
Zugzwang
Logic and Artificial Intelligence

Francisco Coelho Bruno Dinis
fc@uevora.pt bruno.dinis@uevora.pt

January 19, 2023

Abstract

(rewrite) A major limitation of logical representations is the
implicit assumption that the Background Knowledge (BK) is perfect.
This assumption is problematic if data is noisy, which is often the
case. Here we aim to explore how ASP specifications with probabilis-
tic facts can lead to characterizations of probability functions on the
specification’s domain.

1 Introduction and Motivation
(rewrite) Answer Set Programming (ASP) is a logic programming

paradigm based on the Stable Model semantics of Normal Logic Programs
(NP) that can be implemented using the latest advances in SAT solving
technology. ASP is a truly declarative language that supports language con-
structs such as disjunction in the head of a clause, choice rules, and hard and
weak constraints.

The Distribution Semantics (DS) is a key approach to extend logical
representations with probabilistic reasoning. Probabilistic Facts (PF) are
the most basic stochastic DS primitive and they take the form of logical
facts, a, labelled with a probability, such as p :: a; Each probabilistic fact
represents a boolean random variable that is true with probability p and false
with probability 1− p. A (consistent) combination of the PFs defines a total
choice c = {p :: a, . . .} such that

P(C = x) =
∏
a∈c

p
∏
a ̸∈c

(1− p). (1)

1

Our goal is to extend this probability, from total choices, to cover the
specification domain. We can foresee two key applications of this extended
probability:

1. Support any probabilistic reasoning/task on the specification domain.

2. Also, given a dataset and a divergence measure, now the specification
can be scored (by the divergence w.r.t. the empiric distribution of the
dataset), and sorted amongst other specifications. This is a key ingre-
dient in algorithms searching, for example, an optimal specification of
the dataset.

This goal faces a critical problem concerning situations where multiple
standard models result from a given total choice, illustrated by the following
example. The specification

0.3 :: a,

b ∨ c← a.
(2)

has three stable models, a, ab and ac. While it is straightforward to set
P (a) = 0.7, there is no further information to assign values to P (ab) and
P (ac). At best, we can use a parameter x such that

P (ab) = 0.3x,

P (ac) = 0.3(1− x).

This uncertainty in inherent to the specification, but can be mitigated
with the help of a dataset: the parameter x can be estimated from the
empirical distribution.

In summary, if an ASP specification is intended to describe some observ-
able system then:

1. The observations can be used to estimate the value of the parameters
(such as x above and others entailed from further clauses).

2. With a probability set for the stable models, we want to extend it to
all the events of the specification.

3. This extended probability can then be related to the empirical distri-
bution, using a probability divergence, such as Kullback-Leibler; and
the divergence value used as a performance measure of the specification
with respect to the observations.

2

⊥

a

ab ac

b c

abc

bc

a

ac

abc

Figure 1: Extending values, e.g. probabilities, from total choice nodes to
stable models and then to general events in a node-wise process quickly
leads to coherence problems concerning probability, with no clear systematic
approach.

4. If that specification is only but one of many possible candidates then
that performance measure can be used, e.g. as fitness, by algorithms
searching (optimal) specifications of a dataset of observations.

Currently, we are on the step two above: Extending a probability func-
tion (with parameters such as x), defined on the stable sets of a specification,
to all the events of the specification. This must, of course, respect the ax-
ioms of probability so that probabilistic reasoning is consistent with the ASP
specification.

2 Extending Probabilities
Given an ASP specification, we consider the atoms a ∈ A and literals, z ∈ L,
events e ∈ E ⇐⇒ e ⊆ L and worlds w ∈ W (consistent events), total
choices c ∈ C ⇐⇒ c = a ∨ ¬a and stable models s ∈ S.

Out path starts with a perspective of stable models as playing a role
similar to prime factors. The stable models of specification are the irreducible
events entailed from that specification and any event must be interpreted
under its relation with the stable models. This stance leads to definition 1:

Definition 1. Let e, u, v ∈ E , and S,W the set of stable models, resp.
consistent events, of some specification. Define

⟨e| = {s ∈ S | e ⊆ s} , (3)

3

|e⟩ = {s ∈ S | s ⊆ e} (4)
and

u ∼ v ⇐⇒ u, v ̸∈ W ∨ (⟨u| = ⟨v| ∧ |u⟩ = |v⟩). (5)

This equivalence relation defines a partition of the events space, where
each class holds a unique relation with the stable models. In particular, we
can denote each class by

e/∼ =

{
⊗ if e ∈ E \W ,

⟨e|e⟩ otherwise.
(6)

Consider the example from 2. The stable models are S = a, ab, ac so the
quotient set of this relation is

⊗, ⟨|⟩ ,
⟨a|a⟩ = {a} , ⟨ab|ab⟩ = {ab} , ⟨ac|ac⟩ = {ac}
⟨a|⟩ , ⟨ab|⟩ , ⟨ac|⟩ , ⟨|a⟩ , ⟨|ab⟩ , ⟨|ac⟩ ,
⟨a, ab|⟩ , ⟨a, ac|⟩ , ⟨ab, ac|⟩ , ⟨|a, ab⟩ , ⟨|a, ac⟩ , ⟨|ab, ac⟩ ,
⟨a, ab, ac|⟩ , ⟨|a, ab, ac⟩ .

(7)

For example, a/∼ = ⟨ab, ac|⟩, abc/∼ = ⟨|ab, ac⟩ and bc/∼ = ⟨|⟩.

• Since all events within a equivalence class have the same relation with
the stable models, probability assignment should be constant for the
elements of that class.

• So, instead of dealing with 26 events, we need only to handle 19 classes,
well defined in terms of combinations of the stable models.

• The extended probability events are the classes.

• The physical system might have latent variables, possibly also rep-
resented in the specification. These variables are never observed, so
observations should be concentrated in the ⟨e|/∅ classes.

(must adapt) Our path, traced by equations (1) and (8 — 13), starts
with the probability of total choices, P(C = c), expands it to stable models,
P(S = s), and then to worlds P(W = w) and events P(E = e).

1. Total Choices. This case is given by P(C = c), from equation 1.
Each total choice C = c (together with the facts and rules) entails
some stable models, s ∈ Sc, and each stable model S = s contains a
single total choice cs ⊆ s.

4

2. Stable Models. Given a stable model s ∈ S, and variables/values
xs,c ∈ [0, 1],

P(S = s | C = c) =

{
xs,c if s ∈ Sc,

0 otherwise
(8)

such that
∑

s∈Sc
xs,c = 1.

3. Worlds. Each world W = w either:

(a) Is a stable model. Then

P(W = w | C = c) = P(S = s | C = c) . (9)

(b) Contains some stable models. Then

P(W = w | C = c) =
∏
s⊂w

P(S = s | C = c) . (10)

(c) Is contained in some stable models. Then

P(W = w | C = c) =
∑
s⊃w

P(S = s | C = c) . (11)

(d) Neither contains nor is contained by a stable model. Then

P(W = w) = 0. (12)

4. Events. For each event E = e,

P(E = e | C = c) =

{
P(W = e | C = c) e ∈ W ,

0 otherwise.
(13)

Since stable model are minimal, there is no proper chain s1 ⊂ w ⊂ s2 so
each world folds into exactly one ot the four cases of point 3 above.

Equation (8) expresses the lack of knowledge about the probability as-
signment when a single total choice entails more than one stable model. In
this case, how to distribute the respective probability? Our answer to this
problem consists in assigning an unknown probability, xs,c, conditional on the
total choice, c, to each stable model s. This approach allow the expression
of an unknown quantity and future estimation, given observed data.

The stable model case, in equation (9), identifies the probability of a
stable model as a world with its probability as defined previously in equation
(8), as a stable model.

Equation 10 results from conditional independence of the stable models
s ⊂ w. Conditional independence of stable worlds asserts a least informed
strategy that we make explicit:

5

Assumption 1. Stable models are conditionally independent, given their
total choices.

Consider the stable models ab, ac from the example above. They result
from the clause b ∨ c ← a and the total choice a. These formulas alone
impose no relation between b and c (given a), so none should be assumed.
Dependence relations are further discussed in Subsection (2.1).

I’m not sure about what to say here. todo
My first guess was

P(W = w | C = c) =
∑
s⊃w

P(S = s | C = c) .

P(W = w | C = c) already separates P(W) into disjoint events!
Also, I am assuming that stable models are independent.
This would entail p(w) = p(s1) + p(s2) − p(s1)p(s2) if I’m bound to set

inclusion. But I’m not. I’m defining a relation
Also, if I set p(w) = p(s1)+p(s2) and respect the laws of probability, this

entails p(s1)p(s2) = 0.
So, maybe what I want is (1) to define the cover ŵ = ∪s⊃ws

P(W = w | C = c) =
∑
s⊃w

P(S = s | C = c)− P(W = ŵ | C = c) .

But this doesn’t works, because we’d get P(W = a | C = a) < 1.

A world that neither contains nor is contained in a stable model describes
a case that, according to the specification, should never be observed. So the
respective probability is set to zero, per equation (12).

2.1 Dependence
Dependence relations in the underlying system can be explicitly expressed in
the specification.

For example, b← c∧d, where d is an atomic choice, explicitly expressing
this dependence between b and c. One would get, for example, the specifica-
tion

0.3 :: a, b ∨ c← a, 0.2 :: d, b← c ∧ d.

with the stable models ad, ad, adb, adc, adb.
The interesting case is the subtree of the total choice ad. Notice that

no stable model s contains adc because (1) adb is a stable model and (2) if
adc ⊂ s then b ∈ s so adb ⊂ s.

6

Following equations (9) and (12) this sets{
P(W = adc | C = ad) = 0,

P(W = adb | C = ad) = 1

which concentrates all probability mass from the total choice ad in the adb
branch, including the node W = adbc. This leads to the following cases:

x P(W = x | C = ad)
ad 1
adb 1
adc 0
adbc 1

so, for C = ad,
P(W = b) =

2

4

P(W = c) =
1

4

P(W = bc) =
1

4
̸= P(W = b) P(W = c)

i.e. the events W = b and W = c are dependent and that dependence results
directly from the segment 0.2 :: d, b← c ∧ d in the specification.

Todo
Prove the four world cases (done), support the product (done)

and sum (tbd) options, with the independence assumptions.

3 Developed Example
We continue with the specification from equation 2.

Step 1: Total Choices. The total choices, and respective stable models,
are

Total Choice (c) P(C = c) Stable Models (s)
a 0.3 ab and ac.
a = ¬a 0.3 = 0.7 a.

Step 2: Stable Models. Suppose now that
Stable Models (s) Total Choice (c) P(S = c | C = c)
a 1.0 a.
ab 0.8 a.
ac 0.2 = 0.8 a.

7

Step 3: Worlds. Following equations 9 — 12 we get:

Occ. (o) S.M. (s) Relation T.C. (c) P(W = w)
∅ all contained a, a 1.0
a ab, ac contained a 0.8× 0.3 + 0.2× 0.3 = 0.3
b ab contained a 0.8× 0.3 = 0.24
c ac contained a 0.2× 0.3 = 0.06
a a stable model a 1.0× 0.3 = 0.3

b none independent none 0.0
c none …
ab ab stable model a 0.24
ac ac stable model a 0.06

ab none …
ac none …
ab a contains a 1.0
ac a …
ab a …
ac a …
abc ab, ac contains a 0.8× 0.2 = 0.016

References

References
[1] Fabio Gagliardi Cozman and Denis Deratani Mauá. “The joy of proba-

bilistic answer set programming: semantics, complexity, expressivity, in-
ference”. In: International Journal of Approximate Reasoning 125 (2020),
pp. 218–239.

[2] Andrew Cropper et al. “Inductive logic programming at 30”. In: Machine
Learning 111.1 (2022), pp. 147–172.

[3] Martin Gebser et al. “Answer set solving in practice”. In: Synthesis lec-
tures on artificial intelligence and machine learning 6.3 (2012), pp. 1–
238.

[4] Fabrizio Riguzzi. Foundations of probabilistic logic programming: Lan-
guages, semantics, inference and learning. CRC Press, 2022.

[5] Victor Verreet et al. “Inference and learning with model uncertainty in
probabilistic logic programs”. In: Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 36. 9. 2022, pp. 10060–10069.

8

	Introduction and Motivation
	Extending Probabilities
	Dependence

	Developed Example

