
Stochastic Answer Set Programming
A Research Program

Francisco Coelho

NOVA LINCS
High Performance Computing Chair

Departamento de Informática, Universidade de Évora

January 9, 2024

This is a join work with Salvador Abreu@DInf and Bruno Dinis@DMat.

In Short

• About Machine Learning:
• Vector or matrix based models lack “structure”.
• Large models don’t explain data.

• About Logic Programs:
• Logic programs formalize knowledge.
• Logic doesn’t capture uncertainty and is fragile to noise.

• Probabilistic Logic Programs extend formal knowledge
with probabilities.
• How to propagate probabilities through rules?

Goal: Combine Logic and Statistics.

2 / 32

Machine Learning

• Standard Example — Iris Classification
• Assumptions of Machine Learning
• Where Machine Learning Fails

3 / 32

The Standard Example — Iris Classification
Learning Functions: The famous Iris database

x1 sepal length.
x2 sepal width.
x3 petal length.
x4 petal width.
y species (one of

setosa, versicolor,
virginica).

SepalLength

4 5 6 7 8

setosa

versicolor

virginica

Iris

2.0

2.5

3.0

3.5

4.0

4.5

S
e
p
a
lW

id
th

• A setosa model: −0.40− 0.65x1 + 1.00x2 > 0.00.

• A general model template:

fθ(x⃗) = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 > 0

4 / 32

https://en.wikipedia.org/wiki/Iris_flower_data_set

Assumptions of Machine Learning
• Each instance is described in a single row by a fixed set

of features

x1 x2 . . . xn y
x11 x21 . . . xn1 y1

...
x1m x2m . . . xnm ym

.

• Instances are independent of one another, given the
model

y = fθ(x⃗).
• Parameters minimize estimation error e.g.

θ̂ = argmin
θ

∑
i

∥∥yi − fθ(x⃗i)
∥∥ .

5 / 32

Failing Assumptions 1/2

student course grade
s1 c1 a
s2 c1 c
s1 c2 b
s2 c3 b
s3 c2 b
s4 c3 b
s3 c4 X
s4 c4 Y

Infer X ≻g Y .

“Proof.”

s1 ≻s s2 (rows 1 & 2)
so c2 ≻c c3 (3 & 4).

Then s3 ≻s s4 (5 & 6)
therefore X ≻g Y .

• Instances are not independent.
• Small dataset, so no statistics.

6 / 32

Failing Assumptions 2/2
Prompt: Given f(machine) = e, f(learning) = g and

f(algorithm) = m, what is the value of f(ksadbf)?

input output
machine e
learning g

algorithm m
ksadbf ?

Bard: f(ksadbf) = 11.
We can see that the value
of f(x) is simply the
first letter of x minus
96.

ChatGPT: The information provided seems to
define a function f where certain inputs are
associated with specific outputs. Based on
the given information:

• f (machine) = e

• f (learning) = g

• f (algorithm) = m

However, there is no information given about
f (ksadbf). Without additional information or a
specific rule that determines the output for
f (ksadbf), it is not possible to determine its
value. If there is a pattern or rule for how
the outputs are assigned based on the inputs,
you would need to provide that information for
me to help determine the value of f (ksadbf).

No help from state-of-the-art Natural Language Processing or LLMs.
7 / 32

Where Machine Learning Fails

• No interpretability: large models
(dim θ ∼ thousands of millions) are not understandable
by humans.
• Need for large number of training examples.
• Unfit for multiple relations, intersample dependencies and

variable features: The Students, Courses and Results and
Last Letter examples.
• Poor generalization: A model trained in the iris dataset is

useless in any other domain.
• No use of background knowledge.

8 / 32

Logic Programming

• An Example of Logic Programming.
• Inductive Logic Programming.
• Where ILP Fails.

9 / 32

An Example of Logic Programming

6

3 5

1 2

4

node (1 . . 6) .

edge (1 , 2) . edge (2 , 4) . edge (3 , 1) .
edge (4 , 1) . edge (5 , 3) . edge (6 , 2) .
edge (1 , 3) . edge (2 , 5) . edge (3 , 4) .
edge (4 , 2) . edge (5 , 4) . edge (6 , 3) .
edge (1 , 4) . edge (2 , 6) . edge (3 , 5) .
edge (5 , 6) . edge (6 , 5) .

c o l (r) . c o l (b) . c o l (g) .

1 { c o l o r (X, C) : c o l (C) } 1 :− node (X) .
:− edge (X,Y) , c o l o r (X, C) , c o l o r (Y, C) .

#show c o l o r /2 .

c o l o r (2 , b) c o l o r (1 , g) c o l o r (4 , r) c o l o r (3 , b) c o l o r (5 , g) c o l o r (6 , r)
c o l o r (1 , r) c o l o r (2 , b) c o l o r (4 , g) c o l o r (3 , b) c o l o r (5 , r) c o l o r (6 , g)
c o l o r (1 , r) c o l o r (2 , g) c o l o r (4 , b) c o l o r (3 , g) c o l o r (5 , r) c o l o r (6 , b)
c o l o r (1 , b) c o l o r (2 , g) c o l o r (4 , r) c o l o r (3 , g) c o l o r (5 , b) c o l o r (6 , r)
c o l o r (2 , r) c o l o r (1 , g) c o l o r (4 , b) c o l o r (3 , r) c o l o r (5 , g) c o l o r (6 , b)
c o l o r (2 , r) c o l o r (1 , b) c o l o r (4 , g) c o l o r (3 , r) c o l o r (5 , b) c o l o r (6 , g)

10 / 32

Inductive Logic Programming
Learning Logic Programs from Examples.

Generate rules that. . .
• use background knowledge

parent(john,mary), parent(david, steve),
parent(kathy,mary), female(kathy),
male(john), male(david).

• to entail all the positive examples,
father(john,mary), father(david, steve),

• but none of the negative examples.
father(kathy,mary), father(john, steve),

A solution is

father(X ,Y)← parent(X ,Y) ∧male(X).

11 / 32

Where Logic Programming Fails

Meanwhile, in the real world, samples are incomplete and
come with noise.

Logic inference is fragile: a mistake in the transcription of a
fact is dramatic to the consequences:
• parent(david,mary).
• parent(jonh,mary).

The statistic essence of machine learning provides robustness.

12 / 32

Probabilistic Logic
Programming

• Define distributions from logic programs.
• Stochastic ASP: Specifying distributions.

13 / 32

Probabilistic Logic Programs (PLPs)
Logic programs annotated with probabilities.

Alarm

Johncalls

alarm : 0.00251,
johncalls : 0.9← alarm,

johncalls : 0.05← ¬alarm

• alarm : 0.00251 is alarm ∨ ¬alarm plus
P(Alarm = true) = 0.00251.

• johncalls : 0.9← alarm is

P (Johncalls = true|Alarm = true) = 0.9

Any bayesian network can be represented by a PLP.

14 / 32

Distributions from Logic Programs
The program

alarm : 0.00251,
johncalls : 0.9← alarm,

johncalls : 0.05← ¬alarm

entails four possible models (or worlds):

model probability
alarm, johncalls 0.002259

alarm,¬johncalls 0.000251
¬alarm, johncalls 0.049874
¬alarm,¬johncalls 0.947616

• Models are special sets of literals entailed from the
program.
• Probabilities propagate from facts, through rules.

15 / 32

There’s a Problem. . .
The program

alarm : 0.00251,
johncalls ∨marycalls ← alarm

entails three stable (i.e. minimal) models

model probability
alarm, johncalls x

alarm,marycalls y
¬alarm 0.99749

but no single way to set x , y.

Some Probabilistic Logic Programs define more than one joint
distribution.

16 / 32

. . . and an Oportunity

Some PLPs define more than one joint distribution.

• There is no single probability assignment from the
facts stable models: x , y ∈ [0, 1].
• But any assignment is bound by Kolmogorov’s axioms,

and forms equations such as:

x + y = P (alarm) .

• Existing data can be used to estimate the unknowns
in those equations.

17 / 32

Stable Models, Events and Probabilities
What are we talking about?

• A logic program has atoms (and literals) and rules:

male(john),¬parent(kathy,mary),
father(X ,Y)← parent(X ,Y) ∧male(X).

• A stable model is a minimal model that contains:
• program’s facts: parent(john,mary), male(john).
• consequences, by the rules: father(john,mary).

• Some programs have more than one model:
Logic Program Stable Models

a ∨ ¬a, b ∨ c ← a {¬a} , {a, b} , {a, c}

How to propagate probability from annotated facts to other
events?

18 / 32

Logic Programs and Probabilities
• Consider the literals of a logic program

L = {a1, . . . an,¬a1, . . .¬an} .

• Any model of that program is a (consistent) subset of L.
• Let Ω = P (L), i.e. an event e is a subset of L, e ⊆ L.

• Setting a probability for some events seems
straightforward: P (¬alarm) = 0.997483558.

• For others, not so much:
• P (alarm, johncalls), P (johncalls,marycalls, alarm),

P (marycalls)?
• P (alarm,¬alarm), P (¬marycalls)?

How to propagate probability from facts to consequences and
other events?

19 / 32

Classes of Events

△

a
0.3

ab
0.3θ

ac
0.3θ

b c

abccab bac

bc

a
0.7

ac

abc

a : 0.3
b ∨ c ← a

a = {¬a} , ab = {a, b} , ac = {a, c}

• Define equivalence classes for all events, based on ⊆,⊇
relations with the stable models.

• This example shows 6 out of 23 + 1 classes.
20 / 32

Probabilities for all Events

△

a
0.3

ab
0.3θ

ac
0.3θ

b c

abccab bac

bc

a
0.7

ac

abc

1 Set weights in the stable models (shaded nodes), using parameters
when needed: µ (a) = 0.7;µ (ab) = 0.3θ;µ (ac) = 0.3 (1− θ)

2 Assume that the stable models are disjoint events.
3 Define weight of an event as the sum of the weights of the related

stable models.
4 Normalize weights to get a (probability) distribution.

21 / 32

Probabilities for all Events

JeK #[e]∼ µ
(
[e]∼

)
µ(e) P(E = e) P

(
E ∈ [e]∼

)
⊥ 37 0 0 0 0

□ ♢ 9 0 0 0 0
■ a 9 7

10
7
90

7
207

7
23

■ ab 3 3
10θ

1
10θ

1
23θ

3
23θ

■ ac 3 3
10θ

1
10θ

1
23θ

3
23θ

a, ab 0 7+3θ
10 0 0 0

a, ac 0 7+3θ
10 0 0 0

■ ab, ac 2 3
10

3
20

3
46

3
23

■ a, ab, ac 1 1 1 10
23

10
23

64 Z = 23
10

22 / 32

Estimating the Parameters

A sample can be used to estimate the parameters θ, by
minimizing

err(θ) :=
∑
e∈E

(
P(E = e | Θ = θ)− P(S = e)

)2
.

where
• E is the set of all events,
• P(E | Θ) the model+parameters based distribution,
• P(S) is the empiric distribution from the given sample.

23 / 32

Behind Parameter Estimation

So, we can derive a distribution P
(

E
∣∣∣ Θ = θ̂

)
from a

program P and a sample S .
• The sample defines an empiric distribution P(S). . .
• . . . that is used to estimate θ in P(E | Θ). . .
• . . . and score the program P w.r.t. that sample using, e.g.

the err() function.

24 / 32

Back to Inductive Logic Programming

Recall the Learning Logic Programs from Examples setting:
• Given positive and negative examples, and background

knowledge. . .
• find a program. . .

• . . . using the facts and relations from the BK. . .
• . . . such that all the PE and none the NE examples are

entailed.

Given a sample of events, and a set of programs,
the score of those programs (w.r.t. the sample) can
be used in evolutionary algorithms while searching for
better solutions.

25 / 32

In Conclusion

26 / 32

• Machine Learning has limitations.
• As does Inductive Logic Programming.
• But, distributions can be defined by Stochastic Logic

Programs.

27 / 32

Distributions can be defined by Stochastic Logic Programs.

Here we:
1 Look at the program’s stable models and
2 Use them to partition the events and then
3 Using annotated probabilities, define:

1 a finite measure. . .
2 that, normalized, is a distribution on all events.

28 / 32

Distributions can be defined by Stochastic Logic Programs.

• These distributions might have some parameters, due to
indeterminism in the program.
• A sample can be used to estimate those parameters. . .
• . . . and score programs concurring to describe it.
• This score a key ingredient in evolutionary algorithms.

. . . and a step towards the induction of stochastic
logic programs using data and background knowl-
edge.

29 / 32

Future Work

Induction of Stochastic Logic (ASP) Programs.

1 Meta-programming: formal rules for rule generation.
2 Generation, Combination and Mutation operators.
3 Complexity.
4 Applications.
5 Profit.

30 / 32

Thank You!

Questions?

31 / 32

References

• Gary Marcus, Deep Learning: A Critical Appraisal, 2018.
• François Chollet, On the Measure of Intelligence, 2019.
• Bengio et al., A Meta-Transfer Objective for Learning to

Disentangle Causal Mechanisms, 2019.
• Cropper et al., Turning 30: New Ideas in Inductive Logic

Programming, 2020.
• Fabrizio Riguzzi, Foundations of Probabilistic Logic

Programming , 2023.

32 / 32

https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1801.00631
https://doi.org/10.1201/9781003427421
https://doi.org/10.1201/9781003427421

	Motivation
	Machine Learning
	Logic Programming
	Probabilistic Logic Programming
	In Conclusion

