
ar
X

iv
:0

81
2.

06
59

v1
 [

cs
.A

I]
 3

 D
ec

 2
00

8
Under consideration for publication in Theory and Practiceof Logic Programming 1

Probabilistic reasoning with answer sets

Chitta Baral†, Michael Gelfond♯, and Nelson Rushton♯

† Department of Computer Science and Engineering,
Arizona State University,

Tempe, AZ 85287-8809, USA.
chitta@asu.edu

♯ Department of Computer Science
Texas Tech University
Lubbock, Texas 79409

{mgelfond,nrushton}@cs.ttu.edu

submitted 22 September 2005; revised 21 June 2007, 20 June 2008; accepted 2 December 2008

Abstract

To appear in Theory and Practice of Logic Programming (TPLP)

This paper develops a declarative language, P-log, that combines logical and probabilistic arguments in its reasoning. Answer
Set Prolog is used as the logical foundation, while causal Bayes nets serve as a probabilistic foundation. We give several non-
trivial examples and illustrate the use of P-log for knowledge representation and updating of knowledge. We argue that our
approach to updates is more appealing than existing approaches. We give sufficiency conditions for the coherency of P-log
programs and show that Bayes nets can be easily mapped to coherent P-log programs.

KEYWORDS: Logic programming, answer sets, probabilistic reasoning, Answer Set Prolog

1 Introduction

The goal of this paper is to define a knowledge representationlanguage allowing natural, elaboration tolerant
representation of commonsense knowledge involving logic and probabilities. The result of this effort is a language
calledP-log.

By a knowledge representation language, or KR language, we mean a formal languageLwith an entailment relation
E such that (1) statements ofL capture the meaning of some class of sentences of natural language, and (2) when
a setS of natural language sentences is translated into a setT (S) of statements ofL, the formal consequences of
T (S) underE are translations of the informal, commonsense consequences ofS .

One of the best known KR languages is predicate calculus, andthis example can be used to illustrate several
points. First, a KR language is committed to an entailment relation, but it is not committed to a particular inference
algorithm. Research on inference mechanisms for predicatecalculus, for example, is still ongoing while predicate
calculus itself remains unchanged since the 1920’s.

Second, the merit of a KR language is partly determined by theclass of statements representable in it. Inference
in predicate calculus, e.g., is very expensive, but it is an important language because of its ability to formalize a
broad class of natural language statements, arguably including mathematical discourse.

Though representation of mathematical discourse is a problem solved to the satisfaction of many, representation of

http://arxiv.org/abs/0812.0659v1

2 C. Baral, M. Gelfond and N. Rushton

other kinds of discourse remains an area of active research,including work on defaults, modal reasoning, temporal
reasoning, and varying degrees of certainty.

Answer Set Prolog (ASP) is a successful KR language with a large history of literature and an active community of
researchers. In the last decade ASP was shown to be a powerfultool capable of representing recursive definitions,
defaults, causal relations, special forms of self-reference, and other language constructs which occur frequently in
various non-mathematical domains (Baral 2003), and are difficult or impossible to express in classical logic and
other common formalisms. ASP is based on the answer set/stable models semantics (Gelfond et al. 1988) of logic
programs with default negation (commonly written asnot), and has its roots in research on non-monotonic logics.
In addition to the default negation the language contains “classical” or “strong” negation (commonly written as¬)
and “epistemic disjunction” (commonly written asor).

Syntactically, an ASP program is a collection of rules of theform:

l0 or . . . or lk ← lk+1, . . . , lm , not lm+1, . . . , not ln

wherel ’s are literals, i.e. expressions of the formp and¬p wherep is an atom. A rule with variables is viewed
as a schema - a shorthand notation for the set of its ground instantiations. Informally, a ground programΠ can
be viewed as a specification for the sets of beliefs which could be held by a rational reasoner associated withΠ.
Such sets are referred to asanswer sets. An answer set is represented by a collection of ground literals. In forming
answer sets the reasoner must be guided by the following informal principles:

1. One should satisfy the rules ofΠ. In other words, if one believes in the body of a rule, one mustalso believe in
its head.

2. One should not believe in contradictions.

3. One should adhere to the rationality principle, which says: “Believe nothing you are not forced to believe.”

An answer setS of a program satisfies a literall if l ∈ S ; S satisfiesnot l if l 6∈ S ; S satisfies a disjunction if it
satisfies at least one of its members. We often say that ifp ∈ S thenp is believed to be truein S , if ¬p ∈ S thenp
is believed to be falsein S . Otherwisep is unknownin S . Consider, for instance, an ASP programP1 consisting
of rules:

1. p(a).
2.¬p(b).
3. q(c)← not p(c), not ¬p(c).
4.¬q(c)← p(c).
5.¬q(c)← ¬p(c).

The first two rules of the program tell the agent associated with P1 that he must believe thatp(a) is true andp(b)
is false. The third rule tells the agent to believeq(c) if he believes neither truth nor falsity ofp(c). Since the agent
has reason to believe neither truth nor falsity ofp(c) he must believeq(c). The last two rules require the agent
to include¬q(c) in an answer set if this answer set contains eitherp(c) or ¬p(c). Since there is no reason for
either of these conditions to be satisfied, the program will have unique answer setS0 = {p(a),¬p(b), q(c)}. As
expected the agent believes thatp(a) andq(c) are true and thatp(b) is false, and simply does not consider truth
or falsity ofp(c).

If P1 were expanded by another rule:

6. p(c) or ¬p(c)

Probabilistic reasoning with answer sets 3

the agent will have two possible sets of beliefs representedby answer setsS1 = {p(a),¬p(b), p(c),¬q(c)} and
S2 = {p(a),¬p(b),¬p(c),¬q(c)}.

Now p(c) is not ignored. Instead the agent considers two possible answer sets, one containingp(c) and another
containing¬p(c). Both, of course, contain¬q(c).

The example illustrates that the disjunction (6), read as “believep(c) to be true or believep(c) to be false”, is
certainly not a tautology. It is often called theawareness axiom(for p(c)). The axiom prohibits the agent from
removing truth of falsity ofp(c) from consideration. Instead it forces him to consider the consequences of believing
p(c) to be true as well as the consequences of believing it to be false.

The above intuition about the meaning of logical connectives of ASP1 and that of the rationality principle is
formalized in the definition of an answer set of a logic program (see Appendix III). There is a substantial amount of
literature on the methodology of using the language of ASP for representing various types of (possibly incomplete)
knowledge (Baral 2003).

There are by now a large number of inference engines designedfor various subclasses of ASP programs. For
example, a number of recently developed systems, calledanswer set solvers, (Niemelä and Simons 1997; 2002 ;
Citrigno et al. 1997; Leone et al. 2006; Lierler 2005; Lin andZhao 2004; Gebser et al. 2007) compute answer sets
of logic programs with finite Herbrand universes.Answer set programming, a programming methodology which
consists in reducing a computational problem to computing answer sets of a program associated with it, has been
successfully applied to solutions of various classical AI and CS tasks including planning, diagnostics, and con-
figuration (Baral 2003). As a second example, more traditional query-answering algorithms of logic programming
including SLDNF based Prolog interpreter and its variants (Apt and Doets 1994; Chen, Swift and Warren 1995)
are sound with respect to stable model semantics of programswithout¬ andor.

However, ASP recognizes only three truth values: true, false, and unknown. This paper discusses an augmentation
of ASP with constructs for representing varying degrees of belief. The objective of the resulting language is to
allow elaboration tolerant representation of commonsenseknowledge involving logic and probabilities. P-log was
first introduced in (Baral et al. 2004), but much of the material here is new, as discussed in the concluding section
of this paper.

A prototype implementation of P-log exists and has been usedin promising experiments comparing its performance
with existing approaches (Gelfond et al. 2006). However, the focus of this paper is not on algorithms, but on precise
declarative semantics for P-log, basic mathematical properties of the language, and illustrations of its use. Such
semantics are prerequisite for serious research in algorithms related to the language, because they give a definition
with respect to which correctness of algorithms can be judged. As a declarative language, P-log stands ready to
borrow and combine existing and future algorithms from fields such as answer set programming, satisfiability
solvers, and Bayesian networks.

P-log extends ASP by adding probabilistic constructs, where probabilities are understood as a measure of the
degree of an agent’s belief. This extension is natural because the intuitive semantics of an ASP program is given
in terms of the beliefs of a rational agent associated with it. In addition to the usual ASP statements, the P-log
programmer may declare “random attributes” (essentially random variables) of the forma(X) whereX and the
value ofa(X) range overfinite domains. Probabilistic information about possible values ofa is given through
causal probability atoms, or pr -atoms. Apr -atom takes roughly the form

prr (a(t) = y|c B) = v

wherea(t) is a random attribute,B a set of literals, andv ∈ [0, 1]. The statement says thatif the value ofa(t) is
fixed by experimentr , andB holds, then the probability thatr causesa(t) = y is v .

1 It should be noted that the connectives of Answer Set Prolog are different from those of Propositional Logic.

4 C. Baral, M. Gelfond and N. Rushton

A P-log program consists of itsl ogical part and itsprobabilistic part. The logical part represents knowledge which
determines the possible worlds of the program, including ASP rules and declarations of random attributes, while
the probabilistic part contains pr-atoms which determine the probabilities of those worlds. IfΠ is a P-log program,
the semantics of P-log associates the logical part ofΠ with a “pure” ASP programτ(Π). The semantics of a ground
Π is then given by

(i) a collection of answer sets ofτ(Π) viewed as the possible sets of beliefs of a rational agent associated withΠ,
and

(ii) a measure over the possible worlds defined by the collection of the probability atoms ofΠ and theprinciple of
indifferencewhich says that possible values of random attributea are assumed to be equally probable if we have
no reason to prefer one of them to any other.

As a simple example, consider the program

a : {1, 2, 3}.
random(a).
pr(a = 1) = 1/2.

This program defines a random attributea with possible values1, 2, and3. The program’s possible worlds are
W1 = {a = 1}, W2 = {a = 2}, andW3 = {a = 3}. In accordance with the probability atom of the program, the
probability measureµ(W1) = 1/2. By the principle of indifferenceµ(W2) = µ(W3) = 1/4.

This paper is concerned with defining the syntax and semantics of P-log, and a methodology of its use for knowl-
edge representation. Whereas much of the current research in probabilistic logical languages focuses on learning,
our main purpose, by contrast, is to elegantly and straightforwardly represent knowledge requiring subtle logical
and probabilistic reasoning. A limitation of the current version of P-log is that we limit the discussion to models
with finite Herbrand domains. This is common for ASP and its extensions. A related limitation prohibits pro-
grams containing infinite number of random selections (and hence an uncountable number of possible worlds).
This means P-log cannot be used, for example, to describe stochastic processes whose time domains are infinite.
However, P-log can be used to describe initial finite segments of such processes, and this paper gives two small ex-
amples of such descriptions (Sections 5.3 and 5.4) and discusses one large example in Section 5.5. We believe the
techniques used by (Sato 1995) can be used to extend the semantics of P-log to account for programs with infinite
Herbrand domains. The resulting language would, of course,allow representation of processes with infinite time
domains. Even though such extension is theoretically not difficult, its implementation requires further research in
ASP solvers. This matter is a subject of future work. In this paper we do not emphasize P-log inference algorithms
even for programs with finite Herbrand domains, though this is also an obvious topic for future work. However, our
prototype implementation of P-log, based on an answer set solver Smodels (Niemelä and Simons 1997), already
works rather efficiently for programs with large and complexlogical component and a comparatively small number
of random attributes.

The existing implementation of P-log was successfully usedfor instance in an industrial size applica-
tion for diagnosing faults in the reactive control system (RCS) of the space shuttle (Balduccini et al. 2001;
Balduccini et al. 2002). The RCS is the Shuttle’s system thathas primary responsibility for maneuvering the air-
craft while it is in space. It consists of fuel and oxidizer tanks, valves, and other plumbing needed to provide
propellant to the maneuvering jets of the Shuttle. It also includes electronic circuitry: both to control the valves
in the fuel lines and to prepare the jets to receive firing commands. Overall, the system is rather complex, in that
it includes12 tanks,44 jets,66 valves,33 switches, and around160 computer commands (computer-generated
signals).

We believe that P-log has some distinctive features which can be of interest to those who use probabilities. First,
P-log probabilities are defined by their relation to a knowledge base, represented in the form of a P-log program.
Hence we give an account of the relationship between probabilistic models and the background knowledge on

Probabilistic reasoning with answer sets 5

which they are based. Second, P-log gives a natural account of how degrees of belief change with the addition
of new knowledge. For example, the standard definition of conditional probability in our framework becomes
a theorem, relating degrees of belief computed from two different knowledge bases, in the special case where
one knowledge base is obtained from the other by the additionof observations which eliminate possible worlds.
Moreover, P-log can accommodate updates which add rules to aknowledge base, including defaults and rules
introducing new terms.

Another important feature of P-log is its ability to distinguish between conditioning on observations and on delib-
erate actions. The distinction was first explicated in (Pearl 2000), where, among other things, the author discusses
relevance of the distinction to answering questions about desirability of various actions (Simpson paradox dis-
cussed in section 5.2 gives a specific example of such a situation). In Pearl’s approach the effect of a deliberate
action is modeled by an operation on a graph representing causal relations between random variables of a domain.
In our approach, the semantics of conditioning on actions isaxiomatized using ASP’s default negation, and these
axioms are included as part of the translation of programs from P-log to ASP. Because Pearl’s theory of causal
Bayesian nets (CBN’s) acts as the probabilistic foundationof P-log, CBN’s are defined precisely in Appendix II,
where it is shown that each CBN maps in a natural way to a P-log program.

The last characteristic feature of P-log we would like to mention here is itsprobabilistic non-monotonicity—
that is, the ability of the reasoner to change his probabilistic model as a result of new information. Normally
any solution of a probabilistic problem starts with construction of probabilistic model of a domain. The model
consists of a collection of possible worlds and the corresponding probability measure, which together determine
the degrees of the reasoner’s beliefs. In most approaches toprobability, new information can cause a reasoner to
abandon some of his possible worlds. Hence, the effect of update is monotonic, i.e. it can only eliminate possible
worlds. Formalisms in which an update can cause creation of new possible worlds are called “probabilistically
non-monotonic”. We claim that non-monotonic probabilistic systems such as P-log can nicely capture changes in
the reasoner’s probabilistic models.

To clarify the argument let us informally consider the following P-log program (a more elaborate example involving
a Moving Robot will be given in Section 5.3).

a : {1, 2, 3}.
a = 1← not abnormal .
random(a)← abnormal .

Herea is an attribute with possible values1, 2, and3. The second rule of the program says that normally the value
of a is 1. The third rule tells us that under abnormal circumstancesa will randomly take on one of its possible
values. Since the program contains no atomabnormal the second rule concludesa = 1. This is the only possible
world of the program,µ(a = 1) = 1, and hence the value ofa is 1 with probability1. Suppose, however, that
the program is expanded by an atomabnormal . This time the second rule is not applicable, and the programhas
three possible worlds:W1 = {a = 1}, W2 = {a = 2}, andW3 = {a = 3}. By the principle of indifference
µ(W1) = µ(W2) = µ(W3) = 1/3 – attributea takes on value1 with probability1/3.

The rest of the paper is organized as follows. In Section 2 we give the syntax of P-log and in Section 3 we give its
semantics. In Section 4 we discuss updates of P-log programs. Section 5 contains a number of examples of the use
of P-log for knowledge representation and reasoning. The emphasis here is on demonstrating the power of P-log
and the methodology of its use. In Section 6 we present sufficiency conditions for consistency of P-log programs
and use it to show how Bayes nets are special cases of consistent P-log programs. Section 7 contains a discussion
of the relationship between P-log and other languages combining probability and logic programming. Section
8 discusses conclusions and future work. Appendix I contains the proofs of the major theorems, and appendix
II contains background material on causal Bayesian networks. Appendix III contains the definition and a short
discussion of the notion of an answer set of a logic program.

6 C. Baral, M. Gelfond and N. Rushton

2 Syntax of P-log

A probabilistic logic program(P-log program)Π consists of (i) asorted signature, (ii) a declaration, (iii) a regular
part, (iv) a set ofrandom selection rules, (v) a probabilistic informationpart, and (vi) a set ofobservationsand
actions. Every statement of P-log must be ended by a period.

(i) Sorted Signature: The sorted signatureΣ of Π contains a setO of objects and a setF of function symbols.
The setF is a union of two disjoint sets,Fr andFa . Elements ofFr are calledterm building functions. Elements
of Fa are calledattributes.

Terms of P-log are formed in a usual manner using function symbols fromFr and objects fromO . Expressions of
the forma(t), wherea is an attribute andt is a vector of terms of the sorts required bya, will be referred to as
attribute terms. (Note that attribute terms are not terms). Attributes withthe range{true, false} are referred to as
Boolean attributes orrelations. We assume that the number of terms and attributes overΣ is finite. Note that, since
our signature is sorted, this does not preclude the use of function symbols. The example in Section 5.5 illustrates
such a use.

Atomic statements are of the forma(t) = t0, wheret0 is a term,t is a vector of terms, anda is an attribute (we
assume thatt andt are of the sorts required bya). An atomic statement,p, or its negation,¬p is referred to as a
literal (or Σ-literal, if Σ needs to be emphasized); literalsp and¬p are calledcontrary; by l we denote the literal
contrary tol ; expressionsl andnot l wherel is a literal andnot is the default negation of Answer Set Prolog
are calledextended literals. Literals of the forma(t) = true, a(t) = false, and¬(a(t) = t0) are often written as
a(t), ¬a(t), anda(t) 6= t0 respectively. Ifp is a unary relation andX is a variable then an expression of the form
{X : p(X)} will be called aset-term. Occurrences ofX in such an expression are referred to asbound.

Terms and literals are normally denoted by (possibly indexed) letterst and l respectively. The lettersc anda,
possibly with indices, are used as generic names for sorts and attributes. Other lower case letters denote objects.
Capital letters normally stand for variables.

Similar to Answer Set Prolog, a P-log statement containing unbound variables is considered a shorthand for the
set of its ground instances, where a ground instance is obtained by replacing unbound occurrences of variables
with properly sorted ground terms. Sorts in a program are indicated by the declarations of attributes (see below).
In defining semantics of our language we limit our attention to finite programs with no unbound occurrences of
variables. We sometimes refer to programs without unbound occurrences of variables asground.

(ii) Declaration: The declaration of a P-log program is a collection of definitions of sorts and sort declarations for
attributes.

A sort c can be defined by explicitly listing its elements,

c = {x1, . . . , xn} · (1)

or by a logic programT with a unique answer setA. In the latter casex ∈ c iff c(x) ∈ A.

The domain and range of an attributea are given by a statement of the form:

a : c1 × . . .× cn → c0 · (2)

For attributes without parameters we simply writea : c0.

The following example will be used throughout this section.

Example 1

Probabilistic reasoning with answer sets 7

[Dice Example: program componentD1]
Consider a domain containing two dice owned by Mike and John respectively. Each of the dice will be rolled once.
A P-log programΠ0 modeling the domain will have a signatureΣ containing the names of the two dice,d1 and
d2, an attributeroll mapping each die to the value it indicates when thrown, whichis an integer from1 to 6, an
attributeowner mapping each die to a person, relationeven(D), whereD ranges overdice, and “imported” or
“predefined” arithmetic functions+ andmod . The corresponding declarations,D1, will be as follows:

dice = {d1, d2}·

score = {1, 2, 3, 4, 5, 6}·

person = {mike, john}·

roll : dice → score·

owner : dice → person·

even : dice → Boolean· ✷

(iii) Regular part : The regular part of a P-log program consists of a collectionof rules of Answer Set Prolog
(without disjunction) formed using literals ofΣ.

Example 2

[Dice Example (continued): program componentD2]
For instance, the regular partD2 of programΠ0 may contain the following rules:

owner(d1) = mike·

owner(d2) = john·

even(D)← roll(D) = Y ,Y mod 2 = 0·

¬even(D)← not even(D)·

HereD andY range overdice andscore respectively. ✷

(iv) Random Selection: This section contains rules describing possible values ofrandom attributes. More precisely
a random selectionis a rule of the form

[r] random(a(t) : {X : p(X)})← B · (3)

wherer is a term used to name the rule andB is a collection of extended literals ofΣ. The name[r] is optional
and can be omitted if the program contains exactly one randomselection fora(t). Sometimes we refer tor as
an experiment. Statement (3) says thatif B holds, the value ofa(t) is selected at random from the set{X :

p(X)}∩ range(a) by experimentr , unless this value is fixed by a deliberate action. If B in (3) is empty we simply
write

[r] random(a(t) : {X : p(X)}) · (4)

If {X : p(X)} is equal to therange(a) then rule (3) may be written as

[r] random(a(t))← B · (5)

Sometimes we refer to the attribute terma(t) asrandomand to{X : p(X)} ∩ range(a) as thedynamic rangeof
a(t) via ruler . We also say that a literala(t) = y occurs in the headof (3) for everyy ∈ range(a), and that any
ground instance ofp(X) and literals occurring inB occur in the bodyof (3).

8 C. Baral, M. Gelfond and N. Rushton

Example 3

[Dice Example (continued)]
The fact that values of attributeroll : dice → score are random is expressed by the statement

[r(D)] random(roll(D)). ✷

(v) Probabilistic Information: Information about probabilities of random attributes taking particular values is
given byprobability atoms(or simplypr-atoms) which have the form:

prr (a(t) = y |c B) = v · (6)

wherev ∈ [0, 1],B is a collections of extended literals,pr is a special symbol not belonging toΣ, r is the name of
a random selection rule fora(t), andprr (a(t) = y |c B) = v says thatif the value ofa(t) is fixed by experiment
r , andB holds, then the probability thatr causesa(t) = y is v . (Note that here we use ‘cause’ in the sense that
B is an immediate or proximate cause ofa(t) = y, as opposed to an indirect cause.) IfW is a possible world
of a program containing (6) andW satisfies bothB and the body of ruler , then we will refer tov as thecausal
probabilityof the atoma(t) = y in W .

We say that a literala(t) = y occurs in the headof (6), and that literals occurring inB occur in the bodyof (6).

If B is empty we simply write

prr (a(t) = y) = v · (7)

If the program contains exactly one rule generating values of a(t) = y the indexr may be omitted.

Example 4

[Dice Example (continued): program componentD3]
For instance, the dice domain may includeD3 consisting of the random declaration ofroll(D) given in Example 3
and the following probability atoms:

pr(roll(D) = Y |c owner(D) = john) = 1/6·

pr(roll(D) = 6 |c owner(D) = mike) = 1/4.
pr(roll(D) = Y |c Y 6= 6, owner(D) = mike) = 3/20.

The above probability atoms convey that the die owned by Johnis fair, while the die owned by Mike is biased to
roll 6 at a probability of·25. ✷

(vi) Observations and actions: Observations and actions are statements of the respectiveforms

obs(l) · do(a(t) = y))·

wherel is a literal. Observations are used to record the outcomes ofrandom events, i.e., random attributes, and
attributes dependent on them. The dice domain may, for instance, contain{obs(roll(d1) = 4)} recording the
outcome of rolling died1. The statementdo(a(t) = y) indicates thata(t) = y is made true as a result of a
deliberate (non-random) action. For instance,{do(roll(d1) = 4)}may indicate thatd1 was simply put on the table
in the described position. Similarly, we may haveobs(even(d1)). Here, even thougheven(d1) is not a random
attribute, it is dependent on the random attributeroll(d1). If B is a collection of literalsobs(B) denotes the set
{obs(l) | l ∈ B}. Similarly fordo.

The precise meaning ofdo andobs is captured by axioms (9 – 13) in the next section and discussed in Example
18, and in connection with Simpson’s Paradox in section 5.2.More discussion of the difference between actions
and observations in the context of probabilistic reasoningcan be found in (Pearl 2000).

Probabilistic reasoning with answer sets 9

Note that limiting observable formulas to literals is not essential. It is caused by the syntactic restriction of Answer
Set Prolog which prohibits the use of arbitrary formulas. The restriction could be lifted if instead of Answer Set
Prolog we were to consider, say, its dialect from (Lifschitzet al. 1999). For the sake of simplicity we decided to
stay with the original definition of Answer Set Prolog.

A P-log programΠ can be viewed as consisting of two parts. Thelogical part, which is formed by declarations,
regular rules, random selections, actions and observations, defines possible worlds ofΠ. The probabilistic part
consisting of probability atoms defines a measure over the possible worlds, and hence defines the probabilities of
formulas. (If no probabilistic information on the number ofpossible values of a random attribute is available we
assume that all these values are equally probable).

3 Semantics of P-log

The semantics of a ground P-log programΠ is given by a collection of the possible sets of beliefs of a rational
agent associated withΠ, together with their probabilities. We refer to these sets as possible worlds ofΠ. We will
define the semantics in two stages. First we will define a mapping of the logical part ofΠ into its Answer Set
Prolog counterpart,τ(Π). The answer sets ofτ(Π) will play the role of possible worlds ofΠ. Next we will use the
probabilistic part ofΠ to define a measure over the possible worlds, and the probabilities of formulas.

3.1 Defining possible worlds:

The logical part of a P-log programΠ is translated into an Answer Set Prolog programτ(Π) in the following way.

1. Sort declarations: For every sort declarationc = {x1, . . . , xn} of Π, τ(Π) containsc(x1), . . . , c(xn).
For all sorts that are defined using an Answer Set Prolog programT in Π, τ(Π) containsT .

2. Regular part:
In what follows (possibly indexed) variablesY are free variables. A rule containing these variables will be
viewed as shorthand for a collection of its ground instanceswith respect to the appropriate typing.

(a) For each ruler in the regular part ofΠ, τ(Π) contains the rule obtained by replacing each occurrence
of an atoma(t) = y in r by a(t , y).

(b) For each attribute terma(t), τ(Π) contains the rule:

¬a(t ,Y1)← a(t ,Y2),Y1 6= Y2 · (8)

which guarantees that in each answer seta(t) has at most one value.
3. Random selections:

(a) For an attributea, we have the rule:

intervene(a(t))← do(a(t ,Y)) · (9)

Intuitively, intervene(a(t)) means that the value ofa(t) is fixed by a deliberate action. Semantically,
a(t) will not be considered random in possible worlds which satisfy intervene(a(t)).

(b) Each random selection rule of the form

[r] random(a(t) : {Z : p(Z)})← B ·

with range(a) = {y1, . . . , yk} is translated to the following rules in Answer Set Prolog2

a(t , y1) or . . . or a(t , yk)← B , not intervene(a(t)) · (10)

2 Our P-log implementation uses an equivalent rule1{a(t ,Z) : c0(Z) : p(Z)}1 ← B ,not intervene(a(t)) from the input language of
Smodels.

10 C. Baral, M. Gelfond and N. Rushton

If the dynamic range ofa in the selection rule is not equal to its static range, i.e. expression{Z : p(Z)}

is not omitted, then we also add the rule

← a(t , y), not p(y),B , not intervene(a(t)) · (11)

Rule (10) selects the value ofa(t) from its range while rule (11) ensures that the selected value satisfies
p.

4. τ(Π) contains actions and observations ofΠ.
5. For eachΣ-literal l , τ(Π) contains the rule:

← obs(l), not l · (12)

6. For each atoma(t) = y, τ(Π) contains the rule:

a(t , y)← do(a(t , y)) · (13)

The rule (12) guarantees that no possible world of the program fails to satisfy observationl . The rule (13)
makes sure the atoms that are made true by the action are indeed true.

This completes our definition ofτ(Π).

Before we proceed with some additional definitions let us comment on the difference between rules 12 and 13.
Since the P-log programsT ∪ obs(l) andT ∪{← not l} have possible worlds which are identical except for pos-
sible occurrences ofobs(l), the new observation simply eliminates some of the possibleworlds ofT . This reflects
understanding of observations in classical probability theory. In contrast, due to the possible non-monotonicity of
the regular part ofT , possible worlds ofT ∪ do(l) can be substantially different from those ofT (as opposed to
merely fewer in number); as we will illustrate in Section 5.3.

Definition 1

[Possible worlds]
An answer set ofτ(Π) is called apossible worldof Π. ✷

The set of all possible worlds ofΠ will be denoted byΩ(Π). WhenΠ is clear from context we will simply write
Ω. Note that due to our restriction on the signature of P-log programs possible worlds ofΠ are always finite.

Example 5

[Dice example continued: P-log programT1]
Let T1 be a P-log program consisting ofD1, D2 andD3 described in Examples 1, 2, 3 and 4. The Answer Set
Prolog counterpartτ(T1) of T1 will consist of the following rules:

dice(d1). dice(d2). score(1). score(2).
score(3). score(4). score(5). score(6).
person(mike). person(john).
owner(d1,mike). owner(d2, john).

even(D)← roll(D ,Y),Y mod 2 = 0.

¬even(D)← not even(D).

intervene(roll(D))← do(roll(D ,Y)).

roll(D , 1) or . . . or roll(D , 6)← B , not intervene(roll(D)).

¬roll(D ,Y1)← roll(D ,Y2),Y1 6= Y2.

Probabilistic reasoning with answer sets 11

¬owner(D ,P1)← owner(D ,P2),P1 6= P2.

¬even(D ,B1)← even(D ,B2),B1 6= B2.

← obs(roll(D ,Y)), not roll(D ,Y).

← obs(¬roll(D ,Y)), not ¬roll(D ,Y).

roll(D ,Y))← do(roll(D ,Y)).

The translation also contains similarobs anddo axioms for other attributes which have been omitted here.

The variablesD , P , B ’s, andY ’s range overdice, person, boolean, andscore respectively. (In the input language
of Lparse used by Smodels(Niemelä and Simons 1997) and several other answer set solving systems this typing
can be expressed by the statement

#domain dice(D), person(P), score(Y).

Alternativelyc(X) can be added to the body of every rule containing variableX with domainc. In the rest of the
paper we will ignore these details and simply use Answer Set Prolog with the typed variables as needed.)

It is easy to check thatτ(T1) has36 answer sets which are possible worlds of P-log programT1. Each such world
contains a possible outcome of the throws of the dice, e.g.roll(d1, 6), roll(d2, 3). ✷

3.2 Assigning measures of probability:

There are certain reasonableness criteria which we would like our programs to satisfy. These are normally easy to
check for P-log programs. However, the conditions are described using quantification over possible worlds, and so
cannot be axiomatized in Answer Set Prolog. We will state them as meta-level conditions, as follows (from this
point forward we will limit our attention to programs satisfying these criteria):

Condition 1

[Unique selection rule]
If rules

[r1] random(a(t) : {Y : p1(Y)})← B1·

[r2] random(a(t) : {Y : p2(Y)})← B2·

belong toΠ then no possible world ofΠ satisfies bothB1 andB2. ✷

The above condition follows from the intuitive reading of random selection rules. In particular, there cannot be two
different random experiments each of which determines the value of the same attribute.

Condition 2

[Unique probability assignment]
If Π contains a random selection rule

[r] random(a(t) : {Y : p(Y)})← B ·

along with two different probability atoms

prr (a(t) |c B1) = v1 andprr (a(t) |c B2) = v2·

then no possible world ofΠ satisfiesB , B1, andB2. ✷

12 C. Baral, M. Gelfond and N. Rushton

The justification of Condition 2 is as follows: If the conditionsB1 andB2 can possibly both hold, and we do not
havev1 = v2, then the intuitive readings of the twopr-atoms are contradictory. On the other hand ifv1 = v2, the
same information is represented in multiple locations in the program which is bad for maintenance and extension
of the program.

Note that we can still represent situations where the value of an attribute is determined by multiple possible causes,
as long as the attribute is not explicitly random. To illustrate this point let us consider a simple example from
(Vennekens et al. 2006).

Example 6

[Multiple Causes: Russian roulette with two guns]
Consider a game of Russian roulette with two six-chamber guns. Each of the guns is loaded with a single bullet.
What is the probability of the player dying if he fires both guns?

Note that in this example pulling the trigger of the first gun and pulling the trigger of the second gun are two
independent causes of the player’s death. That is, the mechanisms of death from each of the two guns are separate
and do not influence each other.

The logical part of the story can be encoded by the following P-log programΠg :

gun = {1, 2}.
pull trigger : gun → boolean. % pull trigger(G) says that the player pulls the trigger of gunG.
fatal : gun → boolean. % fatal(G) says that the bullet from gunG is sufficient to kill the player.
is dead : boolean. % is dead says that the player is dead.
[r(G)] : random(fatal(G)) ← pull trigger(G).
is dead ← fatal(G).
¬is dead ← not is dead .
pull trigger(G).

Here the value of the random attributefatal(1), which stands for “Gun 1 causes a wound sufficient to kill the
player” is generated at random by ruler(1). Similarly for fatal(2). The attributeis dead , which stands for the
death of the player, is described in terms offatal(G) and hence is not explicitly random. To define the probability
of fatal(G) we will assume that when the cylinder of each gun is spun, eachof the six chambers is equally likely
to fall under the hammer. Thus,

prr(1)(fatal(1)) = 1/6.
prr(2)(fatal(2)) = 1/6.

Intuitively the probability of the player’s death will be11/36. At the end of this section we will learn how to
compute this probability from the program.

Suppose now that due to some mechanical defect the probability of the first gun firing its bullet (and therefore
killing the player) is not1/6 but, say,11/60. Then the probability atoms above will be replaced by

prr(1)(fatal(1)) = 11/60.
prr(2)(fatal(2)) = 1/6.

The probability of the player’s death defined by the new program will be0 · 32. Obviously, both programs satisfy
Conditions 1 and 2 above.

Note however that the somewhat similar program

gun = {1, 2}.
pull trigger : gun → boolean.
is dead : boolean.

Probabilistic reasoning with answer sets 13

[r(G)] : random(is dead)← pull trigger(G).
pull trigger(G).

does not satisfies Condition 1 and hence will not be allowed inP-log. ✷

The next example presents a slightly different version of reasoning with multiple causes.

Example 7

[Multiple Causes: The casino story]
A roulette wheel has 38 slots, two of which are green. Normally, the ball falls into one of these slots at random.
However, the game operator and the casino owner each have buttons they can press which “rig” the wheel so
that the ball falls into slot 0, which is green, with probability 1/2, while the remaining slots are all equally likely.
The game is rigged in the same way no matter which button is pressed, or if both are pressed. In this example,
the rigging of the game can be viewed as having two causes. Suppose in this particular game both buttons were
pressed. What is the probability of the ball falling into slot 0?

The story can be represented in P-log as follows:

slot = {zero, double zero, 1 · ·36}.
button = {1, 2}.
pressed : button → boolean.
rigged : boolean.
falls in : slot .
[r] : random(falls in).
rigged ← pressed(B).
¬rigged ← not rigged .
pressed(B).
prr (falls in = zero|crigged) = 1/2.

Intuitively, the probability of the ball falling into slot zero is1/2. The same result will be obtained by our formal
semantics. Note that the program obviously satisfies Conditions 1 and 2. However the following similar program
violates Condition 2.

slot = {zero, double zero, 1 · ·36}.
button = {1, 2}.
pressed : button → boolean.
falls in : slot .
[r] : random(falls in).
pressed(B).
prr (falls in = zero|cpressed(B)) = 1/2.

Condition 2 is violated here because two separate pr-atoms each assign probability to the literalfalls in = zero.
Some other probabilistic logic languages allow this, employing various systems of “combination rules” to compute
the overall probabilities of literals whose probability values are multiply assigned. The study of combination rules
is quite complex, and so we avoid it here for simplicity. ✷

Condition 3

[No probabilities assigned outside of dynamic range]
If Π contains a random selection rule

[r] random(a(t) : {Y : p(Y)})← B1·

14 C. Baral, M. Gelfond and N. Rushton

along with probability atom

prr (a(t) = y |c B2) = v ·

then no possible worldW of Π satisfiesB1 andB2 andnot intervene(a(t)) but fails to satisfyp(y). ✷

The condition ensures that probabilities are only assignedto logically possible outcomes of random selections. It
immediately follows from the intuitive reading of statements (3) and (6).

To better understand the intuition behind our definition of probabilistic measure it may be useful to consider an
intelligent agent in the process of constructing his possible worlds. Suppose he has already constructed a partV

of a (not yet completely constructed) possible worldW , and suppose thatV satisfies the precondition of some
random selection ruler . The agent can continue his construction by considering a random experiment associated
with r . If y is a possible outcome of this experiment then the agent may continue his construction by adding the
atoma(t) = y to V . To define the probabilistic measureµ of the possible worldW under construction, we need
to know the likelihood ofy being the outcome ofr , which we will call thecausal probabilityof the atoma(t) = y

in W . This information can be obtained from a pr-atomprr (a(t) = y) = v of our program or computed using the
principle of indifference. In the latter case we need to consider the collectionR of possible outcomes of experiment
r . For example ify ∈ R, there is no probability atom assigning probability to outcomes ofR, and|R| = n, then
the causal probability ofa(t = y) in W will be 1/n.

Let v be the causal probability ofa(t) = y. The atoma(t) = y may be dependent, in the usual probabilistic
sense, with other atoms already present in the construction. Howeverv is not read as the probability ofa(t) = y,
but the probability that, given what the agent knows about the possible world at this point in the construction, the
experiment determining the value ofa(t) will have a certain result. Our assumption is that these experiments are
independent, and hence it makes sense thatv will have a multiplicative effect on the probability of the possible
world under construction. (This approach should be familiar to those accustomed to working with Bayesian nets.)
This intuition will be captured by the following definitions.

Definition 2

[Possible outcomes]
LetW be a consistent set of literals ofΣ, Π be a P-log program,a be an attribute, andy belong to the range ofa.
We say that the atoma(t) = y is possiblein W with respect toΠ if Π contains a random selection ruler for a(t),
where ifr is of the form (3) thenp(y) ∈W andW satisfiesB , and ifr is of the form (5) thenW satisfiesB . We
also say thaty is apossible outcomeof a(t) in W with respect toΠ via ruler , and thatr is agenerating rulefor
the atoma(t) = y. ✷

Recall that, based on our convention, if the range ofa is boolean then we can just say thata(t) and¬a(t) are
possible inW . (Note that by Condition 1, ifW is a possible world ofΠ then each atom possible inW has exactly
one generating rule.)

Note that, as discussed above, there is some subtlety here because we are describinga(t) = y as possible, though
not necessarily true, with respect to a particular set of literals and programΠ.

For everyW ∈ Ω(Π) and every atoma(t) = y possible inW we will define the corresponding causal probability
P(W , a(t) = y). Whenever possible, the probability of an atoma(t) = y will be directly assigned by pr-atoms
of the program and denoted byPA(W , a(t) = y). To define probabilities of the remaining atoms we assume that
by default, all values of a given attribute which are not assigned a probability are equally likely. Their probabilities
will be denoted byPD(W , a(t) = y). (PA stands forassigned probabilityandPD stands fordefault probability).

For each atoma(t) = y possible inW :

1. Assigned probability:

Probabilistic reasoning with answer sets 15

If Π containsprr (a(t) = y |c B) = v wherer is the generating rule ofa(t) = y, B ⊆W , andW does not
containintervene(a(t)), then

PA(W , a(t) = y) = v

2. Default probability:
For any setS , let |S | denote the cardinality ofS . LetAa(t)(W) = {y | PA(W , a(t) = y) is defined}, and
a(t) = y be possible inW such thaty 6∈ Aa(t)(W). Then let

αa(t)(W) =
∑

y∈A
a(t)

(W)

PA(W , a(t) = y)

βa(t)(W) = |{y : a(t) = y is possible inW andy 6∈ Aa(t)(W)}|

PD(W , a(t) = y) =
1− αa(t)(W)

βa(t)(W)

3. Finally, the causal probabilityP(W , a(t) = y) of a(t) = y in W is defined by:

P(W , a(t) = y) =

{

PA(W , a(t) = y) if y ∈ Aa(t)(W)

PD(W , a(t) = y) otherwise·

Example 8

[Dice example continued: P-log programT1]
Recall the P-log programT1 from Example 5. The program contains the following probabilistic information:

pr(roll(d1) = i |c owner(d1) = mike) = 3/20, for eachi such that1 ≤ i ≤ 5·

pr(roll(d1) = 6 |c owner(d1) = mike) = 1/4·

pr(roll(d2) = i |c owner(d2) = john) = 1/6, for each i such that1 ≤ i ≤ 6·

We now consider a possible world

W = {owner(d1,mike), owner(d2, john), roll(d1 , 6), roll(d2, 3), . . .}

of T1 and computeP(W , roll(di) = j) for every diedi and every possible scorej .

According to the above definition,PA(W , roll(di) = j) andP(W , roll(di) = j) are defined for every random
atom (i.e. atom formed by a random attribute)roll(di) = j in W as follows:

P(W , roll(d1) = i) = PA(W , roll(d1) = i) = 3/20, for eachi such that1 ≤ i ≤ 5·

P(W , roll(d1) = 6) = PA(W , roll(d1) = 6) = 1/4·

P(W , roll(d2) = i) = PA(W , roll(d2) = i) = 1/6, for eachi such that1 ≤ i ≤ 6· ✷

Example 9

[Dice example continued: P-log programT1·1]
In the previous example all random atoms ofW were assigned probabilities. Let us now consider what will happen
if explicit probabilistic information is omitted. LetD3·1 be obtained fromD3 by removing all probability atoms
except

pr(roll(D) = 6 |c owner(D) = mike) = 1/4.

Let T1·1 be the P-log program consisting ofD1, D2 andD3·1 and letW be as in the previous example. Only the
atomroll(d1) = 6 will be given an assigned probability:

P(W , roll(d1) = 6) = PA(W , roll(d1) = 6) = 1/4.

16 C. Baral, M. Gelfond and N. Rushton

The remaining atoms receive the expected default probabilities:

P(W , roll(d1) = i) = PD(W , roll(d1) = i) = 3/20, for eachi such that1 ≤ i ≤ 5·

P(W , roll(d2) = i) = PD(W , roll(d2) = i) = 1/6, for eachi such that1 ≤ i ≤ 6· ✷

Now we are ready to define the measure,µΠ, induced by the P-log programΠ.

Definition 3

[Measure]

1. LetW be a possible world ofΠ. Theunnormalized probability, µ̂Π(W), of a possible worldW induced by
Π is

µ̂Π(W) =
∏

a(t,y)∈ W

P(W , a(t) = y)

where the product is taken over atoms for whichP(W , a(t) = y) is defined.

2. SupposeΠ is a P-log program having at least one possible world with nonzero unnormalized probability.
Themeasure, µΠ(W), of a possible worldW induced byΠ is the unnormalized probability ofW divided
by the sum of the unnormalized probabilities of all possibleworlds ofΠ, i.e.,

µΠ(W) =
µ̂Π(W)

∑

Wi∈Ω µ̂Π(Wi)

When the programΠ is clear from the context we may simply writêµ andµ instead of̂µΠ andµΠ respectively.✷

The unnormalized measure of a possible worldW corresponds, from the standpoint of classical probability, to the
unconditional probability ofW . Each random atoma(t) = y in W is thought of as the outcome of a random
experiment that takes place in the construction ofW , andP(W , a(t) = y) is the probability of that experiment
having the resulta(t) = y in W . The multiplication in the definition of unnormalized measure is justified by an
assumption that all experiments performed in the construction of W are independent. This is subtle because the
experiments themselves do not show up inW — only their results do, and the results maynotbe independent.3

Example 10

[Dice example continued:T1 andT1·1]
The measures of the possible worlds of Example 9 are given by

µ({roll(d1, 6), roll(d2, y), . . .}) = 1/24, for 1 ≤ y ≤ 6, and

µ({roll(d1, u), roll(d2, y), . . .}) = 1/40, for 1 ≤ u ≤ 5 and1 ≤ y ≤ 6.

where only random atoms of each possible world are shown. ✷

Now we are ready for our main definition.

3 For instance, in the upcoming Example 18, random attributesarsenic anddeath respectively reflect whether or not a given rat eats arsenic,
and whether or not it dies. In that example,death andarsenic are clearly dependent. However, we assume that the factors which determine
whether a poisoning will lead to death (such as the rat’s constitution, and the strength of the poison) are independent ofthe factors which
determine whether poisoning occurred in the first place.

Probabilistic reasoning with answer sets 17

Definition 4

[Probability]
SupposeΠ is a P-log program having at least one possible world with nonzero unnormalized probability. The
probability,PΠ(E), of a setE of possible worlds of programΠ is the sum of the measures of the possible worlds
fromE , i.e.

PΠ(E) =
∑

W∈E

µΠ(W)·

✷

WhenΠ is clear from the context we may simply writeP instead ofPΠ.

The functionPΠ is not always defined, since not every syntactically correctP-log program satisfies the condition
of having at least one possible world with nonzero unnormalized measure. Consider for instance a programΠ

consisting of facts
p(a)·

¬p(a)·

The program has no answer sets at all, and hence herePΠ is not defined. The following proposition, however,
says that whenPΠ is defined, it satisfies the Kolmogorov axioms of probability. This justifies our use of the term
“probability” for the functionPΠ. The proposition follows straightforwardly from the definition.

Proposition 1

[Kolmogorov Axioms]
For a P-log programΠ for which the functionPΠ is defined we have

1. For any setE of possible worlds ofΠ, PΠ(E) ≥ 0.

2. If Ω is the set of all possible worlds ofΠ thenPΠ(Ω) = 1.

3. For any disjoint subsetsE1 andE2 of possible worlds ofΠ, PΠ(E1 ∪ E2) = PΠ(E1) + PΠ(E2). ✷

In logic-based probability theory a setE of possible worlds is often represented by a propositional formulaF such
thatW ∈ E iff W is a model ofF . In this case the probability function may be defined on propositions as

P(F) =def P({W : W is a model ofF}).

The value ofP(F) is interpreted as the degree of reasoner’s belief inF . A similar idea can be used in our frame-
work. But since the connectives of Answer Set Prolog are different from those of Propositional Logic the notion
of propositional formula will be replaced by that of formulaof Answer Set Prolog (ASP formula). In this paper we
limit our discussion to relatively simple class of ASP formulas which is sufficient for our purpose.

Definition 5

[ASP Formulas (syntax)]
For any signatureΣ

• An extended literal ofΣ is anASP formula.

• if A andB areASP formulasthen(A ∧ B) and(A orB) are ASP formulas. ✷

For example,((p ∧ not q ∧ ¬r) or (not r)) is an ASP formula but(not (not p)) is not. More general definition
of ASP formulas which allows the use of negations¬ andnot in front of arbitrary formulas can be found in
(Lifschitz et al. 2001).

Now we define the truth (W ⊢ A) and falsity (W ⊣ A) of an ASP formulaA with respect to a possible worldW :

18 C. Baral, M. Gelfond and N. Rushton

Definition 6

[ASP Formulas (semantics)]

1. For anyΣ-literal l , W ⊢ l if l ∈W ; W ⊣ l if l ∈W .

2. For any extendedΣ-literal not l , W ⊢ not l if l 6∈W ; W ⊣ not l if l ∈W .

3. W ⊢ (A1 ∧ A2) if W ⊢ A1 andW ⊢ A2; W ⊣ (A1 ∧ A2) if W ⊣ A1 orW ⊣ A2.

4. W ⊢ (A1 orA2) if W ⊢ A1 orW ⊢ A2; W ⊣ (A1 orA2) if W ⊣ A1 andW ⊣ A2. ✷

An ASP formulaA which is neither true nor false inW is undefinedin W . This introduces some subtlety. The
axioms of modern mathematical probability are viewed as axioms about measures on sets of possible worlds,
and as such are satisfied by P-log probability measures. However, since we are using a three-valued logic, some
classical consequences of the axioms for the probabilitiesof formulaefail to hold. Thus, all theorems of classical
probability theory can be applied in the context of P-log; but we must be careful how we interpret set operations in
terms of formulae. For example, note that formula (l or not l) is truein every possible worldW . However formula
(p or¬p) is undefined in any possible world containing neitherp nor¬p. Thus ifP is a P-log probability measure,
we will always haveP(not l) = 1− P(l), but not necessarilyP(¬l) = 1− P(l).

Consider for instance an ASP programP1 from the introduction. If we expandP1 by the appropriate declarations
we obtain a programΠ1 of P-log. It’s only possible world isW0 = {p(a),¬p(b), q(c)}. Since neitherp norq are
random, its measure,µ(W0) is 1 (since the empty product is1). However, since the truth value ofp(c) or ¬p(c)
in W0 is undefined,PΠ1(p(c) or ¬p(c)) = 0. This is not surprising sinceW0 represents a possible set of beliefs
of the agent associated withΠ1 in whichp(c) is simply ignored. (Note that the probability of formulaq(c) which
expresses this fact is properly equal to1).

Let us now look at programΠ2 obtained fromΠ1 by declaringp to be a random attribute. This timep(c) is not
ignored. Instead the agent considers two possibilities andconstructs two complete4 possible worlds:
W1 = {p(a),¬p(b), p(c),¬q(c)} and
W2 = {p(a),¬p(b),¬p(c),¬q(c)}.
ObviouslyPΠ2(p(c) or ¬p(c)) = 1.

It is easy to check that if all possible worlds of a P-log programΠ are complete thenPΠ(l or ¬l) = 1. This is the
case for instance whenΠ contains no regular part, or when the regular part ofΠ consists of definitions of relations
p1, . . . , pn (where adefinition of a relationp is a collection of rules which determines the truth value of atoms
built from p to be true or false in all possible worlds).

Now the definition of probability can be expanded to ASP formulas.

Definition 7

[Probability of Formulas]
The probability with respect to programΠ of a formulaA, PΠ(A), is the sum of the measures of the possible
worlds ofΠ in whichA is true, i.e.

PΠ(A) =
∑

W⊢A

µΠ(W)·

✷

As usual when convenient we omitΠ and simply writeP instead ofPΠ.

4 A possible worldW of programΠ is calledcompleteif for any ground atoma from the signature ofΠ, a ∈W or¬a ∈W .

Probabilistic reasoning with answer sets 19

Example 11

[Dice example continued]
Let T1 be the program from Example 5. Then, using the measures computed in Example 10 and the definition of
probability we have, say

PT1(roll(d1) = 6) = 6 ∗ (1/24) = 1/4.
PT1(roll(d1) = 6 ∧ even(d2)) = 3 ∗ (1/24) = 1/8. ✷

Example 12

[Causal probability equal to1]
Consider the P-log programΠ0 consisting of:

a : boolean.
random a.
pr(a) = 1·

The translation of its logical part,τ(Π0), will consist of the following:

intervene(a)← do(a).

intervene(a)← do(¬a).

a or¬a ← not intervene(a).

← obs(a), not a.

← obs(¬a), not ¬a.

a ← do(a).

¬a ← do(¬a).

τ(Π0) has two answer setsW1 = {a, . . .} andW2 = {¬a, . . .}. The probabilistic part ofΠ0 will lead to the
following probability assignments.

P(W1, a) = 1.
P(W1,¬a) = 0.
P(W2, a) = 1.
P(W2,¬a) = 0.

µ̂Π0(W1) = 1.
µ̂Π0(W2) = 0.
µΠ0(W1) = 1.
µΠ0(W2) = 0.

This gives usPΠ0(a) = 1. ✷

Example 13

[Guns example continued]
Let Πg be the P-log program from Example 6. It is not difficult to check that the program has four possi-
ble worlds. All four contain{gun(1), gun(2), pull trigger(1), pull trigger(2)}. Suppose now thatW1 contains
{fatal(1),¬fatal(2)}, W2 contains{¬fatal(1), fatal(2)}, W3 contains{fatal(1), fatal(2)}, andW4 contains
{¬fatal(1),¬fatal(2)}. The first three worlds containis dead , the last one contains¬is dead . Then

20 C. Baral, M. Gelfond and N. Rushton

µΠg
(W1) = 1/6 ∗ 5/6 = 5/36.

µΠg
(W2) = 5/6 ∗ 1/6 = 5/36.

µΠg
(W3) = 1/6 ∗ 1/6 = 1/36.

µΠg
(W4) = 5/6 ∗ 5/6 = 25/36.

and hence

PΠg
(is dead) = 11/36. ✷

As expected, this is exactly the intuitive answer from Example 6. A similar argument can be used to compute
probability ofrigged from Example 7.

Even if PΠ satisfies the Kolmogorov axioms it may still contain questionable probabilistic information. For in-
stance a program containing statementspr(p) = 1 and pr(¬p) = 1 does not seem to have a clear intuitive
meaning. The next definition is meant to capture the class of programs which are logically and probabilistically
coherent.

Definition 8

[Program Coherency]
Let Π be a P-log program andΠ′ be obtained fromΠ by removing all observations and actions.Π is said to be
consistentif Π has at least one possible world.

We will say that a consistent programΠ is coherentif

• PΠ is defined.

• For every selection ruler with the premiseK and every probability atomprr (a(t) = y |c B) = v of Π, if
PΠ′(B ∪K) is not equal to0 thenPΠ′∪obs(B)∪obs(K)(a(t) = y) = v . ✷

Coherency intuitively says that causal probabilities entail corresponding conditional probabilities. We now give
two examples of programs whose probability functions are defined, but which are not coherent.

Example 14

Consider the programsΠ5:

a : boolean.
random a.
a·

pr(a) = 1/2·

andΠ6:

a : {0, 1, 2}.
random a.
pr(a = 0) = pr(a = 1) = pr(a = 2) = 1/2·

Neither program is coherent.Π5 has one possible worldW = {a}. We haveµ̂Π5(W) = 1/2, µΠ5(W) = 1, and
PΠ5(a) = 1. Sincepr(a) = 1/2, Π5 violates condition (2) of coherency.

Π6 has three possible worlds,{a = 0}, {a = 1}, and{a = 2} each with unnormalized probability1/2. Hence
PΠ6(a = 0) = 1/3, which is different frompr(a = 0) which is1/2; thus makingΠ6 incoherent. ✷

The following two propositions give conditions on the probability atoms of a P-log program which are necessary
for its coherency.

Probabilistic reasoning with answer sets 21

Proposition 2

Let Π be a coherent P-log program without any observations or actions, anda(t) be an attribute term from the
signature ofΠ. Suppose thatΠ contains a selection rule

[r] random(a(t) : {X : p(X)})← B1·

and there is a subsetc = {y1, . . . , yn} of the range ofa(t) such that for every possible worldW of Π satisfying
B1, we have{Y : W ⊢ p(Y)} = {y1, . . . , yn}. Suppose also that for some fixedB2, Π contains probability
atoms of the form

prr (a(t) = yi |c B2) = pi ·

for all 1 ≤ i ≤ n. Then

PΠ(B1 ∧ B2) = 0 or
n
∑

i=1

pi = 1

✷

Proof: Let Π̂ = Π ∪ obs(B1) ∪ obs(B2) and letPΠ(B1 ∧ B2) 6= 0. From this, together with rule 12 from the
definition of the mappingτ from section 3.1, we have thatΠ̂ has a possible world with non-zero probability. Hence
by Proposition 1,PΠ̂ satisfies the Kolmogorov Axioms. By Condition 2 of coherency, we havePΠ̂(a(t) = yi) =

pi , for all 1 ≤ i ≤ n. By rule 12 of the definition ofτ we have that every possible world ofΠ̂ satisfiesB1.
This, together with rules 8, 10, and 11 from the same definition implies that every possible world of̂Π contains
exactly one literal of the forma(t) = y wherey ∈ c. SincePΠ̂ satisfies the Kolmogorov axioms we have that if
{F1, . . . ,Fn} is a set of literals exactly one of which is true in every possible world ofΠ̂ then

n
∑

i=1

PΠ̂(Fi) = 1

This implies that
n
∑

i=1

pi =

n
∑

i=1

PΠ̂(a(t) = yi) = 1

The proof of the following is similar:

Proposition 3

Let Π be a coherent P-log program without any observations or actions, anda(t) be an attribute term from the
signature ofΠ. Suppose thatΠ contains a selection rule

[r] random(a(t) : p)← B1·

and there is a subsetc = {y1, . . . , yn} of the range ofa(t) such that for every possible worldW of Π satisfying
B1, we have{Y : W ⊢ p(Y)} = {y1, . . . , yn}. Suppose also that for some fixedB2, Π contains probability
atoms of the form

prr (a(t) = yi |c B2) = pi ·

for some1 ≤ i ≤ n. Then

PΠ(B1 ∧ B2) = 0 or
n
∑

i=1

pi ≤ 1

✷

22 C. Baral, M. Gelfond and N. Rushton

4 Belief Update in P-log

In this section we address the problem of belief updating — the ability of an agent to change degrees of belief
defined by his current knowledge base. IfT is a P-log program andU is a collection of statements such thatT ∪U

is coherent we callU anupdateof T . IntuitivelyU is viewed as new information which can be added to an existent
knowledge base,T . Explicit representation of the agent’s beliefs allows fora natural treatment of belief updates
in P-log. The reasoner should simply add the new knowledgeU to T and check that the result is coherent. If it is
then the new degrees of the reasoner’s beliefs are given by the functionPT∪U . As mentioned before we plan to
expand our work on P-log with allowing its regular part be a program in CR-Prolog (Balduccini and Gelfond 2003)
which has a much more liberal notion of consistency than Answer Set Prolog. The resulting language will allow a
substantially larger set of possible updates.

In what follows we compare and contrast different types of updates and investigate their relationship with the
updating mechanisms of more traditional Bayesian approaches.

4.1 P-log Updates and Conditional Probability

In Bayesian probability theory the notion of conditional probability is used as the primary mechanism for updating
beliefs in light of new information. IfP is a probability measure (induced by a P-log program or otherwise), then
the conditional probabilityP(A|B) is defined asP(A ∧ B)/P(B), providedP(B) is not0. Intuitively,P(A|B)

is understood as the probability of a formulaA with respect to a background theory and a setB of all of the
agent’s additional observations of the world. The new evidenceB simply eliminates the possible worlds which do
not satisfyB . To emulate this type of reasoning in P-log we first assume that the only formulas observable by the
agent are literals. (The restriction is needed to stay in thesyntactic boundaries of our language. As mentioned in
Section 2 this restriction is not essential and can be eliminated by using a syntactically richer version of Answer
Set Prolog.) The next theorem gives a relationship between classical conditional probability and updates in P-log.
Recall that ifB is a set of literals, adding the observationobs(B) to a programΠ has the effect of removing all
possible worlds ofΠ which fail to satisfyB .

Proposition 4

[Conditional Probability in P-log]
For any coherent P-log programT , formulaA, and a set ofΣ-literalsB such thatPT (B) 6= 0,

PT∪obs(B)(A) = PT (A ∧ B)/PT (B)

In other words,

PT (A|B) = PT∪obs(B)(A)

✷

Proof:

Let us order all possible worlds ofT in such a way that
{w1 · · · wj} is the set of all possible worlds ofT that contain bothA andB ,
{w1 · · · wl} is the set of all possible worlds ofT that containB , and
{w1 · · · wn} is the set of all possible worlds ofT .

Programs of Answer Set Prolog are monotonic with respect to constraints, i.e. for any programΠ and a set of
constraintsC , X is an answer set ofΠ ∪ C iff it is an answer set ofP satisfyingC . Hence the possible worlds of
T ∪ obs(B) will be all and only those ofT that satisfyB . In what follows, we will writeµ andµ̂ for µT andµ̂T ,

Probabilistic reasoning with answer sets 23

respectively. Now, by the definition of probability in P-log, if PT (B) 6= 0, then

PT∪obs(B)(A) =

∑j

i=1 µ̂(wi)
∑l

i=1 µ̂(wi)

Now if we divide both the numerator and denominator by the normalizing factor forT , we have
∑j

i=1 µ̂(wi)
∑l

i=1 µ̂(wi)
=

∑j

i=1 µ̂(wi)/
∑n

i=1 µ̂(wi)
∑l

i=1 µ̂(wi)/
∑n

i=1 µ̂(wi)
=

∑j

i=1 µ(wi)
∑l

i=1 µ(wi)
=

PT (A ∧ B)

PT (B)

This completes the proof. ✷

Example 15

[Dice example: upgrading the degree of belief]
Let us consider programT1 from Example 8 and a new observationeven(d2). To see the influence of this new evi-
dence on the probability ofd2 showing a4 we can computePT2(roll(d2) = 4)whereT2 = T1∪{obs(even(d2))}.
Addition of the new observations eliminates those possibleworlds ofT1 in which the score ofd2 is not even.T2

has18 possible worlds. Three of them, containingroll(d1) = 6, have the unnormalized probabilities1/24 each.
The unnormalized probability of every other possible worldis 1/40. Their measures are respectively1/12 and
1/20, and hencePT2(roll(d2) = 4) = 1/3. By Proposition 4 the same result can be obtained by computing
standard conditional probabilityPT1(roll(d2) = 4|even(d2)). ✷

Now we consider a number of other types of P-log updates whichwill take us beyond the updating abilities of the
classical Bayesian approach. Let us start with an update ofT by

B = {l1, . . . , ln} · (14)

wherel ’s are literals.

To understand a substantial difference between updatingΠ by obs(l) and by a factl one should consider the ASP
counterpartτ(Π) of Π. The first update correspond to expandingτ(Π) by the denial← not l while the second
expandsτ(Π) by the factl . As discussed in Appendix III constraints and facts play different roles in the process
of forming agent’s beliefs about the world and hence one can expect thatΠ ∪ {obs(l)} andΠ ∪ {l} may have
different possible worlds.

The following examples show that it is indeed the case.

Example 16

[Conditioning onobs(l) versus conditioning onl]
Consider a P-log programT

p : {y1, y2}.
q : boolean.
random(p).
¬q ← not q, p = y1.
¬q ← p = y2.

It is easy to see that no possible world ofT containsq and hencePT (q) = 0. Now consider the setB = {q, p =

y1} of literals. The programT ∪ obs(B) has no possible worlds, and hence thePT∪obs(B)(q) is undefined. In
contrast,T ∪ B has one possible world,{q, p = y1, . . .} and hencePT∪B (q) = 1. The updateB allowed the
reasoner to change its degree of belief inq from 0 to 1, a thing impossible in the classical Bayesian framework.✷

24 C. Baral, M. Gelfond and N. Rushton

Note that since forT andB from Example 16 we have thatPT (B) = 0, the classical conditional probability
of A givenB is undefined. Hence from the standpoint of classical probability Example 16 may not look very
surprising. Perhaps somewhat more surprisingly,PT∪obs(B)(A) andPT∪B (A) may be different even when the
classical conditional probability ofA givenB is defined.

Example 17

[Conditioning onobs(l) versus conditioning onl]
Consider a P-log programT

p : {y1, y2}.
q : boolean.
random(p).
q ← p = y1.
¬q ← not q.

It is not difficult to check that programT has two possible worlds,W1, containing{p = y1, q} and W2,
containing{p = y2,¬q}. Now consider an updateT ∪ obs(q). It has one possible world,W1. Program
T ∪ {q} is however different. It has two possible worlds,W1 and W3 whereW3 contains{p = y2, q};
µT∪{q}(W1) = µT∪{q}(W3) = 1/2. This implies thatPT∪obs(q)(p = y1) = 1 while PT∪{q}(p = y1) = 1/2.
✷

Note that in the above cases the new evidence contained a literal formed by an attribute,q, not explicitly defined as
random. Adding a facta(t) = y to a program for whicha(t) is random in some possible world will usually cause
the resulting program to be incoherent.

4.2 Updates Involving Actions

Now we discuss updating the agent’s knowledge by the effectsof deliberate intervening actions, i.e. by a collection
of statements of the form

do(B) = {do(a(t) = y) : (a(t) = y) ∈ B} (15)

As before the update is simply added to the background theory. The results however are substantially different
from the previous updates. The next example illustrates thedifference.

Example 18

[Rat Example]
Consider the following program,T , representing knowledge about whether a certain rat will eat arsenic today, and
whether it will die today.

arsenic, death : boolean·

[1] random(arsenic)·

[2] random(death)·

pr(arsenic) = 0 · 4·

pr(death |c arsenic) = 0 · 8·

pr(death |c ¬arsenic) = 0 · 01·

The above program tells us that the rat is more likely to die today if it eats arsenic. Not only that, the intuitive
semantics of thepr atoms expresses that the rat’s consumption of arsenic carries information about the cause of his
death (as opposed to, say, the rat’s death being informativeabout the causes of his eating arsenic).

Probabilistic reasoning with answer sets 25

An intuitive consequence of this reading is that seeing the rat die raises our suspicion that it has eaten arsenic,
while killing the rat (say, with a pistol) does not affect ourdegree of belief that arsenic has been consumed. The
following computations show that the principle is reflectedin the probabilities computed under our semantics.

The possible worlds of the above program, with their unnormalized probabilities, are as follows (we show only
arsenicanddeathliterals):

w1 : {arsenic, death}· µ̂(w1) = 0 · 4 ∗ 0 · 8 = 0 · 32

w2 : {arsenic,¬death}· µ̂(w2) = 0 · 4 ∗ 0 · 2 = 0 · 08

w3 : {¬arsenic, death}· µ̂(w3) = 0 · 6 ∗ 0 · 01 = 0 · 06

w4 : {¬arsenic,¬death}· µ̂(w4) = 0 · 6 ∗ 0 · 99 = 0 · 54

Since the unnormalized probabilities add up to 1, the respective measures are the same as the unnormalized prob-
abilities. Hence,

PT (arsenic) = µ(w1) + µ(w3) = 0 · 32 + 0 · 08 = 0 · 4

To compute probability ofarsenic after the observation ofdeath we consider the programT1 = T∪{obs(death)}

The resulting program has two possible worlds,w1 andw3, with unnormalized probabilities as above. Normaliza-
tion yields

PT1(arsenic) = 0 · 32/(0 · 32 + 0 · 06) = 0 · 8421

Notice that the observation of death raised our degree of belief that the rat had eaten arsenic.

To compute the effect ofdo(death) on the agent’s belief inarsenic we augment the original program with the
literal do(death). The resulting program,T2, has two answer sets,w1 andw3. However, the action defeats the
randomness of death so thatw1 has unnormalized probability0 ·4 andw3 has unnormalized probability0 ·6. These
sum to one so the measures are also0 · 4 and0 · 6 respectively, and we get

PT2(arsenic) = 0 · 4

Note this is identical to the initial probabilityPT (arsenic) computed above. In contrast to the case when the effect
(that is, death) was passively observed, deliberately bringing about the effect did not change our degree of belief
about the propositions relevant to the cause.

Propositions relevant to a cause, on the other hand, give equal evidence for the attendant effects whether they are
forced to happen or passively observed. For example, if we feed the rat arsenic, this increases its chance of death,
just as if we had observed the rat eating the arsenic on its own. The conditional probabilities computed under our
semantics bear this out. Similarly to the above, we can compute

PT (death) = 0 · 38

PT∪{do(arsenic)}(death) = 0 · 8

PT∪{obs(arsenic)}(death) = 0 · 8 ✷

Note that even though the idea of action based updates comes from Pearl, our treatment of actions is technically
different from his. In Pearl’s approach, the semantics of thedo operator are given in terms of operations on graphs
(specifically, removing from the graph all directed links leading into the acted-upon variable). In our approach the
semantics ofdo are given by non-monotonic axioms (9) and (10) which are introduced by our semantics as part
of the translation of P-log programs into ASP. These axioms are triggered by the addition ofdo(a(t) = y) to the
program.

26 C. Baral, M. Gelfond and N. Rushton

4.3 More Complex Updates

Now we illustrate updating the agent’s knowledge by more complex regular rules and by probabilistic information.

Example 19

[Adding defined attributes]
In this example we show how updates can be used to expand the vocabulary of the original program. Consider for
instance a programT1 from the die example 5. An update, consisting of the rules

max score : boolean·

max score ← score(d1) = 6, score(d2) = 6.

introduces a new boolean attribute,max score, which holds iff both dice roll the max score. The probability of
max score is equal to the product of probabilities ofscore(d1) = 6 andscore(d2) = 6. ✷

Example 20

[Adding new rules]
Consider a P-log programT

d = {1, 2}.
p : d → boolean.
random(p(X)).

The program has four possible worlds:W1 = {p(1), p(2)}, W2 = {¬p(1), p(2)}, W3 = {p(1),¬p(2)}, W4 =

{¬p(1),¬p(2)}. It is easy to see thatPT (p(1)) = 1/2. What would be the probability ofp(1) if p(1) andp(2)
were mutually exclusive? To answer this question we can computePT∪B(p(1)) where

B = {¬p(1)← p(2); ¬p(2)← p(1)}.

SinceT ∪B has three possible worlds,W2,W3,W4, we have thatPT∪B (p(1)) = 1/3. The new evidence forced
the reasoner to change the probability from1/2 to 1/3. ✷

The next example shows how a new update can force the reasonerto view a previously non-random attribute as
random.

Example 21

[Adding Randomness]
ConsiderT consisting of the rules:

a1, a2, a3 : boolean.
a1 ← a2·

a2 ← not ¬a2·

The program has one possible world,W = {a1, a2}.

Now let us updateT byB of the form:

¬a2·

random(a1)← ¬a2·

The new program,T ∪ B , has two possible worlds
W1 = {a1,¬a2} and
W2 = {¬a1,¬a2}

Probabilistic reasoning with answer sets 27

The degree of belief ina1 changed from1 to 1/2. ✷

Example 22

[Adding Causal Probability]
Consider programsT1 consisting of the rules:

a : boolean.
random(a).

andT2 consisting of the rules:

a : boolean.
random(a).
pr(a) = 1/2.

The programs have the same possible worlds,W1 = {p} andW2 = {¬p}, and the same probability functions
assigning1/2 toW1 andW2. The programs however behave differently under simple updateU = {pr(a) = 1/3}.
The updatedT1 simply assigns probability1/3 and2/3 toW1 andW2 respectively. In contrast the attempt to apply
the same update toT2 fails, since the resulting program violates Condition 2 from 3.2. This behavior may shed
some light on the principle of indifference. According to (Jr and Teng 2001) “One of the oddities of the principle of
indifference is that it yields the same sharp probabilitiesfor a pair of alternatives about which we know nothing at
all as it does for the alternative outcomes of a toss of a thoroughly balanced and tested coin”. The former situation
is reflected inT1 where principle of indifference is used to assign default probabilities. The latter case is captured
by T2, wherepr(a) = 1/2 is the result of some investigation. Correspondingly the updateU of T1 is viewed as
simple additional knowledge - the result of study and testing. The same update toT2 contradicts the established
knowledge and requires revision of the program. ✷

It is important to notice that an update in P-log cannot contradict original background information. An attempt to
add¬a to a program containinga or to addpr(a) = 1/2 to a program containingpr(a) = 1/3 would result in
an incoherent program. It is possible to expand P-log to allow such new information (referred to as “revision” in
the literature) but the exact revision strategy seems to depend on particular situations. If the later information is
more trustworthy then one strategy is justified. If old and new information are “equally valid”, or the old one is
preferable then other strategies are needed. The classification of such revisions and development of the theory of
their effects is however beyond the scope of this paper.

5 Representing knowledge in P-log

This section describes several examples of the use of P-log for formalization of logical and probabilistic reasoning.
We do not claim that the problems are impossible to solve without P-log; indeed, with some intelligence and effort,
each of the examples could be treated using a number of different formal languages, or using no formal language
at all. The distinction claimed for the P-log solutions is that they arise directly from transcribing our knowledge
of the problem, in a form which bears a straightforward resemblance to a natural language description of the same
knowledge. The “straightforwardness” includes the fact that as additional knowledge is gained about a problem, it
can be represented by adding to the program, rather than by modifying existing code. All of the examples of this
section have been run on our P-log interpreter.

28 C. Baral, M. Gelfond and N. Rushton

5.1 Monty Hall problem

We start by solving the Monty Hall Problem, which gets its name from the TV game show hosted by Monty Hall
(we follow the description from http://www.io.com/∼kmellis/monty.html). A player is given the opportunity to
select one of three closed doors, behind one of which there isa prize. Behind the other two doors are empty rooms.
Once the player has made a selection, Monty is obligated to open one of the remaining closed doors which does
not contain the prize, showing that the room behind it is empty. He then asks the player if he would like to switch
his selection to the other unopened door, or stay with his original choice. Here is the problem: does it matter if he
switches?

The answer is YES. In fact switching doubles the player’s chance to win. This problem is quite interesting, be-
cause the answer is felt by most people — often including mathematicians — to be counter-intuitive. Most people
almost immediately come up with a (wrong) negative answer and are not easily persuaded that they made a mis-
take. We believe that part of the reason for the difficulty is some disconnect between modeling probabilistic and
non-probabilistic knowledge about the problem. In P-log this disconnect disappears which leads to a natural cor-
rect solution. In other words, the standard probability formalisms lack the ability to explicitly represent certain
non-probabilistic knowledge that is needed in solving thisproblem. In the absence of this knowledge, wrong con-
clusions are made. This example is meant to show how P-log canbe used to avoid this problem by allowing us to
specify relevant knowledge explicitly. Technically this is done by using a random attributeopen with the dynamic
range defined by regular logic programming rules.

The domain contains the set of three doors and three 0-arity attributes,selected , open andprize. This will be
represented by the following P-log declarations (the numbers are not part of the declaration; we number statements
so that we can refer back to them):

1 · doors = {1, 2, 3}·

2 · open, selected , prize : doors ·

The regular part contains rules that state that Monty can open any door to a room which is not selected and which
does not contain the prize.

3 · ¬can open(D)← selected = D ·

4 · ¬can open(D)← prize = D ·

5 · can open(D)← not ¬can open(D)·

The first two rules are self-explanatory. The last rule, which uses both classical and default negations, is a typical
ASP representation of the closed world assumption (Reiter 1978) — Monty can open any door except those which
are explicitly prohibited.

Assuming the player selects a door at random, the probabilistic information about the three attributes of doors can
be now expressed as follows:

6 · random(prize)·

7 · random(selected)·

8 · random(open : {X : can open(X)})·

Notice that rule (8) guarantees that Monty selects only those doors which can be opened according to rules (3)–(5).
The knowledge expressed by these rules (which can be extracted from the specification of the problem) is often
not explicitly represented in probabilistic formalisms leading to reasoners (who usually do not realize this) to insist
that their wrong answer is actually correct.

The P-Log programΠmonty0 consisting of the logical rules (1)-(8) represents our knowledge of the problem do-
main. It has the following 12 possible worlds:

http://www.io.com/~kmellis/monty.html

Probabilistic reasoning with answer sets 29

W1 = {selected = 1, prize = 1, open = 2, · · ·}.
W2 = {selected = 1, prize = 1, open = 3, · · ·}.
W3 = {selected = 1, prize = 2, open = 3, · · ·}.
W4 = {selected = 1, prize = 3, open = 2, · · ·}.
W5 = {selected = 2, prize = 1, open = 3, · · ·}.
W6 = {selected = 2, prize = 2, open = 1, · · ·}.
W7 = {selected = 2, prize = 2, open = 3, · · ·}.
W8 = {selected = 2, prize = 3, open = 1, · · ·}.
W9 = {selected = 3, prize = 1, open = 2, · · ·}.
W10 = {selected = 3, prize = 2, open = 1, · · ·}.
W11 = {selected = 3, prize = 3, open = 1, · · ·}.
W12 = {selected = 3, prize = 3, open = 2, · · ·}.

According to our definitions they will be assigned various probability measures. For instance,selected has three
possible values in eachWi , none of which has assigned probabilities. Hence, according to the definition of the
probability of an atom in a possible world from Section 3.2,

P(Wi , selected = j) = 1/3

for eachi andj . Similarly for prize

P(Wi , prize = j) = 1/3

ConsiderW1. Sincecan open(1) 6∈ W1 the atomopen = 1 is not possible inW1 and the corresponding prob-
ability P(W1, open = 1) is undefined. The only possible values ofopen in W1 are2 and3. Since they have no
assigned probabilities

P(W1, open = 2) = PD(W1, open = 2) = 1/2

P(W1, open = 3) = PD(W1, open = 3) = 1/2

Now considerW4. W4 containscan open(2) and no othercan open atoms. Hence the only possible value of
open in W4 is 2, and therefore

P(W4, open = 2) = PD(W4, open = 2) = 1

The computations of other values ofP(Wi , open = j) are similar.

Now to proceed with the story, first let us eliminate an orthogonal problem of modeling time by assuming that we
observed that the player has already selected door1, and Monty opened door2 revealing that it did not contain the
prize. This is expressed as:

obs(selected = 1) · obs(open = 2) · obs(prize 6= 2)·

Let us refer to the above P-log program asΠmonty1. Because of the observationsΠmonty1 has two possible worlds
W1, andW4: the first containingprize = 1 and the second containingprize = 3. It follows that

µ̂(W1) = P(W1, selected = 1)× P(W1, prize = 1)× P(W1, open = 2) = 1/18

µ̂(W4) = P(W1, selected = 1)× P(W1, prize = 3)× P(W1, open = 2) = 1/9

µ(W1) =
1/18

1/18+1/9 = 1/3

µ(W4) =
1/9

1/18+1/9 = 2/3

PΠmonty1(prize = 1) = µ(W1) = 1/3

PΠmonty1(prize = 3) = µ(W4) = 2/3

30 C. Baral, M. Gelfond and N. Rushton

Changing doors doubles the player’s chance to win.

Now consider a situation when the player assumes (either consciously or without consciously realizing it) that
Monty could have opened any one of the unopened doors (including one which contains the prize). Then the
corresponding program will have a new definition ofcan open. The rules (3–5) will be replaced by

¬can open(D)← selected = D ·

can open(D)← not ¬can open(D)·

The resulting programΠmonty2 will also have two possible worlds containingprize = 1 andprize = 3 respec-
tively, each with unnormalized probability of 1/18, and thereforePΠmonty2(prize = 1) = 1/2 andPΠmonty2(prize =

3) = 1/2. In that case changing the door will not increase the probability of getting the prize.

ProgramΠmonty1 has no explicit probabilistic information and so the possible results of each random selection are
assumed to be equally likely. If we learn, for example, that given a choice between opening doors2 and3, Monty
opens door2 four times out of five, we can incorporate this information bythe following statement:

9 · pr(open = 2 |c can open(2), can open(3)) = 4/5

A computation similar to the one above shows that changing doors still increases the players chances to win. Of
course none of the above computations need be carried out by hand. The interpreter will do them automatically.

In fact changing doors is advisable as long as each of the available doors can be opened with some positive
probability. Note that our interpreter cannot prove this general result even though it will give proper advice for any
fixed values of the probabilities.

The problem can of course be generalized to an arbitrary number n of doors simply by replacing rule (1) with
doors = {1, . . . , n}.

5.2 Simpson’s paradox

Let us consider the following story from (Pearl 2000): A patient is thinking about trying an experimental drug and
decides to consult a doctor. The doctor has tables of the recovery rates that have been observed among males and
females, taking and not taking the drug.

Males:

fraction of population recoveryrate
drug 3/8 60%
¬ drug 1/8 70%

Females:

fraction of population recoveryrate
drug 1/8 20%
¬ drug 3/8 30%

What should the doctor’s advice be? Assuming that the patient is a male, the doctor may attempt to reduce the
problem to checking the following inequality involving classical conditional probabilities:

P(recover |male,¬drug) < P(recover |male, drug) (16)

Probabilistic reasoning with answer sets 31

The corresponding probabilities, if directly calculated from the tables5, are0 · 7 and0 · 6. The inequality fails, and
hence the advice is not to take the drug. A similar argument shows that a female patient should not take the drug.

But what should the doctor do if he has forgotten to ask the patient’s sex? Following the same reasoning, the doctor
might check whether the following inequality is satisfied:

P(recover |¬drug) < P(recover |drug) (17)

This will lead to an unexpected result.P(recovery|drug) = 0 · 5 while P(recovery|¬drug) = 0 · 4. The drug
seems to be beneficial to patients of unknown sex — though similar reasoning has shown that the drug is harmful
to the patients of known sex, whether they are male or female!

This phenomenon is known as Simpson’s Paradox: conditioning onA may increase the probability ofB among
the general population, while decreasing the probability of B in every subpopulation (or vice-versa). In the current
context, the important and perhaps surprising lesson is that classical conditional probabilities do not faithfully
formalize what we really want to know:what will happen if we do X?In (Pearl 2000) Pearl suggests a solution
to this problem in which the effect of deliberate actionA on conditionC is represented byP(C |do(A)) — a
quantity defined in terms of graphs describing causal relations between variables. Correct reasoning therefore
should be based on evaluating the inequality

P(recover |do(¬drug)) < P(recover |do(drug)) (18)

instead of (17); this is also what should have been done for (16).

To calculate (18) using Pearl’s approach one needs a causal model and it should be noted that multiple causal
models may be consistent with the same statistical data. P-log allows us to express causality and we can determine
the probabilityPΠ of a formulaC given that actionA is performed by computingPΠ∪{do(A)}(C).

Using the tables and added assumption about the direction ofcausality6 between the variables, we have the values
of the following causal probabilities:

pr(male) = 0 · 5.
pr(recover |c male, drug) = 0 · 6.
pr(recover |c male,¬drug) = 0 · 7.
pr(recover |c ¬male, drug) = 0 · 2.
pr(recover |c ¬male,¬drug) = 0 · 3.
pr(drug |c male) = 0 · 75.
pr(drug |c ¬male) = ·25.

These statements, together with declarations:

male, recover , drug : boolean

[1] random(male).
[2] random(recover).
[3] random(drug).

constitute a P-log program,Π, that formalizes the story.

The program describes eight possible worlds containing various values of the attributes. Each of these worlds and
their unnormalized and normalized probabilities is calculated below.

5 If the tables are treated as giving probabilistic information, then we get the following:P(male) = P(¬male) = 0 · 5. P(drug) =
P(¬drug) = 0 · 5. P(recover | male, drug) = 0 · 6. P(recover | male,¬drug) = 0 · 7. P(recover | ¬male, drug) = 0 · 2.
P(recover | ¬male,¬drug) = 0 · 3. P(drug | male) = 0 · 75. P(drug | ¬male) = 0 · 25.

6 A different assumption about the direction of causality maylead to a different conclusion.

32 C. Baral, M. Gelfond and N. Rushton

W1 = {male, recover , drug}. µ̂(W1) = 0 · 5× 0 · 6× 0 · 75 = 0 · 225. µ(W1) = 0 · 225.
W2 = {male, recover ,¬drug}. µ̂(W2) = 0 · 5× 0 · 7× 0 · 75 = 0 · 2625. µ(W2) = 0 · 2625.
W3 = {male,¬recover , drug}. µ̂(W3) = 0 · 5× 0 · 4× 0 · 75 = 0 · 15. µ(W3) = 0 · 15.
W4 = {male,¬recover ,¬drug}. µ̂(W4) = 0 · 5× 0 · 3× 0 · 75 = 0 · 1125. µ(W4) = 0 · 1125.
W5 = {¬male, recover , drug}. µ̂(W5) = 0 · 5× 0 · 2× 0 · 25 = 0 · 025. µ(W5) = 0 · 025.
W6 = {¬male, recover ,¬drug}. µ̂(W6) = 0 · 5× 0 · 3× 0 · 35 = 0 · 0375. µ(W6) = 0 · 0375.
W7 = {¬male,¬recover , drug}. µ̂(W7) = 0 · 5× 0 · 8× 0 · 25 = 0 · 1. µ(W7) = 0 · 1.
W8 = {¬male,¬recover ,¬drug}. µ̂(W8) = 0 · 5× 0 · 7× 0 · 25 = 0 · 0875. µ(W8) = 0 · 0875.

Now let us computePΠ1(recover) andPΠ2(recover) respectively, whereΠ1 = Π ∪ {do(drug)} andΠ2 =

Π ∪ {do(¬drug)}.

The four possible worlds ofΠ1 and their unnormalized and normalized probabilities are asfollows:

W ′
1 = {male, recover , drug}. µ̂(W ′

1) = 0 · 5× 0 · 6× 1 = 0 · 3. µ(W ′
1) = 0 · 3.

W ′
3 = {male,¬recover , drug}. µ̂(W ′

3) = 0 · 5× 0 · 4× 1 = 0 · 2. µ(W ′
3) = 0 · 2.

W ′
5 = {¬male, recover , drug}. µ̂(W ′

5) = 0 · 5× 0 · 2× 1 = 0 · 1. µ(W ′
5) = 0 · 1.

W ′
7 = {¬male,¬recover , drug}. µ̂(W ′

7) = 0 · 5× 0 · 8× 0 · 1 = 0 · 4. µ(W ′
7) = 0 · 4.

From the above we obtainPΠ1(recover) = ·4.

The four possible worlds ofΠ2 and their unnormalized and normalized probabilities are asfollows:

W ′
2 = {male, recover ,¬drug}. µ̂(W ′

2) = 0 · 5× 0 · 7× 1 = 0 · 35. µ(W ′
2) = 0 · 35.

W ′
4 = {male,¬recover ,¬drug}. µ̂(W ′

4) = 0 · 5× 0 · 3× 1 = 0 · 15. µ(W ′
4) = 0 · 15.

W ′
6 = {¬male, recover ,¬drug}. µ̂(W ′

6) = 0 · 5× 0 · 3× 1 = 0 · 15. µ(W ′
6) = 0 · 15.

W ′
8 = {¬male,¬recover ,¬drug}. µ̂(W ′

8) = 0 · 5× 0 · 7× 1 = 0 · 35. µ(W ′
8) = 0 · 35.

From the above we obtainPΠ2(recover) = ·5. Hence, if one assumes the direction of causality that we assumed,
it is better not to take the drug than to take the drug.

Similar calculations also show the following:

PΠ∪{obs(male),do(drug)}(recover) = 0 · 6

PΠ∪{obs(male),do(¬drug)}(recover) = 0 · 7

PΠ∪{obs(¬male),do(drug)}(recover) = 0 · 2

PΠ∪{obs(¬male),do(¬drug)}(recover) = 0 · 3

I.e., if we know the person is male then it is better not to takethe drug than to take the drug, the same if we know
the person is female, and both agree with the case when we do not know if the person is male or female.

The example shows that queries of the form “What will happen if we do X?” can be easily stated and answered
in P-log. The necessary P-log reasoning is nonmonotonic andis based on rules (9) and (10) from the definition of
τ(Π).

5.3 A Moving Robot

Now we consider a formalization of a problem whose original version, not containing probabilistic reasoning, first
appeared in (Iwan and Lakemeyer 2002).

There are rooms, sayr0, r1, r2 reachable from the current position of a robot. The rooms canbe open or closed. The
robot cannot open the doors. It is known that the robot navigation is usually successful. However, a malfunction
can cause the robot to go off course and enter any one of the open rooms.

Probabilistic reasoning with answer sets 33

We want to be able to use our formalization for correctly answering simple questions about the robot’s behavior
including the following scenario: the robot moved toward open roomr1 but found itself in some other room. What
room can this be?

As usual we start with formalizing this knowledge. We need the initial and final moments of time, the rooms, and
the actions.

time = {0, 1} rooms = {r0, r1, r2}·

We will need actions:

go in : rooms → boolean·

break : boolean.

ab : boolean.

The first action consists of the robotattemptingto enter the roomR at time step0. The second is an exogenous
breaking action which may occur at moment0 and alter the outcome of this attempt. In what follows, (possibly
indexed) variablesR will be used for rooms.

A state of the domain will be modeled by a time-dependent attribute, in, and a time independent attributeopen.
(Time dependent attributes and relations are often referred to asfluents).

open : rooms → boolean·

in : time → rooms ·

The description of dynamic behavior of the system will be given by the rules below:

First two rules state that the robot navigation is usually successful, and a malfunctioning robot constitutes an
exception to this default.

1. in(1) = R ← go in(R), not ab·

2. ab ← break ·

The random selection rule (3) below plays a role of a (non-deterministic) causal law. It says that a malfunctioning
robot can end up in any one of the open rooms.

3. [r] random(in(1) : {R : open(R)})← go in(R), break ·

We also need inertia axioms for the fluentin.

4a.in(1) = R ← in(0) = R, not ¬in(1) = R·

4b.in(1) 6= R ← in(0) 6= R, not in(1) = R·

Finally, we assume that only closed doors will be specified inthe initial situation. Otherwise doors are assumed to
be open.

5. open(R)← not ¬open(R)·

The resulting program,Π0, completes the first stage of our formalization. The programwill be used in conjunction
with a collectionX of atoms of the formin(0) = R, ¬open(R), go in(R), break which satisfies the following
conditions:X contains at most one atom of the formin(0) = R (robot cannot be in two rooms at the same time);
X has at most one atom of the formgo in(R) (robot cannot move to more than one room);X does not contain a
pair of atoms of the form¬open(R), go in(R) (robot does not attempt to enter a closed room); andX does not
contain a pair of atoms of the form¬open(R), in(0) = R (robot cannot start in a closed room). A setX satisfying
these properties will be normally referred to as avalid inputof Π0.

34 C. Baral, M. Gelfond and N. Rushton

Given an inputX1 = {go in(r0)} the programΠ0 ∪ X1 will correctly concludein(1) = r0. The input
X2 = {go in(r0), break} will result in three possible worlds containingin(1) = r0, in(1) = r1 andin(1) = r2

respectively. If, in addition, we are given¬open(r2) the third possible world will disappear, etc.

Now let us expandΠ0 by some useful probabilistic information. We can for instance considerΠ1 obtained from
Π0 by adding:

8. prr (in(1) = R |c go in(R), break) = 1/2·

(Note that for any valid inputX , Condition 3 of Section 3.2 is satisfied forΠ1 ∪ X , since rooms are assumed to
be open by default and no valid input may contain¬open(R) andgo in(R) for anyR.) ProgramT1 = Π1 ∪ X1

has the unique possible world which containsin(1) = r0. Hence,PT1(in(1) = r0) = 1.

Now considerT2 = Π1 ∪ X2. It has three possible worlds:W0 containingin(1) = r0, andW1,W2 containing
in(1) = r1 andin(1) = r2 respectively.PT2(W0) is assigned a probability of1/2, whilePT2(W1) = PT2(W2) =

1/4 by default. ThereforePT2(in(1) = r0) = 1/2. Here the addition ofbreak to the knowledge base changed the
degree of reasoner’s belief inin(1) = r0 from 1 to 1/2. This is not possible in classical Bayesian updating, for
two reasons. First, the prior probability ofbreak is 0 and hence it cannot be conditioned upon. Second, the prior
probability ofin(1) = r0 is 1 and hence cannot be diminished by classical conditioning. To account for this change
in the classical framework requires the creation of a new probabilistic model. However, each model is a function
of the underlying background knowledge; and so P-log allowsus to represent the change in the form of an update.

5.4 Bayesian squirrel

In this section we consider an example from (Hilborn and Mangel 1997) used to illustrate the notion of Bayesian
learning. One common type of learning problem consists of selecting from a set of models for a random phe-
nomenon by observing repeated occurrences of the phenomenon. The Bayesian approach to this problem is to
begin with a “prior density” on the set of candidate models and update it in light of our observations.

As an example, Hilborn and Mangel describe the Bayesian squirrel. The squirrel has hidden its acorns in one of
two patches, say Patch 1 and Patch 2, but can’t remember which. The squirrel is 80% certain the food is hidden in
Patch 1. Also, it knows there is a 20% chance of finding food perday when it looking in the right patch (and, of
course, a 0% probability if it’s looking in the wrong patch).

To represent this knowledge in P-log’s programΠ we introduce sorts

patch = {p1, p2}.

day = {1 . . .n}.

(wheren is some constant, say,5)

and attributes

hidden in : patch.

found : patch ∗ day → boolean.

look : day → patch.

Attributehidden in is always random. Hence we include

[r1] random(hidden in).

found is random only if the squirrel is looking for food in the rightpatch, i.e. we have

Probabilistic reasoning with answer sets 35

[r2] random(found(P ,D))← hidden in = P , look(D) = P .

The regular part of the program consists of the closed world assumption forfound :

¬found(P ,D)← not found(P ,D).

Probabilistic information of the story is given by statements:

prr1(hidden in = p1) = 0 · 8.

prr2(found(P ,D)) = 0 · 2.

This knowledge, in conjunction with description of the squirrel’s activity, can be used to compute probabilities of
possible outcomes of the next search for food.

Consider for instance programΠ1 = Π ∪ {do(look(1) = p1)}. The program has three possible worlds

W 1
1 = {look(1) = p1, hidden in = p1, found(p1, 1), . . .},

W 1
2 = {look(1) = p1, hidden in = p1,¬found(p1, 1), . . .},

W 1
3 = {look(1) = p1, hidden in = p2,¬found(p1, 1), . . .},

with probability measuresµ(W1) = 0 · 16, µ(W2) = 0 · 64, µ(W3) = 0 · 2.

As expected

PΠ1(hidden in = p1) = 0 · 8, and

PΠ1(found(p1, 1)) = 0 · 16.

Suppose now that the squirrel failed to find its food during the first day, and decided to continue her search in the
first patch next morning.

The failure to find food in the first day should decrease the squirrel’s degree of belief that the food is hidden in
patch one, and consequently decreases her degree of belief that she will find food by looking in the first patch
again. This is reflected in the following computation:

LetΠ2 = Π1 ∪ {obs(¬found(p1, 1)), do(look(2) = p1)}.

The possible worlds ofΠ2 are:

W 2
1 = W ∪ {hidden in = p1, look(2) = p1, found(p1, 2) . . .},

W 2
2 = W ∪ {hidden in = p1, look(2) = p1,¬found(p1, 2) . . .},

W 2
3 = W ∪ {hidden in = p2, look(2) = p1,¬found(p1, 2) . . .}.

whereW = {look(1) = p1,¬found(p1, 1)}·

Their probability measures are

µ(W 2
1) = ·128/ · 84 = ·152, µ(W 2

2) = ·512/ · 84 = ·61, µ(W 2
3) = ·2/ · 84 = ·238.

Consequently,

PΠ2(hidden in = p1) = 0 · 762, andPΠ2(found(p1, 2)) = 0 · 152, and so on.

After a number of unsuccessful attempts to find food in the first patch the squirrel can come to the conclusion that
food is probably hidden in the second patch and change her search strategy accordingly.

Notice that each new experiment changes the squirrel’s probabilistic model in a non-monotonic way. That is, the set

36 C. Baral, M. Gelfond and N. Rushton

of possible worlds resulting from each successive experiment is not merely a subset of the possible worlds of the
previous model. The program however is changed only by the addition of new actions and observations. Distinctive
features of P-log such as the ability to represent observations and actions, as well as conditional randomness, play
an important role in allowing the squirrel to learn new probabilistic models from experience.

For comparison, let’s look at a classical Bayesian solution. If the squirrel has looked in patch 1 on day 1 and not
found food, the probability that the food is hidden in patch 1can be computed as follows. First, by Bayes Theorem,

P(hidden = 1|¬found(p1, 1)) =
P(¬find(1)| hidden in = p1) ∗ P(hidden in = p1)

P(¬found(p1, 1))

The denominator can then be rewritten as follows:

P(¬find(1))

= P(¬found(p1, 1) ∪ hidden in = 1) + P(¬found(p1, 1) ∪ hidden in = p2)

= P(¬found(p1, 1)| hidden in = p1) ∗ P(hidden in = p1) + P(hidden in = p2)

= 0 · 8 ∗ 0 · 8 + 0 · 2

= 0 · 84

Substitution yields

P(hidden in = p1| ¬found(p1, 1)) = (0 · 8 ∗ 0 · 8)/0 · 84 = 0 · 762

Discussion

Note that the classical solution of this problem does not contain any formal mention of the actionlook(2) = p1.
We must keep this informal background knowledge in mind whenconstructing and using the model, but it does
not appear explicitly. To consider and compare distinct action sequences, for example, would require the use of
several intuitively related but formally unconnected models. In Causal Bayesian nets (or P-log), by contrast, the
corresponding programs may be written in terms of one another using the do-operator.

In this example we see that the use of the do-operator is not strictly necessary. Even if we were choosing between
sequences of actions, the job could be done by Bayes theorem,combined with our ability to juggle several intu-
itively related but formally distinct models. In fact, if weare very clever, Bayes Theorem itself is not necessary
— for we could use our intuition of the problem to construct a new probability space, implicitly based on the
knowledge we want to condition upon.

However, though not necessary, Bayes theorem is very useful— because it allows us to formalize subtle reasoning
within the model which would otherwise have to be performed in the informal process ofcreatingthe model(s).
Causal Bayesian nets carry this a step further by allowing usto formalize interventions in addition to observa-
tions, and P-log yet another step by allowing the formalization of logical knowledge about a problem or family of
problems. At each step in this hierarchy, part of the informal process of creating a model is replaced by a formal
computation.

As in this case, probabilistic models are often most easily described in terms of the conditional probabilities of
effects given their causes. From the standpoint of traditional probability theory, these conditional probabilities are
viewed as constraints on the underlying probability space.In a learning problem like the one above, Bayes Theorem
can then be used to relate the probabilities we are given to those we want to know: namely, the probabilities of
evidence-given-models with the probabilities of models-given-evidence. This is typically done without describing
or even thinking about the underlying probability space, because the given conditional probabilities, together with
Bayes Theorem, tell us all we need to know. The use of Bayes Theorem in this manner is particular to problems
with a certain look and feel, which are loosely classified as “Bayesian learning problems”.

Probabilistic reasoning with answer sets 37

From the standpoint of P-log things are somewhat different.Here, all probabilities are defined with respect to
bodies of knowledge, which include models and evidence in the single vehicle of a P-log program. Within this
framework, Bayesian learning problems do not have such a distinctive quality. They are solved by writing down
what we know and issuing a query, just like any other problem.Since P-log probabilities satisfy the axioms of
probability, Bayes Theorem still applies and could be useful in calculating the P-log probabilities by hand. On the
other hand, it is possible and even natural to approach theseproblems in P-log without mentioning Bayes Theorem.
This would be awkward in ordinary mathematical probability, where the derivation of models from knowledge is
considerably less systematic.

5.5 Maneuvering the Space Shuttle

So far we have presented a number of small examples to illustrate various features of P-log. In this section we
outline our use of P-log for an industrial size application:diagnosing faults in the reactive control system (RCS) of
the Space Shuttle.

To put this work in the proper perspective we need to briefly describe the history of the project. The RCS actuates
the maneuvering of the shuttle. It consists of fuel and oxidizer tanks, valves, and other plumbing needed to provide
propellant to the shuttle’s maneuvering jets. It also includes electronic circuitry, both to control the valves in the
fuel lines, and to prepare the jets to receive firing commands. To perform a maneuver, Shuttle controllers (i.e.,
astronauts and/or mission controllers) must find a sequenceof commands which delivers propellant from tanks to
a proper combination of jets.

Answer Set Programming (without probabilities) was successfully used to design and implement the decision
support system USA-Adviser (Balduccini et al. 2001; Balduccini et al. 2002), which, given information about the
desired maneuver and the current state of the system (including its known faults), finds a plan allowing the con-
trollers to achieve this task. In addition the USA-Advisor is capable of diagnosing an unexpected behavior of
the system. The success of the project hinged on Answer Set Prolog’s ability to describe controllers’ knowledge
about the system, the corresponding operational procedures, and a fair amount of commonsense knowledge. It also
depended on the existence of efficient ASP solvers.

The USA-Advisor is build on a detailed but straightforward model of the RCS. For instance, the hydraulic part of
the RCS can be viewed as a graph whose nodes are labeled by tanks containing propellant, jets, junctions of pipes,
etc. Arcs of the graph are labeled by valves which can be opened or closed by a collection of switches. The graph
is described by a collection of ASP atoms of the formconnected(n1, v , n2) (valve v labels the arc fromn1 to
n2) andcontrols(s , v) (switchs controls valvev). The description of the system may also contain a collection of
faults, e.g. a valve can bestuck, it can beleaking, or have abadcircuitry. Similar models exists for electrical part
of the RCS and for the connection between electrical and hydraulic parts. Overall, the system is rather complex, in
that it includes12 tanks,44 jets,66 valves,33 switches, and around160 computer commands (computer-generated
signals).

In addition to simple description of the RCS, USA-Advisor contains knowledge of the system’s dynamic behavior.
For instance the axiom

¬faulty(C) ← not may be faulty(C)·

says that in the absence of evidence to the contrary, components of the RCS are assumed to be working properly
(Note that concise representation of this knowledge depends critically on the ability of ASP to represent defaults.)

38 C. Baral, M. Gelfond and N. Rushton

the axioms
h(state(S , open),T + 1) ← occurs(flip(S),T),

h(state(S , closed),T),

¬faulty(S)·

h(state(S , closed),T + 1) ← occurs(flip(S),T),

h(state(S , open),T),

¬faulty(S)·

express the direct effect of an action of flipping switchS . Herestate is a function symbol with the first parameter
ranging over switches and valves and the second ranging overtheir possible states;flip is a function symbol
whose parameter is of type switch. Predicate symbolh (holds) has the first parameters ranging over fluents and
the second one ranging over time-steps; two parameters ofoccur are of typeaction andtime-step respectively.
Note that despite the presence of function symbols our typing guarantees finiteness of the Herbrand universe of the
program. The next axiom describes the connections between positions of switches and valves.

h(state(V ,P),T) ← controls(S ,V),

h(state(S ,P),T),

¬fault(V , stuck)·

A recursive rule
h(pressurized(N2),T) ← connected(N1,V ,N2),

h(pressurized(N1),T),

h(state(V , open),T),

¬fault(V , leaking)·

describes the relationship between the values of relationpressurized(N) for neighboring nodes. (NodeN is
pressurized if it is reached by a sufficient quantity of the propellant). These and other axioms, which are rooted
in a substantial body of research on actions and change, describe a comparatively complex effect of a simpleflip
operation which propagates the pressure through the system.

The plan to execute a desired maneuver can be extracted by a simple procedural program from answer sets of
a programΠs ∪ PM , whereΠs consists of the description of the RCS and its dynamic behavior, andPM is a
“planning module,” containing a statement of the goal (i.e., maneuver), and rules needed for ASP-based planning.
Similarly, the diagnosis can be extracted from answer sets of Πs ∪DM , where the diagnostic moduleDM contains
unexpected observations, together with axioms needed for the ASP diagnostics.

After the development of the original USA-Advisor, we learned that, as could be expected, some faults of the RCS
components are more likely than others, and, moreover, reasonable estimates of the probabilities of these faults can
be obtained and utilized for finding the most probable diagnosis of unexpected observations. Usually this is done
under the assumption that the number of multiple faults of the system is limited by some fixed bound.

P-log allowed us to write software for finding such diagnoses. First we needed to expandΠs by the corresponding
declarations including the statement

[r(C ,F)] random(fault(C ,F)) ← may be faulty(C)·

wheremay be fault(C ,F) is a boolean attribute which is true if componentC may (or may not) have a fault of
typeF . The probabilistic information about faults is given by thepr -atoms, e.g.

prr(V ,stack)(fault(V , stuck)|c may be faulty(V)) = 0 · 0002·

etc. To create a probabilistic model of our system, the ASP diagnostic module finds components relevant to the
agent’s unexpected observations, and adds them toDM as a collection of atoms of the formmay be faulty(c).
Each possible world of the resulting program (viz.,P = Πs ∪DM) uniquely corresponds to a possible explanation
of the unexpected observation. The system finds possible worlds with maximum probability measure and returns
diagnoses defined by these worlds, where an “explanation” consists of all atoms of the formfault(c, f) in a

Probabilistic reasoning with answer sets 39

given possible world. This system works very efficiently if we assume that maximum number,n, of faults in the
explanation does not exceed two (a practically realistic assumption for our task). Ifn equals3 the computation
is substantially slower. There are two obvious ways to improve efficiency of the system: improve our prototype
implementation of P-log or reduce the number of possibly faulty components returned by the original diagnostic
program or both. We are currently working in both of these directions. It is of course important to realize that
the largest part of all these computations is not probabilistic and is performed by the ASP solvers, which are
themselves quite mature. However the conceptual blending of ASP with probabilities achieved by P-log allowed
us to successfully express our probabilistic knowledge, and to define the corresponding probabilistic model, which
was essential for the success of the project.

6 Proving Coherency of P-log Programs

In this section we state theorems which can be used to show thecoherency of P-log programs. The proofs of the
theorems are given in an Appendix I. We begin by introducing terminology which makes it easier to state the
theorems.

6.1 Causally ordered programs

LetΠ be a (ground) P-log program with signatureΣ.

Definition 9

[Dependency relations]
Let l1 andl2 be literals ofΣ. We say that

1. l1 is immediately dependenton l2, written asl1 ≤i l2, if there is a ruler of Π such thatl1 occurs in the head
of r andl2 occurs in ther ’s body;

2. l1 dependson l2, written asl1 ≤ l2, if the pair〈l1, l2〉 belongs to the reflexive transitive closure of relation
l1 ≤i l2;

3. An attribute terma1(t1) dependson an attribute terma2(t2) if there are literalsl1 andl2 formed bya1(t1)
anda2(t2) respectively such thatl1 depends onl2. ✷

Example 23

[Dependency]
Let us consider a version of the Monty Hall program consisting of rules (1) – (9) from Subsection 5.1. Let us denote
it by Πmonty3. From rules (3) and (4) of this program we conclude that¬can open(d) is immediately dependent
on prize = d andselected = d for every doord . By rule (5) we have that for everyd ∈ doors , can open(d)

is immediately dependent on¬can open(d). By rule (8),open = d1 is immediately dependent oncan open(d2)

for any d1, d2 ∈ doors . Finally, according to (9),open = 2 is immediately dependent oncan open(2) and
can open(3). Now it is easy to see that an attribute termopen depends on itself and on attribute termsprize and
selected , while each of the latter two terms depends only on itself. ✷

Definition 10

[Leveling function]

40 C. Baral, M. Gelfond and N. Rushton

A leveling function, | |, of Π maps attribute terms ofΣ onto a set[0, n] of natural numbers. It is extended to other
syntactic entities overΣ as follows:

|a(t) = y| = |a(t) 6= y| = |not a(t) = y| = |not a(t) 6= y| = |a(t)|

We’ll often refer to|e| as therankof e. Finally, if B is a set of expressions then|B | = max ({|e| : e ∈ B}). ✷

Definition 11

[Strict probabilistic leveling and reasonable programs]
A leveling function| | of Π is calledstrict probabilisticif

1. no two random attribute terms ofΣ have the same level under| | ;

2. for every random selection rule[r] random(a(t) : {y : p(y)})← B of Π we have
|a(t) = y| ≤ |{p(y) : y ∈ range(a)} ∪ B |;

3. for every probability atomprr (a(t) = y |c B) of Π we have |a(t)| ≤ |B |;

4. if a1(t1) is a random attribute term,a2(t2) is a non-random attribute term, anda2(t2) depends ona1(t1)
then |a2(t2)| ≥ |a1(t1)|.

A P-log programΠ which has a strict probabilistic leveling function is called reasonable. ✷

Example 24

[Strict probabilistic leveling for Monty Hall]
Let us consider the programΠmonty3 from Example 23 and a leveling function

|prize| = 0

|selected | = 1

|can open(D)| = 1

|open| = 2

We claim that this leveling is a strict probabilistic levelling. Conditions (1)–(3) of the definition can be checked
directly. To check the last condition it is sufficient to notice that for everyD the only random attribute terms on
which non-random attribute termcan open(D) depends areselected andprize. ✷

Let Π be a reasonable program with signatureΣ and leveling| |, and leta1(t1), . . . , an(tn) be an ordering of its
random attribute terms induced by| |. By Li we denote the set of literals ofΣ which do not depend on literals
formed byaj (tj) wherei ≤ j . Πi for 1 ≤ i ≤ n + 1 consists of all declarations ofΠ, along with the regular
rules, random selection rules, actions, and observations of Π such that every literal occurring in them belongs to
Li . We’ll often refer toΠ1, . . . ,Πn+1 as a| |-induced structure ofΠ.

Example 25

[Induced structure for Monty Hall]
To better understand this construction let us consider a leveling function | | from Example 24. It induces the
following ordering of random attributes of the corresponding program.

a1 = prize.
a2 = selected .
a3 = open.

Probabilistic reasoning with answer sets 41

The corresponding languages are

L1 = ∅

L2 = {prize = d : d ∈ doors}

L3 = L2 ∪ {selected = d : d ∈ doors} ∪ {can open(d) : d ∈ doors} ∪ {¬can open(d) : d ∈ doors}

L4 = L3 ∪ {open = d : d ∈ doors}

Finally, the induced structure of the program is as follows (numbers refer to the numbered statements of Subsection
5.1.

Π1 = {1, 2}

Π2 = {1, 2, 6}

Π3 = {1, . . . , 7}

Π4 = {1, . . . , 8} ✷

Before proceeding we introduce some terminology.

Definition 12

[Active attribute term]
If there isy such thata(t) = y is possible inW with respect toΠ, we say thata(t) is activein W with respect to
Π. ✷

Definition 13

[Causally ordered programs]
Let Π be a P-log program with a strict probabilistic leveling| | and letai be thei th random attribute ofΠ with
respect to| |. We say thatΠ is causally orderedif

1. Π1 has exactly one possible world;

2. if W is a possible world ofΠi and atomai(t i) = y0 is possible inW with respect toΠi+1 then the program
W ∪ Πi+1 ∪ obs(ai (t i) = y0) has exactly one possible world; and

3. if W is a possible world ofΠi andai(t i) is not active inW with respect toΠi+1 then the programW ∪Πi+1

has exactly one possible world. ✷

Intuitively, a program is causally ordered if (1) all nondeterminism in the program results from random selections,
and (2) whenever a random selection is active in a given possible world, the possible outcomes of that selection
are not constrained in that possible world by logical rules or other random selections. The following is a simple
example of a program which is not causally ordered, because it violates the second condition. By comparison with
Example 12, it also illustrates the difference between the statementsa andpr(a) = 1.

Example 26

[A non-causally ordered programs]
Consider the P-log programΠ consisting of:

1 · a : boolean.
2 · random a.
3 · a·

The only leveling function for this program is|a| = 0, henceL1 = ∅ while L2 = {a,¬a}; andΠ1 = {1}

while Π2 = {1, 2, 3}. Obviously,Π1 has exactly one possible world, namelyW1 = ∅. Both literals,a and¬a are

42 C. Baral, M. Gelfond and N. Rushton

possible inW1 with respect toΠ2. However,W1 ∪ Π2 ∪ obs(¬a) has no possible worlds, and hence the program
does not satisfy Condition 2 of the definition ofcausally ordered.

Now let us consider programΠ′ consisting of rules (1) and (2) ofΠ and the rules

b ← not ¬b, a.
¬b ← not b, a.

The only strict probabilistic leveling function for this program mapsa to 0 andb to 1. The resulting languages are
L1 = ∅ andL2 = {a,¬a, b,¬b}. HenceΠ′

1 = {1} andΠ′
2 = Π′. As before,W1 is empty anda and¬a are both

possible inW1 with respect toΠ′
2. It is easy to see that programW1 ∪ Π′

2 ∪ obs(a) has two possible worlds, one
containingb and another containing¬b. Hence Condition 2 of the definition of causally ordered is again violated.

Finally, consider programΠ′′ consisting of rules:

1 · a, b : boolean.
2 · random(a).
3 · random(b)← a.
4 · ¬b ← ¬a.
5 · c ← ¬b.
6 · ¬c.

It is easy to check thatc immediately depends on¬b, which in turn immediately depends ona and¬a. b im-
mediately depends ona. It follows that any strict probabilistic leveling function for this program will lead to the
orderinga, b of random attribute terms. HenceL1 = {¬c}, L2 = {¬c, a,¬a}, andL3 = L2 ∪ {b,¬b, c}. This
implies thatΠ′′

1 = {1, 6}, Π′′
2 = {1, 2, 6}, andΠ′′

3 = {1, . . . , 6}. Now consider a possible worldW = {¬c,¬a}

of Π′′
2 . It is easy to see that the second random attribute,b, is not active inW with respect toΠ′′

3 , butW ∪Π′′
3 has

no possible world. This violates Condition 3 of causally ordered.

Note that all the above programs are consistent. A program whose regular part consists of the rulep ← not p

is neither causally ordered nor consistent. Similarly, theprogram obtained fromΠ above by adding the atom
pr(a) = 1/2 is neither causally ordered nor consistent. ✷

Example 27

[Monty Hall program is causally ordered]
We now show that the Monty Hall programΠmonty3 is causally ordered. We use the strict probabilistic leveling
and induced structure from the Examples 24 and 25. Obviously, Π1 has one possible worldW1 = ∅. The atoms
possible inW1 with respect toΠ2 areprize = 1, prize = 2, prize = 3. So we must check Condition 2 from the
definition of causally ordered for every atomprize = d from this set. It is not difficult to show that the translation
τ(W1 ∪ Π2 ∪ obs(prize = d)) is equivalent to logic program consisting of the translation of declarations into
Answer Set Prolog along with the following rules:

prize(1) or prize(2) or prize(3).
¬prize(D1)← prize(D2),D1 6= D2.
← obs(prize(1)), not prize(d).
obs(prize(d)).

whereD1 andD2 range over the doors. Except for the possible occurrences ofobservations this program is equiv-
alent to

¬prize(D1)← prize(D2),D1 6= D2.
prize(d).

Probabilistic reasoning with answer sets 43

which has a unique answer set of the form

{prize(d),¬prize(d1),¬prize(d2)} (19)

(whered1 andd2 are the other two doors besidesd). Now letW2 be an arbitrary possible world ofΠ2, andl be an
atom possible inW2 with respect toΠ3. To verify Condition 2 of the definition of causally ordered for i = 2, we
must show thatW2 ∪ Π2 ∪ obs(l) has exactly one answer set. It is easy to see thatW2 must be of the form (19),
andl must be of the formselected = d ′ for some doord ′.

Similarly to above, the translation ofW2 ∪ Π3 ∪ obs(selected(d ′)) has the same answer sets (except for possible
occurrences of observations) as the program consisting ofW2 along with the following rules:

selected(d ′).
¬selected(D1)← selected(D2),D1 6= D2.
¬can open(D)← selected(D).
¬can open(D)← prize(D).
can open ← not ¬can open(D).

If negated literals are treated as new predicate symbols we can view this program as stratified. Hence the program
obtained in this way has a unique answer set. This means that the above program has atmostone answer set; but it
is easy to see it is consistent and so it has exactly one. It nowfollows that Condition 2 is satisfied fori = 2.

Checking Condition 2 fori = 3 is similar, and completes the proof. ✷

“Causal ordering” is one of two conditions which together guarantee the coherency of a P-log program. Causal
ordering is a condition on the logical part of the program. The other condition — that the program must be “unitary”
— is a condition on thepr -atoms. It says that, basically, assigned probabilities, if any, must be given in a way that
permits the appropriate assigned and default probabilities to sum to 1. In order to define this notion precisely, and
state the main theorem of this section, we will need some terminology.

LetΠ be a ground P-log program containing the random selection rule

[r] random(a(t) : {Y : p(Y)})← K ·

We will refer to a ground pr-atom

prr (a(t) = y |c B) = v ·

as apr-atom indexingr . We will refer toB as thebody of the pr -atom. We will refer tov as theprobability
assigned by thepr -atom.

Let W1 andW2 be possible worlds ofΠ satisfyingK . We say thatW1 andW2 areprobabilistically equivalent
with respect tor if

1. for all y, p(y) ∈W1 if and only if p(y) ∈W2, and
2. For everypr -atomq indexingr , W1 satisfies the body ofq if and only ifW2 satisfies the body ofq.

A scenariofor r is an equivalence class of possible worlds ofΠ satisfyingK , under probabilistic equivalence with
respect tor .

Example 28

[Rat Example Revisited]
Consider the program from Example 18 involving the rat, and its possible worldsW1,W2,W3,W4. All four
possible worlds are probabilistically equivalent with respect to Rule [1]. With respect to Rule [2]W1 is equivalent
toW2, andW3 is equivalent toW4. Hence Rule [2] has two scenarios,{W1,W2} and{W3,W4}. ✷

44 C. Baral, M. Gelfond and N. Rushton

range(a(t), r , s) will denote the set of possible values ofa(t) in the possible worlds belonging to scenarios of
rule r . This is well defined by (1) of the definition of probabilisticequivalence w.r.t.r . For example, in the rat
program,range(death, 2, {W1,W2}) = {true, false}.

Let s be a scenario of ruler . A pr -atomq indexingr is said to beactive in sif every possible world ofs satisfies
the body ofq.

For a random selection ruler and scenarios of r , let atr (s) denote the set of probability atoms which are active
in s . For example,at2({W1,W2}) is the singleton set{pr(death |c arsenic) = 0 · 8}.

Definition 14

[Unitary Rule]
Ruler is unitary inΠ, or simplyunitary, if for every scenarios of r , one of the following conditions holds:

1. For everyy in range(a(t), r , s), atr (s) contains apr -atom of the formprr (a(t) = y |c B) = v , and
moreover the sum of the values of the probabilities assignedby members ofatr (s) is 1; or

2. There is ay in range(a(t), r , s) such thatatr (s) contains nopr -atom of the formprr (a(t) = y |c B) = v ,
and the sum of the probabilities assigned by the members ofatr (s) is less than or equal to 1. ✷

Definition 15

[Unitary Program]
A P-log program isunitaryif each of its random selection rules is unitary. ✷

Example 29

[Rat Example Revisited]
Consider again Example 18 involving the rat. There is clearly only one scenario,s1, for the Rule
[1] random(arsenic), which consists of all possible worlds of the program.at1(s1) consists of the singlepr -
atompr(arsenic) = 0 · 4. Hence the scenario satisfies Condition 2 of the definition ofunitary.

We next consider the selection rule[2]random(death)· There are two scenarios for this rule:sarsenic , consisting
of possible worlds satisfyingarsenic, and its complementsnoarsenic . Condition 2 of the definition of unitary is
satisfied for each element of the partition. ✷

We are now ready to state the main theorem of this section, theproof of which will be given in Appendix I.

Theorem 1

[Sufficient Conditions for Coherency]
Every causally ordered, unitary P-log program is coherent. ✷

Using the above examples one can easily check that the rat, Monty Hall, and Simpson’s examples are causally
ordered and unitary, and therefore coherent.

For the final result of this section, we give a result that P-log can represent the probability distribution of any finite
set of random variables each taking finitely many values in a classical probability space.

Probabilistic reasoning with answer sets 45

Theorem 2

[Embedding Probability Distributions in P-log]
Let x1, . . . , xn be a nonempty vector of random variables, under a classical probability P , taking finitely many
values each. LetRi be the set of possible values of eachxi , and assumeRi is nonempty for eachi . Then there
exists a coherent P-log programΠ with random attributesx1, . . . , xn such that for every vectorr1, . . . , rn from
R1 × · · ×Rn , we have

P(x1 = r1, . . . , xn = rn) = PΠ(x1 = r1, . . . , xn = rn) (20)

✷

The proof of this theorem appears in Appendix I. It is a corollary of this theorem that ifB is a finite Bayesian
network, each of whose nodes is associated with a random variable taking finitely many possible values, then there
is a P-log program which represents the same probability distribution asB . This by itself is not surprising, and
could be shown trivially by considering a single random attribute whose values range over possible states of a
given Bayes net. Our proof, however, shows something more – namely, that the construction of the P-log program
corresponds straightforwardly to the graphical structureof the network, along with the conditional densities of its
variables given their parents in the network. Hence any Bayes net can be represented by a P-log program which is
“syntactically isomorphic” to the network, and preserves the intuitions present in the network representation.

7 Relation with other work

As we mention in the first sentence of this paper, the motivation behind developing P-log is to have a knowledge
representation language that allows natural and elaboration tolerant representation of common-sense knowledge
involving logic and probabilities. While some of the other probabilistic logic programming languages such as
(Poole 1993; Poole 2000) and (Vennekens et al. 2004; Vennekens 2007) have similar goals, many other probabilis-
tic logic programming languages have “statistical relational learning (SRL)” (Getoor et al. 2007) as one of their
main goals and as a result they perhaps consciously sacrificeon the knowledge representation dimensions. In this
section we describe the approaches in (Poole 1993; Poole 2000) and (Vennekens et al. 2004; Vennekens 2007) and
compare them with P-log. We also survey many other works on probabilistic logic programming, including the
ones that have SRL as one of their main goals, and relate them to P-log from the perspective of representation and
reasoning.

7.1 Relation with Poole’s work

Our approach in this paper has a lot of similarity (and many differences) with the works of Poole (Poole 1993;
Poole 2000). To give a somewhat detailed comparison, we start with some of the definitions from (Poole 1993).

7.1.1 Overview of Poole’s probabilistic Horn abduction

In Poole’s probabilistic Horn abduction (PHA), disjoint declarations are an important component. We start with
their definition. (In our adaptation of the original definitions we consider the grounding of the theory, so as to make
it simpler.)

Definition 16

46 C. Baral, M. Gelfond and N. Rushton

Disjoint declarations are of the formdisjoint([h1 : p1 ; . . . ; hn : pn]), wherehis are different ground atoms –
referred to as hypotheses or assumables,pis are real numbers andp1 + . . .+ pn = 1. ✷

We now define a PHA theory.

Definition 17

A probabilistic Horn abduction (PHA) theory is a collectionof definite clauses and disjoint declarations such that
no atom occurs in two disjoint declarations. ✷

Given a PHA theoryT , the facts ofT , denoted byFT consists of

• the collection of definite clauses inT , and
• for every disjoint declarationsD in T , and for everyhi andhj , i 6= j in D , integrity constraints of the form:
← hi , hj .

The hypotheses ofT , denoted byHT , is the set ofhi occurring in disjoint declarations ofT .

The prior probability ofT is denoted byPT and is a functionHT → [0, 1] defined such thatPT (hi) = pi
wheneverhi : pi is in a disjoint declaration ofT . Based on this prior probability and the assumption, denoted by
(Hyp-independent), that hypotheses that are consistent withFT are (probabilistically) independent of each other,
we have the following definition of the joint probability of aset of hypotheses.

Definition 18

Let {h1, . . . , hk} be a set of hypotheses where eachhi is from a disjoint declaration. Then, their joint probability
is given byPT (h1)× . . .× PT (hk). ✷

Poole (Poole 1993) makes the following additional assumptions aboutFT andHT :

1. (Hyp-not-head)There are no rules inFT whose head is a member ofHT . (i.e., hypotheses do not appear in
the head of rules.)

2. (Acyclic-definite)FT is acyclic.
3. (Completion-cond)The semantics ofFT is given via its Clark’s completion.
4. (Body-not-overlap) The bodies of the rules inFT for an atom are mutually exclusive. (i.e., if we have

a ← Bi anda ← Bj in FT , wherei 6= j , thenBi andBj can not be true at the same time.)

Poole presents his rationale behind the above assumptions,which he says makes the language weak. His rationale
is based on his goal to develop a simple extension of Pure Prolog (definite logic programs) with Clark’s completion
based semantics, that allows interpreting the number in thehypotheses as probabilities. Thus he restricts the syntax
to disallow any case that might make the above mentioned interpretation difficult.

We now define the notions of explanations and minimal explanations and use it to define the probability distribution
and conditional probabilities embedded in a PHA theory.

Definition 19

If g is a formula, an explanation ofg from 〈FT ,HT 〉 is a subsetD of HT such thatFT ∪D |= g andFT ∪D has
a model.

A minimal explanation ofg is an explanation ofg such that no strict subset is an explanation ofg ✷

Probabilistic reasoning with answer sets 47

Poole proves that under the above mentioned assumptions, ifmin expl(g,T) is the set of all minimal explanations
of g from 〈FT ,HT 〉 andComp(T) is the Clark’s completion ofFT then

Comp(T) |= (g ≡
∨

ei ∈ min expl(g,T)

ei)

Definition 20

For a formulag, its probabilityP with respect to a PHA theoryT is defined as:

P(g) =
∑

ei ∈ min expl(g,T)

PT (ei)

✷

Conditional probabilities are defined using the standard definition:

P(α|β) =
P(α ∧ β)

P(β)

We now relate his work with ours.

7.1.2 Poole’s PHA compared with P-log

• The disjoint declarations in PHA have some similarity with our random declarations. Following are some of
the main differences:

— (Disj1) The disjoint declarations assign probabilities to the hypothesis in that declaration. We use
probability atoms to specify probabilities, and our randomdeclarations do not mention probabilities.

— (Disj2) Our random declarations have conditions. We also specify a range for the attributes. Both the
conditions and attributes use predicates that are defined using rules. The usefulness of this is evident
from the formulation of the Monty Hall problem where we use the random declaration
random(open : {X : can open(X)}).
The disjoint declarations of PHA theories do not have conditions and they do not specify ranges.

— (Disj3) While the hypotheses in disjoint declarations are arbitrary atoms, our random declarations are
about attributes.

• (Pr-atom-gen) Our specification of the probabilities using pr-atoms is more general than the probability
specified using disjoint declarations. For example, in specifying the probabilities of the dices we say:
pr(roll(D) = Y |c owner(D) = john) = 1/6.
• (CBN) We directly specify the conditional probabilities in causal Bayes nets, while in PHA only prior

probabilities are specified. Thus expressing a Bayes network is straightforward in P-log while in PHA it
would necessitate a transformation.
• (Body-not-overlap2)Since Poole’s PHA assumes that the definite rules with the same hypothesis in the head

have bodies that can not be true at the same time, many rules that can be directly written in our formalism
need to be transformed so as to satisfy the above mentioned condition on their bodies.
• (Gen) While Poole makes many a-priori restrictions on his rules, we follow the opposite approach and ini-

tially do not make any restrictions on our logical part. Thuswe have an unrestricted logical knowledge
representation language (such as ASP or CR-Prolog) at our disposal. We define a semantic notion of consis-
tent P-log programs and give sufficiency conditions, more general than Poole’s restrictions, that guarantee
consistency.

48 C. Baral, M. Gelfond and N. Rushton

• (Obs-do)Unlike us, Poole does not distinguish between doing and observing.
• (Gen-upd)We consider very general updates, beyond an observation of apropositional fact or an action that

makes a propositional fact true.
• (Prob-def) Not all probability numbers need be explicitly given in P-log. It has a default mechanism to

implicitly assume certain probabilities that are not explicitly given. This often makes the representation
simpler.
• Our probability calculation is based on possible worlds, which is not the case in PHA, although Poole’s later

formulation of Independent Choice Logic (Poole 1997; Poole2000) (ICL) uses possible worlds.

7.1.3 Poole’s ICL compared with P-log

Poole’s Independent Choice Logic (Poole 1997; Poole 2000) refines his PHA by replacing the set of disjoint dec-
larations by a choice space (where individual disjoint declarations are replaced by alternatives, and a hypothesis
in an individual disjoint declaration is replaced by an atomic choice), by replacing definite programs and their
Clark’s completion semantics by acyclic normal logic programs and their stable model semantics, by enumerating
the atomic choices across alternatives and defining possible worlds7 rather than using minimal explanation based
abduction, and in the process making fewer assumptions. In particular, the assumptionCompletion-cond is no
longer there, the assumptionBody-not-overlap is only made in the context of being able to obtain the probability
of a formulag by adding the probabilities of its explanations, and the assumptionAcyclic-definite is relaxed to
allow acyclic normal programs; while the assumptionsHyp-not-head andHyp-independent remain in slightly
modified form by referring to atomic choices across alternatives rather than hypothesis across disjoint statements.
Nevertheless, most of the differences between PHA and P-logcarry over to the differences between ICL and P-log.
In particular, all the differences mentioned in the previous section – with the exception ofBody-not-overlap2–
remain, modulo the change between the notion of hypothesis in PHA to the notion of atomic choices in ICL.

7.2 LPAD : Logic programming with annotated disjunctions

In recent work (Vennekens et al. 2004) Vennekens et al. have proposed the LPAD formalism. An LPAD program
consists of rules of the form:

(h1 : α1) ∨ . . . ∨ (hn : αn)← b1, . . . , bm

wherehi ’s are atoms,bis are atoms or atoms preceded bynot, andαis are real numbers in the interval[0, 1], such
that

∑n
i=1 αi = 1.

An LPAD rule instance is of the form:

hi ← b1, . . . , bm .

The associated probability of the above rule instance is then said to beαi .

An instance of an LPAD programP is a (normal logic program)P ′ obtained as follows: for each rule inP exactly
one of its instance is included inP ′, and nothing else is inP ′. The associated probability of an instanceP ′, denoted
by π(P ′), of an LPAD program is the product of the associated probability of each of its rules.

An LPAD program is said to be sound if each of its instances hasa 2-valued well-founded model. Given an LPAD
programP , and a collection of atomsI , the probability assigned toI byP is given as follows:

7 Poole’s possible worlds are very similar to ours except thathe explicitly assumes that the possible worlds whose core would be obtained by
the enumeration, can not be eliminated by the acyclic programs through constraints. We do not make such an assumption, allow elimination of
such cores, and if elimination of one or more (but not all) possible worlds happen then we use normalization to redistribute the probabilities.

Probabilistic reasoning with answer sets 49

πP (I) =
∑

P ′ is an instance ofP andI is the well-founded model ofP ′

π(P ′)

The probability of a formulaφ assigned by an LPAD programP is then defined as:

πP (φ) =
∑

φ is satisfied byI

πP (I)

7.2.1 Relating LPAD with P-log

LPAD is richer in syntax than PHA or ICL in that its rules (corresponding to disjoint declarations in PHA and
a choice space in ICL) may have conditions. In that sense it iscloser to the random declarations in P-log. Thus,
unlike PHA and ICLP, and similar to P-log, Bayes networks canbe expressed in LPAD fairly directly. Nevertheless
LPAD has some significant differences with P-log, includingthe following:

• The goal of LPAD is to provide succinct representations for probability distributions. Our goals are broader,
viz, to combine probabilistic and logical reasoning. Consequently P-log is logically more expressive, for
example containing classical negation and the ability to represent defaults.
• The ranges of random selections in LPAD are taken directly from the heads of rules, and are therefore static.

The ranges of of selections in P-log are dynamic in the sense that they may be different in different possible
worlds. For example, consider the representation
random(open : {X : can open(X)}).
of the Monty Hall problem. It is not clear how the above can be succinctly expressed in LPAD.

7.3 Bayesian logic programming:

A Bayesian logic program (BLP) (Kersting and De Raedt 2007) has two parts, a logical part and a set of conditional
probability tables. The logical part of the BLP consists of clauses (referred to as BLP clauses) of the form:

H | A1, . . . ,An

whereH ,A1, . . . ,An are (Bayesian) atoms which can take a value from a given domain associated with the atom.
Following is an example of a BLP clause from (Kersting and De Raedt 2007):

burglary(X) | neighborhood(X).

Its corresponding domain could be, for example,Dburglary = {yes , no}, and Dneighbourhood =

{bad , average, good}.

Each BLP clause has an associated conditional probability table (CPT). For example, the above clause may have
the following table:

neighborhood(X) burglary(X) burglary(X)
yes no

bad 0.6 0.4
average 0.4 0.6
good 0.3 0.7

50 C. Baral, M. Gelfond and N. Rushton

A ground BLP clause is similar to a ground logic programming rule. It is obtained by substituting variables with
ground terms from the Herbrand universe. If the ground version of a BLP program is acyclic, then a BLP can
be considered as representing a Bayes network with possiblyinfinite number of nodes. To deal with the situation
when the ground version of a BLP has multiple rules with the same atom in the head, the formalisms allows for
specification ofcombining rulesthat specify how a set of ground BLP rules (with the same ground atom in the
head) and their CPT can be combined to a single BLP rule and a single associated CPT.

The semantics of an acyclic BLP is thus given by the characterization of the corresponding Bayes net obtained as
described above.

7.3.1 Relating BLPs with P-log

The aim of BLPs is to enhance Bayes nets so as to overcome some of the limitations of Bayes nets such as
difficulties with representing relations. On the other handlike Bayes nets, BLPs are also concerned about statistical
relational learning. Hence the BLP research is less concerned with general knowledge representation than P-log is,
and this is the source of most of the differences in the two approaches. Among the resulting differences between
BLP and P-log are:

• In BLP every ground atoms represents a random variable. Thisis not the case in P-log.
• In BLP the values the atoms can take are fixed by their domain. This is not the case in P-log where through

the random declarations an attribute can have different domains under different conditions.
• Although the logical part of a BLP looks like a logic program (when one replaces| by the connective
←), its meaning is different from the meaning of the corresponding logic program. Each BLP clause is a
compact representation of multiple logical relationshipswith associated probabilities that are given using a
conditional probability table.
• In BLP one can specify a combining rule. We do not allow such specification.

The ALTERID language of (Breese 1990; Wellman et al. 1992) issimilar to BLPs and has similar differences with
P-log.

7.3.2 Probabilistic knowledge bases

Bayesian logic programs mentioned in the previous subsections was inspired by the probabilistic knowledge bases
(PKBs) of (Ngo and Haddawy 1997). We now give a brief description of this formalism.

In this formalism each predicate represents a set of similarrandom variables. It is assumed that each predicate
has at least one attribute representing the value of random attributes made up of that predicate. For example, the
random variableColour of a carC can be represented by a 2-ary predicatecolor(C ,Col), where the first position
takes the id of particular car, and the second indicates the color (say, blue, red, etc.) of the carC .

A probabilistic knowledge base consists of three parts:

• A set of probabilistic sentences of the form:
pr(A0 | A1, . . . ,An) = α, whereAis are atoms.
• A set of value integrity constraints of the form:
EXCLUSIVE (p, a1, . . . , an), wherep is a predicate, andais are values that can be taken by random vari-
ables made up of that predicate.
• A set of combining rules.

Probabilistic reasoning with answer sets 51

The combining rules serve similar purpose as in Bayesian logic programs. Note that unlike Bayesian logic pro-
grams that have CPTs for each BLP clause, the probabilistic sentences in PKBs only have a single probability
associated with it. Thus the semantic characterization is much more complicated. Nevertheless the differences
between P-log and Bayesian logic programs also carry over toPKBs.

7.4 Stochastic logic programs

A Stochastic logic program (SLP) (Muggleton 1995)P is a collection of clauses of the form

p : A← B1, . . . ,Bn

wherep (referred to as the probability label) belongs to[0, 1], andA,B1, . . .Bn are atoms, with the requirements
that (a)A← B1, . . . ,Bn is range restricted and (b) for each predicate symbolq in P , the probability labels for all
clauses withq in the head sum to 1.

The probability of an atomg with respect to an SLPP is obtained by summing the probability of the various
SLD-refutation of← g with respect toP , where the probability of a refutation is computed by multiplying the
probability of various choices; and doing appropriate normalization. For example, if the first atom of a subgoal
← g ′ unifies with the head of stochastic clausesp1 : C1, . . ., pm : Cm , and the stochastic clausepi : Ci is
chosen for the refutation, then the probability of this choice is pi

p1+···+pm
.

7.4.1 Relating SLPs with P-log

SLPs, both as defined in the previous section and as in (Cussens 1999), are very different from P-log both in its
syntax and semantics.

• To start with, SLPs do not allow the ‘not’ operator, thus limiting the expressiveness of the logical part.

• In SLPs all ground atoms represent random variables. This isnot the case in P-log.

• In SLPs probability computation is through computing probabilities of refutations, a top down approach. In
P-log it is based on the possible worlds, a bottom up approach.

The above differences also carry
over to probabilistic constraint logic programs (Riezler 1998; Santos Costa et al. 2003) that generalize SLPs to
Constraint logic programs (CLPs).

7.5 Probabilistic logic programming

The probabilistic logic programming formalisms in (Ng and Subrahmanian 1992; Ng and Subrahmanian 1994;
Dekhtyar and Dekhtyar 2004) and (Lukasiewicz 1998) take therepresentation of uncertainty to another level. In
these two approaches they are interested in classes of probability distributions and define inference methods for
checking if certain probability statements are true with respect to all the probability distributions under considera-
tion. To express classes of probability distributions, they use intervals where the intuitive meaning ofp : [α, β] is
that the probability ofp is in betweenα andβ. We now discuss the two formalisms in (Ng and Subrahmanian 1992;
Ng and Subrahmanian 1994; Dekhtyar and Dekhtyar 2004) and (Lukasiewicz 1998) in further detail. We refer to
the first one as NS-PLP (short for Ng-Subrahmanian probabilistic logic programming) and the second one as L-PLP
(short for Lukasiewicz probabilistic logic programming).

52 C. Baral, M. Gelfond and N. Rushton

7.5.1 NS-PLP

A simple NS-PLP program
(Ng and Subrahmanian 1992; Ng and Subrahmanian 1994; Dekhtyar and Dekhtyar 2004) is a finite collection of
p-clauses of the form

A0 : [α0, β0]← A1 : [α1, β1], . . . ,An : [αn , βn].

whereA0,A1, . . . ,An are atoms, and[αi , βi] ⊆ [0, 1]. Intuitively, the meaning of the above rule is that if the
probability of A1 is in the interval[α1, β1], ..., and the probability ofAn is in the interval[αn , βn] then the
probability ofA0 is in the interval[α0, β0].

The goal behind the semantic characterization of an NS-PLP programP is to obtain and express the set of (prob-
abilistic) p-interpretations (each of which maps possibleworlds, which are subsets of the Herbrand Base, to a
number in [0,1]),Mod(P), that satisfy all the p-clauses in the program. Although initially it was thought that
Mod(P) could be computed through the iteration of a fixpoint operator, recently (Dekhtyar and Dekhtyar 2004)
shows that this is not the case and gives a more complicated way to computeMod(P). In particular,
(Dekhtyar and Dekhtyar 2004) shows that for many NS-PLP programs, although its fixpoint, a mapping from the
Herbrand base to an interval in[0, 1], is defined, it does not represent the set of satisfying p-interpretations.

Ng and Subrahmanian (Ng and Subrahmanian 1994) consider more general NS-PLP programs whereAis are ‘ba-
sic formulas’ (which are conjunction or disjunction of atoms) and some ofA1, . . . ,An are preceded by thenot
operator. In presence ofnot they give a semantics inspired by the stable model semantics. But in this case an
NS-PLP program may have multiple stable formula functions,each of which map formulas to intervals in[0, 1].
While a single stable formula function can be considered as arepresentation of a set of p-interpretations, it is not
clear what a set of stable formula functions correspond to. Thus NS-PLP programs and their characterization is
very different from P-log and it is not clear if one is more expressive than the other.

7.5.2 L-PLP

An L-PLP program (Lukasiewicz 1998) is a finite set of L-PLP clauses of the form

(H | B)[c1, c2]

whereH andB are conjunctive formulas andc1 ≤ c2.

Given a probability distributionPr , an L-PLP clause of the above form is said to be inPr if c1 ≤ Pr(H |B) ≤ c2.
Pr is said to be amodelof an L-PLP programπ if each clause inπ is true inPr . (H | B)[c1, c2] is said to
be a logical consequence of an L-PLP programπ denoted byπ |= (H | B)[c1, c2] if for all modelsPr of π,
(H | B)[c1, c2] is in Pr . A notion of tight entailment, and correct answer to ground and non-ground queries of
the form∃(H | B)[c1, c2] is then defined in (Lukasiewicz 1998). In recent papers Lukasiewicz and his colleagues
generalize L-PLPs in several ways and define many other notions of entailment.

In relation to NS-PLP programs, L-PLP programs have a singleinterval associated with an L-PLP clause and
an L-PLP clause can be thought of as a constraint on the corresponding conditional probability. Thus, although
‘logic’ is used in L-PLP programs and their characterization, it is not clear whether any of the ‘logical knowledge
representation’ benefits are present in L-PLP programs. Forexample, it does not seem that one can define the
values that a random variable can take, in a particular possible world, using an L-PLP program.

Probabilistic reasoning with answer sets 53

7.6 PRISM: Logic programs with distribution semantics

Sato in (Sato 1995) proposes the notion of “logic programs with distribution semantics,” which he refers to as
PRISM as a short form for “PRogramming In Statistical Modeling.” Sato starts with a possibly infinite collection
of ground atoms,F , the setΩF of all interpretations ofF 8, and a completely additive probability measurePF

which quantifies the likelihood of interpretations.PF is defined on some fixedσ algebra of subsets ofΩF .

In Sato’s framework interpretations ofF can be used in conjunction with a Horn logic programR, which contains
no rules whose heads unify with atoms fromF . Sato’s logic program is a triple,Π = 〈F ,PF ,R〉. The semantics of
Π are given by a collectionΩΠ of possible worlds and the probability measurePΠ. A setM of ground atoms in the
language ofΠ belongs toΩΠ iff M is a minimal Herbrand model of a logic programIF ∪R for some interpretation
IF of F . The completely additive probability measure ofPΠ is defined as an extension ofPF .

Given a specification ofPF , the formalism provides a powerful tool for defining complexprobability measures,
including those which can be described by Bayesian nets and Hidden Markov models. The emphasis of the original
work by Sato and other PRISM related research seems to be on the use of the formalism for design and investigation
of efficient algorithms for statistical learning. The goal is to use the pairDB = 〈F ,R〉 together with observations
of atoms from the language ofDB to learn a suitable probability measurePF .

P-log and PRISM share a substantial number of common features. Both are declarative languages capable of
representing and reasoning with logical and probabilisticknowledge. In both cases logical part of the language is
rooted in logic programming. There are also substantial differences. PRISM seems to be primarily intended as “a
powerful tool for building complex statistical models” with emphasis of using these models for statistical learning.
As a result PRISM allows infinite possible worlds, and has theability of learning statistical parameters embedded
in its inference mechanism. The goal of P-log designers was to develop a knowledge representation language
allowing natural, elaboration tolerant representation ofcommonsense knowledge involving logic and probabilities.
Infinite possible worlds and algorithms for statistical learning were not a priority. Instead the emphasis was on
greater logical power provided by Answer Set Prolog, on causal interpretation of probability, and on the ability to
perform and differentiate between various types of updates. In the near future we plan to use the PRISM ideas to
expand the semantics of P-log to allow infinite possible worlds. Our more distant plans include investigation of
possible adaptation of PRISM statistical learning algorithms to P-log.

7.7 Other approaches

So far we have discussed logic programming approaches to integrate logical and probabilistic reasoning. Besides
them, the paper (De Vos and Vermeir 2000) proposes a notion where the theory has two parts, a logic programming
part that can express preferences and a joint probability distribution. The probabilities are then used in determining
the priorities of the alternatives.

Besides the logic programming based approaches, there havebeen other approaches to combine logical and
probabilistic reasoning, such as probabilistic relational models (Koller 1999; Getoor et al. 2001), various proba-
bilistic first-order logics such as (Nilsson 1986; Bacchus 1990; Bacchus et al. 1996; Halpern 1990; Halpern 2003;
Pasula and Russell 2001; Poole 1993), approaches that assign a weight to first-order formulas (Paskin 2002;
Richardson and Domingos 2006) and first-order MDPs (Boutilier et al. 2001). In all these approaches the logic
parts are not quite rich from the ‘knowledge representation’ angle. To start with they use classical logic, which is
monotonic and hence has many drawbacks with respect to knowledge representation. A difference between first-
order MDPs and our approach is that actions, rewards and utilities are inherent part of the former; one may encode

8 By interpretationIF of F we mean an arbitrary subset ofF . AtomA ∈ F is true in IF iff A ∈ IF .

54 C. Baral, M. Gelfond and N. Rushton

them in P-log though. In the next subsection we summarize specific differences between these approaches (and all
the other approaches that we mentioned so far) and P-log.

7.8 Summary

In summary, our focus in P-log has many broad differences with most of the earlier formalisms that have tried to
integrate logical and probabilistic knowledge. We now listsome of the main issues.

• To the best of our knowledge P-log is the only probabilistic logic programming language which differentiates
between doing and observing, which is useful for reasoning about causal relations.
• P-log allows a relatively wide variety of updates compared with other approaches we surveyed.
• Only P-log allows logical reasoning to dynamically decide on the range of values that a random variable can

take.
• P-log is the only language surveyed which allows a programmer to write a program which represent the

logical aspects of a problem and its possible worlds, and addcausal probabilistic information to this program
as it becomes relevant and available.
• Our formalism allows the explicit specification of background knowledge and thus eliminates the difference

between implicit and explicit background knowledge that ispointed out in (Wang 2004) while discussing
the limitation of Bayesianism.
• As our formalization of the Monty Hall example shows, P-log can deal with non-trivial conditioning and is

able to encode the notion of protocols mentioned in Chapter 6of (Halpern 2003).

8 Conclusion and Future Work

In this paper we presented a non-monotonic probabilistic logic programming language, P-log, suitable for repre-
senting logical and probabilistic knowledge. P-log is based on logic programming under answer set semantics, and
on Causal Bayesian networks. We showed that it generalizes both languages.

P-log comes with a natural mechanism for belief updating — the ability of the agent to change degrees of belief
defined by his current knowledge base. We showed that conditioning of classical probability is a special case of this
mechanism. In addition, P-log programs can be updated by actions, defaults and other logic programming rules,
and by some forms of probabilistic information. The non-monotonicity of P-log allows us to model situations when
new information forces the reasoner to change its collection of possible worlds, i.e. to move to a new probabilistic
model of the domain. (This happens for instance when the agent’s knowledge is updated by observation of an event
deemed to be impossible under the current assumptions.)

The expressive power of P-log and its ability to combine various forms of reasoning was demonstrated on a number
of examples from the literature. The presentation of the examples is aimed to give a reader some feeling for the
methodology of representing knowledge in P-log. Finally the paper gives sufficiency conditions for coherency of
P-log programs and discusses the relationship of P-log witha number of other probabilistic logic programming
formalisms.

We plan to expand our work in several directions. First we need to improve the efficiency of the P-log inference
engine. The current, naive, implementation relies on computation of all answer sets of the logical part of P-log
program. Even though it can efficiently reason with a surprising variety of interesting examples and puzzles, a more
efficient approach is needed to attack some other kinds of problems. We also would like to investigate the impact of
replacing Answer Set Prolog — the current logical foundation of P-log — by a more powerful logic programming
language, CR-prolog. The new extension of P-log will be ableto deal with updates which are currently viewed as
inconsistent. We plan to use P-log as a tool for the investigation of various forms of reasoning, including reasoning

Probabilistic reasoning with answer sets 55

with counterfactuals and probabilistic abductive reasoning capable of discovering most probable explanations of
unexpected observations. Finally, we plan to explore how statistical relational learning (SRL) can be done with
respect to P-log and how P-log can be used to accommodate different kinds of uncertainties tackled by existing
SRL approaches.

Acknowledgments
We would like to thank Weijun Zhu and Cameron Buckner for their work in implementing a P-log inference engine,
for useful discussions and for helping correct errors in theoriginal draft of this paper.

9 Appendix I: Proofs of major theorems

Our first goal in this section is to prove Theorem 1 from Section 6. We’ll begin by proving a theorem which is
more general but whose hypothesis is more difficult to verify. In order to state and prove this general theorem, we
need some terminology and lemmas.

Definition 21

Let T be a tree in which every arc is labeled with a real number in [0,1]. We sayT is unitary if the labels of the
arcs leaving each node add up to 1. ✷

Figure 1 gives an example of a unitary tree.

Fig. 1. Unitary tree T

Definition 22

Let T be a tree with labeled nodes andn be a node ofT . By pT (n) we denote the set of labels of nodes lying on
the path from the root ofT to n, including the label ofn and the label of the root. ✷

Example 30

Consider the treeT from Figure 1. Ifn is the node labeled (13), thenpT (n) = {1, 3, 8, 13}. ✷

56 C. Baral, M. Gelfond and N. Rushton

Definition 23

[Path Value]
Let T be a tree in which every arc is labeled with a number in [0,1]. Thepath valueof a noden of T , denoted by
pvT (n), is defined as the product of the labels of the arcs in the path to n from the root. (Note that the path value
of the root ofT is 1.) ✷

When the treeT is obvious from the context we will simply rightpv(n).

Example 31

Consider the treeT from Figure 1. Ifn is the node labeled (8), thenpv(n) = 0 · 3× 0 · 3 = 0 · 09. ✷

Lemma 1

[Property of Unitary Trees]
LetT be a unitary tree andn be a node ofT . Then the sum of the path values of all the leaf nodes descended from
n (includingn if n is a leaf) is the path value ofn. ✷

Proof: We will prove that the conclusion holds for every unitary subtree ofT containingn, by induction on the
number of nodes descended fromn. SinceT is a subtree of itself, the lemma will follow.

If n has only one node descended from it (includingn itself if n is a leaf) thenn is a leaf and then the conclusion
holds trivially.

Consider a subtreeS in whichn hask nodes descended from it for somek > 0, and suppose the conclusion is true
for all subtrees wheren has less thank descendents. Letl be a leaf node descended fromn and letp be its parent.
Let S ′ be the subtree ofS consisting of all ofS except the children ofp. By induction hypothesis, the conclusion
is true ofS ′. Let c1, . . . , cn be the children ofp. The sum of the path values of leaves descended fromn in S is
the same as that inS ′, except thatpv(p) is replaced bypv(c1) + . . .+ pv(cn). Hence, we will be done if we can
show these are equal.

Let l1, · · ·, ln be the labels of the arcs leading to nodesc1, ··, cn respectively. Thenpv(c1) + . . . + pv(cn) =

l1 ∗ pv(p) + . . .+ ln ∗ pv(p) by definition of path value. Factoring outpv(p) givespv(p) ∗ (l1 + . . .+ ln). But
SinceS ′ is unitary,l1 + . . .+ ln = 1 and so this is justpv(p). ✷

Let Π be a P-log program with signatureΣ. Recall thatτ(Π) denotes the translation of its logical part into an
Answer Set Prolog program. Similarly for a literall (in Σ) with respect toΠ, τ(l) will represent the corresponding
literal in τ(Π). For example,τ(owner(d1) = mike) = owner(d1,mike). For a set of literalsB (in Σ) with respect
toΠ, τ(B) will represent the set{τ(l) | l ∈ B}.

Definition 24

A set S of literals ofΠ is Π-compatiblewith a literal l of Σ if there exists an answer set ofτ(Π) containing
τ(S)∪{τ(l)}. OtherwiseS isΠ-incompatiblewith l . S isΠ-compatiblewith a setB of literals ofΠ if there exists
an answer set ofτ(Π) containingτ(S) ∪ τ(B); otherwiseS isΠ-incompatiblewith B . ✷

Definition 25

A set S of literals is said toΠ-guaranteea literal l if S and l areΠ-compatible and every answer set ofτ(Π)

containingτ(S) also containsτ(l); S Π-guaranteesa setB of literals if S Π-guarantees every member ofB . ✷

Probabilistic reasoning with answer sets 57

Definition 26

We say thatB is apotentialΠ-causeof a(t) = y with respect to a ruler if Π contains rules of the form

[r] random(a(t) : {X : p(X)})← K · (21)

and

prr (a(t) = y |c B) = v · (22)

✷

Definition 27

[Ready to branch]
LetT be a tree whose nodes are labeled with literals andr be a rule ofΠ of the form

random(a(t) : {X : p(X)})← K ·

or

random(a(t)) ← K ·

whereK can be empty. A noden of T is ready to branch ona(t) via r relative toΠ if

1. pT (n) contains no literal of the forma(t) = y for anyy,

2. pT (n) Π-guaranteesK ,

3. for every rule of the formprr (a(t) = y |c B) = v in Π, eitherpT (n) Π-guaranteesB or isΠ-incompatible
with B , and

4. if r is of the first form then for everyy in the range ofa(t), pT (n) eitherΠ-guaranteesp(y) or is Π-
incompatible withp(y) and moreover there is at least oney such thatpT (n) Π-guaranteesp(y).

If Π is obvious from context we may simply say thatn is ready to branch ona(t) via r . ✷

Proposition 5

Supposen is ready to branch ona(t) via some ruler of Π, anda(t) = y isΠ-compatible withpT (n); and letW1

andW2 be possible worlds ofΠ compatible withpT (n). ThenP(W1, a(t) = y) = P(W2, a(t) = y). ✷

Proof: Supposen is ready to branch ona(t) via some ruler of Π, anda(t) = y isΠ-compatible withpT (n); and
letW1 andW2 be possible worlds ofΠ compatible withpT (n).

Case 1: Supposea(t) = y has an assigned probability inW1. Then there is a ruleprr (a(t) = y | B) = v of
Π such thatW1 satisfiesB . SinceW1 also satisfiespT (n), B is Π-compatible withpT (n). It follows from the
definition of ready-to-branch thatpT (n) Π-guaranteesB . SinceW2 satisfiespT (n) it must also satisfyB and so
P(W2, a(t) = y) = v .

Case 2: Supposea(t) = y does not have an assigned probability inW1. Case 1 shows that the assigned prob-
abilities for values ofa(t) in W1 andW2 are precisely the same; soa(t) = y has a default probability in both
worlds. We need only show that the possible values ofa(t) are the same inW1 andW2. Suppose then that for
somez , a(t) = z is possible inW1. ThenW1 satisfiesp(y). Hence sinceW1 satisfiespT (n), we have thatpT (n)

isΠ-compatible withp(y). By definition of ready-to-branch, it follows thatpT (n) Π-guaranteesp(y). Now since

58 C. Baral, M. Gelfond and N. Rushton

W2 satisfiespT (n) it must also satisfyp(y) and hencea(t) = y is possible inW2. The other direction is the same.
✷

Supposen is ready to branch ona(t) via some ruler of Π, anda(t) = y is Π-compatible withpT (n), andW
is a possible world ofΠ compatiblepT (n). We may refer to theP(W , a(t) = y) asv(n, a(t), y). Though the
latter notation does not mentionW , it is well defined by proposition 5.

Fig. 2. T2: The tree corresponding to the dice P-log programΠ2

Example 32

[Ready to branch]
Consider the following version of the dice example. Lets refer to it asΠ2

dice = {d1, d2}·

score = {1, 2, 3, 4, 5, 6}·

person = {mike, john}·

roll : dice → score·

owner : dice → person·

owner(d1) = mike·

owner(d2) = john·

even(D)← roll(D) = Y ,Y mod 2 = 0·

¬even(D)← not even(D)·

[r(D)] random(roll(D))·

pr(roll(D) = Y |c owner(D) = john) = 1/6·

Probabilistic reasoning with answer sets 59

pr(roll(D) = 6 |c owner(D) = mike) = 1/4.
pr(roll(D) = Y |c Y 6= 6, owner(D) = mike) = 3/20.
whereD ranges over{d1, d2}.

Now consider a treeT2 of Figure 2. Let us refer to the root of this tree asn1, the noderoll(d1) = 1 asn2,
and the noderoll(d2) = 2 connected ton2 asn3. ThenpT2(n1) = {true}, pT2(n2) = {true, roll(d1) = 1},
andpT2(n3) = {true, roll(d1) = 1, roll(d2) = 2}. The set{true} of literalsΠ2-guarantees{owner(d1) =

mike, owner(d2) = john} and isΠ2-incompatible with{owner(d1) = john, owner(d2) = mike}. Hencen1 and
the attributeroll(d1) satisfy condition 3 of definition 27. Similarly forroll(d2). Other conditions of the definition
hold vacuously and thereforen1 is ready to branch onroll(D) via r(D) relative toΠ2 for D ∈ {d1, d2}. It is also
easy to see thatn2 is ready to branch onroll(d2) via r(d2), and thatn3 is not ready to branch on any attribute of
Π2. ✷

Definition 28

[Expanding a node]
In casen is ready to branch ona(t) via some rule ofΠ, theΠ-expansionof T at n by a(t) is a tree obtained
fromT as follows: for eachy such thatpT (n) isΠ-compatible witha(t) = y, add an arc leavingn, labeled with
v(n, a(t), y), and terminating in a node labeled witha(t) = y. We say thatn branches ona(t). ✷

Definition 29

[Expansions of a tree]
A zero-stepΠ-expansion ofT is T . A one-stepΠ-expansion ofT is an expansion ofT at one of its leaves by
some attribute terma(t). Forn > 1, ann-stepΠ-expansionof T is a one-stepΠ-expansion of an(n − 1)-step
Π-expansion ofT . A Π-expansionof T is ann-stepΠ-expansion ofT for some non-negative integern. ✷

For instance, the tree consisting of the top two layers of treeT2 from Figure 2 is aΠ2-expansion of one node tree
n1 by roll(d1).

Definition 30

A seedis a tree with a single node labeledtrue. ✷

Definition 31

[Tableau]
A tableauof Π is aΠ-expansion of a seed which is maximal with respect to the subtree relation. ✷

For instance, a treeT2 of Figure 2 is a tableau ofΠ2.

Definition 32

[Node Representing a Possible World]
SupposeT is a tableau ofΠ. A possible worldW of Π is representedby a leaf noden of T if W is the set of
literalsΠ-guaranteed bypT (n). ✷

For instance, a noden3 of T2 represents a possible world
{owner(d1,mike), owner(d2 , john), roll(d1 , 1), roll(d2, 2),¬even(d1), even(d2)}.

60 C. Baral, M. Gelfond and N. Rushton

Definition 33

[Tree Representing a Program]
If every possible world ofΠ is represented by exactly one leaf node ofT , and every leaf node ofT represents
exactly one possible world ofΠ, then we sayT representsΠ. ✷

It is easy to check that the treeT2 representsΠ2.

Definition 34

[Probabilistic Soundness]
SupposeΠ is a P-log program andT is a tableau representingΠ, such thatR is a mapping from the possible worlds
of Π to the leaf nodes ofT which represent them. If for every possible worldW of Π we have

pvT (R(W)) = µ(W)

i.e. the path value inT of R(W) is equal to the probability ofW , then we say that the representation ofΠ by T

is probabilistically sound. ✷

The following theorem gives conditions sufficient for the coherency of P-log programs (Recall that we only con-
sider programs satisfying Conditions 1, 2, and 3 of Section 3.2). It will later be shown that all unitary, ok programs
satisfy the hypothesis of this theorem, establishing Theorem 1.

Theorem 3

[Coherency Condition]
SupposeΠ is a consistent P-log program such thatPΠ is defined. LetΠ′ be obtained fromΠ by removing all obser-
vations and actions. If there exists a unitary tableauT representingΠ′, and this representation is probabilistically
sound, then for every pair of rules

[r] random(a(t) : {Y : p(Y)})← K · (23)

and

prr (a(t) = y |c B) = v · (24)

of Π′ such thatPΠ′(B ∪K) > 0 we have

PΠ′∪obs(B)∪obs(K)(a(t) = y) = v

HenceΠ is coherent. ✷

Proof: For any setS of literals, letlgar(S) (pronounced “L-gar” for “leaves guaranteeing”) be the set of leavesn
of T such thatpT (n) Π′-guaranteesS .

Let µ denote the measure on possible worlds induced byΠ′. LetΩ be the set of possible worlds ofΠ′ ∪ obs(B) ∪

obs(K). SincePΠ′(B ∪K) > 0 we have

PΠ′∪obs(B)∪obs(K)(a(t) = y) =

∑

{W : W∈Ω ∧ a(t)=y ∈ W } µ(W)
∑

{W : W∈Ω} µ(W)
(25)

Now, let

Probabilistic reasoning with answer sets 61

α =
∑

n∈lgar(B∪K∪{a(t)=y)}

pv(n)

β =
∑

n∈lgar(B∪K)

pv(n)

SinceT is a probabilistically sound representation ofΠ′, the right-hand side of (25) can be written asα/β. So we
will be done if we can show thatα/β = v .

We first claim

Everyn ∈ lgar(B ∪K) has a unique ancestorga(n) which branches ona(t) via r (23) · (26)

If existence failed for some leafn thenn would be ready to branch ona(t) which contradicts maximality of the
tree. Uniqueness follows from Condition 1 of Definition 27.

Next, we claim the following:

For everyn ∈ lgar(B ∪K), pT (ga(n)) Π-guaranteesB ∪K · (27)

Let n ∈ lgar(B ∪ K). Sincega(n) branches ona(t), ga(n) must be ready toΠ-expand usinga(t). So by (2)
and (3) of the definition of ready-to-branch,ga(n) eitherΠ′-guaranteesB or is Π′-incompatible withB . But
pT (ga(n)) ⊂ pT (n), andpT (n) Π′-guaranteesB , so pT (ga(n)) cannot beΠ′-incompatible withB . Hence
pT (ga(n)) Π′-guaranteesB . It is also easy to see thatpT (ga(n)) Π′-guaranteesK .

From (27), it follows easily that

If n ∈ lgar(B ∪K), every leaf descended from ofga(n) belongs tolgar(B ∪K) · (28)

Let

A = {ga(n) : n ∈ lgar(B ∪K)}

In light of (26) and (28), we have

lgar(B ∪K) is precisely the set of leaves descended from nodes inA · (29)

Therefore,

β =
∑

n is a leaf descended from somea∈A

pv(n)

Moreover, by construction ofT , no leaf may have more than one ancestor inA, and hence

β =
∑

a∈A

∑

n is a leaf descended froma

pv(n)

Now, by Lemma 1 on unitary trees, sinceT is unitary,

β =
∑

a∈A

pv(a)

This way of writingβ will help us complete the proof. Now forα.

Recall the definition ofα:

α =
∑

n∈lgar(B∪K∪{a(t)=y})

pv(n)

62 C. Baral, M. Gelfond and N. Rushton

Denote the index set of this sum bylgar(B ,K , y). Let

Ay = {n : parent(n) ∈ A, the label ofn is a(t) = y}

Sincelgar(B ,K , y) is a subset oflgar(B) ∪ K , (29) implies thatlgar(B ,K , y) is precisely the set of nodes
descended from nodes inAy . Hence

α =
∑

n′ is a leaf descended from somen∈Ay

pv(n ′)

Again, no leaf may descend from more than one node ofAy , and so by the lemma on unitary trees,

α =
∑

n∈Ay

∑

n′ is a leaf descended fromn

pv(n ′) =
∑

n∈Ay

pv(n) (30)

Finally, we claim that every noden in A has a unique child inAy , which we will labelychild(n). The existence
and uniqueness follow from (27), along with Condition 3 of Section 3.2, and the fact that every node inA branches
ona(t) via [r]. Thus from (30) we obtain

α =
∑

n∈A

pv(ychild(n))

Note that ifn ∈ A, the arc fromn to ychild(n) is labeled withv . Now we have:

PΠ′∪obs(B)∪obs(K)(a(t) = y)

= α/β

=
∑

n∈A

pv(ychild(n))/
∑

n∈A

pv(n)

=
∑

n∈A

pv(n) ∗ v/
∑

n∈A

pv(n)

= v ·

✷

Proposition 6

[Tableau for causally ordered programs]
SupposeΠ is a causally ordered P-log program; then there exists a tableauT of Π which representsΠ. ✷

Proof:
Let | | be a causal order ofΠ, a1(t1), . . . , am(tm) be the ordering of its terms induced by| |, andΠ1, . . . ,Πm+1

be the| |-induced structure ofΠ.

Consider a sequenceT0, . . . ,Tm of trees whereT0 is a tree with one node,n0, labeled bytrue, andTi is obtained
from Ti−1 by expanding every leaf ofTi−1 which is ready to branch onai(ti) via any rule relative toΠi by this
term. LetT = Tm . We will show thatTm is a tableau ofΠ which representsΠ.

Our proof will unfold as a sequence of lemmas:

Lemma 2

For everyk ≥ 0 and every leaf noden of Tk programΠk+1 has a unique possible worldW containingpTk
(n).

✷

Probabilistic reasoning with answer sets 63

Proof:
We use induction onk . The case wherek = 0 follows from Condition (1) of Definition 13 of causally ordered
program. Assume that the lemma holds fori = k − 1 and consider a leaf noden of Tk . By construction ofT ,
there exists a leaf nodem of Tk−1 which is either the parent ofn or equal ton. By inductive hypothesis there is a
unique possible worldV of Πk containingpTk−1

(m).

(i) First we will show that every possible worldW of Πk+1 containingpTk−1
(m) also containsV . By the splitting

set theorem (Lifschitz and Turner 1994), setV ′ = W |Lk
is a possible world ofΠk . Obviously,pTk−1

(m) ⊆ V ′.
By inductive hypothesis,V ′ = V , and henceV ⊆W .

Now let us consider two cases.

(ii) ak (tk) is not active inV with respect toΠk+1. In this case for every random selection rule ofΠk+1 either
Condition (2) or Condition (4) of definition 27 is not satisfied and hence there is no ruler such thatm is ready
to branch onak (tk) via r relative toΠk+1. From construction ofTk we have thatm = n. By (3) of the defini-
tion of causally ordered, the programV ∪ Πk+1 has exactly one possible world,W . SinceLk is a splitting set
(Lifschitz and Turner 1994) ofΠk+1 we can use splitting set theorem to conclude thatW is a possible world of
Πk+1. Obviously,W containsV and hencepTk−1

(m). Sincen = m this implies thatW containspTk
(n).

Uniqueness follows immediately from (i) and Condition (3) of Definition 13.

(iii) A term ak (tk) is active inV . This means that there is some random selection ruler

[r] random(ak (tk) : {Y : p(Y)})← K ·

such thatV satisfiesK and there isy0 such thatp(y0) ∈ V . (If r does not containp the latter condition can be
simply omitted). Recall that in this caseak (tk) = y0 is possible inV with respect toΠk+1.

We will show thatm is ready to branch onak (tk) via ruler relative toΠk+1.

Condition (1) of the definition of“ready to branch” (Definition 27) follows immediately from construction ofTk−1.

To prove Condition (2) we need to show thatpTk−1
(m) Πk+1-guaranteesK . To see thatpTk−1

(m) andK are
Πk+1-compatible notice that, from Condition (2) of Definition 13and the fact thatp(y0) ∈ V we have that
V ∪ Πk+1 has a possible world, say,W0. Obviously it satisfies both,K andpTk−1

(m). Now consider a possible
world W of Πk+1 which containspTk−1

(m). By (i) we have thatV ⊆ W . SinceV satisfiesK so doesW .
Condition (2) of the definition of ready to branch is satisfied.

To prove condition (3) considerprr (ak (tk) = y |c B) = v from Πk+1 such thatB is Πk+1-compatible with
pTk−1

(m). Πk -compatibility implies that there is a possible worldW0 of Πk+1 which contains both,pTk−1
(m)

andB . By (i) we have thatV ⊆W0 and henceV satisfiesB . Since every possible worldW of Πk+1 containing
pTk−1

(m) also containsV we have thatW satisfiesB which proves condition (3) of the definition.

To prove Condition (4) we considery0 such thatp(y0) ∈ V (The existence of suchy0 is proven at the beginning
of (iii)). We show thatpTk−1

(m) Πk+1-guaranteesp(y0). Sinceak (tk) = y0 is possible inV with respect to
Πk+1 Condition (2) of Definition 13 guarantees thatΠk+1 has possible world, sayW , containingV . By con-
struction,p(y0) ∈ V and hencep(y0) andpTk−1

(m) areΠk+1 compatible. From (i) we have thatpTk−1
(m)

Πk+1-guaranteesp(y0). Similar argument shows that ifpTk−1
(m) isΠk+1-compatible withp(y) thenp(y) is also

Πk+1-guaranteed bypTk−1
(m).

We can now conclude thatm is ready to branch onak (tk) via ruler relative toΠk+1. This implies that a leaf node
n of Tk is obtained fromm by expanding it by an atomak (tk) = y.

By Condition (2) of Definition 13, programV ∪ Πk+1 ∪ obs(ak (tk) = y) has exactly one possible world,W .
SinceLk is a splitting set ofΠk+1 we have thatW is a possible world ofΠk+1. ClearlyW containspTk

(n).
Uniqueness follows immediately from (i) and Condition (2) of Definition 13.

64 C. Baral, M. Gelfond and N. Rushton

Lemma 3

For all k ≥ 0, every possible world ofΠk+1 containspTk
(n) for some unique leaf noden of Tk . ✷

Proof:
We use induction onk . The case wherek = 0 is immediate. Assume that the lemma holds fori = k − 1, and
consider a possible worldW of Πk+1. By the splitting set theoremW is a possible world ofV ∪ Πk+1 whereV
is a possible world ofΠk . By the inductive hypothesis there is a unique leaf nodem of Tk−1 such thatV contains
pTk−1

(m). Consider two cases.

(a) The attribute termak (tk) is not active inV and hencem is not ready to branch onak (tk). This means that
m is a leaf ofTk andpTk−1

(m) = pTk
(m). Let n = m. SinceV ⊆ W we have thatpTk

(n) ⊆ W . To show
uniqueness supposen ′ is a leaf node ofTk such thatpTk

(n ′) ⊆ W , andn ′ is not equal ton. By construction of
Tk there is somej and somey1 6= y2 such thataj (t j) = y1 ∈ pTk

(n ′) andaj (t j) = y2 ∈ pTk
(n). Since W is

consistent andaj is a function we can concluden cannot differ fromn ′.

(b) If ak (tk) is active inV then there is a possible outcomey of ak (tk) in V with respectΠk+1 via some random
selection ruler such thatak (tk) = y ∈ W . By inductive hypothesisV containspTk−1

(m) for some leafm of
Tk−1. Repeating the argument from part (iii) of the proof of Lemma2 we can show thatm is ready to branch
on ak (tk) via r relative toΠk+1. Sinceak (tk) = y is possible inV there is a sonn of m in Tk labeled by
ak (tk) = y. It is easy to see thatW containspTk

(n). The proof of uniqueness is similar to that used in (a).

Lemma 4

For every leaf noden of Ti−1, every setB of extended literals ofLi−1, and everyi ≤ j ≤ m + 1 we have
pTi−1(n) isΠi -compatible withB iff pTi−1(n) isΠj -compatible withB . ✷

Proof:
→

Suppose thatpTi−1(n) isΠi -compatible withB . This means that there is a possible worldV of Πi which satisfies
pTi−1(n) andB . To construct a possible world ofΠj with the same property consider a leaf nodem of Tj−1

belonging to a path containing noden of Ti−1. By Lemma 2Πj has a unique possible worldW containing
pTj−1(m). Li is a splitting set ofΠj and hence, by the splitting set theorem, we have thatW = V ′ ∪U whereV ′

is a possible world ofΠi andU∩Li = ∅. This implies thatV ′ containspTi−1(n), and hence, by Lemma 2V ′ = V .
SinceV satisfiesB andU ∩ Li = ∅ we have thatW also satisfiesB and hencepTi−1(n) is Πj -compatible with
B .

←

LetW be a possible world ofΠj satisfyingpTi−1(n) andB . By the splitting set theorem we have thatW = V ∪U

whereV is a possible world ofΠi andU ∩ Li = ∅. SinceB andpTi−1(n) belong to the language ofLi we have
thatB andpTi−1(n) are satisfied byV and hencepTi−1(n) isΠi -compatible withB .

Lemma 5

For every leaf noden of Ti−1, every setB of extended literals ofLi−1, and everyi ≤ j ≤ m + 1 we have
pTi−1(n) Πi -guaranteesB iff pTi−1(n) Πj -guaranteesB . ✷

→

Let us assume thatpTi−1(n) Πi -guaranteesB . This implies thatpTi−1(n) is Πi -compatible withB , and hence,
by Lemma 4pTi−1(n) is Πj -compatible withB . Now letW be a possible world ofΠj satisfyingpTi−1(n). By
the splitting set theoremW = V ∪ U whereV is a possible world ofΠi andU ∩ Li = ∅. This implies thatV
satisfiespTi−1(n). SincepTi−1(n) Πi -guaranteesB we also have thatV satisfiesB . Finally, sinceU ∩Li = ∅ we
can conclude thatW satisfiesB .

Probabilistic reasoning with answer sets 65

←

Suppose now thatpTi−1(n) Πj -guaranteesB . This implies thatpTi−1(n) isΠi -compatible withB . Now letV be
a possible world ofΠi containingpTi−1(n). To show thatV satisfiesB let us consider a leaf nodem of a path of
Tj−1 containingn. By Lemma 2Πj has a unique possible worldW containingpTj−1(m). By construction,W
also containspTi−1(n) and hence satisfiesB . By the splitting set theoremW = V ′ ∪ U whereV ′ is a possible
world of Πi andU ∩ Li = ∅. SinceB belongs to the language ofLi it is satisfied byV ′. By Lemma 2V ′ = V .
Thus V satisfies B and we concludepTi−1(n) Πi -guaranteesB .

Lemma 6

For everyi ≤ j ≤ m + 1 and every leaf noden of Ti−1, n is ready to branch on termai(t i) relative toΠi iff n is
ready to branch onai(t i) relative toΠj . ✷

Proof:
→

Condition (1) of Definition 27 follows immediately from construction ofT ’s. To prove condition (2) consider a leaf
noden of Ti−1 which is ready to branch onai(t i) relative toΠi . This means thatΠi contains a random selection
rule r whose body isΠi -guaranteed bypTi−1(n). By definition ofLi , the extended literals fromK belong to the
languageLi and hence, by Lemma 5,pTi−1(n) Πj -guaranteesK .

Now consider a setB of extended literals from condition (3) of Definition 27 and assume thatpTi−1(n) is Πj -
compatible withB . To show thatpTi−1(n) Πj -guaranteesB note that, by Lemma 4,pTi−1(n) is Πi -compatible
with B . Sincen is ready to branch onai(t i) relative toΠi we have thatpTi−1(n) Πi -guaranteesB . By Lemma
5 we have thatpTi−1(n) Πj -guaranteesB and hence Condition (3) of Definition 27 is satisfied. Condition (4) is
similar to check.

←

As before Condition (1) is immediate. To prove Condition (2)consider a leaf noden of Ti−1 which is ready to
branch onai(t i) relative toΠj . This means thatpTi−1(n) Πj -guaranteesK for some ruler from Πj . SinceΠj

is causally ordered we have thatr belongs toΠi . By Lemma 5pTi−1(n) Πi -guaranteesK . Similar proof can be
used to establish Conditions (3) and (4).

Lemma 7

T = Tm is a tableau forΠ = Πm+1. ✷

Proof:
Follows immediately from the construction of theT ’s andΠ’s, the definition of a tableau, and Lemmas 6 and 4.✷

Lemma 8

T = Tm representsΠ = Πm+1. ✷

Proof:
LetW be a possible world ofΠ. By Lemma 3W containspT (n) for some unique leaf noden of T . By Lemma 2,
W is the set of literalsΠ-guaranteed bypT (n), and henceW is represented byn. Suppose now thatn ′ is a node
of T representingW . ThenpT (n ′) Π-guaranteesW which implies thatW containspTm

(n ′). By Lemma 3 this
means thatn = n ′, and hence we proved that every answer set ofΠ is represented by exactly one leaf node ofT .

Now letn be a leaf node ofT . By Lemma 2Π has a unique possible worldW containingpT (n). It is easy to see
thatW is the set of literals represented byn. ✷

66 C. Baral, M. Gelfond and N. Rushton

Lemma 9

SupposeT is a tableau representingΠ. If n is a node ofT which is ready to branch ona(t) via r , then all
possible worlds ofΠ compatible withpT (n) are probabilistically equivalent with respect tor . ✷

Proof:
This is immediate from Conditions (3) and (4) of the definition of ready-to-branch.

Notation: Ifn is a node ofT which is ready to branch ona(t) via r , the Lemma 9 guarantees that there is a unique
scenario forr containing all possible worlds compatible withpT (n). We will refer to this scenario asthe scenario
determined byn.

We are now ready to prove the main theorem.

Theorem 1
Every causally ordered, unitary program is coherent.

Proof:

SupposeΠ is causally ordered and unitary. Proposition 6 tells us thatΠ is represented by some tableauT . By
Theorem 3 we need only show thatΠ is unitary — i.e., that for every noden of Π, the sum of the labels of the arcs
leavingn is 1. Letn be a node and lets be the scenario determined byn. s satisfies (1) or (2) of the Definition 14. In
case (1) is satisfied, the definition ofv(n, a(t), y), along with the construction of the labels of arcs ofT , guarantee
that the sum of the labels of the arcs leavingn is 1. In case (2) is satisfied, the conclusion follows from thesame
considerations, along with the definition ofPD(W , a(t) = y).

We now restate and prove Theorem 2.

Theorem 2
Let x1, . . . , xn be a nonempty vector of random variables, under a classical probability P , taking finitely many
values each. LetRi be the set of possible values of eachxi , and assumeRi is nonempty for eachi . Then there
exists a coherent P-log programΠ with random attributesx1, . . . , xn such that for every vectorr1, . . . , rn from
R1 × · · ×Rn , we have

P(x1 = r1, . . . , xn = rn) = PΠ(x1 = r1, . . . , xn = rn) (31)

✷

Proof:

For eachi let pars(xi) = {x1, . . . , xi−1}. LetΠ be formed as follows: For eachxi , Π contains

xi : Ri ·

random(xi)·

Also, for eachxi , every possible valuey of xi , and every vector of possible valuesyp of pars(xi), letΠ contain

pr(xi = y |c pars(i) = yp) = v(i , y, yp)

wherev(i , y, yp) = P(xi = y|pars(i) = yp).

Construct a tableauT for Π as follows: Beginning with the root which has depth 0, for every noden at depthi and
every possible valuey of xi+1, add an arc leavingn, terminating in a node labeledxi+1 = y; label the arc with
P(xi+1 = y|pT (n)).

Probabilistic reasoning with answer sets 67

We first claim thatT is unitary. This follows from the construction ofT and basic probability theory, since the
labels of the arcs leaving any noden at depthi are the respective conditional probabilities, givenpT (n), of all
possible values ofxi+1.

We now claim thatT representsΠ. Each answer set ofτ(Π), the translation ofΠ into Answer Set Prolog, satisfies
x1 = r1, . . . , xn = rn for exactly one vectorr1, . . . , rn in R1 × . . . × Rn , and every such vector is satisfied in
exactly one answer set. For the answer setS satisfyingx1 = r1, . . . , xn = rn , letM (S) be the leaf noden of T
such thatpT (n) = {x1 = r1, . . . , xn = rn}. M (S) representsS by Definition 32, sinceΠ has no non-random
attributes. SinceM is a one-to-one correspondence,T representsΠ. (31) holds because

P(x1 = r1, · · ·, xn = rn)

= P(x1 = r1)× P(x2 = r2|x1 = r1)× . . .× P(xn = rn |x1 = r1, · · ·, xn−1 = rn−1)

= v(1, r1, ())× . . .× v(n, rn , (r1, . . . , rn−1))

= PΠ(x1 = r1, . . . , xn = rn)

To complete the proof we will use Theorem 3 to show thatΠ is coherent.Π trivially satisfies the Unique selection
rule. The Unique probability assignment rule is satisfied becausepars(xi) cannot take on two different valuesy1

p

andy2
p in the same answer set.Π is consistent because by assumption1 ≤ n andR1 is nonempty. For the same

reason,PΠ is defined.Π contains nodoor obsliterals; so we can apply Theorem 3 directly toΠ without removing
anything. We have shown thatT is unitary and representsΠ. The representation is probabilistically sound by the
construction ofT . These are all the things that need to be checked to apply Theorem 3 to show thatΠ is coherent.
✷

Finally we give proof of Proposition 7.

Proposition 7

LetT be a P-log program over signatureΣ not containingpr -atoms, andB a collection ofΣ-literals. If

1. all random selection rules ofT are of the formrandom(a(t)),

2. T ∪ obs(B) is coherent, and

3. for every terma(t) appearing in literals fromB programT contains a random selection rulerandom(a(t)),

then for every formulaA

PT∪B (A) = PT∪obs(B)(A)

✷

Proof:
We will need some terminology. Answer Set Prolog programsΠ1 andΠ2 are calledequivalent(symbolically,
Π1 ≡ Π2) if they have the same answer sets;Π1 andΠ2 are called strongly equivalent (symbolicallyΠ1 ≡s Π2)
if for every programΠ we have thatΠ1 ∪ Π ≡ Π2 ∪ Π. To simplify the presentation let us consider a program
T ′ = T ∪ B ∪ obs(B). Using the splitting set theorem it is easy to show thatW is a possible world ofT ∪ B iff
W ∪ obs(B) is a possible world ofT ′. To show

(1) PT∪B (A) = PT∪obs(B)(A)·

we notice that, sinceT ′, T ∪ B andT ∪ obs(B) have the same probabilistic parts and the same collections of
do-atoms to prove (1) it suffices to show that

(2)W is a possible world ofT ′ iff W is a possible world ofT ∪ obs(B).

68 C. Baral, M. Gelfond and N. Rushton

LetPB = τ(T ′) andPobs(B) = τ(T ∪ obs(B)). By definition of possible worlds (2) holds iff

(3) PB ≡ Pobs(B)

To prove (3) let us first notice that the set of literalsS formed by relationsdo, obs , andintervene form a splitting
set of programsPB andPobs(B). Both programs include the same collection of rules whose heads belong to this
splitting set. LetX be the answer set of this collection and letQB andQobs(B) be partial evaluations ofPB and
Pobs(B) with respect toX andS . From the splitting set theorem we have that (3) holds iff

(4) QB ≡ Qobs(B).

To prove (4) we will show that for every literall ∈ B there are setsU1(l) andU2(l) such that for someQ

(5) Qobs(B) = Q ∪ {r : r ∈ U1(l) for somel ∈ B},

(6) QB = Q ∪ {r : r ∈ U2(l) for somel ∈ B},

(7) U1(l) ≡s U2(l)

which will imply (4).

Let literal l ∈ B be formed by an attributea(t). Consider two cases:

Case 1:intervene(a(t)) 6∈ X .

LetU1(l) consist of the rules

(a) ¬a(t ,Y1)← a(t ,Y2),Y1 6= Y2.

(b) a(t , y1) or . . . or a(t , yk).

(c) ← not l .

LetU2(l) = U1(l) ∪ B .

It is easy to see that due to the restrictions on random selection rules ofT from the propositionU1(l) belongs to
the partial evaluation ofτ(T) with respect toX andS . HenceU1(l) ⊂ Qobs(B). SimilarlyU2(l) ⊂ QB , and hence
U1(l) andU2(l) satisfy conditions (5) and (6) above. To show that they satisfy condition (7) we use the method de-
veloped in (Lifschitz et al. 2001). First we reinterpret theconnectives of statements ofU1(l) andU2(l). In the new
interpretation¬ will be a strong negation of Nelson (Nelson 1949);not ,←, or will be interpreted as intuitionistic
negation, implication, and disjunction respectively;, will stand for∧. A programP with connectives reinterpreted
in this way will be referred to asNL counterpartof P . Note that the NL counterpart of← not l is not not l . Next
we will show that, under this interpretation,U1(l) andU2(l) are equivalent in Nelson’s intuitionistic logic (NL).
Symbolically,

(8) U1(l) ≡NL U2(l).

(Roughly speaking this means thatU1(l) can be derived fromU2(l) andU2(l) from U1(l) without the use of the
law of exclusive middle.) As shown in (Lifschitz et al. 2001)two programs whose NL counterparts are equivalent
in NL are strongly equivalent, which implies (7).

To show (8) it suffices to show that

(9) U1(l) ⊢NL l .

If l is of the forma(t , yi) then let us assumea(t , yj) wherej 6= i . This, together with the NL counterpart of rule
(a) derives¬a(t , yi). Since in NL¬A ⊢ not A this derivesnot a(t , yi), which contradicts the NL counterpart
not not a(t , yi) of (c). The only disjunct left in (b) isa(t , yi).

Probabilistic reasoning with answer sets 69

If l is of the form¬a(t , yi) then (9) follows from (a) and (b).

Case 2:intervene(a(t)) ∈ X

This implies that there is someyi such thatdo(a(t) = yi) ∈ T .

If l is of the forma(t) = y then sinceT ∪ obs(B) is coherent, we have thaty = yi , and thusQB andQobs(B) are
identical.

If l is of the forma(t) 6= y then, sinceT ∪ obs(B) is coherent, we have thaty 6= yi .

LetU1(l) consist of rules:

¬a(t , y)← a(t , yi).

a(t , yi).

LetU2(l) = U1(l) ∪ ¬a(t , y).

ObviouslyU1(l) ⊂ Qobs(B), U2(l) ⊂ QB andU1(l) entailsU2(l) in NL. Hence we have (7) and therefore (4).

This concludes the proof.

10 Appendix II: Causal Bayesian Networks

This section gives a definition of causal Bayesian networks,closely following the definition of Judea Pearl and
equivalent to the definition given in (Pearl 2000). Pearl’s definition reflects the intuition that causal influence can
be elucidated, and distinguished from mere correlation, bycontrolled experiments, in which one or more variables
are deliberately manipulated while other variables are left to their normal behavior. For example, there is a strong
correlation between smoking and lung cancer, but it could behypothesized that this correlation is due to a genetic
condition which tends to cause both lung cancer and a susceptibility to cigarette addiction. Evidence of a causal
link could be obtained, for example, by a controlled experiment in which one randomly selected group of people
would be forced to smoke, another group selected in the same way would be forced not to, and cancer rates
measured among both groups (not that we recommend such an experiment). The definitions below characterize
causal links among a collectionV of variables in terms of the numerical properties of probability measures onV
in the presence of interventions. Pearl gives the name “interventional distribution” to a function from interventions
to probability measures. Given an interventional distributipn P∗, the goal is to describe conditions under which a
set of causal links, represented by a DAG, agrees with the probabilistic and causal information contained inP∗. In
this case the DAG will be called a causal Bayesian network compatible withP∗.

We begin with some preliminary definitions. LetV be a finite set of variables, where eachv in V takes values
from some finite setD(v). By anassignmentonV , we mean a function which maps eachv in V to some member
of D(v). We will let A(V) denote the set of all assignments onV . Assignments onV may also be calledpossible
worlds of V .

A partial assignmentonV is an assignment on a subset ofV . We will say two partial assignments areconsistent
if they do not assign different values to the same variable. Partial assignments can also be calledinterventions.
Let Interv(V) be the set of all interventions onV , and let{ } denote the empty intervention, that is, the unique
assignment on the empty set of variables.

By a probability measureon V we mean a functionP which maps every set of possible worlds ofV to a real
number in[0, 1] and satisfies the Kolmogorov Axioms.

WhenP is a probability measure onV , the arguments ofP are sets of possible worlds ofV . However, these

70 C. Baral, M. Gelfond and N. Rushton

sets are often written as constraints which determine theirmembers. So, for example, we writeP(v = x) for the
probability of the set of all possible worlds ofV which assignx to v .

The following definition captures when a DAGG is an “ordinary” (i.e., not-necessarily-causal) Bayesiannetwork
compatible with a given probability measure. The idea is that the graphG captures certain conditional inde-
pendence information about the given variables. That is, given information about the observed values of certain
variables, the graph captures which variables are relevantto particular inferences about other variables. Generally
speaking, this may fail to reflect the directions of causality, because the laws of probability used to make these in-
ferences (e.g., Bayes Theorem and the definition of conditional probability) do not distinguish causes from effects.
For example ifA has a causal influence onB , observations ofA may be relevant to inferences aboutB in much
the same way that observations ofB are relevant to inferences aboutA.

Definition 35

[Compatible]
Let P be a probability measure onV and letG be a DAG whose nodes are the variables inV . We say thatP is
compatible withG if, underP , everyv in V is independent of its non-descendants inG, given its parents inG. ✷

We are now ready to define causal Bayesian networks. In the following definition,P∗ is thought of as a mapping
from each possible interventionr to the probability measures onV resulting from performingr . P∗ is intended
to capture a model of causal influence in a purely numerical way, and the definition relates this causal model to a
DAG G.

If G is a DAG andv vertex ofG, letParents(G, v) denote the parents ofv in G.

Definition 36

[Causal Bayesian network]
LetP∗ map each interventionr in Interv(V) to a probability measurePr onV . LetG be a DAG whose vertices
are precisely the members ofV . We say thatG is a causal Bayesian networkcompatible withP∗ if for every
interventionr in Interv(V),

1. Pr is compatible withG,

2. Pr (v = x) = 1 wheneverr(v) = x , and

3. wheneverr does not assign a value tov , ands is an assignment onParents(G, v) consistent withr , we
have that for everyx ∈ D(v)

Pr (v = x | u = s(u) for all u ∈ Parents(G, v))

= P{ }(v = x | u = s(u) for all u ∈ Parents(G, v)) ✷

Condition 1 says that regardless of which interventionr is performed,G is a Bayesian net compatible with the
resulting probability measureP∗.9 Condition 2 says that when we perform an intervention on the variables ofV ,
the manipulated variables “obey” the intervention. Condition 3 says that the unmanipulated variables behave under
the influence of their parents in the usual way, as if no manipulation had occurred.

For example, considerV = {a, d}, D(a) = D(d) = {true, false}, andP∗ given by the following table:

9 This part of the definition captures some intuition about causality. It entails that given complete information about the factors immediately
influencing a variablev (i.e., given the parents ofv in G), the only variables relevant to inferences aboutv are its effects and indirect effects
(i.e., descendants ofv in G) — and that this property holds regardless of the intervention performed.

Probabilistic reasoning with answer sets 71

intervention {a, d} {a,¬d} {¬a, d} {¬a,¬d}

{} 0.32 0.08 0.06 0.54
{a} 0.8 0.2 0 0
{¬a} 0 0 0.01 0.99
{d} 0.4 0 0.6 0
{¬d} 0 0.4 0 0.6
{a, d} 1 0 0 0
{a,¬d} 0 1 0 0
{¬a, d} 0 0 1 0
{¬a,¬d} 0 0 0 1

The entries down the left margin give possible interventions, and each row defines the corresponding probability
measure by giving the probabilities of the four singleton sets of possible worlds. Intuitively, the table represents
P∗ derived from Example 18, wherea represents that the rat eats arsenic, andd represents that it dies.

If G is the graph with a single directed arc froma to d , then one can verify thatP∗ satisfies Conditions 1-3 of the
definition of Causal Bayesian Network. For example, ifr = {a = true}, s = {d = true}, v = d , andx = true,
we can verify Condition 3 by computing its left and right handsides using the first two rows of the table:

LHS = P{a}(d | a) = 0 · 8/(0 · 8 + 0 · 2) = 0 · 8

RHS = P{ }(d | a) = 0 · 32/(0 · 32 + 0 · 08) = 0 · 8

Now letG ′ be the graph with a single directed arc fromd to a. We can verify thatP∗ fails to satisfy Condition 3
for G ′ with r = {a = true}, v = d , x = true, ands the empty assignment, viz.,

LHS = P{a}(d) = 0 · 8 + 0 = 0 · 8

RHS = P{ }(d) = 0 · 32 + 0 · 6 = 0 · 38

This tells us thatP∗ given by the table is not compatible with the hypothesis thatthe rat’s eating arsenic iscaused
by its death.

Definition 36 leads to the following proposition that suggests a straightforward algorithm to compute probabilities
with respect to a causal Bayes network with nodesv1, . . . , vk , after an interventionr is done.

Proposition 8((Pearl 2000))

Let G be a causal Bayesian network, with nodesV = v1 = x1, . . . , vk = xk , compatible with an interventional
distributionP∗. Suppose also thatr is an intervention inInterv(V), and the possible worldv1 = x1, . . . , vk = xk

is consistent withr . Then

Pr (v1 = x1, . . . , vk = xk) =
∏

i:r(vi) is not defined

P{ }(vi = xi |pai(r)(x1, . . . , xk))

wherepai(x1, . . . , xk)) is the unique assignment world onParents(G, vi) compatible withv1 = x1, . . . , vk = xk .
✷

Theorem 4

Let G be a DAG with verticesV = {v1, . . . , vk} and P∗ be as defined in Definition 36. For an interventionr , let
do(r) denote the set{do(vi = r(vi)) : r(vi) is defined}.

72 C. Baral, M. Gelfond and N. Rushton

Then there exists a P-log programπ with random attributesv1, . . . , vk such that for any interventionr in
Interv(V) and any assignmentv1 = x1, . . . , vk = xk we have

Pr (v1 = x1, . . . , vk = xk) = Pπ∪do(r)(v1 = x1, . . . , vk = xk) (32)

✷

Proof: We will first give a road map of the proof. Our proof consists ofthe following four steps.

(i) First, given the antecedent in the statement of the theorem,we will construct a P-log programπ which, as we
will ultimately show, satisfies (32).

(ii) Next, we will construct a P-log programπ(r) and show that:

Pπ∪do(r)(v1 = x1, . . . , vk = xk) = Pπ(r)(v1 = x1, . . . , vk = xk) (33)

(iii) Next, we will construct a finite Bayes netG(r) that defines a probability distributionP ′ and show that:

Pπ(r)(v1 = x1, . . . , vk = xk) = P ′(v1 = x1, . . . , vk = xk) (34)

(iv) Then we will use Proposition 1 to argue that:

P ′(v1 = x1, . . . , vk = xk) = Pr (v1 = x1, . . . , vk = xk) (35)

(32) then follows from (33), (34) and (35).

We now elaborate on the steps (i)-(iv).

Step (i)Given the antecedent in the statement of the theorem, we willconstruct a P-log programπ as follows:

(a) For each variablevi in V , π contains:

random(vi).
vi : D(vi).

whereD(vi) is the domain ofvi .

(b) For anyvi ∈ V , such thatparents(G, vi) = {vi1 , . . . , vim}, any y ∈ D(vi), and anyxi1 , . . . , xim in
D(vi1), . . . ,D(vim) respectively,π contains the pr-atom:

pr(vi=y |c vi1=xi1 , . . . vim =xim) = P{ }(vi=y|vi1=xi1 , . . . vim =xim)·

Step (ii) Given the antecedent in the statement of the theorem, and an interventionr in Interv(V) we will now
construct a P-log programπ(r) and show that (33) is true.

(a) For each variablevi in V , if r(vi) is not defined, thenπ(r) containsrandom(vi) andvi : D(vi), whereD(vi)

is the domain ofvi .

Probabilistic reasoning with answer sets 73

(b) The pr-atoms inπ(r) are as follows. For any nodevi such thatr(vi) is not defined let{vij1 , . . . , vijk } consists
of all elements ofparents(G, vi) = {vi1 , . . . , vim} wherer is not defined. Then the following pr-atom is inπ(r).

p(vi = x | vij1 = yij1 , . . . , vijk = yijk) = P{ }(vi = x | vi1 = yi1 , . . . , vim = yim)·, where for allvip ∈
parents(G, vi), if r(vip) is defined thenyip = r(vip).

Now let us compare the P-log programsπ ∪ do(r) andπ(r). Their pr-atoms differ. In addition, for a variablevi ,
if r(vi) is defined thenπ ∪ do(r) hasdo(vi = r(vi)) andrandom(vi) while π(r) has neither. For variables,
vj , wherer(vj) is not defined bothπ ∪ do(r) andπ(r) haverandom(vi). It is easy to see that there is a one-
to-one correspondence between possible worlds ofπ ∪ do(r) andπ(r); for any possible worldW of π ∪ do(r)

the corresponding possible worldW ′ for π(r) can be obtained by projecting on the atoms about variablesvj for
which r(vj) is not defined. For avi for which r(vi) is defined,W will contain intervene(vi), and will not have
an assigned probability. The default probabilityPD(W , vi = r(vi)) will be 1

|D(vi)|
. Now it is easy to see that the

unnormalized probability measure associated withW will be
∏

vi : r(vi) is defined

1

|D(vi)|

times the unnormalized probability measure associated with W ′ and hence their normalized probability measures
will be the same. ThusPπ∪do(r)(v1 = x1, . . . , vk = xk) = Pπ(r)(v1 = x1, . . . , vk = xk).

Step (iii) GivenG, P∗ and any interventionr in Interv(V) we will construct a finite Bayes netG(r). Let P ′

denote the probability with respect to this Bayes net.

The nodes and edges ofG(r) are as follows. All verticesvi in G such thatr(vi) is not defined are the only vertices
in G(r). For any edge fromvi to vj in G, only if r(vj) is not defined the edge fromvi to vj is also an edge in
G(r). No other edges are inG(r). The conditional probability associated with the Bayes netG(r) is as follows:
For any nodevi of G(r), let parents(G(r), vi) = {vij1 , . . . , vijk } ⊆ parents(G, vi) = {vi1 , . . . , vim}. We define
the conditional probabilityp(vi = x | vij1 = yij1 , . . . , vijk = yijk) = P{ }(vi = x | vi1 = yi1 , . . . , vim = yim),
where for allvip ∈ parents(G, vi), if r(vip) is defined (i.e.,vip 6∈ parents(G(r), vi)) thenyip = r(vip).

From Theorem 2 which shows the equivalence between a Bayes net and a representation of it in P-log, which we
will denote byπ(G(r)) , we know thatP ′(v1 = x1, . . . , vk = xk) = Pπ(G(r))(v1 = x1, . . . , vk = xk). It is easy
to see thatπ(G(r)) is same asπ(r). Hence (34) holds.

Step (iv) It is easy to see thatP ′(v1 = x1, . . . , vk = xk) is equal to the right hand side of Proposition 1. Hence
(35) holds.

11 Appendix III: Semantics of ASP

In this section we review the semantics of ASP. Recall that anASPrule is a statement of the form

l0 or . . . or lk ← lk+1, . . . , lm , not lm+1, . . . , not ln (36)

where theli ’s are ground literals over some signatureΣ. An ASPprogram, Π, is a collection of such rules over
some signatureσ(Π), and apartial interpretationof σ(Π) is a consistent set of ground literals of the signature. A
program with variables is considered shorthand for the set of all ground instantiations of its rules. The answer set
semantics of a logic programΠ assigns toΠ a collection ofanswer sets— each of which is a partial interpretation
of σ(Π) corresponding to some possible set of beliefs which can be built by a rational reasoner on the basis of

74 C. Baral, M. Gelfond and N. Rushton

rules ofΠ. As mentioned in the introduction, in the construction of such a set,S , the reasoner should satisfy the
rules ofΠ and adhere to therationality principlewhich says thatone shall not believe anything one is not forced
to believe. A partial interpretationS satisfiesRule 36 if wheneverlk+1, . . . , lm are inS and none oflm+1, . . . , ln
are inS , the setS contains at least oneli where0 ≤ i ≤ k . The definition of an answer set of a logic program is
given in two steps:

First we consider a programΠ not containing default negationnot .

Definition 37

(Answer set – part one)
A partial interpretationS of the signatureσ(Π) of Π is an answer setfor Π if S is minimal (in the sense of
set-theoretic inclusion) among the partial interpretations ofσ(Π) satisfying the rules ofΠ. ✷

The rationality principle is captured in this definition by the minimality requirement.

To extend the definition of answer sets to arbitrary programs, take any programΠ, and letS be a partial interpre-
tation ofσ(Π). ThereductΠS of Π relative toS is obtained by

1. removing fromΠ all rules containingnot l such thatl ∈ S , and then
2. removing all literals of the formnot l from the remaining rules.

ThusΠS is a program without default negation.

Definition 38

(Answer set – part two)
A partial interpretationS of σ(Π) is an answer set forΠ if S is an answer set forΠS . ✷

The relationship between this fix-point definition and the informal principles which form the basis for the notion
of answer set is given by the following proposition.

Proposition 9

Baral and Gelfond, (Baral, and Gelfond 1994)
Let S be an answer set of ASP programΠ.
(a)S satisfies the rules of the ground instantiation ofΠ.
(b) If literal l ∈ S then there is a ruler from the ground instantiation ofΠ such that the body ofr is satisfied byS
andl is the only literal in the head ofr satisfied byS . ✷

The ruler from (b) “forces” the reasoner to believel .

It is easy to check that programp(a) or p(b) has two answer sets,{p(a)} and {p(b)}, and pro-
gram p(a) ← not p(b) has one answer set,{p(a)}. ProgramP1 from the introduction indeed has one
answer set{p(a),¬p(b), q(c)}, while programP2 has two answer sets,{p(a),¬p(b), p(c),¬q(c)} and
{p(a),¬p(b),¬p(c),¬q(c)}.

Note that the left-hand side (the head) of an ASP rule can be empty. In this case the rule is often referred to as a
constraintor denial. The denial← B prohibits the agent associated with the program from havinga set of beliefs
satisfyingB . For instance, programp(a) or ¬p(a) has two answer sets,{p(a)} and{¬p(a)}. The addition of
a denial← p(a) eliminates the former;{¬p(a)} is the only answer set of the remaining program. Every answer
set of a consistent programΠ ∪ {l ·} containsl while a programΠ ∪ {← not l ·} may be inconsistent. While the
former tells the reasoner to believe thatl is true the latter requires him to find support of his belief inl fromΠ. If,

Probabilistic reasoning with answer sets 75

say,Π is empty then the first program has the answer set{l} while the second has no answer sets. IfΠ consists of
the default¬l ← not l then the first program has the answer setl while the second again has no answer sets.

Some additional insight into the difference betweenl and← not l can also be obtained from the relationship
between ASP and intuitionistic or constructive logic (Ferraris, and Lifschitz 2005) which distinguishes betweenl

and¬¬l . In the corresponding mapping the denial corresponds to thedouble negation ofl .

To better understand the role of denials in ASP one can view a programΠ as divided into two parts:Πr consisting
of rules with non-empty heads andΠd consisting of the denials ofΠ. One can show thatS is an answer set of
Π iff it is an answer set ofΠr which satisfies all the denials fromΠd . This property is often exploited in answer
set programming where the initial knowledge about the domain is often defined byΠr and the corresponding
computational problem is posed as the task of finding answer sets ofΠr satisfying the denials fromΠd .

References

APT, K., AND DOETS, K. 1994. A new definition of SLDNF resolution.Journal of Logic Programming. 18, 177–190.

BACCHUS, F. 1990.Representing and reasoning with uncertain knowledge. MIT Press.

BACCHUS, F., GROVE, A., HALPERN, J., AND KOLLER, D. 1996. From statistical knowledge bases to degrees of belief.
Artificial Intelligence. 87, 75–143.

BALDUCCINI , M., GELFOND, M., NOGUEIRA, M., WATSON, R., AND BARRY, M. 2001. An A-Prolog decision support
system for the space shuttle - I.Proceedings of Practical Aspects of Declarative Languages. 169–183.

BALDUCCINI , M., GELFOND, M., NOGUEIRA, M., AND WATSON, R. 2002. Planning with the USA-Advisor.3rd NASA
International workshop on Planning and Scheduling for Space.

BALDUCCINI , M. AND GELFOND, M. 2003. Logic programs with consistency-restoring rules. In International Symposium
on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium Series. 9–18.

BARAL , C. 2003.Knowledge representation, reasoning and declarative problem solving. Cambridge University Press.

BARAL , C., AND GELFOND, M. 1994. Logic Programming and Knowledge Representation.Journal of Logic Programming.
19,20, 73–148.

BARAL , C., GELFOND, M., AND RUSHTON, N. 2004. Probabilistic reasoning with answer sets. InProceedings of LPNMR7.
21–33.

BOUTILIER, C., REITER, R., AND PRICE, B. 2001. Symbolic Dynamic Programming for First-Order MDPs. InProceedings
of IJCAI 01. 690-700.

BREESE, J. 1990. Construction of belief and decision networks. Tech. rep., Technical Memorandom 90, Rockwell International
Science Center, Palo Alto, CA.

CHEN, W., SWIFT, T., AND WARREN, D. 1995. Efficient top-down computation of queries under the well-founded semantics.
Journal of Logic Programming. 24, 3, 161–201.

CITRIGNO, S., EITER, T., FABER, W., GOTTLOB, G., KOCH, C., LEONE, N., MATEIS, C., PFEIFER, G.,AND SCARCELLO,
F. 1997. The dlv system: Model generator and application front ends. InProceedings of the 12th Workshop on Logic
Programming. 128–137.

CUSSENS, J. 1999. Loglinear models for first-order probabilistic reasoning. InProceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence. 126–133.

DE VOS, M. AND VERMEIR, D. 2000. Dynamically ordered probabilistic choice logic programming. InProceedings of the
20th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS2000). 227–239.

DEKHTYAR , A. AND DEKHTYAR , M. 2004. Possible worlds semantics for probabilistic logic programs. InICLP. 137–148.

FERRARIS, P. AND L IFSCHITZ, V. 2005. Weight constraints as nested expressions.Theory and Practice of Logic Program-
ming 5, 45–74.

FERRARIS, P.,AND L IFSCHITZ, V. 2005. Mathematical foundations of answer set programming. We Will Show Them! Essays
in Honour of Dov Gabbay. King’s College Publications. 615–664.

GEBSER, M., KAUFMANN , B., NEUMANN , A., AND SCHAUB, T. 2007. CLASP: A conflict-driven answer set solver. In
LPNMR’07. 260–265.

GELFOND, M. AND L IFSCHITZ, V. 1988. The stable model semantics for logic programming.In Proceedings of the Fifth Int’l
Conference and Symposium on Logic Programming. 1070–1080.

76 C. Baral, M. Gelfond and N. Rushton

GELFOND, M., RUSHTON, N.,AND ZHU, W. 2006. Combining logical and probabilistic reasoning. In Proceedings of AAAI 06
Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation
and Question Answering. 50–55.

GETOOR, L., FRIEDMAN , N., KOLLER, D., AND PFEFFER, A. 2001. Learning probabilistic relational models. InRelational
data mining. Springer, 307–335.

GETOOR, L., AND TASKAR, B. 2007. Statistical Relational Learning. MIT Press.

HALPERN, J. 1990. An analysis of first-order logics of probability.Artificial Intelligence. 46, 311–350.

HALPERN, J. 2003.Reasoning about Uncertainty. MIT Press.

HILBORN, R. AND MANGEL, M. 1997.The Ecological Detective. Princeton University Press.

IWAN , G. AND LAKEMEYER, G. 2002. What observations really tell us. InCogRob’02.

JR, H. E. K. AND TENG, C. M. 2001.Uncertain Inference. Cambridge University Press.

KERSTING, K. AND DE RAEDT, L. 2007. Bayesian logic programs: Theory and Tool. InAn Introduction to Statistical
Relational Learning. L. Getoor and B. Taskar, Eds. MIT Press.

KOLLER, D. 1999. Probabilistic relational models. InILP99. 3–13.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S.AND SCARCELLO, F. 2006. The DLV system for
knowledge representation and reasoning.ACM Transactions on Computational Logic. 7(3): 499–562.

L IERLER, Y. 2005. Cmodels - SAT-based disjunctive answer set solver. In Proceedings of Logic Programming and Non
Monotonic Reasoning. 447–451.

L IFSCHITZ, V., PEARCE, D., AND VALVERDE, A. 2001. Strongly equivalent logic programs.ACM Transaction on Computa-
tional Logic. 2, 526–541.

L IFSCHITZ, V., TANG, L., AND TURNER, H. 1999. Nested expressions in logic programs.Annals of Mathematics and
Artificial Intelligence. 25,3-4, 369–389.

L IFSCHITZ, V. AND TURNER, H. 1994. Splitting a logic program. InProc. of the Eleventh Int’l Conf. on Logic Programming,
P. Van Hentenryck, Ed. 23–38.

L IN , F. AND ZHAO, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence.
157(1-2), 115–137.

LUKASIEWICZ, T. 1998. Probabilistic logic programming. InProeedings of European Conference on Artificial Intelligence.
388–392.

MUGGLETON, S. 1995. Stochastic logic programs. InProceedings of the 5th International Workshop on InductiveLogic
Programming, L. De Raedt, Ed. Department of Computer Science, Katholieke Universiteit Leuven, 29.

NELSON, D. 1949. Constructible falsity.Journal of Symbolic logic. 14, 16–26.

NG, R. T. AND SUBRAHMANIAN , V. S. 1992. Probabilistic logic programming.Information and Computation. 101, 2,
150–201.

NG, R. T. AND SUBRAHMANIAN , V. S. 1994. Stable semantics for probabilistic deductive databases.Information and
Computation. 110,1, 42–83.

NGO, L. AND HADDAWY, P. 1997. Answering queries from context-sensitive probabilistic knowledge bases.Theoretical
Computer Science. 171,1–2, 147–177.

NIEMELÄ , I. AND SIMONS, P. 1997. Smodels – an implementation of the stable model andwell-founded semantics for
normal logic programs. InProc. 4th international conference on Logic programming and non-monotonic reasoning, J. Dix,
U. Furbach, and A. Nerode, Eds. Springer, 420–429.

NILSSON, N. 1986. Probabilistic logic.Artificial Intelligence. 28, 71–87.

PASKIN , M. 2002. Maximum entropy probabilistic logic. Tech. Rep. UCB/CSD-01-1161, Computer Science Division, Uni-
versity of California, Berkeley, CA.

PASULA , H. AND RUSSELL, S. 2001. Approximate inference for first-order probabilistic languages. InProceedings of the
Seventeenth International Joint Conference on Artificial Intelligence. 741–748.

PEARL, J. 2000.Causality. Cambridge University Press.

POOLE, D. 1993. Probabilistic horn abduction and bayesian networks. Artificial Intelligence. 64,1, 81–129.

POOLE, D. 1997. The independent choice logic for modelling multiple agents under uncertainty.Artificial Intelligence. 94,1-2,
7–56.

POOLE, D. 2000. Abducing through negation as failure: Stable models within the independent choice logic.Journal of Logic
Programming. 44, 5–35.

REITER, R. 1978. On closed world data bases. InLogic and Data Bases, H. Gallaire and J. Minker, Eds. Plenum Press, New
York, 119–140.

Probabilistic reasoning with answer sets 77

RICHARDSON, M. AND DOMINGOS, P. 2006. Markov logic networks.Machine Learning. 62, 107–136.

RIEZLER, S. 1998. Probabilistic constraint logic programming. Ph.D. thesis, University of Tubingen, Tubingen, Germany.

SANTOS COSTA, V., PAGE, D., QAZI , M., AND CUSSENS, J. 2003. CLP(BN): Constraintlogic programming for probabilistic
knowledge. InProceedings of the Nineteenth Conference on Uncertainty inArtificial Intelligence. 517–524.

SATO, T. 1995. A statistical learning method for logic programs with distribution semantics. InProceedings of the 12th
International Conference on Logic Programming (ICLP95). 715–729.

SATO, T. AND KAMEYA , Y. 1997. PRISM: A symbolic-statistical modeling language. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI97). 1330–1335.

SIMONS, P., NIEMELÄ , I. and SOININEN, T. 2002. Extending and implementing the stable model semantics. Artificial
Intelligence.138(1-2): 181–234.

VENNEKENS, J., DENECKER, M., AND BRUYNOOGE, M. 2006. Extending the role of causality in probabilistic modeling.
http://www.cs.kuleuven.ac.be/∼joost/#research.

VENNEKENS, J. 2007. Algebraic and Logical Study of Constructive Processes in Knowledge representation Ph.D Dissertation.
K.U. Leuven. Belgium.

VENNEKENS, J., VERBAETEN, S.,AND BRUYNOOGHE, M. 2004. Logic programs with annotated disjunctions. InProc. of
International Conference on Logic Programming. 431–445.

WANG, P. 2004. The limitation of Bayesianism.Artificial Intelligence. 158,1, 97–106.

WELLMAN , M., BREESE, J.,AND GOLDMAN , R. 1992. From knowledge bases to decision models.Knowledge Engineering
Review. 35–53.

http://www.cs.kuleuven.ac.be/~joost/#research

	Introduction
	Syntax of P-log
	Semantics of P-log
	Defining possible worlds:
	Assigning measures of probability:

	Belief Update in P-log
	 P-log Updates and Conditional Probability
	 Updates Involving Actions
	More Complex Updates

	Representing knowledge in P-log
	Monty Hall problem
	Simpson's paradox
	A Moving Robot
	Bayesian squirrel
	Maneuvering the Space Shuttle

	Proving Coherency of P-log Programs
	Causally ordered programs

	Relation with other work
	Relation with Poole's work
	LPAD : Logic programming with annotated disjunctions
	Bayesian logic programming:
	Stochastic logic programs
	Probabilistic logic programming
	PRISM: Logic programs with distribution semantics
	Other approaches
	Summary

	Conclusion and Future Work
	Appendix I: Proofs of major theorems
	Appendix II: Causal Bayesian Networks
	Appendix III: Semantics of ASP
	References

