Zugzwang Stochastic Adventures in Inductive Logic

Francisco Coelho

Departamento de Informática, Universidade de Évora High Performance Computing Chair NOVA-LINCS

November 9, 2022

- Introduction
- 2 Extending Probability to Samples
- 3 Cases & Examples
- 4 Conclusions

Notation and Assumptions

- $\overline{x} = 1 x$.
- Probabilistic Atomic Choice (PAC): α :: a defines $a \vee \neg a$ and probabilities $p(a) = \alpha, p(\neg a) = \overline{\alpha}$.
- δa denotes $a \vee \neg a$ and $\delta \{\alpha :: a, a \in \mathcal{A}\} = \{\delta a, a \in \mathcal{A}\}$ for a set of atoms \mathcal{A} .
- Closed World Assumption: $\sim x \models \neg x$.

General Setting

- Atoms A, $\overline{A} = {\neg a, a \in A}$,
- Samples Z:

$$\mathcal{Z} = \left\{ z = \alpha \cup \beta, \ \alpha \subseteq \mathcal{A} \land \beta \subseteq \overline{\mathcal{A}} \right\}$$

• Interpretations or consistent samples ${\mathcal I}$:

$$\mathcal{I} = \left\{ z \in \mathcal{Z}, \ \forall a \in \mathcal{A} \ \left| \{a, \neg a\} \cap z \right| \leq 1 \right\}.$$

- *PASP Problem* or **Specification**: $P = C \land F \land R$ where
 - $C = C_P = \{\alpha_i :: a_i, i \in 1 : n \land a_i \in A\}$ pacs.
 - $F = F_P$ facts.
 - R = R_P rules.
 - A_P, Z_P and I_P : atoms, samples and interpretations of P.
- **Stable Models** of P, $S = S_P$, are the stable models of $\delta P = \delta C + F + R$.

Distribution Semantics

- Total Choices: $\Theta = \Theta_C = \Theta_P$ elements are $\theta = \{t_c, c \in C\}$ where $c = \alpha :: a$ and t_c is a or $\neg a$.
- Total Choice Probability:

$$p(\theta) = \prod_{\mathbf{a} \in \theta} \alpha \prod_{\neg \mathbf{a} \in \theta} \overline{\alpha}. \tag{1}$$

This is the distribution semantic as set by Sato.

Problem Statement

How to *extend* probability from total choices to stable models, interpretations and samples?

There's a problem right at extending to stable models.

The Disjunction Case

Disjuntion Example

The specification

$$0.3 :: a,$$
 $b \lor c \leftarrow a.$

has three stable models,

$$s_1 = \{ \neg a \}, \quad s_2 = \{ a, b \}, \quad s_3 = \{ a, c \}.$$

- Any stable model contains exactly one total choice.
- $p({\neg a}) = 0.7$ is straightforward.
- But, no informed choice for $\alpha \in [0,1]$ in

$$p({a,b}) = 0.3\alpha,$$
$$p({a,c}) = 0.3\overline{\alpha}.$$

Lack of Information & Parametrization

• The specification lacks information to set $\alpha \in [0,1]$ in

$$p({a,b}) = 0.3\alpha,$$

 $p({a,c}) = 0.3\overline{\alpha}.$

A random variable captures this uncertainty:

$$p(\{\neg a\} \mid A = \alpha) = 0.7,$$

$$p(\{a, b\} \mid A = \alpha) = 0.3\alpha,$$

$$p(\{a, c\} \mid A = \alpha) = 0.3\overline{\alpha}.$$

Other uncertainties lead to further parameters:

$$p(s \mid A_1 = \alpha_1, \ldots, A_n = \alpha_n).$$

Reducing **specification uncertainty**, *e.g.* setting A = 0.21, must result from **observations**.

A random variable captures this uncertainty:

$$p(\{\neg a\} \mid A = \alpha) = 0.7,$$

$$p(\{a, b\} \mid A = \alpha) = 0.3\alpha,$$

$$p(\{a, c\} \mid A = \alpha) = 0.3\overline{\alpha}.$$

Main Research Question

Can *all* specification uncertainties be neatly expressed as that example?

- Follow ASP syntax; for each case, what are the uncertainty scenarios?
- The disjunction example illustrates one such scenario.
- *Neat* means a function $d: \mathcal{S} \rightarrow [0,1]$ such that

$$\sum_{s \in \mathcal{S}_{\theta}} d(s) = 1$$

for each $\theta \in \Theta$.

Given a method that produces a distribution of samples, p, from a specification, P and:

- Z, a dataset of samples.
- e, the respective empirical distribution.
- D, some probability divergence, e.g. Kullback-Leibler.

Motivation

Then D(P) = D(e, p) is a **performance** measure of P and can be used, e.g. as fitness, by algorithms searching for **optimal** specifications of a dataset.

- 1 Introduction
- 2 Extending Probability to Samples
- Cases & Examples
- 4 Conclusions

Resolution Path

Prior to conciliation with data:

- 1 Use conditional parameters to represent lack of knowledge e.g. α in the disjunction example.
- This extends probability from total choices to standard models

 hopefully.
- 3 Assume probability set on standard models; Extend it to interpretations. How? Later.
- **4** Set p(z) = 0 for $z \in \mathcal{Z} \setminus \mathcal{I}$ (inconsistent samples).

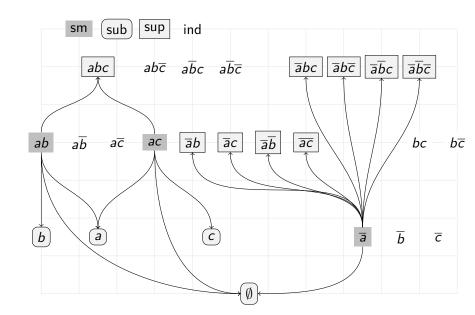
Assuming a conditional probability set on stable models, *How to extend it to interpretations?*

Bounds of Interpretations

- For $x \in \mathcal{I}$:
 - Lower Models: $\langle x| = \{s \in \mathcal{S}, \ s \subseteq x\}.$
 - Upper Models: $|x\rangle = \{s \in \mathcal{S}, x \subseteq s\}.$
- **Proposition.** Exactly *one* of the following cases takes place:
 - $(x) = \{x\} = |x| \text{ and } x \text{ is a stable model.}$
 - $2 \langle x | \neq \emptyset \land | x \rangle = \emptyset.$
 - $(x| = \emptyset \land |x) \neq \emptyset.$
 - $4 \langle x | = \emptyset = |x\rangle.$

because stable models are minimal.

Disjunction Example | The Interpretation's Lattice



- Consider the ASP program $P = C \wedge F \wedge R$ with total choices Θ and stable models S.
- Let $d:\mathcal{S} o [0,1]$ such that $\sum_{s \in \mathcal{S}_{ heta}} d(s) = 1$ for each $heta \in \Theta$.

For each $z \in \mathcal{Z}$ only one of the following cases takes place

1 z is inconsistent. Then **define**

$$w_d(x) = 0. (2)$$

2 z is an interpretation and $\langle z|=\{z\}=|z\rangle$. Then z is a stable model and **define**

$$w_d(z) = w(z) = d(z) p(\theta_z).$$
 (3)

3 z is an interpretation and $\langle z| \neq \emptyset \land |x\rangle = \emptyset$. Then **define**

$$w_d(z) = \sum_{s \in \langle z|} w_d(s). \tag{4}$$

4 z is an interpretation and $\langle z| = \emptyset \land |z\rangle \neq \emptyset$. Then **define**

$$w_d(z) = \prod_{s \in |z|} w_d(s). \tag{5}$$

5 z is an interpretation and $\langle z|=\emptyset \wedge |z\rangle =\emptyset$. Then **define**

$$w_d(z) = 0. (6)$$

- 1 The last point defines a "weight" function on the samples that depends not only on the total choices and stable models of a PASP but also on a certain function d that must respect some conditions. To simplify the notation we use the subscript in w_d only when necessary.
- 2 At first, it may seem counter-intuitive that $w(\emptyset) = \sum_{s \in S} w(s)$ is the largest "weight" in the lattice. But \emptyset , as an interpretation, sets zero restrictions on the "compatible" stable models. The "complement" of $\bot = \emptyset$ is the *maximal inconsistent* sample $\top = A \cup \{\neg a, \ a \in A\}$.
- the maximal inconsistent sample $T = A \cup \{\neg a, a \in A\}$.

 3 We haven't yet defined a probability measure. To do so we must define a set of samples Ω , a set of events $F \subseteq \mathbb{P}(\Omega)$ and a function $P : F \to [0,1]$ such that:

 1 $p(E) \in [0,1]$ for any $E \in F$.
 - **2** $p(\Omega) = 1$.
 - 3 if $E_1 \cap E_2 = \emptyset$ then $p(E_1 \cup E_2) = p(E_1) + p(E_2)$.
- 4 In the following, assume that the stable models are iid. 5 Let the sample space $\Omega = \mathcal{Z}$ and the event space $F = \mathbb{P}(\Omega)$. Define $Z = \sum_{\zeta \in \mathcal{Z}} w(\zeta)$ and

- 1 Introduction
- 2 Extending Probability to Samples
- 3 Cases & Examples Programs with disjunctive heads Non-stratified programs
- 4 Conclusions

- 1 Introduction
- 2 Extending Probability to Samples
- Cases & Examples Programs with disjunctive heads Non-stratified programs
- 4 Conclusions

Consider the program:

$$c_1 = a \lor \neg a,$$

 $c_2 = b \lor c \leftarrow a.$

This program has two total choices,

$$\theta_1 = \{\neg a\},$$

$$\theta_2 = \{a\}.$$

and three stable models,

$$s_1 = \{ \neg a \},$$

 $s_2 = \{ a, b \},$
 $s_3 = \{ a, c \}.$

Suppose that we add an annotation $\alpha :: a$, which entails $\overline{\alpha} :: \neg a$.

This is enough to get $w(s_1) = \overline{\alpha}$ but, on the absence of further information, no fixed probability can be assigned to either model s_2, s_3 except that the respective sum must be α . So, expressing our lack of knowledge using a parameter $d \in [0,1]$ we get:

$$\begin{cases} w(s_1) = \overline{\alpha} \\ w(s_2) = d\alpha \\ w(s_3) = \overline{d}\alpha. \end{cases}$$

In this diagram:

• Negations are represented as e.g. \bar{a} instead of $\neg a$; Stable models are denoted by shaded nodes as [ab].

• Interpretations in $\langle x|$ are e.g. (a) and those in $|x\rangle$ are e.g.

The remaining are simply denoted by e.g. ab The edges connect stable models with related interpretations.

Up arrow indicate links to $|s\rangle$ and down arrows to $\langle s|$.

The weight propagation sets:

 $w(abc) = w(ab) w(ac) = \alpha^2 d\overline{d}$. $w(\overline{a} \cdot \cdot) = w(\neg a) = \overline{\alpha},$ $w(a) = w(ab) + w(ac) = \alpha(d + \overline{d}) = \alpha$ $w(b) = w(ab) = d\alpha$, $w(c) = w(ac) = \overline{d}\alpha$ $w(\emptyset) = w(ab) + w(ac) + w(\neg a) = d\alpha + \overline{d}\alpha + \overline{\alpha} = 1,$ $w(a\overline{b}) = 0.$

The total weight is

- 1 Introduction
- 2 Extending Probability to Samples
- 3 Cases & Examples Programs with disjunctive heads Non-stratified programs
- 4 Conclusions

The following LP is non-stratified, because has a cycle with negated arcs:

$$c_1 = a \lor \lnot a,$$

$$c_2 = b \leftarrow \sim c \land \sim a,$$

 $c_3 = c \leftarrow \sim b.$

 $s_1 = \{a, c\},\$ $s_2 = \{ \neg a, b \}$, $s_3 = \{ \neg a, c \}$.

The disjunctive clause
$$a \lor \neg a$$
 defines a set of **total choices**

 $\Theta = \left\{\theta_1 = \left\{a\right\}, \theta_2 = \left\{\neg a\right\}\right\}.$

Looking into probabilistic interpretations of the program and/or its models, we define $\alpha=p(\Theta=\theta_1)\in[0,1]$ and $p(\Theta=\theta_2)=\overline{\alpha}$. Since s_1 is the only stable model that results from $\Theta=\theta_1$, it is natural to extend $p(s_1)=p(\Theta=\theta_1)=\alpha$. However, there is no clear way to assign $p(s_2)$, $p(s_3)$ since both models result from the single total choice $\Theta=\theta_2$. Clearly,

$$p(s_2 \mid \Theta) + p(s_3 \mid \Theta) = \begin{cases} 0 & \text{if } \Theta = \theta_1 \\ 1 & \text{if } \Theta = \theta_2 \end{cases}$$

but further assumptions are not supported a priori. So let's parameterize the equation above,

$$\begin{cases} p(s_2 \mid \Theta = \theta_2) = & \beta \in [0, 1] \\ p(s_3 \mid \Theta = \theta_2) = & \overline{\beta}, \end{cases}$$

in order to explicit our knowledge, or lack of, with numeric values and relations.

Now we are able to define the **joint distribution** of the boolean random variables A, B, C:

A, B, C		
$a, \neg b, c$	α	$s_1, \Theta = \theta_1$
$\neg a, b, \neg c$	$\overline{\alpha}\beta$	$s_2,\Theta= heta_2$
$\neg a, \neg b, c$	$\overline{\alpha}\overline{\beta}$	$s_3, \Theta = \theta_2$
*	0	$s_1, \Theta = \theta_1$ $s_2, \Theta = \theta_2$ $s_3, \Theta = \theta_2$ not stable models

where $\alpha, \beta \in [0, 1]$.

- 1 Introduction
- 2 Extending Probability to Samples
- Cases & Examples
- **4** Conclusions

- We can use the basics of probability theory and logic programming to assign explicit *parameterized* probabilities to the (stable) models of a program.
- In the covered cases it was possible to define a
- (parameterized) family of joint distributions.How far this approach can cover all the cases on logic

programs is (still) an issue under investigation.

 However, it is non-restrictive since no unusual assumptions are made.

- 1 Introduction
- 2 Extending Probability to Samples
- Cases & Examples
- 4 Conclusions

- An **atom** is $r(t_1, \ldots t_n)$ where r is a n-ary predicate symbol and each t_i is a constant or a variable.
- A ground atom has no variables; A literal is either an atom a or a negated atom $\neg a$.
- An ASP Program is a set of rules such as $h_1 \vee \cdots \vee h_m \leftarrow b_1 \wedge \cdots \wedge b_n$. • The **head** of this rule is $h_1 \vee \cdots \vee h_m$, the **body** is $b_1 \wedge \cdots \wedge b_n$
 - and each b_i is a **subgoal**. • Each h_i is a literal, each subgoal b_i is a literal or a literal
 - preceded by \sim and m+n>0. A propositional program has no variables.
 - A non-disjunctive rule has m < 1; A normal rule has m = 1; A **constraint** has m = 0; A **fact** is a normal rule with n = 0. • The **Herbrand base** of a program is the set of ground literals that result from combining all the predicates and constants of
- the program. • An **interpretation** is a consistent subset (i.e. doesn't contain $\{a, \neg a\}$) of the Herbrand base. • Given an interpretation I, a ground literal a is **true**, $I \models a$, if
 - $a \in I$; otherwise the literal is **false**. • A ground subgoal, $\sim b$, where b is a ground literal, is **true**,