Zugzwang

Stochastic Adventures in Inductive Logic

Francisco Coelho

Departamento de Informática, Universidade de Évora High Performance Computing Chair NOVA-LINCS

November 8, 2022

2 Motivation

3 Resolution

4 Cases & Examples

Notation and Assumptions

• $\overline{x} = 1 - x$.

- Probabilistic Atomic Choice (PAC): α :: a defines a ∨ ¬a and probabilities p(a) = α, p(¬a) = α.
- δa denotes $a \lor \neg a$ and $\delta \{ \alpha :: a, a \in \mathcal{A} \} = \{ \delta a, a \in \mathcal{A} \}$ for a set of atoms \mathcal{A} .
- Closed World Assumption: $\sim x \models \neg x$.

General Setting

- Atoms \mathcal{A} , $\overline{\mathcal{A}} = \{\neg a, a \in \mathcal{A}\}$,
- Inputs \mathcal{Z} :

$$\mathcal{Z} = \left\{ z = \alpha \cup \beta, \ \alpha \subseteq \mathcal{A} \land \beta \subseteq \overline{\mathcal{A}} \right\}$$

• Interpretations or consistent inputs *I* :

$$\mathcal{I} = \left\{ z \in \mathcal{Z}, \ \forall a \in \mathcal{A} \ \left| \{a, \neg a\} \cap z \right| \leq 1 \right\}.$$

- *PASP Problem* or **Specification**: $P = C \land F \land R$ where
 - $C = C_P = \{ \alpha_i :: a_i, i \in 1 : n \land a_i \in A \}$ pacs.
 - $F = F_P$ facts.
 - $R = R_P$ rules.
 - $\mathcal{A}_P, \mathcal{Z}_P$ and \mathcal{I}_P : atoms, inputs and interpretations of P.
- Stable Models of *P*, $S = S_P$, are the stable models of $\delta P = \delta C + F + R$.

Distribution Semantics

- Total Choices: $\Theta = \Theta_C = \Theta_P$ elements are $\theta = \{t_c, c \in C\}$ where $c = \alpha :: a$ and t_c is a or $\neg a$.
- Total Choice Probability:

$$p(\theta) = \prod_{\mathbf{a} \in \theta} \alpha \prod_{\neg \mathbf{a} \in \theta} \overline{\alpha}.$$
 (1)

This is the *distribution semantic* as set by Sato.

How to *extend* probability from total choices to stable models, interpretations and inputs?

There's a problem right at extending to stable models.

The Disjunction Case

Disjuntion Example

The specification

$$0.3 :: a,$$

 $b \lor c \leftarrow a.$

has three stable models,

$$s_1 = \{\neg a\}, s_2 = \{a, b\}, s_3 = \{a, c\}.$$

- Any stable model contains exactly one total choice.
- $p(\{\neg a\}) = 0.7$ is straightforward.
- But, no *unbiased* choice for $\alpha \in [0,1]$ in

$$p(\{a, b\}) = 0.3\alpha,$$
$$p(\{a, c\}) = 0.3\overline{\alpha}.$$

Lack of Information & Parametrization

• The specification *lacks information* to set $\alpha \in [0, 1]$ in

 $p(\{a, b\}) = 0.3\alpha,$ $p(\{a, c\}) = 0.3\overline{\alpha}.$

• A random variable captures this:

$$p(\{\neg a\} \mid A = \alpha) = 0.7,$$

$$p(\{a, b\} \mid A = \alpha) = 0.3\alpha,$$

$$p(\{a, c\} \mid A = \alpha) = 0.3\overline{\alpha}.$$

• Other uncertainties lead to further parameters:

$$p(s \mid A_1 = \alpha_1, \ldots, A_n = \alpha_n).$$

Reducing **specification uncertainty**, *e.g.* setting A = 0.21, must result from **observations**.

Main Research Question

A random variable captures this:

$$\begin{array}{l|l} \mathbf{p}\bigl\{\{\neg a\} & \mid & A = \alpha\bigr) = 0.7, \\ \mathbf{p}\bigl(\{a, b\} & \mid & A = \alpha\bigr) = 0.3\alpha, \\ \mathbf{p}\bigl(\{a, c\} & \mid & A = \alpha\bigr) = 0.3\overline{\alpha}. \end{array}$$

Main Research Question

Can *all* specification uncertainties be neatly expressed as that example?

- Follow ASP syntax; for each case, consider the possible uncertainty scenarios.
- The disjunction example illustrates one such step.

Resolution

4 Cases & Examples

Specification, Data & Evaluation

Given some procedure to extend probabilities to stable models, interpretations and inputs, and given:

- P, a specification.
- *p*, the distribution of inputs from above.
- Z, a dataset of inputs.
- e, the respective empirical distribution.
- *D*, some probability divergence, *e.g.* Kullback-Leibler.

For a dataset Z, D(P) = D(e, p) is a **performance** measure of P and can be used, e.g. as fitness, by algorithms searching for **optimal specifications of a dataset**.

2 Motivation

3 Resolution

4 Cases & Examples

Resolution Path

- **1** Parametrize lack of knowledge *e.g.* α in the disjunction example.
- 2 This extends probability from total choices to standard models.
- Extend probability from standard models to *interpretations*.
 How? Later.
- 4 Set p(z) = 0 for $z \in \mathbb{Z} \setminus \mathcal{I}$.

Bounds of Interpretations

• For $x \in \mathcal{I}$:

- Lower Models: $\langle x | = \{ s \in S, s \subseteq x \}.$
- Upper Models: $|x\rangle = \{s \in S, x \subseteq s\}.$
- **Proposition.** Stable models are *minimal* so *one* of the following cases takes place:

Next we try to formalize the possible configurations of this scenario. Consider the ASP program $P = C \land F \land R$ with total choices Θ and stable models S. Let $d :: S \to [0,1]$ such that $\sum_{s \in S_{\theta}} d(s) = 1$.

For each z ∈ Z only one of the following cases takes place
 z is inconsistent. Then define

$$w_d(x) = 0. (2)$$

2 *z* is an interpretation and $\langle z| = \{z\} = |x\rangle$. Then z = s is a stable model and **define**

$$w_d(z) = w(s) = d(s) p(\theta_s).$$
(3)

3 *z* is an interpretation and $\langle z | \neq \emptyset \land | x \rangle = \emptyset$. Then **define**

$$w_d(z) = \sum_{s \in \langle z |} w_d(s) \,. \tag{4}$$

4 z is an interpretation and $\langle z | = \emptyset \land | z \rangle \neq \emptyset$. Then define

$$w_d(z) = \prod_{s \in |z\rangle} w_d(s) \,. \tag{5}$$

5 *z* is an interpretation and $\langle z | = \emptyset \land | z \rangle = \emptyset$. Then **define**

$$w_d(z)=0. (6)$$

2 The last point defines a "weight" function on the inputs that depends not only on the total choices and stable models of a PASP but also on a certain function *d* that must respect some conditions. To simplify the notation we use the

2 Motivation

3 Resolution

4 Cases & Examples Programs with disju

Non-stratified programs

- 2 Motivation
- 3 Resolution

Cases & Examples Programs with disjunctive heads Non-stratified programs

Consider the program:

$$c_1 = a \lor \neg a,$$

 $c_2 = b \lor c \leftarrow a.$

This program has two total choices,

$$\theta_1 = \{\neg a\},\\ \theta_2 = \{a\}.$$

and three stable models,

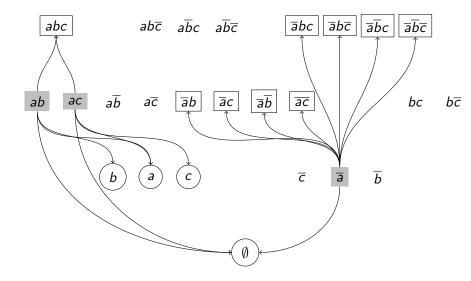
$$s_1 = \{\neg a\},$$

 $s_2 = \{a, b\},$
 $s_3 = \{a, c\}.$

Suppose that we add an annotation $\alpha :: a$, which entails $\overline{\alpha} :: \neg a$. This is enough to get $w(s_1) = \overline{\alpha}$ but, on the absence of further information, no fixed probability can be assigned to either model s_2, s_3 except that the respective sum must be α . So, expressing our lack of knowledge using a parameter $d \in [0, 1]$ we get:

$$\begin{cases} w(s_1) = \overline{\alpha} \\ w(s_2) = d\alpha \\ w(s_3) = \overline{d}\alpha. \end{cases}$$

Now consider all the interpretations for this program:



In this diagram:

- Negations are represented as *e.g.* ā instead of ¬a; Stable models are denoted by shaded nodes as ab.
- Interpretations in $\langle x |$ are *e.g.* $\stackrel{(a)}{=}$ and those in $|x\rangle$ are *e.g.* $\boxed{\overline{ab}}$. The remaining are simply denoted by *e.g.* $a\overline{b}$.
- The edges connect stable models with related interpretations. Up arrow indicate links to $|s\rangle$ and down arrows to $\langle s|$.
- The weight propagation sets:

$$\begin{split} w(abc) &= w(ab) w(ac) = \alpha^2 d\overline{d}, \\ w(\overline{a} \cdot \cdot) &= w(\neg a) = \overline{\alpha}, \\ w(a) &= w(ab) + w(ac) = \alpha(d + \overline{d}) = \alpha, \\ w(b) &= w(ab) = d\alpha, \\ w(c) &= w(ac) = \overline{d}\alpha, \\ w(\emptyset) &= w(ab) + w(ac) + w(\neg a) = d\alpha + \overline{d}\alpha + \overline{\alpha} = 1, \\ w(a\overline{b}) &= 0. \end{split}$$

The total weight is

- 2 Motivation
- **3** Resolution
- Cases & Examples Programs with disjunctive heads Non-stratified programs
- **6** Conclusions

The following LP is non-stratified, because has a cycle with negated arcs:

$$c_1 = a \lor \neg a,$$

$$c_2 = b \leftarrow \sim c \land \sim a,$$

$$c_3 = c \leftarrow \sim b.$$

This program has three stable models

$$s_1 = \{a, c\},$$

 $s_2 = \{\neg a, b\},$
 $s_3 = \{\neg a, c\}.$

The disjunctive clause $a \vee \neg a$ defines a set of **total choices**

$$\Theta = \left\{ \theta_1 = \left\{ a \right\}, \theta_2 = \left\{ \neg a \right\} \right\}.$$

Looking into probabilistic interpretations of the program and/or its models, we define $\alpha = p(\Theta = \theta_1) \in [0, 1]$ and $p(\Theta = \theta_2) = \overline{\alpha}$. Since s_1 is the only stable model that results from $\Theta = \theta_1$, it is natural to extend $p(s_1) = p(\Theta = \theta_1) = \alpha$. However, there is no clear way to assign $p(s_2), p(s_3)$ since both models result from the single total choice $\Theta = \theta_2$. Clearly,

$$p(s_2 \mid \Theta) + p(s_3 \mid \Theta) = \begin{cases} 0 & \text{if } \Theta = \theta_1 \\ 1 & \text{if } \Theta = \theta_2 \end{cases}$$

but further assumptions are not supported *a priori*. So let's **parameterize** the equation above,

$$\begin{cases} p(s_2 \mid \Theta = \theta_2) = & \beta \in [0, 1] \\ p(s_3 \mid \Theta = \theta_2) = & \overline{\beta}, \end{cases}$$

in order to explicit our knowledge, or lack of, with numeric values and relations.

Now we are able to define the **joint distribution** of the boolean random variables A, B, C:

$$A, B, C$$
 P Obs. $a, \neg b, c$ α $s_1, \Theta = \theta_1$ $\neg a, b, \neg c$ $\overline{\alpha}\beta$ $s_2, \Theta = \theta_2$ $\neg a, \neg b, c$ $\overline{\alpha}\overline{\beta}$ $s_3, \Theta = \theta_2$ $*$ 0not stable models

where $\alpha, \beta \in [0, 1]$.

2 Motivation

3 Resolution

4 Cases & Examples

- We can use the basics of probability theory and logic programming to assign explicit *parameterized* probabilities to the (stable) models of a program.
- In the covered cases it was possible to define a (parameterized) *family of joint distributions*.
- How far this approach can cover all the cases on logic programs is (still) an issue *under investigation*.
- However, it is non-restrictive since *no unusual assumptions are made*.

2 Motivation

3 Resolution

4 Cases & Examples

- An **atom** is $r(t_1, \ldots, t_n)$ where
 - *r* is a *n*-ary predicate symbol and each *t_i* is a constant or a variable.
 - A ground atom has no variables; A literal is either an atom *a* or a negated atom ¬*a*.
- An ASP Program is a set of rules such as

 $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n.$

- The head of this rule is $h_1 \vee \cdots \vee h_m$, the body is $b_1 \wedge \cdots \wedge b_n$ and each b_i is a subgoal.
- Each h_i is a literal, each subgoal b_j is a literal or a literal preceded by ∼ and m + n > 0.
- A propositional program has no variables.
- A non-disjunctive rule has m ≤ 1; A normal rule has m = 1; A constraint has m = 0; A fact is a normal rule with n = 0.
- The **Herbrand base** of a program is the set of ground literals that result from combining all the predicates and constants of the program.
 - An **interpretation** is a consistent subset (*i.e.* doesn't contain $\{a, \neg a\}$) of the Herbrand base.
 - Given an interpretation *I*, a ground literal *a* is true, *I* ⊨ *a*, if *a* ∈ *I*; otherwise the literal is false.
 - A ground subgoal, $\sim b$, where b is a ground literal, is **true**,