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Notation and Assumptions

• x = 1− x .
• Probabilistic Atomic Choice (PAC): α :: a defines a ∨ ¬a

and probabilities p(a) = α, p(¬a) = α.
• δa denotes a ∨ ¬a and δ{α :: a, a ∈ A} = {δa, a ∈ A} for a

set of atoms A.
• Closed World Assumption: ∼x |= ¬x .



General Setting

• Atoms A, A = {¬a, a ∈ A},
• Samples Z:

Z =
{

z = α ∪ β, α ⊆ A ∧ β ⊆ A
}

• Interpretations or consistent samples I :

I =
{

z ∈ Z, ∀a ∈ A
∣∣{a,¬a} ∩ z

∣∣ ≤ 1
}
.

• PASP Problem or Specification: P = C ∧ F ∧ R where
• C = CP = {αi :: ai , i ∈ 1 : n ∧ ai ∈ A} pacs.
• F = FP facts.
• R = RP rules.
• AP ,ZP and IP : atoms, samples and interpretations of P.

• Stable Models of P, S = SP , are the stable models of
δP = δC + F + R.



Distribution Semantics

• Total Choices: Θ = ΘC = ΘP elements are θ = {tc , c ∈ C}
where c = α :: a and tc is a or ¬a.
• Total Choice Probability:

p(θ) =
∏
a∈θ

α
∏
¬a∈θ

α. (1)

This is the distribution semantic as set by Sato.



Problem Statement
How to extend probability from total choices to stable models,
interpretations and samples?

There’s a problem right at extending to stable models.



The Disjunction Case
Disjuntion Example
The specification

0.3 :: a,
b ∨ c ← a.

has three stable models,

s1 = {¬a} , s2 = {a, b} , s3 = {a, c} .

• Any stable model contains exactly one total choice. ■
• p

(
{¬a}

)
= 0.7 is straightforward.

• But, no informed choice for α ∈ [0, 1] in

p
(
{a, b}

)
= 0.3α,

p
(
{a, c}

)
= 0.3α.



Lack of Information & Parametrization

• The specification lacks information to set α ∈ [0, 1] in

p
(
{a, b}

)
= 0.3α,

p
(
{a, c}

)
= 0.3α.

• A random variable captures this uncertainty:

p
(
{¬a}

∣∣ A = α
)
= 0.7,

p
(
{a, b}

∣∣ A = α
)
= 0.3α,

p
(
{a, c}

∣∣ A = α
)
= 0.3α.

• Other uncertainties lead to further parameters:

p(s | A1 = α1, . . . ,An = αn) .

Reducing specification uncertainty, e.g. setting A = 0.21, must
result from observations.



A random variable captures this uncertainty:

p
(
{¬a}

∣∣ A = α
)
= 0.7,

p
(
{a, b}

∣∣ A = α
)
= 0.3α,

p
(
{a, c}

∣∣ A = α
)
= 0.3α.

Main Research Question
Can all specification uncertainties be neatly expressed as that
example?

• Follow ASP syntax; for each case, what are the uncertainty
scenarios?
• The disjunction example illustrates one such scenario.
• Neat means a function d : S → [0, 1] such that∑

s∈Sθ

d(s) = 1

for each θ ∈ Θ.



Given a method that produces a distribution of samples, p, from a
specification, P and:
• Z , a dataset of samples.
• e, the respective empirical distribution.
• D, some probability divergence, e.g. Kullback-Leibler.

Motivation
Then D(P) = D(e, p) is a performance measure of P and can be
used, e.g. as fitness, by algorithms searching for optimal
specifications of a dataset.
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Resolution Path

Prior to conciliation with data:
1 Use conditional parameters to represent lack of knowledge

e.g. α in the disjunction example.
2 This extends probability from total choices to standard models

— hopefully.
3 Assume probability set on standard models; Extend it to

interpretations. How? Later.
4 Set p(z) = 0 for z ∈ Z \ I (inconsistent samples).

Assuming a conditional probability set on stable models, How to
extend it to interpretations?



Bounds of Interpretations

• For x ∈ I:
• Lower Models: ⟨x | = {s ∈ S, s ⊆ x}.
• Upper Models: |x⟩ = {s ∈ S, x ⊆ s}.

• Proposition. Exactly one of the following cases takes place:
1 ⟨x | = {x} = |x⟩ and x is a stable model.
2 ⟨x | ̸= ∅ ∧ |x⟩ = ∅.
3 ⟨x | = ∅ ∧ |x⟩ ̸= ∅.
4 ⟨x | = ∅ = |x⟩.

because stable models are minimal.



Disjunction Example | The Interpretation’s Lattice

sm sub sup ind

∅

ab c a b c

ab acab ac ab ac ab ac bc bc bc bc

abc abc abc abc abc abc abc abc



• Consider the ASP program P = C ∧ F ∧ R with total choices
Θ and stable models S.
• Let d : S → [0, 1] such that

∑
s∈Sθ

d(s) = 1 for each θ ∈ Θ.



For each z ∈ Z only one of the following cases takes place
1 z is inconsistent. Then define

wd(x) = 0. (2)

2 z is an interpretation and ⟨z | = {z} = |z⟩. Then z is a stable
model and define

wd(z) = w(z) = d(z) p(θz) . (3)

3 z is an interpretation and ⟨z | ̸= ∅ ∧ |x⟩ = ∅. Then define

wd(z) =
∑
s∈⟨z|

wd(s) . (4)

4 z is an interpretation and ⟨z | = ∅ ∧ |z⟩ ̸= ∅. Then define

wd(z) =
∏

s∈|z⟩
wd(s) . (5)

5 z is an interpretation and ⟨z | = ∅ ∧ |z⟩ = ∅. Then define

wd(z) = 0. (6)



1 The last point defines a “weight” function on the samples
that depends not only on the total choices and stable models
of a PASP but also on a certain function d that must respect
some conditions. To simplify the notation we use the
subscript in wd only when necessary.

2 At first, it may seem counter-intuitive that
w
(
∅
)
=

∑
s∈S w(s) is the largest “weight” in the lattice. But

∅, as an interpretation, sets zero restrictions on the
“compatible” stable models. The “complement” of ⊥ = ∅ is
the maximal inconsistent sample ⊤ = A ∪ {¬a, a ∈ A}.

3 We haven’t yet defined a probability measure. To do so
we must define a set of samples Ω, a set of events F ⊆ P(Ω)
and a function P : F → [0, 1] such that:

1 p(E ) ∈ [0, 1] for any E ∈ F .
2 p(Ω) = 1.
3 if E1 ∩ E2 = ∅ then p(E1 ∪ E2) = p(E1) + p(E2).

4 In the following, assume that the stable models are iid.
5 Let the sample space Ω = Z and the event space F = P(Ω).

Define Z =
∑

ζ∈Z w(ζ) and

p(z) = w(z)
Z , z ∈ Ω (7)

and
p(E ) =

∑
x∈E

p(x) ,E ⊆ Ω. (8)

Now:
1 P(E ) ∈ [0, 1] results directly from the definitions of P and w .
2 p(Ω) = 1 also results directly from the definitions.
3 Consider two disjunct events A,B ⊂ Ω ∧ A ∩ B = ∅. Then

p(A ∪ B) =
∑

x∈A∪B
p(x)

=
∑
x∈A

p(x) +
∑
x∈B

p(x)−
∑

x∈A∩B
p(x)

=
∑
x∈A

p(x) +
∑
x∈B

p(x) because A ∩ B = ∅

= p(A) + p(B) .

4 So
(
Ω = Z,F = P(Ω) ,P

)
is a probability space. ■
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Consider the program:

c1 = a ∨ ¬a,
c2 = b ∨ c ← a.

This program has two total choices,

θ1 = {¬a} ,
θ2 = {a} .

and three stable models,

s1 = {¬a} ,
s2 = {a, b} ,
s3 = {a, c} .



Suppose that we add an annotation α :: a, which entails α :: ¬a.
This is enough to get w(s1) = α but, on the absence of further
information, no fixed probability can be assigned to either model
s2, s3 except that the respective sum must be α. So, expressing our
lack of knowledge using a parameter d ∈ [0, 1] we get:

w(s1) = α

w(s2) = dα
w(s3) = dα.



In this diagram:
• Negations are represented as e.g. a instead of ¬a; Stable

models are denoted by shaded nodes as ab .

• Interpretations in ⟨x | are e.g. a and those in |x⟩ are e.g.
ab . The remaining are simply denoted by e.g. ab .

• The edges connect stable models with related interpretations.
Up arrow indicate links to |s⟩ and down arrows to ⟨s|.
• The weight propagation sets:

w(abc) = w(ab)w(ac) = α2dd ,
w(a · ·) = w(¬a) = α,

w(a) = w(ab) + w(ac) = α(d + d) = α,

w(b) = w(ab) = dα,
w(c) = w(ac) = dα,
w
(
∅
)
= w(ab) + w(ac) + w(¬a) = dα+ dα+ α = 1,

w
(

ab
)
= 0.

• The total weight is
Z = w(abc) + 8w(ab)
+ w(ab) + w(ac) + w(a)
+ w(a) + w(b) + w(c)
+ w

(
∅
)

= −α2d2 + α2d + 2αd − 7α+ 10
• Now, if α has an annotation to e.g. 0.3 we get

Z = −0.09d2 + 0.69d + 7.9
• Now some statistics are possible. For example we get

p
(
abc | α = 0.3

)
=

0.09d (d − 1)
0.09d2 − 0.69d − 7.9

.
• This expression can be plotted for d ∈ [0, 1]

0.0 0.2 0.4 0.6 0.8 1.0
d

0.0000
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0.0020

0.0025

P(
ex

pr
=

0.
3)

• If a data set E entails e.g. p
(
abc | E

)
= 0.0015 we can

numerically solve
p
(
abc | α = 0.3

)
= p

(
abc | E

)
⇐⇒

0.09d (d − 1)
0.09d2 − 0.69d − 7.9 = 0.0015

which has two solutions, d ≈ 0.15861 or d ≈ 0.83138.
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The following LP is non-stratified, because has a cycle with
negated arcs:

c1 = a ∨ ¬a,
c2 = b ←∼c∧ ∼a,
c3 = c ←∼b.

This program has three stable models

s1 = {a, c} ,
s2 = {¬a, b} ,
s3 = {¬a, c} .



The disjunctive clause a ∨ ¬a defines a set of total choices

Θ =
{
θ1 = {a} , θ2 = {¬a}

}
.



Looking into probabilistic interpretations of the program and/or its
models, we define α = p(Θ = θ1) ∈ [0, 1] and p(Θ = θ2) = α.
Since s1 is the only stable model that results from Θ = θ1, it is
natural to extend p(s1) = p(Θ = θ1) = α. However, there is no
clear way to assign p(s2) , p(s3) since both models result from the
single total choice Θ = θ2. Clearly,

p
(
s2 | Θ

)
+ p

(
s3 | Θ

)
=

{
0 if Θ = θ1

1 if Θ = θ2

but further assumptions are not supported a priori. So let’s
parameterize the equation above,{

p
(
s2 | Θ = θ2

)
= β ∈ [0, 1]

p
(
s3 | Θ = θ2

)
= β,

in order to explicit our knowledge, or lack of, with numeric values
and relations.



Now we are able to define the joint distribution of the boolean
random variables A,B,C :

A,B,C P Obs.
a,¬b, c α s1,Θ = θ1
¬a, b,¬c αβ s2,Θ = θ2
¬a,¬b, c αβ s3,Θ = θ2
∗ 0 not stable models

where α, β ∈ [0, 1].
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• We can use the basics of probability theory and logic
programming to assign explicit parameterized probabilities to
the (stable) models of a program.
• In the covered cases it was possible to define a

(parameterized) family of joint distributions.
• How far this approach can cover all the cases on logic

programs is (still) an issue under investigation.
• However, it is non-restrictive since no unusual assumptions are

made.



1 Introduction

2 Extending Probability to Samples

3 Cases & Examples

4 Conclusions



• An atom is r(t1, . . . tn) where
• r is a n-ary predicate symbol and each ti is a constant or a

variable.
• A ground atom has no variables; A literal is either an atom a

or a negated atom ¬a.
• An ASP Program is a set of rules such as

h1 ∨ · · · ∨ hm ← b1 ∧ · · · ∧ bn.
• The head of this rule is h1 ∨ · · · ∨ hm, the body is b1 ∧ · · · ∧ bn

and each bi is a subgoal.
• Each hi is a literal, each subgoal bj is a literal or a literal

preceded by ∼ and m + n > 0.
• A propositional program has no variables.
• A non-disjunctive rule has m ≤ 1; A normal rule has m = 1;

A constraint has m = 0; A fact is a normal rule with n = 0.
• The Herbrand base of a program is the set of ground literals

that result from combining all the predicates and constants of
the program.
• An interpretation is a consistent subset (i.e. doesn’t contain
{a,¬a}) of the Herbrand base.

• Given an interpretation I, a ground literal a is true, I |= a, if
a ∈ I; otherwise the literal is false.

• A ground subgoal, ∼b, where b is a ground literal, is true,
I |=∼b, if b ̸∈ I; otherwise, if b ∈ I, it is false.

• A ground rule r = h1 ∨ · · · ∨ hm ← b1 ∧ · · · ∧ bn is satisfied by
the interpretation I, i.e. I |= r , iff

∀j∃i I |= bj =⇒ I |= hi .

• A model of a program is an interpretation that satisfies all its
rules. Denote MP the set of all models of P.

• The dependency graph of a program is a digraph where:
• Each grounded atom is a node.
• For each grounded rule there are edges from the atoms in the

body to the atoms in the head.
• A negative edge results from an atom with ∼ ; Otherwise it is

a positive edge.
• An acyclic program has an acyclic dependency graph; A

normal program has only normal rules; A definite program
is a normal program that doesn’t contains ¬ neither ∼ .

• In the dependency graph of a stratified program no cycle
contains a negative edge.

• A stratified program has a single minimal model that
assigns either true or false to each atom.

• Every definite program has a unique minimal model: its
semantic.
• Programs with negation may have no unique minimal model.
• Given a program P and an interpretation I, their reduct, P I ,

is the propositional program that results from
1 Removing all the rules with ∼b in the body where b ∈ I.
2 Removing all the ∼b subgoals from the remaining rules.

• A stable model (or answer set) of the program P is an
interpretation I that is the minimal model of the reduct P I .
• Denote SP the set of all stable models of program P. The

semantics (or answer sets) of a program P is the set SP .
• Some programs, such as a←∼a, have no stable models.
• A stable model is an interpretation closed under the rules of

the program.
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