using Symbolics using Latexify # # γ = 0.5 # no_s = [ # 0 , # 23 , # 614 , # 165 , # 169 , # 0 , # 0 , # 4 , # 25 , # ] # γ = 0.8 no_s = [ 0 , 28 , 632 , 246 , 59 , 0 , 0 , 5 , 27 , ] pr_s = (x -> x // 1000).(no_s) @variables θ num_e = [ 0 , 0 , 7 , 3 * θ , 3 * (1 - θ) , 0 , 0 , 3 , 10 , ] pr_e = (x -> x // 23).(num_e) target = expand(sum( (x -> x^2).(pr_s - pr_e) )) println(latexify(target)) # using Plots # g(t) = (20869963/66125000) + (477/52900)*t + (18/529)*(t^2) # t = 0:0.1:1 # plot(t, g.(t)) function solve2(a, b, c) delta = sqrt(Complex(b^2 - 4 * a * c)) return ( (-b - delta)/(2*a), (-b + delta)/(2*a) ) end # # g = target ~ 0 a = float(18//529) b = -float(21903//264500) c = float(188207311//529000000) println("a: $a b: $b c: $c") println("̂θ = $(-b/a)")