ, V., PEARCE, D., AND VALVERDE, A. 2001. Strongly equivalent logic program8CM Transaction on Computa-
tional Logic. 2, 526-541.

LIFSCHITZ, V., TANG, L., AND TURNER, H. 1999. Nested expressions in logic program&nnals of Mathematics and
Artificial Intelligence 25, 3-4, 369-389.

LIFSCHITZ, V. AND TURNER, H. 1994. Splitting a logic program. IRroc. of the Eleventh Int’l Conf. on Logic Programmijng
P. Van Hentenryck, Ed. 23-38.

LIN, F. AND ZHAO, Y. 2004. ASSAT: Computing answer sets of a logic program BY Solvers. Artificial Intelligence
157(1-2), 115-137.

LukAsiewicz, T. 1998. Probabilistic logic programming. Froeedings of European Conference on Atrtificial Intelligen
388-392.

MUGGLETON, S. 1995. Stochastic logic programs. Pnoceedings of the 5th International Workshop on Inductivgic
ProgrammingL. De Raedt, Ed. Department of Computer Science, Kathelighiversiteit Leuven, 29.

NELSON, D. 1949. Constructible falsityJournal of Symbolic logic14, 16-26.

NG, R. T. AND SUBRAHMANIAN, V. S. 1992. Probabilistic logic programmingnformation and Computationl01, 2,
150-201.

NG, R. T. AND SUBRAHMANIAN, V. S. 1994, Stable semantics for probabilistic deductiméalases. Information and
Computation 110,1, 42-83.

NGO, L. AND HADDAWY, P. 1997. Answering queries from context-sensitive prdissic knowledge bases.Theoretical
Computer Sciencel71,1-2, 147-177.

NIEMELA, I. AND SIMONS, P. 1997. Smodels — an implementation of the stable modeMmastidfounded semantics for
normal logic programs. |Proc. 4th international conference on Logic programming) msn-monotonic reasoning. Dix,
U. Furbach, and A. Nerode, Eds. Springer, 420—429.

NiLssoN, N. 1986. Probabilistic logicArtificial Intelligence 28 71-87.

PAskIN, M. 2002. Maximum entropy probabilistic logic. Tech. RepCBICSD-01-1161, Computer Science Division, Uni-
versity of California, Berkeley, CA.

PasuLA, H. AND RUSSELL, S. 2001. Approximate inference for first-order probabdisanguages. IProceedings of the
Seventeenth International Joint Conference on Artifigigglligence 741-748.

PEARL, J. 2000.Causality Cambridge University Press.

PooLE, D. 1993. Probabilistic horn abduction and bayesian ndtsvartificial Intelligence 64,1, 81-129.

PooLE, D. 1997. The independent choice logic for modelling midtggents under uncertaintrtificial Intelligence 94,1-2,
7-56.

PooLE, D. 2000. Abducing through negation as failure: Stable rtwdiéthin the independent choice logidournal of Logic
Programming44, 5-35.

REITER, R. 1978. On closed world data bases.Lbyic and Data Base$l. Gallaire and J. Minker, Eds. Plenum Press, New
York, 119-140.

Probabilistic reasoning with answer sets 77

RICHARDSON, M. AND DOMINGOS, P. 2006. Markov logic networksVlachine Learning62, 107—136.

RIEZLER, S. 1998. Probabilistic constraint logic programming.Phhesis, University of Tubingen, Tubingen, Germany.

SANTOS COSTA, V., PAGE, D., QAzI, M., AND CUSSENS J. 2003. CLP(BN): Constraintlogic programming for proitiatic
knowledge. InProceedings of the Nineteenth Conference on Uncertaimytificial Intelligence 517-524.

Sato, T. 1995. A statistical learning method for logic programishwdistribution semantics. IiProceedings of the 12th
International Conference on Logic Programming (ICLPF35—729.

SATO, T. AND KAMEYA, Y. 1997. PRISM: A symbolic-statistical modeling languageProceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI97)330-1335.

SIMONS, P., NEMELA, I. and SOININEN, T. 2002. Extending and implementing the stable model s&osanAtrtificial
Intelligence138(1-2): 181-234.

VENNEKENS, J., DENECKER, M., AND BRUYNOOGE, M. 2006. Extending the role of causality in probabilistiodeling.
http://www.cs.kuleuven.ac.bejoost/#research.

VENNEKENS, J. 2007. Algebraic and Logical Study of Constructive Psses in Knowledge representation Ph.D Dissertation.
K.U. Leuven. Belgium.

VENNEKENS, J., VERBAETEN, S.,AND BRUYNOOGHE, M. 2004. Logic programs with annotated disjunctions.Phoc. of
International Conference on Logic Programmifg1—-445.

WANG, P. 2004. The limitation of Bayesianismrtificial Intelligence 158,1, 97-106.

WELLMAN, M., BREESE J.,AND GOLDMAN, R. 1992. From knowledge bases to decision modéimwledge Engineering
Review. 35-53.

http://www.cs.kuleuven.ac.be/~joost/#research

	Introduction
	Syntax of P-log
	Semantics of P-log
	Defining possible worlds:
	Assigning measures of probability:

	Belief Update in P-log
	 P-log Updates and Conditional Probability
	 Updates Involving Actions
	More Complex Updates

	Representing knowledge in P-log
	Monty Hall problem
	Simpson's paradox
	A Moving Robot
	Bayesian squirrel
	Maneuvering the Space Shuttle

	Proving Coherency of P-log Programs
	Causally ordered programs

	Relation with other work
	Relation with Poole's work
	LPAD : Logic programming with annotated disjunctions
	Bayesian logic programming:
	Stochastic logic programs
	Probabilistic logic programming
	PRISM: Logic programs with distribution semantics
	Other approaches
	Summary

	Conclusion and Future Work
	Appendix I: Proofs of major theorems
	Appendix II: Causal Bayesian Networks
	Appendix III: Semantics of ASP
	References

