
Prolog and Answer Set Programming:
Languages in Logic Programming

Sílvia Casacuberta Puig

May 12, 2020

1 Introduction

This semester, in the course CS 152: Programming Languages we have studied the properties
and applications of different programming languages, mostly functional languages. We also
devoted one lecture to logic programming, which is another type of a declarative program-
ming paradigm based on formal logic. The main logic programming languages are Prolog
and Answer Set Programming (ASP). In this essay, we will delve into these two languages
and explore the features, procedures, and logical formalism behind them.

2 Prolog

2.1 The Basics

Prolog is a declarative first-order programming language, which has a wide-range of appli-
cations, from natural language processing to artificial intelligence. First-order logic is an
extension of propositional logic which contains predicates, quantifiers, and variables [1, 2].
Prolog (an abbreviation of programmation en logique in French) was created around 1972 by
Alain Colmerauer and Philippe Roussel, based on Robert Kowalski’s procedural interpreta-
tion of Horn clauses [3].

More concretely, a Prolog program consists of one or more predicates, and each predicate
consists of one or more clauses [4]. If a clause has an empty body, then it is unconditionally
true. Once the program is defined, we can then make queries to see if a proposition is true
or not. For example, if we write:

cs_course(cs152).
seas_course(X) :- cs_course(X).

which reads as cs152 is a cs_course and if X is a cs_course then X is a seas_course, we
can query

1



seas_course(cs152).

and Prolog will return true. Some of Prolog’s data types include atoms, numbers and
variables, and it also has built-in lists and strings, among other data structures [5].

2.2 Pure Prolog and Extended Constructs

Pure Prolog only uses a subset of first-order logic, Horn clauses, which is Turing-complete.
A clause is a Horn clause if it contains at most one positive literal, and a definite clause is
a Horn clause that has exactly one positive literal [6]. Thus, pure Prolog programs consist
entirely of definite clauses and there is no negation. But pure Prolog was soon extended to
contain constructs such as the Cut operator and negation as failure.

2.2.1 Backtracking and the Cut Operator

How does Prolog solve the queries? It automatically chooses the facts and rules required to
solve a query. To make this choice, it first tries to solve each goal in a query, going from
left to right, and for each goal it attempts to match a corresponding fact or the head of a
corresponding rule, called unification [7]. If unification fails and so no matching is possible,
Prolog then backtracks to the last point in which a matching choice was made. Note that it
might be the case that a Prolog program does not terminate. It is also important to note
that Prolog is a set of clauses, not a list, and so order matters [8].

Motivated by this backtracking procedure, Prolog allows to define a Cut operator !,
which is a goal that always succeeds but cannot be backtracked past. This ensures avoiding
unwanted backtracking, so that some solutions are discarded and space is saved [9]. A cut
which only improves efficiency is known as green cut. On the other hand, a cut that is not
green is called a red cut [9].

2.2.2 Negation as Failure

One of the important logical features of Prolog is the so-called negation as failure. This
means that Prolog follows the assumption that P is false if one has failed to prove that P is
true [10]. Consider the following example [11]:

bacherlor(X) :- male(X), not(married(X)).
male(henry).
male(tom).
married(tom).

If we query not(married(Who)), Prolog will return false because Who=tom, married(Who)
succeeds.

More formally, negation by failure shows how Prolog semantics are extended from SLD
resolutions to SLDNF. Let us define these two terms: SLD is a theorem proving procedure

2



that is complete for Horn clauses [32], and so it is the basic inference rule used in logic
programming and by pure Prolog. SLDNF is then obtained by adding negation as failure [12].
Essentially, this logic framework equates "unknown" with "false".

2.2.3 Strong Negation

Strong negation is another kind of negation in the context of logic programming. John
McCarthy gave a famous short example to help distinguish the two negations [13]: say that
we want to express the idea "we can cross the tracks if no train is approaching". With
negation as failure, this would be written as:

cross :- not train.

However, this is saying that we can cross in the absence of information about whether a train
is coming or not, which is not quite capturing the same concept. With strong negation, we
would write:

cross :- -train.

For notation purposes, − refers to the classical negation (or strong negation), and ∼
refers to negation as failure.

We can also combine both types of negation, which allows us to express the closed-world
assumption (CWA) [13]: a formal system of logic used for knowledge representation (KR)
which presupposes that a statement that is true is also known to be true [19]. So, conversely,
this means that a statement that is not currently known is considered to be false.

Moreover, all of these types of negation are non-monotonic (by failure, strong, and CWA),
meaning that if we add new assumptions to a theory, we might invalidate some conclusion
whose truth we already determined. So both Prolog and ASP are non-monotonic logic
programming languages.

2.3 Other Non-Monotonic Logic Programming

Other extensions of non-monotonic logic programming have been developed, such as:

1. Abductive logic programming: this allows for some predicates, called abducible, to be
undefined. Instead of failing in a proof when a selected subgoal fails to unify with the
head of any rule, the subhead can be viewed as a hypothesis. This is similar to viewing
abducibles as "askable" conditions which are treated as qualifications to answers to
queries [23].

2. Concurrent logic programming: this allows for evaluating goals in parallel (hence the
name concurrently). This allows for logic programs to take advantage of current parallel
and multi-distributed systems [1]. A famous concurrent logic program is Parlog [23].

3



3. Constraint logic programming: this is the merger of two declarative paradigms, con-
straint solving and logic programming. Solving a problem with constraints means
finding a way to assign values to all its variables such that all constraints are satisfied.
Since constraints can be seen as relations or predicates and constraint solving can be
seen as a general form of unification, it makes sense to embed constraint solving into
logical programming [24]. The first CLP language was Prolog II [25].

4. Inductive logic programming: investigates the inductive construction of first-order
clausal theories from examples and background knowledge [26]. Given a set of labeled
examples E and a background knowledge B, an ILP system will try to find hypothesis
function H that minimizes a specified loss [27]. Progol is a famous implementation of
inductive logic programming (ILP).

Other extensions of logic programming are possible, for example λProlog as part of the
Higher-order logic programming paradigm.

3 Answer Set Programming

3.1 Stable Model Semantics

The above discussion on negation by failure provides a good motivation for introducing stable
model semantics. Consider the following rules [20]:

p(1).
p(2).

q(3) :- ∼r(s).
r(X) :- p(X), ∼q(X).

The above program yields two possible answer sets, written:

{p(1), p(2), p(3), q(3), r(1), r(2)}

and

{p(1), p(2), p(3), r(3), r(1), r(2)}.

An answer set solver is a program that takes a logic program as an input and outputs all
the answers sets of that program [20]. This is exactly what ASP does.

Let us define exactly what a stable model is, i.e. when a model of a propositional formula
is stable. Informally, a set X of atoms is a stable model of a logic program P if [30]:

1. X is a (classical) model of P , and

2. All atoms in X are justified by some rule in P .

4



The formal definition of stable model uses two conventions: first, a truth assignment is
identified with the set of atoms that are true (as we did in the example above). Second, we
identify any set X of atoms with the truth assignment that makes all elements of X true
and makes all other atoms false [13].

Once we have fixed the conventions, let us see how to compute the answer set of a logic
program. To do so, we need to define the term reduct [13]:

Definition 1. The reduct FX of a propositional formula F relative to a set X of atoms is
the formula obtained form F by replacing each maximal subformula that is not satisfied by
X with ⊥ (i.e. unconditionally false).

Then, we can formally define a stable model :

Definition 2. X is a stable model of F if X is minimal among the sets satisfying FX .

Note that the key in these procedures is the elimination of negation; indeed, the reduct
we found above does not contain any negated atom, as required.

To see an example, recall the program given at the beginning of this section, and let
S = p(1), p(2), p(3) be the set that we want to test whether it is an answer set of the
program. Then, the reduct of the program with respect to S is [20]:

p(1).
p(2).
q(3).
r(1) :- p(1).
r(2) :- p(2).
r(3) :- p(3).

In practice, to find the reduct we should first find the grounded instantiation of the
program, see [20]. As a side note, this grounded instantiation is tightly related to the concept
of Herbrand base and Herbrand interpretation in first-order logic, since the Herbrand base
of a program is precisely the set ground atoms (terms without variables) built from the
predicates and the Herbrand universe of the program [21].

Observe that a program with negations can have zero, one, or many stable models. For
example,

p :- not p.

has no stable models. On the other hand, a program without negations, then there is only
one stable model, which is minimal. Otherwise, we need to find the reduct, as seen above.

The different number of stable models lies precisely at the core difference between Prolog
and ASP. In Prolog, the presence of programs with negation that do not have a unique stable
model cause trouble and the SLDNF resolution does not terminate on them [17]. However,
ASP embraces the disparity of stable models and treats the stable models of the programs
as solutions to a given search program.

5



3.2 ASP: The Basics and Functioning

Answer set programming is a form of declarative programming which is oriented towards
difficult search problems, normally NP-hard. It is based on the stable model semantics
of logic programming that we discussed in the previous section [13]. This new computing
paradigm that uses answer set solvers for search was introduced by Marek and Truszczyńsk
in 1999.

On a syntactic level, ASP programs look like programs in Prolog, but the computational
mechanisms for ASP is different: they are based on the satisfiability solvers for propositional
logic [14]. An important syntactic difference between ASP and Prolog is that ASP has choice
rules, which allows to use disjunction in the head of a rule [22]. For example, writing p.
declares that p may be true or not, so this produces two answer sets: ∅ and p. We can
also add constrained choice rules, for example, writing 1 {p, q, r} 2. means that the
stable model must be choosing at least one of p, q, r, but no more than 2. ASP uses the
CWA approach: the given information is treated as complete information and the problem
is solved under this assumption [29].

In ASP, as we started explaining in the previous section, search problems are reduced
to computing stable models, and to perform search it uses answer set solvers-programs for
generating stable models [13]. This search algorithm that is used to find the answer set solvers
are versions of the DPLL algorithm (Davis-Putnam-Logemann-Loveland), a backtracking-
based search algorithm for logic formulas, which is also used for SAT solvers [15].

Therefore, to solve a search problem with ASP we need to model the problem as a logical
program. The ASP solving process then consists of two steps [18]:

1. A grounder converts a first-order program into a propositional logic, by systematically
replacing variables with concrete values from some domain.

2. A solver takes the ground program and assigns truth values to atoms to obtain the
stable models of the program.

Most modern answer set solving tools use front-end lparse or gringo for grounders
and cmodels or clasp for answer set solvers [23]. These can be put together by languages
such as clingo for example, which combines gringo and clasp into a monolithic system.

As it is clear from the suitability of ASP to solve search problems with potentially finitely
many solutions, ASP has a strong relation to classic NP-problems. With its declarative
format, it is quite straight-forward to code all the well-known NP-hard problems: 3-Coloring,
Hamiltonian Cycle, Travelling Salesman, Knapsack problem, and so on. Of course, this
indicates that testing whether a finite ground logic program has a stable model is NP-
complete [21].

6



4 Comparison between Prolog and ASP

As indicated above, these two logic programming languages are very similar, but not equiv-
alent. In this section we will highlight the main differences between Prolog and ASP:

1. ASP and Prolog belong to two different paradigms: Prolog follows a Theorem-Proving-
Based approach, where the solution to the program corresponds to the solution given by
the derivation of a query. On the other hand, ASP follows a Model-Generation-Based
Approach, where the solution is given by the model of the representation [18].

2. ASP is extended with choice rules, which Prolog does not have. This implies that ASP
is non-deterministic and there is a possibility of making guesses [17].

3. ASP is inference-based on SAT solvers, rather than Prolog’s backwards chaining [16].

4. In ASP the order of the program rules does not matter and termination is not an issue,
as opposed to Prolog [17]. That is, the enhanced DLPP method used by ASP always
terminates, whereas a Prolog query might enter into an infinite loop. This means
that ASP is a pure declarative programming language, whereas Prolog is not. The
Cut operator is another construct that makes Prolog not purely declarative. Other
similar languages to Prolog, such as Datalog, are purely declarative, but they restrict
the language [8].

5. In ASP, the answer set solvers are found using a bottom-up approach, whereas in
Prolog the backtracking is performed top-down [18].

6. ASP is a representation language, meaning that problem specification and problem
solving are decoupled. This is not the case for Prolog, which is a programming language
because the user is allowed to exercise control [18].

Despite these differences, researchers have tried to put these two paradigms together.
For example, in [23] they identify an issue of the ASP functioning called grounding bottle-
neck. This identifies a problem in the intermediate step between grounding and solving:
the grounding bottleneck refers to situations where grounding results in programs are too
large for the solving tools to handle effectively. In the paper, they propose a solution by
implementing an approach for combining backtracking-based search algorithms of answer set
solvers with the SLDNF resolution from Prolog, called asp+prolog. As another example,
in [31] they propose asp-prolog, a tight and well-defined integration of Prolog and Answer
Set Programming. The motivation is the identification of aspects of reasoning that cannot
be correctly expressed in ASP, and so the idea of asp-prolog is to have Prolog modules
that can access any ASP module, read its content, and modify it.

7



References

[1] Simran, Max, and Charence, Topics in AI - Logic Programming, DoC Imperial College
London, 2006, https://www.doc.ic.ac.uk/~cclw05/topics1/first.html.

[2] Hod Lipson, Foundations of Artificial Intelligence, Course CS4700 at Cornell Uni-
versity, 2011, https://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/16_
FirstOrderLogic.pdf.

[3] Robert Kowalski, Predicate Logic as Programming Language, Information Processing 74:
North-Holland Publishing Company, 1974, https://www.doc.ic.ac.uk/~rak/papers/
IFIP%2074.pdf.

[4] David Matuszek, A Concise Introduction to Prolog, 2012, https://www.cis.upenn.edu/
~matuszek/Concise%20Guides/Concise%20Prolog.html.

[5] Peter Hancox, Prolog and Logic Programming, Course SEM242 at University of Birm-
ingham, 1998, https://www.cs.bham.ac.uk/~pjh/prolog_course/se207.html.

[6] https://mathworld.wolfram.com/HornClause.html.

[7] Charles N. Fischer, Introduction to the Theory and Design of Programming Languages,
Course CS528 at University of Wisconsin-Madison, 2008, http://pages.cs.wisc.edu/
~fischer/cs538.s08/lectures/Lecture34.4up.pdf.

[8] Stephen Chong, Programming Languages, Course CS152 at Harvard Univer-
sity, 2020, https://www.seas.harvard.edu/courses/cs152/2020sp/lectures/
lec21-logicprogramming.pdf.

[9] Bill Wilson, On-line Dictionaries of Artificial Intelligence Concepts, 2012, http://www.
cse.unsw.edu.au/~billw/dictionaries/prolog/cut.html.

[10] Alan L. Ritter, Intro to AI, Course CSE3521 at Ohio State University, http://web.
cse.ohio-state.edu/~stiff.4/cse3521/prolog.html.

[11] John R. Fisher, Prolog Tutorial, https://www.cpp.edu/~jrfisher/www/prolog_
tutorial/2_5.html.

[12] Sergio Tessaris et al, Reasoning Web: Semantic Technologies for Information Systems,
5th International Summer School, 2009, https://link.springer.com/content/pdf/
10.1007%2F978-3-642-03754-2.pdf.

[13] Vladimir Lifschitz, What Is Answer Set Programming?, https://www.cs.utexas.edu/
~vl/papers/wiasp.pdf.

8

https://www.doc.ic.ac.uk/~cclw05/topics1/first.html
https://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/16_FirstOrderLogic.pdf
https://www.cs.cornell.edu/courses/cs4700/2011fa/lectures/16_FirstOrderLogic.pdf
https://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf
https://www.doc.ic.ac.uk/~rak/papers/IFIP%2074.pdf
https://www.cis.upenn.edu/~matuszek/Concise%20Guides/Concise%20Prolog.html
https://www.cis.upenn.edu/~matuszek/Concise%20Guides/Concise%20Prolog.html
https://www.cs.bham.ac.uk/~pjh/prolog_course/se207.html
https://mathworld.wolfram.com/HornClause.html
http://pages.cs.wisc.edu/~fischer/cs538.s08/lectures/Lecture34.4up.pdf
http://pages.cs.wisc.edu/~fischer/cs538.s08/lectures/Lecture34.4up.pdf
https://www.seas.harvard.edu/courses/cs152/2020sp/lectures/lec21-logicprogramming.pdf
https://www.seas.harvard.edu/courses/cs152/2020sp/lectures/lec21-logicprogramming.pdf
http://www.cse.unsw.edu.au/~billw/dictionaries/prolog/cut.html
http://www.cse.unsw.edu.au/~billw/dictionaries/prolog/cut.html
http://web.cse.ohio-state.edu/~stiff.4/cse3521/prolog.html
http://web.cse.ohio-state.edu/~stiff.4/cse3521/prolog.html
https://www.cpp.edu/~jrfisher/www/prolog_tutorial/2_5.html
https://www.cpp.edu/~jrfisher/www/prolog_tutorial/2_5.html
https://link.springer.com/content/pdf/10.1007%2F978-3-642-03754-2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-03754-2.pdf
https://www.cs.utexas.edu/~vl/papers/wiasp.pdf
https://www.cs.utexas.edu/~vl/papers/wiasp.pdf


[14] Yuliya Lierler, Handout on Answer Set Programming, 2013, https://personal.
utdallas.edu/~gupta/courses/lp/asphw.pdf.

[15] Alessandro Farinelli, DPLL Method, http://profs.sci.univr.it/~farinelli/
courses/ar/slides/DPLL.pdf.

[16] Mark J. Nelson, Why did Prolog lose steam?, 2010, http://www.kmjn.org/notes/
prolog_lost_steam.html.

[17] Thomas Eiter, Answer Set Programming in a Nutshell, GK Kolloqium Mathematische
Logik und Anwendungen, Freiburg, 2008, http://gradlog.informatik.uni-freiburg.
de/gradlog/slides_ak/eiter_asp.pdf.

[18] Paul Vicol, An Introduction to Answer Set Programming, 2015, https://www.
paulvicol.com/pdfs/ASP-Lecture.pdf.

[19] Alan Smaill, Logic Programming, slides for a course at the University of Edinburgh, 2009,
http://www.inf.ed.ac.uk/teaching/courses/lp/2009/slides/lp_theory7.pdf.

[20] Vinay K. Chaudhri, Logic Programming, http://web.stanford.edu/~vinayc/
logicprogramming/html/answer_set_programming.html.

[21] Ilkka Niemelä, Answer Set Programming, https://pdfs.semanticscholar.org/ded4/
0cd58de310f6ba2509b094f3b5bd9c6fc246.pdf.

[22] Chris Martens, Notes on Answer Set Programming, Course notes for CSC 791 Genera-
tive Methods for Game Design, 2017, http://www.cs.cmu.edu/~cmartens/asp-notes.
pdf

[23] Marcello Balduccini, Yuliya Lierler, Peter Schüller, Prolog and ASP Inference Un-
der One Roof, Logic programming and nonmonotonic reasoning. 12th international
conference, LPNMR 2013, Corunna, Spain, 2013, https://www.researchgate.net/
publication/244864312_Prolog_and_ASP_Inference_under_One_Roof.

[24] A. C. Kakas, R.A. Kowalski, and F. Toni, Abductive Logic Programming, Journal of
Logic and Computation, Vol 2 No. 6, pp 719-770, 1993, https://www.doc.ic.ac.uk/
~rak/papers/abdsurv.pdf.

[25] Marco Gavanelli1 and Francesca Rossi, Constraint Logic Programming, 25 Years of Logic
Programming, LNCS 6125, pp. 64–86, 2010, https://www.math.unipd.it/~frossi/
gulp.pdf.

[26] Stephen Muggleton and Luc de Raedt, Inductive Logic Programming: Theory and
methods, The Journal of Logic Programming, Vol 19-20 No. 1, pp. 629-670, 1994,
https://www.sciencedirect.com/science/article/pii/0743106694900353.

9

https://personal.utdallas.edu/~gupta/courses/lp/asphw.pdf
https://personal.utdallas.edu/~gupta/courses/lp/asphw.pdf
http://profs.sci.univr.it/~farinelli/courses/ar/slides/DPLL.pdf
http://profs.sci.univr.it/~farinelli/courses/ar/slides/DPLL.pdf
http://www.kmjn.org/notes/prolog_lost_steam.html
http://www.kmjn.org/notes/prolog_lost_steam.html
http://gradlog.informatik.uni-freiburg.de/gradlog/slides_ak/eiter_asp.pdf
http://gradlog.informatik.uni-freiburg.de/gradlog/slides_ak/eiter_asp.pdf
https://www.paulvicol.com/pdfs/ASP-Lecture.pdf
https://www.paulvicol.com/pdfs/ASP-Lecture.pdf
http://www.inf.ed.ac.uk/teaching/courses/lp/2009/slides/lp_theory7.pdf
http://web.stanford.edu/~vinayc/logicprogramming/html/answer_set_programming.html
http://web.stanford.edu/~vinayc/logicprogramming/html/answer_set_programming.html
https://pdfs.semanticscholar.org/ded4/0cd58de310f6ba2509b094f3b5bd9c6fc246.pdf
https://pdfs.semanticscholar.org/ded4/0cd58de310f6ba2509b094f3b5bd9c6fc246.pdf
http://www.cs.cmu.edu/~cmartens/asp-notes.pdf
http://www.cs.cmu.edu/~cmartens/asp-notes.pdf
https://www.researchgate.net/publication/244864312_Prolog_and_ASP_Inference_under_One_Roof
https://www.researchgate.net/publication/244864312_Prolog_and_ASP_Inference_under_One_Roof
https://www.doc.ic.ac.uk/~rak/papers/abdsurv.pdf
https://www.doc.ic.ac.uk/~rak/papers/abdsurv.pdf
https://www.math.unipd.it/~frossi/gulp.pdf
https://www.math.unipd.it/~frossi/gulp.pdf
https://www.sciencedirect.com/science/article/pii/0743106694900353


[27] Manoel V. M. França, Introduction to Inductive Logic Programming, Machine Learning
Group Meeting at City University London, 2012, https://cpb-eu-w2.wpmucdn.com/
blogs.city.ac.uk/dist/8/1140/files/2014/11/ilpTalk-1xtj3xm.pdf.

[28] Andrew Cheese, Parallel Execution of Prolog, Part of the Lecture Notes in Computer
Science book series (LNCS, volume 586), pp. 27-47, 2005, https://link.springer.com/
chapter/10.1007%2FBFb0022708.

[29] Tomi Janhunen and Ilkka Niemelä, The Answer Set Programming Paradigm, Associa-
tion for the Advancement of Artificial Intelligence, 2016, https://aaltodoc.aalto.fi/
handle/123456789/35197.

[30] Sebastian Rudolph, Answer Set Programming: Basics, Slides based on a lecture by
Martin Gebser and Torsten Schaub, https://iccl.inf.tu-dresden.de/w/images/1/
1a/FLP-ASP-L1.pdf.

[31] Omar Elkhatib, Enrico Pontelli, and Tran Cao Son, ASP-PROLOG: A System for
Reasoning about Answer Set Programs in Prolog, https://www.cs.nmsu.edu/~tson/
papers/padl04.pdf.

[32] Stefan Brass, Pure Prolog, Slides for the course Deductive Databases and Logic Pro-
gramming at University Halle-Wittenberg, http://users.informatik.uni-halle.de/
~brass/lp06/c3_purep.pdf.

10

https://cpb-eu-w2.wpmucdn.com/blogs.city.ac.uk/dist/8/1140/files/2014/11/ilpTalk-1xtj3xm.pdf
https://cpb-eu-w2.wpmucdn.com/blogs.city.ac.uk/dist/8/1140/files/2014/11/ilpTalk-1xtj3xm.pdf
https://link.springer.com/chapter/10.1007%2FBFb0022708
https://link.springer.com/chapter/10.1007%2FBFb0022708
https://aaltodoc.aalto.fi/handle/123456789/35197
https://aaltodoc.aalto.fi/handle/123456789/35197
https://iccl.inf.tu-dresden.de/w/images/1/1a/FLP-ASP-L1.pdf
https://iccl.inf.tu-dresden.de/w/images/1/1a/FLP-ASP-L1.pdf
https://www.cs.nmsu.edu/~tson/papers/padl04.pdf
https://www.cs.nmsu.edu/~tson/papers/padl04.pdf
http://users.informatik.uni-halle.de/~brass/lp06/c3_purep.pdf
http://users.informatik.uni-halle.de/~brass/lp06/c3_purep.pdf

	Introduction
	Prolog
	The Basics
	Pure Prolog and Extended Constructs
	Backtracking and the Cut Operator
	Negation as Failure
	Strong Negation

	Other Non-Monotonic Logic Programming

	Answer Set Programming
	Stable Model Semantics
	ASP: The Basics and Functioning

	Comparison between Prolog and ASP

