Stochastic Answer Set Programming A Research Program

Francisco Coelho

NOVA LINCS High Performance Computing Chair Departamento de Informática, Universidade de Évora

November 15, 2023

This is a join work with Salvador Abreu@Dlnf and Bruno Dinis@DMat.

In Short

- About Machine Learning:
 - Vector or matrix based models lack "structure".
 - Large models don't explain data.
- About Logic Programs:
 - Logic programs formalize knowledge.
 - Logic doesn't *capture* uncertainty and is *fragile* to noise.
- Probabilistic Logic Programs extend formal knowledge with probabilities.
 - How to propagate probabilities through rules?

Goal: Combine Logic and Statistics.

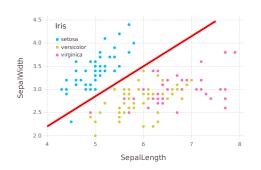
Machine Learning

- Standard Example Iris Classification
- Assumptions of Machine Learning
- Where Machine Learning Fails

The Standard Example — Iris Classification

Learning Functions: The famous Iris database

- x_1 sepal length.
- x_2 sepal width.
- x_3 petal length.
- x_4 petal width.
 - y species (one of setosa, versicolor, virginica).



- A setosa model: $-0.40 0.65x_1 + 1.00x_2 > 0.00$.
- A general **model template**:

$$f_{\theta}(\vec{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4 > 0$$

Assumptions of Machine Learning

 Each instance is described in a single row by a fixed set of features

Instances are independent of one another, given the model

$$y = f_{\theta}(\vec{x}).$$

• Parameters minimize estimation error e.g.

$$\hat{\theta} = \arg\min_{\theta} \sum_{i} ||y_i - f_{\theta}(\vec{x_i})||.$$

student	course	grade	Infer $X \succ_g Y$.
s_1	c_1	a	"Proof."
s_2 s_1	c_1 c_2	$egin{array}{c} c \ b \end{array}$	a \ a (roug 1 8, 2)
s_2	c_3	b	$s_1 \succ_s s_2 \text{ (rows 1 \& 2)}$ so $c_2 \succ_c c_3 \text{ (3 \& 4)}.$
S_3 S_4	c_2 c_3	b b	Thon () (() () () ()
S_3	c_4	X	Then $s_3 \succ_s s_4$ (5 & 6) therefore $X \succ_q Y$
S_{4}	C_{4}	Y	3

- Instances are not independent.
- Small dataset, so *no statistics*.

Failing Assumptions

2/2

Prompt: Given f(machine) = e, f(learning) = g and
f(algorithm) = m, what is the value of f(ksadbf)?

input	output
machine	e
learning	g
algorithm	m
ksadbf	?

Bard: f(ksadbf) = 11.
We can see that the value
of f(x) is simply the
first letter of x minus
96.

ChatGPT: The information provided seems to define a function f where certain inputs are associated with specific outputs. Based on the given information:

- $f(\mathtt{machine}) = e$
- f(learning) = g
- f(algorithm) = m

However, there is no information given about $f(\mathsf{ksadbf})$. Without additional information or a specific rule that determines the output for $f(\mathsf{ksadbf})$, it is not possible to determine its value. If there is a pattern or rule for how the outputs are assigned based on the inputs, you would need to provide that information for me to help determine the value of $f(\mathsf{ksadbf})$.

No help from state-of-the-art Natural Language Processing or LLMs.

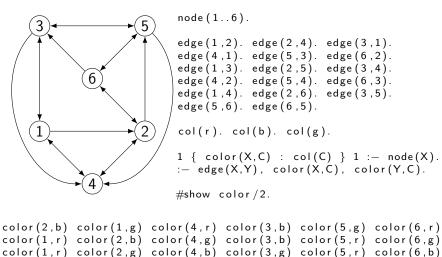
Where Machine Learning Fails

- No interpretability: large models ($\dim \theta \sim$ millions) are not understandable by humans.
- Need for large number of training examples.
- Unfit for multiple relations, intersample dependencies and variable features: The Students, Courses and Results and Last Letter examples.
- Poor *generalization*: A model trained in the iris dataset is useless in any other domain.
- No use of background knowledge.

Logic Programming

- An Example of Logic Programming.
- Inductive Logic Programming.
- Where ILP Fails.

An Example of Logic Programming



Inductive Logic Programming

Learning Logic Programs from Examples.

Generate rules that...

• use background knowledge

```
parent(john, mary), parent(david, steve),
parent(kathy, mary), female(kathy),
male(john), male(david).
```

- to entail all the **positive examples**, father(john, mary), father(david, steve),
- but none of the negative examples.
 father(kathy, mary), father(john, steve),

A solution is

$$father(X, Y) \leftarrow parent(X, Y) \land male(X).$$

Where Logic Programming Fails

Meanwhile, in the **real world**, samples are *incomplete* and come with *noise*.

Logic inference is fragile: a mistake in the transcription of a fact is dramatic to the consequences:

- parent(david, mary).
- parent(jonh, mary).

The statistic essence of machine learning provides robustness.

Probabilistic Logic Programming

- Define distributions from logic programs.
- Stochastic ASP: Specifying distributions.

Probabilistic Logic Programs (PLPs)

Logic programs annotated with probabilities.

alarm: 0.00251, $johncalls: 0.9 \leftarrow alarm,$ $johncalls: 0.05 \leftarrow \neg alarm$

- alarm : 0.00251 is $alarm \lor \neg alarm$ plus P(Alarm = true) = 0.00251.
- $johncalls: 0.9 \leftarrow alarm$ is

$$P(Johncalls = true|Alarm = true) = 0.9$$

Any bayesian network can be represented by a PLP.

Distributions from Logic Programs

The program

```
alarm: 0.00251,
johncalls: 0.9 \leftarrow alarm,
johncalls: 0.05 \leftarrow \neg alarm
```

entails four possible models (or worlds):

model	probability	
alarm, john calls	0.002259	
$alarm, \neg john calls$	0.000251	
$\neg alarm, john calls$	0.049874	
$\neg alarm, \neg john calls$	0.947616	

- Models are special sets of literals entailed from the program.
- Probabilities propagate from facts, through rules.

There's a Problem...

The program

alarm: 0.00251, $johncalls \lor marycalls \leftarrow alarm$

entails three stable (i.e. minimal) models

model	probability
alarm, john calls	x
alarm, mary calls	$\mid y \mid$
$\neg alarm$	0.99749

but no single way to set x, y.

Some *Probabilistic Logic Programs* define more than one joint distribution.

... and an Oportunity

Some *PLP*s define more than one joint distribution.

- There is no single probability assignment from the facts stable models: $x, y \in [0, 1]$.
- But any assignment is bound by Kolmogorov's axioms, and forms equations such as:

$$x + y = P(alarm)$$
.

 Existing data can be used to estimate the unknowns in those equations.

Stable Models, Events and Probabilities

What are we talking about?

• A logic program has atoms (and literals) and rules:

$$male(john), \neg parent(kathy, mary),$$

 $father(X, Y) \leftarrow parent(X, Y) \land male(X).$

- A stable model is a minimal model that contains:
 - program's facts: parent(john, mary), male(john).
 - consequences, by the *rules*: father(john, mary).
- Some programs have more than one model:

Logic ProgramStable Models
$$a \lor \neg a, b \lor c \leftarrow a$$
 $\{\neg a\}, \{a, b\}, \{a, c\}$

How to propagate probability from annotated facts to other *events*?

Logic Programs and Probabilities

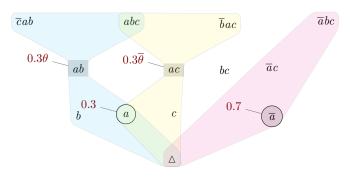
Consider the literals of a logic program

$$L = \{a_1, \dots a_n, \neg a_1, \dots \neg a_n\}.$$

- Any model of that program is a (consistent) subset of L.
- Let $\Omega = \mathbf{P}(L)$, i.e. an event e is a subset of L, $e \subseteq L$.
 - Setting a probability for some events seems straightforward: $P(\neg alarm) = 0.997483558$.
 - For others, not so much:
 - P (alarm, johncalls), P (johncalls, marycalls, alarm), P (marycalls)?
 - $P(alarm, \neg alarm), P(\neg marycalls)$?

How to propagate probability from *facts* to *consequences* or other *events*?

Classes of Events



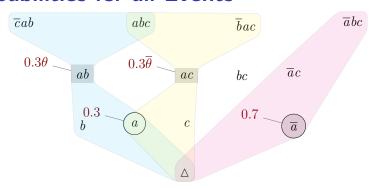
$$a: 0.3$$

$$b \lor c \leftarrow a$$

$$\overline{a} = \{\neg a\}, ab = \{a, b\}, ac = \{a, c\}$$

- Define equivalence classes for all events, based on ⊆, ⊇ relations with the stable models.
- This example shows 6 out of $2^3 + 1$ classes.

Probabilities for all Events



- 1 Set weights in the stable models (shaded nodes), using parameters when needed: $\mu\left(\overline{a}\right)=0.7; \mu\left(ab\right)=0.3\theta; \mu\left(ac\right)=0.3\left(1-\theta\right)$
- 2 Assume that the stable models are disjoint events.
- 3 Define weight of an event as the sum of the weights of the related stable models.
- 4 Normalize weights to get a (probability) distribution.

Probabilities for all Events

$\llbracket e \rrbracket$	$\#[e]_{\sim}$	$\mu([e]_{\sim})$	$\mu(e)$	P(E=e)	$P(E \in [e]_{\sim})$
	37	0	0	0	0
	9	0	0	0	0
\overline{a}	9	$\frac{7}{10}$	$\frac{7}{90}$	$\frac{7}{207}$	$\frac{7}{23}$
ab	3	$\frac{3}{10}\theta$	$\frac{1}{10}\theta$	$\frac{1}{23}\theta$	$\frac{3}{23}\theta$
ac	3	$\frac{3}{10}\overline{\theta}$	$\frac{1}{10}\overline{ heta}$	$\frac{1}{23}\overline{\theta}$	$\frac{3}{23}\overline{ heta}$
\overline{a},ab	0	$\frac{7+3\theta}{10}$	0	0	0
\overline{a} , ac	0	$\frac{7+3\overline{\theta}}{10}$	0	0	0
$\blacksquare ab, ac$	2	$\frac{7+3\overline{\theta}}{10}$ $\frac{3}{10}$	$\frac{3}{20}$	$\frac{3}{46}$	$\frac{3}{23}$
\overline{a},ab,ac	1	1	1	$\frac{10}{23}$	$\frac{10}{23}$
	64		$Z = \frac{23}{10}$		

Estimating the Parameters

A sample can be used to estimate the parameters θ , by minimizing

$$\operatorname{err}(\theta) := \sum_{e \in \mathcal{E}} (P(E = e \mid \Theta = \theta) - P(S = e))^2.$$

where

- \mathcal{E} is the set of all events,
- $P(E \mid \Theta)$ the **model+parameters** based distribution,
- P(S) is the **empiric** distribution from the given sample.

Behind Parameter Estimation

So, we can derive a distribution $P(E \mid \Theta = \hat{\theta})$ from a program P and a sample S.

- The sample defines an empiric distribution P(S)...
- ...that is used to estimate θ in $P(E \mid \Theta)$...
- ...and score the program P w.r.t. that sample using, e.g. the $\mathrm{err}()$ function.

Back to Inductive Logic Programming

Recall the Learning Logic Programs from Examples setting:

- Given positive and negative examples, and background knowledge...
- find a **program**...
 - ... using the facts and relations from the BK...
 - ... such that **all the PE** and **none the NE** examples are entailed.

Given a sample of events, and a set of programs, the score of those programs (w.r.t. the sample) can be used in evolutionary algorithms while searching for better solutions.

In Conclusion

- Machine Learning has limitations.
- As does Inductive Logic Programming.
- But, distributions can be defined by Stochastic Logic Programs.

Distributions can be defined by **Stochastic Logic Programs**. Here we:

- 1 Look at the program's stable models and
- 2 Use them to partition the **events** and then
- 3 Using annotated probabilities, define:
 - 1 a finite measure...
 - 2 that, normalized, is a distribution on all events.

Distributions can be defined by **Stochastic Logic Programs**.

- These distributions might have some **parameters**, due to indeterminism in the program.
- A **sample** can be used to estimate those parameters. . .
- ...and **score** programs concurring to describe it.
- This score a key ingredient in evolutionary algorithms.

... and a step towards the induction of stochastic logic programs using data and background knowledge.

Future Work

Induction of Stochastic Logic (ASP) Programs.

- **1** Meta-programming: formal rules for rule generation.
- **2** Generation, Combination and Mutation operators.
- 6 Complexity.
- 4 Applications.
- Opening Profit.

Thank You!

Questions?

References

- Gary Marcus, Deep Learning: A Critical Appraisal, 2018.
- François Chollet, *On the Measure of Intelligence*, 2019.
- Bengio et al., A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms, 2019.
- Cropper et al., Turning 30: New Ideas in Inductive Logic Programming, 2020.
- Fabrizio Riguzzi, Foundations of Probabilistic Logic Programming, 2023.