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Bayesian Networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:
P(Xi |Parents(Xi ))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn’t
call. Sometimes it’s set off by minor earthquakes. Is there a burglar?

Variables: Burglar , Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example
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Compactness

A CPT for Boolean Xi with k Boolean parents

has:

2k rows for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 − 1 = 31)
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Global Semantics

Global semantics defines the full joint

distribution

as the product of the local conditional distributions:

P(x1, . . . , xn) =Π
n

i = 1P(xi |parents(Xi ))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)
=
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Global Semantics

“Global” semantics defines the full joint

distribution

as the product of the local conditional distributions:

P(x1, . . . , xn) =Π
n

i = 1P(xi |parents(Xi ))

e.g., P(j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P(j |a)P(m|a)P(a|¬b,¬e)P(¬b)P(¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local Semantics

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics ⇔ global semantics
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Markov Blanket

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian Networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . ,Xn

2. For i = 1 to n

add Xi to the network

select parents from X1, . . . ,Xi−1 such that

P(Xi |Parents(Xi )) = P(Xi |X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . ,Xn) = Π
n

i = 1P(Xi |X1, . . . , Xi−1) (chain rule)

= Π
n

i = 1P(Xi |Parents(Xi )) (by construction)
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J,M) = P(A|J)? P(A|J,M) = P(A)

Amarda Shehu (580) Bayesian Networks 14



Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A, J,M) = P(B|A)?
P(B|A, J,M) = P(B)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A, J,M) = P(B|A)? Yes
P(B|A, J,M) = P(B)? No
P(E |B,A, J,M) = P(E |A)?
P(E |B,A, J,M) = P(E |A,B)?
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Example

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J,M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A, J,M) = P(B|A)? Yes
P(B|A, J,M) = P(B)? No
P(E |B,A, J,M) = P(E |A)? No
P(E |B,A, J,M) = P(E |A,B)? Yes
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Example

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions
Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed
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Example: Car Diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
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Example: Car Insurance
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Compact Conditional Distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:

X = f (Parents(X )) for some function f

E.g., Boolean functions

NorthAmerican ⇔ Canadian ∨ US ∨Mexican

E.g., numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation
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Compact Conditional Distributions

Noisy-OR distributions model multiple noninteracting causes
1) Parents U1 . . .Uk include all causes (can add leak node)
2) Independent failure probability qi for each cause alone

=⇒ P(X |U1 . . .Uj ,¬Uj+1 . . .¬Uk) = 1−Π
j

i = 1qi

Cold Flu Malaria P(Fever) P(¬Fever)

F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2× 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6× 0.1
T T F 0.88 0.12 = 0.6× 0.2
T T T 0.988 0.012 = 0.6× 0.2× 0.1

Number of parameters linear in number of parents
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Hybrid (Discrete+Continuous) Networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families
1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Continuous Child Variables

Need one conditional density function for child variable given continuous parents, for
each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost = c|Harvest = h, Subsidy? = true)

= N(ath + bt , σt)(c)

=
1

σt

√
2π

exp

(
−1

2

(
c − (ath + bt)

σt

)2
)

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range

but works OK if the likely range of Harvest is narrow
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Continuous Child Variables

All-continuous network with LG distributions
=⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate
Gaussian over all continuous variables for each combination of discrete variable values
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Discrete Variable w/ Continuous Parents

Probability of Buys? given Cost should be a “soft” threshold:

Probit distribution uses integral of Gaussian:

Φ(x) =
∫ x

−∞ N(0, 1)(x)dx

P(Buys? = true | Cost = c) = Φ((−c + µ)/σ)
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Why the probit?

1. It’s sort of the right shape
2. Can view as hard threshold whose location is subject to noise
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Discrete Variable

Sigmoid (or logit) distribution also used in neural networks:

P(Buys? = true | Cost = c) =
1

1 + exp(−2−c+µ
σ

)

Sigmoid has similar shape to probit but much longer tails:
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Summary on Bayesian Networks

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables =⇒ parameterized distributions (e.g., linear Gaussian)

Next: Inference on Bayesian Networks
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Summary on Bayesian Networks

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables =⇒ parameterized distributions (e.g., linear Gaussian)

Next: Inference on Bayesian Networks
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Inference Tasks

Simple queries: compute posterior marginal P(Xi |E= e)
e.g., P(NoGas|Gauge = empty , Lights = on, Starts = false)

Conjunctive queries: P(Xi ,Xj |E= e) = P(Xi |E= e)P(Xj |Xi ,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference by Enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing
its explicit representation

Simple query on the burglary network:
P(B|j ,m)
= P(B, j ,m)/P(j ,m)
= αP(B, j ,m)

= αΣe Σa P(B, e, a, j ,m)

Rewrite full joint entries using product of CPT entries:
P(B|j ,m)

= αΣe Σa P(B)P(e)P(a|B, e)P(j |a)P(m|a)

= αP(B) Σe P(e) Σa P(a|B, e)P(j |a)P(m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Enumeration Algorithm

function Enumeration-Ask(X,e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty
for each value xi of X do

extend e with value xi for X
Q(xi )←Enumerate-All(Vars[bn],e)

return Normalize(Q(X ))

function Enum-All(vars,e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P(y | Pa(Y )) × Enum-All(Rest(vars),e)
else return

∑
y P(y | Pa(Y )) × Enum-All(Rest(vars),ey )

where ey is e extended with Y = y
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Evaluation Tree

Enumeration is inefficient: repeated computation
e.g., computes P(j |a)P(m|a) for each value of e
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Inference by Variable Elimination

Variable elimination refers to a heuristic to reduce complexity of exact inference

Use of memoization to avoid redundant calculations (stored in factors)

P(B|j ,m)

= αP(B)︸ ︷︷ ︸
B

Σe P(e)︸︷︷︸
E

Σa P(a|B, e)︸ ︷︷ ︸
A

P(j |a)︸ ︷︷ ︸
J

P(m|a)︸ ︷︷ ︸
M

= αf1(B)Σe f2(E)Σaf3(A,B,E)f4(A)f5(A) pointwise product and sum out A

= αf1(B)Σe f2(E)f6(B,E) sum out E
= αf1(B)f7(B)

Basic operations: pointwise product and summation of factors

Direction: Carry out summations right-to-left

Example of factors:
f4(A) is 〈P(j |a),P(j |¬a)〉 = 〈0.90, 0.05〉 f5(A) is 〈P(m|a),P(m|¬a)〉 = 〈0.70, 0.01〉
f3(A, b,E) is a matrix of two rows, 〈P(a|b, e),P(¬a|b, e)〉 and 〈P(a|b,¬e),P(¬a|b,¬e)〉
f3(A,B,E) is a 2x2x2 matrix (considering also b and ¬b).
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Variable Elimination: Basic Operations - Pointwise Product

Pointwise product f4(A)× f5(A) = 〈P(j |a) · P(m|a),P(j |¬a) · P(m|¬a)〉

Corresponding entries in vectors are multiplied, yielding another same-size vector

equivalent to going bottom-up in tree, keeping track of both children in a vector, and
multiplying child with parent to “roll up” to higher level.

Generally:
Pointwise product of factors f1 and f2:
f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk , z1, . . . , zl)
= f (x1, . . . , xj , y1, . . . , yk , z1, . . . , zl) vars are unions

Example: f1(a, b)× f2(b, c) = f (a, b, c)

Rewrite f4(A) as f (j ,A) and f5(A) as f (m,A)
Rule suggests f (j ,A)× f2(m,A) = f (j ,m,A)

Correct: P(j |A)×P(m|A) = P(j ,m|A) (because J and M are conditionally indepedent
given their parent set A)
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Variable Elimination: Basic Operations - Summation

Consider f3(A, b,E) which is a 2x2 matrix:
〈P(a|b, e),P(¬a|b, e)〉
〈P(a|b,¬e),P(¬a|b,¬e)〉 (each row corresponds to branching point in search tree)

“Summing out” A means pointwise product on each branch and sum up at parent

Example: What is =Σaf3(A, b,E)f4(A)f5(A)?

Let f4(A)× f5(A) be f (j ,m,A) =< P(j ,m|a),P(j ,m|¬a > (from previous slide)
Take pointwise product of first row of f3(A, b,E) with f (j ,m,A)
Take pointwise product of second row of f3(A, b,E) with f (j ,m,A)
Sum the two rows to get a new factor f6(b,E)

Generally, summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Σx f1× · · · × fk = f1× · · · × fi Σx fi+1× · · · × fk = f1× · · · × fi × fX̄
assuming f1, . . . , fi do not depend on X
summation needed to account for all values of hidden variables (A, E)
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Variable Elimination Algorithm

function Elimination-Ask(X,e,bn) returns a distribution over X
inputs: X, the query variable

e, evidence specified as an event
bn, a belief network specifying joint distribution P(X1, . . . ,Xn)

factors← [ ]; vars←Reverse(Vars[bn])
for each var in vars do

factors← [Make-Factor(var ,e)|factors]
if var is a hidden variable then factors←Sum-Out(var, factors)

return Normalize(Pointwise-Product(factors))

Every choice of ordering for variables yields a sound algorithm
Different orderings give different intermediate factors
Certain variable orderings can introduce irrelevant calculations
Intractable to find optimal ordering, but heuristics exist
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Irrelevant Variables

Consider the query P(JohnCalls|Burglary = true)

P(J|b) = αP(b)
∑
e

P(e)
∑
a

P(a|b, e)P(J|a)
∑
m

P(m|a)

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless Y ∈Ancestors({X} ∪ E)

Here, X = JohnCalls, E= {Burglary}, and
Ancestors({X} ∪ E) = {Alarm,Earthquake}
so MaryCalls is irrelevant

Hence the name, variable elimination algorithm
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Irrelevant Variables
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∑
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Irrelevant Variables

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

Thm 2: Y is irrelevant if m-separated from X by E

For P(JohnCalls|Alarm = true), both
Burglary and Earthquake are irrelevant
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Complexity of Exact Inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– worst-case time and space cost of a query is O(n)
– worst-case time and space cost of n queries is O(n2)

Multiply connected networks:
– worst-case time and space cost are exponential, O(n · dn) (n queries, d values per r.v.)
– NP-hard and #P-complete
– can reduce 3SAT to exact inference =⇒ NP-hard
– equivalent to counting 3SAT models =⇒ #P-complete
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Taming Exact Inference

How to reduce time? Identify structure in BN similar to CSP setting: group variables
together to “reduce” network to a polytree

How? Cluster variables together (joint tree algorithms)

Parents of a node can be grouped into a meta-parent node (meganode)

As in CSP, meganodes may share variables, so special inference algorithm is needed

Algorithm takes care of constraint propagation so that meganodes agree on posterior
probability of shared variables

No free lunch, so what gives?

The exponential time cost is hidden in the combined CPTs, which can become
exponentially large
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Taming Exact Inference

How to reduce time? Identify structure in BN similar to CSP setting: group variables
together to “reduce” network to a polytree

How? Cluster variables together (joint tree algorithms)

Parents of a node can be grouped into a meta-parent node (meganode)

As in CSP, meganodes may share variables, so special inference algorithm is needed

Algorithm takes care of constraint propagation so that meganodes agree on posterior
probability of shared variables

No free lunch, so what gives?

The exponential time cost is hidden in the combined CPTs, which can become
exponentially large
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Giving up on Exact Inference: Go for Approximate Instead

Or...

Give up on exact inference

Go for approximate inference algorithms...

that use sampling (Monte Carlo-based) to estimate posterior probabilities
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Giving up on Exact Inference: Go for Approximate Instead

Or...

Give up on exact inference

Go for approximate inference algorithms...

that use sampling (Monte Carlo-based) to estimate posterior probabilities
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Giving up on Exact Inference: Go for Approximate Instead

Or...

Give up on exact inference

Go for approximate inference algorithms...

that use sampling (Monte Carlo-based) to estimate posterior probabilities
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Giving up on Exact Inference: Go for Approximate Instead

Or...

Give up on exact inference

Go for approximate inference algorithms...

that use sampling (Monte Carlo-based) to estimate posterior probabilities
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Inference by Stochastic Simulation (Sampling-based)

Basic idea:

1) Draw N samples from a sampling distribution S
Can you draw N samples for the r.v. Coin
from the probability distribution P(Coin) = [0.5, 0.5]?

2) Compute an approximate posterior probability P̂

3) Show this converges to the true probability P

Outline:

– Direct Sampling: Sampling from an empty network

– Rejection sampling: reject samples disagreeing with evidence

– Likelihood weighting: use evidence to weight samples

– Markov chain Monte Carlo (MCMC): sample from a stochastic process whose
stationary distribution is the true posterior
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Direct Sampling: Sampling from an Empty Network

Empty refers to the absence of any evidence: used to estimate joint probabilities

Main idea:

Sample each r.v. in turn, in topological order, from parents to children

Once parent is sampled, its value is fixed and used to sample child

Events generated via this direct sampling, observing joint probability distribution

To get (prior) probability of an event, have to sample many times, so frequency of
“observing” it among samples approaches its probability

Example next
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Direct Sampling Example
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Direct Sampling Example
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Direct Sampling Example
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Direct Sampling Example
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Direct Sampling Example
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Direct Sampling Example
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Direct Sampling Example
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PRIOR-SAMPLE Algorithm for Direct Sampling

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X1, . . . ,Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from P(Xi | parents(Xi ))
given the values of Parents(Xi ) in x

return x
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Direct Sampling Continued

Probability that PriorSample generates a particular event x1 . . . xn:

SPS(x1 . . . xn) =Π
n

i = 1P(xi |parents(Xi )) = P(x1 . . . xn)
i.e., the true prior probability

E.g., SPS(t, f , t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324 = P(t, f , t, t)

Let NPS(x1 . . . xn) be the number of samples generated for event x1, . . . , xn
Then we have:

lim
N→∞

P̂(x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

= P(x1 . . . xn)

That is, estimates derived from PriorSample are consistent
(becomes exact in large-sample limit)

Shorthand: P̂(x1, . . . , xn) ≈ P(x1 . . . xn)

Problem: N needs to be sufficiently large to sample “rare events”
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Rejection Sampling (for Conditional Probabilities P(X |e))

Main idea:

Given distribution too hard to sample directly from it: use an easy-to-sample distribution
for direct sampling, and then reject samples based on hard-to-sample distribution

(1) Direct sampling to sample (X ,E) events from prior distribution in BN
(2) Determine whether (X ,E) is consistent with given evidence e
(3) Get P̂(X |E = e) by counting how often (E = e) and (X ,E = e) occur

as per Bayes’ rule: P̂(X |E = e) = N(X ,E=e)
N(E=e)

Example: estimate P(Rain|Sprinkler = true) using 100 samples

Generate 100 samples for Cloudy ,Sprinkler ,Rain,WetGrass via direct sampling
27 samples have Sprinkler = true event of interest
Of these, 8 have Rain = true and 19 have Rain = false.

P̂(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈8/27, 19/27〉 = 〈0.296, 0.704〉

Similar to a basic real-world empirical estimation procedure
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Rejection Sampling

P̂(X |e) estimated from samples agreeing with e

function Rejection-Sampling(X,e,bn,N) returns an estimate of
P(X |e)

local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

Amarda Shehu (580) Inference on Bayesian Networks 55



Analysis of Rejection Sampling

P̂(X |e) = αNPS(X , e) (algorithm defn.)

= NPS(X , e)/NPS(e) (normalized by NPS(e))

≈ P(X , e)/P(e) (property of PriorSample)

= P(X |e) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates
Standard deviation of error in each probability proportional to 1/

√
n (number of r.v.s)

Problem:

If e is very rare event, most samples rejected; hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!

Rejection sampling is unusable for complex problems → Likelihood Weighting instead
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Likelihood Weighting

A form of importance sampling (for BNs)

Main idea:

Generate only events that are consistent with given values e of evidence variables E

Fix evidence variables to given values, sample only nonevidence variables

Weight each sample by the likelihood it accords the evidence (how likely e is)

Example: Query P(Rain|Cloudy = true,WetGrass = true)

Consider r.v.s in some topological ordering
Set w = 1.0 (weight will be a running product)

If r.v. Xi is in given evidence variables (Cloudy or WetGrass in this example),
w = w ×P(Xi |Parents(Xi ))
Else, sample Xi from P(Xi | evidence)
When all r.v.s considered, normalized weights to turn to probabilities
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Likelihood Weighting Example: P(Rain|Sprinkler = t,WetGrass = t)

Cloudy considered first, sample, w = 1.0 because nonevidence
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Likelihood Weighting Example: P(Rain|Sprinkler = t,WetGrass = t)

Cloudy considered first, sample, w = 1.0 because nonevidence
Say, Cloudy=T sampled
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Likelihood Weighting Example: P(Rain|Sprinkler = t,WetGrass = t)

Sprinkler considered next, evidence variable, so update w
w = w ×P(Sprinkler = t|Parents(Sprinkler))
w = 1.0
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Likelihood Weighting Example: P(Rain|Sprinkler = t,WetGrass = t)

Sprinkler considered next, evidence variable, so update w
w = w ×P(Sprinkler = t|Parents(Sprinkler)) = P(Sprinkler = t|Cloudy = t)
w = 1.0× 0.1
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Likelihood Weighting Example: P(Rain|Sprinkler = t,WetGrass = t)

Rain considered next, nonevidence, so sample from BN, w does not change
w = 1.0× 0.1
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Likelihood Weighting Example: P(Rain|Sprinkler = t,WetGrass = t)

Sample Rain, note Cloudy = t from before
Say, Rain = t sampled
w = 1.0× 0.1
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Likelihood Weighting Example

Last r.v. WetGrass, evidence variable, so update w
w = w ×P(WetGrass = t|Parents(WetGrass)) = P(W = t|S = t,R = t)
w = 1.0× 0.1× 0.99 = 0.099 (this is not probability but weight of this sample)
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Likelihood Weighting Algorithm

function Likelihood-Weighting(X,e,bn,N) returns an estimate of
P(X |e)

local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P(Xi = xi | parents(Xi ))
else xi← a random sample from P(Xi | parents(Xi ))

return x, w
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Likelihood Weighting Analysis

Sampling probability for WeightedSample is

SWS(z, e) =Π
l

i = 1P(zi |parents(Zi ))

Note: pays attention to evidence in ancestors only

=⇒ somewhere “in between” prior and posterior distribution

Weight for a given sample z, e is w(z, e) =Π
m

i = 1P(ei |parents(Ei ))

Weighted sampling probability is:
SWS(z, e)w(z, e)

=Π
l

i = 1P(zi |parents(Zi )) Π
m

i = 1P(ei |parents(Ei ))
= P(z, e) (by standard global semantics of network)
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Likelihood Weighting Analysis Continued

Likelihood weighting returns consistent estimates

Order actually matters

Degradation in performance as number of evidence variables increases

A few samples have nearly all the total weight

Most samples will have very low weights, and weight estimate will be dominated by tiny
fraction of samples that contribute little likelihood to evidence

Exacerbated when evidence variables occur late in the ordering

Nonevidence variables will have no evidence in their parents to guide generation of
samples

Samples in simulations will bear little resemblance to reality suggested by evidence

Change framework: do not directly sample (from scratch), but modify preceding sample
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Approximate Inference using MCMC

Main idea:

Markov Chain Monte Carlo (MCMC) algorithm(s) generate each sample by making a
random change to a preceding sample

Concept of current state: specifies value for every r.v.

“State” of network = current assignment to all variables

Random change to current state yields next state

A form of MCMC: Gibbs Sampling
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Gibbs Sampling to Estimate P(X |e)

Initial state has evidence variables assigned as provided

Next state generated by randomly sampling values for nonevidence variables

Each nonevidence variable Z sampled in turn, given its Markov blanket mb

function GIBBS-ASK(X,e,bn,N) returns an estimate of P(X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, nonevidence variables in bn
x, current state of network, initially copied from e

initialize x with random values for the variables in Z
for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi |mb(Zi ))

given the values of MB(Zi ) in x
N[x ]←N[x ] + 1 where x is the value of X in x

return Normalize(N[X ])
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The Markov Chain

With Sprinkler = true,WetGrass = true, there are four states:

Wander about for a while, average what you see
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MCMC Example Continued

Estimate P(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false
P̂(Rain|Sprinkler = true,WetGrass = true)
= Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem: chain approaches stationary distribution

long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Markov Blanket Sampling

Markov blanket of Cloudy is Sprinkler and Rain

Markov blanket of Rain is Cloudy , Sprinkler , and WetGrass

Probability given the Markov blanket is calculated as follows:

P(x ′i |mb(Xi )) = P(x ′i |parents(Xi ))ΠZj∈Children(Xi )P(zj |parents(Zj))
Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(Xi |mb(Xi )) won’t change much (law of large numbers)
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Summary on Inference on Bayesian Networks

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:
– LW does poorly when there is lots of (downstream) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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For Those that Want to Dig Deeper...

♦ MCMC Analysis

♦ Stationarity

♦ Detailed Balance

♦ General Gibbs Sampling
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MCMC Analysis: Outline

Transition probability q(x→ x′)
Occupancy probability πt(x) at time t

Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x′)

Pairwise detailed balance on states guarantees equilibrium

Gibbs sampling transition probability:
sample each variable given current values of all others
=⇒ detailed balance with the true posterior

For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Stationary Distribution

πt(x) = probability in state x at time t

πt+1(x′) = probability in state x′ at time t + 1

πt+1 in terms of πt and q(x→ x′)

πt+1(x′) =Σxπt(x)q(x→ x′)

Stationary distribution: πt = πt+1 = π

π(x′) =Σxπ(x)q(x→ x′) for all x′

If π exists, it is unique (specific to q(x→ x′))

In equilibrium, expected “outflow” = expected “inflow”
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Detailed Balance

“Outflow” = “inflow” for each pair of states:

π(x)q(x→ x′) = π(x′)q(x′ → x) for all x, x′

Detailed balance =⇒ stationarity:

Σxπ(x)q(x→ x′) = Σxπ(x′)q(x′ → x)

= π(x′)Σxq(x′ → x)

= π(x′)

MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π
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Gibbs Sampling

Sample each variable in turn, given all other variables

Sampling Xi , let X̄i be all other nonevidence variables
Current values are xi and x̄i ; e is fixed

Transition probability is given by

q(x→ x′) = q(xi , x̄i → x ′i , x̄i ) = P(x ′i |x̄i , e)

This gives detailed balance with true posterior P(x|e):

π(x)q(x→ x′) = P(x|e)P(x ′i |x̄i , e) = P(xi , x̄i |e)P(x ′i |x̄i , e)

= P(xi |x̄i , e)P(x̄i |e)P(x ′i |x̄i , e) (chain rule)

= P(xi |x̄i , e)P(x ′i , x̄i |e) (chain rule backwards)

= q(x′ → x)π(x′) = π(x′)q(x′ → x)
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Performance of Approximation Algorithms

Absolute approximation: |P(X |e)− P̂(X |e)| ≤ ε

Relative approximation: |P(X |e)−P̂(X |e)|
P(X |e)

≤ ε

Relative =⇒ absolute since 0 ≤ P ≤ 1 (may be O(2−n))

Randomized algorithms may fail with probability at most δ

Polytime approximation: poly(n, ε−1, log δ−1)

Theorem (Dagum and Luby, 1993): both absolute and relative
approximation for either deterministic or randomized algorithms
are NP-hard for any ε, δ < 0.5

(Absolute approximation polytime with no evidence—Chernoff bounds)
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