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@ Introduction



Notation and Assumptions

* x=1-—x.
Probabilistic Atomic Choice (PAC): « :: a defines aVV —a
and probabilities p(a) = «, p(—a) = @.

da denotes aV —a and 0{«a :: a,a € A} = {da,a € A} for a
set of atoms A.

Closed World Assumption: ~x = —x.



General Setting

® Atoms A, A= {-a, ac A},
® Samples Z:

Z:{z:auﬁ, aQA/\ﬁQZ}

Interpretations or consistent samples T :

I={ze€Z VacAl[{a,—a}nz|<1}.

PASP Problem or Specification: P = C A F A R where

® C=Cp={a;a,i€l:nAa €A} pacs.
® F = Fp facts.

® R = Rp rules.

[ ]

Ap, Zp and Zp: atoms, samples and interpretations of P.

Stable Models of P, S = Sp, are the stable models of
OP=0C+ F+R.



Distribution Semantics

® Total Choices: © = ©¢ = ©p elements are § = {t., c € C}
where ¢ = «v :: @ and t. is a or —a.

® Total Choice Probability:

p(0) =[] [ = (1)

acl —ach

This is the distribution semantic as set by Sato.



Problem Statement

How to extend probability from total choices to stable models,
interpretations and samples?

There's a problem right at extending to stable models.



The Disjunction Case

Disjuntion Example

The specification
0.3: a,
bVc+ a.

has three stable models,

si={-a}, sx={a,b}, s3={a,c}.

® Any stable model contains exactly one total choice. B
* p({—a}) = 0.7 is straightforward.

® But, no informed choice for a € [0, 1] in

p({a, b}) = 0.3,
p({a,c}) =0.3a



Lack of Information & Parametrization

® The specification lacks information to set « € [0, 1] in

p({a, b}) = 0.3q,
p({a,c}) =0.3a

® A random variable captures this uncertainty:

p({-a} |A=0a) =07,
p({a,b} | A=a) =030,
p({a,c} | A=a) =0.3a.

e QOther uncertainties lead to further parameters:
p(S ‘ Al :al,...,A,, :Ocn).

Reducing specification uncertainty, e.g. setting A = 0.21, must
result from observations.



A random variable captures this uncertainty:
p({—a} ‘ A=a) =07,
p({a, b} ‘ A=a)=0.3aq,
p({a,c} | A=a) =0.3a.

Main Research Question
Can all specification uncertainties be neatly expressed as that

example?

® Follow ASP syntax; for each case, what are the uncertainty
scenarios?

® The disjunction example illustrates one such scenario.
® Neat means a function d : § — [0, 1] such that

D d(s)=1
seSy

for each § € ©.



Given a method that produces a distribution of samples, p, from a
specification, P and:

® 7, a dataset of samples.
® ¢, the respective empirical distribution.

® D, some probability divergence, e.g. Kullback-Leibler.

Motivation

Then D(P) = D(e, p) is a performance measure of P and can be
used, e.g. as fitness, by algorithms searching for optimal
specifications of a dataset.



@ Extending Probability to Samples



Resolution Path

Prior to conciliation with data:

@ Use conditional parameters to represent lack of knowledge
e.g. « in the disjunction example.

® This extends probability from total choices to standard models
— hopefully.

© Assume probability set on standard models; Extend it to
interpretations. How? Later.

O® Set p(z) =0 for z € Z\ T (inconsistent samples).

Assuming a conditional probability set on stable models, How to
extend it to interpretations?



Bounds of Interpretations

® For xe1:
® Lower Models: (x| ={sc S, s C x}.
® Upper Models: |[x) = {s€ S, x Cs}.

® Proposition. Exactly one of the following cases takes place:
® (x| = {x} = |x) and x is a stable model.

A (x| A£DAN|x)=0.
O (x| =0A[x)#0.
0O (x| =0=x).

because stable models are minimal.



Disjunction Example | The Interpretation’s Lattice

o nd

abc abc¢ abc abc

ol



e Consider the ASP program P = C A F A R with total choices
© and stable models S.

® Let d:S —[0,1] such that 3 s, d(s) =1 for each 6 € ©.



For each z € Z only one of the following cases takes place
@ z is inconsistent. Then define

wg(x) = 0. (2)

@® z is an interpretation and (z| = {z} = |z). Then z is a stable
model and define

wy(z) = w(z) = d(z) p(0z) - (3)
© z is an interpretation and (z| # 0 A |x) = (). Then define
wa(z) = Y wa(s). (4)
se(z|

O z is an interpretation and (z| = 0 A |z) # (). Then define

wy(z) = H wy(s) . (5)

s€|z)

@ z is an interpretation and (z| = 0 A |z) = (). Then define

wy(z) = 0. (6)



@ The last point defines a “weight” function on the samples
that depends not only on the total choices and stable models
of a PASP but also on a certain function d that must respect
some conditions. To simplify the notation we use the
subscript in wy only when necessary.

® At first, it may seem counter-intuitive that
w(0) = > .cs w(s) is the largest “weight” in the lattice. But
@, as an interpretation, sets zero restrictions on the
“compatible” stable models. The “complement” of L =0 is
the maximal inconsistent sample T = AU {—a, a € A}.

©® We haven’t yet defined a probability measure. To do so
we must define a set of samples €, a set of events F C P(Q)
and a function P : F — [0, 1] such that:

@ p(E) €[0,1] forany E € F.
® p(Q2) =1
® if 1N E; = 0 then p(E1 U Ez) = p(El) + p(Eg).

O In the following, assume that the stable models are iid.

@ Let the sample space Q2 = Z and the event space F = P(Q).
Define Z =}z w(() and

w(z)

-~ =\ -~ 0O {7\



© Cases & Examples



Programs with disjunctive heads



Consider the program:

¢ = aV a,
¢ =bVc+ a

This program has two total choices,

91 = {—|a}7

92 = {a} .
and three stable models,

51 = {—\3}7

S = {37 b} 5

s3 ={a,c}.



Suppose that we add an annotation « :: a, which entails @ :: —a.
This is enough to get w(s;) = @ but, on the absence of further
information, no fixed probability can be assigned to either model
S2, S3 except that the respective sum must be . So, expressing our
lack of knowledge using a parameter d € [0, 1] we get:

W(Sl) = «
W(Sz) = do
w(s3) = da.



In this diagram:
® Negations are represented as e.g. 3 instead of —a; Stable

models are denoted by shaded nodes as ab

® Interpretations in (x| are e.g. @ and those in |x) are e.g.

. The remaining are simply denoted by e.g. ab
® The edges connect stable models with related interpretations.
Up arrow indicate links to |s) and down arrows to (s|.
® The weight propagation sets:
w(abc) = w(ab) w(ac) = a?dd,

W(g. ) =

2

(ma) =2,
w(a) = w(ab) + w(ac) = a(d + d) = a,
w(b) = w(ab) = da,
(ac) = da,
(ab)

+w(ac) + w(=-a) =da+da+a=1,

w(c) =w

w(0) = w(ab

w(ab) =o.

® The +Atal weicht ic



Non-stratified programs



The following LP is non-stratified, because has a cycle with
negated arcs:
¢ = aV a,

o =b<+n~cN~a,
c3 =Cc<~b.
This program has three stable models
S1 = {37 C} )

sp = {—a, b},

s3 = {—a,c}.



The disjunctive clause a V —a defines a set of total choices

e = {91 = {a},02 = {—\a}} .



Looking into probabilistic interpretations of the program and/or its
models, we define « = p(© = 61) € [0,1] and p(© = 0,) = @a.
Since s; is the only stable model that results from © = 6, it is
natural to extend p(s;) = p(© = 61) = o. However, there is no
clear way to assign p(s2), p(s3) since both models result from the
single total choice © = 6,. Clearly,

0 ife=6

p(52|@)+P(53|@):{1 if © =6

but further assumptions are not supported a priori. So let's
parameterize the equation above,

{p(Sz | @:92) = pe [0,1]
p(ss|©=102) = 5,

in order to explicit our knowledge, or lack of, with numeric values
and relations.



Now we are able to define the joint distribution of the boolean
random variables A, B, C:

ABC P ‘ Obs.

a,—-b,c «a |s5,0=0;
—a,b,mc af|s,0 =106
—a,~b,c af|s3,0 =06,

* 0 | not stable models

where a, 8 € [0, 1].



O Conclusions



We can use the basics of probability theory and logic
programming to assign explicit parameterized probabilities to
the (stable) models of a program.

In the covered cases it was possible to define a
(parameterized) family of joint distributions.

How far this approach can cover all the cases on logic
programs is (still) an issue under investigation.

However, it is non-restrictive since no unusual assumptions are
made.
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e An atom is r(t1,...t,) where
® ris a n-ary predicate symbol and each t; is a constant or a
variable.
® A ground atom has no variables; A literal is either an atom a
or a negated atom —a.
e An ASP Program is a set of rules such as
hV--Vhn< b A A b,
® The head of this rule is A1 V-V h,,, the body is by A--- A b,
and each b; is a subgoal.
® Each h; is a literal, each subgoal b; is a literal or a literal
preceded by ~ and m+ n > 0.
® A propositional program has no variables.
® A non-disjunctive rule has m < 1; A normal rule has m = 1,
A constraint has m = 0; A fact is a normal rule with n = 0.
® The Herbrand base of a program is the set of ground literals
that result from combining all the predicates and constants of
the program.
® An interpretation is a consistent subset (i.e. doesn't contain
{a, —~a}) of the Herbrand base.
® Given an interpretation /, a ground literal a is true, | |= a, if
a € [; otherwise the literal is false.

® A ground subgoal, ~ b, where b is a ground literal, is true,
e L 'L L ~ I bl w0 . " "L L —~ I "L " €0
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