# Probabilistic ILP **Check** Conformal prediction. > Fonte: [Turning 30: New Ideas in Inductive Logic Programming](https://arxiv.org/abs/2002.11002) ## Introduction - How pILP relates to: - ILP? - ASP? - RML? - What - tools? - methods? - theory? - Distributed semantics - applications? ### Overview of Bibliography and State of the Art Recursion; Predicate Invention; Higher order, ASP Hypotheses; Optimality; Prolog, ASP, NNs ## Context ### Kanren ### Inductive Logic Programming ### Answer Set Programming ### Relational Machine Learning ### SAT Solvers ## Tools - [(mini)kanren](http://minikanren.org/) - in Julia: [MuKanren](https://github.com/latticetower/MuKanren.jl), [YA microkanren in Julia](https://www.philipzucker.com/yet-another-microkanren-in-julia/)!. - [metagol | archive](https://github.com/metagol/metagol) _superseeded by **popper**._ - ILP: [popper](https://github.com/logic-and-learning-lab/Popper) - ASP: [ILASP](https://github.com/ilaspltd/ILASP-releases) - [Inspire | Kazmi et al. 2017]() - ASP: [Potassco: clingo, clasp, ...](https://potassco.org/) - [cplint (on SWISH)](http://cplint.ml.unife.it/) - exact probabilistic inference (PITA) - Fabrizio Riguzzi and Terrance Swift. Well-definedness and efficient inference for probabilistic logic programming under the distribution semantics. Theory and Practice of Logic Programming, 13(Special Issue 02 - 25th Annual GULP Conference):279-302, © Cambridge University Press, March 2013. - Monte Carlo inference (MCINTYRE) - Fabrizio Riguzzi. MCINTYRE: A Monte Carlo system for probabilistic logic programming. Fundamenta Informaticae, 124(4):521-541, © IOS Press, 2013. - Metropolis/Hastings sampling - Arun Nampally and C. R. Ramakrishnan. Adaptive MCMC-Based Inference in Probabilistic Logic Programs. arXiv preprint arXiv:1403.6036, 2014. - parameter learning (EMBLEM) - Elena Bellodi and Fabrizio Riguzzi. Expectation Maximization over binary decision diagrams for probabilistic logic programs. Intelligent Data Analysis, 17(2):343-363, © IOS Press, 2013. - SLIPCOVER algorithm for structure learning - Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic logic programs by searching the clause space. Theory and Practice of Logic Programming, 15(2):169-212, © Cambridge University Press, 2015. - LEMUR algorithm for structure learning - Nicola Di Mauro, Elena Bellodi, and Fabrizio Riguzzi. Bandit-based Monte-Carlo structure learning of probabilistic logic programs. Machine Learning, 100(1):127-156, © Springer International Publishing, July 2015. ## Methods ## Theory ### Distributed Semantics ## Applications ### ELearning