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Abstract. We address the problem of extending probability from the
total choices of an ASP program to the stable models, and from there to
general events. Our approach is algebraic in the sense that it relies on an
equivalence relation over the set of events and uncertainty is expressed
with variables and polynomial expressions. We illustrate our methods
with two examples, one of which shows a connection to bayesian net-
works.

1 Introduction and Motivation

A major limitation of logical representations in real world applications is the
implicit assumption that the background knowledge is perfect. This assumption
is problematic if data is noisy, which is often the case. Here we aim to explore
how answer set programming programs with probabilistic facts can lead to char-
acterizations of probability functions on the program’s domain, which is not
straightforward in the context of answer set programming, as explained below
(see also [5, 17, 2, 12]). Unlike current systems such as ProbLog [6], P-log [2],
LPMLN [10], or cplint [1], that derive a probability distribution from a program,
in our system some choices are represented by a parameter that can be later es-
timated from further information, e.g. observations. This approach enables later
refinement and scoring of a partial program of a model from additional evidence.

Answer set programming (ASP) [11] is a logic programming paradigm based
on the stable model (SM) semantics of normal programs (NPs) that can be
implemented using the latest advances in SAT solving technology. Unlike Pro-
Log, ASP is a truly declarative language that supports language constructs such
as disjunction in the head of a clause, choice rules, and both hard and weak
constraints.

The distribution semantics (DS) [15, 14] is a key approach to extend logical
representations with probabilistic reasoning. Let A be a finite set of atoms. A
pre-total choice is a subset t∗ of A. The total choice (TC) associated to t∗ is the
set t := t∗ ∪

{
a
∣∣ a ∈ A \ t∗} where a stands for ¬a. Probabilistic facts (PFs)

are the most basic DS stochastic primitives and take the form a :p where each
a ∈ A is associated to some p ∈ [0, 1]. Each PF then represents a boolean random
variable that is true with probability p and false with probability p = 1− p.

Let F =
{
a:p

∣∣ a ∈ A, p ∈ [0, 1]
}

. For a total choice t over A, define

Pt := {p | a ∈ t∗ ∧ a:p ∈ F} ∪
{
p
∣∣ a ∈ t \ t∗ ∧ a:p ∈ F

}



and

P(T = t) =
∏
p∈Pt

p, (1)

where T is a random variable whose values are total choices.

Our goal is to extend this probability (which is, indeed, a product of Bernoulli
distributions [16]), from total choices, to cover the program domain. We use the
term “program” as a set of rules and facts, plain and probabilistic. We can
foresee two key applications of this extended probability:

1. Support probabilistic reasoning/tasks on the program domain.

2. Given a dataset and a divergence measure, the program can be scored (by
the divergence w.r.t. the empiric distribution of the dataset), and weighted
or sorted amongst other programs. These are key ingredients in algorithms
searching, for example, optimal models of a dataset.

To extend probabilities from total choices we start with the stance that a
program describes an observable system, that the stable models are all the possible
states of that system and that observations (i.e. events) are stochastic — one
observation can be sub-complete (a proper subset of a SM) or super-complete (a
proper superset of a SM), and might not determine the real state of the system.
From here, probabilities must be extended from total choices (TCs) to SMs
and then to any event. This extension process starts with a critical problem,
illustrated by the example in section 2, concerning situations where multiple
SMs, ab and ac, result from a single TC, a, but there is not enough information
(in the program) to assign a single probability to each SM. We propose to address
this issue by using algebraic variables to describe that lack of information and
then estimate the value of those variables from empirical data. This lack of
uniqueness is also addressed in [5] along a different approach, using credal sets.

In another related work [17] epistemic uncertainty (or model uncertainty) is
considered as a lack of knowledge about the underlying model, that may be mi-
tigated via further observations. This seems to presuppose a bayesian approach
to imperfect knowledge in the sense that having further observations allows to
improve/correct the model. Indeed, that approach uses Beta distributions on
the total choices in order to be able to learn a distribution on the events . This
approach seems to be specially fitted to being able to tell when some probability
lies beneath some given value. Our approach seems to be similar in spirit, while
remaining algebraic in the way that the extension of probabilities is addressed.

The example in section 2 uses the code available in the project’s repository1,
developed with the Julia programming language [3], and the Symbolics [8], and
DataFrames [4] libraries.

1 https://git.xdi.uevora.pt/fc/sasp

https://git.xdi.uevora.pt/fc/sasp


2 A Simple but Fruitful Example

In this section we consider a somewhat simple case that showcases the problem
of extending probabilities from total choices to stable models and then to events.
As mentioned before, the main issue arises from the lack of information in the
program to assign a single probability to each stable model. This becomes a
crucial problem in situations where multiple stable models result from a single
total choice. We will come back to this example in section 4.1, after we present
our proposal for extending probabilities from total choices to stable models in
section 3.

Example 1. Consider A = {a, b, c} and the following program

a:0.3,

b ∨ c← a.
(2)

The standard form of this program results from replacing annotated facts,
such as a :0.3, by the associated disjunctions, a ∨ ¬a. The stable models of the
annotated program are the same as the ones from the standard form: a, ab and
ac, where a stands for ¬a (see fig. 1). While it is straightforward to assume
P(a) = 0.7, there is no obvious explicit way to assign values to P(ab) and P(ac).
For instance, we can use a parameter θ as in

P(ab) = 0.3θ,

P(ac) = 0.3(1− θ)

to express our knowledge that ab, ac are events related in a certain way and,
simultaneously, our uncertainty about that relation. The parameter θ = θs,t
depends on both the stable model s and the total choice t. This uncertainty
can then be addressed with the help of adequate distributions, such as empirical
distributions from a dataset.

If an ASP program is intended to describe some system then:

1. With a probability set for the stable models, we want to extend it to all the
events of the program domain.

2. In the case where some statistical knowledge is available, for example, in
the form of a distribution, we consider it as “external” knowledge about the
parameters, that doesn’t affect the extension procedure described below.

3. Statistical knowledge can be used to estimate parameters and to “score” the
program.

4. If that program is only but one of many possible candidates then that score
can be used, e.g. as fitness, by algorithms searching (optimal) programs of
a dataset of observations.

5. If observations are not consistent with the program, then we ought to con-
clude that the program is wrong and must be changed accordingly.



Currently, we are addressing the problem of extending a probability function
(possibly using parameters such as θ above), defined on the SMs of a program,
to all the events of that program. This extension must satisfy the Kolmogorov
axioms of probability so that probabilistic reasoning is consistent with the ASP
program and follow our interpretation of stable models as the states of an ob-
servable system.

As sets, the SMs can have non-empty intersection. But, as states of a system,
we assume that SMs are disjoint events, in the following sense:

Assumption 1 Stable models are disjoint events: For any set X of stable mod-
els,

P(X) =
∑
s∈X

P(s) (3)

Consider the stable models ab, ac from example 1, that result from the clause
b ∨ c ← a and the total choice {a}. Since we intend to associate each stable
model with a state of the system, ab and ac should be disjoint events. So b ∨ c
is interpreted as an exclusive disjunction and, from that particular clause, no
further relation between b and c is assumed. This does not prevent that other
clauses may be added that entail further dependencies between b and c, which
in turn may change the stable models.

By not making distribution assumptions on the clauses of the program we
can state such properties on the semantics of the program, as we’ve done in
assumption 1.

3 Extending Probabilities

The diagram in fig. 1 illustrates the problem of extending probabilities from total
choices to stable models and then to general events in an edge-wise process, where
the value in a node is defined from the values in its neighbors. This quickly leads
to coherence problems concerning probability, with no clear systematic approach.
Notice that bc is not directly related with any stable model therefore propagating
values through edges would assign a hard to justify (̸= 0) value to bc. Instead,
we propose to base the extension in the relation an event has with the stable
models.

3.1 An Equivalence Relation

Given an ASP program, we consider a set of atoms A, the set L of the literals
over A, and the set of events E such that e ∈ E ⇐⇒ e ⊆ L. We also considerW
the set of worlds (consistent events), a set of total choices T such that for every
a ∈ A we have a ∈ t or ¬a ∈ t , and S the set of stable models such that S ⊂ W.
At last, the set of stable models entailed by the total choice t is denoted by ⟨t⟩.

Our path to extend probabilities starts with a perspective of stable models as
playing a role similar to prime factors. The stable models of a program are the
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Fig. 1. Some events related to the stable models of example 1. The circle nodes are
total choices and shaded nodes are stable models. Solid lines represent relations with
the SMs and dashed lines relations between other events. The set of events contained
in all stable models, denoted by △, is empty in this example.

irreducible events entailed from that program and any event must be considered
under its relation with the stable models.

From example 1, consider the SMs a, ab, ac and events a, abc and c. While a
is related with (contained in) with both ab, ac, event c is related only with ac.
So, a and c are related with different SMs. On the other hand, both ab, ac are
related with abc. So a and abc are related with the same stable models.

Definition 1. The stable core (SC) of the event e ∈ E is

JeK := {s ∈ S | s ⊆ e ∨ e ⊆ s} . (4)

where S is the set of stable models.

We now define an equivalence relation so that two events are related if either
both are inconsistent or both are consistent and, in the latter case, with the
same stable core.

Definition 2. For a given program, let u, v ∈ E. The equivalence relation ∼ is
defined by

u ∼ v :⇐⇒ u, v ̸∈ W ∨
(
u, v ∈ W ∧ JuK = JvK

)
. (5)

Observe that the minimality of stable models implies that, in definition 1,
either e is a stable model or at least one of ∃s (s ⊆ e) ,∃s (e ⊆ s) is false. This
equivalence relation defines a partition on the set of events, where each class
holds a unique relation with the stable models. In particular we denote each
class by:

[e]∼ =

{
⊥ := E \W if e ∈ E \W,{
u ∈ W

∣∣ JuK = JeK
}

if e ∈ W.
(6)
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Fig. 2. Classes (of consistent events) related to the stable models of example 1 are
defined through intersections and inclusions. In this picture we can see, for example,
the classes {cab, ab, b} and {a, abc}. Different fillings correspond to different classes
and, as before, the circle nodes are total choices and shaded nodes are stable models.
Notice that bc is not in a “filled” area.

The combinations of the stable models, together with the set of inconsistent
events ⊥, form a set of representatives. Consider again example 1. As previously
mentioned, the stable models are the elements of S = {a, ab, ac} so the quotient
set of this relation is

[E ]∼ =
{
⊥,♢, [a]∼, [ab]∼, [ac]∼, [a, ab]∼, [a, ac]∼, [ab, ac]∼, [a, ab, ac]∼

}
, (7)

where ♢ denotes, with abuse of notation, both the class of independent events e
such that JeK = ∅ and its core and △ is the set of events contained in all SMs.
We have:

Core, JeK Class, [e]∼ Size,#[e]∼
⊥ aa, . . . 37

♢ b, c, bc, ba, bc, bc, ca, cb, bca 9

a a, ab, ac, ab, ac, abc, acb, abc, abc 9
ab b, ab, cab 3

ac c, ac, bac 3
a, ab ∅ 0
a, ac ∅ 0
ab, ac a, abc 2
a, ab, ac △ 1
[E ]∼ E 64

Since all events within an equivalence class are in relation with a specific
set of stable models, measures, including probability, should be constant within
classes:

∀u ∈ [e]∼
(
µ(u) = µ(e)

)
.



In general, we have much more stable models than literals but their com-
binations are still much less than events. Nevertheless, the equivalence classes
allow us to propagate probabilities from total choices to events, as explained in
the next subsection.

In this specific case, instead of dealing with 64 = 26 events, we consider only
the 9 = 23+1 classes, well defined in terms of combinations of the stable models.

3.2 From Total Choices to Events

Our path to set a distribution on E starts with the more general problem of
extending measures, since extending probabilities easily follows by means of a
suitable normalization (done in (15) and (16)), and has two phases:

1. Extension of the probabilities, as measures, from the total choices to events.
2. Normalization of the measures on events, recovering a probability.

The “extension” phase, traced by eq. (1) and eqs. (8) to (14), starts with
the measure (probability) of total choices, µ(t) = P(T = t), expands it to stable
models, µ(s), and then, within the equivalence relation from eq. (5), to (general)
events, µ(e), including (consistent) worlds.

Total Choices. Using eq. (1), this case is given by

µTC(t) := P(T = t) =
∏
p∈Pt

p. (8)

Stable Models. Recall that each total choice t, together with the rules and the
other facts of a program, defines the set ⟨t⟩ of stable models associated with
that choice. Given a total choice t, a stable model s, and variables or values
θs,t ∈ [0, 1] such that

∑
s∈⟨t⟩ θs,t = 1, we define

µ(s, t) :=

{
θs,t if s ∈ ⟨t⟩
0 otherwise.

(9)

Classes. Each class is either the inconsistent class, ⊥, or is represented by some
set of stable models.
Inconsistent Class. The inconsistent class contains events that are logi-

cally inconsistent, thus should never be observed and have measure zero:

µ(⊥, t) := 0.2 (10)

Independent Class. A world that neither contains nor is contained in a
stable model corresponds to a non-state, according to the program. So
the respective measure is also set to zero:

µ(♢, t) := 0. (11)
2 Notice that this measure being equal to zero is actually independent of the total
choice.



Other Classes. The extension must be constant within a class, its value
should result from the elements in the stable core, and respects assump-
tion 1 (stable models are disjoint):

µ
(
[e]∼, t

)
:= µ

(
JeK , t

)
=

∑
s∈JeK

µ(s, t) (12)

and

µ
(
[e]∼

)
:=

∑
t∈T

µ
(
[e]∼, t

)
µTC(t) . (13)

Events. Each (general) event e is in the class defined by its stable core, JeK. So,
denoting by #X the number of elements in X, we set:

µ(e, t) :=

µ([e]∼,t)
#[e]∼

if #[e]∼ > 0,

0 otherwise.
(14)

and

µ(e) :=
∑
t∈T

µ(e, t)µTC(t) . (15)

The θs,t parameters in equation (9) express the program’s lack of knowledge
about the measure assignment, when a single total choice entails more than
one stable model. In that case, how to distribute the respective measures? Our
proposal to address this problem consists in assigning an unknown measure, θs,t,
conditional on the total choice, t, to each stable model s. This approach allows
the expression of an unknown quantity and future estimation, given observed
data.

Equation (12) results from assumption 1 and states that the measure of a
class [e]∼ is the sum over it’s stable core, JeK, and (13) marginalizes the TCs on
(12).

The normalizing factor is:

Z :=
∑
e∈E

µ(e) =
∑

[e]∼∈[E]∼

µ
(
[e]∼

)
,

and now equation (15) provides a straightforward way to define the probability
of observation of a single event :

P(E = e) :=
µ(e)

Z
. (16)

Equation (15) together with external statistical knowledge, can be used to
learn about the initial probabilities of the atoms, that should not (and by propo-
sition 1 can’t) be confused with the explicit µTC set in the program.

It is now straightforward to check that P(E) satisfies the Kolmogorov axioms
of probability.



Since total choices are also events, one can ask, for an arbitrary total choices
t, if P(T = t) = P(E = t) or, equivalently, if µTC(t) = µ(t). However, it is easy
to see that, in general, that cannot be true. While the domain of the random
variable T is the set of total choices, for E the domain is much larger, including
all the events. Except for trivial programs, where the SMs are the TCs, some
events other than total choices have non-zero probability.

Proposition 1. In a program with a stable model that is not a total choice there
is at least one t ∈ T such that:

P(T = t) ̸= P(E = t) . (17)

Proof. Suppose towards a contradiction that P(T = t) = P(E = t) for all t ∈ T .
Then ∑

t∈T
P(E = t) =

∑
t∈T

P(T = t) = 1.

Hence P(E = x) = 0 for all x ∈ E \ T , in contradiction with the fact that for
at least one s ∈ S \ T one has P(E = s) > 0.

The essential conclusion of proposition 1 is that we are dealing with two
distributions: one, on the TCs, explicit in the annotations of the programs and
another one, on the events, and entailed by the explicit annotations and the
structure of the stable models.

4 Developed Examples

Here we apply the methods from section 3 to example 1 and to a well known
bayesian network: the Earthquake, Burglar, Alarm problem.

4.1 The SBF Example

We continue with the program from eq. (2).

Total choices. The total choices, and respective stable models, are

Total choice Stable models µTC(t)
a ab, ac 0.3
a a 0.3 = 0.7

Stable models. The θs,t parameters in this example are

θs,t a a
a 1 0
ab 0 θ

ac 0 θ

with θ ∈ [0, 1].



Classes. Following the definitions in eqs. (4) to (6) and (10) to (12) we get the
following quotient set (ignoring ⊥ and ♢), and measures:

JeK µ(s, a) µ(s, a) µ
(
[e]∼, a

)
µ
(
[e]∼, a

)
µ
(
[e]∼

)
a, ab, ac a, ab, ac µTC = 0.7 µTC = 0.3

a 1 , 0, 0 0 , θ, θ 1 0 0.7

ab 1, 0 , 0 0, θ , θ 0 θ 0.3θ

ac 1, 0, 0 0, θ, θ 0 θ 0.3θ

a, ab 1 , 0 , 0 0 , θ , θ 1 θ 0.7 + 0.3θ

a, ac 1 , 0, 0 0 , θ, θ 1 θ 0.7 + 0.3θ

ab, ac 1, 0 , 0 0, θ , θ 0 θ + θ = 1 0.3

a, ab, ac 1 , 0 , 0 0 , θ , θ 1 θ + θ = 1 1

Prior Distributions. Following the above values (in rational form), and con-
sidering the inconsistent and independent classes (resp. ⊥,♢):

JeK #[e]∼ µ
(
[e]∼

)
µ(e) P(E = e) P

(
E ∈ [e]∼

)
⊥ 37 0 0 0 0

♢ 9 0 0 0 0

a 9 7
10

7
90

7
207

7
23

ab 3 3
10θ

1
10θ

1
23θ

3
23θ

ac 3 3
10θ

1
10θ

1
23θ

3
23θ

a, ab 0 7+3θ
10 0 0 0

a, ac 0 7+3θ
10 0 0 0

ab, ac 2 3
10

3
20

3
46

3
23

a, ab, ac 1 1 1 10
23

10
23

Z = 23
10

So the prior distributions, denoted by the random variable E, of events and
classes are:

JeK ⊥ ♢ a ab ac a, ab a, ac ab, ac a, ab, ac

P(E = e) 0 0 7
207

1
23θ

1
23θ 0 0 3

46
10
23

P
(
E ∈ [e]∼

)
0 0 7

23
3
23θ

3
23θ 0 0 3

23
10
23

(18)

Testing the Prior Distributions These results can be tested by simulation in
a two-step process, where (1) a “system” is simulated, to gather some “observa-
tions” and then (2) empirical distributions from those samples are related with
the prior distributions from eq. (18). Tables 1 and 2 summarize some of those
tests, where datasets of n = 1000 observations are generated and analyzed.



Simulating a System. Following some criteria, more or less related to the
given program, a set of events, that represent observations, is generated. Possible
simulation procedures include:

– Random. Each sample is a Random Set of Literals (RSL). Additional sub-
criteria may require, for example, consistent events, a Random Consistent
Event (RCE) simulation.

– Model+Noise. Gibbs’ sampling [7] tries to replicate the program model and
also to add some noise. For example, let α, β, γ ∈ [0, 1] be some parameters to
control the sample generation. The first parameter, α is the “out of model”
samples ratio; β represents the choice a or a (explicit in the model) and
γ is the simulation representation of θ. A single sample is then generated
following the probabilistic choices below:

α by RCE
β a{

γ ab

ac

,

where {
p x

y

denotes “the value of x with probability p, otherwise y” — notice that y
might entail x and vice-versa: E.g. some ab can be generated in the RCE.

– Other Processes. Besides the two sample generations procedures above, any
other processes and variations can be used. For example, requiring that one
of x, x literals is always in a sample or using specific distributions to guide
the sampling of literals or events.

Relating the Empirical and the Prior Distributions. The data from the
simulated observations is used to test the prior distribution. Consider the prior,
P(E), and the empirical, P(S), distributions and the following error function:

err(θ) :=
∑
e∈E

(
P(E = e)− P(S = e)

)2
. (19)

Since E depends on θ, one can ask how does the error varies with θ, what is
the optimal (i.e. minimum) error value

θ̂ := arg min
θ

err(θ) (20)

and what does it tell us about the program.
In order to illustrate this analysis, consider the experiment summarized in

table 1:



JeK #
{
S ∈ [e]∼

}
P
(
S ∈ [e]∼

)
P
(
E ∈ [e]∼

)
⊥ 0 0 0

♢ 24 24
1000

0

a 647 647
1000

7
23

ab 66 66
1000

3
23
θ

ac 231 231
1000

3
23
θ

a, ab 0 0 0

a, ac 0 0 0

ab, ac 7 7
1000

3
23

a, ab, ac 25 25
1000

10
23

n = 1000

Table 1. Experiment 1. Results from an experiment where n = 1000 samples where
generated following the Model+Noise procedure with parameters α = 0.1, β = 0.3, γ =
0.2. The empirical distribution is represented by the random variable S while the prior,
as before, is denoted by E.

1. Equation (19) becomes

err(θ) =
20869963

66125000
+

477

52900
θ +

18

529
θ2.

2. The minimum of err(θ) is at 477
52900 + 2 18

529θ = 0. Since this value is negative

and θ ∈ [0, 1], it must be θ̂ = 0, and

err
(
θ̂
)

=
20869963

66125000
≈ 0.31561.

The parameters α, β, γ of that experiment favour ac over ab. In particular,
setting γ = 0.2 means that in the simulation process, choices between ab and ac
favour ac, 4 to 1. For completeness sake, we also describe one experiment that
favours ab over ac (setting γ = 0.8) and one balanced (γ = 0.5).

For γ = 0.8, the error function is

err(θ) =
188207311

529000000
− 21903

264500
θ +

18

529
θ2 ≈ 0.35579− 0.08281θ + 0.03403θ2

and, with θ ∈ [0, 1] the minimum is at −0.08281 + 0.06805θ = 0, i.e.:

θ̂ :
0.08281

0.06805
≈ 1.21683 > 1. So, θ̂ = 1,

err
(
θ̂
)
≈ 0.30699 .

For γ = 0.5, the error function is

err(θ) =
10217413

33062500
− 2181

66125
θ +

18

529
θ2 ≈ 0.30903− 0.03298θ + 0.03402θ2



and, with θ ∈ [0, 1] the minimum is at −0.03298 + 0.06804θ = 0, i.e.:

θ̂ ≈ 0.03298

0.06804
≈ 0.48471 ≈ 1

2
,

err
(
θ̂
)
≈ 0.30104

JeK #
{
S0.2 ∈ [e]∼

}
#

{
S0.8 ∈ [e]∼

}
#

{
S0.5 ∈ [e]∼

}
⊥ 0 0 0

♢ 24 28 23

a 647 632 614

ab 66 246 165

ac 231 59 169

a, ab 0 0 0

a, ac 0 0 0

ab, ac 7 8 4

a, ab, ac 25 27 25

Table 2. Experiments 2 and 3. Results from experiments, each with n = 1000 samples
generated following the Model+Noise procedure, with parameters α = 0.1, β = 0.3, γ =
0.8 (Experiment 2) and γ = 0.5 (Experiment 3). Empirical distributions are represented
by the random variables S0.8 and S0.5 respectively. Data from experience table 1 is also
included, and denoted by S0.2, to provide reference.

These experiments show that data can indeed be used to estimate the pa-
rameters of the model. However, we observe that the estimated θ̂ has a ten-
dency to over- or under- estimate the θ used to generate the samples. More
precisely, in experiment 1 data is generated with γ = 0.2 (the surrogate of θ)

which is under-estimated with θ̂ = 0 while in experiment 2, γ = 0.8 leads the
over-estimation θ̂ = 1. This suggests that we might need to refine the error esti-
mation process. However, experiment 3 data results from γ = 0.5 and we’ve got
θ̂ ≈ 0.48471 ≈ 0.5, which is more in line with what is to be expected.

4.2 An Example Involving Bayesian Networks

As it turns out, our framework is suitable to deal with more sophisticated cases,
in particular cases involving bayesian networks. In order to illustrate this, in this
section we see how the classical example of the Burglary, Earthquake, Alarm [13]
works in our setting. This example is a commonly used example in bayesian net-
works because it illustrates reasoning under uncertainty. The gist of the example
is given in fig. 3. It involves a simple network of events and conditional proba-
bilities.



The events are: Burglary (B), Earthquake (E), Alarm (A), Mary calls (M)
and John calls (J). The initial events B and E are assumed to be independent
events that occur with probabilities P(B) and P(E), respectively. There is an
alarm system that can be triggered by either of the initial events B and E. The
probability of the alarm going off is a conditional probability given that B and
E have occurred. One denotes these probabilities, as per usual, by P(A | B),
and P(A | E). There are two neighbors, Mary and John who have agreed to
call if they hear the alarm. The probability that they do actually call is also a
conditional probability denoted by P(M | A) and P(J | A), respectively.

A

BE

M J

P(B) = 0.001P(E) = 0.002

P(M | A) P(J | A)

P(M | A)

m ¬m
a 0.9 0.1
¬a 0.05 0.95

P(J | A)

j ¬j
a 0.7 0.3
¬a 0.01 0.99

P(A | B ∧ E)

a ¬a
b e 0.95 0.05
b ¬e 0.94 0.06
¬b e 0.29 0.71
¬b ¬e 0.001 0.999

Fig. 3. The Earthquake, Burglary, Alarm model

We follow the convention of representing the (upper case) random variable
X by the lower case x. Considering the probabilities given in fig. 3 we obtain
the following specification:

b:0.001,

e:0.002,

For the table giving the probability P(M | A) we obtain the program:

pm|a :0.9,

pm|a :0.05,

m← a ∧ pm|a,

m← ¬a ∧ pm|a.



The latter program can be simplified (abusing notation) by writing m:0.9←
a and m:0.05← ¬a.

Similarly, for the probability P(J | A) we obtain

j :0.7←a,

j :0.01←¬a,

Finally, for the probability P(A | B ∧ E) we obtain

a:0.95← b, e, a:0.94← b, e,

a:0.29← b, e, a:0.001← b, e.

One can then proceed as in the previous subsection and analyze this example.
The details of such analysis are not given here since they are analogous, albeit
admittedly more cumbersome.

5 Discussion and Future Work

This work is a first venture into expressing probability distributions using alge-
braic expressions derived from a logical program, in particular an ASP. We would
like to point out that there is still much to explore concerning the full expres-
sive power of logic programs and ASP programs. So far, we have not considered
recursion, logical variables or functional symbols. Also, there is still little effort
to articulate with the related fields, probabilistic logical programming, machine
learning, inductive programming, etc.

The equivalence relation from definition 2 identifies the s ⊆ e and e ⊆ s cases.
Relations that distinguish such cases might enable better relations between the
models and processes from the stable models.

The example from section 4.2 shows that the theory, methodology, and tools,
from bayesian networks can be adapted to our approach. The connection with
Markov Fields [9] is left for future work. An example of a “program selection”
application (as mentioned in item 4, section 2) is also left for future work.

Related with the remark at the end of section 4.1, on the tendency of θ̂
to under- or over- estimate θ, notice that the error function in (19) expresses
only one of many possible “distances” between the empirical and prior distri-
butions. Variations include normalizing this function by the size of E or using
the Kullback-Leibler divergence. The key contribution of this function in this
work is to find an optimal θ. Moreover, further experiments, not included in this
paper, with α = 0.0, lead to θ̂ ≈ γ, i.e. setting the prior noise to zero leads to
full recovering θ from the observations.

We decided to set the measure of inconsistent events to 0 but, maybe, in
some cases, we shouldn’t. For example, since observations may be affected by
noise, one can expect inconsistencies between the literals of an observation to
occur.
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bilistic answer set programming: semantics, complexity, expressivity, in-
ference”. In: International Journal of Approximate Reasoning 125 (2020),
pp. 218–239.

[6] Luc De Raedt et al. “ProbLog: A probabilistic Prolog and its application
in link discovery”. In: IJCAI 2007, Proceedings of the 20th international
joint conference on artificial intelligence. IJCAI-INT JOINT CONF AR-
TIF INTELL. 2007, pp. 2462–2467.

[7] Stuart Geman and Donald Geman. “Stochastic Relaxation, Gibbs Distri-
butions, and the Bayesian Restoration of Images”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-6.6 (1984), pp. 721–
741. doi: 10.1109/TPAMI.1984.4767596.

[8] Shashi Gowda et al. “High-performance symbolic-numerics via multiple
dispatch”. In: arXiv preprint arXiv:2105.03949 (2021).

[9] Ross Kindermann and J. Laurie Snell. Markov random fields and their
applications. Vol. 1. Contemporary Mathematics. American Mathematical
Society, Providence, RI, 1980, pp. ix+142. isbn: 0-8218-5001-6.

[10] Joohyung Lee and Yi Wang. “Weighted rules under the stable model se-
mantics”. In: Fifteenth international conference on the principles of knowl-
edge representation and reasoning. 2016.

[11] Vladimir Lifschitz. “Answer set programming and plan generation”. In:
Artificial Intelligence 138.1 (2002), pp. 39–54. issn: 0004-3702. doi: https:
//doi.org/10.1016/S0004-3702(02)00186-8.

https://doi.org/10.1137/141000671
https://doi.org/10.18637/jss.v107.i04
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/https://doi.org/10.1016/S0004-3702(02)00186-8


[12] Jukka Pajunen and Tomi Janhunen. “Solution enumeration by optimality
in Answer Set Programming”. In: Theory and Practice of Logic Program-
ming 21.6 (2021), pp. 750–767.

[13] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. The Morgan Kaufmann Series in Representation and
Reasoning. Morgan Kaufmann, San Mateo, CA, 1988, pp. xx+552. isbn:
0-934613-73-7.

[14] Fabrizio Riguzzi. Foundations of Probabilistic Logic Programming: Lan-
guages, Semantics, Inference and Learning. en. 1st ed. New York: River
Publishers, Sept. 2022. isbn: 978-1-00-333819-2. doi: 10.1201/9781003338192.
(Visited on 03/01/2023).

[15] Taisuke Sato. “A Statistical Learning Method for Logic Programs with
Distribution Semantics”. In: International Conference on Logic Program-
ming. 1995.

[16] Jozef L. Teugels. “Some representations of the multivariate Bernoulli and
binomial distributions”. In: J. Multivariate Anal. 32.2 (1990), pp. 256–268.
issn: 0047-259X,1095-7243. doi: 10.1016/0047-259X(90)90084-U. url:
https://doi.org/10.1016/0047-259X(90)90084-U.

[17] Victor Verreet et al. “Inference and learning with model uncertainty in
probabilistic logic programs”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 36. 9. 2022, pp. 10060–10069.

https://doi.org/10.1201/9781003338192
https://doi.org/10.1016/0047-259X(90)90084-U
https://doi.org/10.1016/0047-259X(90)90084-U

	An Algebraic Approach to Stochastic ASP

