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Review: Bayesian inference

A general scenario:

- Query variables: X
- Evidence (observed) variables and their values: E = e

Inference problem: answer questions about the query
variables given the evidence variables

This can be done using the posterior distribution P(X | E = e)
Example of a useful question: Which X is true?

. More formally: what value of X has the least probability of
being wrong?

. Answer: MPE = MAP (argmin P(error) = argmax
P(X=x|E=¢e))



Today: What if P(X,E) is complicated?

 \Very, very common problem: P(X,E) is complicated because both X
and E depend on some hidden variable Y
* SOLUTION:

* Draw a bunch of circles and arrows that represent the dependence
* When your algorithm performs inference, make sure it does so in the order of
the graph

* FORMALISM: Bayesian Network



Hidden Variables

A general scenario:
- Query variables: X
- Evidence (observed) variables and their values: E = e
- Unobserved variables: Y

Inference problem: answer questions about the query
variables given the evidence variables

- This can be done using the posterior distribution P(X | E = e)
- In turn, the posterior needs to be derived from the full joint P(X, E, Y)

P(X,e)
P(e)

Bayesian networks are a tool for representing joint
probability distributions efficiently

P(X|E=e)= oc Zy P(X,e, )



Bayesian networks

* More commonly called graphical models

* A way to depict conditional independence
relationships between random variables

* A compact specification of full joint distributions

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference

e PROBABILISTIC GRAPHICAL MODELS

Judea Pearl
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Outline

e Review: Bayesian inference

* Bayesian network: graph semantics

* The Los Angeles burglar alarm example

* Inference in a Bayes network

* Conditional independence # Independence



Bayesian networks: Structure

e Nodes: random variables @

e Arcs: interactions

 An arrow from one variable to another indicates
direct influence

* Must form a directed, acyclic graph



Example: N independent
coin flips

* Complete independence: no interactions



Example: Nalve Bayes document model

e Random variables:
e X: document class
* W, ..., W.: words in the document




Outline

* The Los Angeles burglar alarm example



Example: Los Angeles Burglar Alarm

* | have a burglar alarm that is sometimes set off by minor earthquakes. My two
neighbors, John and Mary, promised to call me at work if they hear the alarm
* Example inference task: suppose Mary calls and John doesn’t call. What is the probability of a
burglary?
* What are the random variables?
* Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

* What are the direct influence relationships?
* A burglar can set the alarm off
* An earthquake can set the alarm off
* The alarm can cause Mary to call
e The alarm can cause John to call




Example: Burglar Alarm
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Conditional independence and the
joint distribution

* Key property: each node is conditionally independent of its
non-descendants given its parents

* Suppose the nodes X, ..., X, are sorted in topological order

* To get the joint distribution P(X, ..., X,),
use chain rule:

PX,,...X)=[]PX, 1 X,,.... X,
=1

_ ﬁP(Xl. | ParentS(X,.))
=1



Conditional probability distributions

* To specify the full joint distribution, we need to specify a

conditional distribution for each node given its parents:
P (X | Parents(X))

" Z)
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Example: Burglar Alarm

(Bt P(E)

A “model” is a complete

specification of the
@ P(A|B,E) dependencies.
e The conditional

probability tables are
the model parameters.




Outline

* Inference in a Bayes network



Classification using probabilities

* Suppose Mary has called to tell you that you had a burglar alarm.
Should you call the police?
 Make a decision that maximizes the probability of being correct. This is

called a MAP (maximum a posteriori) decision. You decide that you have a
burglar in your house if and only if

P(Burglary|Mary) > P(=Burglary|Mary)



Using a Bayes network to estimate a posteriori probabilities

* Notice: we don’t know P(Burglary|Mary)!
We have to figure out what it is.

- * This is called “inference”.
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Using a Bayes network to estimate a posteriori probabilities
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* Second step: marginalize (add) to get rid
of the variables you don’t care about.

P(B,M) = Z Z P(B,E, A, M)

E,~E A,—A
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Using a Bayes network to estimate a posteriori probabilities

* Third step: ignore (delete) the column
that didn’t happen.
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Using a Bayes network to estimate a posteriori probabilities

* Fourth step: use the definition of

conditional probability.
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Some unexpected conclusions

* Burglary is so unlikely that, if only Mary calls or only John calls, the
probability of a burglary is still only about 5%.

* If both Mary and John call, the probability is ~50%.

unless ...



Some unexpected conclusions

* Burglary is so unlikely that, if only Mary calls or only John calls, the
probability of a burglary is still only about 5%.

* If both Mary and John call, the probability is ~50%.
unless ...

* If you know that there was an earthquake, then the probability is, the
alarm was caused by the earthquake. In that case, the probability you
had a burglary is vanishingly small, even if twenty of your neighbors

call you.

* This is called the “explaining away” effect. The earthquake “explains
away” the burglar alarm.
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* Conditional independence # Independence



The joint probability distribution

P(X,,....,X)) =ﬁP(Xl. \ParentS(Xi))
i=1

©
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For example,

P(j, m, a, =b,—e) = P(=b) P(—e) P(a|=b,—e) P(j|a) P(m]a)




Independence

* By saying that X; and X; are independent, we mean that
P(Xj, X;) = P(X;)P(X))

* X; and X; are independent if and only if they have no common
ancestors

 Example: independent coin flips

* Another example: Weather is independent of all other variables in this

model. l @
Toothache @



Conditional independence

* By saying that W; and W; are conditionally independent given X, we
mean that

P(W,, W;|X) = P(W;|X)P(W;|X)

* W; and W; are conditionally independent given X if and only if they
have no common ancestors other than the ancestors of X.

* Example: naive Bayes model:




Conditional independence # Independence

Common cause: Conditionally Common effect: Independent
Independent C %9
Y: Project due X: Raining
X: Newsgroup Z: Ballgame
busy
Y: Traffic
Z: Lab full
Are X and Z independent? No Are X and Z independent? Yes

P(Z X) = ZP(ZIY)P(XIY)P(Y) P(X,2) = P(X)P(Z)
Y

P(Z)P(X) = (Z P(ZIY)P(Y)> (Z P(XIY)P(Y)> Are they c:?;t;;jlli I}chgﬁ);ng)e}gt( )%i)vlggz\g? No

Are they conditionally independent given Y? Yes P(Y)
P(Z,X|Y) = P(Z|Y)P(X|Y) # P(Z|Y)P(X]Y)




Conditional independence # Independence

Common cause: Conditionally
Independent

Y: Project due

X: Newsgroup
busy

Z: Lab full

Are X and Z independent? No

Knowing X tells you about Y, which tells you about Z.

Are they conditionally independent given Y? Yes

If you already know Y, then X gives you no useful
information about Z.

Common effect: Independent

X: Raining
Z: Ballgame
Y: Traffic

Are X and Z independent? Yes
Knowing X tells you nothing about Z.

Are they conditionally independent given Y? No
If Y is true, then either X or Z must be true.
Knowing that X is false means Z must be true.
We say that X “explains away” Z.



Conditional independence # Independence

Being conditionally independent given X does NOT mean that W; and W; are
independent. Quite the opposite. For example:

* The document topic, X, can be either “sports” or “pets”, equally probable.
* W,=1 if the document contains the word “food,” otherwise W,=0.
* W,=1 if the document contains the word “dog,” otherwise W,=0.

e Suppose you don’t know X, but you know that W,=1 (the document has the
word “dog”). Does that change your estimate of p(W;=1)?



Conditional independence

Another example: causal chain

X: Low pressure

Z: Traffic

* X and Z are conditionally independent given Y, because they have
no common ancestors other than the ancestors of Y.

* Being conditionally independent given Y does NOT mean that X
and Z are independent. Quite the opposite. For example,
suppose P(X) = 0.5, P(Y|X) = 0.8, P(Y|=X) = 0.1, P(Z|Y) =
0.7, and P(Z|-Y) = 0.4. Then we can calculate that P(Z|X) =
0.64, but P(Z) = 0.535
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