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In Short

¢ About Machine Learning:

® \/ector or matrix based models lack “structure”.
® Large models don't explain data.

e About Logic Programs:

® |ogic programs formalize knowledge.
® Logic doesn't capture uncertainty and is fragile to noise.

¢ Probabilistic Logic Programs extend formal knowledge
with probabilities.

® How to propagate probabilities through rules?

Goal: Combine Logic and Statistics.
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Machine Learning

e Standard Example — Iris Classification
® Assumptions of Machine Learning

® \Where Machine Learning Fails
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The Standard Example — lIris Classification

Learning Functions: The famous lris database

Iris

x1 sepal length. R

2o sepal width. virgnic

23 petal length.

x4 petal width.

y species (one of
setosa, versicolor,
virginica). s ; . , .

SepallLength

SepalWidth

® A setosa model: —0.40 — 0.652; + 1.00x; > 0.00.

® A general model template:
fo(Z) = 00 + 0121 + O220 + O323 + O424 > 0
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https://en.wikipedia.org/wiki/Iris_flower_data_set

Assumptions of Machine Learning

e Each instance is described in a single row by a fixed set
of features

X1 Xo . Xn ‘ y
i P21 . ITpa ‘ %
Tim T2m  --- Tnm ‘ Ym

¢ Instances are independent of one another, given the
model

y = fo(7).

® Parameters minimize estimation error e.g.

H = argmgin Z”Z/z —fe(fim :
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Failing Assumptions 1/2

student course grade Infer X >, Y.
o1 “ ¢ “Proof."
So C1 Cc
o1 €2 Z $1 > S (rows 1 & 2)
52 €3 SO Cg > C3 (3 & 4)
S3 Co b
S4 3 b Then s3 > 54 (5 & 6)
53 C4 X therefore X -, YV [
Sy Ca Y

® |nstances are not independent.

® Small dataset, so no statistics.
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Failing Assumptions 2/2

Prompt: Given f (machine) = e, f(learning) = g and
f(algorithm) = m, what is the value of f(ksadbf)?

ChatGPT: The information provided seems to

input | output define a function f where certain inputs are
machine | e associated with specific outputs. Based on
learning | g the given information:
algorithm | m }
ksadbf | ? ® f(machine) =e
® f(learning) =g
Bard: f(ksadbf) = 11. ® f(algorithm) = m
We can sge t?at the value However, there is no information given about
of t(x) is simply the f(ksadbf). Without additional information or a
first letter of x minus specific rule that determines the output for
9. f(ksadbf), 4t is not possible to determine its

value. If there is a pattern or rule for how

the outputs are assigned based on the inputs,

you would need to provide that information for
me to help determine the value of f(ksadbf).

No help from state-of-the-art Natural Language Processing or LLMs.
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Where Machine Learning Fails

e No interpretability: large models (dim é ~ millions) are
not understandable by humans.

® Need for large number of training examples.

e Unfit for multiple relations, intersample dependencies and
variable features: The Students, Courses and Results and
Last Letter examples.

® Poor generalization: A model trained in the iris dataset is
useless in any other domain.

e No use of background knowledge.
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Logic Programming

e An Example of Logic Programming.
® Inductive Logic Programming.
® Where ILP Fails.

9/32



An Example of Logic Programming

node (1..6).

edge (1,2). edge(2,4). edge(3,1).
edge(4,1). edge(5,3). edge(6,2).
edge (1,3). edge(2,5). edge(3.4).
edge (4,2). edge(5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5).
edge (5,6). edge(6,5).

col(r). col(b). col(g).

1 { color(X,C) : col(C) } 1 :— node(X).
:— edge(X,Y), color(X,C), color(Y,C).

#show color /2.

color(2,b) color(1l,g) color(4,r) color(3,b) color(5,g) color(6,r)
color(1l,r) color(2,b) color(4,g) color(3,b) color(5,r) color(6,g)
color(1l,r) color(2,g) color(4,b) color(3,g) color(5,r) color(6,b)
color(1,b) color(2,g) color(4,r) color(3,g) color(5,b) color(6,r)
color(2,r) color(l,g) color(4,b) color(3,r) color(5,g) color(6,b)
color(2,r) color(1,b) color(4,g) color(3,r) color(5,b) color(6,g)



Inductive Logic Programming

Learning Logic Programs from Examples.
Generate rules that. ..
® use background knowledge

parent(john, mary),  parent(david, steve),
parent(kathy, mary), female(kathy),
male(john), male(david).

® to entail all the positive examples,
father(john, mary), father(david, steve),

® but none of the negative examples.
father(kathy, mary), father(john, steve),

A solution is
father(X,Y) < parent(X,Y) A male(X).
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Where Logic Programming Fails

Meanwhile, in the real world, samples are incomplete and
come with noise.

Logic inference is fragile: a mistake in the transcription of a
fact is dramatic to the consequences:

® parent(david, mary).

® parent(jonh, mary).

The statistic essence of machine learning provides robustness.
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Probabilistic Logic
Programming

e Define distributions from logic programs.
e Stochastic ASP: Specifying distributions.
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Probabilistic Logic Programs (PLPs)

Logic programs annotated with probabilities.

@ alarm : 0.00251,

johncalls : 0.9 < alarm,

Y

Johncalls johncalls : 0.05 < —alarm

® glarm : 0.00251 is alarm V —alarm plus
P(Alarm = true) = 0.00251.

® johncalls : 0.9 <— alarm is

P (Johncalls = true|Alarm = true) = 0.9

Any bayesian network can be represented by a PLP.
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Distributions from Logic Programs
The program

alarm : 0.00251,
johncalls : 0.9 < alarm,
johncalls : 0.05 <— —alarm

entails four possible models (or worlds):

model | probability

alarm, johncalls | 0.002259
alarm, —johncalls | 0.000251
—alarm, johncalls | 0.049874
—alarm, —johncalls | 0.947616

® Models are special sets of literals entailed from the
program.

® Probabilities propagate from facts, through rules.
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There’s a Problem. ..
The program

alarm : 0.00251,

johncalls V marycalls < alarm
entails three stable (i.e. minimal) models

model ‘ probability
alarm, johncalls | =

alarm, marycalls | y
—alarm | 0.99749

but no single way to set z, y.

Some Probabilistic Logic Programs define more than one joint
distribution.
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...and an Oportunity

Some PLPs define more than one joint distribution.

® There is no single probability assignment from the
facts stable models: z,y € [0, 1].

® But any assignment is bound by Kolmogorov's axioms,
and forms equations such as:

4y = P (alarm).

¢ Existing data can be used to estimate the unknowns
in those equations.
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Stable Models, Events and Probabilities
What are we talking about?
® A logic program has atoms (and literals) and rules:

male(john), ~parent(kathy, mary),
father(X,Y) < parent(X, Y) A male(X).

¢ A stable model is a minimal model that contains:
® program'’s facts: parent(john, mary), male(john).
® consequences, by the rules: father(john, mary).
® Some programs have more than one model:
Logic Program \ Stable Models
aV-a,bVc al|{=a},{a b} {a,c}

How to propagate probability from annotated facts to other
events?
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Logic Programs and Probabilities
e Consider the literals of a logic program
L=Aa,...an,—ay,...7a,}.

e Any model of that program is a (consistent) subset of L.
® Let Q=P (L), i.e. an event e is a subset of L, e C L.

® Setting a probability for some events seems

straightforward: P (—alarm) = 0.997483558.
® For others, not so much:

® P (alarm, johncalls), P (johncalls, marycalls, alarm),
P (marycalls)?
® P (alarm,—alarm), P (—marycalls)?

How to propagate probability from facts to consequences or
other events?
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Classes of Events

cab abe e abc
0.30 0.30 _
ab ac be ac
bO 3 @ . 0.7
A
a:0.3

BV e a a={-a},ab={a,b},ac={a,c}

® Define equivalence classes for all events, based on C, D
relations with the stable models.

® This example shows 6 out of 23 + 1 classes.
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Probabilities for all Events

cab abc bac

0.30 0.30
ab ac be

b0.3 @ . 0.7

A

@ Set weights in the stable models (shaded nodes), using parameters
when needed: (@) =0.7; 1 (ab) = 0.36; u (ac) = 0.3(1 — 0)

@ Assume that the stable models are disjoint events.

© Define weight of an event as the sum of the weights of the related

stable models.

@ Normalize weights to get a (probability) distribution.
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Probabilities for all Events

[ #ld.|a(d) u(e) |PE=0 PEC[].)
L 37 0 0 0 0

O ¢ 9 0 0 0 0
a 9 1% % 207 %
ab 3 %6’ %0 %8 %6’
ac 3 %9 %@ %5 %9
a, ab 0| 436 0 0 0
a, ac 0| =2 0 0 0
ab, ac 2 % 23—0 % %
a, ab, ac 1 1 1 % %

64 7 = %
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Estimating the Parameters

A sample can be used to estimate the parameters 6, by
minimizing

err(6) := Z (P(E =e|O©=0)—P(S = e))z.
ec€
where
e £ is the set of all events,
e P(E | ©) the model4parameters based distribution,
e P(S) is the empiric distribution from the given sample.
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Behind Parameter Estimation

So, we can derive a distribution P(E ‘ 0= é) from a
program P and a sample S.
® The sample defines an empiric distribution P(S5). ..
® . .thatis used to estimate # in P(E | ©)...

® .. and score the program P w.r.t. that sample using, e.g.
the err() function.
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Back to Inductive Logic Programming

Recall the Learning Logic Programs from Examples setting:

® Given positive and negative examples, and background
knowledge. ..
e find a program. ..
® . .using the facts and relations from the BK. ..

® . .such that all the PE and none the NE examples are
entailed.

Given a sample of events, and a set of programs,
the score of those programs (w.r.t. the sample) can
be used in evolutionary algorithms while searching for
better solutions.
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In Conclusion
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¢ Machine Learning has limitations.
® As does Inductive Logic Programming.

e But, distributions can be defined by Stochastic Logic
Programs.
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Distributions can be defined by Stochastic Logic Programs.

Here we:
©® Look at the program’s stable models and
® Use them to partition the events and then

® Using annotated probabilities, define:

@ a finite measure. . .
® that, normalized, is a distribution on all events.
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Distributions can be defined by Stochastic Logic Programs.

® These distributions might have some parameters, due to
indeterminism in the program.

e A sample can be used to estimate those parameters. . .
® ... and score programs concurring to describe it.
® This score a key ingredient in evolutionary algorithms.

... and a step towards the induction of stochastic
logic programs using data and background knowl-
edge.
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Future Work

Induction of Stochastic Logic (ASP) Programs.

©® Meta-programming: formal rules for rule generation.
® Generation, Combination and Mutation operators.
©® Complexity.

O Applications.

® Profit.
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Thank You!

Questions?
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